
Full Length Article

Automated hip dysplasia detection using novel FlexiLBPHOG model with 
ultrasound images

Sefa Key a, Huseyin Kurum e, Omer Esmez e, Abdul Hafeez Baig b , Rena Hajiyeva c,  
Sengul Dogan d,*, Turker Tuncer d

a Orthopedics and Traumatology Department, Firat University Hospital, Firat University, Elazığ, Turkey
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A B S T R A C T

This study focuses on automatically detecting developmental hip dysplasia (DHD) using a novel feature engi-
neering model, FlexiLBPHOG, inspired by the FlexiViT model. The model utilizes five patch types for feature 
extraction with local binary pattern (LBP) and histogram of oriented gradients (HOG) techniques. During feature 
extraction, five feature vectors are generated. In the next stage, three feature selection methods—Neighborhood 
Component Analysis (NCA), Chi-square (Chi2), and ReliefF (RF)—are used to select the top 500 features. Clas-
sification is performed using support vector machine (SVM) and k-nearest neighbors (kNN), resulting in 30 
outcomes. Information fusion through iterative majority voting (IMV) and a greedy algorithm yields 58 out-
comes, from which the best is selected. The FlexiLBPHOG model achieved a classification accuracy of 94.38% in 
detecting DHD in ultrasound images from a private dataset. The study confirms the effectiveness of the proposed 
model in image classification by integrating shallow image descriptors.

1. Introduction

Developmental hip dysplasia (DDH) is affecting 1–3 % of infants 
[1,2]. Misdiagnosis or failure to diagnose DDH is thought to account for 
more than one-third of hip replacement operations performed under the 
age of 60 [3]. If diagnosed early, DDH can be treated with simple 
methods (Pavlik bandage). In the neonatal period, the chance of cure is 
very high (>90 %) in infants younger than seven weeks but decreases 
thereafter [4,5]. Despite the obvious advantages of early diagnosis, high 
variability in partial assessment has been reported [6]. Ultrasound is 
non-invasive, portable, and sensitive to DDH, making it ideal for hip 
screening in diagnosing and managing DDH in infants. Currently, two- 
dimensional ultrasound (2DUS) is used to diagnose DDH. Scans are 
performed according to the Graf criteria, based on measuring the angle 
between the ilium and the acetabular roof (called the alpha angle), as 
shown in Fig. 1. Alpha angles > 60◦ are considered normal [7]. Ultra-
sound is valuable in the first few months of life. When the ossified nu-
cleus of the femoral head appears, the value of ultrasound decreases, and 

radiography is recommended [8,9]. Conventional 2D ultrasound in-
volves static image assessment according to Graf’s criteria, primarily 
based on measuring the angle between the ilium and the acetabular roof 
(alpha angle; see Fig. 1). Alpha angles > 60◦ are considered normal, 
while angles < 43◦ indicate severe dysplasia. The visualization should 
include the ilium, acetabular roof, labrum, and femoral head, which are 
challenging to assess. Although this depends on the examiner, there is a 
risk of misdiagnosis in two-thirds of neonates and half of infants [10]. 
Considering the importance of early diagnosis of DDH and that negative 
results may occur with possible misdiagnosis, we conducted our study 
with this hypothesis. It has been shown that the α-angle shows a monthly 
increase and the β-angle a monthly decrease in the first three months of 
life [11]. With this in mind, our study analyzed hip ultrasound images of 
children aged 3–6 months. The aim was to present a method for 
differentiating between normal and abnormal hips in hip ultrasound 
images automatically without human errors.
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1.1. Literature review

Many different models [12–15,44] and machine learning techniques 
[16–18,45] are suggested for disciplines in the literature. Hare-
endranathan et al. [19] conducted a deep-learning (DL) method to di-
agnose DDH using 2D ultrasound images. They applied this method 
using 50 infant hips and achieved promising results in accurately seg-
menting the acetabulum bone and classifying hips as normal or 
dysplastic. Their study highlighted the potential of automated systems to 
improve the consistency and accuracy of DDH diagnosis in clinical set-
tings. Sezer and Sezer [20] achieved a notable breakthrough in the 
automatic classification of neonatal hip ultrasound images. Their study, 
which utilized deep convolutional neural networks, reported a 
remarkable accuracy of 96.6 % in distinguishing between normal and 
dysplastic hips. Their significant achievement was made possible by 
their innovative data augmentation method, incorporating speckle noise 
reduction, which enhanced the CNN’s performance in diagnosing DDH. 
Their advancement marked a substantial contribution to medical image 
analysis using DL techniques. Atalar et al. [21] focused on using DL for 
diagnosing DDH from ultrasound images. Their research involved DL 
models developed usingthe dataset of 376 normal, 541 dysplasia, and 
365 incorrect probe position ultrasound images. The VGG-19 model 
notably achieved 93 % accuracy, 93.5 % sensitivity, 96.7 % specificity, 
92.3 % precision, 92.6 % F1 score, and 0.99 AUC, demonstrating the 
effectiveness of DL in diagnosing DDH from ultrasound images. Lee et al. 
[22] evaluated a DL-based system for DDH screening using ultrasound 
images. Their system was tested on 921 ultrasound images, leading to 
the classification of 320 images as suitable for screening by both artifi-
cial intelligence (AI) and a human observer. Their study found excellent 
agreement (the intraclass correlation coefficient = 0.764) for alpha 
angle and good agreement (ICC = 0.743) for beta angle measurements 

