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ABSTRACT

Wireless communications systems are ubiquitous capabilities underlying the technologies

which are transforming our society, business, government, and industry today. Ever evolving

applications are driving the requirements for the design of such wireless communication systems.

Demanding increased speed and volumes in data transfer, the reliability and availability, and

important protections such as the privacy as well as the essential security of these communica-

tions systems. Future wireless communications systems must approach these design challenges

by addressing these emerging requirements and look for opportunities to leverage emerging

technologies to complement the conventional design methods. Exponential growth in computing

hardware and processing capabilities have supported the application of machine learning, and

in particular deep learning, to extract value from large scale data assets. Researchers have also

recognised the potential for the application of deep learning to the data-driven design of wireless

communications systems, complex channel environments and emerging applications. This doc-

toral research thesis develops artificial intelligence-enabled deep learning models and training

algorithms to specifically focus on four key objectives in application to wireless communications

systems design. These objectives are Synchronisation (Objective 1), Adaptation (Objective

2) and Over-the-air learning (Objectives 3 & 4). Synchronisation is an important signal

processing step in the receiver that aims to correct the perturbed signals to retrieve the original

message. This thesis proposes a new method of parameter estimation for Synchronisation sup-

porting multiple modulations, including chaotic modulations for secure communications. This

objective aims to maximise the data-rate and security of wireless communications by focusing

on short random preamble sequences which severely limit the accuracy of conventional methods.

Adaptation is a desirable property supporting the reliability and availability of wireless com-

munications systems in changing channel conditions. In this objective, a custom deep learning

architecture is developed under a multi-task learning framework to learn multiple code-rates

and is demonstrated to produce gains under fading channel environments in comparison to

conventional coding methods. Over-the-air learning, as part of objectives 3 & 4, makes a novel

contribution in the area of adaptation while enabling the global optimisation of both transmitter

and receiver for a true channel environment. This objective addresses the challenging tasks of

complex training and modelling regimes found in rapidly evolving wireless communication

systems. Therefore, the thesis proposes two novel methods simplifying the training procedure

and deep learning models for Over-the-air learning and addresses the reliability and availability

in changing channel conditions as well as security during the training procedure. The newly pro-

posed methods in this doctoral thesis clearly demonstrate the success of the proposed approaches

for simulation, generalisation, training techniques and custom deep learning architectures. The

research project outcomes are useful for establishing practical pathways for future applications

of artificial intelligence-enabled wireless communications systems.
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CHAPTER 1: INTRODUCTION

1.1 Background

Wireless communications are a substantial part of our digital communications platforms support-

ing broadband connectivity and networking for fixed, mobile and vehicular communications [1].

This form of connectivity is an important enabler for the formation of hybrid networks which

extend connectivity to remote locations, leveraging hybrid terrestrial and non-terrestrial plat-

forms, thereby enabling ubiquitous connectivity [1, 2]. Future communications technology will

enable disruptive applications that continue to transform society, with broad applications and

services including video, augmented reality, holographic communications, remote haptic control,

transport and logistics and machine to machine communications [1, 2]. These applications

are driven not only through the proliferation of mobile and smart devices but also due to the

disruption of Industry 4.0 and the internet of things (IoT) [1, 2]. However, the capabilities

required to support these applications place demands on wireless communications networks

with increased requirements for data transfer, reliability, availability, privacy and security [2].

While fifth generation (5G) mobile communications already supports some of these capabilities,

the changes required to support all of these new demands in future wireless communications

systems, including at the physical layer (PHY), are still a subject of ongoing research [2].

The aim of a wireless communications system is to transmit a message over the air (the

channel) to a receiver which can retrieve the original message from the received signal. The

channel environment adds noise and distortions to the transmitted message and imperfections in

electronic circuits causes additional perturbations to the signal such as timing, frequency and

phase offsets. This means that the receiver must have the ability to correct imperfections to

recover the original message.

Figure 1.1 illustrates a simple wireless communications system. In this setting the message

M is represented as a sequence of K bits, (this allows for 2K possible messages). To enable

error correction in the receiver, the transmitter may optionally convert the K bits into a code

of length N symbols. A code adds additional symbols to the transmitted message and as a

result trades off the number of channel uses (and energy) required to send the message. This

trade-off can be indicated by a code rate R = K/N which is the ratio of message bits to the

length of the code. The coded (or uncoded) message must be converted into a waveform to be

transmitted over the channel. The modulation converts code symbols into a complex domain
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Figure 1.1: A simplified view of a wireless communications system. The transmitter takes in a K
bit binary message M, codes, modulates the message and formats the resulting modulation as a
waveform for transmission over a channel medium, producing transmitter symbols z(t). These
symbols are transmitted over a channel, represented as a channel transfer function h(z(t)), which
produces noise and outputs symbols r(t). The receiver performs synchronisation, corrects the
channel distortions, and detects the signals carrying information. It demodulates each information
frame and performs decoding to produce an estimate for the original message M̂.

number s ∈ C comprising of in-phase and quadrature components (IQ). There are several forms

of modulation to choose from which can use phase, amplitude and frequency or a combination

thereof to represent the coordinates of the modulation symbols. For simplicity, the work in this

thesis will refer to phase-shift keying (PSK) based modulation, which leverages the difference

in phase for a constant amplitude in each symbol. Variations of PSK include binary phase

shift keying (BPSK) and quadrature phase-shift keying (QPSK). The resulting waveform is

often filtered to avoid inter-symbol interference (ISI) where the distortions due to the channel

cause adjacent symbols to overlap with each other. A matched filter is applied to expand the

width of each symbol and to enhance detection at the receiver. The resulting output of the

transmitter is represented as z(t) for each time-step t on the interval T . The channel environment

is modelled as a transfer function r(t) = h(z(t)) which adds effects such as fading and represents

the noise added by the electronic components in the transmitter and receiver. Other imperfections

including hardware phase, frequency and timing offsets as well as Doppler frequency offsets are

modelled as part of the channel transfer function. The received symbols r(t) are synchronised at

the receiver, synchronisation removes timing, phase and frequency offsets. The modulation used

at the transmitter must be reversed to obtain the resulting code word, this process is known as

demodulation. This code word is decoded and an estimate for the original K bit message M̂ is
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produced by the receiver.

Traditional design approaches for wireless communications systems optimised each stage as

individual signal processing blocks in isolation against an assumed and simplified mathematical

model. The independent optimisation of each block does not guarantee optimal performance

when combined into an entire system, and the new demands placed on wireless communications

systems challenge this design process to achieve more optimal overall performance [3]. Re-

searchers have recently begun to look to deep learning (DL) methods for their potential use as a

design tool with the ability to jointly optimise the different stages in the wireless communications

signal processing pipeline [3]. DL models are neural networks composed of many layers of

non-linear activations which learn to extract meaningful representations from training data with

respect to an objective loss function [4]. The success and increasing research adoption of DL

in many fields such as computer vision and speech recognition has been attributed to several

factors including advancements in hardware such as the graphics processing unit (GPU), the

availability of labelled data sets and the development of open source frameworks supporting the

development of DL models [4]. DL makes the assumption that the data is independently and

identically distributed (IID), which imposes limits on the adaptability and generalisability of the

technique [4]. Nevertheless, the composition of non-linear activations, combined with depth and

the ability to train over enormous scale of data, due to supporting hardware and memory, have

contributed to DL out-performing many previous state of the art (SOTA) methods in the many

domains where it has been applied [4].

The adoption of DL in PHY wireless communications has been in application to the separate

stages of the signal processing chain, as well as to the design of coding and modulation [5, 6].

Current research has demonstrated that DL methods can be incorporated alongside conventional

signal processing blocks by unfolding the different iterations of the conventional algorithm [5,6].

DL has also been applied as an end-to-end data-driven learning method which is capable of

jointly optimising all stages of the signal processing pipeline [5, 6]. There is evidence that the

DL method can outperform the conventional methods in channel environments which are highly

non-linear and do not have an analytic mathematical model [5]. This points to the potential

advantage of incorporating DL techniques to aid in the design of wireless communications

systems. The trade-off between the use of an assumed model versus a data-driven learned model

is a reflection of the bias-variance trade-off [5]. Suggesting that an assumed mathematical model

biases the resulting system such that it performs well where the environment reflects the assumed

model, but limits performance outside of such constraints [5]. Whereas a learned model achieves

better generalisation when the training data set can incorporate a broad range of observations,

reflecting the distributions of the real world [5]. The latter point however is also limited by the

conventional supervised learning IID assumption.

This doctoral thesis is motivated by the application of artificial intelligence DL methods
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for the design of PHY wireless communications systems. In particular, the application of DL

to synchronisation, over-the-air learning (OAL) and the learning of adaptive modulation and

coding (AMC) schemes. Synchronisation of the wireless signal is challenging for DL and our

work focuses on the estimation of the carrier frequency offset (CFO), which is introduced due

to hardware timing imperfections as well as the Doppler effect in mobile networks. While the

conventional signal processing techniques for CFO have been developed over many decades,

DL is interesting because of it’s potential application to a broad range of modulation schemes,

including chaotic modulations used in physical layer security. OAL is significant for the end-to-

end (E2E) learning of wireless communications systems over a physical channel environment.

Learning in these environments has limited resources, therefore this research must consider

the simplicity of the custom learning algorithm and the modelling approach. Adaptation over

multiple channel conditions is also enabled by tuning in OAL approaches. However, this research

also investigates how the DL architecture can be modified to enable learning different length

codes for AMC, which can achieve spectral efficiency under changing channel conditions without

the need for retraining.

1.2 Research Problems

The present thesis considers the notion that DL is capable of fusing high dimensional data and

given an appropriate loss function and training algorithm, is able to learn mappings from non-

linear data to supervised labels, or alternately, to approximate the distribution of the input data.

However, there are several areas which are challenging for the application of DL as a design tool

for wireless communications systems. Unlike other domains, there are not many canonical data

sets available for research into DL for wireless communications systems [5, 6]. Instead, the data

generation process is largely dependent on simulation, which in this work is primarily concerned

with the generation of physically plausible signals, and channel distortions. The scope of the

research in this doctoral thesis does not extend to the integration of these models in physical

hardware, which is a consideration for future work. Instead, the significant publications included

as a core contribution in this thesis describe the simulation of an appropriate data generation

process for training DL architecture in each of the respective research problem domains. The

research problem domains include Synchronisation, AMC schemes and OAL algorithms.

Synchronisation in the receiver is concerned with the removal of channel distortions from

the received signal. A key aspect of this is the CFO, which may prevent demodulation of the

received signal. Conventional estimation of the CFO relies on prior knowledge of the modulation

and applies the fast Fourier transform (FFT) to detect the frequency peak of the received signal.

The accuracy of the FFT is dependent on the length of the signal and the signal to noise ratio

(SNR) [7]. In IoT communications, resource constrained devices rely on short communication
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blocks to limit the amount of energy consumed in communications and in turn impact the

accuracy of the CFO estimate. An increasing concern in IoT communications is security. Chaotic

modulations are advantageous for PHY security in energy constrained IoT devices since they

avoid additional communication overhead of key sharing in application layer security [8]. These

non-repeatable modulations are dependent on the sequential synchronisation of parameters

used to generate the chaotic map. This process is dependent on removal of the CFO for the

continuous non-repeating waveform [9, 10], which can be achieved by using fixed preambles

of a non-chaotic sequence [11]. While a fixed preamble may be vulnerable to intercept by

eavesdropping, it is desirable to maintain a short preamble length to maximise the channel use

available for the information carrying signal. In energy constrained IoT devices it is desirable to

estimate CFO for a variety of conventional and chaotic modulations, without an over-reliance

on fixed preamble sequences. If this is achievable, it is possible then to maximise the energy

allocated to transmit signals carrying information and minimise overhead required for pilot or

preamble signals. This in turn increases data transfer rates in the emerging use of IoT and sensor

networks in applications such as industrial manufacturing, personal area networks or health

monitoring devices.

E2E training of wireless communications systems is proposed to enable a data driven

joint optimisation of the transmitter and receiver with respect to the channel environment.

This is contrary to the conventional block design of individual signal processing stages where

each block is optimised individually against an assumed mathematical model of the channel

environment [3, 5]. Conventional block design cannot guarantee globally optimal performance

for the end-to-end system, and is dependent on the prior assumptions described by the adopted

channel environment models [3, 5]. DL has played an important role in the E2E learning

regime, however, E2E training is dependent on an assumed differentiable channel model [3].

The differentiable channel model is necessary to support the stochastic gradient descent (SGD)

training approach where gradients are backpropagated from receiver to transmitter during the

training process. However in an OAL algorithm, the transmitter and receiver are separate from

each other and the gradients of the channel are no longer available [12, 13]. A key advantage in

adopting DL methods is its ability to learn from complex data generation processes which may

not have an analytic model. In wireless communications, the primary data generation process is

the channel environment. For DL to be advantageous outside of well described analytic channel

models, it is necessary to develop OAL methods which address the separation of transmitter

and receiver and allow joint optimisation over true channel. OAL algorithms must consider the

channel use required for feedback over the channel as well as the complexity of the modelling

approach and training algorithm. Such algorithms have application to reliable communications

systems, which can adapt to complex channel environments including adversarial environments

which may experience intermittent accidental or deliberate interference. Additionally, the data-
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driven joint optimisation of transmitter and receiver allows the design of non-conventional codes,

which are not only optimal for the channel environment, but may have a low probability of

intercept (LPI) and thereby improve PHY security for wireless communications.

While OAL algorithms can enable both the DL based transmitter and receiver to be tuned

under changing channel environments, there is a cost in terms of the energy, time and channel

use required to tune these models on device. Meanwhile it is necessary to support ongoing

communications, potentially over a redundant link, thereby requiring additional hardware.

Conventional approaches which perform AMC are able to optimise communications over varying

channel conditions [14, 15]. AMC maps a set of modulation and coding schemes to minimise

the expected error-rate under changing channel conditions and transmit power [16]. E2E

wireless communications systems trained with DL have the limitation that the DL architecture

is capable of learning only one code rate K/N. To achieve multiple code rates, it is necessary

to train multiple configurations of the DL transmitter and receiver. This is a different problem

to accommodating different length inputs such as via a convolutional neural network (CNN)

module. Instead, the transmitter must be able to learn to output a different code of length N given

both the message M and some context information. Learning AMC requires modification of the

DL architecture and the E2E training algorithm to support multiple code rates. The ability to

do so will support reliable wireless communications and improved data rates when the channel

environment changes. A data-driven methodology such as DL would enable further integration

opportunities such as in learning the optimal control of selected code rate to the continuous

variation of the channel environment. A key advantage of learning an AMC with DL is that it

would mitigate the need for retraining the transmitter and receiver when the channel environment

changes, thereby achieving adaptation in wireless communications systems without the cost of

model tuning.

1.2.1 Research Aims and Objectives

This doctoral thesis is motivated by the challenges described for each of the research problem

domains of Synchronisation, OAL algorithms and AMC schemes for the E2E development and

design of wireless communications systems. The objectives for this research are presented in four

publications comprising the body of this PhD thesis by Publications. Each publication addresses

one of the focus areas and make the following contributions to the growing interdisciplinary field

of AI-enabled communications.

1. Objective 1. Synchronisation.

Enhance the security of IoT burst communications by developing a stacked sequence-

to-sequence DL estimator for the CFO estimation problem and support blind estima-

tion of CFO for multiple conventional and secure chaotic waveforms. Blind CFO
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estimation is a step towards enabling E2E communications systems which operate in

a physical channel environment.

This research output is presented in Chapter 4, and has been published in IEEE

Access (vol. 10 (2022), pp 119814-119825, ISSN 2169-3536).

2. Objective 2 Adaptation.

Enable adaptive communications in E2E training of wireless communications sys-

tems. This is achieved by modifying the DL architecture to support multiple code

rates, and to frame the challenge of learning multiple code rates as a multi-task

learning problem.

This research output is presented in Chapter 5 and has been published in Applied

Soft Computing (vol 159 (2024), p 111672, ISSN 1568-4946).

3. Objective 3. Over-the-air learning (OAL) with feedback.

Develop novel approaches to training wireless transmitter and receiver OAL and

improve on existing methods by simplifying the training procedure. This research

aims to demonstrate that it is possible to simplify training of the transmitter by

learning implicit information about the channel through the errors made at the remote

receiver.

The research output is presented in Chapter 6 and has been published in the journal

MDPI Sensors (vol. 23 (2023), no. 24, p 2848, ISSN: 1424-8220).

4. Objective 4. Over-the-air learning (OAL) without feedback.

Enhance privacy of data-driven wireless communications systems by developing

OAL algorithms supporting training without use of a feedback channel as well as

simplify channel modelling approaches for use in E2E training. The work enhances

the security of OAL by training a channel model on uniform noise transmitted through

the true channel environment. The aim is to develop an efficient channel model which

can accurately model a variety of channel environment distributions. The resulting

channel model supports training transmitter and receiver on the remote side of the

network and avoids information carrying transmissions during the learning procedure.

Thereby reducing the opportunity for adversarial intervention during learning.

This research is presented in Chapter 7 and has been published in the journal MDPI

Sensors (vol. 24 (2024), no. 10, p 2993, ISSN: 1424-8220).
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1.2.2 Significance of Research

Objective 1. Synchronisation

Research contributions for the Synchronisation research focus are developed in Chapter 4 and

are highlighted below:

• Develop a stacked sequence-to-sequence DL model which gradually refines the estimate

for the CFO for conventional BPSK and QPSK modulations as well as for the Circular,

Quadratic and Zadoff-Chu chaotic map modulations.

• Evaluate the use of discretisation of the target frequency for the refined estimation method

of the model against the use of continuous regression of the target frequency.

• Compare the accuracy of the proposed model CFO estimate on the received signal with

and without data augmentation, and demonstrate that the addition of data augmentation

enhances the accuracy of the model.

• Compare the proposed model with several conventional FFT based CFO estimation meth-

ods for conventional modulations as well as correlation methods for chaotic modulations,

with comparisons made both for mean absolute error (MAE) and execution timing.

Objective 2. Adaptation

Adaptation of E2E for wireless communications systems is introduced in Chapter 5 which

develops an E2E training method AMC and makes the following contributions:

• Proposes an end-to-end machine learning architecture for generating coded modulation

schemes with different data rates.

• Custom training/multi-task learning produces coded modulation schemes with competitive

error-rate performance.

• Proposed approach outperforms several traditional coding techniques for short codes.

• Proposed approach is versatile in adapting to Rayleigh fading channel condition without

model retraining.

• The proposed end-to-end machine learning architectures have practical benefits for devel-

oping resilient wireless communication systems.
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Objective 3. Over-the-air learning (OAL) with Feedback

Research contributions for the development of OAL algorithms are developed in two articles.

Those developed in Chapter 6 make contributions in the following areas:

• To propose a novel over-the-air training method and develop machine learning enabled

coding and modulation schemes for the transmitter and the receiver without an assumed

channel model.

• To develop a Disjoint Learning method that uses a transmitter-side (local) channel/receiver

to imitate the learning process of the remote receiver and enable supervised learning of the

transmitter through backpropagation.

• To demonstrate that the performance of the proposed Disjoint Learning method is equiva-

lent or better than the fully connected architecture.

• To show that the proposed method achieves significant performance improvements against

the Receiver Tuning training method.

Objective 4. Over-the-air learning (OAL) without Feedback

The research presented in Chapter 7 extends the work on OAL algorithms with the following

research contributions:

• The research article proposes an iterative OAL algorithm for the development of transmitter,

receiver and channel model which does not require continuous feedback between trans-

mitter and receiver. Thereby reducing the vulnerability to eavesdropping and adversarial

attacks during the learning procedure.

• The research presents application of the mixture density network (MDN) for the approxi-

mation of the channel transfer function. And demonstrates the approximation for several

simulated channels including the Additive White Gaussian Noise (AWGN), Rician fading,

Rayleigh fading and power amplifier AWGN channels.

• The article demonstrates that intermittent measurement of block error rate (BLER) for

transmitter and receiver models, using the generative channel model instead of the true

channel environment, is suitable for use as the training stopping criteria and for monitoring

of learning process.

• Finally, the research article shows that the performance for the resulting transmitter and

receiver models are equivalent to or better than the end-to-end model which is trained with

an assumed channel model. This is shown for AWGN, Rician fading, Rayleigh fading and

non-linear power amplifier with AWGN simulated channels.
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Both of the novel methods developed for OAL learning are able to be applied to adaptation

of DL based wireless communications systems. However as noted, tuning of the transmitter

and receiver has a cost in terms of both time and energy on resource constrained devices,

whereas the approach developed for AMC serves to provide adaptive communications without

the requirement for tuning.

1.3 Thesis Layout

This thesis is structured in seven chapters, and includes four published articles on the use of

DL for data-driven design of Synchronisation, Adaptive Modulation Coded Schemes and OAL

algorithms.

Chapter 1 provides an introduction to the topic and briefly introduces the reader to the

significance of wireless communications, as well as describing a simplistic design for a wireless

communications system. It introduces the use of DL for design of wireless communications

systems, and describes the research domains which are the focus of this thesis.

Chapter 2 presents a survey of literature relating to the application of DL for the design

of wireless communications systems. It enumerates the applications of DL for the three thesis

objectives of Synchronisation, Adaptation and OAL algorithms for wireless communications

systems and identifies gaps in the research domain along with the motivations for the research

focus areas presented in this thesis.

Chapter 3 describes the data generation approaches and methods of simulating channel

environments which are applied in the experimental approaches for the published research. This

is a summary of the relevant data generation and simulation methodologies that are contained in

greater detail in each of the featured publications.

Chapter 4 (research publication 1) describes the development of a novel DL architecture

for the blind CFO estimation problem for two conventional modulations and three chaotic

modulations. This chapter reports the findings of Objective 1.

Chapter 5 (research publication 2) presents an original research article demonstrating a

novel DL architecture and training algorithm for the E2E learning of AMC schemes. This chapter

reports the findings of Objective 2.

Chapter 6 (research publication 3) proposes an algorithm for OAL which is simpler than

current methods described in the literature and demonstrates that it is possible to learn implicit

information about the channel environment without modelling it explicitly. This chapter reports

the findings of Objective 3.

Chapter 7 (research publication 4) further develops an algorithm for OAL which does not

require feedback over the channel. It demonstrates that it is possible to learn an approximation for

the true channel environment without an information carrying signal. And applies the developed
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channel model to the E2E training of transmitter and receiver without exposing a feedback

channel to potential adversarial attacks. This chapter reports the findings of Objective 4.

Chapter 8 summarises the research findings of objectives 1-4, reported in four different

publications, and discusses the limitations of the research work and further proposes future

directions for this area of research.

Figure 1.2 presents a schematic overview for the body of this doctoral thesis excluding the

Chapters for Introduction, Literature Review and Conclusion.
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Figure 1.2: An overview for the main topics comprising the body of this doctoral thesis. These
include: Data Generation and Simulation; Objective 1: Synchronisation; Objective 2: Adaptation;
Objective 3: Over-the-Air Learning with Feedback; and Objective 4: Over-the-Air Learning
without Feedback.
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CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

Research interest in the application of neural networks (NNs) to the modelling of digital commu-

nications systems has developed over the past thirty years [17]. The primary argument given

in the literature for the use of DL in wireless communications is that wireless communications

systems are conventionally designed via a block design approach. Each block or component

responsible for a signal processing task is optimised for an assumed mathematical channel

environment, and is often designed in isolation from each other [3, 17, 18]. Due to this localised

optimisation, global optimisation of the system cannot be guaranteed [3, 18]. DL offers the

potential for a data-driven approach that is able to optimise all components from observations of

the channel environment, and optionally, without assumed knowledge of the channel [12, 19].

Hence NN and DL exhibit the ability to learn non-linear characteristics of the physical channel en-

vironments where it has been challenging or intractable for analytic methods [17]. In end-to-end

optimisation this learnt information is leveraged by the transmitter to learn a code representation

that is able to improve the performance of the receiver [3, 18]. While in the receiver, DL is able

to learn transformations capable of denoising, correcting channel imperfections and detecting

transmitted symbols to improve performance in recovery of the original message [3, 18]. In

wireless communications DL is leveraged both as a task specific subcomponent to estimate

parameters in the signal processing chain, such as in synchronisation [20, 21], or otherwise as

a design tool where many or all components are optimised jointly [3, 18]. In both cases, the

channel is either modelled as a stochastic process during simulation or is a physical process

that is observed directly. Regardless of the scenario, there are key challenges to complexity,

generalisation and adaptation given the application constraints, where the literature proposes

solutions comprising approaches to data preparation, model architecture and training algorithms.

2.2 Parameter Estimation for Synchronisation

Synchronisation is a task where DL has been applied to model one or more parameters or perform

transformation of the received signal in an end-to-end process. In a wireless communication

system, there are several imperfections which arise out of the physical channel environment as

well as the electronic components. Mismatch in oscillators between the transmitter and receiver
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result in carrier frequency offsets and phase offsets between the transmitted and received signal.

Propagation delay results in timing mismatches between the transmitted signal and the received

signal. Each of these offsets require correction at the receiver prior to demodulation. These

imperfections manifest as perturbations of the signal waveform, which in its simplest expression

can be described as a sinusoidal waveform. Optimal conventional methods, assuming an AWGN

channel, have been developed over a long history for phase, frequency and timing parameter

estimation and correction [21–23]. Nevertheless the application of DL to the synchronisation

problem has been demonstrated to exhibit advantages to conventional methods given constraints

of sample length or in low SNR [21–23].

The task for estimation of the frequency is reduced to its simplest form in [24], where a

fully connected network is used to estimate the frequency of a sinusoidal wave with additive

Gaussian noise (at a SNR of 25 dB). A NN was trained to estimate the normalised frequency

offset between 1 kHz and 10 kHz through regression for an input sequence of 2000 samples.

This approach demonstrated that it was possible to estimate the frequency component with good

accuracy having generated enough training samples. It is a highly simplified example, without

variation of SNR, it is not compared against conventional methods for frequency estimation and

is not applied to a modulated waveform as would be used in a wireless communications system.

A smoothed estimate of the frequency pseudo-spectrum for a complex waveform is produced

by training a mixture of fully connected and convolutional NN layers in [25]. The proposed

method PSnet estimates a smoothed frequency pseudo-spectrum from a fixed number of samples

(5000 samples for the input layer) where the waveform may contain multiple frequencies

separated by a small increment [25]. The data generating process in this work is closer to a

communications use case, although not explicitly designed for communications. The training

waveforms are generated for variation in amplitude, and frequency and the additive Gaussian

noise is sampled at several SNR between 1 and 100 dB [25]. The authors speculate that

the first layer of the NN is responsible for translation from a time domain into a frequency

domain, and acknowledge the learning constraints in the NN due to the IID assumption for the

generated training data set [25], noting that the distribution from which the training data is drawn

influences the overall accuracy of the network. This has ramifications for the communications

setting especially where the number of bits in a message frame would cause sampling from a

broad number of messages and channel conditions to become impractical. The proposed PSnet

did demonstrate better accuracy than the conventional periodogram and the eigenvalue based

MUltiple SIgnal Classification (MUSIC) estimator in low SNR [25]. However, the study did not

focus on the communications use case, such as the effect of a communications modulation and

filter on the performance of the model.

Several DL techniques are trained to estimate CFO and compared against conventional

methods for a wireless communications application in [22]. In particular, the quantisation that is
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applied to simulate a 1-bit analog-digital converter (ADC) causes a loss of information but is

advantageous for energy constrained systems such as IoT devices [22]. The article experimentally

trains NN, CNN, long-short term memory (LSTM) and residual CNN for short block lengths of

8, 16 and 32 bits in SNR between 0 to 10 dB. [22]. It compares performance on both quantised

and non-quantised waveforms and evaluates performance against the periodogram, MUSIC and

Welch’s method for estimation of CFO [22]. The results reflect good performance for CNN and

LSTM based networks trained in low SNR and comparable performance to conventional methods

in high SNR. In addition the accuracy of the DL models is shown to improve as the block length

increases [22]. In both [25] and [22] complex in-phase and quadrature (IQ) values are treated as

two separate features for the in-phase and quadrature components, since the DL methods are not

designed to process complex valued data. This article does provide some evidence for the ability

of DL to estimate CFO for short blocks. Although the approach is quite exploratory, the data

generated is close to a PSK modulation but is a random sequence, and like the other articles does

not investigate multiple kinds of communications modulations. Structure within communication

preambles or modulation may influence the features learnt by the DL estimator.

Data-driven preamble detection is performed by a 1d-CNN which learns to produce a soft

ranking for indices of a complex correlation in [23]. In this way the CNN is applied to determine

the alignment between a reference preamble and arriving packets and rather than relying on a

single maximum value for the peak of the correlation, it can make use of the distribution of the

correlation window to more accurately estimate the beginning of the preamble [23]. The method

is shown to exhibit a lower number of false detections than the conventional correlation based

estimator in both AWGN and a flat fading channel [23]. By using the complex correlation for

input to the DL model, the article demonstrates how a data-driven method can be integrated with

a conventional method to achieve improvements in accuracy. The preambles leveraged in the

experiments consisted of random BPSK encoded data, however other kinds of preamble such

as those based on Barker codes [26], chirp [27] or Zadoff-Chu sequences [28] exhibit excellent

correlation properties which improve the performance of the conventional method. The article

also did not examine the impact of modulation on the parameter estimation problem.

The 1d-CNN has also been demonstrated as an effective approach to learning filters for

preamble detection in [29]. Preambles generated from pseudo-random noise were evaluated

at lengths of 8, 16 and 32 bits in AWGN, Rayleigh and Rician fading channels and were

combined with additional perturbations for phase offsets and CFO [29]. False Detection rates

were compared with a correlation method featuring adjustments for the additional perturbations,

and the CNN filter demonstrated favourable performance in shorter length preambles with

the conventional correlation method performing similarly on the 32 bit preamble [29]. The

CNN is trained only on the AWGN channel and evaluated on both fading channels without

retraining, and is shown to be more accurate for the shorter preambles than conventional
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methods in both of the fading channels [29]. Like the experimentation in [23], this article does

not examine preambles with optimal correlation properties. While it does demonstrate good

performance for the data-driven method, the use of optimal preambles such as those with low

auto-correlation ambiguity would enable optimal performance from conventional correlation

detection methods [30]. Comparison under such conditions would determine whether data-driven

methods have the ability to automatically learn and benefit from properties such as optimal

auto-correlation of the input signal.

A realistic application of DL to wireless communications features two variations of a recurrent

neural network (RNN) to estimate CFO and a 1d-CNN for frame detection of an IEEE 802.11

orthogonal frequency division multiplexing (OFDM) communications system in [21]. The

packet contains short and long training fields (STF and LTF) which are used for coarse and

fine parameter estimation respectively [21]. Conventional detection is performed with complex

correlation for a sliding window against a known preamble sequence, preambles are predefined

such that they have good correlation properties for the beginning of the sequence. While the

conventional CFO estimator calculates the phase of complex correlation for successive symbols

and produces a coarse frequency estimate from the STF and a fine frequency estimate from the

LTF. A final estimate is produced by adding both estimates together. The DL models are trained

by simulating the channel environment with a range of SNR and perturbations, as well as by

capturing observations from a physical lab environment using software defined radio (SDR) [21].

The 1d-CNN is more accurate than the conventional detector on short sequences up to 320

samples under simulation, and performs similarly in the real environment [21]. The conventional

CFO estimation is more accurate than the DL CFO estimator in high SNR above 8 dB, with the

DL being more accurate below that [21]. The conventional CFO estimation method benefited

from a two stage estimation process, making coarse and fine grained estimates. The DL method

was not designed to refine the estimation however it is possible to design an architecture that

may perform some kind of refinement during the forward pass such as through upsampling and

interpolation. Both tasks also benefited from a fixed preamble, due to the frame design however,

it is also possible that preambles may be required to have dynamic properties which would

require training the DL models either with broader examples, or to learn have some generative

capacity to address the generalisation challenge. In addition, the channel environments presented

in the article are relatively simple, while the real lab scenario does present a multi-path fading

environment, it is uncertain how well the proposed method would perform under a number of

different channel conditions.

The applications of DL for synchronisation parameter estimation presented so far demon-

strates a framing of the problem where the model is relatively isolated from the entire signal

processing chain, and the parameter estimates may be used in a more conventional manner when

correcting the received signal. However, this does demonstrate the capacity for DL methods
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to match or outperform conventional methods which must estimate properties of the perturbed

signal for a given channel environment. Much like the block design approach in conventional

systems, DL can be composed into a larger system. The key difference, is that once organised

as part of a larger architecture, all components (or layers) in the model can be optimised with

respect to the channel environment, constraints and a loss function. This approach gives rise to

the pursuit of End-to-end learning for wireless communications in the research literature, which

takes advantage of the auto-encoder (AE) architecture in place of transmitter and receiver. The

AE is a form of unsupervised learning that is able to learn low-dimensional features which are

not only suited to reconstruction, but also serve as a mapping between input and a coordinate

system that is similar to non-linear principle component analysis (PCA) decomposition [31]. In

the case of wireless communications, the features produced by the encoder correspond to the

learnt code space.

2.3 End-to-End Learning

The canonical use of the AE for E2E training of a wireless communications system is presented

in [3]. A simplified communications system is developed to learn short codes (the Hamming(7,4)

code and uncoded 8-bit BPSK) subject to an energy constraint and over an AWGN channel [3].

