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ABSTRACT 
 

Sleep plays a fundamental role in human well-being, and understanding its intricate 

effects remains a crucial research area. Sleep electroencephalogram (EEG) signal 

analysis offers a promising direction for uncovering hidden singularities in sleep data. 

This thesis introduces innovative approaches for untangling sleep stage characteristics 

from EEG data.  

 

Studied and inspired by the matching pursuit (MP) method, this research firstly 

developed a multitapers and convolution (MT&C) method that can decompose EEG 

data based on a dictionary. The MT&C method leverages controlled wavelets to 

compute spectral estimation, offering a robust basis for sleep EEG analysis, visual 

guidance, and stage scoring. By adhering to the Rechtshaffen and Kales sleep scoring 

manual (R&K rules) and the American Association of Sleep Medicine standards 

(AASM), both the MP and MT&C methods demonstrate an improved classification 

accuracy. Experimental results on healthy subjects demonstrated an accuracy of 79.4% 

and 87.6% for the MP and MT&C, respectively. While the MP and MT&C methods 

differ in definition, they complement each other and contribute to the advancements of 

sleep EEG analysis. 

 

This thesis further examines the identification and classification of sleep spindles using 

a new spindles across multiple channels (SAMC) method. The SAMC implements 

multitapers and convolution to extract the spectral density estimation across multiple 

EEG channels, providing a comprehensive understanding of the behaviours and 

characteristics of the sleep spindles across the scalp. The SAMC method performs 

better than existing approaches, showcasing its potential to accurately identify and 

categorise sleep spindles. 

 

Lastly, this study employed an advanced time-frequency analysis and incorporated a 

powerful deep learning model. The proposed method achieves significant performance 

improvements by employing the MT&C for initial feature extraction and utilising 

advanced techniques of visual geometric group, squeeze-and-excitation blocks, and 

scaled exponential linear units with batch normalisation. Across three diverse 



 

ii 

databases, the average accuracy and precision of 87% demonstrated the potential of 

these techniques in enhancing sleep stage classification.  

 

Overall, this thesis contributes to the field of sleep research by introducing novel multi-

method approaches for sleep EEG analysis, sleep stage classification, and spindle 

identification. The findings highlight the potential for improving understanding and 

possible diagnosis of sleep-related phenomena, offering new insights into sleep quality 

and its impact on human health and well-being. 

Rationale: This research stems from the critical importance of understanding sleep's 

effects on human well-being. The focus on EEG signal analysis arises from the potential 

to uncover hidden aspects of sleep data, contributing to improved diagnosis and 

comprehension of sleep-related phenomena. 

Contributions: 

• Introduction of novel multi-method approaches for sleep EEG analysis, sleep stage 

classification, and spindle identification. 

• Development of the MP and MT&C methods, enhancing sleep EEG analysis and 

classification accuracy. 

• Innovation of the SAMC method, outperforming existing approaches in sleep spindle 

identification. 

• Integration of advanced time-frequency analysis and deep learning techniques, 

significantly improving sleep stage classification across diverse databases. 

The findings of this thesis offer new insights into sleep quality and its profound impact 

on human health and well-being. 
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CHAPTER 1 

  

 

 

INTRODUCTION 
For many years, extensive research has been dedicated to the field of polysomnography 

(PSG), with the primary objective of untangling and establishing the complex 

connections between sleep, neuronal activities, and body functions (Haustein et al., 

1986). The study of sleep and its associated brain activity through 

electroencephalogram (EEG) signals has long been a topic of interest in the sleep 

research community. Understanding the intricacies of sleep EEG patterns and 

accurately classifying sleep stages is vital for diagnosing sleep disorders, uncovering 

underlying mechanisms, and improving sleep quality and human well-being. 

Manual sleep scoring is the traditional and commonly employed method for 

categorising sleep stages based on visual inspection of EEG signals. However, it is 

time-consuming, subjective, and prone to inter-observer variability (Danker-Hopfer et 

al., 2009; Himanen & Hasan, 2000; Mayeli et al., 2022). Consequently, there is a 

growing need for automated approaches to analyse sleep EEG data efficiently and 

reliably, which can provide objective and consistent sleep stage classifications (Bagur 

et al., 2018; Chediak et al., 2006).  

Many machine-learning methods have recently emerged for sleep stage scoring 

(Aboalayon et al., 2016a; Al Ghayab et al., 2019; Haustein et al., 1986; Lee et al., 2022). 

Most of them operate as black boxes, yielding an outcome without providing a 

comprehensive internal process that medical professionals can interpret. The operations 

of those systems often involve irrelevant features that do not align with established 

definitions of sleep stages. Therefore, understanding the final output of such methods 

becomes challenging for medical experts. This thesis aims to address the challenges by 

introducing innovative multi-method approaches for sleep EEG analysis and sleep stage 

classification (Rudin, 2019). 
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The first part of this thesis focuses on developing novel approaches to identify the 

parameters and characteristics of sleep stages from EEG data (Zapata et al., 2022). The 

objective is to implement time-frequency analysis on the sleep EEG data, to extract, 

identify and evaluate characteristics and parameters of brain waves embedded in the 

data. This research studied the matching pursuit (MP) method, which discomposes 

signals based on a dictionary containing a collection of wavelets created from a core 

function. MP provides a comprehensive framework that is attractive for analysing and 

interpreting the embedded features of sleep stages. However, due to the computational 

demands of the MP method, a more computationally friendly alternative, the 

multitapers and convolution (MT&C) method, was developed. Nevertheless, valuable 

insights from the MP were brought into the MT&C method, resulting in a refined 

approach combining the strengths from both techniques. 

The MT&C method utilises controlled wavelets to compute the spectral density 

estimation of a signal, providing a robust basis for sleep EEG analysis. This study is to 

develop methods that combine features relevant to the characteristics and patterns of 

the sleep stages from EEG signals. Therefore, adhering to the time-frequency analysis 

of the Rechtshaffen and Kales (R&K rules) sleep scoring guidelines and the American 

Academy of Sleep Medicine standards (AASM), the proposed method can identify the 

sleep characteristics from the EEG data,  that not only have relevance to the 

classification methods, but can also be associated to each sleep stage, and provide the 

bases from which each stage was classified (Grigg-Damberger, 2012; Kushida et al., 

2005; Nir et al., 2011; Pevernagie et al., 2009; Zapata et al., 2022).  

At the outset of this study, both the MP and the MT&C methods exhibited improved 

classification accuracy. Preliminary experimental results on healthy subjects 

demonstrated an accuracy of 79.4 and 87.6 for the MP and MT&C methods, 

respectively. While the MP and the MT&C methods differ in definition, they have the 

potential to complement each other and thus can contribute to sleep EEG analysis. 

Furthermore, this thesis investigates the integration of machine learning techniques to 

enhance EEG classification performance further. The combination of these methods 

holds the potential for improving the sleep stages classification and the promise to 

increase the repertory of machine learning algorithms for comparison (Haustein et al., 

1986; Y. Huang et al., 2022; Novelli et al., 2010; Rezaie et al., 2018; Siuly et al., 2022). 
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The identification and categorisation of sleep spindles are also explored using a 

"spindles across channels" (SAMC) method. The SAMC uses the MT&C to extract 

spectral density estimation (SDE) across multiple channels, providing a comprehensive 

understanding of the behaviour and characteristic of sleep spindles. The SAMC method 

performs better than existing approaches, showcasing its potential to accurately 

identify, categorise, and visualise sleep spindles (Zapata et al., 2023). 

Lastly, this thesis merges into automatic sleep stage classification by implementing 

advanced time-frequency analysis and incorporating powerful deep learning models. 

By implementing the MT&C method for initial feature extraction and employing 

techniques, such as visual geometric group (VGG), squeeze-and-excitation blocks (SE), 

and scaled exponential linear unit (SELU) with batch normalisation (BN), the proposed 

method achieves significant performance improvements. Across three different 

databases, an average accuracy and precision of 87% demonstrate the potential of these 

techniques in enhancing sleep stage classification. 

Overall, this thesis contributes to the field of sleep research by introducing novel multi-

method approaches with the defined features for sleep EEG analysis, sleep stage 

classification, and spindle identification. Implementing the MT&C method, integrating 

machine learning techniques, exploring sleep spindle identification with the SAMC 

method, and applying advanced deep learning models collectively, the outcomes of this 

study have enhanced the understanding of sleep-related phenomena, improved sleep 

stages classification, and ultimately promoted better sleep health and well-being.  

 

1.1. Study Overview and Motivations 

Sleep stage classification is a tenuous task with limitations such as being time-

consuming, fatigue-induced biases, lack of inter-score validity, and subjectivity. Those 

limitations can lead to significant obstacles in the development of diagnosing sleep 

problems (Chediak et al., 2006; Fernandez Guerrero & Achermann, 2019; Haustein et 

al., 1986; Himanen & Hasan, 2000; Hori et al., 2001; Kushida et al., 2005; Novelli et 

al., 2010; Parrino et al., 2009; Rezaie et al., 2018). Furthermore, even though there are 

defined benchmarks for sleep stage scoring, such as the K&R rules and the AASM 

standards, most automatic methods used for stage classification operate as black boxes, 

producing results without offering a straightforward process that users can interpret. 

Those models often incorporate incongruent features to established sleep stages 
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definitions, leading to difficulties in comprehending the final output for medical experts 

(Danker-Hopfer et al., 2009; Lee et al., 2022; Moser et al., 2009; Rudin, 2019). 

This study aims to address the limitations and challenges by introducing innovative 

multi-method approaches. The following sections provide an overview of the critical 

components of this study and the motivations behind each research direction.  

1.1.1. Analysing Sleep EEG Data for Sleep Stage Classification 

The first aspect of this research focuses on developing advanced methodologies for 

sleep EEG data analysis towards sleep stage classification. Exploring signal 

decomposition and analysing methods like the MP and the MT&C in the EEG data 

enables the identification of characteristics and parameters that can be linked to sleep 

stages classification (Zapata et al., 2022). The motivation of this research is to enhance 

diagnostic capabilities and a deeper understanding of sleep EEG patterns. 

1.1.2. Integration of Machine Learning Techniques 

In order to enhance the classification performance and explore alternative algorithms, 

this study incorporates several machine learning (ML) techniques such as linear 

regression, decision trees, random forest, support vector machines, into the sleep EEG 

analysis. By leveraging the power of a ML method, the objective is to improve the 

precision, robustness, and applicability of sleep stages classification (Zapata et al., 

2022). This research direction is driven by the aspiration to unleash the potential of 

automated approaches and mitigate the dependency on manual scoring, thereby 

expediting the diagnosis of sleep-related disorders with heightened accuracy and 

showing the relevance and bases of each score. 

1.1.3. Sleep Spindles Identification and Categorisation 

Sleep spindles are transient neural oscillatory events that occur during specific sleep 

stages and have been linked to memory consolidation and cortical plasticity. This study 

introduces the SAMC method to visualise, identify, and categorise sleep spindles in the 

EEG data (Zapata et al., 2023). By harnessing the capabilities of the MT&C, this 

approach stipulates a comprehensive understanding of the characteristics of spindles 

and their spatial distribution over the scalp. It aims to uncover the intrinsic mechanisms 

of sleep spindles, their role in the brain activity and their potential implications for 

cognitive processes, expanding our understanding of sleep-related brain activity. 

1.1.4. Integration of Advance Time-Frequency Analysis and Deep Learning 

The concluding aspect of this research explores advanced time-frequency analysis 

techniques and deep learning models for automatic sleep stage classification. The 
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extraction of informative features using the MT&C and incorporating innovative 

methodologies, such as visual geometric group, squeeze-and-excitation blocks, and 

scaled exponential linear unit with batch normalisation strives to improve the accuracy 

and precision of sleep stage classification (Zapata et al., n.d.). The motivation of this 

research direction is to leverage state-of-the-art techniques in deep learning and signal 

analysis to enhance the comprehension and classification of sleep stages, with the 

eventual goal of contributing to a more precise sleep stage classification and subsequent 

improvement of sleep disorders diagnosis. 

In brief, this study incorporates multiple research techniques to revolutionise sleep EEG 

analysis and sleep stage classification. With the introduction of innovative 

methodologies, integration of ML techniques, incorporation of sleep spindles 

characteristics, and consolidation of signal analysis and deep learning models, this 

study aims to advance the field and provide valuable insights into sleep-related 

phenomena, ultimately contributing to enhancing sleep health and well-being. 

 

1.2. Research Problems  

This section presents the primary research challenges that motivate this study, 

establishing the bases for the proposed multi-method approaches in sleep EEG analysis 

and sleep stage classification. 

Problem statement: 

Sleep is a fundamental aspect of human health, contributing significantly to overall 

well-being and cognitive function. However, the pervasive issue of sleep disorders has 

emerged as a global concern, affecting millions of individuals across diverse 

demographic groups. As we delve into the intricate landscape of sleep health, it 

becomes imperative to explore the prevalence, impact, and societal implications of 

sleep disorders on a global scale. 

Despite the critical role that sleep plays in maintaining physical and mental health, an 

alarming number of individuals worldwide suffer from sleep disorders. According to 

the World Health Organization (WHO), almost 30% of adults globally experience 

frequent sleep-related difficulties, encompassing conditions such as insomnia, sleep 

apnea, and restless leg syndrome (WHO, Global Health Observatory Data, 2022). These 

disorders not only compromise the quality of life for affected individuals but also pose 

substantial challenges to public health systems and economies. 
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The impact of sleep disorders extends beyond mere inconvenience, as mounting 

evidence links inadequate sleep to a many of health issues, including cardiovascular 

diseases, obesity, and mental health disorders (Buysse et al., 2010; Dietz & Nagel, 

1967; Edinger et al., 1991; Esposito et al., 2019; Goldman et al., 2007b; Gulia & 

Kumar, 2018; Lam, 2006; Patel et al., 2023; Skarpsno et al., 2017; Wang et al., 2018; 

Watson et al., 2015). 

Despite the pervasive nature of sleep disorders, the existing methods for analysing sleep 

electroencephalogram (EEG) data and classifying sleep stages face notable limitations. 

Current approaches often struggle with accuracy and efficiency, hindering the timely 

and precise diagnosis of sleep-related conditions. This deficiency not only 

compromises the quality of life for affected individuals but also contributes to the 

escalating economic burden on healthcare systems globally. 

Within this context, the present thesis endeavours to address the critical gaps in sleep 

EEG analysis and sleep stage classification. By leveraging multi-method approaches, 

incorporating advanced time-frequency analysis and deep learning models, this 

research aims to provide innovative solutions to enhance the accuracy and reliability of 

sleep stage classification. The ultimate goal is to contribute to the improvement of 

diagnostic tools and therapeutic interventions for sleep disorders.  

Global Statistics on Sleep Disorders: 

Let us briefly examine the staggering prevalence of sleep disorders on a global scale. 

The National Sleep Foundation reports that sleep-related problems are estimated to cost 

the United States alone over $94 billion annually in medical expenses and lost 

productivity [3]. In Europe, sleep disorders affect nearly 45 million people, resulting in 

a substantial economic burden exceeding €45 billion each year (Baranowski & 

Jabkowski, 2023; Huyett & Bhattacharyya, 2021). 

These statistics underscore the urgent need for advancements in sleep research, 

particularly in the realm of EEG analysis and sleep stage classification. By improving 

the accuracy of these methodologies, we can make significant strides toward mitigating 

the far-reaching consequences of sleep disorders on individuals and society. 

Considering this, the following sections of the thesis will delve into the proposed multi-

method approaches, their implementation details, and the experimental results 

demonstrating their superiority over existing methods. Through this research, we aspire 

to contribute not only to the academic discourse on sleep disorders but also to the 

practical improvement of diagnostic and treatment modalities. 
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1.2.1. Manual Sleep Stage Scoring 

The dependence on manual sleep stage scoring comprises substantial challenges 

regarding time consumption, subjectivity, and inter-observer verification. The manual 

scoring is susceptible to expert fatigue, personal biases, and inconsistency in 

interpretation (Berry et al., 2017; Chediak et al., 2006; Danker-Hopfer et al., 2009; 

Grigg-Damberger, 2012; Haustein et al., 1986; Himanen & Hasan, 2000; Hori et al., 

2001; Kushida et al., 2005; Lee et al., 2022; Moser et al., 2009; Novelli et al., 2010; 

Parrino et al., 2009; Rezaie et al., 2018; Rosenberg & Van Hout, 2013; Ruehland et al., 

2011; Zapata et al., 2023). This research addresses these limitations and postulates 

innovative automated methods that offer unbiased, consistent, and efficient sleep stage 

classification, diminishing sleep experts' personal biases and improving sleep-related 

diagnostic accuracy for sleep disorders. 

1.2.2. Automatic Sleep Stage Classification Methods 

Numerous automatic sleep stage classification methods have emerged in recent years, 

employing various techniques. However, a common characteristic among many 

methods is the black box design, which introduces uncertainty in the classification 

output. This uncertainty arises primarily due to the lack of interpretable explanations 

for a classification result. Moreover, these methods often employ features not aligned 

with the established parameters for sleep stage scoring, further contributing to the 

challenges in achieving accurate and interpretable outcomes (Al Ghayab et al., 2019; 

Danker-Hopfer et al., 2009; Grigg-Damberger, 2012; Hori et al., 2001; Lee et al., 2022; 

Rudin, 2019). The research problem at hand is to identify parallel approaches that can 

effectively combine automation in sleep stage scoring while establishing a coherent 

structure that defines the output of the method. The ultimate objective is to leverage the 

capabilities of automatic methods while also enabling a visual interpretation of the 

extracted features. By achieving this, the aim is to generate a more reliable and 

confident output that medical experts can readily interpret. 

1.2.3. Computational Demands of Sleep EEG Analysis 

The computational requirements by some of signal analysis techniques for sleep EEG 

data, such as the MP method, can be excessively high, especially when analysing large 

databases, limiting their practical applications. This research is to find alternative 

approaches, like the MT&C method, that strike the balance between computational 

efficiency and accuracy. However, completely disregarding the MP method may not 

adequately address the problem. Thus, there is a need to integrate the valuable insights 
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from the MP method into more computationally feasible approaches while ensuring the 

preservation of critical signal characteristics. 

1.2.4.  Unveiling the Characteristics of Sleep Spindles 

Sleep spindles, crucial markers of brain activity during sleep, hold significant potential 

in understanding memory consolidation and cortical plasticity. However, its precise 

characteristics, distribution, and functions of sleep across different cortical areas still 

need to be better understood. This research is to explore advanced time-frequency 

analysis techniques and implement machine learning algorithms to improve the 

accuracy, robustness, and generalisation of sleep stage classification. That involves 

extracting informative features, selecting appropriate classification models, and 

integrating innovative methodologies to enhance the performance of sleep stage 

classification algorithms. 

By addressing these research problems, this study aims to contribute to the field of sleep 

EEG analysis and sleep stage classification, offering innovative solutions to improve 

diagnostic capabilities, advance our understanding of sleep-related phenomena, and 

ultimately enhance sleep health outcomes for individuals. 

 

1.3. Research Questions and Main Objectives 

The following five fundamental concerns govern the objectives of this research:  

1. How to improve sleep stages classification and detect abnormal events with 
features and parameters from EEG wave definitions.  

2. How to improve the computational power of the algorithm using more effective 
signal decomposition kernels. 

3. How to improve the overall performance of sleep EEG classification using the 
resolution that time-frequency analysis provides. 

4. How to achieve accuracy across multiple EEG databases with different types of 
sleep EEG data collection devices.  

5. How to integrate time-frequency features with machine learning and deep 
learning algorithms to classify sleep stage classification. 
 

The main objectives of this research are:  

• To develop new methods for sleep stage classification capable of improving 

performance and accuracy.  

• To generate visualisations and direct connections between the extracted features 

by a proposed method and EEG definitions to help experts validate the findings.  
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Initially, a set of methods used for time-frequency analysis are implemented to extract 

key features from EEG data based on EEG-wave definitions. Then, based on the 

findings and performance of each characteristic, they are selected to perform the task 

where they have the most relevance. 

Specifically, the primary goals of this research are: 

o To develop a method that combines multiple signal analysis techniques to 

identify and predict sleep stages and abnormal waves in EEG data. 

o To improve the performance of the methods by integrating different signal 

analysis methods to generate features that have a high correlation with the 

definitions of EEG waves. 

o To develop wavelets, dictionaries and kernels associated with specific wave 

types found in EEG data. 

o To apply methods on different types of EEG databases and to improve their 

accuracies. 

o To generate visualisations associated with the findings in the EEG data. 

o To develop, test, train and validate machine learning and deep learning 

algorithms for sleep stage classification. 

 

1.4. Research Contribution, Outcomes and Significance 

This section highlights the main contributions of this research in the field of sleep EEG 

analysis and sleep stage classification, emphasising the evolution and novel insights 

gained through the proposed multi-method approaches. The methods developed within 

this thesis have been disseminated through publication in high quality journals (such as 

Sleep and IEEE Access) focusing on detecting and analysing sleep characteristics in 

EEG signals. The outcomes of the research have been critically reviewed and 

summarised, explicitly evaluated the precision of their classification. Extensive 

experiments have been conducted in this study to investigate the performance of the 

proposed methods thoroughly. Furthermore, comparisons have been made with 

recently reported algorithms utilising a variety of similar and different databases.  

The implemented algorithms of the proposed methods were coded using Python 

versions 3.9, 3.11 and 3.12, alongside MATLAB R2018a through R2023a. The 

databases used in this study were the St. Vincent's Database (Heneghan et al., 2008), 

DREAMS Database (Stephanie Devuyst. et al., 2005), CAP Sleep Database (O'Reilly 

et al., 2014). Numerous papers have extensively employed these databases to 
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investigate and analyse sleep EEG. Please refer to Chapters 3, 4 and 5 for further 

database information. The methods were evaluated utilising various analytical tools, 

including accuracy rate (AR), Lin's concordance correlation coefficient (CCC), positive 

predicted value (PPV), F-measure, precision, and recall. Detailed information can be 

found in Chapters 3-5 for a more comprehensive understanding of these evaluation 

metrics.  

This research project aims to develop innovative methods for automatically identifying 

the sleep EEG characteristics associated with different sleep stages based on well-

defined criteria such as the R&K rules and the AASM standards. Sleep stage scoring 

involves the identification of distinctive patterns within the EEG signals to classify 

them into awake (W), stage 1 (S1), stage 2 (S2), stage 3 (S3) and rapid eye movement 

(REM) sleep stages. Each stage exhibits unique wave characteristics characterised by 

specific frequency rage, which can be leveraged for their identification. 

The current manual sleep stage scoring process is time-consuming and mentally 

exhausting for experts, who often spend extensive hours analysing EEG recordings. 

The subjectivity, biases and fatigue associated with manual scoring can lead to 

inconsistent or conflicting sleep stage scoring. In this context, this thesis aims to 

automate the identification of sleep characteristics by integrating signal analysis, 

machine learning, and deep learning techniques. By automating the identification of 

sleep stages/spindles, this research seeks to reduce the time and effort experts require 

to analyse EEG signals, overcoming the limitations of black-box approaches commonly 

used in automated methods. Moreover, the proposed method can be utilised by experts 

for sleep stage scoring, streaming the process and potentially lowering the cost of 

treatment as they can automatically analyse patient recordings. 

Additionally, the proposed methods offer features relevant to the characteristics of sleep 

stage definitions, giving the option of visualising features, providing meaningful 

insights to medical experts, and supporting the outcomes of the classification methods. 

This feature visualisation aids in enhancing the understanding of the scoring process, 

enabling experts to identify specific characteristics and further refine their assessments. 

In summary, this research project aims to improve the understanding and accuracy of 

sleep stage scoring by automatically identifying sleep stage characteristics using an 

integration of signal analysis, machine learning, and deep learning techniques. The 

proposed methods have the potential to streamline the scoring process, reduce cost, and 
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provide visual support to medical experts, thereby enhancing the overall sleep stage 

classification approach. 

The following contributions have been made to address the research questions and 

accomplish the objectives. 

1.4.1. Development of the Innovative Techniques  

EEG data are complex, non-stationary recordings of brain activity, collected using 

sensible electrodes on the scalp to detect and measure the voltage fluctuations resulting 

from the neuronal interactions. However, EEG data collection is challenging due to the 

susceptibility to noise that are from various sources, including muscle movement, 

external device frequencies, and even electrode connectivity issues. 

Given the significance of EEG data as a fundamental source of information, this 

research prioritised the study, analysis, and the development of signal pre-processing 

and analysis methods. 

This study makes notable contributions to the field by introducing innovative 

approaches for sleep EEG analysis and sleep stage classification. By integrating the 

MT&C method and incorporating valuable insights from the MP method, this study 

provides a practical and efficient solution for untangling sleep stage parameters from 

EEG data. Moreover, this research explores the integration of machine learning 

techniques, advanced time-frequency analysis, and deep learning models, pursuing the 

boundaries of automated sleep stage classification. These advancements aim to enhance 

the performance, accuracy and precision of the proposed classification algorithms. 

1.4.2. Enhance Sleep Stage Classification Accuracy 

One of the primary contributions of this research is the improvement in sleep stage 

classification accuracy. The proposed approaches achieved notable performance 

improvements by leveraging advanced methodologies and combining multiple 

techniques, including the MT&C method, machine learning algorithms, and deep 

learning models. These advancements enable more accurate and reliable sleep stage 

classification, facilitating improved diagnoses and a better understanding of sleep-

related disorders.  

1.4.3. Comprehensive Analysis of Sleep Spindles 

This thesis contributes to understand sleep spindles by introducing the SAMC method. 

This novel approach uses the MT&C to identify and categorise sleep spindles in EEG 

data, comprehensively analysing spindle characteristics and their distribution across the 

cortical areas. The insights gained from this method contribute to a deeper 
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understanding of the role of sleep spindles and their distribution over the scalp, which 

is an exciting approach to persuade the comprehension of the role of spindles in 

memory consolidation, cortical plasticity, sleep stages, and other cognitive process. 

1.4.4. Integration of Advance Techniques 

Another significant contribution of this thesis is to incorporate advanced techniques, 

including time-frequency analysis, machine learning algorithms, and deep learning 

models. The proposed approaches confirmed enhanced performances in sleep EEG 

analysis and sleep stage classification by adopting these techniques. The integration of 

these techniques provided more comprehensive and accurate analyses of sleep patterns, 

enabling improved diagnostic capabilities and facilitating personalised sleep health 

interventions. 

Overall, this thesis contributes to the field of sleep EEG analysis and sleep stage 

classification by introducing innovative approaches, improving classification accuracy, 

enhancing the understanding of sleep spindles, and integrating advanced techniques. 

The findings of this research have the potential to revolutionise sleep research, improve 

current deep learning and machine learning methods, expand clinical practice, and 

ultimately contribute to better sleep health outcomes for individuals. 

 

1.5. The Structure of the Thesis 

This section highlights the connections and interrelationships between the chapters of 

the thesis, illustrating the logical progression of the research and the cohesive nature of 

this study. 

 

1.5.1. Chapter 1: Introduction 

o It provides an overview of the research problem, objectives, and the significance 

of the study. 

o It sets the stage for the subsequent chapters by outlining the gaps in the current 

sleep EEG analysis and sleep stage classification methods. 

1.5.2. Chapter 2: Literature Review & Methodology 

o It facilitates a thorough review of the existing literature and research about time 

frequency signal analysis, sleep EEG signal analysis, sleep stage classification 

criteria, and related methodologies. 
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o It provides a broad understanding of the current state of the sleep EEG fields, 

highlighting the limitations and challenges in manual scoring and automated 

approaches. 

o It lays a foundation for subsequent chapters by identifying research gaps and 

establishing the need for innovative multi-method approaches.  

o It presents the relevant techniques employed in this thesis, including the 

description of the MT&C method, the MP method, and others. 

o It discusses EEG pre-processing steps, feature extraction methods, and the 

integration of several machine learning and deep learning techniques such as 

convolutional neural networks, recurrent neural networks, feedforward neural 

networks. 

o It details the implementation and experimental setup to evaluate the proposed 

methods. 

1.5.3. Chapter 3: Sleep EEG Analysis and Sleep Stage Classification 

o It emphasises developing and evaluating the MT&C method for EEG analysis 

and sleep stage classification. 

o It proposes two methods to classify sleep stages, one is a state-of-the-art that 

uses the parameters from the R&K rules and the standards from the AASM, and 

the other is the SVM machine learning method. 

o It evaluates the experimental results, including accuracy rate and performance 

metrics and compares them with some existing methods. 

o It highlights the significance of the findings for improving the accuracy, 

efficiency, and objectivity of sleep stage classification. 

