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Abstract

The classical problem of stability of convection flow in a tall vertical dif-
ferentially heated rectangular cavity is considered. It is shown that realistic
nonlinear fluid properties variations associated with a large cross-cavity tem-
perature gradient lead to significant deviations from the flow scenarios pre-
dicted using conventional Boussinesq approximation. It is well known that in
the Boussinesq limit of a small temperature gradient the conduction state bi-
furcates supercritically to a stationary transverse roll pattern associated with
the shear of the primary flow, and this instability is of absolute character.
Here we show that when the fluid properties vary, a new buoyancy driven os-
cillatory instability arises, the transition to shear driven instability becomes
subcritical, and a range of parameters appears for which the character of in-
stability is convective. Analytical results are obtained by deriving and solving
the Ginzburg-Landau-type disturbance amplitude equation and are checked
against the results of direct numerical simulation.

1 Introduction and problem definition

Buoyancy driven flow in a two-dimensional vertical rectangular cavity has been the
subject of intensive study for the last few decades, see classical works by Rudakov
[5] and Bergholz [1] just to name a few. Normally the approach is to use the so-
called Boussinesq approximation of the Navier-Stokes equations which assumes no
fluid properties variations except a linear density dependence on the temperature
in the buoyancy term. As a result the equations are artificially symmetric and the
predicted flow solutions are relatively simple. Such an approach is valid only if the
maximum temperature difference in the flow region does not exceed a few degrees
Kelvin. This limitation is too restrictive for many practical applications such as gas
thermal insulation systems and various chemical vapour deposition reactors. In this
work the so-called Low-Mach-Number (LMN) equations [2] are used to account for
realistic fluid properties variations which lead to diverse flow patterns in comparison
to those in the classical Boussinesq flows.

Consider the flow of air with the average (reference) temperature 7, = 300K in
a tall closed cavity with isothermal vertical walls separated by a distance H and
maintained at different temperatures 7, and T,, T}, > T.. The density p, dynamic
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Figure 1: Basic flow velocity (a) and temperature (b) profiles in the Boussinesq (e — 0,
solid line), weakly non-Boussinesq (¢ = 0.3, dash-dotted line) and strongly non-Boussinesq
(e = 0.6, dashed line) regimes.

viscosity u, thermal conductivity k and specific heat ¢, of air are non-dimensionalised
with respect to their values at 7, and vary with temperature 7" and thermodynamic
pressure P according to the ideal gas equation of state and Sutherland formulae
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As discussed in [6] such flow is described by LMN equations [2]
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where the Grashof (Gr) and Prandtl (Pr) numbers, the non-dimensional temper-
ature difference (€) between the walls and the measure of fluid resilience (') are
defined using the reference values:
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The coefficient of thermal expansion of air is 5 = 1/T. Since the cavity is closed

and the density of the fluid varies, the nontrivial total mass conservation and zero
mass flux conditions,

Gr =

/ pdV = const., and /pvdS =0, (5)
1% s

are necessary to define a well posed problem.

Figure 1 shows steady parallel basic flow solutions (v(z), T (x)) for various values
of e. Such flows exist at the relatively small Grashof numbers. The classical Boussi-
nesq cubic velocity and linear temperature profiles exist only in the limit 7}, — T..
See that the property variations associated with any finite cross-cavity temperature
gradient break the symmetry of the velocity profile and destroy the linearity of the
wall-to-wall conduction temperature profile. The overall effect is that both velocity
and temperature gradients steepen near the cold wall. This strongly affects the
stability characteristics of the parallel conduction flow regime as will be shown in
Section 2. See [6] for more detailed discussion of the basic flow.
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Figure 2: Linear stability diagram (a) and real (b) and imaginary (c) parts of the first
Landau constant K7 as functions of e.