between the AI system and a human observer. These results indicate the 
AI system’s high reliability and potential to aid in DDH screening. Xu 
et al. [23] developed a novel method for detecting hip landmarks in 
ultrasound images, utilizing a Dependency Mining ResNet (DM-ResNet) 
model. Their method was tested on a dataset of 2000 annotated hip 
ultrasound images, achieving an average point error of 0.719 mm and a 
successful detection rate of 79.9 % within a 1 mm threshold. These re-
sults highlighted the potential of DM-ResNet in improving the accuracy 
of DDH diagnosis. Park et al. [24] evaluated a DL algorithm’s diagnostic 
performance on 5076 hip anteroposterior radiographs for detecting 
DDH. The results showed that the algorithm obtained a sensitivity of 
98.0 %, specificity of 98.1 %, positive predictive value (PPV) of 84.5 %, 
and negative predictive value (NPV) of 99.8 %. The area under the ROC 
plot was 0.988, demonstrating the algorithm’s high reliability and ac-
curacy in DDH detection. El-Hariri [25] focused on enhancing the 
diagnosis of DDH using 3D ultrasound and DL. He implemented 
advanced 3D convolutional neural networks for segmentation, metric 
extraction, and adequacy classification in ultrasound imaging. Their 
approach significantly improved the accuracy and reliability of hip 
dysplasia measurements, demonstrating a notable advancement over 
traditional methods in DDH diagnosis. The thesis provided detailed 
metrics and statistical data to support these findings. Bilynsky et al. [26]
focused on evaluating the effectiveness of convolutional neural net-
works like GoogleNet, SqueezeNet, and AlexNet in classifying and 
recognizing ultrasound images of the hip joint. Their study used a 
dataset of 97 standard ultrasonic images. The convolutional neural 
network, GoogleNet showed remarkable results, achieving up to 100 % 
accuracy in the training group and 84.5 % accuracy in the test group, 
indicating the potential of CNNs in aiding the computer-aided diagnosis 
of pediatric dysplasia. Hareendranathan et al. [10] involved training 
convolutional neural network models to detect the presence of four key 

Fig. 1. Ultrasound image of the hip in the coronal Graf plane with anatomical landmarks such as the iliac roof, labrum, acetabulum, femoral head, and ischial 
tuberosity. The alpha angle is measured as the angle between the iliac roof and the acetabulum (Lines 1 and 2).

S. Key et al.                                                                                                                                                                                                                                      Ain Shams Engineering Journal 16 (2025) 103235 

2 



ultrasound landmarks in hip images. Their study utilized 100 3D ultra-
sound images for training and validated the technique on 107 images. 
Their results demonstrated that the AI achieved over 85 % accuracy for 
all landmarks and showed substantial agreement with manual assess-
ments, indicating the potential of AI in improving ultrasound scan 
quality assessment for DDH screening. Jaremko et al. [27] focused on 
using machine learning algorithms to analyze ultrasound images for hip 
dysplasia screening. Their study involved processing a significant 
number of ultrasound images and comparing the algorithm’s perfor-
mance against traditional diagnostic methods. Their results demon-
strated improved diagnostic accuracy, indicating the potential of 
machine learning in enhancing the effectiveness of sonographic 
screening for hip dysplasia. Hu et al. [28] employed a multi-task 
learning network to enhance the automatic evaluation of DDH from 
ultrasound images. Their work involved a sample of 1231 US images 
from 632 patients. Their method demonstrated significant accuracy, 
with the average errors in alpha and beta angles being 2.221◦ and 2.899◦

respectively. Approximately 93 % of alpha angle estimates and 85 % of 
beta angle estimates had errors less than 5 degrees, showing the po-
tential of this method for clinical application in DDH diagnosis.

1.2. Literature gaps

Our literature review revealed several shortcomings in detecting 
developmental hip dysplasia (DHD). The identified gaps in the existing 
literature include: 

– There is a scarcity of automated models designed explicitly for DHD 
detection.

– Researchers focus predominantly on using deep learning for 
biomedical image classification [46,47].

– A lack of diversity in feature engineering models, particularly those 
that utilize patch-based approaches, as most feature engineering 
models have distinct structures.

1.3. Motivation and our model

In this study, our primary inspiration is drawn from the FlexiViT 
method. The FlexiViT model employed a diverse set of fixed-size 
patches. We aim to introduce a novel feature engineering model based 
on multiple patches. To increase the impact of this study, we curated a 
new dataset of ultrasound (US) images for hip dysplasia detection. 
Additionally, we proposed a new self-organized feature engineering 
model, termed FlexiLBPHOG.