1.5.4. Chapter 4: Sleep Spindle Identification 

o It implements the identification of spindles in different EEG channels and 

combines them to propose the SAMC method for sleep spindle identification 

and categorisation. 

o It presents the experimental results, including the agreement rate, positive 

predictive value, and sensitivity of the proposed method compared to other 

approaches. 

o It discusses the implications of the findings for understanding the characteristics 

and distribution of sleep spindles across different cortical areas. 

o It highlights and demonstrates the limitations of current manual scoring and 

their implication on automated methods, postulating a need to implement a 
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collaborative classification validation to improve further accuracy on manual 

and automatic scoring. 

1.5.5. Chapter 5: Advanced Time-Frequency Analysis in Alliance with Deep Learning for 

Sleep Stage Classification 

o It investigates the integration of advanced time-frequency analysis techniques 

and deep learning models for sleep stage classification. 

o It describes implementing these techniques, including feature extraction 

methods, model architectures, and training procedures. 

o It presents the experimental results, showcasing the performance improvements 

in sleep stage classification, and compares them with current studies. 

1.5.6. Chapter 6: Discussing and Conclusion 

o It summarises the key findings from each chapter and discusses their 

implications. 

o It analyses and interprets the results, addressing the research questions and 

objectives. 

o It offers insights into the limitations of the proposed approaches, potential work 

for future research, and practical implications of the research outcomes. 
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The following diagram shows the thesis and chapters workflow: 

 

Examining the connection between the chapters makes it evident that each chapter 

builds upon the previous one, establishing a cohesive narrative that addresses the 

proposed research problem from multiple angles. The subsequent chapters delve into 

specific aspects of the sleep EEG analysis, implementation of machine learning for 

stage classification, spindle identification, and integration of signal analysis with a deep 

learning method to classify sleep stages. Conclusively, the discussions and the 

conclusion chapter synthesise the findings, highlighting their significance and 
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providing a road map for future research. These chapters constitute a comprehensive 

and integrated exploration of multi-method approaches for sleep EEG analysis and 

sleep stage classification, contributing to the advancements in the field and enhancing 

our understanding of sleep-related phenomena.



Chapter 2 Literature Review 
 

17 

 

 

CHAPTER 2 

 

 

LITERATURE REVIEW 
This chapter comprehensively reviews the existing literature on sleep, sleep EEG, sleep 

stages, sleep characteristics, time-frequency signal analysis, sleep stage classification, 

machine learning, deep learning, and related methodologies. Its primary aim is to 

establish a strong foundation for the subsequent chapters by synthesising prior research, 

identifying gaps in knowledge, and advocating for adopting innovative multi-method 

approaches in this field. 

This chapter is organised into five sections. Section 2.1 delves deeply into the concept 

of sleep, encompassing its characteristics, sleep physiology, stages, sleep EEG, and 

relevant technical aspects, such as basic montages, rhythms, noise, and EEG signal pre-

processing. Continuing the exploration, Section 2.2 presents a comprehensive overview 

of time-frequency signal analysis, specifically focusing on the implementation and 

suitability of the MP and MT&C methods for analysing EEG data. 

Lastly, Section 2.3 critically examines various sleep stage classification methods while 

shedding light on the limitations of the existing approaches that rely on black-box 

techniques. Furthermore, it explores the most promising machine and deep learning 

methods for feature extraction and classification, aiming to enhance accuracy, 

efficiency, and other essential capabilities for analysing sleep EEG signals.  

 

2.1.     Sleep, Sleep EEG and EEG Signal Pre-processing 

This section delves into the absorbing world of sleep, sleep EEG, EEG signal noise and 

EEG signal pre-processing to unravel the mysteries and lay the foundations of a deeper 

understanding of sleep and sleep EEG. The sleep EEG, which records electrical brain 

activity during sleep, holds valuable insights into the intricacies of sleep patterns. This 

section starts by examining the fundamentals of sleep, understanding its significance in 

analysing sleep stages and unwavering sleep characteristics. Subsequently, this section 

embarks on a journey into the realm of sleep EEG signal pre-processing and its 
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significance, where it uncovers the methodologies and techniques employed to enhance 

the quality and interpretability of EEG data. 

2.1.1. Sleep: Functions, Mechanisms, and Adaptations 

Before delving into the world of sleep EEG and the valuable insights it offers into the 

brain's electrical activity during sleep, it is essential to comprehend sleep physiology, 

its functions, mechanisms, adaptations, and elements that could cause adverse effects 

on it. This section dives into the fundamental aspects of human sleep, encompassing its 

vital functions, underlying mechanisms, remarkable adaptations that play a crucial role 

in overall human well-being, and the adverse sleep-affecting elements. 

2.1.1.1. Sleep 

Sleep plays a fundamental role in humans' mental and physical health. The quantity and 

quality of sleep are essential for almost every aspect of the physiological system. Its 

significance goes further than the physiological, having significant relevance in the 

cognitive and emotional processes, directly influencing analytical performance and 

overall health (Berry & Wagner, 2015; Y. Liu et al., 2016).  

From the cognitive standpoint, sleep is vital for memory consolidation, information 

processing and synaptic plasticity. Sleep directly impacts the brain's ability to adapt and 

recognise its neural connections in response to experience, learning and environmental 

stimuli. It aids in organising and solidifying newly acquired knowledge, facilitating 

critical thinking abilities, and enabling problem-solving. Additionally, sleep fosters 

emotional regulation and psychological stability, enabling individuals to manage stress 

and maintain a stable state of mind (Baranwal et al., 2023; Berry & Wagner, 2015; 

Institute of Medicine (US) & Committee on Sleep Medicine and Research, 2006). 

Regarding the role of sleep in human physical health, sleep significantly influences 

circulatory health, neural system, immunity, reproductive health, and hormone 

regulation, among many others. Sufficient and qualitative sleep supports physiological 

rejuvenation, enhancing physical stamina and vitality, and wires the body's immune 

response, protecting against illnesses and facilitating prompt recovery from daily 

draining routines. A regular sleep schedule improves the conservation of the biological 

clocks, reduces sleepiness during the day, and permits subjects to wake up and fall 

asleep more easily (Baranwal et al., 2023). 
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2.1.1.2. Sleep Physiology  

The sleep-wake cycle, also known as the circadian rhythm, is created by the central 

neural networks and regulated by complex relationships of neural and hormonal factors. 

The transit from awake to sleep and its stability involves inhibiting ascending arousal 

systems that stimulate wakefulness. The suprachiasmatic nucleus (SCN) (Figure 2.1.1) 

is between the optic chiasm and the hypothalamus. It serves as the body's biological 

clock, coordinating the timing of various biological processes, including sleep and 

wakefulness. The circadian clock is driven by endogenous physical oscillations, with 

cycles of approximately 24 hours, where external cues such as light and darkness 

synchronise the SCN, helping to maintain a regular sleep schedule (Baranwal et al., 

2023; Berry & Wagner, 2015; Y. Liu et al., 2016).  

The retina detects the light signals and transfers them as electrical impulses through the 

optic chiasm to the brain, signifying daylight. The reception of light activates the 

production of the hormone Cortisol, which stimulates its production in the early hours 

of the day. Conversely, low light inputs trigger melatonin secretion by the pineal gland 

or the hormone of darkness. In normal cases, melatonin levels rise in the evenings and 

peak in the early morning, impacting sleep regulatory mechanisms (Baranwal et al., 

2023; Berry & Wagner, 2015; Y. Liu et al., 2016).  

Humans cycle through different sleep stages throughout the night, each with unique 

characteristics and physiological components. The stages go from wakefulness through 

non-rapid eye movement (NREM) to REM.  

Hypothalamus 

Suprachiasmatic Nucleus 

Optic Chiasm 

Pineal Gland 

Figure 2.1.1: Suprachiasmatic nucleus & biological clock. 
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NREM sleep is divided into three sub-stages: stage 1 (S1), stage 2 (S2) and stage 3 

(S3). S1 is a state of drowsiness, meaning that the subject is transitioning between 

wakefulness to sleep, and theta waves characterise it. S2 is a middle stage characterised 

by constant spindles and k-complexes events. S3, or slow-wave-sleep (SWS), is 

considered the deepest stage of sleep, and slow delta waves govern it (Antony et al., 

2018; Armitage, 1995; Baranwal et al., 2023; Fogel & Smith, 2011; Koupparis et al., 

2013; Schönauer & Pöhlchen, 2018). 

Rapid eye movements, desynchronisation of brainwaves activity that resembles 

wakefulness and vivid dreaming characterise REM sleep. This paradoxical state is 

where the brain becomes highly active, and the muscles experience temporary paralysis 

to prevent individuals from acting out their dreaming (Armitage, 1995; Baranwal et al., 

2023). 

Sleep regulation involves the interaction of neurotransmitters (Figure 2.1.2) like 

acetylcholine, serotonin, and norepinephrine, critical in transitioning between 

wakefulness and sleep stages. 

Moreover, melatonin, a hormone produced by the pineal gland (in Figure 2.1.1), is 

induced in response to darkness, producing feelings of sleepiness and assisting in 

regulating the sleep-wake cycle (Baranwal et al., 2023).  

Sleep deprivation triggers sleep homeostasis or driver, a regulatory mechanism that 

helps maintain the balance between sleep and wakefulness. It ensures that the body 

Neurotransmitters 

Receptors 

Figure 2.1.2: Connections between neurons and neurotransmitters. 
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obtains the right amount of rest needed for optimal functioning. The concept of sleep 

homeostasis is based on the idea that the longer the individual stays awake, the greater 

the need for sleep becomes (Baranwal et al., 2023).  

Sleep is far from being a passive state of rest. Instead, while sleeping, the brain and the 

neurons remain highly active, carrying out vital functions such as cellular reparation, 

immune system strengthening, and memory consolidation. As a result, sleep holds 

enormous significance for cognitive functions and learning, as it promotes synaptic 

plasticity in the brain and consolidation of information. 

Sleep serves diverse functions, including physiological and cognitive restoration, 

memory consolidation, brain plasticity, and hormone regulation. Its mechanisms 

involve complex integrations between neurotransmitter systems, circadian rhythm, and 

sleep homeostasis. During human life, sleep has undergone adaptations now embedded 

in the genes, providing unique advantages for survival and well-being. Understanding 

the functions, mechanisms, and adaptations of sleep enhances the appreciation for this 

essential aspect of life and its profound impact on health and cognitive function. 

2.1.1.3. Causes and Consequences of Sleep Deficiency 

Different external factors can influence sleep physiology, including environmental 

factors such as noise, temperature, and light exposure (Dimitriou et al., 2015; Xu et al., 

2021). These factors can potentially disrupt sleep quality and unsettle the body's 

biological clock. Lifestyle choices, such as caffeine consumption (Brice and Smith 

2002; O'Callaghan, Muurlink, and Reid 2018), irregular sleep schedules (Sack et al., 

2007), and excessive use of electronic devices before bedtime (Hale & Guan, 2015; 

Kato et al., 2018; Twenge et al., 2019), can also impact sleep. Furthermore, medications 

(Doghramji & Jangro, 2016; Liguori et al., 2021), medical conditions (Lewandowski et 

al., 2011; Phillips et al., 2008), and mental health disorders (Freeman et al., 2020; 

Mulyadi et al., 2021) may play a role in influencing both duration and quality of sleep. 

The health and lifestyle of individuals rule the duration and intensity of each sleep stage. 

For instance, age, diet, and vices or bad habits are highly correlated with sleep quality. 

In the case of age, it has been reported that the REM stage is highly predominant in 

newborns, while it tends to shorten in older adults (Al-Jumeily et al., 2015; Bazil & 

Walczak, 1997; Edwards et al., 2010; Elobeid et al., 2012; Goldberger, 2000; 

Rajbhandari et al., 2021; Shen et al., 2023; Vitiello et al., 2004; Ye et al., 2020).  

Similarly, several studies indicate that high-carbohydrate diets could reduce sleep onset 

latency (SOL) and SWS while increasing the REM stage. At the same time, high-fat 
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diets reduce sleep efficiency and REM and increase SWS and arousal (St-Onge et al., 

2016).  

As for the lifestyle of individuals, several studies implied that the consumption of 

tobacco, caffeine, alcohol, and certain medications are associated with a high 

prevalence of insomnia and many other health issues (Brice and Smith 2002; Doghramji 

and Jangro 2016; Hussain et al., 2022; Liguori et al., 2021; O'Callaghan et al., 2018). 

Sleep deficiency, which includes insufficient or excessive sleep, disordered breathing 

while sleeping, and insomnia, is connected to an elevated probability of insulin 

resistance and a predominant risk of developing diabetes mellitus. Similarly, acute sleep 

restriction, in the long run, could impact growth and muscle repair. Sleep disorders can 

also lead to the central suspension of testosterone, generating sexual dysfunction. 

Likewise, sleep fragmentation alters the balance of ghrelin and leptin hormones that 

stimulate hunger and satiety, causing unhealthy eating patterns and adverse health 

effects (Baranwal et al., 2023). 

During normal sleep cycles, the cardiovascular (CV) system steps into resting mode, 

the heart rate slows down, and the blood pressure dips, shifting from a sympathetic tone 

to a more relaxed pitch. Abnormal sleep patterns increase the automatic activity stress 

of the CV system, growing the likelihood of hypertension, cardiac arrhythmia, 

endothelial dysfunction, coronary artery disease, stroke, and myocardial infarction 

(Baranwal et al., 2023; Dettoni et al., 2012; Lavie, 2008; X. Li et al., 2021; Rajbhandari 

et al., 2021). 

Sleep and the immune system have a bidirectional relationship, as sickness can disrupt 

sleep, altering its duration and intensity, and sleep enhances the immune system. Sleep 

loss and disturbances reduce natural killer cell activity and antibody production, 

increasing infections and potential cancer risks. Additionally, sleep deprivation leads 

to the release of inflammatory cytokines, elevating the risk of cardiovascular and 

metabolic disorders. In the same way, insomnia has been associated with a decrement 

in post-influenza vaccine antibodies, and shorter sleep duration increases susceptibility 

to upper respiratory infection (Baranwal et al., 2023; Dettoni et al., 2012; Prerau et al., 

2017). 

The glymphatic system, active during sleep, removes waste proteins from the brain, and 

the disruption of this system could contribute to neurodegenerative conditions like 

Alzheimer's. Sleep plays a crucial role in memory consolidation, enhancing long-term 

storage and enabling the formation of new associations. Moreover, sleep disorders like 
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insomnia increase the risk of depression, addictions, and anxiety (Baranwal et al., 

2023). 

In addition to the conditions already mentioned resulting from sleep deficiency, bad 

habits, and inadequate nutrition, numerous other physiological systems are impacted, 

extending influence over sleep quality (Baranwal et al., 2023; Boostani et al., 2017; 

Minecan et al., 2002). 

Neurophysiological technologies such as EEG facilitate comprehensive brain 

behaviour data acquisition. This information has been instrumental in unveiling novel 

insights and enriching the comprehension of neuronal interactions during diverse 

human activities (Aboalayon et al., 2016b; Emmady & Anilkumar, 2023; Feinberg et 

al., 1969; Fernandez Guerrero & Achermann, 2019). 

2.1.1.4. Sleep Architecture 

Sleep architecture refers to the structure characterised by a rhythmic cyclin process that 

alternates from the three sub-stages in the NREM and the REM stage Figure 2.1.3. The 

complete sleep architecture has neuronal restorative benefits, and its disruption could 

cause significant consequences. The optimum sleep architecture of a night sleep has 

between four and five sleep cycles, each of approximately 90 minutes. The sleep cycle 

starts with S1, transitioning smoothly into S2 and S3, and finalising in the REM stage. 

During the first half of sleep, the SWS stage is predominant. While in the second half, 

the REM stage prevails (Zieleniewska et al., 2019).  
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Figure 2.1.3: A normal night sleep structure. 
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Each sleep stage plays specific functions in the brain, and their interaction and cyclic 

patterns contribute to achieving optimum sleep (Baranwal et al., 2023; Chokroverty and 

Thomas 2014; Limoges et al., 2005; Malhotra and Avidan 2014; O'Reilly et al., 2014; 

Terzano et al., 2001). 

2.1.1.4.1. Wake Stage 

The initial minutes in a typical EEG recording often consist of wake (W) stage patterns. 

During a relaxed wake stage, the EEG will exhibit alpha activity, comprising more than 

50% of the epoch. When the subject relaxes and alternates opening and closing their 

eyes, the EEG will display a combination of beta and alpha activities, or predominantly 

alpha, if the eyes remain closed. Additionally, the electromyography (EMG) data, 

which supplements the PSG examination, will reveal high muscle tone with large 

amplitudes caused by muscle contractions and artifacts. Similarly, the 

electrooculogram (EOG), also part of the PSG, will show abrupt changes indicating eye 

blinking and rapid eye movement. As the subject further relaxes, entering an early 

drowsy state with closed eyes, the alpha activity will become more pronounced, and 

the EMG and EOG signals will shift to a subdued state. The movement of subjects or 

rolling in bed is also reflected in the EOG data, as paroxysmal events have high-

amplitude activity and increased artifacts. Transitioning from the W stage, subjects 

usually proceed to S1 Stage but may occasionally enter REM sleep or stage S2 directly, 

particularly under pathological conditions of sleep deprivation (Chokroverty & 

Thomas, 2014; Malhotra & Avidan, 2014; Terzano et al., 2001). 

2.1.1.4.2. Sleep Stage 1 

Stage 1 (S1) is the lightest among all sleep stages and represents a transition from 

wakefulness to stage 2 (S2). It constitutes approximately 5% of total nocturnal sleep. 

The EEG patterns in the S1 stage are characterised by low voltage and fast EEG activity. 

However, sometimes those patterns pose challenges in the identification of this stage. 

Scoring the S1 stage typically occurs when more than half of the epoch exhibits theta 

activities (4-7 Hertz (Hz)), interspersed with low beta activity amplitudes. The power 

of beta activity in S1 is generated below 75 microvolts (𝜇V), although brief bursts of 

theta activity with amplitudes lower than 75	𝜇V may also occur. The percentage of 

alpha activity in the S1 stage is usually less than 50%. In the later stages of S1, it is 

possible to find vertex sharp waves (VSWs). However, sleep spindles, k-complexes and 

rapid eye movement are never components of this stage. The VSWs are occasionally 

found as a characteristic feature in the last epochs of the S1. These localised paroxysmal 
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waves, with frequencies between 3 to 6Hz, exhibit high-negative voltage with a sharp 

surface, followed by a positive component generated over the Cz electrode (Baranwal 

et al., 2023; Rodenbeck et al., 2006).  

Arousals, also characteristic of the S1 stage, are abrupt paroxysms of brain activity that 

can last between 10% to 50% of the epoch duration. When the duration of these arousals 

exceeds 50%, the epoch is scored as W. Physiologically, during the S1 stage, the 

breathing becomes shallow, the heart rate becomes regular, the blood pressure 

decreases, and the subject exhibits minimal body movement. The S1 is characterised 

by a levitating sensation, a wandering mind, and dreams changing from reality to 

illusions (Baranwal et al., 2023). 

2.1.1.4.3. Sleep Stage 2 

Stage 2 (S2), or intermediate sleep, is one of the most predominant stages comprising 

of around 50% of a night's sleep, especially in adult subjects. It is characterised by a 

predominant activity of theta waves, with irregular surges of faster activity. The alpha 

activity evidenced in the EEG is minimal, and the amplitude could erupt from time to 

time, as the one seen in S1. The delta activity in S2 must be less than 20% of the epoch. 

Otherwise, the stage is scored as S3. Spindles and the k-complexes are the primary 

characteristics of S2, and during its early events, they are usually sporadic (Baranwal 

et al., 2023; Chokroverty & Thomas, 2014). 

Spindles, recognised for being a symmetric synchronised sinusoidal EEG activity 

localised on the central vertex region with frequencies between 8 and 16Hz, could last 

from 0.5 seconds to 2 seconds. Spindles usually have an occasional activity in ordinary 

cases. However, it could change in subjects treated with depressant drugs, increasing 

the activity of spindles (Bandarabadi et al., 2020; Caspary et al., 1996; Chokroverty & 

Thomas, 2014; Clawson et al., 2016; Cox et al., 2017; Devuyst et al., 2011; M. A. 

Kramer et al., 2021; Lafortune et al., 2014; Tsanas & Clifford, 2015; Warby et al., 

2014). 

K-complexes, sharply polyphasic or monophasic slow waves with a high-pitched 

negative deflection with a smaller positive deflection, stand out from the other waves. 

K-complexes are predominantly localised on the central vertex, and their duration 

should last at least half a second (Berry & Wagner, 2015; Chokroverty & Thomas, 

2014). 

There are two types of k-complexes spontaneous and evoked. The spontaneous k-

complexes arise from unidentified circumstances or endogenous brain activity, and the 
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evoked k-complexes are triggered by external stimuli such as noise. The k-alpha 

complexes are a variation of ether spontaneous and evoke k-complexes, and the 

simultaneous occurrences of ether k-complexes and alpha waves characterise them. 

Regular patterns for scoring S2 in the EEG are low k-complexes incidences and high 

amplitude of spindle activity. In the case of EOG and EMG activity, there is no defined 

criterion for S2 (Baranwal et al., 2023; Berry & Wagner, 2015; Chokroverty & Thomas, 

2014). 

Arousals from S2 could lead to a default S1 or W stage, so if the EEG alpha activity 

persists for less than 50% of the epoch, it is scored as S1, and if the alpha activity 

persists for over 50%, it is scored as W. However, when the first half of the following 

epoch exhibits S2 features like spindles, k-complexes or high-amplitude of theta or 

delta activity, it is scored as S2 (Baranwal et al., 2023). 

During S2 sleep, various physiological functions dimmish, including blood pressure, 

gastrointestinal secretions, brain metabolism, and cardiac activity, and as the subject 

descends deeper into sleep, they become more disconnected from the external world 

and progressively harder to awake (Baranwal et al., 2023; Chokroverty & Thomas, 

2014; Malhotra & Avidan, 2014; Terzano et al., 2001). 

2.1.1.4.4. Sleep Stage 3 

The SWS or sleep stage 3 (S3) comprises sub-sections R and K. However, they are 

collected on a single stage as their distinction does not have a clear clinical significance. 

The S3 is characterised by synchronised high-amplitude slow waves with frequencies 

between 0.5 to 5 Hz (delta waves). S3 is usually between S2 and REM, covering 

approximately 20% of the total sleep time in healthy subjects. The physiological aspect 

of S3 is distinguished by having the highest threshold for arousal, and subjects 

experience parasomnias and diffuse dreaming. The eyes cease their movement entirely, 

and the hormone secretion peaks. Similarly, to S2, there are no defined criteria for 

scoring S3 regarding the EOG and EMG activity (Berry & Wagner, 2015; Chokroverty 

& Thomas, 2014; Kemp et al., 2000; Rodenbeck et al., 2006).  

When a subject is suddenly woken up from S3, they can experience sleep inertia which 

is disorientation or confusion, and it can last for several minutes, invalidating the 

subject from normal functioning and rational thinking. The sleep inertia events could 

increase in exceptional cases when a subject suffers from sleep deprivation or is 

prescribed central nervous system medication (Baranwal et al., 2023; Berry & Wagner, 

2015; Chokroverty & Thomas, 2014). 
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The scoring of S2 has several characteristics. First, it must contain a delta wave 

dominance between 20% and 50% of the epoch with high amplitude in the patterns of 

sawtooth waves. Second, the eyes must be inactive, and the muscle tone must 

significantly reduce compared to other stages. Moreover, while sleep spindles and k-

complexes are common characteristics of S2, their presence may occur in S3 with a 

clear presence of delta activity (Berry & Wagner, 2015; Chokroverty & Thomas, 2014). 

2.1.1.4.5. REM Stage 

The paradoxical sleep stage or REM typically appears around 90 to 120 minutes after 

sleep onset in adults. REM in the early stages of sleep is brief, but its prevalence 

intensifies as the night progress, exhibiting its dominance and robustness. Comprising 

approximately 20 to 25% of the total sleep duration, the REM stage is distinguished by 

low-amplitude brain waves exhibiting a mixture of frequencies between delta and alpha 

waves. The brain waves during this stage exhibit small and irregular patterns, often 

accompanied by pronounced bursts of eye movement, which are detected in the EOG 

activity (Baranwal et al., 2023; Berry & Wagner, 2015; Chokroverty & Thomas, 2014). 

In contrast to the physiological activity in the NREM stages, REM is characterised by 

increased blood pressure and pulse, which could occasionally fluctuate. Furthermore, 

the breathing becomes irregular, the oxygenation of the brain increases, and the sexual 

sensorial organs of the subject may become aroused or stimulated. In the REM stage, 

the body temperature regulation ceases, gradually drifting into the environment 

temperature.  

In the cases of acute sleep deprivation, consumption of antidepressants, or the presence 

of a pathological condition such as narcolepsy-catalepsy syndrome, the REM stage 

could experience abrupt termination, resulting in a short latency period. Additionally, 

various disorders related to REM sleep, including obstructive sleep apnea and 

parasomnias, may become more pronounced during this specific period.  

The scoring of the REM stage is based on the low amplitudes and mixed frequencies 

evidenced on the EEG. Moreover, the EOG exhibits dynamic activity characterised by 

active rapid eye movements, while the EMG signal indicates a low chin tone. Notably, 

the absence of rapid eye movement does not necessarily signify REM's start or end. 

Instead, if the EEG continues exhibiting low amplitude and mixed frequencies without 

k-complexes or sleep spindles, and a low chin tone, the subsequent stages can still be 

classified as REM. The eye movement in REM resembles the eye patterns of an awake 

subject with eyes open, making the EMG signals crucial for distinguishing the REM 
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stage. Specifically, the chin tone of an awake subject is typically high, in contrast to the 

low-chin tone observed during REM stage sleep (Baranwal et al., 2023; Berry & 

Wagner, 2015; Chokroverty & Thomas, 2014). 

In the REM stage, the observed wave patterns typically fall within the frequency range 

of 2Hz to 6Hz and exhibit a sawtooth appearance. However, the exact amplitude 

characteristics of these waves remain undefined. On occasions, the chin and limb EMG 

activity could evidence irregular short bursts denominated transient muscle activity, but 

they cannot surpass 0.25 seconds (Chokroverty & Thomas, 2014).  

Abnormal REM sleep disorder, characterised by the notable absence of normal REM 

sleep atonia or muscle paralysis, may cause injuries and sleep disruption in subjects, as 

subjects end up acting out their dreaming. Some REM sleep stages can be classified 

into phasic or tonic. The phasic REM, which has a high correlation with dreaming, is 

characterised by an intermittent and brief muscle contraction or phasic twitching of the 

facial and genioglossal muscles and the middle ear muscle. This type of REM also 

presents the arousal of sexual sensorial organs (Berry & Wagner, 2015; Chokroverty & 

Thomas, 2014). 

The tonic REM, distinguished by a significant reduction of the EMG activity in the 

skeletal muscles and the absence of EOG activity, is usually associated with EEG 

patterns that show low voltage activations. This type of REM seems to be influenced 

by the locus coeruleus (Chokroverty & Thomas, 2014). 

The scoring of the REM stage will continue until sufficient variations in the EOG, EMG 

and EEG signal exist, evidencing any other sleep stage. For instance, if the epoch meets 

the criteria for S1 or W, it will be assigned accordingly. Additionally, if k-complexes 

or sleep spindles are observed in the first half of the epoch, and rapid eye movement is 

not detected, the epoch will be scored as S2, even if the chin muscle tone is low 

(Baranwal et al., 2023; Berry & Wagner, 2015; Chokroverty & Thomas, 2014). 

2.1.2. Sleep EEG 

Sleep EEG is a widely used technique for studying the brain's electrical activity during 

sleep. This technique was first used in 1930 to measure brain waves during sleep by 

Loomis, who a few years later published a study about the potentials in the human brain 

during sleep (Loomis AL et al., 1935). That preliminary research proposed a set of 

markers that showed the patterns of sleep and awake subjects. However, it was only in 

1968 that the R&K (Rechtschaffen & Kales, 1968) rules were established as a standard 

guideline for visual sleep stage scoring. A decade later, the AASM slightly modified 
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these guidelines from R&K rules. Since then, the research community has embraced 

and refined both principles (Berry et al., 2017; Danker-Hopfer et al., 2009; Grigg-

Damberger, 2012; Moser et al., 2009; Novelli et al., 2010; Rosenberg & Van Hout, 

2013; Ruehland et al., 2011; Tzimourta et al., 2018). 