2 Linear and weakly nonlinear stability results

The stability of the parallel flows introduced in Section 1 is investigated in a stan-
dard way: the equations are linearized about the basic flow and then the Fourier
transform of the resulting equations is taken in a vertical y-direction to form an
eigenvalue problem for the disturbance complex amplification rate o(«), where « is
the wavenumber in the Fourier transform, see [6] for details. Then by varying Gr
for fixed € and « the value Gro(e, ) for which the real part of(a) = 0 is found.
Finally, the critical value Gr.(¢) = min,(Gr(e,)) is found and this determines
the transition from parallel to y-periodic flows. These results are summarized in
Figure 2 (a). See that the value of the critical Grashof number increases rapidly
with the temperature difference between the walls. The eigenfunction analysis (not
shown here) provides an explanation: the disturbance structures are mostly gener-
ated near the inflection point of the basic flow velocity profile where the shear of
the flow is maximum. For this reason this type of instability is referred to as shear
instability and is similar to the classical inviscid Helmholtz instability observed in
counterflowing liquid layers. As the value of € increases the inflection point moves
towards the (cold) wall where the damping of the disturbance is stronger. For this
reason a stronger force (larger Gr) driving the disturbance is required for the insta-
bility to grow. Such a situation persists up to € &~ 0.534 where stability of the basic
parallel flow start deteriorating (observe the rapidly decreasing G in the right part
of Figure 2 a). The eigenfunction analysis shows that this de-stabilisation is caused
by a different mechanism: it is due to thermal disturbances developing near the cold
wall where the basic flow temperature profile has the largest gradient (see Figure 1
b). This disturbance leads to an overcooled region forming near the cold wall. The
thermal conductivity coefficient for air decreases rapidly with the temperature. Be-
cause of this the overcooled region becomes self-preserving as its thermal exchange
with the surrounding warmer fluid is suppressed due to the lower conductivity. At
the same time the fluid density is inversely proportional to its temperature and thus
the overcooled region contains heavier fluid which drops down in the gravity field.
Such a scenario is referred to as buoyancy instability. It is a consequence of nonlin-
ear density variation with temperature and is found only in strongly non-Boussinesq
regimes.

Although linear stability analysis is a powerful tool for studying bifurcation phe-



nomena in fluid flows it only provides a necessary condition for flow instability. It
does not give answers to two important questions: how large can the disturbance
amplitude A grow (which is a measure of deviation of the full flow solution after the
bifurcation has occured from the undisturbed basic flow computed for the same set
of parameters) and is the physical flow actually stable when it is stable according
to linear theory? To answer these questions it is necessary to introduce the the
so-called weakly nonlinear stability analysis. Its essence is in description of the flow
evolution in near critical regimes by deriving and analysing a low dimensional model
of such a flow. The model accounts for the dynamics of a narrow wave envelope of
the most amplified disturbances. The application of amplitude expansions to non-
Boussinesq convection flows in a cavity was discussed in detail in [7]. There, after
a rather lengthy derivation involving the recursive solution of equations arising at
different orders in disturbance amplitude A, it was shown that up to the third order
in amplitude the model is the Landau equation

A A K AAP (6)
dt

Here K is the (complex) Landau constant whose numerical value is determined from
the appropriate orthogonality condition between the linear eigenfunction and flow
corrections found at various orders of A. The Landau equation (6) has a nontrivial
equilibrium solution |A.|?> = —o® /K[ which exists either when ¢ > 0 and K < 0
or when o < 0 and K > 0 (superscript R denotes real part). The former situation
corresponds to the linearly unstable flow (¢® > 0) and is referred to as supercrit-
ical bifurcation: in this case the linear analysis predicts the correct value for the
transitional Grashof number Gr.. The latter situation is referred to as subcritical
bifurcation: the flow is linearly stable (c® < 0), i.e. stable with respect to infinitesi-
mal disturbances, but if an initial disturbance amplitude is larger than | A.| then (6)
predicts unbounded growth of the disturbance (in reality they might saturate but
at the larger value than the range of validity of the cubic Landau model). Thus the
transition from parallel to periodic flow depends on the actual experimental condi-
tions; one can obtain different flow patterns at the same set of governing parameters
by simply starting from different initial conditions. Consequently, the sign of the
real part of the Landau constant K determines the character of bifurcation and is
a reflection of the flow complexity. Figure 2 (b) shows the strong influence of fluid
property variations on the type of bifurcation occuring in the classical convection
problem. Since K < 0 for small € (i.e. the bifurcation is supercritical) it confirms
the well documented experimental fact [4] that linear theory provides an excellent
prediction of the transitional value of Gr. &~ 8037 in the Boussinesq limit. On the
other hand at ¢ ~ 0.535 the bifurcation associated with the shear instability mode
changes to subcritical and linear theory is not expected to provide a suitable value
for Gr.. Unfortunately, no experiments in this temperature difference range are
currently known. Similar analysis of the buoyancy driven instability shows that the
corresponding value of K ¥ remains negative predicting supercritical bifurcation for
this mode over the whole temperature range considered.