The AE network serves as the reference architecture, consisting of a transmitter including an

energy constraint (the encoder), a channel model which is a non-trainable distortion applied to

the transmitter output, and the receiver (the decoder). The system is trained to map a one-hot

encoded representation of the message into a code representation of size N where N complex

IQ values are represented as two real vectors. A one-hot encoded representation for K bits is a

vector of length 2K where each position represents one of the unique 2K bit messages. Hence

each K bit message is encoded as a unique symbol (symbol-wise representation) rather than a

sequence of bits (bit-wise representation). The receiver learns to predict the probability for each

of the 2K messages. The role of the receiver is to perform classification of the received signal that

has been distorted by the channel layer. Since the AE is optimised E2E, the transmitter learns an

optimal code for the given channel distortion enabling the receiver to maximise classification

performance. The AE is demonstrated to achieve equivalent BLER to the maximum likelihood

decoding (MLD) for the Hamming(7,4) code and produce gains over uncoded 8-bit BPSK in

the AWGN channel [3]. The joint learning capability is also demonstrated by training two AE

over an interference channel so that the output of opposing transmitters are added together, and

each receiver must classify the original message from its respective transmitter given the channel

noise and superimposed codes. The resulting system automatically learns an orthogonal code for

each respective transmitter receiver pair and therefore minimises the impact of the interference

signal [3]. A key limitation of the approach is that the channel transfer function represented by
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the non-trainable channel layer must support differentiation to permit the transfer of gradients

through the network during training by back-propagation [3]. The symbol-wise representation is

also limited by an issue of scale, since the increase in symbols is impractical for longer K-bit

messages [3]. The training procedure is negatively impacted by the ability to sample messages

as well as the dimension required for the input and output at transmitter and receiver.

The limitation of the symbol-wise approach is addressed by training an AE to learn both

a coded constellation at the transmitter and a soft estimate for each bit at the receiver in [32].

Both transmitter and receiver also take as input the estimated SNR for the channel and the

resulting AE is shown to outperform the bit error rate (BER) of both PSK and quadrature

amplitude modulation (QAM) modulations in AWGN [32]. The availability of the SNR to both

the transmitter and receiver enables the AE to learn an adaptive constellation with respect to

the channel environment [32]. The soft values produced by the receiver are compatible with

use in an iterative demapping and decoding (IDD) algorithm, such as belief propagation (BP)

since they are estimates of the log-likelihood ratio (LLR) for each respective bit, this enables the

use of the AE with an outer low-density parity-check (LDPC) code [32]. While the AE itself is

limited to short messages (up to 8 bits) the outer LDPC code is leveraged to process message

length of 1944 bits. An optimisation algorithm which uses the inner AE code is developed to

select the optimal outer LDPC code and the resulting system is compared with a baseline LDPC

code of the same length [32]. When used as an inner code the AE enables the outer LDPC

code to achieve lower BER than the baseline [32]. The OAL version of the training procedure

is also presented where the system is trained on SDR leveraging a method devised in [33]. In

the OAL context the system demonstrates gains due to the ability of the AE to optimise for the

channel environment and the optimisation process enables the IDD procedure to access more

information in the received LLR sequence [32]. While the article presents an almost complete

system, it’s ability to extend the length of the message is largely due to the outer LDPC code,

while the AE transmitter produces 2N symbols which are constrained to shorter codes. The

E2E experiments assume the AWGN channel environment, and portability between the assumed

AWGN environment and the OAL channel is not examined, however results are indicative of the

benefit of OAL.

Phase offsets and timing offsets are addressed in [34] by adding a radio transformer network

(RTN) as a method of regularisation for the canonical AE. The RTN is derived from [35] and

consists of both a localisation module for parameter estimation and an affine transformation

module which transforms the received signal with the learnt parameters [34]. The AE is

developed to transmit and receive a 128 bit message over a simulated AWGN layer and compared

with the BER of both QPSK and 16 bit QAM modulations [34]. Several architectures and loss

functions are evaluated and linear dense networks are shown to produce lower BLER than the

baseline modulations [34]. The size of the input space is extremely large, 2128 and it is not
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possible to sample all points for training, especially when considering additive noise due to the

channel layers. The results suggest the ability of the network to generalise given the improvement

in BER over QPSK [3]. Although the experiments are limited to an AWGN channel environment.

While the article does demonstrate the impact of phase and timing offsets on the performance of

the network, the benefit of the synchronisation provided by the RTN is not fully demonstrated in

comparison to the baseline modulations.

Performance evaluation of a proposed synchronisation feature estimator (SFE) for phase

offsets, attenuation and timing offsets is made in comparison to theoretical BPSK for the AWGN

channel [36]. The SFE provides a correlation like operation by combining CNN, pooling and

dense layers as part of the receiver and the learnt features are concatenated with the channel

output to perform classification at the receiver [36]. The proposed approach makes use of a

symbol-wise encoding for the message and interleaves pilot symbols with information symbols

in order to provide reference information for the SFE to compensate for phase offsets, attenuation

and timing offsets [36]. The model is trained E2E with an AWGN channel layer and the

additional perturbations, and several code-rates are evaluated in simulation as well as OAL post

training. Use of the SFE is shown to be advantageous in comparison to the AE trained without

it [36]. After training the transmitter and receiver models are deployed on SDR and demonstrated

an error free data rate of 0.5 Mbps [36]. The addition of interleaved pilot symbols increases the

channel usage reducing the code rate by 1/2, which is an added complexity.

Conventionally pilot symbols are used to estimate channel parameters which can be used

to assist with the recovery of the original message, which is distorted through fading and delay

effects [18]. Instead of explicitly including pilot symbols in the transmitted signal, an E2E

architecture is developed to implicitly learn robust constellations at the transmitter as well

as extract channel features at the receiver in [18]. The approach leverages CNN modules to

encode and decode bit streams of varying length and estimate channel features for a single

selective flat fading channel with a 128 bit block size, as well as multiple-input multiple-output

(MIMO) channels with a 256 block size, and is compared with QPSK modulation combined with

OFDM [18]. The model is demonstrated to outperform minimum mean squared error (MMSE)

decoding in the signal channel and performs close to MMSE decoding in the MIMO channel

without perfect channel state information (CSI) [18]. Application to joint source coding is also

demonstrated, where instead of coding image data to a bit representation, images are fed directly

into the E2E model which learns to recover them at the receiver with higher accuracy than

conventional image compression techniques [18]. The learnt transmitter and channel extraction

features learnt by the E2E model are dependent on the assumed channel model and distribution

of channel parameters, which is a limitation inherent to the E2E training approach since it is

dependent on the assumptions made for simulation of the channel.

E2E training of wireless communications systems has been demonstrated in the literature to
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not only outperform simple block codes [3,34], but also to incorporate concatenated coding such

as in [32] and incorporate mechanisms in the model architecture to enable learnt synchronisation

[18, 36]. However, the key limitation of the E2E approach is the requirement of a differentiable

assumed channel model [3]. To this end, OAL seeks to develop methods which can train a

transmitter and receiver without necessarily assuming a channel. Such methods extend E2E

and the AE architecture by devising extensions which enable transfer learning in the receiver to

adapt to a true channel environment (Receiver Tuning); learning a DL channel model through

observation (Channel Approximation); using perturbation methods to approximate the gradient

during backpropagation (Gradient approximation); or relying on coordination between multiple

agents to enable learning between several instances of transmitters and receivers (Collaborative

Agent Learning).

2.4 Over-the-Air Learning

Once a transmitter and receiver have been trained E2E over an assumed differentiable channel

layer, the most pragmatic approach to OAL is to tune the receiver model in the true channel

environment. Receiver Tuning is inspired by transfer learning in computer vision, where pre-

trained CNN models may be adapted to new tasks by training only the upper layers of the

model [37]. An AE is trained E2E on a simulated AWGN channel in [37], which includes pulse

shaping, phase offsets, CFO and timing offsets. After training, the transmitter and receiver

models are deployed in a hardware SDR environment and the receiver is fine-tuned for operation

in the new environment [37]. Extensions to the E2E model are added to support pulse shaping as

well as the additional channel perturbations. ISI is addressed by interleaving short information

blocks with a small amount of padding, phase offsets and CFO are addressed by a phase estimator

module inspired by the RTN in [34], and additional offset estimator and feature extractor blocks

estimate sample offsets to perform frame synchronisation [37]. The outputs of each estimator

are concatenated together as inputs into the receiver decoder. The system is trained in a symbol-

wise manner to transmit an 8 bit message and the transmitter develops constellations which

automatically include symbols for phase offset synchronisation [37]. The performance of the

system is shown to be approximately 1 dB worse than differential quadratic phase shift keying

(DQPSK) after fine-tuning on both the simulated and over-the-air channel environments [37].

Even though no gain is achieved against the baseline, the approach demonstrates the feasibility

of designing a complete wireless communications system offline E2E and performing Receiver

Tuning on the true channel post deployment. The primary disadvantage of Receiver Tuning is

that the transmitter is unable to adapt the constellation that was learned via offline simulation to

the true channel environment.

The main difficulty preventing OAL for the transmitter is due to the way DL models are
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trained with backpropagation. To achieve backpropagation, gradients must be computed for the

change in weights with respect to the error in the model estimate after each forward pass and are

used to update weights during the backward pass of each step. The true channel environment

separates the transmitter and receiver. Therefore, a method of estimating gradients is necessary

in order to train the transmitter in this context. Gradient Approximation achieves this outcome

by leveraging methods based on finite difference approximation and reinforcement learning (RL)

to estimate the gradient at the transmitter, given the receiver loss.

A variation of finite difference approximation is used to estimate the gradient at the transmitter

in [38]. The receiver is trained with backpropagation, while simultaneous perturbation stochastic

approximation (SPSA) is applied to train the transmitter [38]. The article simulates an AWGN

and Rayleigh fading channel to compare against theoretical QPSK and the canonical E2E

method devised in [3]. However, the training phases for the proposed method are separate for

transmitter and receiver [38]. Equivalent performance is demonstrated in both channels between

the proposed method and the canonical AE and is slightly worse than theoretical QPSK in the

Rayleigh fading channel. However, SPSA requires feedback from the receiver loss for multiple

perturbations of the transmitter outputs to calculate the gradient and results in a longer training

duration due to multiple forward passes through the receiver. The method is also shown not to

scale well when the number of parameters in the transmitter are increased [33].

A policy gradient (PG) method is applied to train the transmitter in [12, 33] where a two-step

algorithm trains the receiver and samples perturbed outputs from the transmitter to estimate

the gradient from feedback of the receiver loss. The primary difference between the SPSA

method and the PG method relate to the way the gradients are estimated, the distributions for

transmitter perturbations vary between the two methods and the latter method requires only

one additional forward pass to estimate the gradient [12]. The method is evaluated on both

AWGN and a Rayleigh fading channel against the supervised AE approach devised in [3]. In

the Rayleigh fading channel, alterations to the design of the receiver network are required to

compensate for the fading effects [12]. In [33], the proposed approach was compared with

QPSK in each channel and its application in joint source channel coding was demonstrated for

coding of images in an AWGN channel. While the proposed method takes longer to train, it

exhibits equivalent performance to the supervised AE [12]. The convergence of PG methods

are known to be impacted negatively where the reward signal exhibits high variance [39], with

subsequent methods proposing sampling from a memory buffer to minimise variation at the

cost of additional complexity [40]. The PG method is also applied in a more complete example

incorporating IDD in [32] and subsequent work attempted to address the issue with variation

due to feedback by incorporating deep deterministic policy gradient (DDPG) based methods

in [41]. However, the primary issue with DDPG is the additional complexity that is introduced

to the training procedure due to retaining previous transmission outputs and their values for use
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in sampling during training. The requirement for a reliable feedback channel for receiver loss is

also an overhead that increases channel usage.

An alternate approach in addressing unknown channel gradients is Channel Approximation

which models the channel by training a separate DL model and leverages the developed channel

model in training the transmitter and receiver in an E2E manner. In this case the developed

channel model provides a differentiable proxy of the true channel environment. The aim of this

task is to develop a generative channel model which can accurately approximate the distribution

of the true channel perturbations. In this framework several variations of generative model

have been adopted including the variational autoencoder (VAE), generative adversarial network

(GAN) and diffusion-based models.

Channel approximation with the GAN is demonstrated in [42] and the framework is later

extended to use a variational generator in [43]. In [42] an iterative approach trains the channel

model and uses it to train the E2E model over SDR, but does not leverage a discriminator model

to train the channel generator, instead training the generator directly against the true channel

outputs using mean squared error (MSE) loss. A Gaussian noise layer is required at the input of

the generator in order to learn a constellation similar to 16-QAM [42], however the performance

of the system is not compared with any conventional method. The channel generator in [43] is

trained with a discriminator and rather than adding noise at its input, the generator is instead

modelled after the VAE sampling from Gaussian noise internally. In this manner, the generator is

demonstrated to approximate a range of simulated channel environments. The internal sampling

layer is shown to be necessary to provide variation in the channel generator model as opposed

to attempting to learn the distribution directly without a discriminator [43]. However, without

evaluation such as through comparison of performance against a conventional modulation, the

results are only illustrative, suggesting that a GAN appears to learn a good approximation of the

true distribution.

A more thorough investigation is given in [13] where conditional GANs are trained to

approximate AWGN and Rayleigh fading channels. The generator receives Gaussian noise and

the addition of the transmitter output as conditional inputs, and is trained against a discriminator

which also receives the transmitter output to learn how to imitate the true channel [13]. The

training algorithm is iterative where the channel is updated while the transmitter and receiver

are frozen in the first iteration, and transmitter and receiver are updated while the channel is

frozen in the second iteration [13]. Once trained the transmitter and receiver are evaluated over

the simulated channel functions and shown to perform similarly to the Hamming(7,4) code

in AWGN and 16 QAM in the Rayleigh fading channel with the addition of pilot symbols for

conditioning [13]. A later article [19] extends the approach to a longer bit length of 128 bits in

AWGN and 64 bits in Rayleigh and frequency selective fading through the use of CNN in the

transmitter and receiver. The approach demonstrates the ability to train a GAN on a simulated
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channel and use it to train transmitter and receiver E2E in a simulated environment, however

it is unclear how the proposed method would work in a physical environment. In a physical

environment a feedback channel may be required to relay channel outputs to the GAN to enable

training in an iterative manner on the transmitter side.

A feedback channel is not always required if the model used for Channel Approximation

can be trained with outputs from the true channel environment on the receiver side and later

used in E2E training. A conditional Wasserstein generative adversarial network (W-GAN) is

trained to approximate the channel and develop a transmitter and receiver with a custom training

algorithm (one-shot training) in [44]. The one-shot training is achieved on the receiver side and

develops the W-GAN channel model using transmitter output sent by a pre-trained AE based on

the IDD method described in [32]. Once the channel model has been trained, the AE is trained

by using the W-GAN as the channel proxy [44]. The approach is trained OAL using SDR in

a similar manner as [32], and demonstrates equivalent performance to the RL method. While

the proposed approach does not require feedback, the use of the pre-trained AE to train the

W-GAN does require some prior knowledge of the channel environment, it would be desirable

for a Channel Approximation method to be developed without an assumed modulation. An

additional consideration for GAN methods is that the adversarial training method requires an

addition of the discriminator model, which is discarded after the generator has been trained,

which introduces a level of complexity during the training routine. Another disadvantage of

GAN channel generators is that the GAN is known to suffer from mode collapse, which is a

general problem where a generator may learn to fool the discriminator using a restricted set of

outputs and not approximate the entire distribution [45].

While the W-GAN approach introduces constraints and customises the loss to help improve

generalisation and reduce mode collapse, other generative methods have been explored to further

improve generalisation over the channel distribution. In [46] a diffusion-denoising probabilistic

model (DDPM) is trained to approximate the distribution of several channels. A diffusion model

learns a forward noising and reverse denoising process and is able to generate samples from

the denoising process in an iterative manner [46]. However the iterative procedure is slow to

produce samples during denoising, as the model must be invoked multiple times. To address

this the authors propose a method which relies on a subset of the sampling iterations [46]. Two

approaches to training the wireless system are proposed, the first pre-trains the generative model

on random symbols transmitted through the true channel environment and uses the resulting

generative model in the E2E learning for transmitter and receiver. While the second training

algorithm proposes an iterative training method similar to that proposed in [19]. Both of the

proposed methods are trained and evaluated in AWGN, Rayleigh fading and a solid state high

power amplifier (SSPA) channel and are compared with the W-GAN approach from [44] and

the canonical AE [46]. In each channel, the proposed pre-training approach trains a transmitter
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and receiver which have a similar symbol error rate (SER) to the canonical AE and outperforms

the W-GAN method [46]. The reduced sampling method is also compared with the DDPM

approach, and an increasing number of iterations are shown to improve accuracy. However,

diffusion models introduce additional complexity during the training cycles when used as a

channel proxy, models such as GAN and VAE are advantageous in that they can approximate the

channel distribution with a single forward pass during the E2E training phase.

Collaborative agent learning considers the OAL problem from a more general perspective,

where more than one wireless communications system may participate in the learning process to

develop a shared coded modulation scheme. Having multiple communicating agents introduces

the need for a distributed coordination of the learning process and does not assume that each

agent is comprised of the same machine learning model. However the focus remains the same

as the other two methods, in that its goal is to learn a transmitter and receiver that are able to

communicate optimally with respect to the channel environment.

Two agents collaborate to learn a coded modulation for fixed preambles in [47]. Both agents

consist of a transmitter and receiver, where the transmitter is implemented by a NN and the

receiver learns to classify symbols via a k-nearest neighbours (kNN) method using the known

preamble as a reference. The transmitter updates its gradients using PG and by calculating

the loss on the echoed estimate of the original message from the collaborating agent’s receiver.

The agents are trained in an AWGN channel environment and as the SNR decreases the learnt

modulation is similar to QPSK, while as the SNR increases the resulting constellation resembles

that of 16-QAM [47]. This demonstrates the ability of the agent to leverage the distance between

constellation symbols and maximise throughput for changes in the channel environment [47].

The resulting BER for preamble lengths of 128, 256 and 512 does not perform as well as

16-QAM with the greatest loss of performance demonstrated for the shortest preamble [47].

The method relies on both agents sharing knowledge of a fixed preamble at each iteration of

the learning cycle, which would either require a shared random seed, or an additional reliable

channel for sharing information during learning. Additional channel usage is introduced as

each learning cycle requires not only the transmission of the learnt modulation symbols from

the transmitter but also estimates from the receiver of each collaborating agent. Coordination

between agents also adds complexity however the approach demonstrates that it is possible to

train heterogeneous systems to develop a common coded modulation.

The learning procedure is shown to improve as the amount of shared information increases

between agents in [48]. Shared information in the DL approach to E2E and OAL takes the

form of network design of transmitter and receiver, back-propagation of gradients, use of shared

preambles or pilots, and feedback of receiver loss. In [48], the aim is to demonstrate a learning

procedure with minimal shared information by extending on the collaborative protocol introduced

in [47] and introducing a private preamble instead of shared preamble [48]. Varying degrees of
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information sharing are developed and evaluation in AWGN compared to the BER for QPSK

demonstrate close performance to the baseline [48]. An additional set of models are developed

in an SDR environment with performance indicated to be similar to the QPSK baseline [48]. The

approach moves away from the requirement for a shared preamble however the complexity of the

echo learning protocol remains, as coordination is required to realise cooperative learning. While

the Collaborative agent learning is interesting especially in the ability to develop different kinds

of collaborating agents, the other methods of Gradient approximation and Channel approximation

produce more competitive results in comparison to conventional coding and modulation.

2.5 Adaptive Modulation and Coding

Training OAL enables a form of adaptation for DL models which is realised through tuning both

transmitter and receiver on the true channel environment. However the process of training is

time consuming and computationally demanding to develop a new code. Conventional AMC

schemes achieve adaptation using a pre-designed series of coded modulations with differing

spectral efficiency mapped to varying channel conditions. A coded modulation is selected based

on the expected performance for current measurements of the channel environment, such as the

estimated SNR. Such methods have been shown to outperform other approaches under varying

channel conditions [14, 15]. The application of DL to AMC presents an opportunity for two

approaches, the first is in using DL, as a method of parameter estimation and mapping to more

accurately estimate performance of a given coding and/or modulation scheme for the current

channel environment, and the second in developing new methods to support multiple coded

modulation schemes for DL based communications systems.

In an OFDM system, the channel state must be estimated for multiple subcarriers, however it

is difficult to estimate an optimal modulation and coding scheme to maximise performance in each

subcarrier, hence a combined estimate of effective signal-to-interference and noise ratios (SINR)

is applied in choosing an AMC [49]. The process of estimating the effective SINR is highly non-

linear, involves a high dimensional number of environmental parameters and has no closed form

to enable an analytic expression [49]. Therefore, a DL approach is proposed in [49] for estimation

and mapping of AMC to maximise throughput. Two approaches are proposed for this purpose,

the first develops a classifier base model to provide the mapping decision, the second integrates

a genetic algorithm (GA) and DL to select the AMC scheme given channel measurement

feedback [49]. In each case the DL and DL-GA methods outperform the conventional method

in terms of throughput under a fading channel with delayed feedback [49]. Inputs to the model

are provided by conventionally estimated CSI, however, a Channel approximation method

may enable the method to learn directly from channel outputs rather than an intermediate step.

The proposed method leverages DL as a decision-making approach for AMC, whereas it may
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be possible for an E2E approach to learn an appropriate modulation for the current channel

conditions.

The received channel signal is used more directly where its power spectral density (PSD)

is provided to a feed forward NN to estimate the SNR for AMC selection in [50]. A set of

modulations including QPSK, 16-QAM and 64-QAM with varying code-rates are selected in the

transmitter based on a mapping between SNR threshold and corresponding modulation and code-

rate [50]. The system is compared with a conventional SNR estimation method and simulated

over an OFDM system in a frequency-selective fading channel including Doppler frequency

perturbations [50]. The PSD transformation for the received signal was chosen due to it being

unaffected by phase and frequency perturbations, while the accuracy for the conventional method

was shown to be impacted by changes in frequency [50]. Due to the relative independence on

frequency, the proposed method demonstrated higher throughput and estimation accuracy for

SNR under frequency distortion and was equivalent to ideal AMC where the SNR could be

perfectly estimated [50]. The transformation of the received signal using the power spectrum

enabled the NN to be unaffected by additional channel distortions and provide highly accurate

parameter estimation for SNR. The role of the DL model focused on parameter estimation only,

and did not perform mapping between SNR and a selected AMC scheme or examine how an

AMC scheme could be learnt in an E2E manner given the channel environment.

The mixture of parameter estimation and control algorithm for selection of AMC scheme

and transmit power, is a candidate for the application of RL. Space communications are subject

to dynamic channel environments, and adopt both power control and AMC to provide reliable

communications [51]. A Deep Q-Network (DQN) based approach is applied in [51] to fuse

multiple inputs and define transmitter parameters to maximise reliability of communications

between a geosynchronous equatorial orbit (GEO) satellite and ground station. The advantage of

adopting a DQN approach was in the ability of a NN architecture to fuse multiple input sources

and learn a mapping to achieve set communication objectives [51]. The developed sensing

and control algorithm was demonstrated to outperform conventional AMC [51]. This type of

application does not perform parameter estimation for the received signal, instead it leverages

the DL to learn the optimal mapping between the observed state of the communications system,

which includes estimation of CSI and map to an optimal choice of modulation scheme and order

and transmit power [51].

The problem of estimating channel parameters and learning a modulation via E2E training is

investigated in [52]. The channel gain for a simulated fading channel environment is estimated

based on the received signal and subdivided into a number of intervals where an AE is trained,

for each interval, with the E2E approach [52]. During operation the proposed method applies

a blind channel gain estimation at the receiver which is sent to the transmitter over a feedback

channel [52]. Once the estimated channel gain reaches the bounds for a new interval, the system
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then switches transmitter and receiver to the corresponding AE for that new interval [52]. The

resulting system is demonstrated in comparison to the Hamming(7,4) code and shown to achieve

gains over the baseline method, additionally comparison is made between varying choices for

the number intervals, and it is indicated that it is not necessary to use more than 8 intervals [52].

Gains are demonstrated in comparison to Receiver Tuning of a single AE, indicating that offline

AMC has the potential to outperform OAL methods [52]. The approach estimated the channel

gain for an assumed simulated channel via an analytic method, which may have instead applied a

learning method for parameter estimation and mapping to AMC scheme. The proposed approach

also trained multiple AE for a series of channel gain intervals at the same code rate, whereas

training and model complexity could be addressed through the alteration of the DL architecture

and training algorithm to support the learning of multiple modulations and code rates with a

single model.

2.6 Summary

Synchronisation parameter estimation often designs the estimators in isolation from the commu-

nications system, although this is based on a data driven design ( [24, 25]). The application of

parameter estimation also does not often consider performance on different kinds of modulations

( [22,23,25]); the structure of preambles exhibiting strong correlation properties ( [22,23,29]); or

preambles with varying dynamic properties such as Chirps and Chaotic sequences ( [21]). Hence,

there is an opportunity to investigate the ability of DL to estimate synchronisation parameters for

multiple modulations as well as both structured and randomised communication preambles.

Methods of E2E and OAL have demonstrated the ability of DL to learn modulations given

either a simulated or observed channel environment. The challenges of E2E learning are related

to the dimensionality of the message size and desired code rate ( [3, 32]); training and evalua-

tion of DL transmitter and receiver in simulated channel environments with realistic channel

perturbations ( [34, 35]); and the challenge of estimating channel features for synchronisation

with reduced overheads introduced by preambles or pilot symbols ( [13, 36]). As well as facing

similar challenges, training algorithms for the OAL environment are also challenged by the

complexity of training algorithms. Such as training methods that have increased channel usage

and assume feedback channels ( [12, 32, 38, 41]); require redundant models during training,

such as discriminators in GAN based channel models ( [13, 19, 44]); introduce complexity in

the model due to an iterative training and generation process ( [46]); or require coordination

protocols which increase channel usage during training ( [47,48]). Therefore there is opportunity

to investigate how the training algorithm and DL architecture can be simplified to reduce the

number of required transmissions, reduce the reliance on feedback, and eliminate the requirement

for complex or redundant models used during training.
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Finally, AMC presents a scenario where the choice between multiple coded modulation

schemes can outperform a single conventional code over a dynamic channel environment. Much

of the focus in the literature has been on the use of DL for channel parameter estimation ( [49,50]),

or has used conventional features combined with a learning method to map observed channel

state to a selection of coded modulation ( [51]). As demonstrated in the OAL literature, Channel

Approximation can accurately estimate the channel distribution and may therefore provide

opportunity for improved integration between parameter estimation and use of DL for mapping.

Furthermore, the E2E learning of multiple code rates has so far required training multiple AE

( [52]). An E2E architecture has yet to be developed to support multiple code rates with a single

model, although there is some evidence that an estimated SNR input can assist the model to learn

a different modulation. Hence there is further opportunity to develop both an E2E architecture

and training algorithm to support learning of multiple code rates for use in AMC.
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CHAPTER 3: DATA GENERATION AND

SIMULATION

3.1 Introduction

The experimental methods and all relevant model simulations described in this doctoral thesis,

make use of realistic data generation and simulation techniques during the training and evaluation

of the proposed methods. This work is not undertaken on a physical hardware, therefore the

primary purpose of simulation in this setting is to simulate the channel environment and the

perturbations associated with that channel environment.

Since the primary function of the wireless communications system is to transmit and recover

messages over the physical (simulated) channel, the messages that are transmitted constitute the

source data. In this work, messages are binary sequences, or in the case of some preambles, a

continuous sequence of values generated by a function, such as a chaotic map.

This chapter is divided into two sections, the first is dedicated to the data generation process

for messages and the second describes the simulated channel environments and the associated

perturbations which are applied to the output of the transmitter.

3.2 Data Generation

As described in Chapter 1 the task of a wireless communications system is to send a message M

through a channel in such a way as to enable its recovery at the receiver. In this setting, when

transferring information, the messages consist of a sequence of bits where each bit is either

a 0 or a 1, m ∈ [0,1]. Given a message of K bits, the total possible number of messages (for

the two possible values of each bit) is 2K . In this work, K is also treated as the block size for

the message. Except where otherwise stated (such as when using a fixed preamble), during

training and evaluation the sequence of bits is random, without an assumed byte order. Hence,

it is possible to supply an endless stream of bits for a given block size K during training and

evaluation. A random seed (the constant 42 [53]), is defined to enable repeatable results.

Modulation is a process where the incoming bit stream is converted into a set of complex

numbers or symbols which are then converted into a waveform. In the publications presented in

this thesis the main forms of modulation are BPSK and QPSK. The BPSK modulation consists of
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two symbols, that is, the modulation order is 2, it has two symbols u ∈ [−1+0 j,1+0 j] and each

symbol represents 1 bit. For each message bit mt at time t, the corresponding BPSK complex

symbol ut is either −1 or 1 with a 0 complex component.

QPSK divides the constellation space into four possible symbols, for example:

u ∈ [−1−1 j,−1+1 j,1+1 j,1−1 j]. It has a modulation order of 4 and each symbol represents

2 bits. The message block length K, must be even in this case. The in-phase (I) component

of each symbol represents the amplitude and the quadrature (Q) component represents the

phase. The modulation is converted into a waveform through multiplication with the exponential

(Equation 3.1).

s(t) = u(t)e j2π fct (3.1)

Where fc represents the carrier frequency Hertz.

For the work presented in Chapter 4, the modulation symbol is assumed to derived from the

waveform s(t) ∈ C, for the work presented in Chapters 5, 6 and 7, the modulation symbol is

assumed to be the discrete complex value u(t) ∈ C. In addition Chapter 4, incorporates a root

raised cosine filter [54] to produce the resulting s(t) waveform to prevent ISI.

Chapter 4 examines the use of fixed length binary and continuous preambles consisting

of either the Barker 13 code and chaotic sequences generated from a predefined set of initial

conditions. For random preambles, random bit sequences are used for the binary preamble and

initial conditions are perturbed by random increments for the chaotic sequences. Both types of

preambles result in a complex valued symbol u(t) ∈ C for each timestep t. The chaotic map

functions are described in more detail in Chapter 4.

Prior to the channel the resulting output of the transmitter z(t) is normalised to unit energy

such that ||x||22 ≤ 1, where x is the resulting modulation symbols (Equation 3.2).

z(t) =
x(t)√

∑
L
i=1 x(i)2/L

(3.2)

For Chapters 5, 6 and 7 input to the modelling process consists of one-hot encoding of each

unique message in 2K possible messages. The comparative methods in those chapters perform

evaluation leveraging conventional modulation and coding. In Chapter 4, inputs to the modelling

process consist of outputs from the simulated channel and accompanying CFO perturbation.

3.3 Simulated Channel Environments and Perturbations

The channel environment is modelled as a transfer function r(t) = h(z(t)) and applies perturba-

tions to the transmitter output. The publications contained in this doctoral thesis make use of

AWGN, Rayleigh fading, Rician fading and SSPA to simulate amplification prior to the AWGN

channel. Each of these channel environments are simulated with the basic form of Equation 3.3,
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where n(t) represents additive Gaussian noise at time t, and a(t) is a fading coefficient for time

t. In AWGN, a(t) = 1 however, in Rayleigh fading and Rician fading the way it is calculated

differs.

r(t) = a(t)z(t)+n(t) (3.3)

In Rayleigh fading, the fading coeffient is drawn from a complex standard normal distribution

a ∼ CN(0,1). This fading coefficient is applied either per block, to simulate slow fading, or

per bit, to simulate fast fading, the usage is stipulated in each publication. In Rician fading,

the normal distribution is parameterised with µ =
√

K/(2(K +1)) and σ =
√

1/(2(K +1))

where K is a constant Rician factor. When K is small the Rician channel behaves similarly to

the Rayleigh fading channel, and as K increases the Rician channel is closer to AWGN. The

value chosen for the Rician factor K is described in each publication where Rician fading is used

(Chapter 6 and Chapter 7).

Chapters 6 and 7 provide an additional channel featuring amplification at the transmitter.

The amplifier is based on the Rapp model [55] shown in Equation 3.4, with parameters for the

limiting output amplitude A0, amplifier gain ν and smoothness p. The values assigned these

parameters are specified in the corresponding publications for each chapter.

g(A) = ν
A

(
1+

[(
νA
A0

)2
]p)1/2p

(3.4)

The SSPA is applied to the output of the transmitter z(t) (Equation 3.5) and the resulting

signal z′(t) is then fed into the channel transfer function.

z′(t) = g(|z(t)|)e j∠z(t) (3.5)

All channels include an additive Gaussian noise term n(t), which is simulated for the desired

level of SNR dB. The ratio of energy per information bit to noise power spectral density Eb/N0

dB, is specified during the simulation, and ranges between 0 to 15 dB. A code rate R = K/N is

applied to convert to the ratio of energy per symbol to noise power spectral density Es/N0 dB =

Eb/N0 dB+ 10log10 R. The result is converted to linear form Es/N0 = 10Es/N0 dB/10 and the

signal is used to estimate the energy per symbol Es = ∑
L
t=1 z(t)2/L where L is the length of the

signal. The resulting noise power spectral density is estimated as N0 = Es/(Es/N0) to determine

the variance σ2 = N0/2 for drawing from the complex normal distribution n(t)∼ CN(0,σ2).