2.1.2.1. EEG Monitoring   

Several types of EEG montages are used to capture specific aspects of brain activity 

and aid in EEG data analysis. However, the electrodes used for activity monitoring and 

sleep stage classification comprise only a portion commonly employed in clinical EEG 

monitoring.  

The montage of the EEG technique involves placing electrodes on the scalp to detect 

and capture the voltage fluctuations resulting from the interaction of neurons. These 

voltage measurements offer valuable insights of the subject's brain physiology (Berry 

& Wagner, 2015).  

One of the main objectives of the EEG recordings is to identify wakefulness and the 

various sleep stages. The AASM guidelines (Rosenberg & Van Hout, 2013) advise the 

use of a minimum of four electrodes: right-frontal (F4), right-central (C4), right-

occipital (O2), and contralateral left-mastoid (M1). These electrodes are combined to 

form bipolar channels F4-M1, C4-M1 and O2-M1. In addition to these four electrodes, 

backup electrodes are advised on the left side of the head, including left-frontal (F3), 

left-central (C3), left-occipital (O1), and contralateral right-mastoid (M2), as seen in 

Figure 2.1.4. 

Despite the theoretical sufficiency of the mentioned montage for detecting a posterior 

dominant rhythm during wakefulness and the primary sleep architecture, it exhibits 

significant limitations in adhering to the minimum prescribed montage. Also, limiting 

the EEG recording to only one hemisphere can be impaired due to localised brain 

Cz Cz Cz Cz 

F3 F3 
Fpz 

F4 F4 C3 C4 O1 O2 
O1 

O2 

M1 M2 

Figure 2.1.4: Basic EEG Electrodes for sleep monitoring. C: Central; F: Frontal; O: Occipital; M: 
Mastoid; Cz: Central midline (vertex); Fpz: Frontopolar midline. 
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lesions or misconnections of electrodes. This approach could also fail to detect 

pathological conditions, especially if the contralateral hemisphere is affected.  

The standard montage system to record EEG activity is the international 10-20 system. 

It refers to the standard approach to locate electrodes on the scalp, which is determined 

based on the distance of neighbour electrodes, as seen in Figure 2.1.5. 

The nomenclature of the electrodes is determined by their specific placement on the 

scalp, where designations such as F (frontal), T (temporal), C (central), P (parietal) and 

O (Occipital) are employed. Under the 10-20 international system, even-numbered 

subscripts denote electrodes on the right side of the head, while odd-numbered 

subscripts correspond to those on the left side. The central electrodes positioned at the 

vertex, dividing the two brain hemispheres, are labelled with letters representing the 

scalp region and the subscript "z". The 10-20 international system also incorporates two 

additional electrodes at the earlobe region, denoted as M1 and M2 or A1 and A2 in the 

AASM guidelines (Berry et al., 2017; Berry & Wagner, 2015; Chokroverty & Thomas, 

2014; Grigg-Damberger, 2012; Malhotra & Avidan, 2014; Moser et al., 2009; Novelli 

et al., 2010; Parrino et al., 2009; Ruehland et al., 2011; Siuly et al., 2010; Siuly & Li, 

2015). 

2.1.2.2. EEG Channels  

The methodologies implemented in EEG alternating current (AC) amplifiers differ 

across montages and electrodes. These AC are implemented to amplify the voltage 
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Figure 2.1.5: 10-20 montage international system.  
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variations among electrodes, allowing low-voltage recordings to be superimposed over 

high-voltage electrical noise (Berry, 2012).  

The EEG channels, also known as derivations, represent the voltage difference between 

two electrodes, and their standard convention is based on the resultant upward 

deflection of the voltage changes. It is essential to note that some channels, such as the 

airflow and chest effort, may not pertain to electrical currents (Berry, 2012; Berry & 

Wagner, 2015; Chokroverty & Thomas, 2014; Rodenbeck et al., 2006).  

According to the AASM standard, the recommended EEG derivations and backup 

derivations for sleep staging are presented in Table 2.1.2. The backup channels replace 

potential misreading or problematic channels (Berry, 2012; Berry & Wagner, 2015; 

Chokroverty & Thomas, 2014). 

In addition to EEG data, EOG signals often included in a recording can offer valuable 

insights for sleep stage scoring. EOG data are considered to originate from the cornea 

and the retina sections of the eyeballs. While a positive current is attributed to the 

cornea, a negative current is associated with the retina, and the collected data are based 

on the potential differences between them. The electrodes used to collect the EOGs are 

positioned in close proximity to the eyes, and they are subscripted as E1 or LOC for the 

left eye and E2 or ROC for the right. The E1 electrode is placed below the left outer 

canthus, whereas the E2 is placed above the right outer canthus. The purpose of these 

opposite placements is to capture both vertical and horizontal movements, enhancing 

the assessment of sleep stages (Baranwal et al., 2023; Berry, 2012; Berry & Wagner, 

2015; Chokroverty & Thomas, 2014; Rosado Coelho et al., 2018; Tzimourta et al., 

2018).   

RECOMMENDED EEG DERIVATIONS 

Recommended  

Main Derivations 

Recommended  

Backup 

F4-A1 F3-A2 

C4-A1 C3-A2 

O2-A1 O1-A2 

   

Table 2.1.2: EEG derivations recommended for sleep stages. 
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The AASM recommended using E1-A2 and E2-A2 as the appropriated EOG 

derivations, with both employing the right mastoid (A2) as the reference electrode. 

These derivations allow the identification of artifacts or EEG activity transmitted to the 

EOGs, resulting in in-phase deflections, as seen in the diagram in Figure 2.1.6, at the 

second of 5-6 (k-complex). Conversely, eye movement often generates out-of-phase 

deflection in the EOG channels, which usually is not reflected in the EEGs, as seen in 

the diagram shown in Figure 2.1.6, at the second of 2-3 (eye-moving during the REM 

stage highlighted in yellow). 

Other recorded data that are highly advised to include in the EEG monitoring for REM 

sleep staging is the EMG. EMG data are from a set of electrodes that monitor the 

activity of the chin muscles. During REM, the muscle activity in this specific area 

significantly diminishes. Its amplitude diminishes to the extent that it could reach the 

lowest amplitude activity observed in the NREM stages, or even lower. However, the 

EMG data are not used to identify the transition from NREM to REM, as in many cases, 

EMG activity could reach the REM levels during NREM well before the transition 

occurs (Baranwal et al., 2023; Berry, 2012; Berry & Wagner, 2015; Chokroverty & 

Thomas, 2014; Rodenbeck et al., 2006). 

2.1.2.3. EEG Wave Forms Related to Sleep Stages  

Identifying distinctive characteristics in the EEG and establishing their correlation with 

sleep patterns are fundamental for sleep staging. The activity within the EEG data can 

be characterised by its frequency, amplitude, and shape. Signals that exhibit clear 
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Figure 2.1.6: EEG deflections reflected on the EOG (K-complex at the second of 
5-6), and EOG deflection sat the second of 2-3. 
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distinctions in frequency and amplitude are often referred to as electric rhythmic 

signals, whereas those displaying specific characteristics in their shape are termed wave 

transients. 

2.1.2.3.1. Rhythmic Signals 

Rhythmic signals are associated with the sleep stages based on their respective 

proportions of appearance, and they play an essential role determining sleep transitions 

and scoring. Gaining insights into these waveforms is crucial for accurately classifying 

sleep stages and identifying abnormal patterns stemming from sleep deprivation or 

medical conditions. The EEG recordings typically encompass several predominant 

wave patterns, notably the alpha, theta, delta, REM theta, and the beta and gamma 

waves. 

Alpha Waves 

Alpha waves (Figure 2.1.7) are a predominant type of rhythmic electrical activity 

evidenced during wakefulness and relaxed states. These waves are commonly present 

when the eyes are closed and are characterised by being in the frequency range of 8-

13Hz.  

Alpha waves are frequently present in the posterior sides of the head on either side. 

However, the regions primarily used to trace these waves are the parietal and occipital 

regions. During the transition from wakefulness to sleep, alpha activity diminishes, 

leading to the onset of sleep stages. 

Theta Waves 

Theta waves are another important waveform observed in the EEG during sleep (Figure 

2.1.8). They are characterised by a frequency range of 4-7Hz, exhibiting amplitudes 

surpassing 20𝜇V. Primarily detected during the NREM sleep, theta waves are notably 

present in sleep stages S1 and S2. 

Alpha: 

State of relaxation 

8-13Hz 

Figure 2.1.7: Alpha waves 
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Theta waves are associated with drowsiness and early states of sleep, signifying sleep 

onset. They can be identified in the parietal and temporal scalp regions. Studies have 

reported increased theta waves during emotional events such as stress, frustration and 

distress, suggesting that excessive occurrences of theta waves might indicate abnormal 

brain activity, such as diffuse and middle disorder or metabolic encephalopathy (Berry 

& Wagner, 2015; Cahn & Polich, 2006; Chokroverty & Thomas, 2014; Kaulen et al., 

2022; Rajendran et al., 2022; Tzimourta et al., 2018). 

Delta Waves 

Sleep delta waves (Figure 2.1.9), characteristic of SWS, exhibit slow frequencies 

ranging from 0.5 to 4Hz and high amplitudes between 75 and 150𝜇V. They are 

predominately observed during deep sleep and are associated with restoring physical 

and mental well-being. 

Furthermore, sleep delta waves are associated with anaesthesia, epileptic seizures, 

coma, and vegetative state. Although they are generally diffuse across the scalp, the 

posterior region is considered the area for their identification. From a 

neurophysiological perspective, these waves signify oscillatory dynamics of cortical up 

and downstate, indicative of the subject's loss of consciousness (Berry & Wagner, 2015; 

Chokroverty & Thomas, 2014; Frohlich et al., 2021). 

REM Theta Waves 

During the REM sleep, the EEG exhibits theta waves (Figure 2.1.10) with a frequency 

range of 4-7Hz. REM theta is characterised by the dreaming phase of sleep and is 

associated with increased brain activity, vivid dreaming, and rapid eye movement. 

Theta: 

S1 and S2 state 

4-7Hz. & >20	𝜇V 
Figure 2.1.8: Theta waves 

Delta: 

S3 (restorative stage) 

0.5-4Hz. & >75𝜇V 
Figure 2.1.9: Delta waves 

REM Theta: 

REM (active dreaming) 

4-7Hz. 

Figure 2.1.10: REM theta waves 
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REM theta waves are also associated with the brain's ability to integrate and store 

information collected during the day or from previous experiences, contributing to 

memory formation and learning. Additionally, this type of waves are associated with 

emotion regulation and processing. 

Beta and Gamma Waves 

Beta and gamma waves (Figure 2.1.11) fall within the frequency ranges of 13-30Hz 

and 30-100Hz, respectively, displaying amplitudes of less than 20𝜇V and 2𝜇V, 

respectively. Although these waves do not precisely correspond to distinct sleep stages, 

they are markers for the active wakefulness stage or cognitive activity. 

2.1.2.3.2. Sleep Wave Transients 

Sleep wave transients are short-lived and temporary fluctuations observed during 

rhythmic brain activity. These waveforms typically exhibit certain shapes, 

characterised by abrupt amplitude, frequency, and phase changes. The analysis of these 

wave transients holds substantial importance in sleep stage classification and the 

identification of abnormal brain activity, as they can carry critical information about 

specific events or physiological responses. 

Sleep Spindles 

Sleep spindles (Figure 2.1.12) have distinctive wave patterns observed during the 

NREM sleep stages. They are characterised by a brief burst of oscillatory activity with 

frequencies ranging between 11Hz and 16Hz and lasting between 0.5 and 2 seconds. 

Sleep spindles are predominantly observed in stage S2 (Antony & Paller, 2017; Kabir 

et al., 2015; Kinoshita et al., 2020; Patti et al., 2018; Weiner & Dang-Vu, 2016). 

Sleep spindles: 

biomarkers 

11-16Hz. & 0.5-2sec 

Figure 2.1.12: An example of Sleep spindle (red waves) 

Beta: 

Cognitive state 

13-32Hz. <20𝜇V  

Gamma 

Active awake 

30-100Hz. <2𝜇V  

Figure 2.1.11: Beta and gamma waves 
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Sleep spindles play a crucial role in sleep physiology and have been closely linked to 

cognitive functions and memory consolidation. They are involved in transferring 

information from the hippocampus to the neocortex, thereby contributing significantly 

to the consolidation of newly acquired memories and cognitive processes (Antony et 

al., 2018; Fogel & Smith, 2011; Schönauer & Pöhlchen, 2018; Wamsley et al., 2012). 

A more comprehensive and in-depth discussion on spindles can be found in Chapter 4. 

K-Complex  

K-complexes (Figure 2.1.13) are transient waveforms observed in NREM sleep, 

characterised by a negative deflection followed by a slower positive component. These 

waves are considered arousal responses, influenced by various internal and external 

stimuli (Caporro et al., 2012; Ioannides et al., 2019; Koupparis et al., 2013). 

K-complexes typically exhibit a frequency around 33Hz and can last for approximately 

0.5 to 1.5 seconds, with amplitudes exceeding 100𝜇V. Although direct associations 

with specific functions have not been established, it is believed that they may contribute 

to sleep maintenance (Caporro et al., 2012; Ioannides et al., 2019; Koupparis et al., 

2013). 

Sleep Vertex Sharp Waves 

Sleep vertex sharp transients (Figure 1.1.14) are distinctive characteristics observed in 

sleep EEG recordings, primarily during the REM stage and the transition between light 

and deep stages of NREM sleep.  

Vertex sharp waves are defined by a negative sharp deflection followed by a slower 

positive component. Their occurrence is localised at the central areas of the scalp, 

giving rise to the term "vertex". These waveforms are considered a regular aspect of 

sleep architecture and indicate healthy sleep. They are associated with periods of 

cortical neuron deactivation, manifesting during stages S1 and S2 or through their 

K-complex: 

biomarkers 

11-16Hz. & 0.5-2sec 

Figure 2.1.13: K-complex (orange area) 

Sleep Vertex Sharp Waves: 

Biomarkers S1 & S2 

11-16Hz. & 70-200mil.sec 

Figure 2.1.14: Vertex sharp waves (orange area) 
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transition (Berry & Wagner, 2015; Chokroverty & Thomas, 2014; Danker-Hopfer et 

al., 2009; Frauscher et al., 2020; Vyazovskiy et al., 2009). 

2.1.2.4. EEG Artifacts Mitigation Techniques in Sleep Research and Beyond 

Various artifacts can significantly affect the accuracy of EEG recordings, including 

muscle movements and noise. Muscle movements encompass involuntary activities, 

such as eye blinking, jaw clenching, and facial expressions, which generate electrical 

interference often reflected in the EEG activity. Conversely, noise refers to unwanted 

electrical signals or interference that can contaminate the EEG recordings. 

In order to mitigate the adverse impact of muscle movement and noise artifacts, it is 

imperative to employ a range of signal processing techniques, such as filtering and 

artefacts removal algorithms. Properly addressing these artifacts is of paramount 

importance to ensure the validity and reliability of EEG findings in sleep research and 

relevant applications (X. Chen et al., 2019; Muthukumaraswamy, 2013). 

EEG Muscle Movement 

Muscle movement, or EMG activity, refers to the electrical signals generated by muscle 

contractions. These contractions, resulting from eye movements, jaw clenching, facial 

expressions, and heart rhythms, usually manifest in the EEG as electrical interference. 

Such interference contaminates the signals of interest, posing challenges in accurately 

assessing brainwave activity (X. Chen et al., 2019; Muthukumaraswamy, 2013). 

Muscle movements pose problems during sleep, when a subject lacks control over their 

movement. Episodes of muscle movement can suppress or conceal sleep events and 

patterns, thereby obstructing specific characteristics of interest related to sleep stages. 

This phenomenon obstructs the accurate identification of sleep-related events (Criswell 

& Cram, 2011). 

Various techniques are available to remove or reduce muscle movement artifacts, 

although some may be more controversial than others. Nonetheless, the primary 

objective of all these techniques is to eliminate or minimise the impact of muscle 

activity during sleep. 

Accurately removing muscle artifacts from EEG recordings is fundamental to 

comprehending cognitive neuroscience experiments. Artifacts arising from movement, 

such as chewing and brow wrinkling, as well as frontal muscle, exhibit power spectral 

with a bandwidth of 20-300Hz, with the majority of power concentrated in the lower 

frequency ranges (Criswell & Cram, 2011). Temporal muscles may show a bandwidth 

of 40-80Hz, while posterior head muscles like trapezius, sternocleidomastoids, and 
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splenius capitis display higher peak frequencies up to 100Hz. Notably, smaller facial 

muscles may extend their activity to frequencies as high as 600Hz. Studies have 

reported peak frequencies around 30-60Hz for chewing and 30-40Hz for frontalis 

muscle activity (O’Donnell et al., 1974). Moreover, the power of muscle artifacts varies 

based on factors such as specific muscles involved, the force of contraction, the 

direction, and the gender of the subjects (Kumar et al., 2003). 

The widespread amplitudes of muscle activity, around 1000fT and 100𝜇V, recorded in 

temporal EEG electrodes and sensors poses a significant challenge, making it 

problematic to distinguish muscular artifacts from neural oscillations, even after 

employing screening techniques. Experiments utilising neuromuscular blockade have 

demonstrated the presence of muscle contamination in EEG recordings, especially in 

the high-frequency range (20-100Hz) (Herrmann & Demiralp, 2005; 

Muthukumaraswamy, 2013). 

The contamination of the frequency spectrum is most pronounced around 20Hz, with 

approximately five times more power at 40Hz and around 10 times more power at 80Hz 

during the non-paralysed state (NREM). The electrodes located at the edges of the 

electrode montage, typically employed for scalp-recorded muscle activity, are more 

problematic regarding frequency contaminations. Moreover, cognitive sleep stages 

further increase EMG activity, contaminating EEG recordings (Muthukumaraswamy, 

2013; O’Donnell et al., 1974; Whitham et al., 2007).  

While adaptive filters and blind source separation techniques effectively suppress ECG 

and EOG artifacts, eliminating EMG artifacts poses significant challenges due to their 

complex features like high amplitudes, wide frequencies spectra and broad anatomical 

distributions, as mentioned before (X. Chen et al., 2019; Jung et al., 2000). 

Muscle artifacts can distort signals even after standard pre-processing methods, 

affecting EEG-based quantitative and qualitative measures. Traditional approaches 

involve discarding corrupted EEG segments and low-pass filtering, but these methods 

may lead to the loss of valuable brain signals (X. Chen et al., 2019; McMenamin et al., 

2011). 

To overcome the limitations of classical filtering, to some extent, techniques like 

adaptive filtering and Kalman filtering have emerged to remove muscle artifacts. 

Adaptive filtering generates a signal correlated with the muscle artifact using a 

reference muscle signal, while Kalman filtering is based on Bayesian filtering, 

recursively estimating the state of a dynamic system (Brunner et al., 1996; X. Chen et 
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al., 2019; Fatourechi et al., 2007). Both techniques along with additional filters, were 

applied on the data pre-processing for the proposed methods in Chapters 3 and 4. 

Additionally, as the methods implemented in these chapters involved signal 

decomposition using wavelet transform, additional indirect denoise methods were 

applied. 

Source separation algorithms, such as independent component analysis (ICA), 

canonical correlation analysis (CCA), and independent vector analysis (IVA), have 

been proposed for denoising EEG by separating EEG and EMG sources into different 

components and removing muscle-related components during reconstruction. 

However, muscle artifacts can still contaminate most ICs, and additional measures, 

such as adaptive filtering and wavelet transform, are used to address this issue (Barlow, 

1984; X. Chen et al., 2019; Goncharova et al., 2003a; Gotman et al., 1981) . The ICA, 

CCA, IVA, adaptive filtering and wavelet transform were employed in the data pre-

processing in Chapters 4 and 5. 

The CCA, which is an addition of the blind source separation (BSS) technique, 

measures the linear relationship between two datasets and solves the BSS problem by 

maximising correlations between canonical variates while ensuring that they are non-

interrelated within each dataset (Albera et al., 2012; Daly et al., 2012; Sweeney et al., 

2012; Urigüen & Garcia-Zapirain, 2015). The IVA, a generalisation of ICA for multiple 

datasets, addresses the permutation problem in the frequency domain for rhythmic 

signals separation (mentioned in the previous subsection). It ensures mutual 

independence within each dataset and maximum dependence across multiple datasets. 

In this context, datasets refer to each EEG derivation or bipolar channel, meaning that 

the ICA or IVA use each derivation to create the generalisation, addressing the 

permutation problem based on the rhythmic signals (X. Chen et al., 2017, 2019; Chiu 

et al., 2014; Jiang et al., 2017; Jung et al., 2000; Ko & Fox, 2009; Urigüen & Garcia-

Zapirain, 2015). 

Despite extensive research efforts to mitigate muscle artifacts, effectively eliminating 

their influence remains challenging. Neuromuscular blockage studies have revealed 

that broadband muscle activity significantly affects even seemingly clean resting EEGs 

(X. Chen et al., 2019; Goncharova et al., 2003b). 

Muscle artifact removal is crucial not only for the data used in this study to improve the 

quality of the sleep stages characteristics but also for long-term health monitoring and 

other complex signal experiments, making it an important and pressing issue to be 
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addressed in future studies (X. Chen et al., 2019; Chiu et al., 2014; Mishra & Singla, 

2013; Vos et al., 2010). 

In our research, we have applied different signal pre-processing techniques over time, 

modifying and improving them to find the best EEG signal pre-processing methods that 

enhance signal quality. However, as it was outside the scope of our objectives, we did 

not postulate any methods or approaches to improve it. 

EEG White Noise 

EEG noise refers to unwanted electrical signals or interference that can contaminate 

EEG recordings. These noise signals can originate from various sources, such as 

environmental factors, electrical equipment, and physiological processes unrelated to 

brain activity. EEG noise can impede the accurate interpretation and analysis of 

brainwave patterns during sleep. 

White noise is a random signal with constant power density across all frequencies, 

which is usually manifested in EEG recordings as a relatively uniform distribution of 

electrical activity. This undesirable noise masks and obstructs specific brainwave 

patterns and sleep-related events of significant relevance for interpreting sleep stages. 

Among the most common sources of white noise in EEG recordings are electrical 

interference, equipment limitations, and misconnections of electrodes with the scalp. 

Some events highly affected by white noise are sleep spindles, k-complexes, and rapid 

eye movement (Dement & Kleitman, 1957; Rudzik et al., 2018). 

Several techniques are employed to minimise the effects of white noise in EEG signals, 

including signal filtering, advanced signal processing algorithms, and improved 

electrode placement. Additionally, high-quality recording equipment has significantly 

enhanced signal-to-noise ratio reduction, especially equipment equipped with 

electromagnetic shield technology. 

Section 2.1 presents a comprehensive and in-depth discussion of different aspects of 

sleep, including its characteristics, sleep physiology, sleep EEG, and relevant technical 

aspects, such as basic montages, rhythms, noise, and EEG signal pre-processing. This 

section lays the foundation for the subsequent research studies and plays a pivotal role 

in shaping the methodology and approach adopted throughout the thesis. 

The discussion on sleep characteristics and physiology deepened our understanding of 

the dynamic nature of sleep and its essential role in restorative processes, memory 

consolidation, and overall well-being. By exploring the different sleep stages, along 

with their characteristics and EEG waveforms, valuable insights into the brain's activity 
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during various sleep phases were gained. This knowledge proves fundamental in 

identifying the key features used in sleep stages classification, thus facilitating accurate 

and reliable identification of sleep stages in the research studies. Such a foundation 

proves essential for the creation of the "Rules-based method" implemented in Chapter 

3, as well as in the identification of spindles in Chapter 4. 

Furthermore, the subsection on sleep EEG, encompassing basic montages, rhythms, 

noise, and EEG signal pre-processing, establishes the necessary foundations and tools 

to handle and analyse sleep EEG recordings effectively. A profound understanding of 

EEG signal pre-processing, artifact removal, and data normalisation ensures the 

acquisition of high-quality data for subsequent analysis, ultimately enhancing the 

accuracy and validity of the research outcomes. 

The information collected in Section 2.1 is instrumental in guiding the direction and 

development of the multi-method approaches for sleep EEG analysis and sleep stage 

classification. It constructed a critical foundation for this thesis, providing the necessary 

theoretical background and technical expertise for the successful execution of the 

studies. The comprehensive discussion on sleep characteristics, physiology, stages, 

sleep EEG, and its technical aspects lays the groundwork for developing innovative 

multi-method approaches with the potential to transform sleep EEG analysis and sleep 

stage classification. Applying this knowledge contributed to significant enhancements 

in sleep state classification accuracy and holds significant applications for sleep 

medicine, neuroscience, and personalised sleep health interventions. The information 

conveyed in Section 2.1 enriches our understanding of sleep. It guides us in selecting 

and implementing the postulated methods discussed in Section 2.2, intending to address 

existing challenges in sleep stage classification, as discussed in Section 1.3. 

 

2.2. Time-Frequency Signal Analysis 

Time-frequency analysis serves as a powerful tool for examining the temporal 

dynamics of non-stationary signals, such as EEG recordings, thereby extracting 

valuable information about diverse brainwave activities during sleep (Al-Fahoum & 

Al-Fraihat, 2014; Weis et al., 2009). This section provides a comprehensive overview 

of time-frequency signal analysis techniques, particularly emphasising the 

implementation and suitability of MP and MT&C methods for EEG data analysis. 

The analytical approach of time-frequency analysis enables examining frequency 

content changes over time (Miwakeichi et al., 2004), unveiling the interactions between 
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different frequencies during specific events or states. Given the inherent complexity 

and variability of sleep stages and events, time-frequency analysis is significant in 

comprehending the dynamic brain processes during sleep (Al-Fahoum & Al-Fraihat, 

2014; Boashash, 2015; Claasen TA & Mecklenbräuker W, 1980; Debnath, 2001; W. 

Liu et al., 2016; Qiang et al., 2011). 

Throughout sleep, subjects experience internal physiological changes regarding brain 

activity. These changes, which can be visualised as an EEG activity across different 

frequency bands (Rhythmic Signals) over the course of sleep, can be extracted using 

different techniques.  

2.2.1. An Overview of Key Signal Processing Analysis Techniques 

Various methods and algorithms have been implemented to generate features from EEG 

data. While some of these methods implement minimal signal processing techniques  

(Alickovic & Subasi, 2018; ElMoaqet et al., 2022; Längkvist et al., 2012; N. Mei et al., 

2017; Sun et al., 2019; Yulita et al., 2017), others heavily rely on this approach 

(Aboalayon et al., 2016b; Ghasemzadeh et al., 2019; Längkvist et al., 2012; N. Mei et 

al., 2017; Moser et al., 2009; Yi Li et al., 2009; Zapata et al., n.d., 2022, 2023; Zhu et 

al., 2014). A prominent example of signal processing is time-frequency analysis, which 

enables the evaluation of signals based on specific parameters, including time, 

frequency and power.  

One of the techniques used in EEG signal processing is the short-time Fourier transform 

(STFT). This widely used technique applies the Fourier transform (TF) to short signal 

segments to visualise their frequency content. While STFT provides a fixed time and 

frequency resolution, making it suitable for stationary signals, it limits the ability to 

analyse non-stationary signals with time-varying frequency content. This technique is 

highly computationally efficient, easy to implement, and enables visualisation of the 

time-frequency representation. However, it could generate inadequate resolution for 

non-stationary signals, leading to the smearing of time-frequency features (Canal, 2010; 

Casson & Rodriguez-Villegas, 2011; Castagna & Sun, 2006; Hyvärinen et al., 2010; 

Zabidi et al., 2012). 

Another technique is the continuous wavelet transform (CWT), which uses a wavelet 

function to assess the similarity between the signal and a scaled wavelet version, 

providing time-frequency representations. Despite offering variable time and frequency 

resolution, making it suitable for non-stationary signals, it requires selecting an 

appropriate wavelet function, which could affect the quality of the representation. The 
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CWT offers better time-frequency localisation, revealing transient and frequency 

changes. It is also suitable for analysing signals with time-varying frequency content. 