The FlexiLBPHOG model comprises four main phases: 

– Feature extraction utilizing LBP [29] and HOG [30] image de-
scriptors with five types of fixed-size patches.

– Feature selection based on NCA [31], Chi2 [32], and RF [33]
methods.

– Classification employing kNN [34] and SVM [35].
– Information fusion using IMV [36] and a greedy algorithm [37].

By implementing these phases, we have developed the FlexiLBPHOG 
model and applied it to the acquired US image dataset.

1.4. Novelties and contributions

This work introduces two pivotal innovations: (i) the newly proposed 
FlexiLBPHOG and (ii) the collected US image dataset for DHD detection. 
This study represents a pioneering effort in Flexi-based feature engi-
neering and DHD research.

The novelty and main contribution of this work are as follows:
Novelties: 

– A novel DHD US image dataset was developed.

– A new feature engineering model, FlexiLBPHOG, has been intro-
duced for DHD, serving as the feature engineering version of 
FlexiViT.

Contributions: 

– DHD is a prevalent disorder worldwide. The early and accurate 
detection is crucial to improve patient care. A novel machine- 
learning approach has been proposed to detect DHD automatically 
to address this problem.

– The introduction of FlexiLBPHOG aims to enhance the classification 
ability of the feature engineering model. It demonstrated 
outstanding performance, achieving a classification accuracy of 
94.38 %. For this dataset, the introduced FlexiLBPHOG has 
compared to deep learning models and it yielded superior classifi-
cation performance.

2. Dataset

We collected this dataset from children admitted to the hospital 
between 01/01/2020 and 01/01/2023. This dataset contained two 
classes: (i) DHD and (ii) non-DHD. Three orthopedists labeled these two 
classes of US images. The dataset consists of 801 US hip images (172 
DHD images and 629 non-DHD) of children aged 3–6 months (average 
age was 4.5 months). These images were collected from 801 partici-
pants. Typical sampled images are shown in Fig. 2.

3. FlexiLBPHOG

We have introduced an innovative self-organized feature engineering 
model comprising four sequential phases. In the first phase, known as 
Flexi-Based Feature Extraction, we employed five types of patches (14 ×
14, 16 × 16, 28 × 28, 32 × 32, and 56 × 56) extracted from 224 × 224- 
sized images. This process yielded diverse fixed-size patches (256, 196, 
64, 49, and 16). We extracted textural and directional features from each 
patch using LBP and HOG feature extractors, creating five feature vec-
tors. The FlexiLBPHOG model extracts both fine-grained and coarse- 
grained features from images using various patch sizes. Smaller 
patches (e.g., 14 × 14 and 16 × 16) focus on local details, capturing both 
textural and directional nuances that can help identify DHD indicators 
that may not be visible to the naked eye. Larger patches (e.g., 28 × 28, 
32 × 32, and 56 × 56) capture broader structural information, allowing 
the model to account for larger anatomical patterns and directional 
gradients within the image.

The feature selection process was performed using three feature se-
lectors commonly used in the literature: NCA, Chi2, and RF. The main 
purpose of using these selectors was to create a richer set of selected 
features. In this study, various feature set sizes were tested to determine 
the optimal number of features that maximize classification perfor-
mance. After testing, it was found that selecting the top 500 features 
yielded the best results for DHD detection. Although iterative feature 
selectors could have been used at this stage, their high time complexity 
led to the decision to select only the most significant 500 features. By 
applying each feature selection method to the five patch sizes, a total of 
15 (5 × 3) feature vectors, each containing 500 features, were created.

In the third phase, classification using kNN and SVM classifiers is 
performed. We applied these classifiers to the 15 selected features and 
produced 30 classifier-specific outcomes.

The fourth and final phase, Information Fusion, involved imple-
menting IMV on the 30 classifier-specific outcomes, generating 28 voted 
outcomes with an initial IMV loop value of 3. Subsequently, a greedy 
algorithm was employed to select the best outcome from 58 outcomes 
(30 classifier-specific + 28 voted).

To better explain the proposed FlexiLBPHOG model, please refer to 
Fig. 3, which provides a graphical overview.

* PD: patch division, p: fixed-size patch, f: feature of each patch, F: 
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the merged feature vector, s: selected feature vector, c: classifier-wise 
outcome, v: voted outcome. To create f, we have applied LBP and 
HOG feature extractors to each patch and we have merged the extracted 
textural (by generating LBP) and directional (by extracting HOG) 
features.

More details of this work are given below.
Feature extraction: The important step in the proposed FlexiLBPHOG 

is its feature extraction phase. In this crucial stage, we employed LBP, 
HOG, and a division of fixed-size patches into five types. Through the 
application of these methods, we derived five distinct feature vectors. 
This phase’s primary goals encompass extracting textural and direc-
tional features by utilizing patches of varying sizes and capturing 
meaningful features. The steps of this phase are elaborated below to 
provide a more comprehensive clarification.