Chapter 4 is concerned with results of the simulation of CFO. This research adds a random

perturbation for the frequency foffset selected from a random uniform distribution between ±5

kHz. The resulting frequency is then applied to the output of the transmitter replacing the fc

term in Equation 3.1.
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CHAPTER 4: PAPER 1 - USING

SEQUENCE-TO-SEQUENCE MODELS FOR

CARRIER FREQUENCY OFFSET

ESTIMATION OF SHORT MESSAGES AND

CHAOTIC MAPS

4.1 Introduction

This chapter presents a copy of the article published in IEEE Access (vol. 10 (2022), pp 119814-

119825, ISSN 2169-3536, doi:10.1109/ACCESS.2022.3221762. https://ieeexplore.ieee.

org/document/9947074).

This work examines the task of Synchronisation parameter estimation for blind modulations

on short preambles. The preambles include two conventional modulations, BPSK and QPSK

as well as three continuous preambles based on Chaotic maps, the Circular, Quadratic and

Zadoff-Chu maps. An architecture for CFO estimation is developed which performs both coarse

and fine grained estimation. Two approaches are compared, one based on a discretised fine

estimate and the second which performs the fine estimate with a regression-based approach. This

article is motivated due to the ability of DL to provide accurate estimation with limited data in

comparison to conventional FFT based approaches, and for the ability of DL to generalise over

multiple modulations. CFO estimation has applications not only to synchronisation, but also in

application of modulation classification, and the ability of DL to perform blind estimation on

limited data is a significant capability which reduces energy use and delay in correcting received

signals.

Research Highlights

• A branching DL architecture is developed for the multi-stage estimation of CFO for

conventional as well as chaotic modulations.

• The proposed approach is demonstrated to outperform several FFT based methods for
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CFO on short preamble lengths.

• The proposed approach is also demonstrated to outperform correlation based methods with

limited upsampling. However, correlation methods with a higher upsampling factor are

demonstrated to be more accurate at the expense of execution time.

• The article evaluates the proposed approach both on fixed and randomised preambles,

demonstrating the ability to generalise over multiple sequences.

• A comparison between model performance with and without feature engineering is pre-

sented, as well as an analysis of the feature importance between two variations of the

proposed model.

4.2 Published Article 1

33



Received 26 October 2022, accepted 8 November 2022, date of publication 14 November 2022, date of current version 17 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3221762

Using Sequence-to-Sequence Models for Carrier
Frequency Offset Estimation of Short Messages
and Chaotic Maps
CHRISTOPHER P. DAVEY 1, (Graduate Student Member, IEEE),
ISMAIL SHAKEEL 1,2, (Senior Member, IEEE), RAVINESH C. DEO 1, (Senior Member, IEEE),
SANCHO SALCEDO-SANZ 3, AND JEFFREY SOAR 4
1School of Mathematics, Physics and Computing, University of Southern Queensland (USQ), Springfield, QLD 4300, Australia
2Information Sciences Division, Defence Science and Technology Group (DSTG), Contested Communications Branch, Canberra, SA 5111, Australia
3Department of Signal Processing and Communications, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
4School of Business, University of Southern Queensland, Springfield, QLD 4300, Australia

Corresponding authors: Christopher P. Davey (christopher.davey@usq.edu.au) and Ravinesh C. Deo (ravinesh.deo@usq.edu.au)

This work was supported in part by the Department of Defence of the Commonwealth of Australia under Defence Science Partnership
Scholarship under Agreement 10254.

ABSTRACT Deep Learning methods have produced good carrier frequency offset estimations for short
message sequences in comparison with methods based on the Fast Fourier Transform. However, these
performance gains were observed for short ranges of frequency offsets, sequences with predefined pilot
symbols and periodic modulation schemes. Chaotic modulation has an advantage over periodic signals in
offering security through the continuous changes produced by parameterising the chaotic map function.
However, synchronisation of chaotic map parameters in coherent receivers is dependent on the carrier
recovery of phase and frequency which dramatically reduces the demodulation performance under high
noise levels. This article presents a stacked sequence-to-sequence neural network architecture for blind
carrier frequency offset estimation of both periodic and chaotic modulation schemes. The results obtained
demonstrate better performance than conventional methods in low SNR for the Additive White Gaussian
Noise channel. While this technique operates without feature engineering, the results demonstrate that data
augmentation produces a higher degree of accuracy for such models, indicating the benefit of integration
with conventional signal pre-processing steps as part of the deep learning pipeline. The proposed neural
network architecture is shown to perform carrier frequency offset estimation, not only for the selected
periodic modulations, but also in the case of highly non-linear chaotic maps. This suggests the applicability
of deep learning methods for synchronisation in waveforms that employ chaotic modulation schemes for
secure communication and for applications where short and sporadic messaging are required (e.g., Internet
of Things).

INDEX TERMS Chaotic communication, deep learning, fast fourier transforms, frequency synchronisation,
carrier frequency offset estimation.

I. INTRODUCTION
The accuracy of Carrier Frequency Offset (CFO) estimation
methods based on the Fast Fourier Transform (FFT) in single

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

carrier communications is dependent on the sample length
of the message, and on the Signal to Noise Ratio (SNR) [1].
Short sample message lengths are advantageous in low power
Internet of Things (IoT) applications and pilot signals used
for signal detection and synchronisation. Deep Learning
(DL) methods have demonstrated to outperform FFT-based
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methods under similar constraints [2], [3]. However, much
of the experimentation to date has focused largely on phase
amplitude modulation (PAM) or M -ary phase shift keying
(M -PSK) modulations, and has not investigated the potential
application to chaotic modulation techniques.

Chaotic modulations present a method for providing
physical layer security, and are well suited to address the
constraints placed on IoT applications [4]. Due to the con-
tinuously changing signal which results from parameteri-
sation of the chaotic map sequence, chaotic modulations
exhibit high autocorrelation for the same symbol and low
cross-correlation between symbols [5]. This characteristic is
advantageous for coherent detection, where each symbol is
correlated with a potential mapping function at the receiver
and is resilient to small levels of noise [5]. However to
achieve demodulation the receiver is required to estimate the
parameters for each chaotic map function which is known
as sequence synchronisation [6]. Sequence synchronisation
for chaotic maps is dependent on accurate estimation and
removal of the CFO [6], [7]. For estimating frequency offsets
in chaotic maps, autocorrelation methods are shown to be
effective for fixed preambles [8], however these methods
are difficult to implement for variable and non-repetitive
sequences.

Given that deep neural networks can learn non-linear
features, the estimation of CFO for randomised chaotic
sequences is an application well suited to such methods.
In this article we propose a data driven method for the
estimation of the CFO in short sequences of BPSK, QPSK
modulations, as well as for the Circular, Quadratic and
Zadoff-Chu chaotic maps. The approach is applied to both
fixed preamble and randomised sequences. The model per-
forms an iterative estimation of the frequency offset using
a sequence-to-sequence (Seq2Seq) block at each level. This
approach is capable of more accurate CFO estimation for
the M -PSK modulations in comparison with the FFT and
Phase Locked Loop (PLL) approach. While brute force
cross-correlation is more accurate without down-sampling
at the matched filter (at the expense of execution time),
the DL method is more accurate when compared with
cross-correlation on the shorter down-sampled signal. The
network can produce CFO estimates directly from the
In-phase and Quadrature (IQ) values of the received signal,
however data augmentation is shown to provide an advantage
for the accuracy of the estimation.

A. BACKGROUND AND RELATED WORK
The use of the FFT is demonstrated to perform an approxima-
tion for the maximum-likelihood function of the parameters
in a sinusoidal signal corrupted by Gaussian noise in [9].
The length of the FFT determines the accuracy of the mea-
surement, and was found to be optimal at up to 4 times the
length of the signal [9]. As the frequency step size of the FFT
produces a coarse estimation, an interpolation is required to
produce a finer estimate. In the case of [9] an iterative secant
method is applied to the fine estimate of the frequency but

is indicated to produce a larger error in low SNR [9]. The
threshold for the variance of the estimator in [9] is shown
to be optimal above an SNR between 15 dB and 17 dB
in [10] for corresponding sequence lengths between N = 64
to N = 2048.

Interpolation methods using points either side of the max-
imum value for the FFT are applied to calculate an adjust-
ment term for the frequency estimate in [11] and [12] and
improve on the method in [9]. These methods are shown to
have a bias for short sequences and low SNR in [10] which
proposes three and five point interpolation methods making
use of the phase information in the FFT coefficients. Several
methods of interpolation are compared in [13] which also
makes use of three coefficients to demonstrate a method that
approaches uniform error variance above 2 dB. An extended
number of fourier coefficients weighted by an approximation
of their mean square error are combined to estimate the
frequency offset in [14], resulting in an estimator approaching
the lower bound of variance close to 5 dB. However each of
these methods share limitations in lower SNR and for short
sequences. In addition the application of the FFT is applicable
for periodic signals and are not appropriate for use with those
chaotic modulations which do not exhibit distinctive peaks
within the power spectrum.

DL approaches, in particular convolutional neural net-
works (CNN), are demonstrated to outperform FFT based
methods on estimation of CFO for short random sequences
in 1-bit ADC’s at low SNR in [2]. The selection of DL
models is able to extrapolate well over a wider range of
SNR (between−20 and 40 dB), even though they are trained
on a subset of the SNR (between 0 and 10 dB) [2]. The
1-bit quantization method reduces the amount of information
available to the network for training [2] and for conventional
methods it is known to require up to four times oversampling
for the estimation of offset parameters [15]. In conventional
methods, knowledge of modulation order M is applied to
remove themodulation from the signal prior to the application
of FFT estimation, however the generality of the 1-bit ADC
in [2] did not motivate an exploration of the impact of the
modulation on CFO estimation. As our method is applied
after down-sampling at the matched filter output, the type
of modulation is shown to have an influence on estimation
accuracy for both FFT and DL approaches.

Further indication that DL can provide good frequency
offset estimation for sinusoidal waveforms in low SNR is
described in [3]. The network architecture was constrained
specifically to the fully connected network (FCN) with the
number of input nodes representing the length of the signal
to be processed and being dependent on the range of the fre-
quency offset, requiring larger dimensions for wider ranges
of frequency [3]. FCN networks require a larger number of
connections between layers as opposed to the CNN [16],
hence consideration of CNN layers would provide flexibility
for processing multiple signal lengths with a constant number
of layer parameters. Although the choice of network archi-
tecture limited the range of frequency offset, it was shown
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that the FFT and DL methods did decrease in accuracy under
shorter signal lengths [3]. To address a wider frequency offset
range, as well as several modulations, this article proposes the
stacked network architecture, which incorporates CNN layers
to extract features at each level rather than fully connected
layers.

Short signals prevent the FFT from accurate spectral esti-
mation due to the resulting coarse resolution, whereas a DL
method for super-resolution estimation of the approximate
spectrogram is proposed in [17]. A combination of both
FCN (linear) and CNN layers are applied in the architecture,
taking advantage of the ability of the CNN to accept mul-
tiple resolutions of input during training to learn translation
invariant features [17]. A customised minimum distance loss
is applied during the learning procedure and the model is
shown to produce more accurate estimation than the peri-
odogram and eigenvector (MUSIC) based estimators at a
limited range of SNR [17]. The model is trained and tested
on the complex sinusoid with amplitudes, frequency and
phase selected from random normal distribution at different
parameters [17]. A fixed output resolution is used to estimate
the pseudo-spectrum of the signal which is then mapped onto
a known frequency range [17], the resolution is dependent on
the signal length and is fixed. Our proposed stacked model
refines the peak frequency estimate at increasing resolutions
for each stack in the network and estimates an error correction
term to produce a high resolution estimate for the carrier
frequency offset at the final layer.

The CNN is leveraged in the literature on the CFO
estimation task, however as the signal varies over time,
a recurrent neural network (RNN) may be applied to learn
time dependent features over the signal. Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) network
models are trained to perform CFO estimation with the short
training field (STF) of the IEEE 802.11ah preamble frame
in [18]. Results demonstrate that the network performs well
on the CFO estimation task in comparison with the conven-
tional correlation method in low SNR [18]. The STF is a
fixed pattern within the frame and is useful in simplifying
the process of timing and CFO estimation [18]. It is designed
to improve the resulting accuracy of the estimation method.
In the proposed method, we experiment with both the fixed
preamble as well as randomised sequences for several mod-
ulations and demonstrate that the DL approach can learn to
estimate the CFO even where the modulation exhibits chaotic
behaviour. In the proposed architecture, recurrent LSTM lay-
ers learn time dependencies resulting from features modelled
by CNN layers and are organised in encoder-decoder blocks
which share the hidden state for learnt time dependencies
between them.

A common element in the cited literature is that the DL
method is more accurate than conventional methods in low
SNR and for short sequences. While the FCN layer is applied
in [3] due to the constraints of the experiment, the CNN has
advantages as an effective choice for feature extraction in the
CFO estimation task [2], [17] and the use of the LSTM is

shown to be effective in [18]. It is clear a DL model can be
constructed for a single modulation, the impact of estimating
CFO for multiple modulations has not been investigated for
such an approach. Spectral methods are optimal under the
right conditions and would be useful to incorporate into
the design of the network model as demonstrated in [17]. The
chaotic map becomes deterministic when the state parameters
are known. A recurrent network modelling approach may
demonstrate the ability to learn implicit information from the
signal, thereby aiding estimation of the CFO. A combination
of RNN and CNN would enable a DL model to both extract
translation invariant features as well as learn time dependent
features. This article proposes a stacked architecture which
estimates the probability of the peak frequency as well as
an error correction term using sequence-to-sequence blocks
comprised of CNN and LSTM units.

The rest of the paper has been structured in the following
way: The next section describes the system model, as well
as the conventional carrier offset estimation method. It also
explains the proposed model architecture, as well as the data
augmentation applied when training the model. Section III
shows the experimental results obtained when the proposed
DL approach is applied to a number of CFO estimation tasks.
A discussion on these results is also provided in this section.
Section IV closes the paper, by giving some final concluding
remarks on the research carried out.

II. METHODS
When transmitted over a channel, the baseband signal s(t)
is subject to perturbations of timing t , phase θ and carrier
frequency f0 offsets, shown in Equation (1), where a(t) repre-
sents the signal modulation after filtering, and n(t) represents
Additive White Gaussian Noise (AWGN).

s(t) = a(t)ejθej2π f0t + n(t) (1)

In this work the proposed model is trained on several mod-
ulations, which include Binary Phase Shift Keying (BPSK),
Quadrature Phase Shift Keying (QPSK), as well as chaotic
Circular, Quadratic and Zadoff-Chu maps. Frequency offsets
for M -PSK modulations are estimated in two stages: first,
a coarse estimate f̂1 is given by the position of maximum
frequency of the coarse grained FFT (Equations (2)-(4)).
The derivation for the use of the Discrete Fourier Trans-
form (applied through the FFT) as an approximation for the
maximum-likelihood estimator of the CFO is described in
Rife and Boorstyn [9], in this article we apply the Matlab
coarse frequency estimator [19] which is derived from the use
of the FFT in [20]. The received signal s(t) is first raised to
theM th power z(t) = s(t)M , then the FFT is calculated giving
S(k) (Equation (2)). The index km of the frequency, having
the maximum absolute value for S(k) (Equation (3) ) is then
divided by the modulation order M (M = 2 in BPSK and
M = 4 in QPSK) and is scaled by the sampling frequency fs
over the length of the FFT N (Equation (4)). After the coarse
estimate, a fine frequency adjustment f̂2 is estimated via
a PLL implemented by the Matlab carrier synchronisation
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function [21] derived in [22]. The difference in phase error
estimates1θ produced by the PLL are scaled to the frequency
estimate via the sampling rate fs and the down-sampling rate
d , and the operation is averaged to estimate the adjustment
for the frequency offset (Equation (5)). Finally, the frequency
offset is estimated as the sum of the coarse frequency estimate
and the fine frequency adjustment (Equation (6)). Improve-
ment in accuracy can be gained by increasing the resolution
of the FFT, results from [9] recommend a resolution up to
four times the length of the original signal, depending on
performance constraints. In our experiments the FFT res-
olution is set to 4× the down-sampled received signal of
104 samples.

Two FFT interpolation methods are employed for compar-
ison. Both methods adjust the index km through an estimate
of the difference to the peak of the FFT, δ̂ and add it to the
index as in Equation (10), the updated index, kadj is then
applied in estimating the frequency f1 (replacing km with
the adjusted index kadj). The first interpolation method is
described in [13] where the two values either side of the
maximum index are used to estimate the difference from
the peak of the FFT (Equation (7)), this method reduces the
bias of the quadratic interpolation. The second method is
proposed in [14] which incorporates all FFT coefficients (in
K < N/2− 1) and calculates an estimate for the adjustment
δ̂k at each coefficient index k (Equation (8)). These estimates
are aggregated through weighting each with an approximate
of their mean square error term (Equation (9)) [14]. In the
results section the first interpolation method is indicated on
plots as ’Jacobsen’ and the second ’Candan’. Both methods
are suitable for use in multiple iterations, however in our
comparison we generate results with only one application of
each method.

S(k) =
N−1∑
n=0

ziej2πkn/N (2)

km = argmax|S(k)| (3)

f̂1 =
fs
N
km
M

(4)

f̂2 =
1
N

N∑
i=1

fs
d
1θ

2π
(5)

f̂0 = f̂1 + f̂2 (6)

δ̂ = −Re
[

Skm+1 − Skm−1
2Skm − Skm−1 − Skm+1

]
× Re (7)

δ̂k =
N
π

tan−1
(
tan(

πk
N

)

×

 Skm+ke
−j(π/N )k

− Skm−ke
j(π/N )k

Skm+ke−j(π/N )k + Skm−kej(π/N )k −
2Skm

cos(kπ/N )



(8)

δ̂ =

∑K
k=1 1/ sin

2 (πk/N )δ̂k∑K
k=1 1/ sin

2 (πk/N )
,K < N/2− 1 (9)

kadj = km + δ̂ (10)

The cross-correlation method is applicable where a tem-
plate such as a pilot signal is known. The template signal is
rotated by frequency steps f1, f2, . . . , fn between the range of
the expected frequency offset (in our experiments ±5 kHz).
The complex cross-correlation between the received signal
and the distorted template is calculated and the maximum
cross-correlation is used to determine the index of the fre-
quency estimate. In our randomised experiments, the DL
model does not have any knowledge of the template used
for the comparative method, whereas in the fixed preamble
setting it is trained on a fixed sequence. Cross correlation
is performed prior to down-sampling at 4× sample length
and post down-sampling at 2× sample length for compari-
son. This method is computationally expensive and is most
accurate on small frequency ranges and longer signal lengths.

A. DATA GENERATION
The data used in training and evaluation are divided into
two experimental settings, the fixed preamble setting and
the randomised sequence setting. In the fixed preamble set-
ting, M -PSK sequences are generated by repeating a fixed
message containing the 13 bit Barker code. For the chaotic
maps, the initial conditions are predefined along with a
fixed length for the recurrence relation within the map.
Randomised sequences consist of random bits for theM -PSK
messages and sliding windows of chaotic maps. Both types
of sequences (fixed and random) are constructed where the
bit sequence length is dependent on the number of bits
per symbol and produce 2 samples per symbol resulting
from matched filtering (up-sampled at 8× and decimated at
4× per sample respectively). After applying a root raised
cosine matched filter at the transmitter and receiver, a 52-bit
sequence for BPSK and 104-bit sequence for QPSK generate
104 samples. In the chaotic modulations 52 symbols are
mapped to a resulting 104 symbols after matched filtering.
All sequences are 104 samples in length.

Chaotic sequences cannot be randomised in the same
manner as bit sequences, since they depend upon the initial
conditions for each symbol and are parameterised depending
on the mapping function. Given their reliance on succes-
sive feedback, a randomised chaotic sequence is generated
by randomly selecting the number of feedback iterations
from an initial condition and stepping the mapping function
over the sequence length while storing the feedback signal
to use as the initial conditions for the next sequence. The
mapping functions for each of the chaotic maps are shown
in Table 1, along with the feedback parameter and initial
condition parameters. Figure 1 illustrates the IQ values for
each of the corresponding map functions.

During the data generation process, no phase rotation is
applied, and the frequency offset is selected from a ran-
dom uniform distribution within the range ±5 kHz with a
sampling frequency fs = 1 MHz. Noise is added for SNR,
Es/N0 = 0 . . . 9 dB with the noise variance σ 2 being esti-
mated from parameters Es and N0 in Equations (11)-(13),
where Es is the energy per channel symbol, N0 the noise
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TABLE 1. The set of chaotic map functions and their initial parameters
used in generating sliding sequences.

FIGURE 1. Example IQ plots of the chaotic map functions for a) Circular,
b) Quadratic and c) Zadoff-Chu maps.

power spectral density, L the number of symbols, and n the
bits per symbol. For training the network an offline dataset of
102400 sequences is generated for each modulation (502400
sequences) and each sequence is labelled with the corre-
sponding random frequency offset that was applied to distort
the signal.

Es =

∑L
t=1 s(t)
L/n

(11)

N0 =
Es

Es/N0
(12)

σ 2
= N0/2 (13)

B. NETWORK ARCHITECTURE
The intuition applied to the design of the network architecture
was that the network should be capable of multiple stages
of refinement in the task of frequency offset estimation.
A stacked architecture was arrived at such that each stack
would successively estimate a discrete set of steps for the
frequency range where the step size decreases at each level
in the stack. The final level then estimates the error between
the coarse estimate of the previous layer and the target fre-
quency. For comparison, the error adjustment layer is imple-
mented with two approaches. The first applies a classification
approach that is constrained within ±100 Hz of the coarse
estimate. The second approach applies a direct regression
to provide a continuous error correction to compensate for
broader variation of the error between the coarse estimate and
target frequency offset.

Each stack consists of a subnetwork block which is respon-
sible for learning features and performing estimation for
that block. To perform feature extraction, as well as learn
recurrence relationships, a sequence-to-sequence (Seq2Seq)
network is defined within the feature extraction block. The
Seq2Seq architecture follows the approach first defined
in [23], however beam search is not applied during estimation
and the inclusion of Convolutional layers differs from the
original model. The block design includes a Convolutional
(CNN) layer to extract input features, a bidirectional Long
Short-Term Memory (LSTM) encoder, latent space imple-
mented as a CNN layer, a bidirectional decoder LSTM layer
followed by an output CNN layer. Classification is provided
by a Dense block with a soft-max activation while regression
is achieved with a tanh activation. Regularisation is provided
by applying Batch Normalisation [24] following each CNN
and intermediate Dense layer, and Layer Normalisation is
applied after each LSTM layer. Max-pooling is applied to
the output of intermediate CNN layers with Global Average
Pooling applied prior to the Dense layer.

Aside from the estimation output, the hidden LSTM state is
shared between encoder and decoder LSTM, and the hidden
state of the decoder is forwarded to the encoder in the subse-
quent stack. The latent CNN state is also forwarded between
network stacks and concatenated with the input features for
the encoder in the subsequent stack. These skip connec-
tions enable multiple forward paths fusing latent features
and sharing hidden recurrent state throughout the network
and enable gradient flow during back-propagation [25]. Such
connections are proposed to enable ensemble like behaviours
in deep networks [26]. Figure 2 presents the schematic view
of the sequence-to-sequence block as well as the dense esti-
mator blocks for the network output and the interconnection
between the blocks is illustrated in Figure 2. Three stacks
were defined, with frequency bins of 100 and 50 Hz for both
the classifier and regressor networks. A frequency adjustment
of ±100 Hz is applied for the final estimator of the classifier
network, and a single continuous parameter applied in the
final estimator of the regressor network. Table 2 lists the
number of units for each layer type.
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FIGURE 2. Sequence to Sequence blocks with CNN feature extraction are interconnected with paths for hidden
recurrent state and latent CNN state. The final output of each block pools the output features of the sequence to
sequence block to produce the estimate for either the frequency bin or the frequency error.

FIGURE 3. Interconnection between two sequence-to-sequence blocks shares the decoder hidden state
with the encoder of the subsequent block and merges the latent CNN state with the CNN output via a
concatenation.

TABLE 2. The set of chaotic map functions and their initial parameters
used in generating sliding sequences.

During the network’s training, the data set is partitioned
into 50% training, 20% validation and 30% test. A cyclical
learning rate schedule [27] was applied which allowed the

learning rate to oscillate between 0.0001 and 0.001. Input
data was scaled by dividing the input signal by the l2-norm
and min-max normalising with parameters ±1. Target fre-
quency is min-max normalised with parameters ±5 kHz.
Back-propagation is performedwith Adam optimisation [28].
Cross-entropy loss is applied to the classification estimator
and mean squared error loss is applied to the regression
estimator. Each stack is trained iteratively, and the weights
of each previous stack are frozen prior to training the sub-
sequent stack. When training the final stack, the difference
between the previous stack frequency estimate and the true
target frequency is calculated and applied as the target after
min-max normalisation (±5 kHz).
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TABLE 3. Data augmentation produced 17 features prior to the input for
the network. Each of the features were derived from steps used in
conventional synchronisation.

The network models are trained under two experimental
settings, fixed preambles and randomised sequences, with
each setting producing separate models (eight individual
models in total, four model variants in each setting). A third
experiment explores the difference in training on a single
modulation, as opposed to multiple modulations. In this task,
two variants of the network model are independently trained
on QPSK and Quadratic map modulations for each setting,
resulting in eight individual models.

C. DATA AUGMENTATION
A comparison is made betweenmodels trained with and with-
out data augmentation. For those networks that are trained
without data augmentation, the complex signal is represented
as a matrix with two columns for the in-phase and quadrature
components. Those networks trained with data augmentation
were supplied with 17 features derived from the treatment
of the complex signal in conventional synchronisation algo-
rithms, these are described in Table 3.

During evaluation, a separate feature importance analysis
is undertaken by iteratively assigning uniform noise to each
feature and calculating the difference in performance between
the baseline model and the noisy input data.

III. RESULTS
The Mean Absolute Error (MAE), in Hz, produced by
the Stacked Model and the FFT/PLL method for the CFO

TABLE 4. Comparison between STACKNetC and STACKNetR on fixed
preamble sequences indicates a minor difference between model
variants when data augmentation is applied. A slight improvement in
MAE Hz does result from the regression model in comparison to the
classification model.

estimation task is shown in Figure 4 for BPSK and QPSK
modulations between 0 and 15 dB SNR in both experimen-
tal settings. Accuracy differs on each modulation for both
the proposed and conventional methods, with the proposed
method achieving higher accuracy on short sequences at
104 samples than the FFT/PLL method with 4× FFT res-
olution. Similarly the MAE, in Hz, for each chaotic map
sequence is shown in Figure 5, where the panels on the
left hand side show the proposed stacked network results
for estimation using 104 samples and those on the right
showing the effect of sample length on the brute force
correlation method at 2× and 4× sample lengths (208
and 416 samples). The stacked network is more accurate
than the cross-correlation with 2× upsampling, however
the cross-correlation at 4× upsampling demonstrates much
higher accuracy at the expense of execution timing. Like
the BPSK and QPSK modulations, the kind of chaotic map
influences the accuracy of the estimate.

Comparison is made between two configurations of the
network architecture where error adjustment is implemented
with either a classification layer (STACKNetC ) or as a regres-
sion layer (STACKNetR). In addition, models are trained
with and without data augmentation as indicated by the
postfix 17F . In the fixed preamble setting, there is little
difference between models that are trained with and without
data augmentation, while the regression model achieves a
lower MAE Hz on average than the classification model,
indicated in Table 4. On randomised sequences, those models
trained with data augmentation demonstrate slightly lower
MAE (Hz) on most modulations and SNR. While the per-
formance of the augmented classification and regression
models (STACKNetC17F and STACKNetR17F) are similar,
the regression model does appear to perform better on most
modulations for randomised sequences, especially on QPSK
and Quadratic modulations which exhibit higher MAE (Hz)
for all models. Table 5 shows the mean improvement in
MAE (Hz) between those models in the random setting.

In a separate experiment, the model architecture with data
augmentation is trained on single modulations for QPSK
and Quadratic maps. Figure 6 indicates a lower MAE Hz
for the regression model with the exception of random
QPSKwhere performance between the two variants are close.
Figures 4 and 5, indicate that training on a single modula-
tion produces results similar to training on multiple mod-
ulations and that performance is dependent on the type of
modulation.
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FIGURE 4. Comparison between stacked model configurations for classification (STACKNetC ) and regression (STACKNetR ) demonstrates better
performance for CFO estimation on short BPSK and QPSK sequence lengths of 104 samples verse FFT/PLL methods.

FIGURE 5. The stacked model demonstrates higher accuracy on the chaotic map than the cross-correlation with 2× upsampling however does not
perform as well as the 8× upsampled cross-correlation.

Figure 7 displays a box plot for the execution timing
of each method. The network is more complex than the

conventional FFT/PLL, and this is reflected in the timings,
hence the trade-off between accuracy and complexity. It is
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FIGURE 6. Models trained on a single modulation exhibit similar MAE to those trained on multiple modulations, indicating that training on
multiple modulations does not appear to influence the performance of the model as much as the choice of modulation itself.

TABLE 5. Comparison between STACKNetC and STACKNetR on random
sequences indicates an improvement in MAE Hz when data augmentation
is applied and a small improvement in MAE Hz resulting from
classification as opposed to regression.

notable that it takes longer to process a single record on a
DL model than it does to process a batch size of 100 records.
This is due to the hardware environment being more suited to
parallel execution, which will be an important consideration
when integrating DL into other systems. Such an estimate
may be taken as an average across windowed sequences for
the received signal. The brute force cross-correlation method
is much more expensive than the other two given the wide
frequency range.

Those models constructed with data augmentation
demonstrate an improvement over those learning from the
unprocessed signal in the randomised setting. Both variants of
the models (classification and regression) appear consistent
in the influence of each of the features shown in Figure 8. One
notable difference is that they disagree on the influence of the
lagged difference for the conjugate of the signal where the
imaginary value does not contribute as highly to the model

FIGURE 7. Execution speed of the simpler FFT/PLL method is faster in
comparison to the deep network model which performs well on larger
batches and is faster than the brute force cross-correlation method.

accuracy for the classification model STACKNetC17F as
opposed to the regression model. Variables contributing the
lowest scores include the signal raised to 4th power and the
lag-1 difference of phase in the signal. Both models nominate
the phase of the squared signal 6 r2 as causing the highest
MAE when the feature is replaced with Gaussian noise. The
low resolution FFT (length of 104), appears to be influential
to both models, however is not able to be used in isolation
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FIGURE 8. Feature importance indicated by the increase in MAE Hz when the feature is replaced with gaussian noise.

from the auto-correlation and squared polar form of the
signal.

A. DISCUSSION
After training the proposed stacked network on the selected
set of modulations, the model was able to produce
more accurate CFO estimates than the FFT/PLL and the
cross-correlation methods for short message sequences.
On the other hand, the cross-correlation method required
a longer message sequence to outperform the DL model.
As shown in the related research, DL is capable of CFO
estimation for short random sequences [2] and for noisy sinu-
soidal modulations [3], [18]. The stacked network models are
also able to accept random sequences of several chaotic maps
without reference to a template pilot sequence, indicating
the ability of the trained network to estimate CFO without
explicit knowledge of the feedback parameters for these types
of signals. As such, this methodology is suitable for use
with chaotic modulations and, given the ability to estimate
frequency offset, it may be possible for such a method to esti-
mate additional parameters required for chaotic synchronisa-
tion, such as the time dependent state variables of the chaotic
map. Future research in this task may investigate the use of
encoder-decoder networks in the estimation and tracking of
multiple chaotic system parameters such as in [29].

Data augmentation was applied to the model, and in the
randomised setting, demonstrated an improvement of approx-
imately 20 Hz MAE over those models which did not make
use of data augmentation. In the fixed preamble setting, data

augmentation did not demonstrate much influence over the
performance of the model, this is indicative that the variation
in message content is influential over the performance of
the model, with a fixed preamble illustrating low variation
(outside of the channel model) as opposed to randomised
sequences. While DL is capable of representation learning
without the requirement of manual feature engineering, it is
also true that domain specific feature engineering does pro-
vide an advantage in the application of DL. Such an approach
indicates that DL will be most useful where it can be incor-
porated into communications systems alongside conventional
signal processing methods in a hybridised form.

In this study we applied simulations with an AWGN
channel to generate the required data. The difficulty in
the supervised learning approach is the requirement for
off-line training, which requires a large volume of data espe-
cially when training across multiple signal modulations. The
amount of data required increases with each supported mod-
ulation so as to ensure an equal sized population for each
modulation in the training set. However this research has not
investigated the potential for transfer learning [16] to enable
the network to adapt to new modulations or channel models,
which is a topic for future investigation.

Performance of the model is influenced by the modulation
of the signal as shown in the results, hence the network model
is learning features related to themodulation in the carrier off-
set estimation task. In an end-to-end learning setting, it may
be possible to dynamically learn a suitable modulation to
reduce receiver error as demonstrated in works such as [30]
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and [31]. Future work will investigate methods of incorpo-
rating learnt CFO estimation which may jointly benefit from
the modulations learnt at the transmitter, necessarily moving
from an offline supervised learning problem to an online
learning problem.

Execution timing demonstrated that the DL model is more
efficient on batches of signal frames rather than on a single
signal frame. This is also a result consistent with the bench-
marking performed in [32]. This poses a design challenge for
the practical application of DL models in communications
systems, where batches of signal frames will be necessary to
most efficiently make use of the DL architecture. Future work
will be required to investigate the practical implementation
challenges of integrating DL based CFO estimation within
an end-to-end wireless communications system.