However, it is computationally more demanding than STFT, and the choice of the 

wavelet kernel function will have a direct implication on the accuracy of the method 

(Casson & Rodriguez-Villegas, 2011; Castagna & Sun, 2006; Hamaneh et al., 2014).  

The Discrete Wavelet Transform (DWT) method is a variant of the CWT that divides 

the signal into sub-bands of varying frequency ranges. In contrast to the CWT, the DWT 

uses a discrete set of wavelet scales and positions, offering a multi-resolution signal 

analysis. This process enhances computational efficiency while retaining time-

frequency localisation. DWT's multi-resolution property also makes it well-suited for 

denoising and compression applications. However, the DWT exhibits limited frequency 

resolution compared to CWT, which might be a concern in specific applications 

requiring fine frequency discrimination. Besides, DWT lacks phase information, a 

critical aspect in certain contexts, potentially restricting its use in applications where 

phase relationships are required (Allen & MacKinnon, 2010; Chaovalit et al., 2011; 

Sundararajan, 2016; Zhenyu Guo et al., 1994). 

The Hilbert-Huang transform (HHT) technique is a data-driven method that 

decomposes a signal into intrinsic mode functions and a time-frequency distribution 

known as the Hilbert Spectrum. Compared to other methods, the HHT is a practical 

approach to handling non-stationary and nonlinear signals. Its adaptability and 

versatility make it particularly well-suited for analysing such complex signals. One of 

the notable advantages of HHT is its ability to resolve mode mixing, allowing for 

improved localisation of time-frequency components. However, the mode mixing in 

the HHT can lead to ambiguous interpretations, posing a challenge in some instances. 

Additionally, special attention is required when dealing with boundary conditions and 

end effects to ensure accurate results and mitigate potential inaccuracies in the analysis 

(Allen & MacKinnon, 2010; Castagna & Sun, 2006; Gerla et al., n.d.; Oweis & 

Abdulhay, 2011; Yi Li et al., 2009). 

The Stockwell transform (S-transform) is a time-frequency representation technique 

that combines elements of STFT and CWT, resulting in enhanced resolution and 

localisation compared to STFT. It offers improved time-frequency localisation, making 

it suitable for analysing non-stationary signals with oscillatory components of varying 

frequencies. However, its computational intensity is superior to STFT due to the use of 

CWT, and the choice of parameters may influence the quality of the representation 
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(Allen & MacKinnon, 2010; Castagna & Sun, 2006; Jian-Zhong Xue et al., n.d.; 

Minecan et al., 2002; Murmu & Bhattacharya, 2011; Yan et al., 2015). 

On the other hand, the wavelet packet transform (WPT) is an extension of DWT that 

allows further decomposition of sub-bands into smaller frequency components, 

providing a more detailed and versatile signal analysis. The WPT offers multi-

resolution and adaptability to different signal characteristics, making it suitable for 

analysing complex signals with a hierarchical decomposition. Nonetheless, its 

computational complexity is increased compared to DWT, and careful selection of 

wavelet packets is required, as it can affect the quality of the representation (Allen & 

MacKinnon, 2010; Castagna & Sun, 2006; Zandi et al., 2010).  

The empirical mode decomposition (EMD) is a signal decomposition technique that 

separates the signal into intrinsic mode functions, each representing different 

oscillatory modes. It offers an adaptive and data-driven representation of the signal, 

making it suitable for analysing non-stationary and nonlinear signals. The absence of 

predefined basis functions allows the EMD to adapt to diverse signal structures. 

However, EMD is limited by mode mixing, which can lead to ambiguous 

interpretations, and requires careful handling of end effects and boundary conditions 

(Allen & MacKinnon, 2010; Castagna & Sun, 2006; Sweeney-Reed et al., 2018; 

Sweeney-Reed & Nasuto, 2007; Zhenyu Guo et al., 1994). 

In contrast, the synchro-squeezing transform (SST) is a method that enhances the 

localisation and energy concentration of time-frequency components in a signal, 

thereby providing improved resolution for analysing non-stationary signals. The SST 

enhances the accuracy of feature extraction in terms of time-frequency localisation, and 

it is well-suited for signals with varying frequency components. However, SST's 

computational demands are higher compared to some other time-frequency techniques, 

and the selection of parameters may influence the quality of the time-frequency 

representation (Allen & MacKinnon, 2010; Castagna & Sun, 2006; Mert & Akan, 2018; 

Ozel et al., 2019). 

MP is an iterative algorithm that adaptively selects elementary waveforms from a 

predefined dictionary to decompose a signal into a sum of these wavelets, thus 

extracting time-frequency features. The MP efficiently captures non-stationary features 

in the signal, making it suitable for complex signal structures. Additionally, MP can 

achieve high time-frequency resolution even with a small dictionary. However, its 

computational complexity increases with the number of iterations and the signal's 
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sample rate, and proper parameter tuning is necessary, which may impact the quality of 

the representation (Mallat & Zhifeng Zhang, 1993; Wen et al., 2016, 2017).  

Conversely, the MT&C method employs multiple tapered windows to calculate the 

power spectral density and analyses non-stationary signals with high-resolution 

frequency analysis. Compared to standard window-based methods, the MT&C offers 

enhanced frequency resolution and proves robust against noise, making it suitable for 

detecting low-intensity frequency components. However, the MT&C requires careful 

selection of appropriate tapers, as this choice significantly affects the quality of the 

analysis. Moreover, it is computationally more demanding than standard window-based 

methods but considerably less than the MP (Babadi & Brown, 2014; Park, Lindberg, & 

Vernon, 1987; Prerau et al., 2017). 

This section has provided a comprehensive insight into various signal processing 

methodologies. Among the diverse range of techniques explored, the MP and MT&C 

were selected for their unique advantages in handling non-stationary signals with high-

resolution frequency analysis. The ability of the MP method to effectively capture time-

frequency analysis features using elementary waveforms from a predefined dictionary 

makes it well-suited for complex signal structures. At the same time, the MT&C 

implements multiple taper windows allowing for an enhanced frequency resolution and 

robustness against noise, making it particularly useful for detecting low-intensity 

frequency components. Moreover, the comparative analysis revealed that combining 

the MP and MT&C can balance analytical accuracy and robustness, underscoring their 

relevance and applicability in signal-processing tasks.  

2.2.2. Matching Pursuit (MP) Applications 

MP, an algorithm introduced nearly three decades ago, is a valuable tool for identifying 

the singularities within EEG data. As a greedy or weak-greedy algorithm, MP computes 

the adaptive nonlinear expansion of a signal by employing a redundant dictionary of 

sparse approximations (Mallat & Zhifeng Zhang, 1993). Despite not being as 

extensively utilised for signal decomposition as other methods, several domains have 

employed its potential (Ali et al., 2014; S. Chen et al., 2018; A. Kaur & Budhiraja, 

2014; Mourad et al., 2016; Wen et al., 2016, 2017; J. Zhao & Bai, 2017). This 

prominence positions MP as a promising candidate for disentangling diverse 

characteristics in sleep stage classification and detecting abnormal waves. 

Durka et al., (2015) proposed the parametrisation of time-frequency structure in 

transient sleep EEG. By employing cross-validation, they used MP decomposition to 
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identify sleep spindles. The application yielded a predominantly root mean square 

distribution of 97th percentiles (Durka et al., 2015). 

Malinowska et al., (2009) parameterised key elements characterising sleep stages based 

on visual analysis criteria for sleep EEG classification. MP was employed as a primary 

method to decompose the signal into individual waves, which were subsequently 

classified according to sleep EEG parameters. Comparing their proposed method to 

multiple expert scorings, they achieved an accuracy of 73% and observed a discrepancy 

of 25% between experts (Malinowska et al., 2009). 

Another approach by Durka et al., (2005) involved a pre-processing EEG time series 

using multichannel MP (MMP) with an inverse method. The discomposed signal 

obtained through MMP was mapped to identify specific characteristics of interest, such 

as sleep spindles. The algorithm automatically detected 578 spindles on the first night 

and 692 on the second night of EEG recordings from a single subject, with standard 

deviations of 120 and 316, respectively (Durka et al., 2005). 

 In Benar et al., (2009), MP was implemented to extract EEG signal characteristics. 

Utilising a voting technique for atom selection in each iteration, the authors aimed to 

find the most descriptive atom in every trial waveform, facilitating the estimation of 

variability levels across trials (Bénar et al., 2009). 

2.2.3. Applications of Multitapers 

Multitapers (MT) is a commonly used in time-frequency analysis and spectral 

estimation, not only in sleep stage classification and multi-trial EEG data analysis but 

also in various domains requiring comprehensive signal analysis (Babadi & Brown, 

2014; M. X. Cohen, 2014). The origins of MT trace back to Thomson's pioneering work 

in 1982, designed to analyse the harmonics in time series data. Subsequent 

improvements by Thomson et al., (1987) extended its application to estimate the 

frequency oscillation of the Earth. Over time, MT has gained prominence as an effective 

method for signal analysis and decomposition in numerous research areas (Babadi & 

Brown, 2014; M. X. Cohen, 2014; Das & Babadi, 2020; Lindberg & Park, 1987; Park, 

Lindberg, & Thomson, 1987; Park, Lindberg, & Vernon, 1987). Presently, MT is 

extensively used for spectral density estimation in EEG data, not only for sleep stage 

classification but also for identifying abnormal activities in awake subjects (L. Cohen, 

1989; M. X. Cohen, 2014). 

A study by Jeyaseelan and Balaji (2015) delved into the spectral characteristics of 

waves using the MT method. Their experiments revealed that MT-generated spectral 
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estimation outperformed fast Fourier transform (FFT)-based methods. By varying the 

number of tapers, they observed improved autonomy, reduced inconsistencies, and 

smoother spectral peaks with a well-defined estimation of utmost frequencies 

(Jeyaseelan & Balaji, 2015). 

Babadi and Brown (Babadi & Brown, 2014) conducted a comprehensive analysis of 

the MT spectral and standard non-parametric spectral estimation, applying it to 

anaesthetic and sleep EEG data. Their experiments demonstrated that specifying the 

spectral resolution of a taper resulted in more precise frequencies within the resolution, 

enabling the identification of elements within that specific range. Their study shed light 

on MT's ability to discern spectral estimations from diverse signals (Babadi & Brown, 

2014; Das & Babadi, 2020). 

Prerau et al., (2017) reviewed the neurophysiology of sleep EEG data using MT-based 

spectral analysis (spectrogram). Their work showcased how MT is a valuable tool for 

presenting EEG data in a well-defined manner, providing faster and better results for 

expert sleep stage classification. The spectrogram representation facilitated the 

identification of oscillatory mechanisms for each sleep stage, making the visualisation 

of EEG data more accessible to match with the hypnogram, compared to the original 

signal. Their results demonstrated a close correspondence between the hypnogram 

generated by expert classification and the spectrogram produced by the MT method 

(Prerau et al., 2017).  

These referenced papers exemplify how integrating different signal analysis methods 

can reveal distinct, relevant entities in specific fields. While MP relies on a range of 

equations and algorithms to create complex dictionaries with a targeted focus on 

various wavelet or atom representations, MT aims to develop a kernel function to 

identify single targets within a signal without decomposition, thereby improving 

performance and extracting spectral estimations of individual components. Building 

upon the idea of combining multiple signal analysis methods or tools tailored to the 

diverse elements encountered in EEG data analysis, the ultimate goal is to extract and 

integrate the best components of each technique to enhance the accuracy and 

performance of a robust method across databases. This research aims to deliver original 

contributions in analysing a range of EEG waves mapped to their definitions, resulting 

in a potentially applicable method to other domains. 
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2.2.4. The Relationship Between Matching Pursuit and Multitapers with Convolution 

Both MP and MT&C methods involve the use of a kernel. MP utilises a Gabor kernel 

to generate a dictionary of wavelets, while the MT&C employs tapers that are 

subsequently convoluted with the data. The Gabor kernel emerged as a critical 

component with outstanding results in MP through extensive experimentation and 

literature review. Hence, this study adopts the Gabor kernel as a central equation due 

to its high performance in localising target signals based on given parameters, making 

it particularly suitable for the complexity of EEG signals.  

The Gabor function developed for the MP and then implemented in the MT&C shares 

similar elements with the original equation (Eq.1), as applied in Mallat & Zhang (Mallat 

& Zhifeng Zhang, 1993).  

𝑔!(𝑡) = 	𝐾(𝛾)	ℯ
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		cos(𝜔(𝑡 − 𝓊) + 𝜙) (1) 

However, some modifications have been introduced to optimise the efficiency of the 

process. In the original equation, a Gaussian function (first part of Eq.1) contains an 

adjustable Gaussian window, creating a complex and extensive dictionary. In contrast, 

the Gaussian widow has been substituted with Eq.2 in the updated equation, featuring 

a new standard deviation (Eq.3) used solely to define the sine and cosine functions. 

This adjustment results in variable-sized atoms, thereby reducing the size of the 

dictionary without compromising the chance of matching the wavelets from the 

discomposed signal (Gribonval, 2001; Kuś et al., 2013; Loza & Principe, 2016; Mallat 

& Zhifeng Zhang, 1993). 

𝐺𝑢𝑠𝑠𝑖𝑎𝑛	𝑊𝑖𝑛𝑑𝑜𝑤 = 	𝑒
)
*"+!,
(.	0!)2	 (2) 

Where 𝒕 is the time of the signal, and S is the standard deviation. 

	(𝑆) = 	
𝜏

(2𝜋𝑓)
	 (3) 

Where τ refers to the number of cycles of the wavelet and f refers to the signal 
frequency. 

To create the complex wavelet for this study (Eq.4), the cosine element from the 

original equation (the second part of Eq.1) has been replaced with Eq.4 to incorporate 

both the sine and cosine elements into a single complex wavelet, effectively preventing 

exponential growth of the dictionary (Ahmed et al., 1974; M. X. Cohen, 2014; Strang, 

1999b, 1999a; Zeng & Fu, 2008). 

	𝑒(3	.	#	4	+)	 (4)	
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In simple terms, the Gabor function used in this study (Eq.5) is characterised by two 

phases, as in sine and cosine, embedded into a single imaginary atom or complex 

wavelet, as inspired by Cohen (2014) in the book of "Analysing Neural Time Series 

Data" (M. X. Cohen, 2014). 

𝑔!(𝑡) = 	 𝑒
)
*"+!,
(.	0!)2	𝑒(3	.	#	4	+) (5)	

To illustrate the concept of a complex wavelet, imagine observing a spring in a 3-

dimensional space (Figure 2.2.4 left). From this perspective, the entire structure of the 

spring can be seen. However, when looking at the side of the spring in a 2-dimensional 

space (Figure 2.2.1 right), only one side can be seen, known as the real part, while the 

other side remains hidden, referred to as the imaginary part. 

The same principle has been adopted for the method of the MT&C, according to Cohen 

(2014). This approach allows for the creation of a complex sub-dictionary or wavelet 

with reduced magnitude, where redundancy is preserved while the size is diminished, 

thereby enhancing computational efficiency, particularly for an extensive signal 

decomposition, as is the case for EEG signals (Strang, 1999a; Thomson, 1982; Wen et 

al., 2017; Zeng & Fu, 2008; J. Zhao & Bai, 2017). 

2.2.4.1. Time Shift of the Gabor Function for the MT&C 

In order to construct a redundant dictionary of sparse approximations using the Gabor 

function, the appropriate selection of a time shift between atoms is crucial, as it 

determines the size and redundancy of the dictionary. While time shifts may not be 

essential for many atomic functions, they play a fundamental role when dealing with 

functions containing localised time-frequency atoms, such as the Gabor function. 

Typically, when generating a Gabor function, the time scale in the equation serves as a 

reference for creating the atom, and the atom is centred at time zero, resulting in a 

symmetric distribution on the x-axis with equal negative and positive parts (Figure 2.2.2 

Figure 2.2.1: Left: Spring in a 3D space; Right: String in 2D space.   
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(left)). However, if the time scale passed into the functions is set to 0 to n+, the atom 

will only have half of its symmetric distribution, as shown in Figure 2.2.2 (right) (for 

more specification on the dictionary kernel, refer to Appendix B). 

In order to generate a robust dictionary, the Gabor function needs to generate atoms 

across all time scales, implying that every time an atom is generated, the next atom 

must be time-shifted. The distance between atoms (time-shifted) was based on a current 

application like 'Haar Transform' and 'Chirplet Transform', where the atoms are 

generated every two points or 1/(Fs/2) (Fs refers to the sample rate of the signal). 

However, further trial and error analysis was implemented, and it was found that when 

the time shift was applied to every single point (1/Fs), the signal decomposition did not 

improve, but the size of the dictionary increased exponentially (Choi & Williams, 1989; 

Gribonval, 2001; Weis et al., 2009). Moreover, the signal decomposition started to lose 

its accuracy when the time-shift was set to every 8 points or more (1/(Fs/8+)) (Figure 

2.2.3 (Left)). Therefore, the time shift selected for the Gabor function was between two 

and four points (Figure 2.2.3 (right)) (for more specifications on the size of the 

dictionary, refer to Appendix A). 

 

Figure 2.2.2: Left: Gabor atom with time scale from n- to n+. 
Right: Gabor atom with time scale from 0 to n+.   

Figure 2.2.3: Left: Time shift every 16 points between atoms.  
Right: Time shift every 4 points between atoms.   
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2.2.4.2. MP Feature Extraction 

The MP signal decomposition is performed by iteratively searching a dictionary for an 

atom that best describes a part of the signal and subtracting it. This process is then 

repeated for several iterations on the remaining signal. Any remaining signal after the 

iterations is regarded as residual. In this study, the MP method utilises 30 iterations to 

decompose each 30-second EEG epoch, resulting in the signal being decomposed into 

30 atoms. 

The decomposed signal generated by MP closely approximates the original signal, 

resulting in slight differences between the decomposed and original signals. These 

differences can be seen as noise data. To reconstruct the signal, all the generated atoms 

must be computed along with their coefficients and residuals. 

Subsequently, each atom obtained from the MP decomposition is analysed based on the 

EEG wave definitions to identify specific wavelet characteristics and associate them 

with a particular phenomenon (Figure 2.2.4) (Roebuck et al., 2014). 

2.2.4.3. Theoretical Basis of the MT&C and its Applications to EEG Analysis 

Multitapers (MT) are utilised to generate the spectral estimation (SE) or spectra density 

estimation (SDE) of a signal, breaking down a waveform into various oscillation 

components based on their frequencies. The SDE reveals the time-frequency 

characteristics of a signal represented by taper parameters. The core principle behind 

the SDE lies in Fourier transform (FT) analysis, which decomposes a complex signal 

into a series of raw sine waves. This principle is well-suited for EEG analysis, as each 

taper can represent distinct activity in the EEG signal generated by neuronal oscillations 

across the brain (M. X. Cohen, 2014). 

The MT&C used in this research adopts the concept of a dictionary from MP but 

without the dictionary itself, meaning that it will generate a collection of atoms relevant 

Figure 2.2.4: MP Graphical structure.  
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to the EEG data and the sleep parameters. The atoms in the MT&C will be referred to 

as tapers or wavelets, and they are generated using the same Gabor function applied in 

MP. The tapers in the MT have a fixed predefined frequency, and the number of tapers 

will vary based on user requirements. For this research, we employ 30 wavelets, each 

representing a frequency from 0.2Hz to 30Hz. In a way, this can be linked to the number 

of iterations applied in MP. 

Prior to the implementation of the MT in EEG data analysis, spectral estimation was 

calculated using a periodogram. However, concerns arose about its bias. Further details 

on this topic are discussed in Appendices C. 

Variance estimation of the spectrum is crucial for most time-series data analysis, 

particularly in EEG data analysis (M. X. Cohen, 2014), as it requires significant 

temporal resolution to identify general components in small time windows. Single 

tapers estimation (STE) is utilised to reduce the bias of the periodogram and increase 

the variance. Although increasing variance can pose challenges in signal analysis, there 

are ways to mitigate this issue, such as computing the cross-average of each section 

window (epoch) to cancel out noise. Nonetheless, this process can be tedious. 

Alternatively, multitapers spectral estimation is employed, which exhibits superior 

statistical properties compared to the STE. 

In the TM, some temporal precision is sacrificed to enhance the signal-to-noise ratio in 

the time-frequency domain, which usually significantly impacts the gamma waves of 

the signals. Though, modifications in the MT function can improve that temporal 

precision. However, gamma waves are not the primary concerns in this study (L. Cohen, 

1989; M. X. Cohen, 2014). 

2.2.4.4. Functionality of the MT&C 

The underlying theory behind the functionality of the MT&C method is to generate a 

set of Slepian tapers, wavelets, or Gabor atoms, each of which is mutually orthogonal 

and possesses unique characteristics such as frequency, power, and phase. Every 

wavelet can independently estimate the spectral density of the signal within a specific 

time window. The computation of a signal’s spectral estimation is achieved through a 

convolution process (see Figure 2.2.5), where the kernel function (taper or wavelet) 

multiplies the raw signal generating a dot-product at each time point by sliding the 

wavelet across the signal. 

This process is implemented for each kernel, resulting in multiple new signals being 

generated if there are, for instance, five kernels at different frequencies. Each of these 
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new signals represents the frequency content of the respective wavelet in the original 

signal. In other words, if a wavelet has a frequency of 10Hz (as shown in Figure 2.2.6), 

the convoluted wavelet will generate a signal that will provide information about the 

instance, power, and amplitude of the frequency component tenth in the raw signal 

(Park, Lindberg, & Thomson, 1987; Park, Lindberg, & Vernon, 1987). For more 

comprehensive information on dot-product and convolution, please refer to Appendix 

D. 

Figure 2.2.5: Convolution process for a single point (Left), convolution process and 
convolution signal length (right).  

Figure 2.2.6:  
(A): EEG Data in time-series, 
(B): EEG Data and wavelet in the frequency spectrum,  
(C): EEG Data and wavelet convoluted in the frequency spectrum,  
(D): EEG Data and taped data in time-series.  

A) 

B) C)  

D)  
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In conclusion, this section has provided a comprehensive overview of time-frequency 

signal analysis techniques, specifically focusing on the MP and MT&C methods for 

EEG data analysis. The analytical approach of time-frequency analysis proves 

invaluable in examining the temporal dynamics of non-stationary signals like EEG 

recordings during sleep. The diverse range of signal processing techniques explored 

here highlights the strengths and limitations of each method, enabling researchers to 

make informed choices based on specific analysis requirements. 

The MP and MT&C methods have emerged as promising candidates for handling non-

stationary signals with high-resolution frequency analysis. MP's adaptability in 

capturing time-frequency features using elementary waveforms and MT&C's utilisation 

of multiple tapered windows for enhanced frequency resolution make them well-suited 

for complex signal structures and detecting low-intensity frequency components. The 

comparative analysis reveals that both methods balance analytical accuracy and 

robustness, making them relevant and applicable in signal processing tasks.  

Moreover, this study unravelled the relationship between the MP and MT&C methods, 

indicating the central role of the Gabor function in both approaches. Modifications were 

introduced to optimise the efficiency of the Gabor function, ensuring reduced dictionary 

size without compromising signal-matching accuracy. 

The applications of the MP and MT&C in EEG data analysis have been demonstrated 

through various studies. MP proves valuable in identifying sleep spindles and 

classifying sleep stages, while the MT&C offers improved spectral estimation and 

facilitates expert sleep stage classification. However, it was not employed directly due 

to the significant computational demands of MP, especially when applied to extensive 

signal decomposition as required for sleep EEG data. Instead, its more attractive 

characteristics were extracted and integrated into the MT&C approach. 

The combination of different signal analysis methods shows promise in extracting 

distinct features and enhancing the accuracy and performance of robust methodologies. 

In summary, this section contributes to a deeper understanding of time-frequency signal 

analysis techniques, emphasising the relevance of the MP and MT&C methods in EEG 

data analysis. Their unique advantages and insights gained from various applications 

position these methods as practical tools in comprehending complex brainwave 

activities during sleep and other fields of study. This research has demonstrated their 

applications and effectiveness of these methods, as evidenced and documented in 

Chapters 3, 4 and 5. 
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2.3. Limitations and Embracing Innovative Techniques in Sleep EEG Analysis 

The accurate classification of sleep stages is of utmost importance in sleep medicine 

and research, as it provides valuable insights into an individual sleep architecture and 

overall health. Section 2.3 critically examines sleep stage classification methods, 

shedding light on their limitations, particularly those relying on black-box techniques. 

This section explores the most promising machine and deep learning methods for 

feature extraction and classification in sleep EEG analysis. By embracing innovative 

techniques, we aim to enhance the accuracy, efficiency, and other essential capabilities 

for analysing sleep EEG signals. 

2.3.1. Limitations of Existing Sleep Stage Classification Methods 

Existing sleep stage classification methods face several limitations that can impact 

their accuracy and overall utility. The following are some of the more common 

limitations associated with these methods (Dequidt et al., 2023; H. Kim & Choi, 

2018; Y. Kim et al., 1992; C. Li et al., 2022; Lin et al., 2002; Onton et al., 2016; 

Podvezko, 2007; Siuly et al., 2010; Younes et al., 2015). 

Inter-score Variability: Manual scoring methods often exhibit discrepancies among 

different scorers in their interpretations of sleep patterns, resulting in inconsistencies in 

the classification of sleep stages. This subjectivity can undermine the reliability and 

comparability of sleep data across studies and sleep clinics. Three common issues 

identified in manual scoring are errors stemming from poor interpretation by scorers, 

scorer’s bias, and equivocal scoring, often influenced by fatigue or apophenia (Danker-

Hopfe et al., 2004; Loredo et al., 1999; Magalang et al., 2013; Younes et al., 2016; 

Younes & Hanly, 2016). 

The problem of inter-score variability not only affects patients, medical experts, and 

researchers but also extends to most supervised and semi-supervised automatic methods 

that rely on labels marked by scorers or experts (Kuna et al., 2013; Loredo et al., 1999; 

Norman et al., 2000; Younes & Hanly, 2016). 

Lack of Standardisation: While manual scoring methods based on the R&K rules and 

the AASM standards provide a framework, there is still a degree of variability in the 

applications of these rules across different sleep laboratories. The absence of 

standardised scoring criteria can delay the reproducibility and comparability of research 

findings (Jobert et al., 2013; Norman et al., 2000; Pevernagie et al., 2009). 

Time-Consuming and Labour-Intensive: Manual scoring of sleep stages is time-

consuming, particularly for long sleep recordings. The requirement for skilled human 
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experts to visually analyse data renders it impractical for large-scale studies and real-

time clinical applications. Additionally, the necessity for inter-score agreement further 

complicates and hinders the practicality and reliability of this approach to some extent 

(Chediak et al., 2006; Danker-Hopfe et al., 2004; Jobert et al., 2013; Kuna et al., 2013; 

Rosenberg & Van Hout, 2013; Younes & Hanly, 2016). 

Challenges with Complex Sleep Patterns: Some sleep disorders like sleep apnea and 

parasomnias present complex sleep patterns that challenge manual and automated 

classification methods. These disorders often require additional diagnostic tests and 

expert evaluation. Automated black-box approaches may yield efficient outcomes, but 

they lack the essential information of particular interest to medical professionals. 

Moreover, the methodology used to generate such outcomes is not easily interpretable 

by medical experts, rendering it irrelevant and illegible. As a result, addressing these 

challenges necessitates the development of comprehensive and interpretable sleep stage 

classification methods that can assist medical experts in understanding and interpreting 

the results effectively (Gulia & Kumar, 2018; Hamida & Ahmed, 2013; Lam, 2006; D. 

Zhao et al., 2019).  

Subject’s Sleep Variability: Sleep patterns can vary significantly across different 

nights for the same subject due to factors like stress, medications, or lifestyle changes. 

Both manual and automated methods struggle to capture this nocturnal variability 

adequately. Therefore, sleep variability presents a significant challenge for sleep 

research and somnology (Brunner et al., 1996; Buysse et al., 2010; X. Chen et al., 2019; 

Edinger et al., 1991; McMenamin et al., 2011; Sweeney et al., 2012; Urigüen & Garcia-

Zapirain, 2015). 

Artifact Sensitivity: Automated sleep stage classification methods can be sensitive to 

artifacts and noise in polysomnographic EEG data, resulting in misclassifications. The 

pre-processing stage poses a significant challenge, and it lacks a consistent 

methodology in sleep EEG research to implement artifact removal techniques and 

mitigate this issue reliably and effectively (Brunner et al., 1996; Chiu et al., 2014; 

Muthukumaraswamy, 2013). 