Step 1: Transform each image to grayscale and resize images to 224 
× 224 sized images.

Step 2: Divide the image into five types of fixed-size patches. 

pk
nk (i, j) = Im

(
ik + tk − 1, jk + tk − 1

)
, k ∈ {1,2,⋯, 5},

a ∈ {14,16,28,32,56}, ik ∈ {1,2,⋯, a(k) }, jk ∈ {1,2,⋯, a(k) },

tk ∈ {1, a(k),⋯, 224 − a(k)+ 1 }, nk ∈ {1,2,⋯, h(k) },

h ∈ {16,49, 64,196,256} (1) 

Herein, p: fixed-size patches. We have generated five types of patches 
deploying 14 × 14, 16 × 16, 28 × 28, 32 × 32, and 56 × 56 sized 
patches.

Step 3: Extract features deploying LBP and HOG extractors. 

fk
nk = ω

(
λ
(
pk

nk

)
, ξ
(
pk

nk

) )
(2) 

where f : feature vector of each patch, λ(.): HOG feature extractor, ξ(.): 
LBP feature extractor and ω(.): concatenation function.

Step 4: Merge the generated feature vectors to create the final feature 
vectors. 

Fk = ω
(

fk
1 , f

k
2 ,⋯, fk

nk

)
(3) 

Here, F: merged feature vector.
Step 5: Repeat steps 1–4 until the number of images and create 

feature matrices. In this phase, we have generated five feature matrices.
Feature selection: In this phase, we employed three well-known 

feature selectors, namely Chi2, NCA, and RF. We created five feature 
vectors with diverse sizes as part of the feature extraction process. We 
generated 15 feature vectors in this section by selecting the most 
informative 500 features. The steps of this phase are as follows:

Step 6: Generate the qualified indexes by deploying the Chi2, NCA, 
and RF feature selectors. 

idc = χ(Fk, y), c ∈ {1,4,⋯,13},

idc+1 = η(Fk, y),

idc+2 = ρ(Fk, y) (4) 

where id: the qualified indexes, χ(.): Chi2 feature selector, η(.): NCA 
feature selector, ρ(.): RF feature selector and y: actual/real labels.

Step 7: Select the most informative features from the generated 
feature vectors utilizing the generated qualified indexes. 

Sc(d, i) = Fk(d, idc(i) ), d ∈ {1,2,⋯,N}, i ∈ {1,2,⋯,500}

Sc+1(d, i) = Fk
(
d, idc+1(i)

)
,

Sc+2(d, i) = Fk
(
d, idc+2(i)

)
(5) 

Herein, S: selected feature vector with a length of 500, and N: the 
number of images.

In this phase, 15 (=5 × 3) selected feature vectors have been created, 
and the length of each feature vector is 500 since we have selected the 
most informative 500 features.

Classification: To produce outcomes specific to each classifier, we 
utilized kNN and SVM classifiers. These classifiers were applied to the 
set of 15 selected features, creating 30 outcomes (15 for each classifier). 
The parameters of the employed classifiers are provided below.

kNN: k;1, distance; L1-norm, validation; ten-fold cross-validation, 
voting: none.

SVM: Kernel; cubic polynomial kernel; box-constraint; 1, kernel 
scale; automatic coding; one-vs-one; validation; ten-fold cross- 
validation.

The classification step of the presented FlexiLBPHOG is:
Step 8: Generate the classifier-wise outcomes. 

cr = kNN(Sr, y), r ∈ {1,2,⋯,15},

cr+15 = SVM(Sr, y) (6) 

Fig. 2. Sample US images collected from the private dataset: (a) DHD, and (b) Non-DHD.
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where c: classifier-specific outcome.
Information fusion: We have used IMV and greedy algorithm in this 

phase. IMV was proposed by Dogan et al. [38]. We have used the 
generated classifier-specific outcomes as input of the IMV algorithm and 
generated 28 (=30–3 + 1) voted outcomes. The steps of this phase are:

Step 8: Produce the voted outcomes. 

va− 2 = ψ(ca), a ∈ {1,2,⋯,30} (7) 

Herein, v: voted outcome and ψ(.): IMV majority voting function.
Step 9: Select the most accurate outcome as the final outcome by 

deploying a greedy algorithm. 

acc(a) = ϕ(ca, y),

acc(t + 30) = ϕ(vt , y), t ∈ {1,2,⋯,28},

[mak, ind] = max(acc),

fout =
{

cind, ind ≤ 30
vind− 30, ind > 30 (8) 

*acc: classification accuracy, ϕ(.): classification accuracy calculation 
function, mak: maximum accuracy, ind: index of the maximum accuracy 
and fout: final outcome.

The explained nine steps above have been defined in the proposed 
FlexiLBPHOG feature engineering model.

4. Experimental results

We have introduced a novel feature engineering model implemented 
on a standard personal computer (PC) with a configuration comprising 
32 GB of main memory, a 2.1 GHz processor, and a 1-terabyte disk 
running the Windows 11 operating system. To implement this model, we 
used the MATLAB programming environment, specifically MATLAB 
version 2023b.