IV. CONCLUSION
In this article we have demonstrated the use of a stacked
sequence-to-sequence encoder to perform carrier frequency
offset estimation in multiple modulations, including for feed-
back dependent chaotic maps. The proposed architecture has
been shown to outperform FFT/PLL and cross-correlation
methods on short sequences, in both the fixed preamble
setting and in the randomised setting without knowledge
of the modulation, and in the randomised setting without
a pilot template. However increasing the message sequence
length did enable the cross-correlation method to outperform
the DL model, at the expense of additional execution time.
Data augmentation in the randomised setting, was shown to
provide an increased accuracy for the CFO estimation (of
approximately 20 Hz) and indicates that while DL models
are capable of learning feature representations directly from
raw IQ values, the use of appropriately chosen features is an
avenue for enhancing the performance of the model. Iterative
estimation was performed by separate stages of the stacked
network architecture with an error correction performed at
the final stack, thereby taking advantage of the composability
of DL modules as a means of iteratively refining the CFO
estimate. This work demonstrates the capability of DL tech-
niques to estimate the carrier offset parameter for chaotic
communications, and provides an incremental step towards
the application of DL in short messaging systems and chaotic
communication.
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4.3 Links and Implications

This publication demonstrated the ability for the same DL model to estimate CFO for multiple

modulations. It also demonstrated evidence that the estimation accuracy is influenced by the

modulation type, with DL model being most accurate on BPSK, Circular chaotic map and

Zadoff-Chu map while both QPSK and the Quadratic chaotic map produced larger MAE. It was

shown that the DL was able to produce more accurate results on fixed sequences as opposed to

random sequences. However, the network also outperformed conventional methods on both fixed

and random sequences. This article addresses a gap in the literature by providing evidence for DL

being able generalise estimation over multiple modulations, and randomised sequences. At the

same time, it demonstrates a novel branching DL architecture that is able to refine its parameter

estimate in two stages. The article also investigates features derived from the conventional CFO

estimation processes to show that the DL method benefits by incorporating processing stages

from conventional methods and produces significant improvements over those methods.
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CHAPTER 5: PAPER 2 - END-TO-END

LEARNING OF ADAPTIVE CODED

MODULATION SCHEMES FOR RESILIENT

WIRELESS COMMUNICATIONS

5.1 Introduction

This chapter presents a copy of the article published in the Elsevier journal Applied Soft

Computing (vol 159 (2024), p 111672, ISSN 1568-4946, doi:10.1016/j.asoc.2024.111672.

https://doi.org/10.1016/j.asoc.2024.111672).

E2E learning jointly optimises transmitter and receiver based on the AE architecture. How-

ever, this approach is only able to learn a single code rate for the resulting coded modulation.

AMC is an approach to adaptation which can select from multiple coded modulation schemes

in response to channel conditions. This publication proposes a novel E2E approach to learn-

ing AMC by modifying the DL architecture based on multi-task learning. It also provides a

customised training algorithm and demonstrates the ability of the model to produce gains over

several conventional codes in AWGN and Rayleigh fading channels. The modification of the AE

architecture to support multiple codes and the accompanying novel training algorithm eliminate

the need to train several independent AE for each code rate and enables E2E learning for AMC

schemes.

Research Highlights

• Proposes an end-to-end machine learning architecture for generating coded modulation

schemes with different data rates.

• Custom training/multi-task learning produces coded modulation schemes with competitive

error-rate performance.

• Proposed approach outperforms several traditional coding techniques for short codes.
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• Proposed approach is versatile in adapting to Rayleigh fading channel condition without

model retraining.

• The proposed end-to-end machine learning architectures have practical benefits for devel-

oping resilient wireless communication systems.

5.2 Published Article 2

48



Applied Soft Computing Journal 159 (2024) 111672

Available online 26 April 2024
1568-4946/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

End-to-end learning of adaptive coded modulation schemes for resilient
wireless communications
Christopher P. Davey a,∗, Ismail Shakeel a,b, Ravinesh C. Deo a,∗, Ekta Sharma a,
Sancho Salcedo-Sanz c, Jeffrey Soar d

a School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, 4300, Queensland, Australia
b Spectrum Warfare Branch, Information Sciences Division, Defence Science and Technology Group (DSTG), Edinburgh, 5111, SA, Australia
c Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
d School of Business, University of Southern Queensland, Springfield, 4300, Queensland, Australia

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Keywords:
Wireless communications
Adaptation
Coding design
Deep learning
Multi-task learning

A B S T R A C T

Adaptive modulation and coding schemes play a crucial role in ensuring robust data transfer in wireless
communications, especially when faced with changes or interference in the transmission channel. These
schemes involve the use of variable coding rates, which can be achieved normally through code puncturing
or shortening, and have been adopted in 4G and 5G communication standards. In recent works, auto-encoders
for wireless communications have demonstrated the ability to learn short code representations that achieve
gains over conventional codes. Such a methodology is attractive as it can learn optimal representations under
a variety of channel conditions. However, due to its structure the auto-encoder does not currently support
multiple code rates with a single model. This article draws upon the discipline of multi-task learning, as
it applies to deep learning and therefore devises a branching architecture for the auto-encoder and custom
training algorithm in training transmitter and receiver for adaptive modulation and coding. In this article
we aim to demonstrate improvements in Block Error Rate over conventional methods in the Additive White
Gaussian Noise channel, and to analyse the performance of the model under Rayleigh fading channels without
retraining the auto-encoder on the new channel. This article demonstrates a novel approach towards training
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auto-encoder models to jointly learn adaptive modulation and coding schemes framed as a multi-task learning
problem. The research outcomes extend end-to-end learning approaches to the design of adaptive wireless
communications systems.

1. Introduction

Adaptive modulation and coding (AMC) methods can enable wire-
less communication systems to optimise the transmission of data over
a channel with varying operating conditions, message sizes, and data
transfer rates. This involves adjusting the modulation scheme and error
correction coding rate in real-time based on the channel conditions.
AMC algorithms are designed to monitor the channel conditions in
real-time and dynamically select a suitable modulation and coding
scheme that provides the best trade-off between data rate and error
protection for the given channel conditions. The selection of the best
modulation and coding scheme is normally made by a look-up table
or an algorithm that maps the channel conditions to a particular
modulation and coding scheme with respect to transmit power, ex-
pected channel use and error rate [1]. The modulator/demodulator
and encoder/decoder algorithms for each modulation and code are
normally designed and implemented separately on the communication
platform [2]. This paper focuses on using machine learning techniques
to generate multiple coded modulation schemes from a unified model
architecture for channel adaptation.

In communications systems, the primary goal is to transmit a mes-
sage through a communication channel to a receiver and then recon-
struct the original message without error at the receiver. Distortions
that are introduced by the channel are the primary obstacle to an error
free recovery of the transmitted message.

Fig. 1 illustrates a simple wireless communications system, which
is the focus of our article. In such a system, a message 𝑀 , defined
in bits, is formatted and communicated by a transmitter over the air
(the channel) to be recovered and interpreted at the receiver. In order
to be transmitted, messages may be coded for error correction and
modulated for transmission over the channel. The modulation process
converts a bit sequence into a waveform where each discrete point
(symbol) in the waveform is represented as a series of complex symbols
𝑥(𝑡) ∈ C, having both in-phase and quadrature (IQ) components, where
𝑡 indicates the discrete time step for the symbol. We use the term
‘‘symbol’’ after modulation because a single symbol can refer to more
than 1 bit of the original message. The number of bits mapped to
a symbol is referred to as the order of the modulation. However, a
modulation is not necessarily sufficient to allow the receiver to recover
the message without error.

The subject of this research is coding, which is an essential com-
ponent of any communication system that enables error detection and
correction at the receiver end. A variety of techniques are available
to code a particular message, and these include linear block codes
and convolutional codes. The resulting code words are longer than the
original message block, and the ratio between the original message
at length 𝐾 and the resulting 𝑁 bit code word is known as the code
rate 𝐾∕𝑁 . For smaller code rates, one requires more symbols to be
transmitted across the channel. The ability to perform error correction
using a coded message can achieve significant improvements over
uncoded messages (a coding gain) but this comes with a trade-off in
terms of the number of usages required to transmit the message, or
in other words, the amount of power required to send the message.
However, the ability to receive a message without error reduces the
need for re-transmissions.

As illustrated in Fig. 1, the coding and modulation are an integral
part of the system. Therefore in this article, we focus on the learning
of the coding and modulation process that assumes a perfect synchro-
nisation of the transmitted signal with the receiver. The coding and
modulation stages in the wireless communications system are typically

designed in isolation of each other, and often, they do not account for
the distortions introduced by different types of channels. This method
of system design is referred to as the block design, where components
are individually optimised and do not consider interactions between
components or the channel distortion [3].

The ability to automatically learn each of the stages within a
wireless communications system presents an advantage over the block
design approach, since each of the stages can be optimised jointly with
respect to a given channel condition and hardware imperfection. As
such, learning how to transmit and receive coded information over
the wireless channel has recently attracted significant attention in the
field of wireless communications. Deep learning (DL) methods, and in
particular the AE architecture have been demonstrated to jointly opti-
mise both transmitter and receiver with respect to an assumed channel
model [2]. Such a joint approach, learns coding and modulation in an
end-to-end manner by gradual optimisation of the model parameters to
minimise the error produced in symbol-wise classification of individual
messages [2].

In end-to-end learning, a transmitter acts as an encoder network to
encode a message, while the receiver acts as the decoder network to
retrieve the original message [2]. The channel is represented either as
an instantaneous function which adds perturbations to the output of
the transmitter [2], may be learnt through adversarial techniques [4] or
reinforcement learning (RL) is applied without assuming a channel [5].
The design of the AE for wireless communications in [2], does not
support learning more than one code rate, in that approach support for
multiple code rates requires separate networks. Therefore the subject
of this research article investigates how to parameterise and alter the
structure of a single AE for wireless communications to enable support
for multiple code rates.

Multi-task learning (MTL) in DL research is concerned with the
challenge of training a single network architecture to concurrently
perform different but related tasks, which may also have a dependency
relation between them [6]. Approaches to MTL consider the architec-
ture design, model regularisation and training methods [6]. There is a
relationship between negative transfer in MTL and catastrophic forget-
ting which occurs in sequential learning [7,8]. Negative transfer occurs
when certain tasks negatively impact the ability to learn other tasks
when learnt concurrently [6]. Hence regularisation techniques acting to
minimise negative transfer during training are a key concern of MTL.
This is realised through the design of the network architecture (hard
sharing) as well as through weight regularisation and loss functions
(soft sharing) [6]. In this article we approach AMC from the perspective
of MTL and apply both hard sharing in the AE network design as well
as soft sharing in the approach to regularisation during the training
procedure. We demonstrate that a multi-branching variant of the AE
is better suited to learning AMC in comparison to a single path AE
network. The model is trained by iterating between end-to-end and
receiver only training, and we apply a weight averaging regularisation
technique [9] to improve the error rates for each of the resulting code
rates.

The main contributions of this paper are:

• To change the structure of the AE for wireless communications to
enable learning multiple code rates with a single neural network
architecture. A shared path with branching output heads are
activated based on a selected code rate parameter to support
end-to-end learning for AMC.

• To frame the end-to-end learning of AMC for wireless communi-
cations as a multi-task learning problem.

• Propose a training procedure which iterates between end-to-end
training and receiver training, producing lower error rates than
single step training.
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Fig. 1. A simplified schematic of a typical wireless communication system. In the transmitter, a binary message of 𝐾 information bits is coded as 𝑁 bits for error correction
during the Encode stage. The Modulation stage converts the bits into discrete complex symbols using amplitude, phase or frequency to differentiate bits. On the receiver side, the
demodulator converts the received modulation symbols to the original code word of length 𝑁 and the decoding block converts from the code back to the original 𝐾 information
bits of the message.

• To show that the proposed method achieves results closely match-
ing and improving upon performance of maximum likelihood
decoding (MLD) with conventional codes over several code rates
and channels.

The remainder of this article is structured in the following manner:
Section 2 provides an overview of the research into end-to-end learning
for wireless communications as well as describing multi-task learning
and adaptive modulation and coding. Section 3 describes the multi-rate
AE, the method of regularisation and its custom training procedure.
Section 4 reports on the BER and BLER of the model under several
channel environments. Section 5 describes the limitations of the model
and discusses the generalisation capability. The article concludes in
Section 6 where the summary of findings is given and further directions
for research are proposed.

2. Background and related work

The use of AE neural networks for learning an end-to-end wire-
less communications system was first proposed in [2]. An AE was
demonstrated to learn optimal short codes for the AWGN channel.
The AE model architecture as described by the article is illustrated
in Fig. 2. The model consists of symbol-wise encoding for 2𝐾 possible
messages, a transmitter containing multiple dense blocks (layers) and
an energy normalisation constraint, transmitter output IQ symbols for
a code size 𝑁 , an assumed channel function, and a receiver (also
containing multiple dense blocks) whose task is to predict the received
message index [2]. In a typical AE the middle layers are applied
to find a compressed set of features for the input, whereas in the
wireless communications design, the middle layers typically represent
the output of the transmitter, which are influenced by the distortion
provided by the channel function. By applying DL to the design of
wireless communications systems the article introduced the potential
use of generalised hardware platforms such as graphical processing
units (GPUs), and enabled the opportunity for optimisation against
complex channels without requiring an analytic mathematical model
for the channel [2]. The article demonstrated that an AE with a code

rate of 𝐾∕𝑁 = 4∕7 could achieve equal performance to MLD decoding
for the Hamming(7,4) code and that an AE trained on an interference
channel could achieve lower error rate than a quadrature amplitude
modulation (QAM) time sharing modulation scheme for equivalent
code sizes [2]. However, the design of the classifier architecture is
limited to a fixed number of message bits 𝐾 and a fixed code size 𝑁 ,
and is constrained to the domain of short length burst transmissions.
Such codes are beneficial for use in energy constrained communications
such as in the internet of things (IoT). The AE model as presented
in [2] serves as the canonical model for DL end-to-end communications
systems under simplified constraints. Related work stemming from this
initial research extends the AE architecture and examines applications
to end-to-end learning, over-the-air learning, and the use of custom
training algorithms.

A key assumption of the AE model as described in [2] requires
that a differentiable channel function for a given channel is predefined
to permit back-propagation between the transmitter and receiver. An
alternate approach is to train a generative adversarial network (GAN)
using observed perturbations from the true channel, thereby removing
the assumption of a predetermined channel. The approach described
in [4], applies this technique to approximate an unknown channel
function and provides a fully differentiable channel model for training
of the AE. The architecture is trained and evaluated on several channels
including the AWGN, Rayleigh Fading and Frequency Selective multi-
path channels. Under the AWGN and Rayleigh fading channels, the
AE-GAN model is compared with the end-to-end AE from [2], as well
as conventional coding methods, demonstrating the effectiveness of the
GAN in approximating the channel during training [4]. Each compo-
nent (transmitter, channel GAN and receiver) is trained in succession
using an iterative algorithm, where components not participating in
each training cycle had their weights frozen [4]. The architecture
assumed a constant size of 𝐾 message bits for the AE input and output,
and while it was able to approximate bit-wise output leveraging Con-
volutional Neural Network (CNN) layers to support differing message
lengths, it did not address the effect of altering the code size 𝑁 and
was not designed to produce multiple code rates without retraining.
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Fig. 2. The neural network architecture of the end-to-end AE for wireless communications described in [2]. The architecture of transmitter and receiver each consist of multiple
dense layers or blocks, and the transmitter includes an energy normalisation layer. The model is defined for a predefined number of message bits 𝐾 and a single code rate 𝑁 ,
as well as an assumed channel function ℎ(𝑧). The transmitter learns to encode message 𝑀 from one of 2𝐾 messages into IQ symbols which are sent over the assumed channel
function and the receiver learns to estimate the probability of the message 𝑀 given the received output of the channel 𝑟.

Another method for addressing the channel assumption was pro-
posed by leveraging an iterative training algorithm based on RL in [5,
10]. The training algorithm first trains the receiver by back-propagation
and in the second step applies the receiver loss to an approximation of
the gradient to perform back-propagation at the transmitter [5]. The
advantage of this method is that it is agnostic to the true channel,
although does require reliable feedback of losses from the receiver,
and applied an equalisation method from [2] in order to train against
the Rayleigh Block Fading (RBF) channel [5]. This latter point indi-
cates the dependency of DL methods on the perturbations that are
applied to their training data, in wireless communications systems,
these perturbations result from the channel environment. In [10] the
RBF channel is evaluated with and without equalisation, indicating
a slight difference in performance between the approaches. Changes
made to the channel, outside of that applied during training, will have
a negative impact on the performance of the model, hence further
investigation of approaches to regularisation for end-to-end training
are required for adaptability to changing channel conditions. While
the research focus for AE in wireless communications has addressed
the assumed channel function, we propose that adaptability can be
achieved by also considering an AMC scheme.

One approach to address adaptation, post training, is to deploy
and retrain the receiver independently of the transmitter on the true
channel, also referred to as tuning or transfer learning. This technique
is described in [3] where an iterative approach is applied to train the
AE end-to-end and secondly to fine-tune the receiver. The method is
demonstrated on a software defined radio (SDR) implementation during
an over the air (OTA) training phase [3]. OTA training allows a more
realistic channel environment as opposed to end-to-end training, and
requires additional stages to support synchronisation such as filtering,
timing, phase, and carrier frequency offset corrections [3]. Two sep-
arate sub-networks were incorporated prior to the receiver/decoder
model to correct for timing and phase offsets as well as learning new
features to assist in decoding [3]. While the trained system did not
perform as well as the comparative communications system, the work
demonstrates that receiver tuning OTA has the potential to improve
the adaptation of the overall system post end-to-end training and em-
phasises the mismatch between the analytic and actual channel models.
This is further evidence of the sensitivity of DL models to perturbations

during training. While we do not investigate an OTA implementation,
we do investigate the performance of an end-to-end AE on several
channels without retraining or tuning, and propose that an architecture
capable of generating AMC schemes is advantageous in environments
for which it was not initially trained.

Extensions of the AE architecture have been made to incorporate
concatenated coding techniques for reliable communications in [11]
where the AE learns the inner code and the outer code is implemented
with a low density parity check (LDPC) code. Such an outer code is
capable of variable code rates, independent of the AE model. In this
method, the AE performs bit-wise encoding and decoding as opposed
to the classification of a symbol-wise output in [2]. The role of the
receiver is to estimate the log-likelihood ratio for each bit and is
trained in a manner equivalent to maximising the achievable rate of the
communications system [11]. Both the encoder and decoder are param-
eterised by the signal to noise ratio (SNR) and it is shown that learnt
constellations are correlated with the given SNR [11]. The association
of constellation and SNR enables a form of adaptive coding which does
not vary the code length, but may rearrange the constellation points
instead. In our approach we instead modify the AE model architecture
to allow parameterisation for a code index which permits the model to
learn a mapping between the code index parameter and a variable code
length, thereby achieving AMC by varying code rates.

Given an assumed channel, and a measure of the communication
error rate, it is possible to iteratively search for an optimal code rate.
A technique for this type of search is presented in [12]. The main
contribution of the article is first to address the issue of overfitting in
the end-to-end AE and propose an additional regularisation term that
maximises the mutual information between the transmitter symbols
and the output of an assumed channel function [12]. This regularisation
term is applied to the loss term of the AE and is approximated by
training a separate neural network. The search algorithm, described
as capacity driven AE, iterates over multiple SNR and trains AEs at
incremental code rates 𝐾∕𝑁 until improvement in the mutual infor-
mation over previous AE falls below a given threshold [12]. However,
long training durations, and the limitations around sampling for large
message bit lengths are a disadvantage for AE. An exhaustive search is
feasible for short messages, but less feasible as 𝐾 increases. The ability
to design a single network architecture that can support multiple code



Applied Soft Computing 159 (2024) 111672

5

C.P. Davey et al.

rates could reduce the overall duration of such a search algorithm. To
make these changes to the AE architecture, we propose framing the task
of training multiple code rates as a MTL problem.

MTL seeks to regularise a network to perform several related but dis-
tinct tasks through the network architecture (hard sharing) or through
regularisation methods constraining weights in matching layers (soft
sharing) [6]. The simplest hard sharing approach uses a common single
path with multiple outputs to demonstrate that the relatedness between
tasks benefits network regularisation through the transfer of inductive
bias between those tasks [13]. This type of architecture also has the
advantage of limiting the number of parameters required by multiple
networks, since a common path is shared between separate branches
rather than requiring an individual network for each task [13]. Training
of such architectures is performed while learning multiple tasks simul-
taneously, whereas in our approach we train successively for single
tasks (code rates) using a common architecture. However successive
training on different tasks is well known to suffer from catastrophic
forgetting [7] also termed negative transfer in the MTL literature [6].
The challenge of MTL for sequential learning is approached in [14]
which proposes a dynamic architecture comprising of shared and task
specific paths which is trained in a sequential manner. This approach
is demonstrated to reduce the negative transfer between tasks on the
shared path [14]. During training and inference the structure of the
network is altered dynamically and enables the execution of one task
at a time [14], in this manner the parameterisation of each task is
implicit to the current organisation of the network. In our approach
we define tasks as code rates and dynamically reconfigure the network
structure during training and inference while supplying a code index
parameter to indicate which code rate the transmitter should output.
To regularise the shared path between tasks we make use of a simple
weight averaging regularisation [9].

Adaptation for both modulation and coding has been demonstrated
to achieve more reliable communications under varying levels of in-
terference when compared to adaptation for modulation only [15].
AMC-enabled systems have also been shown to produce higher data
transfer rates over various communication environments [16,17]. AMC
is implemented by selecting a combination of modulation scheme and
error-correcting code to achieve a target BER under a given SNR
partition [16,18]. Different code sizes may be constructed from the
same family of codes so that the minimum distance of the code remains
constant over varying SNR and channel fading conditions [19]. Such
codes can be formed by shortening, that is reducing both information
and code word bits, or puncturing by removing some of the parity
check bits from each code word [20]. Cyclic codes are well suited to
shortening and puncturing since the original decoding procedure can
be applied to the resulting code [20]. This category of codes includes
the Hamming code [21], Bose–Chaudhuri–Hocquenghem (BCH) code
[21,22] and the quadratic residue code (QRC) [21]. Rather than short-
ening a family of codes, we augment the end-to-end AE for wireless
communications to jointly learn multiple code rates. The advantage of
jointly learning modulation and coding would enable AMC schemes to
be tuned specifically for target channel conditions.

3. Methodology

In our work we consider the AE architecture in [2] as the canonical
DL architecture for jointly learning modulation and coding in a wireless
communications system. However the structure of the canonical AE is
limited to a single message bit size 𝐾 and a single code size 𝑁 . In
this article we make several alterations to the original AE architecture
to support end-to-end learning for AMC with multiple code sizes 𝑁 .
We modify the network architecture so that it is able to learn several
predefined code sizes by adding branching outputs at the transmitter
and receiver. We also add a parameter to select the code size index
during training and inference in the transmitter. In the main path of
the network we include skip connections [23] between blocks of dense

units to enable a slightly larger network to aid in learning multiple code
sizes.

This section includes the details for the changes to the AE archi-
tecture (Section 3.1), the approach to training for the transmitter and
receiver models (Section 3.2) and the selected channel functions that
are applied during training and evaluation (Section 3.3).

3.1. Model architecture

The AE, described in [2], consists of a single path through the net-
work and a channel function implemented as an AWGN layer (Fig. 2).
Estimation is performed as a classification for the corresponding one-
hot encoded input message 𝑀 . One-hot encoding represents each bi-
nary message 𝑀 by defining an input vector of the same length as the
number of unique binary messages (in 2𝐾 messages). Each unique mes-
sage is represented as a 1 at its corresponding index in the input vector
(a value from 0 to 2𝐾 −1) with all other positions of the vector set to 0.
Symbol-wise classification is performed at the receiver by learning to
estimate the probability of a given message at the corresponding vector
index 𝑝(𝑀|𝑟(𝑡)) given a set of channel symbols (in-phase and quadrature
values) 𝑟(𝑡). The index with the highest probability is mapped from the
index to the estimated binary message �̂� = argmax 𝑝(𝑀|𝑟(𝑡)).

The branching structure of our proposed model is inspired by hard
sharing in MTL. In the simplest form of hard sharing, a common
network path is followed by a set of branches that correspond to
each distinct task [6]. The common path learns shared features for all
tasks. In our architecture a task, corresponding to a network branch,
represents a different code rate 𝐾∕𝑁 due to the change in the code
size 𝑁 . The common path contains two dense blocks composed of a
feed-forward layer, batch-normalisation [24] and either rectified linear
unit (ReLU) [25] or Swish [26] activation functions. The two dense
blocks feature residual connections to form skip blocks which assist in
preventing extremes in the gradient during back-propagation of deeper
networks [23]. Although these networks are relatively shallow, we have
found that the skip connections do improve the performance of the
network.

In the transmitter, the common path accepts a concatenation be-
tween the one-hot encoded message and an embedding representing
the code index. The code size index is provided to a discrete gate that
determines which branch of the network architecture should receive
features from the common path during the forward pass. Each branch
contains a feed-forward layer followed by a linear activation. The
output of the transmitter consists of a feed-forward layer followed by
a tanh activation and an energy normalisation layer that is applied
prior to the channel function. An overview of the transmitter model
is shown in Fig. 3. The architecture is parameterised by a set of code
rates 𝑖 ∈

{
11,… , 𝑖𝑛

}
that are used by the branch node to select which

of the output branches are active during training and inference. The
branch node is indicated by the Discrete Gate in the transmitter, Fig. 3
and the receiver, Fig. 4.

The architecture of the receiver is illustrated in Fig. 4 and follows
a similar pattern to that of the transmitter. Instead of receiving an
additional code size parameter during inference, the length of the
received channel symbols is stored at the input to the network. Zero
padding is applied to the received symbols up to the maximum allowed
code size. The padding layer is followed by a series of skip blocks
having the same structure as those in the transmitter, prior to the
discrete gate. The Discrete Gate receives the stored length parameter and
uses this to determine which output branch (Dense Layer 𝑖) to activate
on the forward pass. Each output branch consists of a feed-forward
layer and a soft-max activation layer.

The number of units in the input layers of the transmitter relate
to the 2𝐾 possible messages while for the receiver the input units
depend on the code size that is selected in the transmitter. To determine
the number of units for the shared path of each network, a stepwise
approach was applied. Starting from the value of 𝐾 the number of units
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Fig. 3. The transmitter contains a common path followed by a discrete gate which switches between the set of selected code sizes prior to merging and energy normalisation.
The transmitter sizes for N provide an example of how each branch represents a different code rate, and are an example of 4 bit model configuration.

Fig. 4. The receiver architecture follows a similar approach to the transmitter where the shared path is followed by a discrete gate and a separate classification layer corresponding
to each code size.

was gradually increased until an acceptable performance was achieved
during training. The list of layers and the number of units in each layer
of the transmitter network is shown in Table 1 and is shown for the
receiver network in Table 2.

Each branch in the transmitter and receiver represents a code of size
𝑁 . The code size parameter was supplied to the network as a choice
from a set of code sizes 𝑖 ∈ {𝑖𝑖,… , 𝑖𝑛}. Several variants of the network
architecture were trained to evaluate the effect of additional code sizes
(or increased number of tasks) on the overall performance of the model.
The branching transmitter and receiver networks were trained for three

message sizes, 𝐾 = 4 bits, 𝐾 = 7 bits and 𝐾 = 8 bits. For each case, the
network was trained to map 𝐾 information bits to multiple code sizes
of 𝑁 channel symbols for transmission. For the 𝐾 = 4 bit message size,
the code sizes included 𝑁 = 4, 8, 16 and 20, similarly for the 𝐾 = 7 bit
message size, code sizes 𝑁 = 11, 15, and 34 and finally for the 𝐾 = 8 bit
message configuration, code size 𝑁 = 6, 8, 17, 32 and 40 were selected.
The configurations for each model, message and code size are listed in
Table 3. The table also lists the total number of trainable parameters
in each neural network.
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Table 1
The number of units in each layer of the transmitter model. The list of choices for code size indices 𝑖 are provided as a parameter to
the architecture. During training and inference the one-hot encoded message and the selected code size index 𝑖 are provided as input to
the network.

Layer Units 𝐾 = 4 Units 𝐾 = 7 Units 𝐾 = 8 Group

Input 1 𝑀 = 2𝐾 units 16 128 256

Input layersInput 2 code size index 𝑖 1 1 1
Code index embedding 2𝐾 units 8 14 16
Concatenate 2𝐾 + 2𝐾 units 24 142 272

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Gate layer – – –

Dense layer 𝑖 = 4, units = 8 𝑖 = 11, units = 22 𝑖 = 6, units = 12

Code size 𝑖 ∈
{
𝑖,… , 𝑖𝑛

}
branches

Dense layer 𝑖 = 8, units = 16 𝑖 = 15, units = 30 𝑖 = 8, units = 16
Dense layer 𝑖 = 16, units = 32 𝑖 = 34, units = 68 𝑖 = 17, units = 34
Dense layer 𝑖 = 20, units = 40 – 𝑖 = 32, units = 64
Dense layer – – 𝑖 = 40, units = 80

Linear activation – – –

Transmitter output for code size 𝑖
Reshape layer [2 × 𝑖] [2 × 𝑖] [2 × 𝑖]
Dense layer [2 × 𝑖] [2 × 𝑖] [2 × 𝑖]
Tanh activation – – –
Energy normalisation – – –

We compare the different model configurations against several con-
ventional codes. The 𝐾 = 4 bit model is compared with the MLD
performance of a system that uses uncoded binary phase shift keying
(BPSK) modulation with extended Hamming (8,4) code. The 7 bit
model is compared with three BCH coded systems, two of which use
shortened codes s-BCH(11,7) and s-BCH(34,7) derived from mother
codes BCH(15,11) and BCH(63,36) respectively, with the additional
code being BCH(15,7). The K = 8 bit model is compared with uncoded
BPSK and a QRC(17,8) code.

In both architectures, the gate function at layer 𝑙, 𝑓 (𝑙)
𝑔 is parame-

terised by the code rate index 𝑖 and input to the current layer ℎ(𝑙) =
𝑓 (𝑙−1) (ℎ(𝑙−1)) which selects from a set of branches comprising the next
layer 𝑓 (𝑙+1)

𝑖 ∈
{
𝑓 (𝑙+1)
0 , 𝑓 (𝑙+1)

1 ,… 𝑓 (𝑙+1)
𝑛

}
(Eq. (1)). In the transmitter, the

code rate index is supplied as an explicit parameter to the network,
whereas in the receiver the code rate index is determined based on the
number of symbols received from the channel. During the forward pass
only one path through the branch is active (at the branch layer, the ac-
tive branch will be 𝑓 (𝑙+1)

𝑖 ). During back-propagation, no gradients exist
for the inactive branches, hence only the active branch receives the
gradient update. Each of the respective shared paths in the transmitter
and receiver, participate in back-propagation.

𝑓 (𝑙)
𝑔

(
𝑖, ℎ(𝑙)

)
= 𝑓 (𝑙+1)

𝑖
(
ℎ(𝑙)

)
,

where 𝑓 (𝑙+1)
𝑖 ∈

{
𝑓 (𝑙+1)
0 , 𝑓 (𝑙+1)

1 ,… 𝑓 (𝑙+1)
𝑛

} (1)

3.2. Training algorithm

It is important to consider a suitable regularisation approach to pre-
vent negative impact on overall network performance between tasks.
This is achieved with two approaches, randomised sampling for code

size during training, and weight regularisation. Training consists of
mini-batches (32 messages per batch) and code sizes are selected from
a random uniform distribution each mini-batch. The update of each
model is performed with back-propagation each mini-batch and the
gradient is calculated for the selected code size. Over the course of
learning, the weights for each layer in the network are stored and are
averaged across mini-batches every ten iterations. This latter approach
to regularisation is based on the stochastic weight averaging (SWA)
performed in [9], and in the results we have observed that training
using SWA produces better performance as opposed to those networks
trained without SWA. SWA combined with a cyclical learning rate
schedule [27] is demonstrated in [9] to improve the generalisation of
the network. During training back-propagation is performed with the
Adam optimiser [28] combined with the cyclical learning rate between
0.0001 and 0.001.

In addition to the sampling scheme and SWA regularisation, an
alternating training algorithm is applied in four steps described in
Algorithm 1 and Fig. 5. These steps consist of: (1) train the end-to-end
network, (2) generate mini-batches using the transmitter, (3) train the
receiver against a simulated channel and record the loss, and (4) update
the end-to-end network. In Step 1, back-propagation is run on the end-
to-end model which contains both the receiver and transmitter models.
This updates the weights in both the receiver and transmitter models,
and the AWGN channel is simulated directly as part of the end-to-end
model architecture. During Step 2, the transmitter is used to generate
the transmitter symbols and the channel is simulated independently
of both transmitter and receiver models. In Step 3, the receiver is
then trained using the channel response as the receiver input, and
during back-propagation the receiver loss is calculated against the true
messages. This allows the transmitter and receiver to be evaluated
independently and the resulting receiver loss is used to coordinate
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Algorithm 1 During training, the end-to-end model is trained iteratively with the receiver model.
Input: epochs ⊳ The number of training iterations.
Input: batchSize ⊳ The size of each training or validation batch.
Input: transmitModel ⊳ The transmitter model.
Input: receiveModel ⊳ The receiver model.
Input: endToEndModel ⊳ The end-to-end model containing transmitter, channel and receiver models.
Input: channel ⊳ The channel simulation function.
Input: snr ⊳ An initial SNR dB for perturbation of training data.
Input: codeSizeList ⊳ The set of allowed code lengths.
Output: endToEndModel ⊳ The end-to-end model updated after training.