In addition to the limitations mentioned above, manual and automated sleep stage 

classification face additional challenges, including the inadequate representation of 

sleep stage patterns and the applicability of existing methods to diverse populations. 

The limitations in representing sleep patterns are particularly noticeable in the NREM 

stages S2 and S3, where the boundaries between them are not always clearly defined, 
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leading to confusion and misinterpretation by both automatic methods and experts 

(Goldman et al., 2007a, 2007b; Grandner & Rosenberger, 2019). Moreover, the 

adaptability of existing methods to diverse populations raises significant concerns. 

Many of these methods have been developed based on specific demographic groups or 

sleep disorders, which hinders their generalisation to diverse populations, such as 

children or individuals with comorbidities (Grandner & Rosenberger, 2019; Kubek et 

al., 2022). 

Addressing these limitations and developing more robust and accurate sleep stage 

classification methods is crucial for advancing sleep research, diagnosis, and treatment 

of sleep disorders. Integrating cutting-edge machine learning algorithms, incorporating 

more extensive and diverse datasets, and exploring hybrid approaches could improve 

sleep stage classification in the future. 

2.3.2. Machine Learning Methods for Feature Extraction and Classification 

Sleep EEG data contains valuable information about different sleep events and 

conditions. The accurate classification of sleep stages relies on extracting and 

classifying relevant features from these signals. Machine learning methods, such as 

rule-based, support vector machines (SVM), random forest, and k-nearest neighbours 

(k-NN), among others, are employed to extract and classify features from EEG data. 

This section delves into the efficacy of these techniques in capturing pertinent features 

and patterns associated with different sleep stages. Moreover, it highlights the 

significance of interpretability and explainability during the feature extraction process, 

facilitating a deeper understanding of the discriminative properties of the extracted 

features. 

 

2.3.2.1. Rules-Based Classifier 

A rules-based classifier is a type of machine learning (ML) model that makes decisions 

based on predefined rules and conditions. These rules are usually derived from domain 

knowledge or expert input and are then implemented to classify data into different 

categories or classes. Rules-based classifiers differ from other machine learning 

methods in several aspects. While traditional ML models are well-suited for various 

tasks and data types, the rules-based method may not be optimal for all scenarios 

(Angelov & Gu, 2018; Farid et al., 2016; B. Liu et al., 2000; Xu et al., 2020). 

Rule-based classifiers offer high interpretability due to their transparent decision-

making process, which is easily understandable by humans. Each rule represents a 
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specific condition leading to a particular classification, facilitating clear model 

reasoning. These classifiers do not need the training phases seen in other machine 

learning models, as experts manually define the rules, reducing the dependence on 

large, labelled datasets and complex optimisation algorithms. The simplicity of rule-

based classifiers ensures low computational overhead, enabling quick predictions on 

new data, making them ideal for real-time or time-critical applications. Moreover, these 

classifiers seamlessly incorporate domain knowledge, allowing experts to input their 

expertise directly into the model by defining rules and facilitating the integration of 

prior knowledge into the classification process (Angelov & Gu, 2018; Farid et al., 2016; 

B. Liu et al., 2000; Xu et al., 2020). These characteristics are prominently demonstrated 

in Chapter 3, where one of the classifiers was created based on the sleep stage rules 

from the R&K and AASM standards.   

The limitations of rule-based classifiers are evident compared to more high-level 

models like neural networks or decision trees. Their limited eloquence obstructs their 

ability to capture complex patterns or high-order interactions within data. Additionally, 

the risk of rule overfitting poses a significant concern. Adding too many rules can lead 

to excellent performance on the validation set but poor generalisation to new, unseen 

data. Moreover, the heavy reliance on domain experts for rule definitions introduces 

expert bias, potentially leading to biased classification outcomes. Also, as the number 

of rules increases, the model's scalability, manageability, and interpretability become 

challenging, making maintenance and modification awkward. Lastly, rule-based 

classifiers may struggle to generalise effectively to new domains or unseen data if the 

rules are overly specific to the training data or fail to account for complex patterns not 

explicitly defined in the rule set (Angelov & Gu, 2018; Farid et al., 2016; B. Liu et al., 

2000; Xu et al., 2020).  

In the context of signal analysis, particularly in sleep EEG, a notable concern revolves 

around the susceptibility to artifacts, which can considerably influence the 

classification and rules employed. This issue became apparent in the rules-based 

method as discussed in Chapter 3, specifically when classifying data from the St. 

Vincent database, wherein some subjects exhibited sleep pathologies. Consequently, 

the method's performance was not as robust as when assessed on other databases 

comprising healthy subjects. Thus, the sensitivity to artifacts played a pivotal role in 

the observed inferiority of the method's performance. 
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2.3.2.2. Support Vector Machines for Feature Extraction and Classification 

Support vector machines (SVMs) are a robust supervised learning algorithm for binary 

classification tasks. In the context of sleep EEG analysis, SVMs can extract relevant 

features by learning the optimal hyperplane that separates different sleep stages in the 

feature space. The discriminative features identified by SVMs are subsequently used 

for classifying sleep stages (Dagher, 2008; Lajnef et al., 2015; Siuly & Li, 2012). 

One of SVMs’ strengths is its ability to handle non-linear and complex feature spaces. 

The kernel trick allows SVMs to implicitly transform the original feature space into a 

higher-dimensional space, enabling the capture of intricate patterns and non-linear 

relationships presented in sleep EEG data. SVMs focus on identifying support vectors 

or data points near the decision boundary, representing the most relevant features for 

classification (Alickovic & Subasi, 2018; Lajnef et al., 2015). 

However, one limitation of SVMs is its lack of inherent interpretability. While the 

identified support vectors play a crucial role in classification, understanding the 

individual feature's significance can be challenging. To address this, feature importance 

scores can be applied to improve the relevance of different features and their 

contributions to sleep stage classification. 

By incorporating SVMs as part of the feature extraction and classification process, the 

proposed method aims to enhance the performance and accuracy of sleep stage 

classification, providing valuable insights into sleep EEG analysis and its association 

with various sleep stages (Alickovic & Subasi, 2018; Dagher, 2008; Lajnef et al., 2015; 

Siuly & Li, 2012; Zapata et al., 2022). 

In addition to the conventional SVMs, a variant known as SVM with Q factor (SVM-

Q) offers an additional feature extraction and classification approach in sleep EEG 

analysis. SVM-Q extends the traditional SVM by incorporating a Q factor, representing 

a signal quality measure, into the feature selection process and classification. This 

additional parameter enhances the discriminative power of SVMs, especially when 

dealing with noisy or low-quality signals often encountered in sleep EEG data (Dagher, 

2008; Nefedov et al., 2009; Suthaharan, 2016). 

The Q factor is calculated based on the signal-to-noise ratio (SNR) of EEG data,  which 

quantitatively measures the signal's reliability and accuracy. By considering the Q 

factor during the feature extraction stage, SVM-Q can prioritise selecting features with 

higher signal quality, effectively mitigating the impact of noise and artifacts on the 

classification performance (Nefedov et al., 2009; Suthaharan, 2016). 
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The integration of SVM-Q into sleep stage classification holds promise for an improved 

accuracy and robustness, as it addresses one of the challenges posed by noisy EEG 

signals. SVM-Q can help to ensure that the selected features are more relevant to the 

underlying sleep stage patterns, leading to better generalisation and performance across 

different datasets (Dagher, 2008; Nefedov et al., 2009; Suthaharan, 2016). 

Furthermore, the interpretability aspect of SVM-Q can also be enhanced by utilising 

the Q factor to highlight the importance of features with higher signal quality, providing 

a clearer understanding of the contributions of individual features to the classification 

outcome, aiding medical experts in validating the relevance of the selected features in 

relation to the scored sleep stages (Dagher, 2008; Zapata et al., 2022). 

In conclusion, SVM-Q represents a valuable extension of traditional SVMs in sleep 

EEG analysis, offering the potential to overcome the limitations posed by noisy EEG 

signals and providing more reliable and interpretable feature extraction and 

classification. By incorporating SVM-Q alongside other feature extraction techniques, 

such as the previously mentioned the MT&C and SE-VGGNet-S-BN methods, the 

proposed multi-method approach aims further to enhance the accuracy and robustness 

of sleep stage classification, ultimately contributing to advancements in sleep 

physiology research and improving the diagnosis and treatment of sleep disorders 

(Zapata et al., 2022). 

2.3.2.3. Random Forest 

Random Forest (RF) is an ensemble learning technique that relies on decision trees to 

improve accuracy and generalisation. Constructing multiple decision trees and 

combining their outputs allows an RF algorithm to identify informative features 

associated with different sleep stages in the context of sleep EEG analysis (Biau & 

Scornet, 2016). 

The effectiveness of an RF algorithm relies on its ability to handle large feature sets 

and automatically select essential ones based on their contribution, reducing misleading 

connections in decision trees. This adaptability makes it well-suited for dealing with 

multidimensional sleep EEG features, passed from the MT&C method, and capturing 

complex relationships and interactions between features. 

Furthermore, RF provides a level of interpretability and explainability by generating 

feature importance scores, which offer insights into the relative importance of various 

features during the classification process. These scores facilitate interpreting extracted 

features and their discriminative characteristics (Biau & Scornet, 2016). 
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Although RF was not directly utilised in the algorithms presented in this study, it proved 

valuable insight when incorporated with other methodologies, such as the Rule-based 

method and the SVM. By combining RF with these approaches, we were able to 

leverage their respective strengths, resulting in enhanced sleep stage classification and 

a deeper understanding of sleep EEG analysis. Adding SVM for classification enhanced 

the  overall performance of the system, providing a more comprehensive and accurate 

classification of sleep stages. 

2.3.2.4. k-Nearest Neighbours  

k-Nearest Neighbours (k-NN) is an intuitive and straightforward instance-based 

learning algorithm proficient in classifying data points by evaluating their proximity to 

a k-NN within a feature space. Particularly relevant in sleep EEG analysis as a feature 

extraction method, k-NN excels in identifying crucial features based on their influence 

on the class labels of neighbouring data points. Regarding effectiveness, k-NN adeptly 

captures local patterns and feature dependencies in sleep EEG signals, identifying 

clusters of similar sleep stages through the proximity of feature vectors, thus effectively 

handling spatially correlated EEG data. The inherent interpretability of k-NN is one of 

its notable strengths, as its classification decision relies on the majority class among the 

k-NN, making the role of individual features in determining classification easily 

comprehensible. As a result, this attribute furnishes valuable insights into the 

discriminative properties of the extracted features, thereby enhancing the overall 

interpretability and explainability of the process.  

Several algorithms were employed for testing and performance analysis, including k-

NN, logistic regression, Naïve Bayes, linear discrimination, Gaussian process, and 

hidden Markov models. However, it was observed that the Rules-based method and 

SVM exhibited superior performance. As a result, these two approaches were employed 

as the primary research methods that are presented in Chapter 3 Click or tap here to 

enter text. 

2.3.2.5. Interpretability and Explainability 

Interpretability and explainability are important in the feature extraction process for 

sleep EEG data. As sleep stage classification directly affects medical decisions and 

patient treatment, understanding the basis of classification becomes crucial for clinical 

acceptance and trust in automated systems. Interpretable models allow sleep experts to 

validate the relevance of extracted features and identify potential biases or artifacts that 

could impact classification results. 
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Moreover, interpretability is crucial in providing researchers with valuable insights into 

the physiological significance of specific features associated with different sleep stages. 

By understanding the discriminative properties of the extracted features, novel 

discoveries can emerge, leading to the development of targeted and effective treatments 

for sleep disorders (H. Kaur et al., 2022; Linardatos et al., 2020; Oviedo et al., 2022). 

In conclusion, machine learning methods, such as rules-based, SVMs, random forest, 

and k-NN, among others, serve as valuable tools for feature extraction and classification 

from sleep EEG signals. These techniques effectively capture relevant features and 

patterns related to various sleep stages, enabling accurate sleep stage classification. The 

emphasis on interpretability and explainability during the feature extraction process 

empowers researchers and clinicians to gain insights into the discriminative nature of 

the extracted features, thereby facilitating a better understanding and utilisation of 

automated sleep stage classification systems. 

Consequently, integrating the MT&C with different machine learning algorithms 

establishes a direct connection between the classification and interpretation of the 

features. The features align with the principles and patterns of the R&K rules and 

AASM standards, making them relevant to signal analysis. They can be recognised and 

distinguished by experts as in manual scoring. 

2.3.3. Deep Learning Methods for Sleep Stage Classification 

In recent years, deep learning models have shown remarkable success in various fields, 

including computer vision, natural language processing, and sleep stage classification. 

In this section, we explore the applications of deep learning models, such as CNNs, 

VGGNet, and the integration of advanced techniques like batch normalisation, SE, 

SELU activation, max-pooling, flatten layer, transformation layer, loss function 

optimisation using stochastic gradient descent (SGD), and learning rate decay, in sleep 

stage classification. 

2.3.3.1. Convolutional Neural Networks and VGGNet 

CNNs and visual geometric group network (VGGNet) have transformed the field of 

image classification, but their applications extend beyond visual data. In the context of 

sleep stage classification, these deep learning models offer a powerful and practical 

approach to analyse EEG data, which can be represented as 2D spectrograms in the 

time-frequency domain (Dequidt et al., 2023; Ji et al., 2022; Kaulen et al., 2022; H. 

Kim & Choi, 2018; C. Li et al., 2022; S. Liu & Deng, 2015; Perslev et al., n.d.; 

Simonyan & Zisserman, 2014; Tzimourta et al., 2018). 
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CNNs are designed to automatically learn hierarchical features from spatial data, 

making them well-suited for tasks like image recognition. However, the time-frequency 

representation of EEG data, in the form of spectrograms, shares similarities with 

images. This similarity allows CNN algorithms to recognise patterns and structures 

within the spectrograms, enabling them to efficiently capture the intricate temporal and 

spectral characteristics of different sleep stages (Ji et al., 2022; S. Liu & Deng, 2015; 

Perslev et al.; Simonyan & Zisserman, 2014). 

VGGNet, a deep CNN architecture, has demonstrated its effectiveness in various image 

classification tasks. It consists of multiple convolutional layers, each followed by a 

max-pooling layer, creating a deep, sophisticated network that can extract hierarchical 

features from input data (Rodriguez-Martinez et al., 2023). The adaptability of VGGNet 

makes it an excellent candidate for processing EEG spectrograms, where it can 

automatically learn relevant features that distinguish different sleep stages (Y. Mei et 

al., 2021; Raja et al., 2021). 

By training VGGNet on large datasets of labelled EEG spectrograms, the model can 

learn to identify and classify sleep stages based on the extracted features. The stacking 

of convolutional and pooling layers allows the model to progressively learn higher-

level representations, enabling it to recognise complex temporal and spectral patterns 

indicative of different sleep stages (Ji et al., 2022; Y. Mei et al., 2021; Raja et al., 2021; 

Supratak et al., 2017). 

In summary, CNNs, specifically VGGNet, have proven their capabilities in image 

classification tasks. When applied to sleep stage classification with EEG spectrograms, 

they can effectively learn and distinguish the characteristic features of different sleep 

stages, as documented in Chapter 5 (Zapata et al., n.d.). Leveraging the power of deep 

learning, these models offer a promising avenue to enhance the accuracy and efficiency 

of sleep stage classification, ultimately contributing to advancements in sleep medicine, 

research, and personalised sleep health interventions. 

2.3.3.2. Integration of Advanced Techniques in a VGGNet Model 

To enhance the performance of deep learning models for sleep stage classification, the 

integration of advanced techniques has shown significant benefits. These techniques 

optimise the training process, improve generalisation, and increase the model's 

robustness. In this section, we explore the incorporation of batch normalisation, 

squeeze-and-excitation (SE) blocks, SELU activation, max-pooling, a flattening layer, 

and a transformation layer for data augmentation. 
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Batch normalisation is a technique that activates the intermediate layers of a deep neural 

network. By normalising the activations within each mini-batch during training, batch 

normalisation reduces internal covariate shifting, stabilises training, and accelerates 

convergence. The application of batch normalisation helps prevent overfitting. It 

improves the model's ability to generalise to unseen data, making it an essential 

component in deep learning models for sleep stage classification (Ioffe & Szegedy, 

n.d.-a, n.d.-b; Santurkar et al., n.d.). 

SE blocks aim to recalibrate the importance of different feature maps within a CNN. 

During training, SE blocks learn to assign higher weights to the most discriminative 

feature maps and lower weights to less informative ones, effectively enhancing the 

representation of essential features. By incorporating SE blocks, the deep learning 

model becomes more adaptive to the most relevant information, leading to improved 

performance in sleep stage classification tasks (Hu et al., 2019; Siuly & Li, 2012; 

Zapata et al., n.d.). 

SELU (Scaled Exponential Linear Unit) is a self-normalising activation function that 

addresses the vanishing and exploding gradient problems commonly encountered in 

deep networks. A SELU activation helps maintain the mean and variance of the 

activations close to one, ensuring stable training with deep architectures. The utilisation 

of  a SELU activation further enhances the robustness of the model and enables efficient 

training of deep neural networks for sleep stage classification (Z. Huang et al., 2020; 

Zhang & Li, 2018). 

Max-pooling is a down-sampling operation that reduces the spatial dimensions of 

feature maps, capturing the most salient information. After convolutional layers, the 

flattening layer reshapes the 2D feature maps into a 1D vector, preparing them to be 

fed into fully connected layers for further processing. Max-pooling and the flattening 

layer facilitate feature extraction and dimensionality reduction, improving the model's 

efficiency and ability to learn discriminative patterns (Rodriguez-Martinez et al., 2023; 

You et al., 2021). 

Data augmentation is crucial in training deep learning models, especially when data are 

limited. The transformation layer can perform various transformations on the EEG 

spectrograms, such as rotations, shifts, and flips, generating diverse variations of the 

original data. Augmenting training datasets with these variations increases its diversity, 

helping the model generalise better to different recording conditions and variations in 

sleep EEG data. 
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In conclusion, the integration of advanced techniques, such as batch normalisation, 

Squeeze-and-Excitation (SE) blocks, SELU activation, max-pooling, flatten layer, and 

data augmentation using a transformation layer, enhances the capabilities of deep 

learning models for sleep stage classification. These techniques improve convergence, 

prevent overfitting, and promote stable and efficient training. By leveraging these 

advancements, researchers and clinicians can develop more accurate and robust sleep 

stage classification models, leading to better insights into sleep physiology and more 

effective sleep health assessments, as presented in Chapter 5. 

2.3.3.3. Learning Sleep EEG Signals Patterns from MT&C Features  

Learning EEG signal patterns from the MT&C features using deep learning models 

offers a potent approach to extracting intricate and contextually relevant information 

from sleep EEG recordings. Deep learning models enhance adaptability, generalisation, 

and robustness in sleep stage classification with their capacity for automatically 

learning hierarchical representations. Architectures like CNNs facilitate hierarchical 

learning, capturing complex patterns and relationships within MT&C features of the 

sleep EEG spectrograms. Deep learning models excel in adapting to variations in sleep 

EEG recordings caused by differences in individuals, sleep habits, and recording 

conditions. Deep learning models improve generalisation by learning discriminative 

features directly from the MT&C features, surpassing traditional feature extraction 

methods that may require laborious manual engineering. This advancement 

significantly eases the burden on researchers and clinicians. 

Moreover, deep learning's capacity to learn non-linear representations empowers 

models to capture intricate EEG signal patterns related to sleep stages. The adoption of 

end-to-end learning streamlines the classification process, ensuring seamless 

integration of the MT&C features, optimising learning, and enhancing overall 

performance. In conclusion, deep learning models revolutionise sleep stage 

classification, advancing our understanding of sleep physiology and elevating patient 

care through its robust and adaptable capabilities. 

 

2.4. Chapter Summary 

This chapter delves into the foundational aspects essential for the multi-method 

approach in sleep EEG analysis and sleep stage classification. Section 2.1 provides a 

comprehensive discussion on sleep characteristics, physiology, stages, sleep EEG, and 

technical aspects, forming a critical foundation for the subsequent research studies. This 
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knowledge enriches our understanding of sleep and guides the selection and 

implementation of postulated methods discussed in Section 2.2 to address challenges 

in sleep stage classification. Additionally, Section 2.2 explores time-frequency signal 

analysis techniques, highlighting the suitability and advantages of the MP and MT&C 

methods in EEG data analysis. The combination of the MP and MT&C offers enhanced 

accuracy and performance, as demonstrated through various applications, including 

sleep spindle identification and sleep stage classification. However, due to 

computational demands, the insights from MP are integrated into the MT&C approach. 

Section 2.3 delves into deep learning models, such as CNNs, that excel in learning 

hierarchical representations from the MT&C features of sleep EEG spectrograms. 

These models embrace end-to-end learning, streamlining the classification process, 

enabling efficient integration of the MT&C features, optimising learning, and elevating 

overall performance. By revolutionising sleep stage classification, deep learning 

models enhance our understanding of sleep physiology and improve patient care 

through their powerful and adaptable capabilities. Overall, this chapter lays the 

groundwork for innovative approaches, offering insights into the potential 

transformation of sleep EEG analysis and sleep stage classification in sleep medicine, 

neuroscience, and personalised sleep health interventions. 
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CHAPTER 3  
 

Rules-Based and SVM-Q Methods with Multitapers and 

Convolution for Sleep EEG Stages Classification 
 

3.1. Introduction 

The classification of sleep stages through analysing sleep EEG signals is vital in 

comprehending the underlying phenomena that occur during sleep. It aids in 

understanding the neurocognitive processes that take place while the body is at rest, 

particularly during sleep, which plays an essential role in the body's recovery and 

overall well-being. The content of this chapter is an exact copy of an original study 

published by IEEE Access, an IEEE Xplore Journal, 2022, 10th edition, DOI: 

10.1109/ACCESS.2022.3188286.  

 

The study introduces a novel approach for sleep stage classification, employing the 

time-frequency analysis method of the MT&C. The primary goal of this approach is to 

decipher the parameters that define sleep stages from EEG data by effectively 

computing the spectral estimation of the signal using a set of controlled wavelets. In 

this context, the research explores two distinct methods for sleep stage classification: a 

rules-based approach and a support vector machine with a quadratic equation (SVM-

Q) classifier. 

The chapter begins by underscoring the significance of EEG data in understanding the 

neurocognitive processes during rest, with sleep being a critical component of the 

body's recovery process and overall well-being. While manual scoring has long been 

the traditional method for sleep stage classification, it is not without limitations, 

primarily due to its subjectivity and time-consuming nature. Thus, to address these 

limitations and enhance the efficiency of sleep stage classification, this research 

proposes a novel time-frequency analysis approach utilising the MT&C to extract 

essential features from EEG data. 

Moreover, the chapter provides an overview of the methodology employed, 

encompassing the pre-processing of EEG data, the extraction of features, and the 

classification techniques applied. The MT&C method stands as the primary feature 
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extraction approach used, with the extracted features subsequently employed in both 

the SVM-Q classifier and the rules-based classification, facilitating the categorisation 

of sleep stages based on known parameters and characteristics. 

To highlight the novelty of the research, the introduction emphasises integrating Gabor 

wavelets with the MT&C method and introducing the rules-based classification based 

on R&K rules. Consequently, the chapter sets the stage for the subsequent sections 

which delve into the technical intricacies of the methodology and present the 

experimental results and comparisons. 
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ABSTRACT Sleep EEG signals analysis is an approach that helps researchers identify and understand
the different phenomena concealed within sleep EEG data. This research introduces a time-frequency
analysis approach to untangle the parameters of the sleep stages classification from EEG data. This approach
computes the spectral estimation of a signal based on a set of controlled wavelets using a multitaper with
convolution (MT&C) method. In this study, the MT&C methods is implemented to extract the features from
a single sleep EEG data channel. Then two separated approaches are applied for sleep stage classification.
The first one is based on the EEG waves characteristic definitions of sleep stages (named as Rules-based
method) to directly classify each 30 second EEG segment after the feature extraction. The second approach
uses a support vector machine with quadratic equation (SVM-Q) classifier to classify the sleep stages based
on experts’ scoring. The experimental results are evaluated, and the outcomes show an overall accuracy of
90% with an average sensitivity of 96.2% and an average specificity of 93.2% using an SVM-Q classifier
and an 87.6% accuracy for the Rules-based method on healthy subjects. On the other hand, the accuracy on
subjects with abnormal sleep EEG data is of 78.1% with the SVM-Q classifier and 73.4% with the Rules-
based method.

INDEX TERMS Multitapers, support vector machine, SVM-Q, spectral estimation, sleep EEG, sleep stages,
sleep rules, spectra density estimation (SDE).

I. INTRODUCTION
The electroencephalography (EEG) data represents the neu-
rocognitive process of an individual and the interactions
between neurons in the brain [1]–[3]. Its complexity creates
a real-world challenge for researchers to generate various
algorithms that are able to accurately identify the cognitive
dynamics in a certain time frame in which cognition appears.
An optimum time to analyse the cognitive dynamics of the
human brain is while it is resting, as most of the body func-
tions are partially suspended.

Sleep is essential not just because humans spend one-third
of our lives sleeping, but also because it is a recovery process,
and its quality dictates the neurological and physiological

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohamed M. A. Moustafa .

status of individuals. Therefore, sleep analysis has been a
focus of scientific research for many decades, and there are
a large number of algorithms dedicated to the analysis of
the physiological dynamics of sleep. However, many EEG
sleep analysis algorithms face enormous dilemmas due to
the variation of their results for individuals and between
databases. Often some algorithms perform better than others,
yet none of them produces a flawless result [4]–[6].

Manual scoring has been used as the main method
for sleep stages classification, and it is still one of the
most common practices applied today, although it is time-
consuming and subject to expert’s fatigue and personal
biases [7], [8].

This research introduces a methodology to unveil the char-
acteristics of sleep stages based on EEG data using a time-
frequency method, multitapers with convolution (MT&C).
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of such resolution became blurry, allowing them to identify
only the elements within the spectral resolution. That study
gave an insight into how MTs was capable of identifying
an accurate spectral estimation for different types of EEG
signals.

Prerau et al. [30] presented a review of the neurophysiol-
ogy of sleep EEG data using the spectral analysis generated
by the MTs spectrograms. They demonstrated how the MTs
method could be used as an effective tool to present a more
defined way to visualize EEG data, producing better and
faster results of classifying sleep stages. They found that
the spectrograms allowed them to identify the embedded
oscillatory mechanisms of each particular sleep stage and
create a visual representation that was easier to map with
their hypnogram compared to the original signal. Their results
showed a very close relationship between expert’s labels and
the spectrograms produced by the MTs method.

B. EXISTING STUDIES FOR RESULT COMPARISONS
The performance of the proposed methods in this paper are
compared against four other similar studies that used the same
databases as the ones proposed in this research.

The first study by Zhu et al. [3] combined a deep belief
networks approach with bi-directional long short-term mem-
ory to improve the performance and time efficiency for sleep
stages classification using the St. Vincent’s University Hos-
pital database. That paper reported an average accuracy of
68.6% with good performance on Stage 2, but very low
accuracy on REM stage.

The second study by Chokroverty et al. [4] proposed the
use of a deep belief network to extract representative features
and automatically classify sleep stages. That study reported
an average accuracy of 65.3%.

The third study by Diykh et al. [5] presented a sleep stages
classification method using two-stage networks. In the first
step, the network combined the hand-crafted features with
a network generated feature. In the second step, the net-
work combined a sequence learning process with a prediction
model that classified sleep stages using a training and test-
ing approach. That approach produced an average accuracy
of 78.6%.

Aboalayon et al. [6] proposed a method based on a
U-Network architecture. The aim of that method was to gen-
erate a spontaneous temporal scale based on the sequences
of the labels produced from mapping sequential inputs of
a subjective length. So, the final prediction was given by
classifying each single time-point in a signal and attaching
those classifications over static intervals. That study used
both the St. Vincent’s University Hospital database and the
CAP Sleep database. That approach produced an average
accuracy of 72.8% for the St. Vincent’s database and 67.8%
for the CAP Sleep database.

III. EXPERIMENTAL DATA
In this study, three databases were used, two open-access
from PhysioNet [31] and one private database from our

industry partner. The first open-access database is the
St. Vincent’s University Hospital and the University College
Dublin Sleep Apnea Database (St. Vincent’s Database) pub-
lished by Heneghan [32]. The second database is the Cyclic
Alternating Pattern of EEG Activity During Sleep Database
(CAP Sleep Database) published by Terzano et al. [33].
The database from our industry partner known as the Delica
Database is for closed access and is used for testing.