3 Convective and absolute instabilities

The linear and weakly nonlinear analyses of convection presented in Section 2 ac-
count for the periodic disturbances corresponding to a single wavenumber «, at
which the maximum temporal disturbance amplification rate o®(c,) is observed.
This is valid only at the bifurcation point. For any supercritical regime (Gr > Gr,)
there is a finite range of wave numbers centered at c, for which o®(a) > 0, i.e. there
exists an envelope of the amplifying disturbance waves all of which will contribute
to the asymptotic flow pattern. In order to account for the wave envelope dynamics
the Landau model (6) is extended to include weak spatial modulation terms and
becomes the Ginzburg-Landau model
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where ¢, = ig—g is the disturbance wave group speed, v is the velocity of the moving

reference frame with respect to which we will consider the wave dynamics, and

20

K, = —%. The derivation and justification of this model is the subject of a

full length paper currently being prepared by the author. When all coefficients

of equation (7) are evaluated at a,. where o® has a maximum (i.e. % = 0 and

KE = —% > 0 at this point) the linear stability analysis reveals that the trivial
solution A = 0 becomes unstable and grows exponentially whenever its amplification

rate ( )ZKR
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is positive. Obviously, the maximum amplification rate 7,, = c%(c.) is observed
in the frame moving with the wave envelope when v = ¢,. On the other hand all
disturbances will decay in a system moving with a velocity much different from c,.
This observation leads to the introduction of the concepts of absolute and convective
instabilities.

These concepts are roughly illustrated by the waves from a stone thrown into
water. If the water flow is fast, only downstream waves will be observed (convective
instability). In contrast, in a stagnant pond, waves will propagate in all directions
and will eventually perturb the complete water surface (absolute instability). Thus
when there exists a system of coordinates in which the localized disturbances am-
plify, i.e. 7, > 0 and ~,—¢ < 0 then the instability is convective. The disturbances
grow only in the direction of wave propagation. If v,—y > 0 then the disturbances
amplify at any fized spatial location and the instability is absolute. Naturally, the
condition v,—o = 0 determines the boundary between convective and absolute in-
stability regimes similar to % = 0 determining the boundary for linear instability.
It is easy to conclude from the above discussion that the linear stability boundary
always defines transition between stable and convectively unstable regimes, while
absolute instability can arise only in linearly supercritical regimes. The exception is
the case of stationary disturbances for which ¢; = 0. In this case the instability is
always absolute.

As seen in Figure 3 (c) the disturbance group speed is negative for any finite
temperature difference between the walls. This is consistent with the discussion in
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Figure 3: (a) Linear (solid) and absolute (dashed) instability boundaries, (b) correspond-
ing wavenumbers and (c¢) disturbance wave group speeds as functions of e.

Sections 1 and 2: the shear instability is generated near the inflection point of the
basic flow velocity profile, this point moves towards the cold wall where the fluid
flows downwards. The buoyancy instability is generated even closer to the cold
wall where the basic flow has faster downward velocity. For this reason buoyancy
disturbances move downwards substantially faster than shear disturbances.