𝑙𝑜𝑠𝑠 ← ∞
𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡 ← []

for 𝑖← 1, 𝑒𝑝𝑜𝑐ℎ𝑠 do
if Train with random SNR then

𝑠𝑛𝑟← Random-Uniform(0,9) ⊳ Use randomised SNR to perturb data for training.
end if
codeSize <- Random-Uniform(codeSizeList) ⊳ Randomly select the code size for the training batch.
Train-EndToEnd(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 1)
𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠← Transmit-Samples(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) ⊳ Fig. 5 (Step 2)
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠← Train-Receiver(𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 3)
if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠 < 𝑙𝑜𝑠𝑠 then

𝑙𝑜𝑠𝑠 ← 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝐿𝑜𝑠𝑠
Save(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙, 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑀𝑜𝑑𝑒𝑙, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑜𝑑𝑒𝑙) ⊳ Save models each time learning improves at the receiver.

end if
if 𝑖 mod 10 equals 0 then

𝑤 ← Average-Weights(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡)
Set-Weights(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙, 𝑤) ⊳ Apply weight averaging every 10 iterations.

else
𝑤 ← Get-Weights(𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙)
Append(𝑤𝑒𝑖𝑔ℎ𝑡𝑠𝐿𝑖𝑠𝑡, 𝑤)

end if
Train-EndToEnd(𝑏𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝑐𝑜𝑑𝑒𝑆𝑖𝑧𝑒, 𝑠𝑛𝑟, 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙) ⊳ Fig. 5 (Step 4)

end for

return 𝑒𝑛𝑑𝑇 𝑜𝐸𝑛𝑑𝑀𝑜𝑑𝑒𝑙

Fig. 5. Custom training algorithm consisting of several stages interleaving training of receiver and end-to-end model.
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Table 2
The number of units in each layer of the receiver model. The list of choices for code size indices 𝑖 are provided as a parameter to the architecture,
and selected at runtime based on the length of the received channel symbols.

Layer Units 𝐾 = 4 Units 𝐾 = 7 Units 𝐾 = 8 Group

Input 1 [2 × 𝑖] units [2 × 𝑖] [2 × 𝑖] [2 × 𝑖] Input from channel for code size 𝑖Flatten Layer 2𝑖 2𝑖 2𝑖

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Dense layer 32 512 512

Skip block

Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 64 64 64
Batch normalisation – – –
Activation (ReLU or Swish) – – –
Dense layer 32 512 512
Batch normalisation – – –
Activation (ReLU or Swish) – – –

Gate layer – – –

Dense layer 2𝐾 units 16 128 256 Output 𝑖 ∈
{
𝑖,… , 𝑖𝑛

}
BranchesSoftmax activation – – –

Table 3
Multiple variations of the model are trained with separate configurations for message bits K and code size N. The total trainable parameters
for each neural network counts all weights, biases, and batch normalisation parameters. The final column lists the conventional codes included
in comparisons of BER and BLER selected channel conditions.

Configuration Model variant K N Transmitter
parameters

Receiver
parameters

Comparison codes

1 4 bit single model 4 𝑖 ∈ {4} 3831 4880 Uncoded BPSK

2 4 bit multi-rate model 4 𝑖 ∈ {4, 8, 16, 20} 14 471 13 888 Uncoded BPSK
extended
Hamming(8,4)

3 7 bit multi-rate model 7 𝑖 ∈ {11, 15, 34} 671 151 767 616 s-BCH(11,7)
BCH(15,7)
s-BCH(34,7)

4 8 bit multi-rate code 8 𝑖 ∈ {6, 8, 17, 32, 40} 649 125 1 101 696 Uncoded BPSK
QRC(17,8)

intermittent checkpointing of both models. Finally, Step 4 updates the
end-to-end network after weight averaging before the next training
iteration.

3.3. Channel functions

The assumed channel function that is applied during training of the
proposed model is the AWGN channel. Evaluation for the BER and BLER
is made on three channels, the AWGN and two variants of Rayleigh
fading differing in duration, the first applies fading to the entire block
(Block fading), and the second varies symbol to symbol (Bit fading).
When evaluation is carried out, the proposed models are not retrained
or tuned for the two additional fading channels.

In AWGN (Eq. (2)) additive Gaussian noise 𝑛(𝑡) is added to the
output of the transmitter 𝑧(𝑡), where 𝑡 is the discrete time step of the
transmitter output.

𝑟(𝑡) = 𝑧(𝑡) + 𝑛(𝑡) (2)

Eq. (3) shows the Rayleigh fading coefficient 𝑎(𝑡), at each discrete
time 𝑡, applied to the transmitted signal 𝑧(𝑡), prior to addition of
additive noise 𝑛(𝑡). The fading coefficient 𝑎(𝑡) = 1√

2
|𝑎|𝑒𝑗𝜓 , is drawn from

a complex standard normal distribution 𝑎 ∼  (0, 1), and it’s argument
multiplied with the exponential waveform with phase parameter 𝜓 , we
assume a constant phase 𝜓 = 0. The duration of the coefficient varies

under block or bit fading. In addition we assume no channel estimation
to reverse the effect of fading on the receiver.

𝑟(𝑡) = 𝑎(𝑡)𝑧(𝑡) + 𝑛(𝑡) (3)

The additive Gaussian noise 𝑛(𝑡) is drawn from the complex normal
distribution 𝑛(𝑡) ∼  (0, 𝜎2). The variance 𝜎2 is derived from the
desired SNR and the final output of the transmitter layer 𝑧(𝑡), having 𝑡 =
[1⋯ 𝑇 ] discrete time steps. A desired level of noise is first supplied to
the channel simulation as the ratio of energy per bit to noise 𝐸𝑏∕𝑁0 dB.
To account for the selected code rate 𝑘∕𝑛, the 𝐸𝑏∕𝑁0 dB is converted
to the ratio of energy per symbol to noise 𝐸𝑠∕𝑁0 dB = 𝐸𝑏∕𝑁0 dB +
10𝑙𝑜𝑔10(𝑘∕𝑛). The components for 𝐸𝑠 and 𝑁0 are then estimated from
the transmitter symbols 𝑧(𝑡) where 𝐸𝑠 =

∑𝑇
𝑡=1 𝑧(𝑡)

2

𝑇 and 𝑁0 = 𝐸𝑠
𝐸𝑠∕𝑁0

. The

parameter 𝐸𝑠∕𝑁0 is also commonly referred to as SNR. The variance
is then estimated as 𝜎2 = 𝑁0∕2 and used to sample from the complex
normal distribution.

The output at the transmitter is normalised by the energy constraint
‖𝑥‖22 ≤ 1 implemented in Eq. (4) where 𝑥(𝑡) ∈ C is the sequence of
complex symbols output by the tanh activation layer and 𝑇 the number
of time steps in the sequence. During training it is possible to vary the
SNR dB randomly or to train at a constant SNR dB. A fixed SNR of 6 dB
performed best for the 4 bit message, however 7 bit and 8 bit messages
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Fig. 6. BER and BLER in AWGN of several training methods, training with a standard back-propagation algorithm and SWA weight averaging (MultiTxRx 1-Step SWA), multi-step
training without SWA (MultiTxRx NoSWA) and multi-step training with SWA and fixed SNR (MultiTxRx SWA Fixed SNR). Improvement in performance is indicated with the
addition of SWA as well as when training with the multi-step training procedure as opposed to the standard back-propagation.

were trained with random SNR between 0 − 9 dB.

𝑧(𝑡) = 𝑥(𝑡)√∑𝑇
𝑖=1 𝑥(𝑖)2∕𝑇

(4)

4. Results

In this section we report the empirical evaluation for the proposed
model at different code rates, listed in Table 3, for the AWGN and
the two fading channels. In each case we refer to the proposed model
as the MultiTxRx model to indicate a multi-branching transmitter and
receiver. The first evaluation investigates the performance of the pro-
posed training algorithm. The second set of evaluations reports on the
performance of different variations of the architecture. These two sets
of evaluations are used to examine the design choices for the model
structure and training approach. After this we compare the set of code
size configurations from Table 3 with the conventional codes in the
AWGN channel, and evaluate performance without retraining or tuning
in the fading channels.

The performance of several training algorithms are evaluated in
Fig. 6, with message size 𝐾 = 4 bits and code size 𝑁 = 4 (from
configuration 1, Table 3). Uncoded BPSK performance is included for
reference. The MultiTxRx 1-Step SWA model was trained using standard
back-propagation and included weight averaging. MultiTxRx NoSWA
(no weight averaging) and MultiTxRx SWA where trained with the
multi-step algorithm described in Fig. 5. The multi-step algorithm with
weight averaging (MultiTxRx SWA) produces lower BER and lower
BLER in comparison to standard back-propagation (MultiTxRx 1-Step
SWA). Training without weight averaging produces higher BER and
BLER.

Next, we compare the changes made to the AE architecture in Fig. 7
by training on multiple code sizes from configuration 2 in Table 3. The
different types of architecture shown in Fig. 7 include a Single Path AE,
Single Tx MultiRx, MultiTx SingleRx, MultiTxRx and MultiTxRx Residual.
The Single Path model consists of a single common path in the network.
The Single Tx MultiRx model applies a single path with a pooling layer
to realise multiple codes in the transmitter, and classifies multiple codes
using branching in the receiver. The structure is reversed in the MultiTx
SingleRx. When trained with multiple code sizes, MultiTxRx is similar
to the proposed architecture but does not feature skip connections
and the MultiTxRx residual is the proposed architecture, including skip
connections. The MultiTxRx Residual model performs better than the
other models and is close to the extended Hamming(8,4) BER. Both
versions of the MultiTxRx model exhibit similar BLER.

All code rates from configuration 2 in Table 3 are compared under
in the AWGN channel in Figs. 8 and 9 and in the Block Fading and Bit
Fading channels in Figs. 10 and 11 respectively. In the AWGN channel,
it is difficult to see the difference in performance between code rates
in relation to 𝐸𝑏∕𝑁0 (except for 𝐾 = 4, 𝑁 = 4). In contrast, Fig. 9
displays the BER and BLER related to the energy per symbol (𝐸𝑠∕𝑁0)
SNR dB. This example demonstrates that the smaller code rates can
achieve lower BER and BLER as the channel noise increases at the cost
of increased channel usage due to the increase in code size 𝑁 . The aim
of an AMC scheme is to maintain performance by trading off channel
use in varying SNR.

In the Block Fading channel (Fig. 10) we observe that the BER is
much higher than the uncoded BPSK while the BLER is much lower.
The BER is higher because symbol-wise classification does not perform
error correction of individual bits. An error on a code word may contain
more incorrect bits in a single forward pass estimation. However, this
approach achieves better BLER, as it can accurately classify, or map,
the entire code word for a corresponding message. In the Block Fading
channel, the entire code word is impacted by the channel fading. Bit-
interleaving techniques can be applied in this circumstance which can
produce an effect that is similar to a Bit Fading channel prior to
decoding. The difference between the code rates is most noticeable in
the Bit Fading channel (Fig. 11), performance improves as the code
rate decreases (at the expense of channel use). In this channel, the
𝐾 = 4, 𝑁 = 8 code is slightly better than the baseline extended
Hamming(8,4) code, as opposed to the AWGN channel. In the AWGN
channel, code rate 𝐾 = 4, 𝑁 = 8 is close to the baseline extended
Hamming(8,4) code, but differs slightly in higher SNR. The model is
not retrained on either of the fading channels and is able to perform
close to or better than the baseline.

Fig. 12 displays the performance of the 𝐾 = 7 bit message and
code rates from configuration 3 of Table 3 in the AWGN channel. The
figure shows slight gains for BLER over the shortened s-BCH(11,7)
and BCH(15,7) codes, and similar performance to the shortened s-
BCH(34,7) code. There is less difference in BER performance for these
codes. Under the Block Fading channel in Fig. 13 the BER is again
higher, but the BLER is lower in comparison to the reference codes.
In the Bit Fading channel, shown in Fig. 14, incremental gains are
achieved on all code rates in comparison to the BCH and shortened
codes (Fig. 14).

Configuration 4 from Table 3 for the 𝐾 = 8 bit message and selected
code sizes, is compared with the uncoded BPSK and the QRC code in
the AWGN (Fig. 15), Block Fading (Fig. 16) and Bit Fading (Fig. 17)
channels. In AWGN the BER produced by the model at the lower code
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Fig. 7. The multi-branching Tx Rx architecture is compared with four variants of the architecture, a non-branching single path architecture (Single Path), a single branch transmitter
with multi branch receiver (SingleTx MultiRx), the multi-branch transmitter and single receiver (MultiTx SingleRx) and multiple branching transmitter receiver with and without
residual connections (MultiTxRx Residual and MultiTxRx). The choice of network architecture influences performance for the multi-task estimation of multiple code rates.

Fig. 8. BER and BLER in AWGN for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4) maximum likelihood
decoding (MLD).

Fig. 9. The coding gain for each respective code rate is visible when plotting the BER and BLER in AWGN over the energy per symbol (𝐸𝑠∕𝑁0) SNR dB. The advantage of learning
multiple codes enables operation under increased noise in the channel.
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Fig. 10. BER and BLER in the Block Fading channel for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4)
maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.

Fig. 11. BER and BLER in the bit fading channel for MultiTxRx model with K = 4 bits and N = [4, 8, 16, 20] compared with BPSK uncoded and extended Hamming(8,4) maximum
likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.

Fig. 12. BER and BLER in the AWGN channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7) and
BCH code (15,7) maximum likelihood decoding (MLD), and trained with random SNR.
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Fig. 13. BER and BLER in the Block Fading channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7)
and BCH code (15,7) maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.

Fig. 14. BER and BLER in the bit fading channel for MultiTxRx model with K = 7 bits and N = [11, 15, 34] compared with shortened BCH codes s-BCH(11,7), s-BCH(34,7) and
BCH code (15,7) maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.

Fig. 15. BER and BLER in the AWGN channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code (QRC)
K = 8, N = 17 maximum likelihood decoding (MLD), and trained with random SNR. The code (6,8) provides a higher channel usage than uncoded BPSK at 1.33 bits per channel
usage.

rates is similar to the baseline code QRC(17,8) and BLER is slightly
lower. The BER in the Block Fading channel, shown in Fig. 16, is
worse than the target baseline QRC code, however, as we have seen
in the other configurations, the BLER for the same code size and lower
code rates is slightly better than the reference code. In the Bit Fading

channel, both BER and BLER achieve equal or better performance than
the reference QRC(17,8) code. However, the BER for higher code rates
𝐾 = 8, 𝑁 = 8 and 𝐾 = 8, 𝑁 = 6 do not perform as well as the uncoded
BPSK in lower SNR, but do achieve gains for the BLER. This is also
apparent in the AWGN channel.
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Fig. 16. BER and BLER in the Block Fading channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code
(QRC) K = 8, N = 17 maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the Block Fading channel.

Fig. 17. BER and BLER in the bit fading channel for MultiTxRx model with K = 8 bits and N = [6, 8, 17, 32, 40] compared with BPSK uncoded and Quadratic Residue Code
(QRC) K = 8, N = 17 maximum likelihood decoding (MLD). The proposed module was originally trained on the AWGN channel and is not trained for the bit fading channel.

5. Discussion

Comparison of the proposed model with the selected codes s-
BCH(11,7), BCH(15,7), s-BCH(34,7) and QRC(17,8), demonstrated
lower BLER in each of the channels and notably under the Bit Fading
channel without retraining. While the BLER was close to the extended
Hamming(8,4) code in each of the channels. In both the AWGN and
Block Fading channels the BER was often poorer than the comparison
code. As noted this is due to the classification for an entire code word
rather than at the bit level and for the Block Fading channel, this
effect of fading can be mitigated through the use of bit interleaving.
However, the performance of a code is also dependent on the smallest
minimum distance between all code words. Since the transmitter learns
continuous codes, instead of binary codes, the minimum Euclidean
distance is more appropriate measure of distance for those codes.

Fig. 18 shows the Euclidean distances between each of the learnt
code words in the 𝐾 = 4, 𝑁 = 8 code. Ideally the transmitter should
learn a constellation related to the distance between messages. In some
cases, there is a larger distance between message code words with a
message Hamming distance of 1, than those message code words with a
larger message Hamming distance. For example, the Euclidean distance
between code words for messages 0000 and 0001, a Hamming distance
of 1, is larger than the Euclidean distance between code words for
messages 0000 and 0111 with a Hamming distance of 3. The confusion

matrix for the classifier is shown in Fig. 19, for messages 0000 and
0111 the percentage of incorrect classifications is approximately 3%,
slightly higher than the incorrect classification between 0000 and 0001.
The minimum Euclidean distance of the code does appear to be related
to the performance of the learnt code. For those codes which have
a lower BLER than the comparative code, the minimum Euclidean
distance and mean Euclidean distances are close to or exceed that of the
corresponding code. Table 4 lists the minimum, mean and variance of
the Euclidean distance 𝑑𝐸 calculated for the constellations of the learnt
and comparison codes.

The changes to the AE to support multiple code rates does require
an increase in the number of parameters overall within the neural
network. This is to support generalisation over multiple code rates.
However, the use of a common shared path for multiple codes does
reduce the total number of parameters required in comparison to
training separate models. The size of four single AE neural networks
are shown in Table 5. The proposed branching model requires less
parameters in a branching AE that can produce four different code rates
in comparison to four separate AE.

The proposed models produced gains in BLER in comparison to
the conventional codes under each of the channels. However it is not
clear whether to attribute this gain to the learnt code or the inference
supported by the AE. To investigate this, we developed a table based
transmitter and MLD receiver for the code rate 𝐾 = 7, 𝑁 = 15. Symbols
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Table 4
Computed minimum, mean and variance of euclidean distances for learnt and BPSK modulated reference codes.

Code rate 𝑑𝐸𝑚𝑖𝑛 𝐸[𝑑𝐸 ] 𝑉 𝑎𝑟[𝑑𝐸 ] Reference code Code 𝑑𝐸𝑚𝑖𝑛 Code 𝐸[𝑑𝐸 ] Code 𝑉 𝑎𝑟[𝑑𝐸 ]

K = 4, N = 8 3.83 4.12 0.08 Ext Hamming(8,4) 4 4.11 0.17
K = 7, N = 11 3.67 4.69 0.2 s-BCH(11,7) 3.46 4.66 0.47
K = 7, N = 15 4.38 4.38 0.19 BCH(15,7) 4.47 5.46 0.44
K = 7, N = 34 6.91 8.3 0.29 s-BCH(34,7) 6.63 8.25 0.53
K = 8, N = 17 4.34 5.82 0.23 QRC(17,8) 4.9 5.8 0.47

Fig. 18. Euclidean distances between pairwise codewords for each input sequence,
learnt by the K = 4, N = 8 MultiTxRx auto-encoder.

Fig. 19. The confusion matrix for the K = 4, N = 8 code rate under the block fading
channel. Figures are relative to the predicted labels. While the classifier achieves a
high level of accuracy on the BLER, there is sufficient difference between messages to
cause high BER.

for corresponding 7 bit messages output by the MultiTxRx K = 7, N
= 15 model were stored in a lookup table and transmitted over a
AWGN channel. If the gain was solely due to the learnt receiver, we

Table 5
The number of parameters for combined separate code rate models versus the multi-task
shared path model. The shared path architecture provides less total parameters than
separate models for each code rate.

Model variant K N Parameters

K = 4 N = 4 bit model 4 𝑖 ∈ {4} 8711
K = 4 N = 8 bit model 4 𝑖 ∈ {8} 9951
K = 4 N = 16 bit model 4 𝑖 ∈ {16} 12 431
K = 4 N = 20 bit model 4 𝑖 ∈ {20} 13 671
Total 44 764

4 bit multi-rate model 4 𝑖 ∈ {4, 8, 16, 20} 28 359

expect the MLD receiver to exhibit higher BLER. The MLD receiver
performed nearest neighbour decoding for received channel values
against the table of modulated symbols. The performance of the MLD
receiver matched the performance of the proposed branching AE model
in the corresponding channel (Fig. 20). This indicates that the gains
observed are generated due to the learnt constellations resulting from
training. This approach demonstrates potential use of DL for wireless
communications as a method for code design which may be applied
independently of the trained model.

6. Conclusions and future work

In this article we have presented a branching AE architecture ca-
pable of automatically learning multiple code rates for AMC schemes.
The proposed branching architecture extends applications of the AE
architecture beyond the learning of a single code rate to the learning
of multiple code rates. The choice of assumed channel during training
is highly influential to the resulting performance of the AE in other
channels. As a result, the ability to train a receiver separately on
a real channel provides the ability to further optimise the system
performance after deployment. The proposed branching AE for multiple
code rates, is demonstrated to perform well under a variety of changing
channel conditions, achieving gains in BLER compared to the selected
conventional codes. By leveraging an AMC scheme the approach offers
the potential to mitigate the requirement of receiver tuning in AE
for wireless communications. However, there remains a number of
limitations for the practical application of the DL approach requiring
further investigation.

First, in this article we have assumed perfect synchronisation at
the receiver. While it is possible to apply conventional methods for
synchronisation with learnt modulation and coding schemes, it is de-
sirable that synchronisation be addressed as part of the end-to-end AE
architecture.

Second, classification based architectures not only do not scale to
higher message lengths, but cannot provide error correction functional-
ity. Hence work on bit-wise decoding for longer message lengths, either
as part of a concatenated code, or as a standalone network will be a
significant part of the practical application of such models, some of
this work has already been described in the related work section of
this paper.

Third, there has been work investigating the sensitivity of such
architectures to their training conditions and whether they are brittle
in terms of adversarial attacks. While we do not directly explore
this concern, there is a connection between network regularisation
and training methods required to mitigate adversarial attacks. In [29]
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Fig. 20. BER and BLER in the AWGN channel of the learnt constellation for the (15,7) code produced by a table based transmitter and MLD receiver compared with the end-to-end
model and BCH(15,7) code.

conventional Hamming codes are shown to be more robust under
adversarial and jamming attacks than AEs. It is suggested in [30] that
adversarial examples are transferable across different models, thereby
enabling black-box attacks. This raises the importance for future inves-
tigation into regularisation methods for end-to-end learning in wireless
communications and evaluation under adversarial interference.

Fourth, as we have discussed, the Euclidean distances between
messages for neighbouring codes may be larger those several message
bits away. This negatively impacts the performance of the BER, as mis-
classification results in a higher number of incorrect bits. Future work
should investigate the ability of the transmitter to learn distance based
relationships between source messages. In addition, while we have
assumed no channel information at the receiver, it may be possible to
incorporate or learn such information to enhance receiver performance
in the end-to-end learning scenario.

The tuning of the receiver over varying channel conditions would
be time consuming in a deployed system and may lead to poor perfor-
mance on the original channel, for which it was first trained. Whether
it is practical to tune a receiver over the air, and how much training
is required, is a matter for consideration. A practical solution may
be to use a branching AE with multiple code rates under changing
conditions. This would permit operation whilst a separate model is
adapted in the background. The question of how to update such a model
while mitigating catastrophic forgetting in changing channel conditions
deserves further investigation.

Finally, the mapping between channel environment and choice of
code rate relies on measurements such as expected BER and BLER
over associated SNR. It is feasible to imagine the joint learning of
AMC and channel performance mapping, extending the work described
in [31,32]. More recent research in the industrial internet of things
(IIoT) consider wireless communications as part of a joint optimisation
objective in seeking to reduce energy consumption over the collective
sensor network [33,34]. A potential application would be to learn
energy efficient communication schemes for the IIoT setting, which are
adaptive to operational constraints in addition to channel conditions,
in an end-to-end manner.

The flexibility of the AE architecture provides competitive perfor-
mance not only in learning a single code rate, but also as we have
shown, in learning AMC schemes with varying error-rate performance
and spectral efficiencies. By framing the learning problem as MTL,
the proposed architecture enables the deployment of a single model,
instead of requiring multiple separate models for each code rate.
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5.3 Links and Implications

This article proposed a multi-task learning architecture for AMC schemes and demonstrated

that the model was able to match or outperform conventional codes in the Rayleigh fading

channel environment for block and bit fading, while only having trained in the AWGN channel

environment. By providing a single DL architecture, the approach simplifies the task of E2E

learning for AMC schemes. The proposed approach enables future potential for the joint learning

of both coded modulation combined with a control algorithm such as DL based RL, which is able

to learn when to select a new coded modulation scheme based on the channel conditions. While

OAL methods adapt DL based communications systems to the true channel environment, their

key disadvantage is the training time required to develop the system over-the-air. By training a

DL wireless communications system that is capable of AMC it is possible to provide adaptive

communication schemes that are reliable and performant under a variety of channel environments

without the need for retraining.
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CHAPTER 6: PAPER 3 - CHANNEL

AGNOSTIC TRAINING OF TRANSMITTER

AND RECEIVER FOR WIRELESS

COMMUNICATIONS

6.1 Introduction

This chapter presents a copy of the article published in Sensors (vol. 23 (2023), no. 24,

p2848, ISSN: 1424-8220, doi:10.3390/s23249848. https://www.mdpi.com/1424-8220/23/

24/9848).

Training DL based wireless communications systems OAL must approach backpropagation

in such a way that either gradients between receiver and transmitter are approximated or that

the channel environment is approximated to then enable E2E learning. This article investigates

the process of OAL training of a transmitter and remote receiver where the transmitter is jointly

optimised E2E with a local receiver which learns to imitate the estimates produced by the remote

receiver. The estimates for the remote receiver are provided through a reliable feedback channel.

The novelty of the approach proposes that the errors produced in the remote receiver estimates

contains implicit knowledge of the channel environment, and that learning to imitate these

estimates enables the transmitter to learn a modulation that is optimised for that environment.

This is demonstrated through training the proposed system under multiple channel environments

and comparing to methods such as Receiver tuning as well as training without imitation.

Research Highlights

• The article proposes a novel over-the-air training method and develops machine learning

enabled coding and modulation schemes for the transmitter and the receiver without an

assumed channel model.

• It develops a Disjoint Learning method that uses a transmitter side (local) channel/receiver

to imitate the learning process of the remote receiver and enable supervised learning of the

transmitter through backpropagation.
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• The performance of the proposed Disjoint Learning method is demonstrated to be equiva-

lent or better than the fully connected architecture.

• The proposed method is shown to achieve significant performance improvements against

the Receiver Tuning training method.

6.2 Published Article 3
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Abstract: Wireless communications systems are traditionally designed by independently optimising
signal processing functions based on a mathematical model. Deep learning-enabled communications
have demonstrated end-to-end design by jointly optimising all components with respect to the com-
munications environment. In the end-to-end approach, an assumed channel model is necessary to
support training of the transmitter and receiver. This limitation has motivated recent work on over-the-
air training to explore disjoint training for the transmitter and receiver without an assumed channel.
These methods approximate the channel through a generative adversarial model or perform gradient
approximation through reinforcement learning or similar methods. However, the generative adversarial
model adds complexity by requiring an additional discriminator during training, while reinforcement
learning methods require multiple forward passes to approximate the gradient and are sensitive to high
variance in the error signal. A third, collaborative agent-based approach relies on an echo protocol to
conduct training without channel assumptions. However, the coordination between agents increases the
complexity and channel usage during training. In this article, we propose a simpler approach for disjoint
training in which a local receiver model approximates the remote receiver model and is used to train the
local transmitter. This simplified approach performs well under several different channel conditions,
has equivalent performance to end-to-end training, and is well suited to adaptation to changing channel
environments.

Keywords: deep learning; channel free training; wireless communications; over-the-air training;
neural networks

1. Introduction

The primary goal of a wireless communications system is to transmit a message over-
the-air (the channel environment) to a receiver such that the message can be recovered
without error. However, the channel environment causes distortions in the transmitted
signal that impede perfect recovery of the message. To improve message recovery, commu-
nications systems are designed with multiple signal processing blocks and with comple-
mentary components between the transmitter and receiver for each stage (coding/decoding,
modulation/demodulation, filtering/detection). Figure 1 illustrates a simple wireless com-
munications system comprising a transmitter, channel, and receiver. Each of these stages is
traditionally designed and optimised independently while assuming a fixed mathematical
model of the channel.

More recently, deep learning (DL) in wireless communications systems has been
applied to jointly optimise functions for the transmitter and receiver over an assumed
channel model [1]. Such approaches offer an alternative to the block design of commu-
nications systems, and may achieve better performance in complex channels without a
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formal model [1]. The supervised learning procedure enables the transmitter to learn
complex domain symbols, thereby maximising the ability of the receiver to de-noise and
map soft channel outputs to the original message. The DL auto-encoder (AE) architecture
is a proven approach for application to automatic feature learning, and is coupled with
noise distortions during learning to enable the decoder component of the architecture to
learn robust features for de-noising and estimation [2].

During training, the perturbations provided by an assumed channel model help the
transmitter (encoder) to learn robust features through the process of backpropagation.
Backpropagation communicates the loss at the receiver (decoder) by applying the chain
rule with respect to the training loss function, which requires a differentiable channel
function to pass the gradients from the receiver to the transmitter. The true channel
environment prevents backpropagation between the transmitter and receiver, representing
a key challenge in the over-the-air training of AE for wireless communications systems.

Figure 1. A simplified wireless communications system comprising a transmitter, a channel environ-
ment, and a receiver. The transmitter takes the input message block, then performs encoding and
modulation prior to sending it over the channel. The channel distorts the waveform; such distortions
can include noise and fading. The receiver must detect and filter the content of the received waveform,
then demodulate and decode the data in order to recover the original message.

Research into over-the-air learning for wireless communications systems has demon-
strated approaches in which the transmitter and receiver can be trained in a disjoint manner.
DL approaches which leverage the AE architecture to model the transmitter, channel, and
receiver have approached the problem by training an end-to-end system offline with an
assumed channel model (Joint Learning) and tuning the receiver model online against
the pretrained transmitter [3] (Receiver Tuning). During the tuning phase, the transmitter
is not updated under the true channel conditions, preventing improvement of the code
learned by the transmitter during the tuning phase. Thus, any improvement under the new
channel depends on the adaptation of the receiver.

The transmitter learns a code that relies on the properties of the channel environment,
which are modelled during training. The Joint Learning process results in a code that
maximises the mutual information between the transmitted (channel input) and received
(channel output) symbols through direct observation of the channel [4]. In contrast, conven-
tional coding methods counteract channel effects such as fading by introducing redundant
symbols (diversity) or using estimates of fading coefficients (channel state information)
for precoding at the transmitter or correction at the receiver [5]. DL techniques have
demonstrated the ability to learn accurate estimates for channel state information, and have
been applied to correction and signal detection at the receiver [6,7]. The application of DL
to channel modelling has led to the adoption of generative adversarial network (GAN),
which can learn to emulate the stochastic channel environment [8], motivating the potential
application of DL to either explicitly model the channel environment or implicitly extract
channel state information during over-the-air learning (OAL).

Two methods of extending DL to OAL involve feedback from the receiver to enable
learning a proxy of the channel, thereby permitting backpropagation between the trans-
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mitter and channel model [9–12] (Channel Approximation). Another approach is Gradient
approximation, in which the gradient at the transmitter is approximated through variants of
finite difference approximation or reinforcement learning (policy-gradient learning) [13–16].
Additional methods involve multi-agent approaches such as Collaborative Agent Learning
coordinated by specific training protocols [17], which is able to include a variety of learning
algorithms other than DL. Both the channel and gradient approximation approaches have
demonstrated equivalent performance to the end-to-end joint learning approach [11,13,14],
while the Collaborative Agent Learning method has demonstrated performance close to
conventional codes [17].

In this paper, we refer to Receiver Tuning, Channel Approximation and Gradient
Approximation as methods of Disjoint Learning and regard these as separate from the
Collaborative Agent Learning approach. We present an additional method of Disjoint
Learning, “Learning through Imitation”, that is situated between Channel Approximation
and Gradient Approximation, where a local channel/receiver model is developed using
estimates from the actual receiver to imitate the behaviour of the channel/receiver at the
transmitter side. This enables the application of supervised learning to train the transmitter
using backpropagation. This approach does not model the channel directly; instead, it
learns to mimic the errors made by the remote receiver and acts as a proxy for the remote
receiver model. We use simulation to produce equivalent results to the end-to-end Joint
Learning approach first demonstrated in [1] and show that this method outperforms
receiver tuning. To show that the local receiver model approximates the remote receiver
model, we compare the process of learning without feedback to that of learning with
feedback, and demonstrate that learning through imitation exceeds the performance of
learning without feedback.

Therefore, with the aim of providing a novel method for channel-agnostic over-the-air
training of both transmitter and receiver for resilient wireless communications, the primary
objectives of this study are as follows:

• To propose a novel over-the-air training method and develop machine learning en-
abled coding and modulation schemes for the transmitter and the receiver without an
assumed channel model.

• To develop a Disjoint Learning method that uses a transmitter-side (local) chan-
nel/receiver to imitate the learning process of the remote receiver and enable super-
vised learning of the transmitter through backpropagation.

• To demonstrate that the performance of the proposed Disjoint Learning method is
equivalent or better than the fully connected architecture.

• To show that the proposed method achieves significant performance improvements
against the Receiver Tuning training method.

The rest of this paper is organised in the following way: Section 2 provides a brief
overview of related work; Section 3 describes our proposed model, training, and simulation
methods; Section 4 presents results for the proposed method and provides a discussion of
the results and modelling approach; and Section 5 draws conclusion and proposes future
directions for investigation.