A. ST. VINCENT’S DATABASE
The St. Vincent’s Database was published in 2007 and revised
in 2011. That database contains a full overnight polysomno-
gram EEG data from a three-channel Holter of 25 adult
subjects with suspected sleep disorders. For that database, the
subjects were randomly selected from a group of individuals
over 18 years of age, who were not under any medication, and
did not present any cardiovascular diseases, or dysautonomia.

The hypnograms from the database were manually labelled
by a sleep technologist using the R&K rules [9].

TABLE 2. St. Vincent’s data information (from 12 subjects).

B. CAP SLEEP DATABASE
The CAP Sleep Database contains the EEG, electrooculog-
raphy (EOG), electromyography (EMG), respiration signals
and electrocardiography (ECG or EKG) polysomnograms
of 108 subjects divided into eight groups, from which the
non-pathology subject group is used on this research. The
hypnograms were made by an expert trained at the Sleep
Centre using the R&K rules [9].

The non-pathology datasets from CAP Sleep Database
comprise 16 healthy subjects of mixed genders in an age
range of 25 to 42, who were not on any medication that could
alter the central nervous system. The data of each subject
contains around 9 hours of an overnight sleep recording. The
datasets are available in a sampling rate of 256 hertz (Hz).

C. DELICA DATABASE
TheDelica Database contains the EEG, EOG, EMG and EKG
of an overnight sleep from three different healthy subjects
from 17 to 23 years old. That database uses a sampling rate of
500Hz in a frequency band of 0.05 to 100Hz. The data from
that database has not been filtered or modified. It has five
individual EEGs channels (F4, C3, C4, O1, O2, A1, A2), four
EOGs (two vertical electrooculograms and two horizontal
electrooculograms) and three EKGs (one right and two left).
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TABLE 3. CAP Sleep data information (from 11 subjects).

TABLE 4. Delica database (from 3 subjects).

IV. METHODOLOGY
This research uses one main feature extraction method for the
general features and one supplementary method to extract the
features of muscle movement (MM). Then, the features are
classified into stages using two different approaches.

A. EEG DATA AND DATA PROCESSING
This study uses the EEGs from C3-A2 and C4-A1 chan-
nels for the MT&C feature extraction method, and the right
(R) and left (L) EOGs channels together with the C3-A2 and
C4-A1 for the MM feature extraction method. In the case
of the EEGs used in MT&C, those bio-signal channels were
selected in accordance with R&K [9] as they are the main
channels to score sleep stages using sleep EEG data. The data
from the EEG channels were filtered using a notch filter and a
bandpass filter. The starting frequency of 0.2Hz on the notch
filter were selected to avoid negative frequencies as described
in [34]–[36], and the top frequency of 50Hz in the notch filter
as well as in the bandpass filter were designated to exclude
frequencies over 50Hz which were not relevant to this study.

In the case of theMM feature extractionmethod, additional
filters were applied in the right (R) and left (L) EOG channels
as well as in the EEG data. Accordingly, considering that the
features from the MM method reflect the outsized increase
of the amplitudes (over 15Hz) in sleep EEG data whenever
there is muscle movement in subjects, all four channels used
in this method were filtered above the alpha range (15Hz)
using a high-pass filter.

The average of signal to noise ratio (SNR) in the CAP
database [33] is around 0.0198 decibels (dBs). For the
St. Vincent’s database [32] the SNR is around 0.132 dBs
and 0.223 dBs for the Delica database. That noise corre-
sponds to the high amplitudes, and high or abrupted fre-
quencies (>30Hz, 50Hz) that are removed from the data for

FIGURE 1. MM feature extraction diagram.

the sleep stages classification. Also, the segments that are
flagged as noisy due to constant muscle movement and awake
are deducted from the data that is used for sleep analysis.
It’s unclear what preprocessing and denoising methods were
applied in the two open-source EEG databases (CAP and
St Vincent’s). But we applied xx denoise method before used
all the EEG data.

B. FEATURE EXTRACTION
Feature extraction was conducted using two individual meth-
ods of the MM and MT&C. The features obtained from the
MM method are integrated with those from the MT&C. For
the MT&C feature extraction, the data was segmented in
epochs of 30 seconds to match the hypnograms for the sleep
stage scoring. The data were segmented in epochs of one sec-
ond to compute bipolar differences and then it was grouped
back to epochs of 30 seconds to match the hypnograms in the
MM feature extraction.

1) MM FEATURE EXTRACTION
The Muscle movement or MM characteristic features were
originally defined by the R&K rules [2] and used in many
other studies when analysing EEG data for sleep stages
classification [7], [8], [10], [23], [24], [35].

Fig. 1 shows the algorithmic form diagram in the MM
feature extraction. Firstly, the sleep EEG and EOGs data
were pre-processed, then the EEGs from C3-A2 and C4-A1
channels were integrated into a single signal (X1), so did
the R-EOG and L-EOG channels (X2). After that, the data
were segmented into one second epoch and the root mean
square (RMS) was calculated for each epoch. The moving
average (MA) technique was then used to smooth out the
small fluctuations for every 0.5 second of the input data
to highlight the outliers from those high amplitudes. Then
the data were grouped back into 30 second epochs and the
mean (x̄) of the entire data was computed and passed as
features X̄1 and X̄2.

The sensitivity analysis surrounding the relationship of the
MM features and awake stage was based on the correlation
between all awake instances on the hypnogram and the high
amplitudes found on the MM features. It was established that
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FIGURE 2. Correlation between muscle movement and eye movement using the features from MM method.

awake stages and high amplitudes on frequencies above 15Hz
have a significant correlation with the number of instances
(artifacts) found on each awake stage. Consequently, by cal-
culating the number of artifacts in each epoch and smoothing
them out using a moving average function, most of the awake
stages were defined by using the MM features from the EEG
bipolar channel (BC) called MM-BC and the EOGs called
MM-EOG [37]. Muscle movement was determined when the
MM-BC and the MM-EOG surpassed the general average
(Tr_Ave) of the MM-BC, as seen in Fig. 2.

Using the features fromMMmethod themuscle movement
was determined when the MM-BC was three times larger
than its general average (3MM_Tr_Ave) as shown in Fig. 2.
Likewise, when the artifacts in one of the surrounding epochs
were above the general mean of the signal, and its artifacts on
the current epoch were above the mean, that epoch also were
given the MM status. Parallel to that analysis, the MM was
also validated using the SVM-Q classification method from
MATLAB. It was found that the final MM features had a high
correlation with the wake stage, and by using the MM from
C3-A2 or C4-A1, the classification tool was able to predict
an average classification accuracy of 87.7% for awake stages
using a support vector machine (SVM).

2) MT&C FEATURE EXTRACTION
This main feature extraction in this study is the MT&C
method. It generates a spectra density estimation (SDE) from
a signal by convoluting predefinedwavelets with a row signal.
The predefined wavelets are orthogonal to each other in
terms of frequency, and they are generated using the Gabor
function.

The Gabor kernel is selected as the main function after
intensive literature review [15], [24], [39]–[41] and experi-
ments performed and compared with other kernels like Haar,
Laplacian, Sobel, and a combination of them. The Gabor

function in (1), which is used to create the wavelets that
convolute the signal, is a permutation of a Gaussian function
in [15], [38], [39] with an imaginary cosine wave as used
in [24], [40].

gk (t) = e

✓
(�t2)
(2S2)

◆

e(i2⇡ fk t) (1)

where gk (t) is the Gabor wavelet, e

✓
(�t2)
(2S2)

◆

is the Gaussian
window, e(i2⇡ fk t) is an imaginary cosine wave, t is the time
instance which also represents the duration of the wavelet
(1 second with the sample rate (R) of the raw signal) and fk
is the frequency, which also refers to a specific the wavelet,
meaning that each wavelet is referenced by the frequency
used to generate it.

Naturally, a cosine wave (e(i2⇡ fk t)) is a constant infinite
oscillatory wave, that by itself does not present much mean-
ing to the interpretation of fluctuated signals as the ones
presented in EEG sleep data [41], [42], [44]. Therefore, it is

used together with the Gaussian function (e

✓
(�t2)
(2S2)

◆

), which is
a window that transforms the cosine wave into a wavelet with
specific characteristics (fk ) that allows to identify specific
elements in fluctuating signals. From the Gaussian function,
there is an adjustable standard deviation (S) (described in (2))
that allows to modify the size or range of the wavelet, mean-
ing that S in the Gaussian function defines the width of the
wavelet.

S = n
(2⇡ fk)

(2)

where n is the number of cycles of the wavelet, and fk is the
frequency of the signal at level k .

The kernel function implemented here is based on
Mallat [39], in combination with the one by Cohen [24], [40]
in an attempt to reduce the complexity of the wavelet used in
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FIGURE 3. (A) Convolution process for a single point (red mark).
(B) Convolution process and convolution signal length.

theMT&C by creating a complex wavelet, where redundancy
is not compromised, but its size is reduced, improving the
computational power, especially for extensive signals decom-
position [45].

The number of wavelets used in the MT&C are associated
to the frequencies that are desired to be extracted from an
EEG signal [46]. Considering that each wavelet (gk ) can offer
an autonomous estimation of the spectral density function
(SDE(fk )) of a signal within a time-window. The SDE of
the signal is computed with a convolution process as shown
in (3), and graphically represented in Fig. 3.

SDE(fk ) =
nX

t=R
⇣
� 1

2R
⌘
(gk (t)Xwt ) (3)

where R is the sampling rate, t is one second (duration of
the wavelet) and it starts from t � (1/2R), and it goes up to
w+(1/2R) with increments of 1/R. gk (t) is the kernel function
in the frequency instance k with t duration. Xwt is the original
EEG data with t duration from the total duration w.

Based on SDE(fk ), gk (t) multiplies the original signal Xwt
and generates a dot-product for every point in Xwt . This
process is achieved by sliding each wavelet across the sig-
nal (Xwt ), meaning that if there are five kernels at different
frequencies, the convolution will generate five different new
signals, where each one contains the information related to
the wavelet at the frequency. For instance, if the wavelet has
a frequency of 15, the generated signal will show the instance,
the power, and the amount of frequency (15) in the evaluated
signal [28].

As described in (3), the dot-product between a wavelet and
a signal is the sum of all points of the wavelet with a t duration

multiplied by the signal of the same duration (red mark in
Fig. 3(A). In other words, it is generated by convoluting every
point of the kernel against the input signal. Considering that
the maximum power a wavelet is in its centre, we must pad a
0.5R of zeros at the beginning and at the end of the original
signal. Otherwise, if no additional points are added into the
original signal, the first and the last 1/2 second of the resulting
signal will not have an unbiased meaning. Those new extra
points in the signal will have a value of zero to cancelling
biased values and noise in the resulting signal, which means
that the rightmost point of the kernel will be lined up with
the leftmost point of the original signal at the start and the
end of the convolution. The size of the resulting signal will
be equal to the size of the original signal plus the size of the
kernel minus one. The minus one occurs because the kernel
overlaps the raw signal by one (Fig. 3(B)).

In general, the MT&C method behaves like a filter, where
the signal is passed through a tunnel named kernel, which
bypasses the frequencies that are outside it, resulting in a new
signal that will only have amplitude wherever the frequency
from the kernel is present [24], [46].

C. MT&C FUNCTIONALITY
Fig. 4 shows the algorithm structure for the MT&C feature
extraction and classification method, where the data from
one sleep EEG channel (C3-A2 or C4-A1) is pre-processed
and segmented into epochs of 30 seconds. Subsequently, each
epoch is convoluted to generate its SDEs. The resulting SDEs
from each epoch are then grouped in wave bands, and their
results are the MT&C features.

1) MT&C ALGORITHM
The MT&C algorithm includes four elements: an array that
contains the data from one sleep EEG channel, a minimum
frequency, a maximum frequency, and the number of frequen-
cies that the algorithm is going to retrieve from the signal. The
algorithm creates a linearly spaced vector from the minimum
to the maximum frequency. The distance between individual
frequencies will vary according to the number of frequencies
requested by a user. Based on each element of the linearly
spaced vector, the algorithm will then generate one Gabor
atom using (3). Each wavelet generated will be convoluted
across the signal [47].

The MT&C algorithm returns a matrix with all applied
frequencies, a 2D matrix with the average power for each
evaluated frequency and a matrix with the spectrogram.

D. FEATURE DIMENSIONALITY REDUCTION
The features generated from the MT&C method are a series
of multidimensional descriptive matrices which can become
problematic to be applied in the sleep stages classification
methods. There is, therefore, a customised dimensionality
reduction section for each classifier. The matrices from the
MT&C are reduced to 30 features. Each feature represents the
power spectrum presence on each of the frequencies, which
are sorted in an ascending order based on the frequency.
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FIGURE 4. Feature extraction and classification using MT&C.

Those features are then grouped with the two features from
the MM method before they are passed to the next phase of
the classification.

E. SLEEP STAGES CLASSIFICATION WITH THE SVM-Q
The SVM-Q was implemented in this study after carefully
analysing other supervised classifiers like decision trees,
discriminant analysis, naïve bayes classifier, nearest neigh-
bour classifier and ensemble classifier. It was found that the
SVM-Q have better performance and accuracy over the other
classifiers. SVM classifiers, also known as binary classifiers,
are popular supervised learning algorithms used for regres-
sion and classification. The idea behind the SVMs is to find
a hyperplane that denotes clear distinction between features
into distinctive domains [48]. The quadratic kernel in the (4)
is computed using quadratic optimization approach [49].

K (x, y) =
⇣
xT ⇤ y+ c

⌘2
(4)

The SVM-Q classifier is fed with 32 features (30 from
the MT&C and two from the MM), along with the expert
labels. 70% of the data were used as the training data and
the remaining 30% was divided equally for testing and vali-
dation. There are five main parameters used by the SVM-Q
classifier used are. 1) The regularisation of the ‘c’ variable
that defines the trade-off rate between the model minimiza-
tion complexity and the minimization of the training error.
2) The box constrain level, that variable changes the number
of support vectors (SVs) used in the classification algorithm,
it is set individually for each subject and the computational
power requirements fluctuates based on the number of the
SVs used. 3) The kernel scale, by default it uses heuristic
procedure to select the kernel scale value, however, in some
instances the kernel scale ismanually set. The algorithm splits
the elements of the predictor matrix on the number of the
kernel scale and then it applies the kernel norm to generate the
main matrix. 4) The multiclass method, those variables have
two options, ether one-vs-one or one-vs-all. When one-vs-
one is applied, the classifier trains one learner for each pair of
classes, which allows the learner to distinguish one class from

another. When one-vs-all method is applied, the classifier
trains one learner against each class, that allows the class to
distinguish each class from all others. 5) The standardise data
and non-standardise data, that parameter specifies whether or
not to scale every coordinated distance. In some cases (for
some subjects), where the predictors have a substantial scale
difference, standardization improves the prediction.

1) RULES-BASED CLASSIFICATION
Fig. 5 shows the classification workflow diagram in the
Rules-based classificationmethod. The first step is to identify
clearMM instances from sleep or very relaxed stages. So, any
stage that contains a constant beta activity and active EOG
movement is scored as Awake.

a: STAGE 3
To identify sleep Stage 3, all the spectral coefficients are
analysed against each wave frequency sections. For instance,
if the band frequency delta is predominant over every other
band (theta, alpha or beta), and theta is smaller than delta but
larger than alpha and beta, the stage is scored as Stage 3 [50].

b: STAGE 2
If the power spectrum is predominant between theta and delta
(mostly theta), and at the same time are much larger than
alpha and beta, then, the epoch is scored as sleep Stage 2.

c: STAGE 1
Stage 1 is scored only when the spectral coefficient of low-
alpha (8-10Hz) is smaller than 40%, and the spectral coeffi-
cient of theta is higher than 40%.

d: REM
If the power spectrums across alpha, theta and delta bands are
considerably low and close to each other, which at the same
time are larger than the beta amplitude, the epoch is scored as
REM.

2) PERFORMANCE MEASUREMENT METRICS
The performance of this study is evaluated using three mea-
surement metrics: accuracy, sensitivity and specificity [51].
The accuracy metric is based on the number of the cor-
rect assessments, true positive (TP) and true negative (TN),
divided by the total number of assessments, TP, TN and
false positive (FP) and false negative (FN), as shown in (5).
The measurement shows the percentage rate of the correct
classification in terms of all [52], [53].

Accuracy = TP+ TN
TP+ TN + FP+ FN

(5)

The sensitivity metric, which is defined as the TP divided
by the sum of the TP and FN as shown in (6), shows the ability
of the algorithm to identify a specific sleep stage in terms of
others [52].

Sensitivity = TP
TP+ FN

(6)
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FIGURE 5. Rules-based classification method for MT&C features (WPS = wavelet power spectrum).

The specificitymetric, which is based on the TN divided by
the sum of FP and TN as in (7), is the ability of the algorithm
to exclude specific stage from others [52].

Specificity = TN
FP+ TN

(7)

V. EXPERIMENTAL RESULTS
The algorithms presented in this research are evaluated
using a set of experiments with the databases mentioned in
Section 2. The results from the SVM-Q classifier and the
Rules-based classification are comparedwith one another and
with other existing studies that used the same databases. The
features used for the classifications are from the MT&C in
conjunction with the MM features.

The experiments consisted of four parts: A) graphical
analysis using the MT&C against experts hypnograms;
B) stages classification using the Rules-based classification
and the SVM-Q classifier; C) Results comparisons between
the Rules-based method and the SVM-Q; and D) Results
comparison with the others in the literature as discussed
in Section 2.2.

A. GRAPHICAL ANALYSIS OF THE MT&C
After generating the spectral estimation of the EEG data,
it was visualized on a heat-map to identify and analyse the
common element between the hypnogram generated by the
experts and the spectral estimation generated by the MT&C
method, as seen in Fig. 6.

Fig. 6 shows the correlation between the spectral esti-
mation in respect to each sleep stage. The most prominent
distinction was on Stages 2 and 3, where the amplitudes were
highly concentrated on the delta wave range (green/yellow
and red-wide colours in heat-map Fig. 6). Another sleep stage
that is highly distinctive is the Awake stage. There the beta
waves range (light blue lines between 13 Hz and 30 Hz)
becomes evident when the subject enters into Awake stage.
In the case of REM, the spectral estimation of the frequen-
cies becomes quiet, with low amplitudes in varying ranges
between low-alpha (L-alpha, 8-10 Hz) and delta. It has also
been found that during REM, the MM-EOG factor becomes
quite active and the MM factor from C4-A1 and C3-A2
remains quiet as seen in Fig. 6 (EOG & MM factors are at

the bottom side on Fig. 6). For Stage 1, it was found that
the amplitudes in the spectrogram started to do a smooth
transition from L-Alpha to theta wave range, the amplitudes
on that stage were low and transitory.

B. EXPERIMENTAL RESULTS WITH THE SVM-Q
CLASSIFIER AND THE RULES-BASED CLASSIFICATION
The number of features generated by theMT&Cwas given by
the number of specific frequencies which are directly related
to the number of wavelets applied. It was found that when
the number of specific frequencies were larger than 40, not
only did the size of the matrix increase massively but so
did the computational power required to generate the spec-
tral estimation. Moreover, when the ‘‘lined spaced vector’’
between one frequency to the next was higher than 1, the
descriptive values of the frequencies after the convolution
did not match the parameters of the sleep stages. The best
outcomes were achieved when there was a ‘‘lined spaced
vector’’ between 1 to 29, and a 0.2 element was attached
to that vector. The 0.2 element was incorporated to match
the EEG sleep parameters of delta waves. The Rules-based
classification for the MT&C features was applied based on
the graphical analysis of the MT&C and the classification
criteria stated in Table 1.

It was found that the accuracy of the sleep stages classifi-
cation with the Rules-based method using the features from
the MT&C and the datasets from St. Vincent’s database was
good, however, the accuracy of the sleep stages classifica-
tion on healthy subjects was considerably better (CAP Sleep
Database) [54]. The average accuracy in sleep classification
on the St. Vincent’s database was 73.4%, with an average
specificity of 81.8% and an average sensitivity of 87.7%.
While the average accuracy of the sleep stages classification
on the CAP Sleep Database was 87.6%, as seen in Fig. 7 with
an average sensitivity of 93.1% and an average specificity
of 91.6%. In Fig.7 (confusion matrix) it can be seen that
most of the stages had a good performance, however, Awake
stage and Stage1 had a significant number of FPs (36.5% and
36.4%) compared to the number of the evaluated stages (416
for Awake stage and 264 for Stage1). The performance of the
other sleep stages (Stage 2, Stage 3 and REM) in terms of FPs
were significantly better with FPs rates between 18.1% and
5% (Fig. 7 far-right column).
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FIGURE 6. Spectrogram generated by the MT&C feature extraction. It shows the distribution of the power across 30 frequencies (1-30Hz) over one night
sleep. The distribution of frequencies is contrasted with labels from an expert (red-line: 0 = awake, 1 = stage 1, 2 = stage 2, 3 and 4 = deep-sleep stage,
5 = REM).

TABLE 5. Methods accuracy on St. Vincent’s database.

TABLE 6. Methods accuracy on CAP Sleep Database.

In terms of FNs, all stages predictions perform signifi-
cantly good, with FNs rates between 2.9% and 17.4%, as seen
in Fig.7 bottom row. Most of the stages had FNs with the
immediately following stage except by Stage 2 which had
FNs with Stage 3 and REM.

As seen in Tables 5 and 6, the performance of the SVM-Q
classifier was slightly better than the classification with the
Rules-based method. The best results were archived with
the combination of the SVM-Q classifier with the features
generated from the CAP Sleep Database. The average accu-
racy of the SVM-Q classifier using the MT&C features from
the St. Vincent’s Database were of 78.1%, with an aver-
age sensitivity of 82.2% and average specificity of 93.9%.
And the average accuracy of the SVM-Q classifier using the
MT&C features with the CAP Sleep Databa was of 90.1%,

with an average sensitivity of 96.2% and average specificity
of 93.2%.

Fig. 8 (boxplot) shows the accuracy range of each stage
on a different test performed in each subject from CAP Sleep
Database using the Rules-based method.

Fig. 9 (confusion matrix) shows the classification results
of the sleep stages classification on the Delica Database
using the SVM-Q classifier, it had an average accuracy of
80%, an average sensitivity of 87% and average specificity
of 90.5%. In Delica Database the SVM-Q classifier also per-
formed better than the Rules-based method which archived
and average accuracy of just under 78% using the same
number of subjects as in the SVM-Q classifier.

Considering the SNRmentioned on section V.A, it is noted
that the performance of the algorithms has a high correlation
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TABLE 7. Methods performance on all three databases used (St. Vincent’s, CAP Sleep and Delica) with the proposed methods.

FIGURE 7. Confusion Matrix for 9224 predicted stages from 10 different
subjects with features from MT&C using the Rules-based classification
method vs expert labels for CAP Sleep Database.

FIGURE 8. Accuracy on the CAP Sleep Database using the Rules-based
classifier.

with the SNR of a database. As seen in Table 7, the results
from theCAP databasewith lower SNR (mentioned in section
V.A) preformed significantly better that the other databases
that have a greater SNR (St. Vincent’s and Delica databases).

FIGURE 9. Confusion Matrix for 1679 predicted stages from 3 different
subjects with features from MT&C using the SVM-Q classifier method vs
expert labels for Delica Database.

C. COMPARISONS OF THE PROPOSED METHODS WITH
OTHER EXISTING SLEEP CLASSIFICATION STUDIES
To verify the performances of the proposed methods, a com-
parison with other classification methods that used the same
databases was conducted. For the St. Vincent’s Database,
the studies from Gorriz et al. [55], Sun et al. [13] and
Peslev et al. [14] were used. The comparison performances
were listed in Table 5. For the CAP Sleep Database, the
study from Peslev et al. [14] was used, their comparison
performances are listed in Table 6. The performances by the
proposed methods and those reported in [13] and [14], [55]
were very similar with the St. Vincent’s Database. It is
evidence that the performances of the proposedmethods were
significantly better than those from [14] for the CAP Sleep
Database, as listed in Table 6.

VI. CONCLUSION
This paper applies time frequency analysis methods to sleep
EEG data and identifies a significant difference in per-
formance accuracies between healthy subjects and subjects
with abnormal sleep patterns. It was found that the both

71308 VOLUME 10, 2022



 

79 

 

I. A. Zapata et al.: Rules-Based and SVM-Q Methods With MTs and Convolution

classification methods, the Rules-based and SVM-Q classi-
fiers, struggled themost in trying to predict Stage 1 in subjects
with abnormal sleep EEGs. Even though that the SVM-Q
performed better that the Rules-based method in subjects
with abnormal sleep EEGs, it had a very low performance
in classifying the REM stage compared to the Rule-based
method on the same type of subjects [37].

It can be concluded that the features from the MT&C
with the data from healthy subjects were more descriptive
in terms of the correlation to the sleep stages that the ones
from subjects with abnormal sleep. The performance of both
classifications was considerably better when using the data
from the CAP Sleep Database and the data from Delica
Database.

It is very clear that the SVM-Q classifier performs better in
accuracy over the Rules-based method. However, the Rules-
based classifier has lots of potential for future improvements.
For instance, as new descriptive features are incorporated into
the Rules-based classifier algorithm, it has the possibility
to identify more detailed elements from each stage, which
at the same time will improve the classification of stages
that are uncleared or controversial. The Rules-based classifier
algorithm has the potential to show a graphical interpreta-
tion of the events that took place in each particular stage,
which will also help experts on identification of particular
characteristics.

More importantly, this study suggests that by using similar
principles as the ones applied by the MT&C, sleep stages
classification can be improved. For instance, this method
could use an additional descriptive wavelet method to identify
specific characteristics in sleep stages like spindles and k-
complexes, improving the performance and the accuracy of
this sleep EEG classification method.

In summary, the applied methods in this research not only
produce a good sleep stages classification on different sleep
EEG databases as show in table 7, but it can also display the
actual events that take place in each stage by visualizing the
features produced by the MT&C method. This means that
the sleep stages predictions are performed by the spectral
estimation generated and then displayed in the spectrogram,
which gives a graphical description of the events inside each
stage.
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3.2 Chapter Summary 

Chapter 3 presents the results and findings of the research study on sleep EEG data 

analysis using a time-frequency analysis approach with multitapers and convolution. 

The application of the MT&C with SVM-Q and rules-based classifiers has shown 

promising results in sleep stage classification. The research demonstrates that these 

methods can achieve high accuracy, sensitivity, and specificity in classifying sleep 

stages, particularly in datasets with normal sleep EEG patterns. 

The SVM-Q classifier performed slightly better than the rules-based method in subjects 

with abnormal sleep patterns, but both approaches performed well on the datasets from 

healthy subjects. The study also revealed challenges in classifying stage 1 in subjects 

with abnormal sleep EEGs, and further improvements are needed in this aspect. 

The paper concludes that the MT&C method, in conjunction with SVM-Q and rules-

based classifiers, holds great potential for improving sleep stage classification accuracy. 

The approach provides accurate classifications and allows for visualising the events 

within each stage through spectrogram representations. This graphical interpretation 

can aid experts in identifying specific characteristics and further enhance the 

classification process. 

The research suggests that incorporating additional descriptive wavelet methods into 

the rules-based classifier could lead to better identification of specific characteristics in 

sleep stages, potentially improving accuracy. The innovative methodology of this study 

opens new avenues for future research to explore further and enhance sleep stage 

classification. 

In summary, the research presented in this chapter contributes to advancing the field of 

sleep EEG analysis and classification. The proposed approach holds promise for 

improving sleep stage classification and providing valuable insights into sleep 

physiology and neurological processes during rest. As the study continues to evolve, it 

offers the potential for more accurate sleep stage classifications, which can have 

significant implications for sleep research, clinical diagnosis, and personalised 

treatment strategies. 
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Automatic sleep spindles identification and classification with 

multitapers and convolution 
 

4.1. Introduction 

Sleep spindles are hallmark events in EEG data, that take place during NREM sleep. 

They are characterized by transient bursts of rhythmic brain activity lasting between 

0.5 and 2 seconds. These neurophysiological events have been under the attention of 

sleep researchers due to their enigmatic nature and complexity. The study of sleep 

spindles poses several challenges, such as the variability in their occurrence across 

individuals, age-related changes, variations in spindle characteristics, and their transit 

across the scalp. Despite these challenges, discovering the secrets of sleep spindles 

holds great importance as they are believed to play a crucial role in memory 

consolidation, cognitive processes, and overall sleep quality. 