The proposed FlexiLBPHOG was implemented through m files. 
During the feature extraction phase, the ExtractLBPFeatures and 
ExtractHOGFeatures functions, integral to MATLAB, were employed to 
generate features. The Chi2, NCA, and RF feature selectors were 
employed to identify the most informative features. Additionally, the 
classification learner tool in MATLAB was used to select the best clas-
sifiers, and the corresponding codes were generated. An m file was 

Fig. 3. Graphical overview of the proposed FlexiLBPHOG.
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created for information fusion to apply the IMV and greedy algorithm.
The dataset employed in this study consists of two classes, thereby 

constituting a binary classification problem. To assess the performance 
of the presented FlexiLBPHOG, we employed performance evaluation 
metrics, including accuracy, sensitivity, specificity, and geometric 
mean.

The presented FlexiLBPHOG yields both classifier-wise and voted 
outcomes. Consequently, we evaluated these outcomes using separate 
tables, presenting the classification performances in Table 1 and Table 2.

Table 1 demonstrates that the best classifier-specific result is the 20th 
result, which achieved 93.51 % classification accuracy and 87.28 % 
geometric mean. The results of the voted outcomes are tabulated in 
Table 2.

It may be noted from Table 2 that, the highest voting accuracy of 
94.38 % is achieved. The application of IMV led to an improvement in 
the top classification accuracy from 93.51 % to 94.38 %, and there was 
an increase in the best sensitivity from 77.91 % to 81.98 %. As indicated 
by these tables (refer to Table 1 and Table 2), the most accurate clas-
sification results are associated with a voted outcome. The corre-
sponding confusion matrix for this outcome is presented in Fig. 4.

*1: DHD, 2: Non-DHD.
The results of the final outcome are as follows: Accuracy: 94.38 %, 

Sensitivity: 81.98 %, Specificity: 97.77 %, and Geometric Mean: 89.53 
%. Additionally, we computed the precision and F1-score for this 
outcome, which are as follows: Precision: 92.90 % and F1-score: 87.10 
%.

The second evaluation metric is time complexity, and we utilized Big 
O notation to assess the computational complexity for the FlexiLBPHOG 
model. The analysis of the time complexity for this model is presented 
below.

Feature extraction: In the feature extraction phase, we divided fixed- 
size patches into five types, including LBP and HOG methods. The time 
complexity of both LBP and HOG methods is denoted as O(H), where H 
represents the size of the image. Additionally, features were extracted 
from the patches. Consequently, the calculated time complexity is 
O(2kNH), where k is the number of patch types, and N is the number of 
patches.

Feature selection: In this phase, we utilized three distinct feature se-
lection functions, each with its unique structure. To represent the 
feature selection complexity, we introduced C as a variable. The time 
complexity of this phase is expressed as O(3FC), where F denotes the 
number of feature vectors.

Classification: In the classification phase, we employed two classi-
fiers, and the variable S was introduced to denote the time complexity of 
this model. The computed complexity of the classification phase is 
represented as O(2FS).

Iterative majority voting: The least complex and last phase of the 

proposed FlexiLBPHOG is the information fusion, where we utilized IMV 
and a greedy algorithm. The time complexity of this phase is expressed 
as O(IL + L), where I represents the number of iterations and L denotes 
the number of outcomes.

Overall, the time complexity of this model is O(2kNH + 3FC + 2FS +

IL + L) ≅ O(kNH + FC + FS + IL). This result indicates that our pro-
posed FlexiLBPHOG exhibits linear complexity.

5. Discussions

In this work, we introduced a novel self-organized feature engi-
neering FlexiLBPHOG model. Our model produced 58 outcomes, with 30 
being classifier-specific and 28 representing voted outcomes. Machine 
learning methods were employed in this process. In this section, we 
discussed the performance analysis of all the methods employed and 
presented in Table 3.

As shown in Table 3, we used kNN and SVM classifiers in this model. 
To select these classifiers, we tested several shallow classifiers, which 
included: 1) Decision Tree (DT), 2) Logistic Regression (LR), 3) Multi- 
layer Perceptron (MLP), 4) Naïve Bayes (NB), 5) Linear Discriminant 
Analysis (LDA), 6) Bagged Tree (BT), 7) kNN, and 8) SVM. The classi-
fication performance of these classifiers was evaluated using the fifth 
selected feature vector. The classification accuracies of these classifiers 
are shown in Fig. 5.

According to Fig. 5, the two best classifiers are kNN and SVM. 
Therefore, we used these classifiers to generate classifier-based out-
comes. No hyperparameter optimization or fine-tuning methods were 
applied; default parameters were used.

The summary of various combinations of patch sizes, feature selec-
tion, and classifiers is shown in Table 3. The box plot of classification 
accuracy (%) obtained using various: (a) patches, (b) feature selection 
methods, and (c) classifiers are shown in Fig. 6.