2. Background and Related Works

The canonical application of DL for the joint learning of a wireless communication
system is presented in [1]. An AE transmitter and receiver model was shown to perform
equivalently to short uncoded and Hamming(7,4) coded messages (K = 4 information
bits and N = 7 code bits) on the Additive White Gaussian Noise (AWGN) channel [1].
The authors observed the relationship between the choice of energy constraint and con-
stellation learned by the transmitter. The influence of the channel on the system was
shown by training two pairs of transmitter and receiver AEs on an interference channel.
The transmitters learned to counteract the interference channel by developing orthogonal
codes [1]. It is acknowledged that both symbol-wise AE (classification mapping code word
to message) and bit-wise AE (modelled as K-bit outputs) are limited in their application to
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smaller codes due to the dimensionality of a possible 2K messages for K information bits.
The joint learning approach demonstrates the inclusion of an assumed channel transfer
function in the design of the network, and must be trained offline. This prevents joint
optimisation on the true channel environment.

Receiver tuning, inspired by transfer learning, was carried out after the joint learning
phase and used to update the trained receiver on the true channel in [3]. The resulting
system was compared with differential quadratic phase shift keying (DPSK) in both simu-
lated AWGN and over-the-air channels. The simulated channel included impairments for
timing, phase, and frequency offsets, while the receiver model was developed to correct for
these distortions before decoding [3]. Receiver tuning was demonstrated to improve the
performance of the AE over the end-to-end model, but did not improve upon the DPSK
modulation. However, the approach demonstrated a practical way forward in tuning AE
models over-the-air. The primary disadvantage of receiver tuning is that the transmitter
remains fixed during the tuning phase and does not adapt to the true channel distortions
compensated by adaptation at the receiver.

Methods for disjoint learning emerged to address the limitations of receiver tuning and
permit over-the-air training of both transmitter and receiver models. Channel approximation
methods using GANs [18,19] have been applied to train a proxy for the channel in response to
feedback and enable the transmitter to be trained with backpropagation through the generator
channel model [9–12]. In [9], a channel model inspired by the GAN approach was trained to
approximate the channel response directly, and the transmitter was updated by alternating
backpropagation phases between channel and receiver loss. A local receiver (acting as the dis-
criminator) is required in order to enable end-to-end learning for the transmitter, and leverages
the channel model for backpropagation. This approach was extended in [10] to leverage a
separate discriminator network, while a variational neural network was incorporated in [20]
to describe the channel distribution in the generator. The variational method has been shown
to better approximate the variance of the channel response for a range of channels in compari-
son to the previous method based on mean squared error (MSE) loss [10]. These approaches
introduce a separate training procedure to train the generator in order to approximate the true
channel environment.

In [21], a conditional GAN was trained to approximate the AWGN and Rayleigh fading
channels conditioned on the pilot symbols in [11], then used to optimise a transmitter and
receiver for symbol classification. The channel model was shown to approximate the AWGN
perturbations for a quadrature amplitude modulation (QAM) of sixteen symbols [11]. The
performance of the system was shown to be equivalent to a Hamming(7,4) code over
AWGN and to perform similarly to coherent detection in a Rayleigh fading channel [11].
The approach was later combined with convolutional neural network (CNN) modules for
bit-wise estimation for longer message lengths in [12]. A simple feed-forward GAN was
compared with 4-QAM Hamming(7,4) code under AWGN. A CNN-GAN was compared
to a convolutional code in the Rayleigh fading and selective-frequency channels in [12].
Performance in each channel was shown to be close to the conventional methods, and the
importance of the pilot symbols was empirically demonstrated in the selective frequency
channel [12]. The GAN approach introduces complexity to the training procedure due to
the need to alternate between training the discriminator and generator as well as between
the transmitter and receiver training phases.

A one-shot training approach for a conditional GAN was adopted in [22] to simplify
the training procedure. It was used to train an AE model that supports longer messages
lengths by combining the AE with bit-interleaved coded modulation (BICM) and an outer
low-density parity-check (LDPC) code [22]. Comparison against a 16-QAM baseline and a
AE-GAN trained on a simulated AWGN channel were made, as well as with a AE-GAN
trained over-the-air and the reinforcement learning (RL)-based approach described in [16].
The AE-GAN trained on the true over-the-air channel environment demonstrated improved
performance over the same approach trained on a simulated channel [22]. The approach
required two stages, with the GAN first trained independently of the AE and later applied
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to train the AE on the receiver side. While it was suggested that the GAN framework could
be used to model the channel without prior knowledge, the authors reported difficulties
in training the GAN considering the presence of carrier frequency offset (CFO), which
prevented the GAN from converging [22].

A separate channel model is not a necessity for optimisation of the transmitter and
receiver models. Other approaches have focused on gradient approximation methods to
support backpropagation at the transmitter. A finite difference gradient approximation
method, Simultaneous Perturbation Stochastic Approximation (SPSA), was applied in [13].
The transmitter symbols were perturbed multiple times with a given noise distribution
and the receiver errors were collected for each point and applied to approximate the
gradient at the transmitter [13]. The model was demonstrated to be equivalent to uncoded
quadrature phase-shift keying (QPSK) in AWGN and very close to theoretical uncoded
QPSK in Rayleigh block fading channels. In addition, it was shown to be comparable in
performance to the end-to-end AE described in [1]. The above process is computationally
expensive. Results are taken from an average of 250 independent models; each time the
gradient is approximated, the transmitter outputs are combined with a small perturbation
vector and the receiver loss is calculated for each [13]. Due to the amount of sampling
required to approximate the gradient, this method would encounter difficulty scaling to
more complex transmitter models or longer message sequences.

An alternate gradient approximation approach proposed in [14] is based on policy gra-
dient (PG) approximation. Such methods are applied in deep RL; an agent learns to exploit
actions in response to the environment, resulting in the highest expected reward [23,24].
In [14], a penalty signal is provided by the receiver loss. The transmitter is trained to min-
imise the loss without an explicit model of the channel environment. Learning is achieved
by alternating between the training of the receiver and the transmitter. This approach
does not require a local proxy for the receiver, as the gradient can be estimated directly
from the loss signal calculated for perturbations of the complex symbols learned at the
transmitter. This process generates a stochastic sampling scheme equivalent to RL “policy”
exploration [14]. The approach was evaluated in both AWGN and Rayleigh fading channels.
In the latter, the receiver network was modified with a prior assumption of the channel
distortion to learn estimates of the fading coefficients and reverse the fading prior to the
discriminative layers of the network [14]. While the authors indicated that the training pro-
cedure requires more iterations than the end-to-end method, their evaluation demonstrated
equivalent performance to end-to-end AE in both channels [14]. The method was tested
over-the-air with software defined radio (SDR) in [15,16] and had a lower error rate in
comparison to conventional codes. Both of these sources indicate that the method requires
an extended training duration and that the variance of the receiver loss negatively impacts
the convergence of the gradient at the transmitter [15,16]. To address the long training time,
it has been proposed to pretrain the network offline and perform online tuning of both the
transmitter and receiver [15].

The deep deterministic policy gradient (DDPG) approach was applied in [25] to
address the issues around convergence described in [14] by applying both a “replay” buffer
(sometimes termed an “experience” buffer) and a soft update rule used to transfer learned
weights between a duplicate transmitter and an accompanying critic network. This method
was reported to outperform the alternating algorithm in both Rayleigh and Rician fading
channels [25]. The addition of the replay buffer requires additional memory to store
previous receiver losses, and the additional critic network increases the complexity of the
training algorithm in a trade-off with the improved learning at the transmitter.

The problem of training both the transmitter and receiver has been framed as a
collaborative agent problem. These types of approaches are interesting because they can
coordinate training between different types of learning algorithms for the transmitter and
receiver. A hybrid approach called Collaborative Multi-Agent Learning was presented
in [26]. This method trains a neural network transmitter using RL to learn the symbol
constellation and a k-means clustering receiver to determine the number of symbols and



Sensors 2023, 23, 9848 6 of 21

estimate the message. A transmitter (Tx A) outputs a modulation for a given preamble, then
transmits to a receiver (Rx B) over an AWGN channel, which produces an estimate of the
message; this estimate is relayed through the second transmitter (Tx B) to a receiver on the
originating side (Rx A), which is used to estimate a loss signal for the original transmitter
(Tx A) [26]. This echo procedure has been shown to produce varying-order modulations
under different training regimes for noise and energy constraints [26]. However, it did
not achieve comparable results to the baseline QAM modulation [26]. The echo procedure
is complex in that it requires two pairs of transmitter and receivers; each pair iteratively
swaps between sending the original message to update each transmitter.

An echo protocol with a private preamble was applied in [17]. Pairs of collaborating
agents share information about the learning task, and the difficulty of learning increases
as less information is exchanged [17]. The authors asserted that their proposed echo
protocol with private preamble enables learning of different types of agents and minimises
the amount of information sharing between agents [17]. The method was demonstrated
to perform similarly to QPSK under AWGN as well as in over-the-air experiments [17].
Both sources [17,26] leveraged a similar approach in defining transmitter and receiver pairs
as agents during training, and both applied RL to train the transmitter. While neither
approach outperforms conventional codes, the technique of using the receiver estimate as
an echo is of interest for our method. Our proposed method learns to imitate the feedback
from the remote receiver estimate, which includes the errors made during training.

Regularisation in DL seeks to reduce the bias of the network towards training data. It
achieves this through reducing the complexity of the model during training [27]. Mecha-
nisms include penalising weights (weight normalisation and averaging), perturbation of
inputs (such as the transformations applied to images in computer vision), learning nor-
malisation of activations (batch and layer normalisation), perturbation of network structure
(such as drop-out), and training algorithms (such as stochastic gradient descent (SGD)).
The use of incorrect labelling has been shown to provide regularisation for classification
tasks [28]. This method makes use of a small noise rate to modify the ground-truth label of
each class by selecting from weighted alternatives [28]. It had been shown to slow conver-
gence and reduce overfitting of the model during training [28]. The authors used a fixed
noise rate parameter and showed improvements when training reference models on several
computer vision benchmarks [28]. While the noise rate is not decreased during training,
this approach is relevant to our proposed method. Early in the learning process, the remote
receiver yields a less accurate estimate which corresponds to a higher loss. The estimates
become more accurate during the learning process, and the loss gradually decreases as
learning progresses. The local channel/receiver is trained to imitate the estimates output
by the remote receiver. In this manner, the learning process is comparable to training
against noisy classification targets where the noise rate decreases over time. The purpose
is to enable the local channel/receiver to learn from the noisy estimation process at the
remote receiver.

The surveyed approaches for learning wireless communications systems have included
joint learning, disjoint learning, and collaborative agent learning. Our focus is on joint and
disjoint learning, with the the focus of this literature review on methods for training AE
neural network models. Our proposed method differs from the GAN and RL methods
surveyed above. In comparison to GAN methods, our method does not learn an explicit
channel generator model and does not require a discriminator model during training.
Instead, a local channel/receiver model is trained to imitate the remote receiver model.
In comparison to RL-based methods, we do not perform gradient approximation; hence,
we do not require multiple perturbations during the forward pass to estimate the gradient
at the transmitter, and do not require additional support from methods such as a “replay”
buffer to address variation in the loss estimate. Instead, the local channel/receiver model
acts as a proxy for the remote receiver model to support end-to-end backpropagation at
the transmitter. While we do leverage the remote receiver estimate as feedback, which is
somewhat similar to the echo protocol in collaborative agent learning, we do not require
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additional coordination protocols for multiple agents and do not train transmitter/receiver
pairs. Instead, our method trains a local proxy on the transmitter side against the feedback
of estimates from the remote receiver. Our simplified approach removes the need for
channel generative modelling, gradient approximation, or coordination protocols.

3. Methodology

In this section, we describe our proposed approach and the channel environment
simulation used for training and evaluation of the resulting transmitter and receiver models.
Section 3.1 briefly describes the communications system, Section 3.2 outlines our proposed
method and training approach, and Section 3.3 describes the channel environments used
for simulation during training and evaluation.

3.1. System Description

A wireless communications system aims to communicate a K bit message x. The trans-
mitter converts the message into an optional code word of length N, and converts the
message (or code) into a set of modulated symbols. It then combines the modulation with
a carrier wave to transmit a set of complex values z(t) ∈ C with t = 1 . . . T timesteps
and applies a filter to prevent inter-symbol interference. These values are transmitted
through a channel environment that causes distortions including noise and fading effects.
The channel environment is represented in our simulations as a channel transfer function
r(t) = h(z(t)). The received signal r(t) is filtered and imperfections are corrected, then it is
demodulated and decoded to produce an estimate for the original K bit message y. In a
wireless communications environment, there are mismatches at the transmitter and receiver
in the timing, phase, and frequency between the transmitted signal z(t) and received signal
r(t). Such imperfections can be simulated with the channel transfer function. However,
for this work we assume perfect synchronisation and do not perform corrections for these
offsets at the receiver, nor do we perform filtering at the transmitter and receiver. Our focus
is on training a local transmitter DL model to perform modulation and coding, simulating
the physical channel external to the DL models, and training the remote receiver DL model
to estimate the original message.

3.2. Proposed Approach

We start with the joint learning of an end-to-end AE model, similar to the architecture
described in [1]. This model, shown in Figure 2, consists of a transmitter neural network
Tx(x, θt) with weights θt and a receiver neural network Rx(r, θr) with weights θr linked by
an assumed channel function h(z). The main paths of both networks consist of feed-forward
dense modules followed by a rectified linear unit (ReLU) activation [29]. In the transmitter,
a tanh activation is applied prior to an energy normalisation layer. The modelling approach
focuses on small block codes using a symbol-wise representation; hence, input messages
of K bits are one-hot encoded as 2K words prior to presentation to the transmitter. A one-
hot encoded vector x has length 2K and contains a one at the index corresponding to the
selected message and zeroes in all other index positions.
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Figure 2. The end-to-end network architecture, where an assumed channel transfer function is
defined as a layer within the network architecture.

A set of complex soft values z ∈ C are output by the transmitter neural network
prior to the channel, and represent the code of length N; these are defined as two real
numbered vectors for the in-phase and quadrature IQ coordinates within the network
z = Tx(x, θt). Inputs to the receiver result from application of a channel transfer function
r = h(z), and the receiver converts these channel symbols back to a probability distribution
over each message p(y|r) = Rx(r, θr). The probability vector contains an estimate for each
of the possible 2K messages using the softmax activation. This activation function takes as
input the vector produced by the final dense layer f of the receiver neural network, which
has 2K linear units. The softmax activation is defined as p(yi|r) = exp ( fi)/ ∑2K

j exp ( f j);
the summation in the denominator ensures that the outputs sum to 1, and corresponds to a
probability density. The model performs classification by taking the index with the highest
probability as the index for the corresponding K bit word in the lookup table containing all
possible words M̂ = arg max p(yi|r).

In the canonical AE, the transmitter model, assumed channel function, and receiver
model are connected such that training can be carried out end-to-end with backpropagation.
Backpropagation consists of a forward pass p(yi|r) = Rx(h(Tx(x, θt)), θr) and a backward
pass that updates the weights at each layer by calculating the derivative with respect to the
loss by application of the chain rule. The model is trained to minimise the cross-entropy
loss between the true and estimated message labels in Equation (1). The expression p(ytrue)
indicates the target one-hot encoded vector for the true message presented during training.
Typically, the network is presented with batches of data and the loss is averaged over the
entire batch.

L(p(ytrue), p(y|r)) = −
2K

∑
i=1

p(yi) log p(yi|r) (1)

The backward pass calculates the gradients for the weights in the network. For the
receiver, the backward pass applies the chain rule between the receiver network model
and the loss function in Equation (2), and updates the weights by taking a small step in the
direction of the gradient θr = θr − η∇θr , where η represents a small learning rate constant.
For the transmitter, the backward pass includes the gradients from the receiver as well as
the gradient for the channel function with respect to the transmitter model, and updates
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the transmitter weights accordingly: θt = θt − η∇θt . In stochastic gradient descent, the
gradient is calculated over the batch and several enhancements to the method add features,
for instance, momentum to dynamically control the step size during learning, or adaptive
learning rates for different parameters of the model, such as in the Adam optimizer [30].

∇θr =
∂Rx(r, θr)

∂θr

∂L[p(ytrue), Rx(r, θr)]

∂Rx(r, θr)
(2)

∇θt =
∂Tx(x, θt)

∂θt

∂h(Tx(x, θt))

∂Tx(x, θt)
∇θr (3)

During receiver tuning, the transmitter and receiver models are detached from the
channel layer and the receiver model is updated via backpropagation while the transmitter
remains frozen. Therefore, receiver tuning does not require differentiation through the
channel function.

The architecture we apply in disjoint learning consists of a disconnected transmitter
model Tx(x, θt) and a receiver model Rx(r, θr), and we simulate a channel transfer function
h(z) separately from both models so that the channel does not participate in backpropaga-
tion. This is to simulate the process of over-the-air learning. In over-the-air learning, the
channel may take on more complex behaviour than is captured by the assumed mathemati-
cal channel function. Therefore, training from the true channel is desirable, as it can permit
the network to learn a coded modulation that is optimised for the true channel environment.
As described in Section 2, the current approaches to disjoint learning achieve backpropaga-
tion at the transmitter by either explicitly learning the channel or by approximating the
channel gradient. Instead of learning the channel directly, we rely on a local proxy for the
remote receiver at the transmitter side, which we use to perform backpropagation without
training an explicit channel model.

Before describing the training method, we first describe the structure of the network
architectures for the transmitter and receiver models. The transmitter and receiver neural
network architectures contain a series of fully connected dense blocks, similar to the end-
to-end AE; however we add skip connections in the main path of each network. This
architecture is illustrated in Figure 3. The skip connections, described as a “Skip Block”
in the figure, assist backpropagation and combine features learned in the earlier hidden
layers with the upper hidden layers [31]. In addition to the effect on backpropagation,
skip connections are indicated to learn an ensemble of networks [32]. Each skip block is
comprised of several dense blocks containing batch normalisation [33] and a nonlinear
swish activation [34]. Input to and output from the transmitter follows the same principle
as the end-to-end architecture, as does the input and output from the receiver. The layers,
unit sizes, and groups within the transmitter are described in Table 1, while the receiver
is described in Table 2. The dimension of the networks was arrived at through a manual
process; while it is possible to use automated procedures for finding the best dimensions,
such processes often tend to be computationally demanding and require a long duration.
We chose a manual stepwise approach for simplicity, gradually increasing the dimensions
of each layer by powers of 2. It is interesting to note that learning shorter codes appears to
be more challenging than learning codes with longer lengths, requiring a larger dimension
of the intermediate dense layer within the skip block for the 4/7 code rate as opposed to
the uncoded 8 bit message.
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Figure 3. The architectural blocks for disjoint learning of transmitter and receiver. The same architec-
ture is applied in both local and remote receivers. A channel transfer function is not assumed as part
of the model.

Table 1. The transmitter consists of four groups: input, skip block, a linear transformation, and an
output block. The number of units are specified for the dense layers, while batch normalisation and
swish activation preserve the same dimension of output as produced by the dense layer. A larger
dimension of units was required for the 4/7 code rate as opposed to uncoded 8 bit message due to
the coding gain required to match the Hamming(7,4) code.

Layer Units Code Rate 7/4 Units Uncoded 8 Bit Group

Input layer 2K 2K Input

Dense layer 256 256 Skip block
Batch normalisation - -

Swish activation - -
Dense layer 128 16

Batch normalisation - -
Swish activation - -

Dense layer 256 256
Batch normalisation - -

Swish activation - -

Dense layer 2N 2N 2N linear block
Linear activation - -

Reshape [N, 2] layer - -

Dense layer 2 2 Output [N, 2]
Tanh activation - -

Energy normalisation - -

The training procedure is illustrated in Figure 4, which shows the three stages of
the proposed disjoint training regime. This approach consists of training three models:
a local transmitter model Tx(x, θt), a local channel/receiver model RxL(z, θl), and a remote
receiver model RxR(r, θr), separated by a channel h(z) which is not connected to the
network models. The local channel/receiver model does not receive inputs r from the
simulated channel; instead, it takes its inputs directly from the output of the transmitter
model z = Tx(x, θt). During training a feedback channel is required, allowing the average
value to be captured for the remote loss per batch along with remote estimates p(y|r)
for each item in the batch. Only one network is trained at each stage.
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Table 2. The receiver network, consisting of three groups for input, feature learning (skip block), and
output. The dimension of units are shown for each dense layer, with subsequent layers producing
the same shape output as the preceding dense layer. A larger network was required to achieve the
4/7 code rate as opposed to the uncoded 8 bit message.

Layer Units Code Rate 7/4 Units Uncoded 8 Bit Group

Input layer [N, 2] [N, 2] Input
Flatten layer - -

Dense layer 256 256 Skip block
Batch normalisation - -

Swish activation - -
Dense layer 128 16

Batch normalisation - -
Swish activation - -

Dense layer 256 256
Batch normalisation - -

Swish activation - -

Dense layer 2K 2K Output
Softmax activation - -

Figure 4. The three stages of the training procedure consist of a forward pass through the transmitter
z = Tx(x, θt), channel r = h(z), and remote receiver p(y|r) = Rx(r, θr). The remote receiver estimates
p(y|r) are obtained through the feedback channel. The second stage trains the local channel/receiver
model using the KL divergence loss between the local channel/receiver estimates p(y|z) and remote
receiver estimates p(y|r). The third stage trains the transmitter using the local receiver as a proxy to
enable end-to-end backpropagation.

To generate the same sequences of random messages in each training iteration, both
sides are initialised with the same random seed at the start of each batch. In the first
stage, the local transmitter remains frozen and provides the forward pass for the batch
of symbols z = Tx(x, θt) that are sent to the remote receiver over the simulated channel
r = h(z). The remote receiver is trained with SGD against the cross-entropy loss between
the true and estimated message labels in Equation (1). The remote receiver probability
estimates p(y|r), along with the mean loss, are sent over the feedback channel to the
local transmitter. In the second stage, the local receiver is trained to imitate the remote
receiver using the Kullbach-Leibler (KL) divergence loss in Equation (4). The aim is
to minimise the difference between the estimated probabilities at the remote receiver
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p(y|r) = RxR(r, θr) given the channel symbols, and the estimated probabilities at the local
channel/receiver p(y|z) = RxL(z, θl) given the local transmitter symbols z. This allows the
local channel/receiver to learn how to act as a proxy for the remote receiver without an
explicit model of the channel by imitating the estimation produced at the remote receiver.
As indicated by Equation (5), the gradient for the connected local transmitter Tx and the
local channel/receiver RxL can be described as a weight update for the combined weights
θt,l of the end-to-end connected model θt,l . Because the feedback channel provides p(y|r)
from the remote receiver, the backpropagation at the transmitter side is no longer dependent
on an assumed channel function.

Lstage2[p(y|r), p(y|z)] =
2K

∑
i=1

p(yi|r) log
p(yi|r)
p(yi|z)

(4)

∇θt,l =
∂Tx(x, θt,l)

∂θt,l

∂RxL(Tx(x, θt,l), θt,l)

∂Tx(x, θt,l)

∂Lstage2[p(y|r), RxL(Tx(x, θt,l), θt,l)]

∂RxL(Tx(x, θt,l), θt,l)
(5)

Both Stage 1 and Stage 2 make use of a larger batch size than the third stage, which we
set at 320 samples in stages 1 and 2 and 32 samples in Stage 3. In the third stage, a forward
pass through the transmitter is made for a new batch. The local channel/receiver is used
to calculate the cross-entropy loss against the true messages L[p(y), p(y|z)]. The local
channel/receiver estimates are conditioned on the output of the local transmitter z, rather
the output of the simulated channel r as is the case on the remote receiver. Updates
resulting from the backpropagation process occur only on the local transmitter, as the
local channel/receiver weights are frozen during this step. The label noise introduced
in the second stage enables the transmitter to learn appropriate IQ symbols to assist the
remote receiver in the labelling task. To demonstrate that this approach has an effect, we
performed training with no feedback, in which the second stage of the algorithm updates
a local receiver model against the true message using the cross-entropy loss instead of
optimising toward the remote distribution. In Section 4, we demonstrate that training the
local channel/receiver to imitate the remote receiver produces an observable difference in
performance in comparison to the same algorithm without feedback.

Energy normalisation is applied to constrain the output of the transmitter such that
||x||22 ≤ 1, as defined in Equation (6), where the learned code x(t) with length L is divided
by its scaled Euclidean norm to produce the transmit symbols z(t).

z(t) =
x(t)√

∑L
i=1 x(i)2/L

(6)

Each of the networks are trained using the Adam algorithm [30], and we combine
stochastic weight averaging (SWA) [35] with a cyclical learning rate schedule [36] which
oscillates between learning rates of 0.0001 and 0.001. In this work, we simulate the channel
transfer function as described in Section 3.3. This allows the signal to noise ratio (SNR)
dB to be randomised during training of the remote receiver; however, in an over-the-air
setting, the SNR dB parameter cannot be set explicitly.

3.3. Simulated Channel Functions

Comparisons between models were made in simulated channel environments for
AWGN, Rayleigh, and Rician fading as well as for an AWGN channel with nonlinear
amplifier effects, namely, power amplifier Additive White Gaussian Noise (PA-AWGN).
In the AWGN channel, the transfer function adds a noise term n(t) to the symbols output
by the transmitter in Equation (7).

r(t) = z(t) + n(t) (7)
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In the Rayleigh fading channel, a series of complex fading coefficients a(t) = 1√
2
|a| are

sampled from the complex standard normal distribution a ∼ CN (0, 1). These coefficients
are applied to scale the transmitter symbols before adding the noise term in Equation (8).

r(t) = a(t)z(t) + n(t) (8)

The Rician fading channel has the same structure as Equation (8), except that the
fading coefficients are drawn from a parameterised complex normal distribution. The mean
µ =

√
K/(2(K + 1)) and standard deviation σ =

√
1/(2(K + 1)) are both determined by

the Rician factor K, which in our simulations we define as K = 10. The coefficients are
then drawn from the complex normal distribution a ∼ CN (µ, σ2) and applied to scale the
transmitter symbols.

The PA-AWGN assumes a Rapp model of a solid state high power amplifier (SSPA) [37]
that is applied to the output of the transmitter in Equation (9). The parameters for the
model include the limiting output amplitude A0, a gain parameter ν, and a smoothness
parameter p; in our simulations, we configure A0 = 1, ν = 1, and p = 5. The nonlinearity
operates on the magnitude of the transmitter output, and is multiplied by the complex
exponent of the argument of the transmitter output A = |z(t)|. In the PA-AWGN channel,
AWGN is applied after amplification.

g(A) = ν
A

(
1 +

[(
νA
A0

)2
]p)1/2p

z′(t) = g(|z(t)|)ej∠z(t)

(9)

The noise term n(t) in each of the channel models above is drawn from the complex
normal distribution. When simulating the channel function, we define the desired level
of SNR or ratio of energy per bit to the noise Eb/N0 provided in dB. As the models
learn a coded modulation with a code rate K/N, we convert this quantity to the ratio of
energy per symbol to noise Es/N0 dB = Eb/N0 dB+ 10log10(K/N) and use the linear ratio
Es/N0 = 10Es/N0 dB/10 to separate terms for Es and N0. The term Es is estimated directly
from the L transmitter IQ symbols Es = ∑L

t=1 z(t)2/L and N0 = Es/(Es/N0). The noise is
then sampled from the complex normal distribution n(t) ∼ CN(0, σ2) using the variance
σ2 = N0/2.

4. Results and Discussion

In this section, we evaluate the proposed method in the AWGN, Rician and Rayleigh
fading, and PA-AWGN channels. In the AWGN channel, we train and compare the joint
model and the proposed disjoint model for the 8 bit uncoded and Hamming(7,4) code
rates. We additionally draw comparisons between receiver tuning for the joint model
and the disjoint model. Receiver tuning is performed by training the joint model in the
Rician fading channel and tuning the receiver in the Rayleigh fading channel. We make
comparisons with receiver tuning by training the joint model on the AWGN channel and
tuning the receiver in the PA-AWGN channel. This is performed for both code rates. We
present a comparison between the proposed disjoint training method requiring feedback
against the training without feedback. These results are reported in the Rayleigh fading
channel. In addition, we present results for quantisation of the feedback, which can reduce
the overall channel usage required during training.

The joint and disjoint learning methods for the 8 bit message are compared with un-
coded binary phase shift keying (BPSK) under several channels in Figure 5. The proposed
disjoint learning process provides slightly better performance than the joint learning pro-
cedure under AWGN (Figure 5a). In the Rician fading channel, disjoint learning achieves
lower block error rate (BLER) than the joint learning method (Figure 5b), whereas disjoint
and joint learning produce similar BLER in the Rayleigh fading channel (Figure 5c). Re-
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ceiver tuning leverages the joint dense network from the Rician fading channel and updates
the receiver under the Rayleigh fading channel (Figure 5c). Receiver tuning does not reach
the same level of BLER as the other methods.
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Figure 5. Comparison of BLER in the four channel environments for the uncoded 8 bit message.
The joint learning, disjoint learning and BPSK modulation are compared in the (a) AWGN channel,
(b) Rician fading channel, and (c) Rayleigh fading-channel. (d) Comparison between joint learning,
disjoint learning, and receiver tuning in AWGN with PA-AWGN non-linearity.

Joint and disjoint learning methods are compared to the Hamming(7,4) code in Figure 6
in the AWGN (Figure 6a), Rician (Figure 6b), and Rayleigh (Figure 6c) fading channels. Both
the joint and disjoint methods exhibit very similar or slightly better performance as maximum
likelihood decoding (MLD) for the Hamming(7,4) code in each of these channels. Receiver
tuning is repeated for the (7,4) code in Figure 6c, adapting the joint model receiver trained
under Rician fading to the Rayleigh fading channel. While the performance is close to the
other codes, it does not achieve the same BLER as the disjoint method with the transmitter
optimised for the channel environment.
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Figure 6. Comparison of BLER in the four channel environments for the K = 4, N = 7 code rate.
The joint learning, disjoint learning and the BPSK modulated Hamming(7,4) code are compared in
the (a) AWGN channel, (b) Rician fading channel, and (c) Rayleigh fading-channel. (d) Comparison
between joint learning, disjoint learning, and receiver tuning in AWGN with PA-AWGN non-linearity.

There is a difference in architecture between the joint and proposed disjoint models
for the transmitter and receiver described in Section 3.2. The combination of the residual
connections and additional dense layers increases the size of the disjoint models slightly,
and contribute to the gain over the joint model. In comparison to uncoded BPSK modula-
tion, the joint and proposed models learn a continuous code that is non-zero in both IQ
coordinates; the resulting code is more complex than BPSK modulation, which is non-zero
on the in-phase (I) axis. The performance of a code is related to the minimum squared
distance between all codes [38]. Ideally, the transmitter should learn a code that has a large
minimum Euclidean distance. Taking for example the K = 4, N = 7 learned code, we
can compute the minimum (dEmin ), mean (E[dE]), and variance (Var[dE]) of the Euclidean
distances for each of the proposed K = 4, N = 7 disjoint models, as shown in Table 3.
The reference Hamming(7,4) code with a minimum binary distance (dmin) of 3 is included
for comparison. The disjoint model has learned a slightly different code under each of the
channels, each with a slightly different value for dEmin . While dEmin is not always larger than
the computed value for the Hamming(7,4) code, E[dE] is slightly larger, and the Var[dE] is
quite low in comparison. We would expect that the learned code would perform slightly
better in those channels where dEmin is larger than the reference code, which is indeed
the case for AWGN. While the learned code in the Rayleigh channel has a slightly lower
minimum Euclidean distance, it appears that the E[dE] and low Var[dE] may contribute to
the overall performance of the learned code.
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Table 3. Computed minimum (dEmin ), mean (E[dE]), and variance (Var[dE]) of the Euclidean distances
between 2K messages. Distance measures are shown for the reference Hamming(4,7) and the disjoint
K = 4, N = 7 code trained in each channel environment. The minimum binary distance (dmin) is
provided for the Hamming code, but is not applicable for the learned continuous codes.

Code dmin dEmin E[dE] Var[dE]

Hamming(7,4) 3 3.46 3.83 0.21

Disjoint AWGN (7,4) - 3.51 3.85 0.08
Disjoint Rician (7,4) - 3.44 3.85 0.07

Disjoint Rayleigh (7,4) - 3.37 3.86 0.05
Disjoint PA-AWGN (7,4) - 3.06 3.85 0.08

To further investigate the effect of the channel on tuning and disjoint learning, we
compared the joint model trained on AWGN with a receiver tuned model and the disjoint
model under the PA-AWGN channel. Figures 5d and 6d show the BLER for the uncoded
8 bit message and the 4/7 code rate, respectively. In both cases, the AWGN joint model is
unable to provide decoding for learned symbols under the PA-AWGN channel. However,
the receiver tuned model derived from the same joint AWGN model learns to optimise
the receiver, allowing it to classify messages in this environment. The advantage of the
proposed disjoint learning algorithm is indicated by the improvement in performance over
the receiver tuned model due to training both the transmitter and receiver.