Moreover, their association with various neurological and psychiatric conditions 

highlights the potential of sleep spindles as diagnostic and prognostic biomarkers. 

Therefore, understanding the intricacies of sleep spindles and their significance opens 

promising avenues for advancing sleep research, cognitive neuroscience, and clinical 

applications. This chapter presents an exact copy of a published paper in  

 

 Sleep Research Society Journal by Zapata et al. 2023, August Edition,  

DOI: 10.1093/sleep/zsad159  

 

The article focuses on sleep spindles, transient surges of oscillatory neural activity 

during NREM sleep stages 2 and 3. These spindles have been associated with memory 

consolidation and plasticity in the brain, making them a subject of interest for 

researchers studying sleep mechanisms and their connections with neurological 

functions. 
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The study proposes a new method called the "spindles across multiple channels" 

(SAMC), which identifies and categorises sleep spindles in EEG data during NREM 

sleep. The SAMC method utilises a MT&C approach to generate the SDE of spindles 

across channels and scores them when present across multiple channels. The method 

provides the characteristics of the identified spindles, such as duration, power, and 

event areas. The SDE can also be used to represent spindles graphically.  

The proposed method is evaluated using three open-access EEG databases: the NAP 

EEG BD, Dreams DB, and SS2-MASS. The results are compared with other state-of-

the-art spindle identification methods, demonstrating the superiority of the SAMC 

method with an agreement rate, average positive predictive value, and sensitivity of 

over 90% across all three databases. The proposed method can potentially enhance the 

understanding of spindle behaviour across the scalp and accurately identify and 

categorise sleep spindles. 
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Abstract 
Sleep spindles are isolated transient surges of oscillatory neural activity present during sleep stages 2 and 3 in the nonrapid eye 
movement (NREM). They can indicate the mechanisms of memory consolidation and plasticity in the brain. Spindles can be identi-
fied across cortical areas and classified as either slow or fast. There are spindle transients across different frequencies and power, yet 
most of their functions remain a mystery. Using several electroencephalogram (EEG) databases, this study presents a new method, 
called the “spindles across multiple channels” (SAMC) method, for identifying and categorizing sleep spindles in EEGs during the 
NREM sleep. The SAMC method uses a multitapers and convolution (MT&C) approach to extract the spectral estimation of different 
frequencies present in sleep EEGs and graphically identify spindles across multiple channels. The characteristics of spindles, such as 
duration, power, and event areas, are also extracted by the SAMC method. Comparison with other state-of-the-art spindle identifica-
tion methods demonstrated the superiority of the proposed method with an agreement rate, average positive predictive value, and 
sensitivity of over 90% for spindle classification across the three databases used in this paper. The computing cost was found to be, on 
average, 0.004 seconds per epoch. The proposed method can potentially improve the understanding of the behavior of spindles across 
the scalp and accurately identify and categories sleep spindles.

Key words: multitapers; spectral estimation; sleep EEG; sleep spindles; spectra density estimation (SDE)
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Statement of Significance

Sleep spindles are a pattern of brain waves that occur during nonrapid eye movement. They have been presumed to correlate with 
memory consolidation, sleep quality and aging significantly. To identify and classify spindles, we developed a method named “spin-
dles across multiple channels” (SAMC) that combines multiple channels to identify spindles. This method does not require training 
or expert’s labels. Instead, it uses the definitions and parameters of the spindles from the Rechtshaffen and Kales sleep criteria. The 
SAMC method uses time–frequency analysis to generate spindle-like wavelets by using multitapers (MTs) technology. The wavelets 
from the MTs are then convoluted with the EEG data to extract the spindles components. This process is performed on each EEG 
channel, and then the spindles are scored if there is a spindle presence agreement across channels. Overall, this method provides 
a substantial spindle classification improvement over other methods, with easy use for analyzing and tracking spindle behaviors.

Introduction
Polysomnography (PSG) has been under continuous research 
for many years. It aims to understand and identify the links 
between neuronal behaviors with body functions. Sleep spindles 
are one of those neuronal comportments that have attracted the 
researcher’s interest because of their connections with nonrapid 
eye movement (NREM), memory consolidation, and mental and 
physical problems [1, 2].

Understanding sleep mechanisms and their relationships with 
human brain activities have progressed over the past decades. 
Research shows that the structure and patterns of electrophys-
iological features are associated with certain neurological func-
tions or conditions [1, 2]. Limitations, however, remain regarding 
the associations of specific neuronal behaviors with brain func-
tions. One of those limitations is how to interpret and analyze 
brain wave structures, like spindles [3, 4].

This paper analyses sleep spindles and their identification 
from sleep electroencephalogram (EEG) data. The proposed 
method is a time–frequency analysis using a multitapers and 
convolution (MT&C) method [5–7] to calculate the spectral esti-
mation of spindles’ characteristics in EEG data. Sleep spindles are 
bursts of energy ranging between 9 and 16 hertz (Hz) frequencies 
with a pyramidal-like structure that wanes and waxes its oscil-
lations between 0.5 and 2 seconds (s). Spindles are characterized 
as thalamocortical circuits because they are generated in the 
thalamus and move forward to the brain’s cortex. The shape and 
duration of sleep spindles are based on the reciprocal interac-
tions between the cortex and the thalamus [8–13].

Up to now, no explicit brain functions are associated with sleep 
spindles. However, spindles are widely assumed to be associated 
with memory consolidations and plasticity [14]. Another uncer-
tainty surrounding sleep spindles is their frequency range. Existing 
studies have defined spindle transient waveforms differently, with 
some defining them in frequencies between 9 Hz and 16 Hz [15], 
while others conceptualized spindles in the frequency range of 11 
Hz and 15 Hz [8, 16, 17]. Most studies agreed that there are two types 
of spindles: slow spindles ranging between 9 Hz and 11 Hz or 13 Hz, 
and fast spindles ranging between 13 and 15 Hz or 16 Hz [18–24].

This research uses the frequency range of 11–16 Hz under the 
spindle definition and parameters from the Rechtshaffen and 
Kales sleep criteria (R&K rules) [25], as shown in Table 1. This 
paper defines a spindle based on the spindle definition and param-
eters shown in Table 1, which are used to create the tapers for the 
MT&C method. The tapers are the combination of a kernel func-
tion with the parameters of the spindles. Therefore, in this study, 
the terms of taper, kernel, and wavelet could refer to the same use.

This research aims to develop a new method to interpret, 
identify, classify, and visualize sleep spindles across multi-
ple EEG channels from subjects, including those with different 

neurological conditions (unhealthy subjects). Spindles are iden-
tified using a method named “spindles across multiple channels” 
(SAMC), which scores spindles when they are identified across 
several channels. There are two main reasons for using multi-
channel EEGs for spindles identification. First, those bio-signals 
can track the behaviors of spindles across the scalp. Second, it can 
provide a higher level of certainty as we can isolate spindles from 
other brain activities with similar wave patterns and structures.

This paper is organized as follows. Section 2 briefs relevant 
research on sleep spindles and multitapers-based studies. Section 
3 introduces the EEG databases (DBs) used in this research. Section 
4 describes the MT&C method for identifying sleep spindles. 
Section 5 presents the research findings from the different experi-
ments. Finally, Section 6 summarizes the research and future work.

Related Work
Many studies are dedicated to sleep spindles analysis using dif-
ferent methods to identify their characteristics and connections 
with human physiology. Yet there are still many concerns sur-
rounding sleep spindles, such as:

• The link between spindle types with specific body functions.
• The consistency of identification across subjects with 

altered neurological conditions,
• The parameters, particularly the frequency range, used to 

identify sleep spindles.

Spindles Related Applications
One of the most prominent roles of sleep spindles is its relation-
ship with the NREM sleep [10, 26–28]. For instance, sleep spindles 
and k-complexes (KCs) are the hallmarks used to distinguish 
sleep stage 2 or light sleep from other stages [29, 30]. As reported 
by [26], sleep spindles and KCs are correlated during stage 2 sleep 
with an incidence of around 68%. However, the occurrences of 
KCs and spindles have no associations with any of their physical 
characteristics or the probability of spindles’ appearance.

For memory consolidation, spindles are believed to play an 
important role. A study from [28] suggested that for healthy 
individuals between middle age and older, the spindle den-
sity can be used as a marker to establish the stability of the 

Table 1. Spindles parameters used in the proposed method.

Spindles parameters

Frequency Time duration Min amplitude

11–16 Hz 0.5–2.5 s 13 uV
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neurophysiological characteristics that play a role in cognitive 
functions and plasticity. They also implied that the duration of 
the REM stage is directly associated with the integration of neuro-
transmitters and neuromodulators, which are fundamental parts 
of our autonomic nervous system.

In terms of the topography of spindles, an early study by [3] 
indicated that spindle events were independent and located in 
different cortical areas. However, recent reports suggested that 
spindles were identified across different cortical areas, and most 
events occurred simultaneously [31, 32]. Even though some reports 
try to explain the topography of spindles, some suggestions indi-
cate that spindles are not coherent in their occurrence as they are 
not regularly phase-locked or have the same frequency ranges [8, 
17]. It has been demonstrated that there are two types of spindles 
so far. Spindles with low peak frequency in the frontal cortex with 
anteroposterior gradients in their frequency oscillation range of 
9–12Hz are called slow spindles. Spindles with a higher peak fre-
quency with nonphase-locked and between 13 Hz and 15 Hz are 
known as fast spindles [15, 23, 32, 33].

Sleep spindles are a constant indication of abnormal neuronal 
brain behaviors, not because of specific elements hidden in the 
spindle waves but due to their absence in sleep EEG recordings. 
A study by [34] found that spindles were not as frequent in sub-
jects with Asperger’s syndrome (AS) compared to normal sub-
jects, although all the other elements in sleep data in AS subjects 
were normal. Similarly, a report by [35] indicated that the sleep 
data from subjects with autism spectrum disorders (ASD) were 
like normal subjects, except for sleep spindles, which were notori-
ously less in ASD subjects [36]. Another study by [37] showed that 
subjects with mental retardation have notorious abnormalities 
across all sleep stages compared to healthy subjects, especially 
in spindles and KCs, which have disreputable atypical events and 
low-rate patterns.

Multitapers Related Applications
Multitapers (MTs) are mechanisms of exploration that use time–
frequency analysis to extract detailed information from signals 
and map specific elements of an object or concern. As imple-
mented in [5], MTs were used to identify different frequencies, 
power, and time of an event present in sleep EEG data to generate 
features that were directly associated with the sleep physiology 
based on the R&K rules [25]. They classified sleep stages with an 
average rate of 87% with the option of visualizing them using a 
spectral estimation from each epoch. It was seen that MTs were 
able to represent specific events (e.g., frequency and power).

Babadi and Brown [38] presented a detailed analysis of a spec-
tral and a standard nonparametric spectral estimation from MTs. 
They applied an MTs-based method to analyze anesthetic and 
sleep EEG data. They showed that by specifying the spectral res-
olution of the tapers, the frequencies outside of the taper range 
resolution became blurry, allowing them to identify only ele-
ments within the spectral resolution of the taper. That study gave 
an insight into how MTs-based methods could identify an accu-
rate spectral estimation for different types of EEG signals [39].

A neurophysiology review from sleep EEG data was presented 
by [4] using a spectral analysis generated by MTs spectrograms. 
They demonstrated how an MTs-based method could be used as 
an effective tool to present a more defined way to visualize EEG 
data for producing better and faster results in classifying sleep 
stages. They found that the spectrograms allowed them to iden-
tify the underlying oscillatory mechanisms in each sleep stage, 
creating a visual representation that was easier to map with their 

hypnogram corresponding to the original signal. Their results 
showed a very close relationship between expert labels and the 
spectrograms produced by the MTs method.

Existing Studies for Result Comparisons
The performances of the proposed method in this paper are com-
pared with other studies that used similar methods for spindles 
identification. The article by Wamsley [16] and implemented in 
[15] used a wavelet-based algorithm to detect spindles automat-
ically. The algorithm was based on a spectral estimation from a 
fast Fourier transform, applying a Hanning window to three-sec-
ond epochs. In the case of [15], they did not compare their results 
with other studies. The proposed method in this paper is applied 
to the databases provided by the authors and compared to their 
results [15].

Experimental Data
This study uses three open-access databases (DBs) to identify spin-
dles by applying the proposed method. All three DBs include spin-
dle labels from experts, as seen in Table 2. The first open-access 
DB is the NAP EEG BD from Open Science Framework (OSF), pub-
lished in [12]. The second open-access DB is the Dreams DB from 
ZENODO, published in [40, 41]. The third open-access DB is the 
Montreal Archive of Sleep Studies (SS2-MASS), published in [42].

NAP EEG DB
The NAP EEG DB contains the EEG recordings from 22 subjects 
between 18 and 43 years old, who completed memory tasks 
before their naps. Each recording includes 62-channel data and 
two electrooculograms (EOG) electrodes with a sample rate of 
1000 Hz. The data from each subject were collected on two sepa-
rate days. The annotations on the DB are as awake, stage 1, stage 
2, stage 3, spindles and KCs.

All annotations were based on 30-second epochs and manu-
ally scored. Spindles were scored by visual inspection of anterior–
posterior brain regions using the data from channels of F3, F4, C3, 
C4, O1, and O2, which were positioned and recorded following the 
10–20 EEG international system [12].

SS2-MASS C1 DB
The SS2-MASS DB from the MASS-C1 DB was published in 2014. 
It contains 19 subjects’ polysomnographic recordings from three 
different laboratories of the Centre for Advanced Research in 
Sleep Medicine, Montreal, Canada. The subjects are between 
the ages of 18 and 33. The data were recorded using Harmonie 
software, with an amplifier system Grass Models 12 and 15. 
This research uses the SS2 DB as it is the only one that contains 
spindles’ labels. The EEG data from the SS2 DB has 19-channel 

Table 2. Spindles available on each database and the number of 
subjects

Number of spindles in the databases

Database Number of subjects Spindles

NAP 22 2528

SS2-MASS 19 22254

Dreams 8 475
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montage (C3, C4, Cz, F3, F4, F7, F8, O1, O2, P3, P4, Pz, T3, T4, T5, T6, 
Fp1, Fp2, Fpz). It also contains four EOGs, one EMG, one ECG and 
one Respiratory thermistance. The sample rate of the SS2 DB is 
256 Hz for all channels, except for the respiratory thermistance, 
which was recorded at 54 Hz.

The hypnograms from the SS2 DB contain the labels for spin-
dles and KCs from two experts who manually labeled them 
using the R&K rules [25]. The labels of the spindles and KCs 
include approximated coordinates of the start and end of the 
events [42].

Dreams DB
The Dreams DB contains 30 minutes of sleep recordings from 
EEG, EOG, and EMG channels for eight subjects between the ages 
of 31 and 53. The data from that DB has not been filtered. The 
subjects present different pathologies like dyssomnia, restless 
legs syndrome, insomnia, and apnoea/hypopnoea syndrome. 
The DB contains three EEG channels (Cz-A1 or C3-A1, Fp1-A1, 
and O1-A1), two EOGs (P8-A1 and P18-A1) and one submental 
EMG. The sample rates are 200 Hz, 100 Hz and 50 Hz, respec-
tively. The data were scored for sleep stages using the R&K rules 
[25, 40].

Methodology
This research implements the SAMC method to identify and 
classify spindles. The SAMC method uses the MT&C method [5] 
to extract the key spindles information from different channels 
from the three sleep EEG DBs. The proposed method identifies 
the signal power on frequencies between 11 and 16 Hz. The spin-
dle-like waves are then analyzed and classified in terms of their 
duration. Identified spindle waves across multiple channels are 
transformed into logical data (zeros for nonspindle waves and 
ones for spindle-like waves) to map the spindle-like waves’ agree-
ment and duration across all the EEG channels. Independent 
epochs are rated as a spindle only if they are consistently identi-
fied across a particular number of channels surpassing the mini-
mum power and duration criteria of spindles.

Data Preprocessing
All EEG data are preprocessed using the MNE Python Library [43]. 
As shown in Figures 1 and 2, the EEG data are filtered using a band-
pass between 0.2 Hz and 200 Hz. Then the peaks of every chan-
nel are computed to generate the covariance. Simultaneously, a 
notch filter is applied based on the peaks found in the data. After 
that, chunks of data defined as muscle movements are removed. 
Removing epochs with muscle movements is based on abnormal 
amplitude or frequency peaks (characterized in the awake stage) 
across channels using an independent component analysis (ICA) 
estimation.

The ICA algorithm separates the EEG signals into statistically 
independent components. The components in the ICA algorithm 
are individual signals that were combined during their recording 
[44–46].

The MT&C Method for Identifying Spindle Waves
The MT&C method is implemented to calculate the sleep EEG 
spectral density estimation (SDE) using tapers that simulate the 
characteristics of fast and slow spindles (refer to the spindle 
parameters in Table 1). The SDE accentuates the signal time–fre-
quency characteristics based on the parameters of the tapers. 
The tapers are wavelets generated using a Gabor kernel, which 
is convoluted with the signal, intending to highlight the spectra 
density of the spindles in sleep EEG data [5]. The tapers in the 
MT&C are generated using the Gabor function (1) and the param-
eters of the spindles [44–46].

gk (t) = e

Å
(−t2)
(2S2)

ã

e(i 2π fk t)
(1)

where gk (t) is the Gabor taper, which is based on a Gaussian 

 window e

Å
(−t2)
(2S2)

ã

 and an imaginary cosine wave e(i 2π fk t). Here “t” 
in the cosine wave refers to the time duration of the signal, which 
is the maximum duration of a spindle (2 s), and fk is the frequency 
of the taper, which also refers to a Gabor taper [5, 47–49].
Considering that the oscillation of a cosine wave is constant 
automatic, and infinite, it is combined with a Gaussian func-
tion to simulate specific characteristics found in the fluctuated 

Figure 1. Data pre-processing.
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signals. The Gaussian function e

Å
(−t2)
(2S2)

ã

 behaves like a filter, 
which only allows passing the oscillations within a section frame. 
The size of that frame is ruled by an adjustable standard devia-
tion (S) in (2) [5, 48, 49].

 
S =

n
(2π fk) (2)

where n is a logarithmical space vector between the logarithm 
10th of the maximum number of cycles and the logarithm 10th 
of the minimum number of cycles. fk is the frequency of the 
signal at level k. The number of tapers involved in the MT&C 
method is based on the number of frequencies evaluated for the 
spindles [5].

The SDE is computed for each wavelet “g,” “k” (“t”), using a slid-
ing window across the entire sleep EEG signal as expressed in (3).

 

SDE (fk) =
∑

t=R(− 1
2R)

(gk (t) Xw)

(3)
where t is in 2-second intervals, and R is the sampling rate. gk (t) 
is the taper k, which is also a kernel function, and Xw is the whole 
EEG signal.

When the kernel function gk (t) is convoluted with the orig-
inal EEG signal, it creates a dot-product for each data point in 
the EEG signal intending to extract the power present in the sig-
nal in terms of the taper parameters [5]. The spectral estimation 
(ES) from the EEG signal provided by the MT&C method contains 
the information of the spindles regarding frequency, power, and 
wavelet duration.

Spindle Identification in One Channel
The first step to identify spindles from the ES data is to identify 
their amplitude and extract their normalized power, as shown 
in (4).

m = abs (SDE (fk)) ;

p = sqrt (m) ;

 
norm_power =

Å
p − ∧ (p)
∨ (p)− ∧ (p)

ã

(4)

where p is the power, m is the amplitude, and SDE (fk) is the spec-
tral estimation of the signal. sqrt(m) is the square root of the 
amplitude, ∧ ( p)is the minimum power and ∨ ( p)is the maximum 
power.

Considering that the MT&C method extracts the powers of 
EEG signals that match the characteristic of its tapers, all the 
amplitudes that surpass the power of the peaks (threshold of 
0.5 in (4)) are selected as potential spindles. Those spindle can-
didates are then evaluated based on their duration, determined 
from the starting point of the power peaks that surpass the 
threshold to the last point of the power peak. Then based on 
the number of data points present in the power peak wave, if 
they are between 0.4 second (a 0.1 second tolerance factor is 
introduced) and 2 seconds, they are classified as spindles in a 
single channel.

All the spindles found are gathered in order of events in a set of 
continuous EEG data. As seen in Figure 3, the spectrogram shows 
the duration of a spindle, amplitude, and frequency. Fragmented 
spindles, like the one in the second 1313th in Figure 4, with gaps of 
0.10 seconds or less, are scored as a single spindle.

Spindles Identification Across Channels
After identifying spindles on each channel using the MT&C 
method, the spindle events are presented in Boolean values (ones 
and zeros), where zeros represent all the null values (power zero 
or non-spindle), and ones denote the other values (power of spin-
dle different to zero).

To score the spindles using the SAMC method, at least two 
channels must agree with each other for at least 25% of the spin-
dle event. The criteria for spindle identification across multiple 
channels are flexible regarding the agreement percentage between 
spindles and the number of channels that need to be included.

It is essential to mention that some channels are more sen-
sitive to a specific type of spindles (anterior, posterior, or global 
spindles). Sometimes, mixing opposite channels could result in 
false negative identification of spindles across channels. The 
SAMC can be applied to identify and map the behaviors of spin-
dles across the scalp. It can also classify spindles like anterior, 
posterior, and global spindles.

Figure 2. Sleep spindles classification algorithm: (1) Sleep EEG data from databases. (2) Sleep EEG data preprocessing using muscle movement 
detections from MNE Python Library. (3) Data filtering based on spindles frequency parameters using a Bandpass filter (11–16 Hz). (4) Spindle 
Identification on single-channel based on parameters from Table 1. (5) Spindle Identification Across Channels (SAMC method) based on a rule of a 
spindle wave from one channel has 25% agreement with another channel. (6) Resulting spindles are generated in terms of Power, Frequency range, 
and Time-duration.
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Performance Measurement Metrics
The performance of this study is evaluated using five measure-
ment metrics: Lin’s Concordance Correlation Coefficient (CCC), 
agreement rate (AR), positive predicted value (PPV), F-measure 
and sensitivity. Specificity and accuracy are not evaluated for 
spindle identification because experts usually mark the spindle 
events that match its definitions/characteristics on the bio-sig-
nals like EEGs (True Positives). Most bio-signals are nonspindle 
events. That means that it is insignificant to identify non-spindles 
separately. Therefore, true negatives (TN) are not determined. 
Consequently, specificity and accuracy are not evaluated in this 
research [50].

In this paper, the CCC method compares the agreement 
between two entities of the same variable to show the concord-
ance between the results by the proposed method and the scores 
from the experts. The CCC and AR are also used in this study to 
analyze the agreement between experts’ scores.

Assuming that from n observations, a bivariate set from the 
same variable is selected (subscripts x and y), with a correlation ρ, 
variances φx

2 and φy
2 and the means of μx and μy [51–55]. Here, X 

and Y represent the number of spindles identified in a dataset by 
two different scorers or methods (expert1 and expert2 or by an 
expert and the proposed method). The CCC between two entities 
is defined as:

 
ρc =

2ρ φx φy

(µx − µy) + φ2
x + φ2

y (5)

where ρ is the correlation between variables φxand φy (the num-
ber of spindles scored by the entity x and the entity y on the same 
DB).

The AR of the spindles considers only the spindles found 
across channels that agreed with the expert’s scores. The spindles 
also must be within the range of ether-identified spindles with an 
overlap of at least 0.25 s. It means that the spindles must overlap 
0.25 s to score it as a spindle. The AR is defined as:

 
AR(%) =

n1 + nn
N1 +Nn

∗ 100
(6)

where N1 +Nn is the number of spindles that match both 
experts, and n1+nn is the number of spindles found by the pro-
posed method that match the spindles identified by the experts 
[52, 56].

Sensitivity is to evaluate the correctness of measurement in 
terms of true positives (TP) and false negatives (FN), as shown 
in Eq. (7). The TPs for this study are conceptualized as the spin-
dles identified by the proposed method that match the expert 
spindles for at least 0.25 seconds. The FNs are the spindles 
scored by an expert but not found by the proposed method [51, 
57, 58].

 
Sensitivity =

TP
TP+ FN (7)

The PPV shows the probability that the existence of a condition 
is present on a subject. Apart from the TP, the PPV also uses false 
positives (FPs) to find its value, as shown in Eq. (8) [50, 57]. An FP 
refers to the spindles found by the method but not by an expert.

 
PPV =

TP
TP+ FP (8)

The F-measure, which evaluates the binary classification of a sys-
tem by combining the Precision (PPV) and Recall (Sensitivity) of a 
model, is defined by Eq. (9) [59].

Figure 3. MT&C spectrogram vs expert’s score.

Figure 4. Visualization of classified spindles (green waves) compared to original data (signal in blue) and expert labels (magenta and blue dots).
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F =

2TP
2TP+ FN+ FP (9)

Experimental Results
The spindles detection on a single channel relies primarily on the 
parameter measurements detected in the data obtained by the 
MT&C method. When the data are contaminated by any noise 
like muscle movement, AC power, electronic equipment, a wrong 
connection of electrodes and even abnormal events like interictal 
epileptiform spikes, it could trigger an increase of power, causing 
spindle-like amplitudes [60]. Therefore, EEG data must be ade-
quately denoized and filtered to identify spindles more accurately 
[61].

The ICA analysis from the MNE Python Library [43], which can 
remove noisy sections from data, is applied to decrease the num-
ber of false positives (FPs) and their impact [44–46].

Evaluation Criteria
The performance evaluation of the proposed method for iden-
tifying spindles is based on the spindle labels marked by any of 
the experts in the DBs (Expert1 or Expert2), which means that the 
scores from the experts are combined to compare them with the 
spindles identified by the proposed method.

Spindle durations are considered for the Dreams and SS2-
MASS DBs. In the NAP DB, most durations were not included, or 
it was set by default to one second [8, 20, 25]. In that case, for the 
evaluation of spindle identification, each duration of the spindles 
is set to 1.6 seconds (0.4 seconds before the spindle starts and 1 
second after its start).

Experimental Results
The proposed method is evaluated using data from the SS2-
MASS, NAP and Dreams DBs. The experimental results are pre-
sented in Tables 3–7 and discussed in the following three sections. 
The SAMC classification method is evaluated based on the results 
obtained from the classification of spindles and compared with 
the labels generated by the experts on each of the DBs.

The Results for the NAP DB
Tables 3 and 4 present the spindle classification results for the 
NAP DB. The proposed SAMC approach obtained an agreement 
rate of 91% with impressive results on sensitivity, PPV and F-score 
of 0.91, 0.82, and 0.86, respectively. However, some disparities 
were detected between the number of spindles identified by the 
SAMC method and those labelled by the experts, indicating that 
the SAMC method identified a substantial 20% additional spin-
dles in the NAP DB. Furthermore, our study revealed that approx-
imately 525 spindles annotated by the experts were outside of 
the defined spindle duration, for example, less than 0.5 seconds 
in duration or fragmented with a period lower than 0.5 seconds 

or over 0.25 seconds between fragments, according to the SAMC 
method,

The Results for the SS2-MASS DB
In the case of the SS2-MASS DB, our SAMC classification method 
was implemented using two EEG channels, namely Cz-A1 and 
C3-A1.