Based on the analyses, the highest classification accuracy was ach-
ieved using16 × 16-sized patches, while the greatest average accuracy 
was obtained with 28 × 28-sized patches. In terms of feature selection, 
NCA outperformed other feature selectors. Among the classifiers, the 
SVM demonstrated superiority over the kNN classifier.

The second-voted outcome represents the ultimate result of the 
presented model (FlexiLBPHOG). This second-voted outcome was 
derived from the top four classifier-wise outcomes, each generated using 
the following methods: 

– Outcome 20: 16 × 16-sized patch, NCA selector, SVM,
– Outcome 17: 14 × 14-sized patch, NCA selector, SVM,
– Outcome 23: 28 × 28-sized patch, NCA selector, SVM,
– Outcome 19: 16 × 16-sized patch, Chi2 selector, SVM.

Table 1 
Classifier-specific results (%) obtained for the proposed FlexiLBPHOG model.

No Acc. Sen. Spec. GM No Acc. Sen. Spec. GM

1 88.39 64.53 94.91 78.26 16 90.14 68.02 96.18 80.89
2 89.89 59.88 98.09 76.64 17 92.38 73.26 97.62 84.56
3 87.52 44.77 99.21 66.64 18 88.26 55.81 97.14 73.63
4 88.76 69.77 93.96 80.96 19 91.76 74.42 96.50 84.74
5 90.01 63.95 97.14 78.82 20 93.51 77.91 97.77 87.28
6 84.89 40.12 97.14 62.42 21 88.01 55.81 96.82 73.51
7 88.89 72.67 93.32 82.35 22 91.14 73.84 95.87 84.13
8 88.39 50.58 98.73 70.67 23 92.38 71.51 98.09 83.75
9 89.64 62.21 97.14 77.74 24 89.01 61.05 96.66 76.82
10 88.26 64.53 94.75 78.20 25 90.14 69.77 95.71 81.71
11 88.01 52.33 97.77 71.53 26 91.51 68.02 97.93 81.62
12 89.14 60.47 96.98 76.58 27 90.39 64.53 97.46 79.31
13 88.64 65.12 95.07 78.68 28 89.01 64.53 95.71 78.59
14 88.76 55.81 97.77 73.87 29 91.26 68.02 97.62 81.49
15 87.64 56.98 96.03 73.97 30 89.89 65.12 96.66 79.34

** Acc.: Accuracy, Sen.: Sensitivity, Spe.: Specificity, GM: geometric mean. The best results are highlighted using bold font color.
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– In our analysis, the optimal outcome was achieved with 16 × 16- 
sized patches, NCA as the selector, and SVM classifier. Our analysis 
indicates that it is not needed to employ (i) 56 × 56-sized patches, (ii) 
RF selector, and (iii) kNN classifier to obtain the final outcome.

– Chi2 evaluates features based on their independence from others, 
while RF considers feature importance scores. NCA, a distance-based 
feature selector, optimizes feature selection by considering label 

Table 2 
Voted results (%) obtained for the developed FlexiLBPHOG model.

No Acc. Sen. Spec. GM No Acc. Sen. Spec. GM

1 93.63 76.74 98.25 86.83 15 92.88 70.93 98.89 83.75
2 94.38 81.98 97.77 89.53 16 93.38 73.84 98.73 85.38
3 94.38 79.07 98.57 88.28 17 92.76 70.93 98.73 83.68
4 94.13 79.65 98.09 88.39 18 93.01 72.09 98.73 84.37
5 93.76 76.16 98.57 86.64 19 92.76 69.77 99.05 83.13
6 93.88 78.49 98.09 87.74 20 93.38 72.67 99.05 84.84
7 93.51 75 98.57 85.98 21 92.26 67.44 99.05 81.73
8 93.51 76.74 98.09 86.76 22 92.63 69.19 99.05 82.78
9 93.13 74.42 98.25 85.51 23 92.13 66.86 99.05 81.38
10 93.26 75.58 98.09 86.10 24 92.26 67.44 99.05 81.73
11 93.38 73.26 98.89 85.11 25 91.76 65.12 99.05 80.31
12 93.88 76.16 98.73 86.71 26 92.13 67.44 98.89 81.66
13 93.26 72.67 98.89 84.77 27 91.14 61.63 99.21 78.19
14 93.76 75.58 98.73 86.38 28 91.14 62.21 99.05 78.50

Fig. 4. Confusion matrix of the outcome.

Table 3 
Summary of various combinations of patch sizes, features selection and classifiers.