Because the proposed disjoint model outperforms the receiver tuned model, it is clear
that the transmitter model is learning a code that is specifically optimised to the target
channel environment where it is trained. This is evident in the distance measurements of
the K = 4, N = 7 code presented in Table 3. To evaluate the difference between the learned
codes, we computed the BLER performance for models which were not trained on two of the
selected channel environments. Figure 7a presents the BLER for the disjoint models which
were not trained on the Rayleigh fading channel in comparison with the optimal disjoint
model for that channel. The performance of the disjoint models optimised for the AWGN
and Rician fading channel are similar to, but do not exactly match, the same performance of
the optimised Rayleigh fading model. These two models have been optimised for slightly
simpler channels than the Rayleigh fading channel. The Rician fading channel has slightly
different fading characteristics from the Rayleigh fading channel, and the Rician model is
closer in performance. The AWGN channel has no fading effects, and the resulting model
has higher BLER than both of the other fading models. However, there is a large difference
between the performance of the disjoint model optimised for the PA-AWGN channel and
the other models. The performance is reversed in Figure 7b, where the PA-AWGN model is
the optimal model. By imitating the remote receiver, the local channel/receiver enables
the transmitter to learn codes which are optimised for the channel environment and which
can be applied in channels with similar characteristics. However, it is possible for channel
environments to differ significantly, as illustrated in Figure 7. The nonlinear effects of the
amplifier are unique to the PA-AWGN channel, and are not shared with the other channels.
In a practical wireless communications system, it is necessary to detect when the channel
changes significantly (i.e., when performance degrades) and to either adapt using OAL
and/or develop DL methods for adaptive modulation and coding schemes [38] that can
select from multiple learned codes.
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Figure 7. Comparison of BLER performance for the proposed disjoint models without retraining
on targeted channel environments. Indicating the transmitter learns a code that is optimised for
the targeted channel. (a) Comparison of BLER performance without retraining in the Rayleigh
fading channel. (b) Comparison of BLER performance without retraining in the PA-AWGN channel.

The proposed method enables the transmitter to learn codes that are optimised during
training for the observed channel environment. However, the question arises as to what
extent imitating the remote receiver is helpful in achieving optimisation at the transmitter.
Is it possible to achieve the same optimisation by simply training the local receiver against
the true target message? We compared this no-feedback approach against the disjoint
Learning method in Figure 8, where disjoint learning with feedback strongly outperforms
learning without feedback. It is not sufficient to train the local receiver against a noiseless
channel; instead, by imitating the remote receiver, enough information about the channel
distortion is provided to the transmitter model during backpropagation to enable it to
learn optimal symbols for the current channel condition. This is clearly indicated in both
Figures 5 and 6, where the disjoint method either outperforms or matches the joint learning
method, achieving optimal BLER (in the case of the Hamming(7,4) code).
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Figure 8. Comparison between learning without feedback, learning with soft values, and learning
with quantised values in the Rayleigh fading channel.
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Feedback of soft values during disjoint training does require a large amount of data,
depending on the message size; for example, in an uncoded 8 bit message, the feedback
stage requires a batch size of 320 × 256 soft values. It is desirable to reduce the amount of
information that needs to be sent over the feedback channel during learning. One possible
method is to simply take the arg max p(y|z) output at the remote receiver and feed back
the integer indices for learning at the local channel/receiver; this reduces the amount of
data to the batch size (320 × 1). As these integer values can be translated to a one-hot
encoding on the transmitter side, the local channel/receiver then learns to imitate the remote
receiver through the cross-entropy loss. Figure 8 compares the performance resulting from
training with reduced information (Disjoint Quantised) as opposed to soft values (Proposed
Disjoint), and indicates no loss of performance under the Rayleigh fading channel.

Our results show that the learning process in the transmitter is dependent on the local
channel/receiver model. This is indicated by the ability to learn an equivalent or better
performing code than the joint AE as well as by the difference in performance in different
channels. The feedback of the estimates p(y|r) from the remote receiver contains implicit
information about the channel environment. This implicit information is conveyed by
the errors made at the remote receiver, which can be regarded as a kind of classification
label noise, such as the type of regularisation introduced in [28]. Hence, by learning to
imitate the remote receiver, the local channel/receiver learns to make the same errors
over the course of learning. Unlike traditional supervised learning for classification, in
which a model is optimised against a static set of target labels, the proposed learning
process gradually changes all three models (the local transmitter, local channel/receiver,
and remote receiver). The implication is that all three models are jointly optimised. In order
to improve performance at the remote receiver, the transmitter alters the learned code based
on the distance between the local channel/receiver estimate p(y|z) and the remote receiver
estimate p(y|r). The need for backpropagation over an unknown channel is mitigated,
as the information required to learn an optimal code is contained in the feedback of the
estimates for p(y|r) from the remote receiver.

While we have demonstrated equivalent or better performance compared to the joint
model, our work has a number of limitations. First, we assumed perfect synchronisation
and did not apply matched filtering or any timing, phase, or frequency distortions. Second,
for the purposes of discussion, we have limited our study to the domain of short codes.
Third, the method requires high use of a feedback channel, similar to the RL-based methods.
However, we have shown that it is possible to reduce the feedback channel usage; instead
of learning to approximate the soft values for p(y|r) estimated at the remote receiver, it
is possible to train against the arg max p(y|r) without loss of performance. Finally, our
method does not explicitly model the channel in the way that a GAN provides a separate
channel model which can be reused outside of the training process. Instead, the local
channel/receiver provides an implicit distortion to the transmitter in order to enable opti-
misation. Our approach represents a simplification over other training methods, requiring
fewer models than the GAN approach by omitting the generator and discriminator models.
The proposed method is able to take advantage of backpropagation directly, as opposed
to the gradient approximation applied in RL methods, and does not require a complex
coordinating protocol such as the one used in cooperative multi-agent learning.

5. Conclusions and Further Research Work

To date, disjoint learning methods have focused on simulation of the channel via GAN
or gradient approximation through finite difference methods or RL approaches. In this
paper, we have presented an additional approach to disjoint learning by learning to imitate
the remote receiver. We have demonstrated equivalent performance to joint learning in
AWGN, Rician, and Rayleigh fading channels, and shown that learning to imitate has
the advantage of optimising both the transmitter and receiver, as opposed to receiver
tuning, which can only adapt the remote receiver after joint learning. By comparing the
distance metrics for learned codes, the performance of models in different channels, and the
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difference in performance between training with and without feedback, we have provided
evidence that our proposed method is able to optimise the local transmitter and remote
receiver models without an assumed channel model. The local channel/receiver model
has no explicit knowledge of the channel, and by imitating the remote receiver, provides
enough implicit channel information to enable the transmitter to learn optimal codes for
the channel environment.

The limitations described in Section 4 provide an opportunity for future investigation.
The assumption of perfect synchronisation can be addressed by incorporating additional
channel perturbations and matched filtering. Further investigation into longer codes
can be facilitated by incorporating bitwise estimation and concatenated codes. Bitwise
estimation differs from symbolwise classification, and may alter the optimisation of the
local channel/receiver during training. This method can find potential applications in
joint-source coding and semantic coding, which have both benefited from the use of AE.
In order to address changing channel conditions, it is possible to investigate alterations
to the architecture to support adaptive modulation and coding schemes, or alternately to
determine how to appropriately retrain the transmitter and receiver models under changing
channel environments. In addition, future scope remains for investigating real-time training
requirements over physical hardware. Even though this method makes no assumptions
about the channel model, it is possible to train the models offline and adapt both transmitter
and receiver models in a deployed scenario as opposed to receiver only tuning.

As an alternative to channel approximation and gradient approximation methods in
disjoint learning, learning to imitate the remote receiver provides an additional method of
disjoint learning without an assumed channel, and offers a simplified training procedure
that can be applied to over-the-air learning in wireless communication systems.
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6.3 Links and Implications

The article contributes a simplification of the training process for OAL by demonstrating that

it is not necessary to perform Gradient approximation or use Channel approximation to model

the channel explicitly. Instead, it is possible to train a local receiver against the remote receiver

estimates on the transmitter side, which can be leveraged to train the transmitter in an E2E

manner. This method is demonstrated to learn implicit knowledge of the channel through

imitating the noisy errors made by the remote receiver. In addition, the article shows that it is

possible to reduce the feedback channel usage by providing only the quantised estimates from

the remote receiver without negatively impacting performance of the trained system. The method

is also shown to jointly optimise the transmitter and receiver by comparing resulting performance

against receiver tuning with a pre-trained model.
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CHAPTER 7: PAPER 4 - DEEP LEARNING

BASED OVER-THE-AIR TRAINING OF

WIRELESS COMMUNICATION SYSTEMS

WITHOUT FEEDBACK

7.1 Introduction

This chapter presents a copy of the article published in Sensors (vol. 24 (2024), no. 10,

p2993, ISSN: 1424-8220, doi:10.3390/s24102993. https://www.mdpi.com/1424-8220/24/

10/2993).

In OAL, Channel approximation develops a separate DL model of the true channel envi-

ronment and is applied in training transmitter and receiver E2E. A series of methods requiring

feedback during iterative training have been proposed in the literature, however, the use of a

feedback channel increases channel usage during training and potentially exposes the training

procedure to adversarial attacks, such as replay attacks. Therefore, it is desirable to train without

the use of a feedback channel. Prior work has also suggested the use of a pre-trained transmitter

to generate batches for the training of a channel model on the receiver side. However, an

information carrying signal remains vulnerable in an adversarial environment. Hence, this article

trains a channel model on random samples over the true channel environment and develops a

transmitter and receiver E2E on the resulting channel model. The proposed method is shown to

perform equivalently to the canonical AE in a number of channel environments. In addition, the

channel model is developed from the MDN modelling approach, which is a simpler approach

with less training overhead than either GAN or diffusion networks that have been proposed in

the literature.

Research Highlights

• An iterative OAL algorithm is proposed for the development of transmitter, receiver

and channel model which does not require continuous feedback between transmitter and

receiver.
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• The article describes application of the MDN for the approximation of the channel transfer

function, and demonstrates approximation for several simulated channels including the

AWGN, Rician fading, Rayleigh fading and power amplifier AWGN channels.

• Intermittent measurement of BLER for transmitter and receiver models via the generative

channel is shown to highly correlated with the BLER derived from the true channel and has

suitable application as training stopping criteria and for monitoring of learning process.

• Finally, the article demonstrates that the performance for the resulting transmitter and

receiver models are equivalent to or better than the end-to-end model which is trained with

an assumed channel model. This is shown for AWGN, Rician fading, Rayleigh fading and

non-linear power amplifier distortions over AWGN simulated channels.

7.2 Published Article 4
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Abstract: In trainable wireless communications systems, the use of deep learning for over-the-
air training aims to address the discontinuity in backpropagation learning caused by the channel
environment. The primary methods supporting this learning procedure either directly approximate
the backpropagation gradients using techniques derived from reinforcement learning, or explicitly
model the channel environment by training a generative channel model. In both cases, over-the-air
training of transmitter and receiver requires a feedback channel to sound the channel environment
and obtain measurements of the learning objective. The use of continuous feedback not only demands
extra system resources but also makes the training process more susceptible to adversarial attacks.
Conversely, opting for a feedback-free approach to train the models over the forward link, exclusively
on the receiver side, could pose challenges to reliably end the training process without intermittent
testing over the actual channel environment. In this article, we propose a novel method for the
over-the-air training of wireless communication systems that does not require a feedback channel to
train the transmitter and receiver. Random samples are transmitted through the channel environment
to train a mixture density network to approximate the channel distribution on the receiver side of the
network. The transmitter and receiver models are trained with the resulting channel model, and the
transmitter can be deployed after training. We show that the block error rate measurements obtained
with the simulated channel are suitable for monitoring as a stopping criterion during the training
process. The resulting method is demonstrated to have equivalent performance to the end-to-end
autoencoder training on small message sequences.

Keywords: deep learning; feedback-free training; trainable wireless communications systems;
over-the-air training; neural networks

1. Introduction

Messages in a wireless communication system are sent from a transmitter over the air,
via a channel environment, to a receiver whose aim is to recover the original message. A
simplified depiction of such a wireless communications system is shown in Figure 1. The
channel environment is significant in this type of communications system, as it distorts
the message with perturbations such as noise and fading effects. These channel effects,
along with imperfections within the electronics of both the transmitter and the receiver,
present a challenge to the recovery of the original message. To improve accuracy at the
receiver, the transmitter can code message bits to enable error correction at the receiver. It is
also responsible for modulating the message bits and converting the modulation to a radio
frequency (RF) signal suitable for sending over the wireless channel. At the receiver, the
distorted RF signal must be detected, demodulated, and decoded in order to recover the
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original sequence of bits. Each of these steps is conventionally defined as separate signal
processing blocks that are optimised independently of one another [1].

Figure 1. A simplified view of a wireless communications system. The transmitter takes in a K
bit binary message M and codes and modulates the message producing transmitter symbols z(t).
These symbols are transmitted over a channel that produces noise and outputs symbols s(t). The
receiver is responsible for correcting the channel distortions and producing an estimate for the
original message M̂.

End-to-end deep learning (DL) for wireless communications systems has been pro-
posed as an alternative design approach to that of block-based traditional design [1]. The
primary advantage of DL over block-based design is the potential to perform end-to-end
optimisation over observations of a complex channel environment. Especially where the
channel environment may be too complex to be expressed mathematically. However, in [1],
the channel environment is assumed and described by a differentiable channel transfer
function that does not necessarily capture the description of a true channel environment.
Instead of assuming a channel function, it is preferable to jointly optimise the DL-based
transmitter and receiver over examples produced by the true channel. However, in DL
this poses a genuine challenge. The backpropagation algorithm, which modifies the pa-
rameters of the model, cannot occur between the transmitter and receiver. This is because
the calculation of the gradient for the model parameters cannot be determined without a
differentiable channel function.

To overcome this limitation, over-the-air learning (OAL) methods have either applied
gradient approximation [2,3] or trained a separate generative channel model to enable
end-to-end backpropagation [4,5]. The primary limitations of gradient approximation
are the requirement to sample several perturbations through the channel at each training
iteration and continuous feedback of the receiver error. Continuous feedback increases
channel usage and exposes the training process to eavesdropping and data poisoning attack
by adversary communications systems [6]. In the generative channel modelling approach,
the generative adversarial network (GAN) has been widely adopted to approximate the
wireless channel distribution [4,5,7]. However, GAN training requires two models to
learn a channel approximation, a generator and a discriminator model, and proceeds in
two stages. First, by training the discriminator to recognise true channel symbols versus
those produced by the generator model, and second by training the generator to fool the
discriminator. This adversarial training regime adds complexity to the overall training
process for the transmitter and receiver.

In our prior work, we proposed a disjoint OAL algorithm that trains the transmitter
with a local receiver by imitating the errors made at the remote receiver [8]. The local
receiver relied on a feedback channel to supply the remote error information. However, as
in gradient approximation, the feedback channel increases channel use and is vulnerable to
eavesdropping and data poisoning attack during training.

Reliance on continuous feedback is a vulnerability for the overall security of OAL of
DL-based wireless communications systems. To realise OAL on energy-constrained devices
such as in the internet of things (IoT), it is important to avoid complex training procedures
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which require training multiple models. Both of these considerations motivate the work in
this article with the following aims:

• To simplify the training procedure for OAL learning of transmitter and receiver, by
proposing an alternative to gradient approximation and eliminating the requirement
for the use of a feedback channel, as well as by developing a simple channel model
that does not require adversarial training against a discriminator, while still learning
an accurate approximation of the observed channel distribution.

• To reduce the vulnerability of OAL training to eavesdropping and adversarial attacks
by removing the use of a feedback channel and preventing transmission of information-
carrying symbols over the true channel environment that could be intercepted and
altered during training.

Motivated by these challenges, in this article, we investigate a method for OAL in
wireless communication systems that can be performed on the receiver side. The proposed
approach does not require continuous feedback and requires training only a single model
to approximate the distribution of the true channel. Additionally, we determine that
intermittent evaluation of the transmitter and receiver using the resulting channel model is
a suitable method for determining training stopping criteria and provides a measurement
appropriate for monitoring of the learning process.

The key contributions of this article are:

• We propose an iterative OAL algorithm for the development of a transmitter, receiver,
and channel model § that does not require continuous feedback between transmitter
and receiver.

• We discuss the application of the mixture density network (MDN) for the approxi-
mation of the channel transfer function. We also show the demonstration of approxi-
mation for several simulated channels, including the additive white Gaussian noise
(AWGN), Rician fading, Rayleigh fading, and power amplifier AWGN channels.

• We capture the simulated block error rate (BLER) for transmitter and receiver models
measured over the generative channel model and demonstrate that this measurement
correlates well with the BLER measured over the true channel environment, thereby
showing that the simulated BLER is suitable for use as the training stopping criteria
and for monitoring of the learning process.

• Finally, we demonstrate that the performance of the resulting transmitter and receiver
models is equivalent to or better than the end-to-end model that is trained with an
assumed channel model. This is shown for AWGN, Rician fading, Rayleigh fading,
and non-linear power amplifier distortions over AWGN simulated channels, thereby
matching the performance of more complex OAL methods that compare against the
end-to-end model in the literature.

In this article, we present the background for end-to-end learning and related work
in Section 2. In Section 3, we describe the system model and our proposed approach.
We present and discuss results for the proposed approach compared with the end-to-end
method in Section 4. In Section 5, we discuss limitations and simplifying assumptions
for the proposed method and describe how these may be addressed in Section 6.2, which
describes avenues for Future Work. Finally, we summarise our findings and conclude our
paper in Section 6.1.

2. Background and Related Work

The most commonly cited motivation for the use of DL in training a wireless communi-
cation system is for its potential as a data-driven method to jointly optimise both the receiver
and transmitter with respect to the distortions produced from the channel [1,4,5,7,9–14].
This motivation has spurred much investigation into the practical considerations required
to realise the goal of automated design. Notably, the end-to-end design was first presented
in [1], which demonstrated the application of the autoencoder (AE) model to the end-to-end
joint optimisation using backpropagation for the transmitter and receiver over an assumed
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channel. The AE structure is divided into an encoder or transmitter component, a differen-
tiable channel transfer function, and a decoder or receiver component. It is demonstrated to
learn an encoding that can produce a BLER similar to the conventional Hamming(7,4) code
over the AWGN channel [1]. The backpropagation training of wireless communications
systems suffers a significant flaw, however, and that is the requirement for end-to-end
differentiation must also assume a differentiable channel transfer function. This limitation
prevents the design method from being applied in physical channel environments.

The simplest way to address this limitation is to take a two-step approach: first, train-
ing the end-to-end system offline, and second, performing tuning of the receiver model in
the true channel environment. This procedure is demonstrated in [9], with a more realistic
channel function that includes upsampling, timing, phase, and frequency offsets. Incor-
porating these additional distortions in the channel function required additional design
considerations in the receiver model, which included a data preprocessing step to slice
windows of the incoming signal, a phase estimation, and general feature extraction layers
whose outputs were concatenated to feed into the receiver classifier [9]. The transmitter and
receiver architectures were trained end-to-end, and the receiver was tuned post-deployment
in both simulated AWGN and physical channels. The performance of the AE did not quite
match the conventional differential quadrature phase-shift keying (QPSK) modulation
but did demonstrate the first practical application of end-to-end training to OAL. Joint
optimisation of both the transmitter and receiver models remained elusive, however, since
only the receiver benefited from tuning in the deployed channel environment.

Gradient approximation methods were developed to enable optimisation for both the
transmitter and receiver in OAL without prior knowledge of the channel. Two notable ap-
proaches were developed, the first being derived from simultaneous perturbation stochastic
approximation (SPSA) [2] and the second based on Reinforcement learning (RL) policy
gradient methods [15]. Both methods require that the transmitter outputs are perturbed
multiple times to sample the loss from the receiver at several small displacements around
the transmitter outputs [2,15]. The SPSA method requires more sampling than the latter
method and does not scale well to longer messages or more complex transmitter models [3].
Both approaches did, however, demonstrate the feasibility of the method and achieved
performance equivalent to the joint end-to-end approach in AWGN and Rayleigh fading
channels. Subsequent work has advanced the use of the RL-based approach with appli-
cation to concatenated coding and demonstrating good performance on longer message
sequences, which addresses the short message limitation for symbol-wise classification
in end-to-end learning [10]. However, reliance on the feedback channel increases channel
use and the vulnerability to data poisoning during training, and multiple forward passes
through the transmitter in each single training epoch can be avoided with an appropriate
proxy channel model.

A DL channel model can be applied to learn the physical channel environment directly
from observations without assuming a model for the true channel. Once trained, the
channel model acts as a proxy to support backpropagation in the end-to-end training for
transmitter and receiver models. GAN training methods have been adopted for their ability
to approximate a distribution given noisy inputs. A variational AE generator was applied
in [5] to receive transmitter outputs and approximate the channel distribution for several
channels. The variational AE generator maps the transmitter symbols to the parameters
for an internal normal distribution and uses samples from the inner distribution to map
into the channel distribution. This method enables the model to approximate the stochastic
quality of the channel [5]. The method is shown to approximate several channels, including
AWGN, a non-Gaussian Chi-squared channel effect, and a non-linear channel over AWGN,
which includes a hardware amplifier [5]. While this article demonstrated the potential
application for modelling channels using the GAN, it did not consider how to apply the
resulting channel model in the end-to-end training regime.

Instead of sampling with a variational AE, the context information produced by
transmitting pilot symbols was applied to help the generator approximate the channel
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function in [4]. The resulting conditional GAN is trained on simulated AWGN and Rayleigh
fading channels, and then used as a proxy for the true channel to train the transmitter
and receiver [4]. The resulting performance was very close to the Hamming(7,4) code
on the AWGN channel and was similar to coherent detection in the Rayleigh fading
channel [4]. Refs. [4,5] train the AE with the adversarial learning algorithm where a
separate discriminator aims to differentiate between true and generated samples and the
generator aims to fool the discriminator into misclassifying generated samples [4]. However,
one problem in adversarial training is that the generator model can suffer from mode
collapse, where it confines generated results to a smaller area of the broader distribution
to consistently fool the discriminator and subsequently fails to perform generalisation in
modelling the extent of the target distribution [16].

The Wasserstein generative adversarial network (WGAN), which modifies the adver-
sarial loss function, is proposed to improve training stability and address the issue of mode
collapse for GAN training [17]. A WGAN model is trained on the receiver side without
the need for continuous feedback in [7]. The target data set is first constructed by using
a pre-trained transmitter to send a batch of transmissions through the channel. Once the
batch has been collected, the WGAN can be trained with adversarial learning, and the
resulting generator can be used to train a transmitter and receiver end-to-end. Instead of
applying symbol-wise decoding, the approach used bit-wise decoding in a manner similar
to [10]. The authors demonstrated one of the first instances where the GAN approach
was applied in a physical channel to train the transmitter and receiver. However, when
experimenting with the more dynamic time delay channel, the WGAN did not converge
due to mode collapse, indicating that generative methods are challenged when learning
more complex channels [7].

A conditional GAN that is trained on both transmitter symbols and received pilot
symbols is proposed in order to generate more complex time-varying channel distribu-
tions in [11]. The method extends the work in [4] to longer codes using convolutional
neural network (CNN) layers and proposes an iterative training algorithm for transmitter,
GAN, and receiver. By including the pilot symbols as well as the transmitter symbols,
the generator model is able to more closely match the channel effects observed during
training [11]. Evaluation of the resulting system in simulated AWGN, Rayleigh fading,
and frequency-selective fading channels demonstrates similar performance to that of an
end-to-end AE trained with an assumed channel. However, the transmitter, channel, and
receiver models are trained in an iterative manner [11], indicating a high channel usage
during the training procedure similar to the RL method.

Rather than generating the channel distribution directly, the authors in [13] use a
residual connection to learn the distribution of the differences between transmitter symbols
and the received symbols output by the channel. The method residual aided generative
adversarial network (RA-GAN) is trained on simulated channel data via an iterative
training scheme and evaluated against a GAN-based model [13]. Evaluation in the AWGN,
Rayleigh fading, and a ray-tracing-based channels demonstrates performance close to the
optimal end-to-end AE training scheme and is close to the performance for both WGAN-
and RL-based methods [13]. The approach simplifies the structure of the GAN, as well
as introduces an additional regularisation term. However, the approach shares the same
disadvantage as the other GAN-based training methods.

Each of the GAN-based methods requires a separate discriminator neural network
that is used to train the generator during the adversarial training procedure. Adversarial
training is a two-step procedure where the discriminator is first trained to classify true
channel observations versus the generated samples, and secondly, the discriminator is used
to train the generator to produce samples closer to the true observations [11]. After training
the channel model, the discriminator is discarded. However, if considering training OAL
on embedded IoT devices, there will be limitations to the capabilities of hardware platforms,
unlike host driven software defined radio (SDR). It is preferable to reduce the number of
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models, which each requires training iterations; therefore, a single-channel model that can
accurately approximate the channel distribution is preferable.

Difficulty with training stability for the GAN model has been quoted as a motivation
for the different variations that have been applied in the literature [4,7,13]. An alternate
single-channel model, the diffusion-denoising probabilistic model (DDPM). is adopted
in [14], primarily to address the issue of mode collapse in the GAN method and because it
has shown excellent performance in the image generation domain. The DDPM learns the
parameters for the variance of a forward noising process where Gaussian noise is repeatedly
added starting from the original input, and a reverse process which learns to restore the
original data from the noise [14]. However, the denoising procedure is slow, requiring
multiple recursive steps, hence a variation of the approach denoising diffusion implicit
model (DDIM) is proposed to trade-off between accuracy and time [14]. Two approaches of
training are adopted for comparison: the pre-trained approach trains the channel generator
model before using it in the end-to-end training procedure, and the iterative approach
interleaves training of channel generator, transmitter, and receiver [14]. Evaluation of
the trained transmitter and receiver models is carried out with a K = 4, N = 7 code in
the simulated AWGN, Rayleigh fading, and non-linear amplifier AWGN channels [14].
Pre-training was demonstrated to have the closest performance to the original end-to-end
training method, and 50 iterations for the DDIM method was shown to be a good trade-off
between accuracy and speed in comparison to the DDPM approach [14]. While diffusion
models have demonstrated excellent generative capabilities in the image domain, the
number of iterations to perform denoising adds to the latency during training, which is
a disadvantage for the application of this approach to OAL. The advantage of the GAN
is that after training, the channel can be simulated with a single forward pass. However,
the training complexity due to adversarial learning against a discriminator model is the
primary limitation for GAN-based methods in OAL. Therefore, a generative model that
does not require multiple passes to reconstruct the signal and that supports a simple
training regime is desirable for applications that may operate on embedded devices over a
physical channel environment.

MDNs combine conventional neural networks with a mixture density model to learn
an underlying generative mapping between input and target data [18]. The MDN trains
a neural network to approximate general distributions by learning the parameters for a
Gaussian mixture model [18]. In this manner, it is trained using conventional supervised
learning without the need for a discriminator or multiple applications of noise and is
a much simpler modeling framework than the GAN or diffusion-denoising models. A
standard network can be seen as learning the mean of the target mapping through the
least-squares loss, and the MDN instead models the parameters for the distribution of multi-
valued continuous target variables [18]. This advantage over standard neural networks
makes the MDN suitable for use in optimization problems, which may include non-unique
solutions for different parameters [19]. This has led to the application of MDN to parameter
estimation for inverse problems [20–22] and to simulation of physical processes [23].

Parameter estimation in the wireless environment is especially challenging due to
noise and fading as well as other distortions such as timing, frequency, and phase offsets.
However, the MDN has been demonstrated to enable accurate estimation for localisation of
wireless sensor network devices in an environment featuring both AWGN and fading effects
in [20]. The MDN has also been demonstrated to provide accurate approximation for the
distributions of latency measurements taken in a 5G wireless AWGN environment [21]. In
a related domain, the MDN was applied to the estimation of direction of arrival for acoustic
signals also within an AWGN environment, and was shown to capture an accurate model
of the uncertainty due to the channel [22]. In the radar domain, the MDN is demonstrated
as an effective data-driven method to approximate radar sensor measurements for distance,
velocity, and orientation of a moving vehicle [23]. In this scenario, a transmitted chirp
signal is distorted by channel perturbations and noise as well as fading and the Doppler
effect [23].
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In this article, we propose a method for OAL without feedback, thereby reducing the
channel use and opportunity for data poisoning attacks. A MDN channel model is trained
by observing transmitted random uniform noise over the true channel environment. The
MDN can be trained in a supervised manner to approximate the true channel distribution
without use of a discriminator for adversarial training and is able to learn without the need
of multiple forward passes or repeated noise correction in each epoch.

3. Methodology
3.1. System Model

In our work, we assume a single input single output (SISO) wireless communications
system. A K bit binary message M is coded with an N bit code and modulated at the
transmitter to produce a set of complex transmitter symbols z ∈ C. Experiments are carried
out with K = 8 bits and N = 8 symbols. The transmitter symbols are transferred over the
wireless channel, which we simulate as a transfer function r(t) = h(z(t)). The channel
adds noise and other perturbations such as fading. In this article, training is carried out at
a fixed signal to noise ratio (SNR) of 6 dB, and evaluation is performed over the SNR range
of 0 dB to 15 dB. The receiver is responsible for detecting the signal, correcting distortions,
demodulation, and decoding to produce an estimate of the original message M̂. In our
system, we assume perfect synchronisation; therefore, we do not add additional effects
such as time delay, phase, or carrier frequency offset. The set of channels that are applied
in this article are described in Section 3.5.

The developed AE-based transmitters and receivers learn to produce an uncoded
modulation. Therefore, we include the BLER for uncoded binary phase shift keying
(BPSK) to provide a reference for the optimal performance of an uncoded modulation. The
difference in the performance is due to the ability of the AE to learn to utilise the entire
in-phase and quadrature (IQ) space in the learnt constellation as opposed to using only two
symbols available to BPSK modulation.

3.2. Joint End-to-End Approach

The joint end-to-end approach, based on the AE from [1], is depicted in Figure 2. This
approach is trained end-to-end and incorporates a differentiable channel function h(y) as
part of the model. The transmitter inputs consist of the one-hot encoded vector for the K
bit message M. The one-hot encoding indicates the ith message as a one in i ∈ 2K index
positions, where all other positions j ̸= i are set to 0. The output at the receiver is a vector
of 2K probabilities p(y|r) conditioned on channel symbols r where ∑2K

i=1 p(yi|r) = 1. This
is facilitated by the softmax activation p(yi|r) = exp(li)/ ∑2K

j exp(lj) where l is learnt by
the receiver neural network. The index for the maximum probability is mapped to the
corresponding index of the original message Mindex = arg max p(y|r). Under this regime,
the end-to-end model is trained against the cross-entropy (CE) loss shown in Equation (1).
p(ytrue) is represented as the one-hot encoding for the true messages and p(y|r) is softmax
output produced by the receiver. In our work, we consider this joint model the baseline AE
model, which has assumed knowledge of the channel environment, and we compare our
proposed method to this model.

L(p(ytrue), p(y|r)) = −
2K

∑
i=1

p(yi) log p(yi|r) (1)

In the literature for OAL methods, the joint end-to-end AE based on [1] serves as the
baseline comparative method. This is because, under simulation, the assumed channel
function provides the joint end-to-end AE with complete information of the simulated
environment and hence provides the optimal performance for the DL-based method. To
demonstrate the effectiveness of the proposed method our aim is to demonstrate equivalent
performance, since our proposed method does not have complete information about the
channel, it must rely on training a proxy model of the true channel environment to learn an
optimal constellation for that environment.
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Figure 2. The end-to-end network architecture where an assumed channel transfer function is defined
as a layer within the network architecture.

3.3. Proposed Approach

The transmitter and receiver blocks in our proposed approach differ from the original
AE in [1]. Instead of dense blocks, we define a residual block with skip connections
between the dense units, illustrated in Figure 3. The skip block in our architecture (shown
in Figure 3) consists of three dense blocks consisting of linear units, batch normalisation [24]
and a swish activation [25]. The first block scales incoming features so that they have a
compatible dimension for addition to the output of the final block. Skip connections,
also known as residual connections, mitigate vanishing gradients in deeper networks and
are indicated to form an ensemble of models by combining multiple paths through the
network [26]. Any number of skip blocks may be arranged in sequence in the network
architecture. In our model, we typically used one skip block per transmitter and receiver
network. Our choice of the swish activation is related to our choice of skip connections.
The ReLU activation is known to suffer from a vanishing gradient due to its exclusion of
negative values [27]. We chose the swish activation function to help mitigate the vanishing
gradient and complement the use of the skip blocks to aid in promoting learning during
backpropagation. Experimentally we have found the swish activation to outperform ReLU
activations, as indicated in [25]. Since the swish activation is unbounded for positive values,
batch normalisation is applied to reduce the impact of extremes in the activation values.

The L symbols, output by the transmitter, are scaled to emulate the energy constraint
of the transmitter hardware such that ||x||22 ≤ 1, shown in Equation (2). The tanh activation
function is applied at the output of the transmitter to ensure that the learnt transmitter
symbols remain within the range [−1, 1]. Instead of an assumed channel function, back-
propagation is enabled by the channel model, which is trained to approximate the true
channel during the proposed training procedure (described in Section 3.4). The channel
model connects transmitter and receiver models and acts as the proxy for the true channel
to allow training to take place on the receiver side. This allows the training to occur without
the need for feedback over the true channel, thereby reducing the opportunity for data
poisoning during the training of the transmitter and receiver. Once trained, the transmitter
weights can be transferred to the origin transmitter side to send messages across the true
channel. Tables 1 and 2 indicate the respective network dimensions for the transmitter
and receiver.
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z(t) =
x(t)√

∑L
i=1 x(i)2/L

(2)

Figure 3. The architecture of the transmitter and receiver networks containing the dense residual skip
block for feature extraction.