In the Boussinesq and weakly non-Boussinesq regimes the shear disturbance
group speed is close to zero and the difference between the linear and absolute
instabilities boundaries cannot be seen in Figure 3 (a) for small values of €, yet it is
seen clearly in strongly non-Boussinesq regimes when the symmetry breaking effects
of the fluid property variations is more profound. The group speed of the buoyancy
disturbances is always so large that a transition to absolute instability for this mode
is not found. Note also that the wavelength 27/« of the buoyancy disturbance
is much larger than that of the shear one, see Figure 3 (b). This emphasises the
essentially solitary structure of the buoyancy disturbances (picture them as heavy
stones dropping in a surrounding fluid).

To explicitly demonstrate the difference between convective and absolute insta-
bility scenarios the Ginzburg-Landau equation (7) is integrated numerically. The
coefficients are computed for the supercritical regimes of weakly non-Boussinesq
convection with absolute shear driven instability at e = 0.3 and of strongly non-
Boussinesq convection with convective buoyancy driven instability at e = 0.6. In
a closed cavity the fluid must turn around near the top and bottom ends of the
cavity. Consequently, the flow is essentially non-parallel in the end regions which
act as a natural source of disturbances for the parallel basic flow existing in the
middle part of the cavity. This situation is mimicked by the initial condition for A
containing two symmetric pulses near the ends. Since no disturbances are allowed
on the solid walls, zero boundary conditions are imposed at y = 0 and y = 40. In
the absolutely unstable regime as depicted in the left part of Figure 4 both initial
pulses generate wave packets propagating with the slightly negative group speed
from right to left, but the extension rate of each of the envelopes is faster than
their translational speed. Eventually both envelopes meet and form a single self-
supporting disturbance system extending throughout a complete flow domain. In
the convectively unstable regime as shown in the right part of Figure 4 the extension
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Figure 4: Solutions of equation (7) for (Gr,e) = (9860,0.3) (left) and (Gr,e) =
(16000, 0.6) (right).

rate of the wave packets is slower than their translation. For this reason the left
envelope is carried quickly towards the wall where it decays due to the absorbing
boundary condition. The envelope generated near the right boundary grows as it
propagates through the cavity, but eventually hits the left wall and decays as well.
Consequently, convectively unstable disturbances can be observed in a closed system
only if the flow has a permanent source of external perturbations.

4 Direct numerical simulation and conclusions

Finally, we correlate the conclusions made so far with the results of direct numerical
simulation (DNS) of convection in a closed cavity of aspect ratio 40 in the strongly
non-Boussinesq regime (Gr,¢) = (9860, 0.6), see Figure 5. Details of a numerical-
method are given in [3]. DNS is started from the motionless isothermal state. By
time £ = 0.13 the steady parallel conduction flow is established in the middle part
of the cavity. This flow is disturbed by the turning flow in the end regions. In
accordance with the analytical conclusions, there is a preferred downward propa-
gation direction for disturbances as seen from the snapshot at ¢ = 0.53. Since the
considered regime corresponds to the linearly and convectively unstable buoyancy
mode, large lumps of cold fluid are seen near the cold wall. Although the shear
mode is linearly stable in this regime, its bifurcation is subcritical so that the buoy-
ancy driven disturbances trigger the development of shear instability. The latter is
characterised by the shorter wavelength and is clearly seen at ¢ = 1.22. Eventually
the convectively unstable buoyancy disturbance reaches the bottom wall and dies
out while the subcritical shear disturbances continue to determine the flow pattern.

Thus we have demonstrated the strong influence of realistic fluid property varia-
tions on all major stability characteristics of the convection flow: from linear stabil-
ity to bifurcation character to transition between convective and absolute instability
regimes and instability mode interaction.

Acknowledgement

This work was partly supported by the USQ) FEarly Researcher Career Grant.



Figure 5: Snapshots of DNS results for thermal (left) and velocity (right) fields at (Gr,¢€) =
(9860, 0.6). Lighter areas correspond to higher temperature and larger kinetic energy of
the fluid, respectively.
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