No Patch size Feature selection Classifier No Feature extraction Feature selection Classifier

1 14 × 14 Chi2 kNN 16 14 × 14 Chi2 SVM
2 14 × 14 NCA kNN 17 14 × 14 NCA SVM
3 14 × 14 RF kNN 18 14 × 14 RF SVM
4 16 × 16 Chi2 kNN 19 16 × 16 Chi2 SVM
5 16 × 16 NCA kNN 20 16 × 16 NCA SVM
6 16 × 16 RF kNN 21 16 × 16 RF SVM
7 28 × 28 Chi2 kNN 22 28 × 28 Chi2 SVM
8 28 × 28 NCA kNN 23 28 × 28 NCA SVM
9 28 × 28 RF kNN 24 28 × 28 RF SVM
10 32 × 32 Chi2 kNN 25 32 × 32 Chi2 SVM
11 32 × 32 NCA kNN 26 32 × 32 NCA SVM
12 32 × 32 RF kNN 27 32 × 32 RF SVM
13 56 × 56 Chi2 kNN 28 56 × 56 Chi2 SVM
14 56 × 56 NCA kNN 29 56 × 56 NCA SVM
15 56 × 56 RF kNN 30 56 × 56 RF SVM

Fig. 5. The classification accuracies of the classifiers on the used DHD dataset.
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proximity, allowing NCA to perform more effectively. In terms of 
computational complexity, NCA is generally more demanding than 
Chi2 and RF due to its iterative optimization of feature weights to 
maximize classification performance. Chi2, as a statistical method, 
typically involves fewer computational steps, although RF’s 
computational complexity is not low. Using NCA alongside Chi2 and 
RF enriches the selected feature set by blending supervised and sta-
tistical feature selection techniques.

We employed both LBP and HOG feature extractors to highlight the 
superiority of the suggested FlexiLBPHOG. The classification accuracies 
obtained using LBP, − HOG, and our proposed model are illustrated in 
Fig. 7.

It may be noted from Fig. 7 that, the proposed FlexiLBPHOG 
increased the classification capabilities of both LBP and HOG-based 
models. The classification accuracy obtained with FlexiLBPHOG is 
significantly higher than that achieved with LBP or HOG alone. Specif-
ically, while LBP and HOG provide accuracies below 90 %, Flex-
iLBPHOG achieves a substantial improvement, reaching the highest 
accuracy of 94.38 %. This result highlights that the combination of LBP 
and HOG within the FlexiLBPHOG model enhances overall classification 
performance and confirms the superiority of this integrated approach for 
the task.

The graphical representation of accuracies (%) obtained for various 
deep learning models deep learning [21] is shown in Fig. 8.

The deep learning models, namely VGG [39], ResNet101 [40], 
MobileNetV2 [41], and GoogleNet [42], achieved classification accu-
racies of 93 %, 89.3 %, 82.3 %, and 82.3 %, respectively. In contrast, our 
model achieved a higher classification performance of 94.38 % using 
FlexiLBPHOG. Hence, our proposed model demonstrated superior clas-
sification performance compared to these deep learning models.

Moreover, we have compared the presented FlexiLBPHOG with the 
Gong et al. [43] model and the comparative results are listed in Table 4.

Gong et al. [43] proposed a method incorporating hand-crafted 
features with a deep neural network-based ensemble model and ach-
ieved an accuracy of 85.89 %. In contrast, our model, FlexiLBPHOG, 
outperforms this approach with a higher accuracy of 94.38 %. It can be 
noted from Table 4 that, we have used more images than Gong et al. [43]
and also employed ten-fold cross-validation. Hence, our model is accu-
rate and more robust. The combination of LBP and HOG helps to extract 
the subtle features from the US images and obtain high classification 
performance.

The advantages of this work are summarized below: 

– The FlexiLBPHOG model aims to increase classification performance 
for DHD detection in US images. The major goal of this method is to 

Fig. 6. Box plots of classification accuracy obtained using various: (a) patches, (b) feature selection methods, and (c) classifiers.

Fig. 7. Ablation results.
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achieve high accuracy comparable to deep learning models. The 
presented FlexiLBPHOG attained superior classification performance 
compared to deep learning models, and our proposal has linear time 
complexity.

– Unlike standard LBP and HOG, FlexiLBPHOG uses multiple fixed-size 
patches (14 × 14, 16 × 16, 28 × 28, 32 × 32, and 56 × 56). This 
patch-based approach enables the model to extract localized textural 
and directional features from different regions of the image, 
capturing all relevant features associated with DHD in ultrasound 
images.

– Five patch-based feature vectors are created by combining the 
textural and directional features extracted by the model. In the 
feature selection phase, the best 500 features of the feature vectors 
generated from each patch type are selected to balance the number of 
features; however, this process is not done using a single feature 
selector. In this phase, a three-way feature selection process is 
applied using NCA, Chi2, and RF to obtain a richer set of selected 
feature vectors.

– Classification results are obtained using SVM and kNN classifiers. 
Voted outcomes are obtained using IMV. The primary advantage of 
obtaining voted outcomes is the calculation of combined results with 
higher classification performance.

– FlexiLBPHOG is presented as a flexible framework that allows users 
to customize patch sizes, feature extractors, feature selectors, clas-
sifiers, and voting methods to adapt it to their specific data. This 
framework is introduced in this article. To more clearly demonstrate 
the classification capability of the presented framework, a model 
rivaling deep learning is created using two traditional image de-
scriptors, namely LBP and HOG.