Table 1. The transmitter consists of four groups, input, skip block, a linear transformation, and an
output block. The number of units is specified for the dense layers, batch normalisation, and swish
activation preserve the same dimension of output as produced by the dense layer. The model was
trained to map an uncoded message of K = 8 bits to N = 8 IQ symbols.

Layer Units Uncoded 8 Bit Group

Input layer 2K Input

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 2N 2N linear block
Linear activation -

Reshape [N, 2] layer -

Dense layer 2 Output [N, 2]
Tanh activation -

Energy normalisation -

To train the transmitter and receiver, we apply a channel MDN model. The channel
MDN model is trained in a supervised manner against observations of noise transmitted
through the true channel. Unlike the GAN, it does not require a separate discriminator
model and does not require multiple denoising steps in comparison to the diffusion mod-
elling approach. The resulting channel model is combined with the transmitter and receiver
during an end-to-end learning phase, where it emulates the true channel environment.
The MDN model estimates parameters for the mean and standard deviation θ =

{
µj, σj

}
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and mixing coefficients ϕj for j = 1 . . . J Gaussian distributions for each individual symbol
z(t) in L time-steps [18]. The resulting mixture of Gaussian distributions is combined to
generate a probability density over the channel outputs p(r(t)|z(t)) (Equation (3)). In our
implementation, each symbol may have a different mean and standard deviation, which
are produced by the main path of the network consisting of a skip block and dense linear
block illustrated in Figure 4.

Table 2. The receiver network consisted of three groups for input, feature learning (skip block), and
output. The dimensions of units are shown for each dense layer with subsequent layers producing
the same shape output as the preceding dense layer. The receiver was trained to map N = 8 IQ
symbols to the original K = 8 bit message.

Layer Units Uncoded 8 Bit Group

Input layer [N, 2] Input
Flatten layer -

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 2K Output
Softmax activation -

Figure 4. The channel model estimates parameters for the mean and standard deviation of a normal
distribution for each transmitted symbol, and the estimate for channel effects is sampled from the
resulting distribution.

Our model is a simplification of the MDN since we use only one Gaussian distribution
and do not model coefficients [18]. However, we do learn separate mappings for each time-
step from z(t) to θ. While it is possible to extend the modelling approach to include more
than one set of Gaussian distributions, we found that estimating an individual mean and
variance for each IQ symbol was sufficient for the set of channels used in the evaluation.

p(r(t)|z(t)) =
J

∑
j=1

ϕj(z(t))N
(

µj(z(t)), σ2
j (z(t))

)
(3)
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The network is trained by minimising the negative log-likelihood (NLL) loss, shown
in Equation (4), where r(t)true are the true channel responses, z(t) are the transmitter
symbols, and θ are the distribution parameters learnt by the MDN. A linear activation
is applied to the estimate for the mean, and a softplus activation [28] is added with a
small positive constant for the standard deviation. While this model is simpler than other
generative approaches such as the GAN and diffusion models, it performs well in enabling
the transmitter and receiver to learn modulation and coding that produces equivalent
or better BLER when compared with the end-to-end learning approach. Table 3 lists the
dimensions for each of the layers in the channel model.

L(r(t)true, z(t), θ) = − ln{p(r(t)true|z(t), θ)} (4)

Table 3. The channel model receives as input the transmitter symbols z(t) and learns to approximate
the distribution for the true instantaneous channel function r(t). The final layers learn the parameters
for the mean and standard deviation of a normal distribution around each IQ symbol in r(t).

Layer Units Uncoded 8 Bit Group

Input layer [N, 2] Input

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer 512 Skip block
Batch normalisation -

Swish activation -
Dense layer 64

Batch normalisation -
Swish activation -

Dense layer 512
Batch normalisation -

Swish activation -

Dense layer [N, 4] Distribution Parameters
Mean branch [N, 2]

Standard Deviation branch [N, 2]
Mean Linear activation -

Standard Deviation Softplus activation -

Sample Normal distribution [N, 2] Output

3.4. Training Procedure

An overview of the training procedure is illustrated in Figure 5, where in stage 1,
the initialisation of the training procedure requires that both an origin transmitter and
remote receiver share the same random seed. This is used to draw continuous IQ samples
of desired block length K from the uniform distribution S ∼ U([−1, 1]). We emphasise that
the random sequence S is not an information-carrying modulation. In stage 2, the random
sequence is transmitted from the origin transmitter to the remote receiver, producing
channel symbols R. A batch size of 128 blocks is collected prior to training the channel
model. Backpropagation is applied in stage 3 to train the remote channel model against the
true channel symbols R using the NLL loss. Stage 4 performs end-to-end training of the
transmitter and receiver on the receiver side using the trained channel model, without the
need for a feedback channel.
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In stage 4, the weights of the channel model are frozen so that they are not updated.
A batch size of 32 random K bit message blocks M is generated prior to performing
backpropagation on the end-to-end version of the model, with the channel model acting as
the true channel proxy. The procedure is repeated until convergence, which is indicated
by the validation loss (a validation batch size of 32 random K bit message blocks is used
to measure this loss for the stopping condition). This process is repeated for 1600 steps
in each training epoch with up to a maximum of 300 epochs. After a single epoch, the
simulated channel block error rate (BLERsim) is calculated against the proxy channel model
for monitoring purposes. In our experiments, we have also calculated BLER against the
true channel to measure the correlation between the BLERsim and the BLER. We observe
that while the BLERsim has higher variance, it is well correlated with the BLER and is a
suitable indication of expected model performance at the current SNR of the channel. In
our experiments, we trained on a simulated channel at an SNR of 6 dB.

Figure 5. Schematic view of the proposed OAL procedure, without feedback. Stage 1 samples random
values from the uniform distribution using a shared seed. Step 2 transmits the random values S over
the true channel to receive channel symbols R. Step 3 trains the remote channel model on input S and
back propagates against true channel symbols R. In Step 4, the channel model weights are frozen,
and training via backpropagation for message M is performed using the remote channel model as a
proxy for the true channel.

3.5. Simulated Channel Environments

To investigate the performance of the model, we train on four instantaneous channel
functions, an AWGN channel, a Rayleigh fading channel, a Rician channel with Rician
factor equal to 4, and a non-linear power amplifier with an additive white Gaussian Noise
(PA-AWGN) channel. Each of these functions includes an additive noise component as
shown in the AWGN channel Equation (5).

r(t) = z(t) + n(t) (5)

The Rayleigh and Rician fading channels scale the transmitter symbols z(t) with fading
coefficients a(t) Equation (6). However, they each differ in how the fading coefficients
are calculated.

r(t) = a(t)z(t) + n(t) (6)
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In the Rayleigh fading channel, the fading coefficients are drawn from a complex
standard normal distribution a ∼ CN(0, 1) and their argument is scaled and multiplied
with a phased waveform a(t) = 1√

2
|a|ejψ, in our case we assume a zero phase ψ = 0.

The Rician fading channel function r(t) in Equation (6) draws its scaling coefficients
from a complex normal distribution with parameters µ and σ, a ∼ CN(µ, σ2). The mean
µ =

√
K

(2(K+1)) and standard deviation σ =
√

1
(2(K+1)) are parameterised by the Rician

factor K, which we define as K = 10. The lower the value for K, the Rician fading
appears to become similar to Rayleigh fading, and for higher values of K, Rician fading
resembles AWGN.

In the PA-AWGN channel, we apply a solid-state high-power amplifier (SSPA) to
translate transmitter symbols prior to the AWGN channel. Equation (7) shows the Rapp
model [29] with parameters for the limiting output amplitude A0, amplifier gain ν, and
smoothness p. In our experiments, these are set to A0 = 1, ν = 1, and p = 5. The transmitter
symbols are then transformed by the amplifier function, as shown in Equation (8).

g(A) = ν
A

(
1 +

[(
νA
A0

)2
]p)1/2p (7)

z′(t) = g(|z(t)|)ej∠z(t) (8)

Since in this article we simulate the channel, we parameterise the function with the
ratio of energy per information bit to the noise power spectral density Eb/N0 in dB and
a parameter for the code rate K/N. We use the code rate to convert to the ratio for the
energy per symbol to noise power spectral density Es/N0 dB = Eb/N0 dB + 10log10(K/N)
and use the linear form Es/N0 = 10Es/N0 dB/10 to estimate the separate components
Es = ∑L

t=1 z(t)2/L and N0 = Es/(Es/N0). The noise variance σ2 = N0/2 is then used to
draw the complex Gaussian noise parameter n(t) ∼ CN(0, σ2). Once the noise is deter-
mined, it can be applied to the channel transfer function.

We trained and evaluated our proposed method and the joint end-to-end method
against each of these channels. The joint approach is based on the model defined in [1] and
includes the instantaneous channel transfer function as part of the network architecture. In
this approach, there is no requirement for an iterative training algorithm, and the training is
performed by backpropagation over a maximum of 300 × 12 epochs, with a batch size of 32
K = 8 bit messages. The Adam optimisation algorithm [30] is applied in both approaches,
and we leverage stochastic weight averaging (SWA) [31] every 10 epochs with a cyclical
learning rate schedule [32] having a minimum learning rate of 0.0001 and maximum
of 0.001.

4. Results and Discussion

While the baseline end-to-end joint and proposed iterative methods take different
approaches to training, once trained, the transmitter and receiver can be separated from the
end-to-end model and deployed separately for testing. In the iterative method, the channel
model is not required for deployment and is used only during training. Both approaches
are evaluated by transmitting generated random K = 8 bit message blocks and transmitting
over each of the simulated channel transfer functions. The BLER is calculated for each block
at varying SNR between 0 to a maximum of 15 dB. In this section, we present results for
both methods, as well as the uncoded BLER maximum likelihood decoding performance.

The performance of both methods under each channel is presented in Figure 6, and is
compared with uncoded BPSK for reference. Even though the proposed iterative method
has been trained on a generated model, while the joint method is trained with an assumed
channel function, there is very little difference between the performance of both. The
PA-AWGN channel is an exception, however. The proposed method outperforms the joint
method, which appears to have an error floor in higher SNR. Each of the DL methods
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achieves gains over the uncoded BPSK modulation. This is because the uncoded BPSK
modulation represents the 8 bit sequence with 8 symbols, each chosen from one of two con-
stellation points. For example, −1 + 0j for 0 and 1 + 0j for 1. Whereas the DL methods can
map each one of the 2K messages to any arrangement of 8 symbols in the IQ space. The DL
methods learn this mapping by minimising the error in message recovery subject to the
distortions introduced by the channel.

The joint end-to-end model has been trained with full information of the simulated
channel environment, due to the assumed channel layer. In contrast, our proposed ap-
proach trains a separate channel model to act as a proxy for the true channel environment,
given observations of random noise. The RL, GAN and diffusion approaches outlined in
the literature compare solutions with variants of the canonical joint end-to-end learning
method [4,7,9,11,13–15]. This is to demonstrate equivalent or better performance against
the model, which is trained with the assumed channel function. Doing so indicates that the
method learns an optimised code based on the observations without prior knowledge of
the channel. The BLER performance for our proposed approach indicates that the resulting
channel model provides an accurate representation of the true channel environment. This
approximation enables the transmitter model to learn an optimised code for the target
channel environment.
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Figure 6. Comparison of BLER performance in the four channel environments. Uncoded K = 8 bit
BPSK modulation is compared with the joint and the proposed iterative method in the (a) AWGN
channel, (b) Rician fading channel, (c) Rayleigh fading channel, and joint and iterative methods are
compared in (d) the PA-AWGN channel.
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During the training of the channel model, the origin transmitter samples are drawn
from the random uniform distribution s(t) ∼ U([−1, 1]) prior to transmitting over the
instantaneous channel function. The channel model does not learn from an information-
carrying modulation, as such it does not learn unique features specific to a given waveform.
While this could be a disadvantage, the BLER performance indicates that the channel model
provides a suitable approximation that enables the transmitter and receiver to jointly learn
an appropriate representation for the transmit symbols. In our evaluation, we review the
channel effect on a BPSK modulation and compare this with the estimates produced by the
channel model. The channel model is able to approximate distributions of the instantaneous
channel as shown in Figure 7. The intention of training on uniform IQ samples is to prevent
transmission of an intelligible information-carrying signal during the training procedure.
The resulting bimodal distribution for each channel function with the BPSK modulation is
approximated well by the trained channel model, which produces a mixture of Gaussians
with different scales and locations corresponding to the two modulation symbols.

(a) (b)

(c) (d)

Figure 7. Histogram of channel symbols for each instantaneous channel function and the trained channel
model at training SNR of 6 dB for random BPSK modulation. Comparisons are shown for the (a) AWGN
channel, (b) Rician fading channel, (c) Rayleigh fading channel, and (d) PA-AWGN channel.

The transmitter model, however, does not learn a conventional modulation; instead,
the transmit symbols make use of the IQ space more broadly. Figure 8 shows the histogram
for the instantaneous channel transfer function and the approximation given by the channel
model when provided with the learnt transmitter symbols. The channel model approxima-
tion is close to that of the true distribution when presented with a non-uniform modulation.

The question of when to stop training often relies on monitoring a performance metric
such as the validation loss, and once the metric ceases to decrease after a fixed number of
steps, the training cycle ceases. However, when the intention is to carry out training without
feedback over the true channel, training metrics may no longer be reliable for determining
whether the end-to-end system is learning under the true channel conditions. Outside
of the negative log-likelihood loss for the channel, it is desirable to be able to monitor a
performance metric which is a good indicator of the training progress of the end-to-end
system. Our intuition is that if the channel model is learning an accurate representation of
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the true channel transfer function, the BLER produced by evaluation of transmitter and
receiver via the channel model should reflect the BLER that would be produced over the
true transfer function. Evaluation of the transmitter and receiver was performed on both
the instantaneous channel transfer function as well as the channel model at the end of each
epoch. Figure 9 shows the monitored value of the BLER during training at the fixed SNR
of 6 dB. We note that, in general, the BLER corresponds well with that recorded on the
true channel, apart from the Rician fading channel, where the simulated BLER is lower.
However, the error signal correlates well in each channel and serves as a suitable proxy
measure during training (Table 4). It is also worth observing that the variance of the BLER
differs between the true and simulated channels. This is more visible in the Rician and
Rayleigh fading channels, which have a larger number of training epochs.

(a) (b)

(c) (d)

Figure 8. Histogram of channel symbols for each instantaneous channel function and the trained
channel model at training SNR of 6 dB for K = 8 bit messages transferred through the transmitter
model. Comparisons are shown for the (a) AWGN channel, (b) Rician fading channel, (c) Rayleigh
fading channel, and (d) PA-AWGN channel.

Table 4. Pearson ρc and Spearman’s rank ρs correlation coefficients for the BLER produced on true
and simulated channels. The high correlation as well as the error curves indicates a suitability for the
simulated channel model to act as a proxy for performance monitoring during training as well as
acting as a metric for the training stopping condition.

Channel Type ρc ρs

AWGN 0.94 0.89
Rician Fading 0.94 0.73

Rayleigh Fading 0.88 0.66
PA-AWGN 0.99 0.93
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(a) (b)

(c) (d)

Figure 9. Comparison between BLER performance on the instantaneous channel transfer function
and the simulated channel model recorded after each epoch of training. There is a high correlation
between BLER between the true transfer function and the simulated channel model. The monitored
BLER is shown in the (a) AWGN channel, (b) Rician fading channel, (c) Rayleigh fading channel, and
(d) PA-AWGN channel.

In the field, evaluation of the true channel function may not be feasible after each
epoch, hence monitoring performance will be reliant on the accuracy of the simulated
channel model. If monitoring of the true channel performance is required, it is possible to
intermittently deploy the transmitter weights to the origin side to evaluate performance
at irregular intervals rather than every epoch. This is to decrease the frequency at which
information-carrying transmissions are made during the training cycle and to maintain
burst communications decreasing the chance of intercept.

Generative models provide a suitable method for enabling backpropagation in OAL,
but the GAN method has been the subject of much research for learning in wireless
communication systems without an assumed channel. Instead of concentrating on the
GAN approach, we have instead proposed a simpler generative model capable of modelling
the channel output distributions as shown in our results. By demonstrating equivalent
performance to the joint end-to-end model, we are comparing our results to a model that
has full knowledge of the simulated channel environment. In doing so, we demonstrate that
the use of the MDN can provide a sufficient approximation of the true channel environment
to permit the learning of an optimal code for that environment.
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5. Limitations

As a generative model. the MDN is still vulnerable to mode collapse. Reasons for
mode collapse in the MDN model are described in [33], suggesting that the primary reason
is due to an imbalanced representation of data associated with modes in the training set.
The authors suggest that the mixture components associated with the dominant modes
represented in the data outweigh the other mixture coefficients and prevent variation in
learning solutions [33]. They introduce additional loss terms that help to penalise large
value weights and high variance parameters [33]. Our results did not suffer from mode
collapse. One limitation of our approach is that we are using a small code size, and we
are simulating a memoryless channel environment. In a real channel environment, certain
channel states may persist for longer and therefore become over-represented during the
training phase for the channel model. In a physical system, it may be more likely to
encounter mode collapse and would require an exploration of approaches to mitigate
this issue.

Additional limitations of our work include the assumption of ideal synchronisation.
While the work focuses on the use of the MDN as a simpler alternative to generative
modelling, scope remains for testing in more complex channels, which include timing,
phase, and frequency offsets. These would lead to the additional considerations of a
AE architecture suited to learning matched filtering and compensating for the additional
channel effects. In keeping the experiments simple, we have also restricted our work to a
short message length of K = 8 bits rather than investigating extension to longer codes.

The removal of the feedback channel has reduced the opportunity for data poisoning
between the transmitter and receiver during training. However, there is still some potential
for data poisoning during stage 2 of the learning procedure, when random uniform IQ
symbols are transmitted over the true channel environment. This phase occurs as a regular
burst transmission during each training iteration. While it may be possible to mitigate
somewhat by reducing the regularity of this phase, the training of the channel model is
reliant on sampling of uniform noise through the true channel environment.

6. Conclusions and Future Work
6.1. Conclusions

In this article, we have proposed an alternate generative channel model for training
of transmitter and receiver OAL without relying on a feedback channel. We have shown
that the MDN is able to model the distribution of a stochastic channel environment. As
indicated by our results (Section 4), the proposed approach is able to produce an equivalent
BLER to the joint end-to-end model, without a prior assumption of the channel function.
We have demonstrated equivalent BLER performance for the K = 8 bit uncoded message
in the AWGN, Rician fading, and Rayleigh fading channels as well as in the PA-AWGN
channel. This is achieved without the need for a fixed channel model. Prior work has
focused on the GAN model to learn the channel distribution, and while this has been shown
to be effective, the training procedure does add complexity. We have demonstrated that
the simpler MDN model, requiring only one Gaussian distribution per channel symbol, is
a capable replacement for the GAN when modelling memoryless channels and does not
require the overhead of a discriminator model during training. We have also shown that
intermittent sampling of the end-to-end performance in terms of BLER is suitable for use
as a stopping condition during the training process. This allows training to occur entirely
on the receiver side without the need for feedback over the true channel, such as in RL
based methods. The MDN is advantageous for OAL learning, does not require complex
training regimes, and does not require multiple forward passes during inference (such as
in the diffusion model). Removal of the feedback channel prevents the opportunity for
data poisoning via feedback during the training process. The proposed approach is able to
approximate the channel distribution such that the transmitter and receiver were able to
learn an optimal code matching the performance of the joint end-to-end model.
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6.2. Future Work

The limitations identified in Section 5 present opportunities for future work. Ap-
plication to physical channel environments would necessarily require the addition of
synchronisation. This would require modifications to both the transmitter and receiver
architectures to support filtering and the ability to correct timing, phase, and frequency
offsets in the receiver. To this end, it is possible to investigate extending the AE-based
architecture to learn filtering, detection, and synchronisation. Conventional methods for
synchronisation have been optimised for specific forms of filtering and modulation, yet
it may be possible to combine data-driven and conventional approaches, such as in the
work on deep unfolding [34]. In addition, physical channels may exhibit a certain degree
of memory, as identified in [33], mode collapse in MDN is due to unequal representation
of states during training. Future work will need to investigate the properties of channels
with memory and investigate the effects on the MDN channel model as well as investigate
methods to mitigate the unbalanced representation of states within the training data. While
short codes have application in resource-constrained devices such as in the IoT, future work
would also be required to make suitable modifications to the transmitter and receiver archi-
tectures to support longer codes or integrate with concatenated coding methods. Scalability
due to message length and the challenges posed both to the architecture and to the sampling
requirements of the learning process are areas that require further work for the practical
application of DL methods to trainable wireless communications systems. Although the
feedback path is no longer a vulnerability, there remains some potential for data poisoning
the forward path during burst transmissions in stage 2 of training. Future work should
investigate methods to mitigate this potential vulnerability by reducing the frequency of
transmission, employing a low probability of detecting signalling as well as experimentally
investigating robustness of the proposed method to data poisoning attacks. SDR platforms
offer flexibility for defining novel wireless communications systems. The emergence of
embedded and edge device hardware platforms supporting the optimisation required for
the parallel computations required by DL will be necessary for translation of DL-based
methods from software experimentation to hardware implementation. However, trainable
wireless communication systems introduce a new paradigm where components of the sys-
tem are no longer static and must support methods for redeployment and reconfiguration
during operation.
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AWGN additive white Gaussian noise
BLER block error rate
BLERsim simulated channel block error rate
BPSK binary phase shift keying
CE cross-entropy
CNN convolutional neural network
DDIM denoising diffusion implicit model
DDPM diffusion-denoising probabilistic model
DL deep learning
GAN generative adversarial network
IoT internet of things
IQ in-phase and quadrature
MDN mixture density network
NLL negative log-likelihood
OAL over-the-air learning
PA-AWGN power amplifier with an additive white Gaussian noise
QPSK quadrature phase-shift keying
RA-GAN residual aided generative adversarial network
ReLU rectified linear unit
RL reinforcement learning
SDR software-defined radio
SISO single input single output
SNR signal to noise ratio
SPSA simultaneous perturbation stochastic approximation
SSPA solid-state high-power amplifier
SWA stochastic weight averaging
WGAN Wasserstein generative adversarial network
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7.3 Links and Implications

The article proposed a method of OAL for transmitter, channel and receiver which did not require

feedback. In addition, the proposed MDN channel model does not require multiple models or

iterations during training and inference to approximate the channel distribution. Both features

provide further efficiencies and simplification for OAL as opposed to the methods presented

in literature. In addition, the article considers adversarial channel environments by training

the channel with randomised values rather than an information carrying signal. The article

demonstrated that the resulting model is able to approximate a variety of channel distributions

even though it did not train on the resulting modulations. Furthermore, the article considers a

practical issue of measuring the system performance during training in OAL systems, which will

not necessarily access to the true channel during training. By using the BLER of the system

produced through the developed channel model, the article shows that this metric is strongly

correlated with the BLER produced over the true channel during training and can therefore be

used as a suitable stopping condition. Training of DL based wireless communications systems

OAL is an important capability which enables optimisation to channel environments which are

otherwise difficult to simulate. Such methods are made more achievable by providing more

efficient methods to channel modelling and simplifying approaches to training algorithms, and

more secure by limiting the opportunity for adversarial attacks during training.
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CHAPTER 8: CONCLUSION AND FUTURE

SCOPE

8.1 Summary

The design and development of wireless communications systems faces new challenges for data-

transfer rates, reliability, availability, privacy and security driven by the evolution of applications

which rely on mobility, interconnection and the large scale collection and sharing of information.

At the same time, we have seen the broader application of artificial intelligence-based techniques

which have the capabilities to learn from observation and perform global optimisation in a

variety of engineering domains. DL is a framework which exhibits the ability to fuse a variety

of high dimensional data sources to extract useful representations with the aim of task driven

optimisation. As such, it has drawn attention of researchers in wireless communications systems

as a potential design tool which can be used to help address some of the key challenges emerging

in the field.

The work undertaken in this doctoral thesis has focused on three domains relating to the

use of DL in the design of wireless communications systems; Synchronisation, Adaptation and

Over-the-air Learning (OAL).

Synchronisation (achieved through Objective 1) is a signal processing task that corrects

perturbations in the received signal for the accurate recovery of the transmitted message at

the receiver. DL based estimators have been applied to various synchronisation parameters.

However, due to the wide application of parameter estimation in waveforms, such as for frequency

offset estimation, these methods have often been applied in ways that are isolated from the

communications system. When DL has been applied in synchronisation for communications

systems, prior work has not considered the impact of the type of modulation, or structure of

preamble on the model accuracy. In Chapter 4, this thesis has developed a novel DL model

that performs multi-stage estimation for CFO on shortened preambles. Short preambles are

advantageous where data-rate is concerned since by reducing the preamble length, the amount of

allocated channel usage for information symbols and consequently data-rate can be maximised.

We consider multiple modulations in the communications setting, and include Chaotic map

functions, as these provide potential advantages for physical layer security with application to

the IoT. The accuracy of conventional FFT based CFO estimation methods are dependent on the
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preamble length and SNR, and this work demonstrates that a DL based approach achieves better

accuracy under both of these constraints. Similarly, correlation-based methods are dependent

on the number of samples available, and the proposed method demonstrates greater accuracy

than correlation-based CFO estimation with limited upsampling. The branching DL architecture

is a novel approach capable of refining the CFO estimate in two stages, and the advantages

of estimating the error term using regression are clearly demonstrated. Further, conventional

signal processing algorithms focus on certain features of the incoming signal, the research

in this thesis has shown that incorporating feature processing derived from these algorithms

improves the accuracy of the resulting DL model. Importantly, to support the security of wireless

communications and avoid the potential for adversarial playback attacks, it is important for a

synchronisation method to be able to support randomised as opposed to fixed preambles. The

work in this thesis demonstrates that DL is able to outperform conventional CFO estimation

methods on both fixed and random sequences, and that a single model can be applied on

multiple modulations. This work also demonstrates that the accuracy of CFO estimation for

both conventional and data-driven methods are impacted by the structure and type of modulation.

This result is particularly interesting, as it indicates that the choice of preamble design, and the

properties of the preamble modulation are impactful for the overall performance of the system.

Adaptation (achieved through Objective 2) in wireless communications systems changes the

transmitted modulation and coding in response to measurements of changing channel conditions.

In particular AMC schemes are shown to achieve higher reliability under changing channel

conditions than a single coded modulation alone. However, E2E learning methods for DL

described in literature support only a single coded modulation, requiring multiple AE to be

trained to realise multiple schemes. In Chapter 5, a novel DL architecture and custom training

algorithm is proposed for AMC framed as a multi-task learning problem. This is a significant

extension of the E2E learning framework to support AMC schemes. The resulting method is

demonstrated to achieve gains over conventional codes in two Rayleigh fading channels while

only being trained on an AWGN channel. Consequently demonstrating the ability to a DL based

AMC to provide spectral efficiency under changing channel conditions without the requirement

for retraining. This capability contributes to the reliability and availability for future wireless

communications systems under a variable channel environment.

Over-the-air learning (OAL) (achieved through Objectives 3 & 4) is an extension of

E2E learning algorithms to support optimisation of DL wireless communications systems

over an unknown channel, alleviating the requirement for an assumed channel model. This is

advantageous as the DL based transmitter and receiver can be optimised for communicating over

channel environments that may not be easily simulated or have a analytic form. Alternately,

tuning in OAL supports the adaptation of pre-trained wireless communications systems to varying

channel conditions (as an alternative or complementary technique for AMC). Current approaches
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to training in OAL leverage techniques such as RL to perform gradient approximation, use GAN

for channel approximation or leverage coordination protocols for cooperative agent learning.

However, each of these methods have disadvantages, both in terms of complexity, channel usage

and security during training.

Chapter 6 proposes a simplification over these methods by developing a novel training

algorithm which learns implicit channel information through the estimates passed between a

remote and local receiver. The article demonstrates that the local receiver learns enough implicit

information about the channel environment to optimise the transmitter during the joint learning

process. This alleviates the need for a separate channel model and does not require multiple

forward passes during the training process to approximate gradients from the receiver. It is

demonstrated to provide equivalent performance to the original E2E method and produce gains

over conventional codes in a variety of channel environments.

In Chapter 7, the feedback channel is removed, and instead a MDN is trained to perform

channel approximation to enable E2E training on the receiver. The removal of the feedback

channel enhances the security aspect of OAL training by reducing the potential for adversarial

detection and replay attacks. In addition, the proposed approach does not use an information

carrying signal to train the channel model, instead it transmits a uniform random sequence

to generate the training batch, and this is shown to enable the resulting channel model to

approximate the true channel distribution for both conventional BPSK and the resulting learnt

modulations. The lack of an information carrying signal, with regular repeating symbols,

contributes to the security of OAL training by reducing the likelihood of detection by an

eavesdropper and removes dependency on structured communication to train the channel model.

In addition, the use of the MDN to model the channel distribution simplifies existing approaches

by removing the need for additional models such as the discriminator in GAN training and

removing the need for iterative training such as is used in diffusion type models. By promoting

simpler models and more secure training algorithms for OAL the research contributes to the

reliability, availability and security of future wireless communications systems.

8.2 Limitations and Directions for Future Research

The work undertaken in this doctoral thesis has applied a number of constraints in each area to

examine the proposed methods in each featured publication.

In addressing Synchronisation this thesis focused on CFO which in literature has been

demonstrated to be more difficult to obtain an accurate estimator. Parameter estimation for

timing offsets and detection was not addressed. In addition, the resulting model was examined as

a parameter estimator separate from an integrated wireless communications system, in order to

evaluate the accuracy of the CFO estimation. In future research there is the potential to examine
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integration of DL based synchronisation as part of an E2E wireless communications system, both

within a conventional and a DL based design. The publication focused on parameter estimation

as the objective task for the developed DL model, however, in an integrated system, the resulting

message recovery in BER and BLER would serve as the main objective. Therefore, in future

work, integrated DL based synchronisation may focus on correcting the perturbations of the

received signal rather than estimation of a set of parameters which may be applied independently.

The proposed DL architecture for Adaptation via AMC consisted of a discrete gate which

was parameterised to allow learning for different codes. In this sense the switching mechanism

between different code rates was not learned as part of the network, instead it was a predefined

conditional operator that was built into the network. Instead, future work could devise a

mechanism where the discrete gate could instead be learnt, however this is challenging because

it would require learning how to disable other pathways through the network and may not

be as efficient as the proposed method, due to redundant activations among different network

branches. Future work would investigate tree structures in DL, which may be connected to graph

neural network architectures. The research in this thesis did not explore the learning of mapping

between channel conditions such as SNR and optimal code rate. The existing literature has

focused more on this task as a parameter estimation or classification problem or used RL to

learn a control algorithm for existing coded modulation. Instead, future work could investigate

whether it is possible to incorporate several stages in learning, those which extract features from

the channel environment, the learning of coded modulation schemes, and the learning of an

optimal control policy. This type of work would investigate how such a training algorithm may

be devised, whether it is possible to train such a system E2E, iteratively or in separate stages,

and the practicality of each training regime. As mentioned in the article, the industrial internet of

things (IIoT) and wireless sensor networks (WSNs) are subject to additional constraints such as

energy use. There is potential for future work to consider these other constraints in the learning

objective for AMC to enhance the availability of these type of systems.

Proposed methods for Over-the-air learning (OAL) were developed under the simplifying

assumptions of perfect synchronisation and for single-input single-output (SISO) wireless

communications systems. As mentioned, future research would consider the integration of learnt

synchronisation methods for additional perturbations of frequency, phase and timing offsets. In

addition, there is opportunity to consider MIMO wireless communication systems which must

handle multiple carriers and expands the dimensionality of the system model. Existing E2E

DL based communications systems methods are limited by the dimensionality of the message,

especially where a symbol-wise representation is used. However, as the message increases in

dimension 2K it becomes impractical to produce such extremely large classifiers not only in

terms of dimension but also due to sampling problems from the input message domain during

data generation (it becomes impossible to sample all possible messages). Bit-wise approaches
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have investigated training E2E AE on individual message bits, and various architectures have

been proposed. In addition, the use of small codes as an inner concatenated code with an outer

LDPC code has been demonstrated to achieve much longer message lengths. However, future

work may also investigate structuring messages as multiple blocks, as well as the use of CNN and

RNN in learning variable length message sizes. Security is also a primary concern for wireless

communications systems, as due to the channel environment, they are exposed to eavesdropping

and adversarial attacks such as replay attacks. The development of LPI and low probability

of detect (LPD) codes reduces the probability of messages being understood or detected by

an eavesdropper. This results in covert communications schemes. While the codes learnt by

the AE models leverage a more continuous IQ space than conventional codes, there is future

scope to investigate the E2E learning of LPI and LPD codes through application of appropriate

constraints on the DL model, such as through limiting peak-to-average power ratio (PAPR) of

learnt codes. Finally, the methods developed in this thesis were reliant on simulation of the

channel environment. Future work will have the challenge of implementing training regimes on

physical hardware such as SDR over a physical channel environment. However, there may be

limited practical opportunity to test and train such systems in a variety of complex channels such

as selective-fading channels or especially channels relating to space communications. Instead,

there remains scope for the simulation of more sophisticated channels to train, evaluate and

develop the proposed and new methods in future research.
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Though no one of us will ever be able to step back far enough to see the ”big picture” we
shouldn’t forget that it exists. We should remember that physical law is what makes it all happen
- way, way down in neural nooks and crannies which are too remote for us to reach with our

high-level introspective probes.

Douglas R. Hofstadter,
Gödel, Escher, Bach:An Eternal Golden Braid.

New York: Basic Books 1979. p710
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