– The presented FlexiLBPHOG is a highly accurate model, achieving 
94.38 % classification accuracy on the collected DHD UD image 
dataset.

– By deploying IMV and a greedy algorithm, the presented model is 
transformed into a self-organized feature engineering model.

– Demonstrated linear time complexity (O(kNH + FC + FS + IL)), 
emphasizing computational efficiency and practical feasibility for 
real-world applications.

– Employed a range of performance evaluation metrics, including ac-
curacy, sensitivity, specificity, and geometric mean, to thoroughly 
assess the model’s performance.

– The presented FlexiLBPHOG model has shown superior classification 
performance compared to various deep learning models and also 
outperforms Gong et al.’s [43] method, which combines hand- 
crafted features with an ensemble deep neural network and ach-
ieves an accuracy of 85.89 %, with FlexiLBPHOG achieving higher 
accuracy. Additionally, it has significantly enhanced the classifica-
tion capacity of the LBP and HOG methods it incorporates.

The limitations of this study are as follows. The dataset is relatively 
small and was collected from a single medical center. In the future, we 
plan to collect data from multiple medical centers, and for data flow 
purposes, the images will be evaluated using the widely used and 
standardized Graf method of hip ultrasound imaging. The Graf method, 
based on ultrasound imaging of the hip in the coronal plane, uses 
anatomical landmarks such as the iliac roof, labrum, acetabulum, 
femoral head, and ischial tuberosity, with the alpha angle measured as 
the angle between the iliac roof and the acetabulum. To standardize and 
reduce individual measurement errors, three consecutive ultrasound 
images will be obtained, and ultrasound images of pediatric hips 
commonly performed across different centers today will be used for 
multicenter study purposes. Different researchers from these centers can 
also be included in the study for this purpose. This will not only increase 
the overall dataset size but also allow for greater variability in patient 
demographics, contributing to a more comprehensive understanding of 
DHD. To address the lack of diversity, particularly in terms of race and 
ethnicity, efforts should be made to include ultrasound images of in-
dividuals from different racial groups. This will increase the robustness 
of the model and its applicability across various demographic groups.

6. Conclusions

In this study, a new self-organized feature engineering model has 

Fig. 8. Graphical representation of accuracies (%) obtained for various deep 
learning models.

Table 4 
Summary of comparison of our work with other work developed for automated detection of hip dysplasia using US images.

Authors Method Number of patients Number of 
images

Validation Results 
(%)

Gong et al. 
[43]

Hand-crafted features + deep neural network-based 
ensemble model

379 subjects with DHD and 379 with 
control

758 5-fold cross- 
validation

Acc.: 85.89

Our model FlexiLBPHOG 172 subjects with DHD and 629 with 
control

801 10-fold cross- 
validation

Acc.: 
94.38, 
Sen.: 
81.98, 
Spe.: 
97.77, 
GM: 89.53, 
Pre.: 92.90, 
F1: 87.10.

** Acc.: Accuracy, Sen. Sensitivity, GM: Geometric Mean, Pre.: Precision, F1: F1-score.
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been presented, and the presented model has been termed Flex-
iLBPHOG. The recommended FlexiLBPHOG is the feature engineering 
version of FlexiViT. To increase the visibility of the recommended 
FlexiLBPHOG, a new US image dataset was collected to detect DHD. In 
this respect, this model is one of the pioneering studies for early DHD 
detection. The recommended FlexiLBPHOG model has been shown to 
outperform other approaches, achieving a 94.38 % classification accu-
racy on the collected dataset. Specifically, the best individual classifi-
cation result was obtained using a 16 × 16 patch size, NCA feature 
selector, and an SVM classifier. Although the 28 × 28 patch size provides 
the best average classification accuracy, the most accurate results were 
obtained with the 16 × 16 patch size, demonstrating the model’s flexi-
bility and adaptability with different patch sizes.

The self-organized feature of FlexiLBPHOG is exhibited by its selec-
tion of the most accurate result from 58 generated results, utilizing a 
greedy algorithm for IMV and information fusion. The combination of 
LBP and HOG feature extraction in FlexiLBPHOG increases robustness in 
detecting subtle indicators of DHD by enabling the extraction of both 
textural and directional information from US images.

The advantages of the FlexiLBPHOG model include high classifica-
tion performance, efficient feature selection, low computational de-
mand, and a self-organized structure. Additionally, various methods 
have been integrated within the framework of FlexiLBPHOG, paving the 
way for the development of other Flexi-based feature engineering 
models.

Superior accuracy in DHD detection is not only achieved by Flex-
iLBPHOG, but a scalable, high-performance, and computationally effi-
cient feature engineering model for automatic ultrasound image 
classification is also provided. Furthermore, the potential of feature 
engineering is highlighted by this model, which serves as a source of 
inspiration for the next generation of feature engineering models to be 
developed in the future.

7. Dataset

We collected this dataset from Firat University Hospital from chil-
dren admitted to the hospital between 01/01/2020 and 01/01/2023.
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