The results presented in Tables 3 and 5 indicate that the 
method achieved a spindle classification disagreement of less 
than 4%. In comparison to other existing studies, our proposed 
method outperformed the Kinoshita method [62], which utilized 
a synchro-squeezed wavelet transform for feature extraction and 
RUS-Boost for classification. The Kinoshita method achieved an 
average PPV, F-score, and sensitivity of 0.61, 0.7, and 0.77, respec-
tively. Similarly, the Patti method [21], which used a weighted 
system based on channel combination for feature extraction 
and clustering of Gaussian mixtures for classification, achieved 

Table 3. Performance Results of Spindles Classification by The Proposed Method (SAMC) With Expert 

Performance Results Of Spindle Classification By The Proposed Method (SAMC) With Expert Scores:

 Database SAMC Ex1∪Ex2 Agreement CCC AR Sensitivity PPV F-score

NAP DB 4398 3516 3208 0.72 91% 0.91 0.82 0.86

SS2-MASS DB 18352 15830 15325 0.75 96% 0.96 0.92 0.94

Dreams DB 622 548 538 0.82 98% 0.98 0.91 0.94

Table 4: Confusion matrix for the NAP DB

Confusion Matrix for the Nap DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 3208
(TP)

308
(FN)

Nonspindles 665
(FP)

---
(TN)

Table 5. Confusion matrix for the SS2-MASS DB

Confusion Matrix for the SS2-MASS DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 15325
(TP)

505
(FN)

Nonspindles 1191
(FP)

---
(TN)

Table 6. Confusion matrix for the dreams DB

Confusion Matrix for the Dreams DB

SAMC Classification

spindles Non-spindles

Expert Scores Spindles 538
(TP)

10
(FN)

Non-spindles 51
(FP)

---
(TN)
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an average F-score and sensitivity of 0.69 and 0.74, respectively. 
Lastly, the method proposed by Tsanas [63] used a continuous 
wavelet transform for feature extraction and classification based 
on the defined parameters of spindles, achieving an average PPV 
and sensitivity of 0.16 and 0.83, respectively. Notably, our exper-
imental results demonstrate significant performance improve-
ments in terms of all performance evaluation metrics compared 
to other studies, as summarized in Table 7.

The Results for the Dreams DB
Upon analyzing the Dreams DB, our proposed SAMC method 
exhibited the highest level of agreement with the combined 
labels from the two experts. As presented in Tables 3 and 6, 
the method achieved an average agreement rate of 98%, with a 
sensitivity, PPV, and F-scores of 0.98, 0.91, and 0.94, respectively. 
To further evaluate the performance of the SAMC method, its 
results were compared with other existing methods applied to 
the Dreams DB. The Tsanas method [63] achieved an average PPV 
of 0.33 and a sensitivity of 0.76. In contrast, the Devuyst method 
[40, 41], which used a systematic assessment approach, obtained 
an average PPV of 0.74 and a sensitivity and an F-score of 0.70 and 
0.72, respectively [41]. The Kinoshita method [62], which utilized 
a synchro-squeezed wavelet transform for spindle classification, 
achieved an average sensitivity of 0.72, with a PPV and F-score of 
0.55 and 0.64, respectively. It is worth noting that the proposed 
method demonstrated a significant improvement over these 
existing methods, as illustrated in Table 7.

Discussion
This study presents a new method for spindle detection in sleep 
EEG signals. The proposed method combines spectral analysis 
and machine learning techniques to identify spindles across the 

scalp using sleep EEG data. The method was tested on three dif-
ferent databases (the NAP, SS2-MASS and Dreams DBs), and its 
performances were compared with other existing methods in the 
literature.

Overall, the results show that the SAMC outperforms the exist-
ing methods in terms of sensitivity, positive predictive value (PPV) 
and F-score. The SAMC method was also found to be more robust 
to inter-expert variability, which is an essential consideration in 
practical applications.

One of the limitations of this study is that the method was pri-
marily tested on EEG signals from healthy subjects (MASS-DB and 
NAP-DB) as the data available for subjects with sleep pathologies 
that contain spindle labels were too limited (Dreams DB: 8 sub-
jects). Meaning that it will remain unclear how well the method 
would perform in patients with sleep disorders. This limitation 
was due to the restricted access to abnormal Sleep EEG data with 
spindle labels.

In terms of future directions, exploring how the SAMC 
method could be applied to other different types of EEG data, 
performing various mental tasks rather than spindle detec-
tion, would be valuable. Overall, the proposed method better 
suits those applications with different physiological signals like 
spikes, sharps, and triphasic waves, among other EEG wave-
forms [64].

The novel method proposed in this study for spindle detection 
in sleep EEG signals has great promise. With the ability to map 
spindle behavior across the scalp, the SAMC method could help 
unfold the links between spindle types and scalp regions. The 
parameters used in the spindle identification are malleable to 
application areas and can be visualized on a heat map, as shown 
in Figure 3. This implies that experts can see the amplitude of the 
spindles and the frequency range of the events.

The results presented in this study suggest that the SAMC 
method can be a helpful tool for sleep researchers and clinicians.

In this study, spindles detection on a single channel was also 
conducted on all the three DBs. Extra spindles (FP) were often 
identified using a single-channel method compared to the pro-
posed SAMC method. For some FNs generated by the single chan-
nel method, it was found that the duration of those spindle-like 
waves scored by the expert did not last more than 0.5 s. Some 
events were fragmented with less than 0.5 seconds in each frag-
ment and separated for more than 0.25 s. It was observed that 
other FN events had a central frequency outside the spindle fre-
quency range (<11 Hz or >16 Hz).

Furthermore, this study revealed that the performance of our 
proposed method can be further enhanced when a database con-
tains labels from multiple experts, as evidenced in the Dreams 
and SS2-MASS DBs. Suggesting that the performance of the pro-
posed method could be improved for the NAP DB if a set of labels 
were available from an additional score.

Table 7. Performance comparison between the SAMC method & 
other methods

Performance Comparison between SAMC Method & Others

DB Method PPV F-score Sensitivity

SS2-MASS DB Kinoshita et al [62]. 0.61 0.7 0.77

Patti et al [21]. --- 0.69 0.74

Tsanas et al [63]. 0.16 --- 0.83

SAMC 0.92 0.94 0.96

Dreams DB Tsanas et al [63]. 0.33 --- 0.76

Devuyst et al [41]. 0.74 0.72 0.70

Kinoshita et al [62]. 0.55 0.64 0.72

SAMC 0.91 0.94 0.98

Table 8. Sleep spindle experts’ scoring comparison across databases.

Sleep Spindle Experts’ Scoring Comparison Across Databases:

Database Expert 1 Expert 2 Automatic Score (AS) Agreement CCC AR

SS2-MASS DB 9338 15556 --- ~9064 0.57 E1: >97%
E2: >58%

Nap DB 3516 --- --- --- --- ---

Dream DB 298 409 528 Expert1 Vs. Expert2: 159
Experts Vs. AS: 138

Expert1 Vs. Expert2: 0.35
Experts Vs. AS: 0.28

E1:<54%
E2:<39%
AS:<27%

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad159/7193299 by U

niversity of Southern Q
ueensland user on 30 July 2023



 

93 

 

Zapata et al. | 9

Data Consideration
It is essential to mention that the spindle labels included in NAP, 
SS2-MASS and Dreams DBs were scored based on the R&K rules 
[25], which leaves a considerable margin of subjective interpreta-
tion, causing label discrepancies between experts [65]. It has been 
previously documented in [32, 48, 56, 61], and reviewed in this 
study by comparing expert’s spindles labels from the Dreams and 
SS2-MASS DB as shown in Table 8.

The average agreement rate between the experts on scoring 
spindles for the Dreams DB was under 50%. In some cases, like for 
EEG recordings from Subject 1 and Subject 3, the agreement did 
not reach 25% and 10%, respectively. And when comparing the 
agreement rate of the labels between both experts and the auto-
matic method provided by the Dreams DB, the average agreement 
rate was under 60%.

In the case of the SS2-MASS DB, the average agreement 
between the two experts was under 58%, with an AR for Expert 1 
of 97% and 58% for Expert 2, as documented in Table 8.

Conclusion
In conclusion, this study presents a new approach for spindle 
detection in sleep EEG signals that offers promising results. The 
proposed SAMC method outperforms several existing methods 
in terms of sensitivity, PPV, and F-score, as demonstrated in our 
experimental results using three publicly available databases 
(the NAP, SS2-MASS and Dreams DBs).

The implementation of the SAMC method brings two signifi-
cant benefits, as it can focus the spindles on a specific frequency 
range and map their behavior in the scalp through multichannel 
visualization of spindles. After the model training, this method 
does not require expert labels or further training as it only 
relies on the definition of the spindles and related parameters 
as defined in Table 1. The experimental results for the three dif-
ferent DBs show that the proposed method achieves an overall 
agreement rate, positive predictive value, F-score, and sensitiv-
ity of over 90% for all three DBs, compared to the scores from 
more than one expert. Furthermore, it is observed that the SAMC 
method outperformed other existing methods (Kinoshita [62], 
Patti [21], Tsanas [63] and Devuyst [41]).

The spindles identified by the proposed method can be visual-
ized across all channels (as shown in Figure 3). This is useful for 
investigating the links and relationships between spindle types 
and specific brain regions. It helps us have a more accurate and 
comprehensive understanding of the behaviours of the spindles 
across the scalp. Our findings indicate that the proposed method 
can be further improved by including more annotations from an 
additional expert. It is believed that the SAMC method can signif-
icantly advance our understanding of the sleep dynamics of the 
spindles. It is hoped that this work will inspire more research in 
this exciting area.
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Data Availability
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Implementation Details
The data were pre-processed using the MNE Python Library [43], 
and the methods were created and implemented in MATLAB. 
Since there is no record of the duration of the spindles in some 
databases, we set them to a default duration of 1.5 seconds when 
comparing the SAMC method results with the experts’ labels.

References
1. Diekelmann S, Born J. The memory function of sleep. Nat Rev 

Neurosci. 2010;11:114–126. doi:10.1038/nrn2762.
2. Saletin JM, van der Helm E, Walker MP. Structural brain corre-

lates of human sleep oscillations. Neuroimage. 2013;83:658–668. 
doi:10.1016/j.neuroimage.2013.06.021.

3. Loomis AL, Harvey EN, Hobart G. Potential rhythms of the cere-
bral cortex during sleep. Science. 1935;81:597–605.

4. Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon 
PL. Sleep neurophysiological dynamics through the lens 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad159/7193299 by U

niversity of Southern Q
ueensland user on 30 July 2023



 

94 

 

10 | SLEEP, 2023, Vol. XX, No. XX

of multitaper spectral analysis. Physiology. 2017;32:60–92. 
doi:10.1152/physiol.00062.2015.

5. Zapata IA, Li Y, Wen P. Rules-Based and SVM-Q methods 
with multitapers and convolution for sleep EEG stages clas-
sification. IEEE Access. 2022;10:71299–71310. doi:10.1109/
access.2022.3188286.

6. Siuly S, Li Y. Improving the separability of motor imagery EEG 
signals using a cross correlation-based least square support vec-
tor machine for brain–computer interface. IEEE Trans Neural Syst 
Rehabil Eng. 2012;20:526–538. doi:10.1109/tnsre.2012.2184838.

7. Siuly NA, Li Y, Wen P. Identification of motor imagery tasks 
through CC-LR algorithm in brain computer interface. Int J 
Bioinform Res Appl. 2013;9:156. doi:10.1504/ijbra.2013.052447.

8. Schönauer M, Pöhlchen D. Sleep spindles. Curr Biol. 
2018;28:R1129–R1130. doi: 10.1016/j.cub.2018.07.035.

9. Antony JW, Paller KA. Using oscillating sounds to manipulate 
sleep spindles. Sleep. 2017;40:1–8. doi:10.1093/sleep/zsw068.

10. Caporro M, Haneef Z, Yeh HJ, et al. Functional MRI of sleep 
spindles and K-complexes. Clin Neurophysiol. 2012;123:303–309. 
doi:10.1016/j.clinph.2011.06.018.

11. Mei N, Grossberg MD, Ng K, Navarro KT, Ellmore TM. Identifying 
sleep spindles with multichannel EEG and classification opti-
mization. Comput Biol Med. 2017;89:441–453. doi:10.1016/j.
compbiomed.2017.08.030.

12. Mei N, Grossberg MD, Ng K, Navarro KT, Ellmore TM. A high-den-
sity scalp EEG dataset acquired during brief naps after a 
visual working memory task. Data Brief 2018;18:1513–1519. 
doi:10.1016/j.dib.2018.04.073.

13. Cox R, Schapiro AC, Manoach DS, Stickgold R. Individual differ-
ences in frequency and topography of slow and fast sleep spindles. 
Front Hum Neurosci. 2017;11:1–22. doi:10.3389/fnhum.2017.00433.

14. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic 
and cellular homeostasis to memory consolidation and integra-
tion. Neuron. 2014;81:12–34. doi:10.1016/j.neuron.2013.12.025.

15. Kramer MA, Stoyell SM, Chinappen D, et al. Focal sleep spin-
dle deficits reveal focal thalamocortical dysfunction and 
predict cognitive deficits in sleep activated developmen-
tal epilepsy. J Neurosci. 2021;41:1816–1829. doi:10.1523/
jneurosci.2009-20.2020.

16. Wamsley EJ, Tucker MA, Shinn AK, et al. Reduced sleep spin-
dles and spindle coherence in schizophrenia: Mechanisms of 
impaired memory consolidation? Biol Psychiatry. 2012;71:154–
161. doi:10.1016/j.biopsych.2011.08.008.

17. Fogel SM, Smith CT. The function of the sleep spindle: a 
physiological index of intelligence and a mechanism for 
sleep-dependent memory consolidation. Neurosci Biobehav Rev. 
2011;35:1154–1165. doi:10.1016/j.neubiorev.2010.12.003.

18. Antony JW, Piloto L, Wang M, Pacheco P, Norman KA, Paller 
KA. Sleep spindle refractoriness segregates periods of mem-
ory reactivation. Curr Biol. 2018;28:1736–1743.e4. doi:10.1016/j.
cub.2018.04.020.

19. Weiner OM, Dang-Vu TT. Spindle oscillations in sleep dis-
orders: a systematic review. Neural Plast. 2016;2016:1–30. 
doi:10.1155/2016/7328725.

20. Clawson BC, Durkin J, Aton SJ. Form and function of sleep 
spindles across the lifespan. Neural Plast. 2016;2016:1–16. 
doi:10.1155/2016/6936381.

21. Patti CR, Penzel T, Cvetkovic D. Sleep spindle detection using 
multivariate Gaussian mixture models. J Sleep Res. 2018;27:1–12. 
doi:10.1111/jsr.12614.

22. Caspary O, Caspary O, Nus P, Devillard F. Spectral analysis methods 
applied to Sleep Spindles Smart Building View project Signal Processing 
View project Spectral analysis methods applied to Sleep Spindles. 1996.

23. Rudzik F, Thiesse L, Pieren R, et al. Sleep spindle characteristics 
and arousability from nighttime transportation noise exposure 
in healthy young and older individuals. Sleep. 2018;41:1–14. 
doi:10.1093/sleep/zsy077.

24. O’Reilly C, Nielsen T. Automatic sleep spindle detection: 
Benchmarking with fine temporal resolution using open sci-
ence tools. Front Hum Neurosci. 2015;9:628–635. doi:10.3389/
fnhum.2015.00353.

25. Rechtschaffen A, Kales A. A manual of standardized terminol-
ogy, techniques and scoring system for sleep stages of human 
subjects. Arch Gen Psychiatry. 1968;20:246–247.

26. Koupparis AM, Kokkinos V, Kostopoulos GK. Spindle power is 
not affected after spontaneous K-complexes during human 
NREM sleep. PLoS One. 2013;8:e54343. doi:10.1371/journal.
pone.0054343.

27. Bandarabadi M, Herrera CG, Gent TC, Bassetti C, Schindler K, 
Adamantidis AR. A role for spindles in the onset of rapid eye 
movement sleep. Nat Commun. 2020;11:1–12. doi:10.1038/
s41467-020-19076-2.

28. Lafortune M, Gagnon JF, Martin N, et al. Sleep spindles and rapid 
eye movement sleep as predictors of next morning cognitive 
performance in healthy middle-aged and older participants. J 
Sleep Res. 2014;23:159–167. doi:10.1111/jsr.12108.

29. Malhotra RK, Avidan AY. Sleep Stages and Scoring Technique. 
Atlas of Sleep Medicine, Elsevier; 2014, p. 77–99. doi:10.1016/
b978-1-4557-1267-0.00003-5.

30. Elobeid A, Soininen H, Alafuzoff I. Hyperphosphorylated tau in 
young and middle-aged subjects. Acta Neuropathol. 2012;123:97–
104. doi:10.1007/s00401-011-0906-z.

31. Ioannides AA, Liu L, Kostopoulos GK. The emergence of spin-
dles and K-complexes and the role of the dorsal caudal part of 
the anterior cingulate as the generator of K-complexes. Front 
Neurosci. 2019;13:1–21. doi:10.3389/fnins.2019.00814.

32. Warby SC, Wendt SL, Welinder P, et al. Sleep-spindle detection: 
Crowdsourcing and evaluating performance of experts, non-ex-
perts and automated methods. Nat Methods. 2014;11:385–392. 
doi:10.1038/nmeth.2855.

33. Jt M, Mc G, Mb A-C, et al. Hypnotic effectiveness of the dual orexin 
receptor antagonist dora-22, evaluated with a rodent cage-change 
model of insomnia the effect of chronic intermittent hypoxia (cih) 
on spatial learning in rats sleep spindle coherence and density 
predict sleep-enhanced learning in schizophrenia a. basic and 
translational sleep science V. Learn Memory Cogn. 2018;41(Abstract 
Supplement):A38–A38. doi:10.1093/sleep/zsy061.093.

34. Godbout R, Bergeron C, Limoges E, Stip E, Mottron L. A laboratory 
study of sleep in Asperger’s syndrome. Neuroreport. 2000;11:127–
130. doi:10.1097/00001756-200001170-00025.

35. Limoges E, Mottron L, Bolduc C, Berthiaume C, Godbout R. 
Atypical sleep architecture and the autism phenotype. Brain. 
2005;128:1049–1061. doi:10.1093/brain/awh425.

36. Al Ghayab HR, Li Y, Siuly S, Abdulla S. Epileptic seizures detec-
tion in EEGs blending frequency domain with information 
gain technique. Soft Comput. 2019;23:227–239. doi: 10.1007/
S00500-018-3487-0.

37. Feinberg I, Braun M, Shulman E. EEG sleep patterns in mental 
retardation. Electroencephalogr Clin Neurophysiol. 1969;27:128–
141. doi:10.1016/0013-4694(69)90165-5.

38. Babadi B, Brown EN. A review of multitaper spectral analy-
sis. IEEE Trans Biomed Eng. 2014;61:1555–1564. doi:10.1109/
TBME.2014.2311996.

39. Nguyen-Ky T, Wen P, Li Y. Consciousness and depth of anesthesia 
assessment based on bayesian analysis of EEG signals. IEEE Trans 
Biomed Eng. 2013;60:1488–1498. doi:10.1109/tbme.2012.2236649.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad159/7193299 by U

niversity of Southern Q
ueensland user on 30 July 2023



95 

Zapata et al. | 11

40. Stephanie Devuyst., Myriam Kerkhofs, Thierry Dutoit. The
DREAMS Databases and Assessment Algorithm [Data set]. 2005.

41. Devuyst S, Dutoit T, Stenuit P, Kerkhofs M. Automatic sleep spin-
dles detection - Overview and development of a standard proposal
assessment method. Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society, EMBS, 2011, p. 1713–6. doi: 10.1109/IEMBS.2011.6090491.

42. O’Reilly C, Gosselin N, Carrier J, Nielsen T. Montreal archive of
sleep studies: an open-access resource for instrument bench-
marking and exploratory research. J Sleep Res. 2014;23:628–635. 
doi:10.1111/jsr.12169.

43. Gramfort A. MEG and EEG data analysis with MNE-Python. Front
Neurosci. 2013;7:1–13. doi:10.3389/fnins.2013.00267.

44. Castro RDEH, Pena-Sarmiento M, Ervyn HNC, Sanchez CA, Gillen
E, Duarte YA, et al. Assessing of frequency dynamics of EEG sig-
nals in a visualization experiment related to crime deterrence. 
2020 5th International Conference on Intelligent Informatics
and Biomedical Sciences (ICIIBMS), IEEE; 2020, p. 194–9. doi:
10.1109/ICIIBMS50712.2020.9336207.

45. Rogasch NC, Thomson RH, Farzan F, et al. Removing artefacts
from TMS-EEG recordings using independent component anal-
ysis: Importance for assessing prefrontal and motor cortex net-
work properties. Neuroimage. 2014;101:425–439. doi:10.1016/j.
neuroimage.2014.07.037.

46. Al-Qazzaz N, Hamid Bin Mohd Ali S, Ahmad S, Islam M, 
Escudero J. Automatic artifact removal in EEG of normal and
demented individuals using ICA–WT during working memory
tasks. Sensors. 2017;17:1326. doi: 10.3390/s17061326.

47. Cohen MX. Analyzing Neural Time Series Data. The MIT Press;
2014. doi: 10.7551/mitpress/9609.001.0001.

48. Malinowska U, Klekowicz H, Wakarow A, Niemcewicz S, Durka
PJ. Fully parametric sleep staging compatible with the clas-
sical criteria. Neuroinformatics 2009;7:245–253. doi:10.1007/
s12021-009-9059-9.

49. Mallat SG, Zhifeng Z. Matching pursuits with time-frequency
dictionaries. IEEE Trans Signal Process. 1993;41:3397–3415. doi:
10.1109/78.258082.

50. Baratloo A, Hosseini M, Negida A, El Ashal G. Part 1: simple defi-
nition and calculation of accuracy, sensitivity and specificity. 
Emerg (Tehran) 2015;3:48–49.

51. Steichen TJ, Cox NJ. A note on the concordance correlation coeffi-
cient. Stata J: 2002;2:183–189. doi:10.1177/1536867x0200200206.

52. Lin L, Hedayat AS, Sinha B, Yang M. Statistical methods in
assessing agreement. J Am Stat Assoc. 2002;97:257–270. doi:
10.1198/016214502753479392.

53. Hiriote S, Chinchilli VM. Matrix-based concordance correlation
coefficient for repeated measures. Biometrics. 2011;67:1007–
1016. doi:10.1111/j.1541-0420.2010.01549.x.

54. Lin LI-K. Assay validation using the concordance correlation
coefficient. Biometrics. 1992;48:599. doi:10.2307/2532314.

55. Podvezko V. Determining the level of agreement of expert
estimates. Int J Mange Dec Mak. 2007;8:586. doi:10.1504/
ijmdm.2007.013420.

56. Kim Y, Kurachi M, Horita M, Matsuura K, Kamikawa Y. 
Agreement in visual scoring of sleep stages among laboratories
in Japan. J Sleep Res. 1992;1:58–60. doi:10.1111/j.1365-2869.1992.
tb00011.x.

57. Marino M, Li Y, Rueschman MN, et al. Measuring sleep: accuracy, 
sensitivity, and specificity of wrist actigraphy compared to poly-
somnography. Sleep. 2013;36:1747–1755. doi:10.5665/sleep.3142.

58. Zhou X-H, Obuchowski NA, McClish DK. Statistical Methods in
Diagnostic Medicine. Hoboken, NJ, USA: John Wiley & Sons, Inc.;
2011. doi: 10.1002/9780470906514.

59. Zhang E, Zhang Y. F-M. Encyclopedia of Database Systems, 
Boston, MA: Springer US; 2009, p. 1147–1147. doi:
10.1007/978-0-387-39940-9_483.

60. Sánchez Fernández I, Chapman KE, Peters JM, Harini C, Rotenberg
A, Loddenkemper T. Continuous spikes and waves during sleep:
electroclinical presentation and suggestions for management. 
Epilepsy Res Treat. 2013;2013:1–12. doi: 10.1155/2013/583531.

61. Hori T, Sugita Y, Koga E, et al.; Sleep Computing Committee
of the Japanese Society of Sleep Research Society. Proposed
supplements and amendments to “ A Manual of Standardized
Terminology, Techniques and Scoring System for Sleep Stages
of Human Subjects ,” the Rechtschaffen &amp; Kales
(1968) standard. Psychiatry Clin Neurosci. 2001;55:305–310. 
doi:10.1046/j.1440-1819.2001.00810.x.

62. Kinoshita T, Fujiwara K, Kano M, et al. Sleep Spindle Detection
using RUSBoost and Synchrosqueezed Wavelet Transform. 
IEEE Trans Neural Syst Rehabil Eng. 2020;28:390–398. doi:10.1109/
TNSRE.2020.2964597.

63. Tsanas A, Clifford GD. Stage-independent, single lead EEG sleep
spindle detection using the continuous wavelet transform
and local weighted smoothing. Front Hum Neurosci. 2015;9:181. 
doi:10.3389/fnhum.2015.00181.

64. Emmady PD, Anilkumar AC. EEG Abnormal Waveforms. 2023.
65. Terzano MG, Parrino L, Sherieri A, Chervin R, Chokroverty S, 

Guilleminault C, et al. Atlas, rules, and recording techniques for the
scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 
2001;2(6):537–553. doi: 10.1016/s1389-9457(01)00149-6.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/advance-article/doi/10.1093/sleep/zsad159/7193299 by U

niversity of Southern Q
ueensland user on 30 July 2023



Chapter 4: Automatic sleep spindles identification and classification with multitapers 
and convolution 

96 

4.2. Chapter Summary 

Zapata et al., (2023) proposed a novel approach to identify spindles across the brain 

during NREM sleep using a method named "Spindles Across Multiple Channels" 

(SAMC). The SAMC method utilises a MT&C approach to identify and classify 

spindles across multiple EEG channels, providing valuable insights into their 

characteristics and behaviours. 

The results of the SAMC method demonstrated its superiority over existing spindle 

identification methods, achieving high agreement rates, PPV, and F-scores when 

compared to expert labels. The ability to visualise spindles across multiple channels 

enables researchers to investigate the relationships between spindle types and specific 

brain regions, contributing to a deeper understanding of sleep dynamics and neural 

activity. 

The proposed method holds promise in further advancing sleep research, memory 

consolidation, cognitive function studies, and potential applications in clinical settings 

for sleep disorder diagnoses. Future research endeavours may focus on applying the 

SAMC method to different types of EEG data, exploring its capabilities in various 

mental tasks, and expanding its applications to other physiological signals beyond 

spindles. Overall, the SAMC method represents a valuable tool for sleep researchers 

and clinicians, offering a more accurate and comprehensive analysis of the behaviours 

of sleep spindles across the scalp. 
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CHAPTER 5:  

 
 

EEG-Based Sleep Stage Classification Using CNN with 

Squeeze-and-Excitation Blocks in a Short-Visual Geometric 

Group 
 

5.1. Introduction 

The study of sleep stage classification is vital in diagnosing sleep-related disorders and 

understanding the intricacies of sleep physiology. Adopting a multi-method approach 

is essential to improve the accuracy and robustness of automatic sleep stage 

classification. Integrating various methods and techniques can provide complementary 

insights, overcome limitations of individual methods, and enhance the overall 

performance of sleep stage classification algorithms. Combining the strengths of 

different methodologies, such as time-frequency analysis, convolutional neural 

networks (CNNs), and deep learning techniques, a multi-method approach can extract 

and interpret diverse features from EEG data, leading to more comprehensive and 

reliable sleep stage classification results. This introductory paragraph sets the stage for 

further exploration of the benefits and significance of employing a multi-method 

approach in the subsequent sections of this research study. 

This study aims to advance sleep stage classification by employing innovative 

techniques in EEG analysis. It is important to note that this chapter contains an exact 

copy of a research paper submitted to 

Sleep Research Society Journal by Zapata et al on the 04th of August of 2023.  

 

The article outlines a method that integrates time-frequency analysis and deep learning 

to enhance the accuracy and performance of sleep stage classification. It explores using 

EEG data and time-frequency analysis for feature extraction, employing multitapers 

and convolution. To enhance the feature representation, the study incorporates a visual 

geometric group network (VGGNet) with squeeze-and-excitation (SE) blocks, scaled 

exponential linear unit (SELU), and batch normalisation (BN). The proposed method 
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uses a multi-layer perceptron for sleep stage classification, achieving a significant 

performance improvement with an average accuracy and precision of 87% across three 

different EEG databases. 
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1. Introduction 
Sleep is a fundamental and indispensable physiological process in the human 
daily cycle, taking one-third of our lifespan and holding immense significance. 
Poor sleep has been associated with various health conditions that strongly 
correlate with different sleep stages 1–4. 

Sleep comprises two general phases: rapid eye movement (REM) and non-
rapid-eye-movement (NREM). According to the Rechtschaffen and Kales rules 
(R&K Rules) 5,6, the NREM phase consists of stage 1 (S1), stage 2 (S2), stage 
3 (S3) and stage 4 (S4) with frequencies at either alpha (8-13Hz), theta (3.5-
7.5Hz) or delta (>3Hz) depending on individual stages 7. The REM phase has 
only one stage (REM), and its frequencies vary between theta, beta (16-32Hz) 
and gamma (>32Hz) 8. 
Electroencephalogram (EEG) data collected from the human scalp allow 
researchers to uncover hidden information that can help us better understand 
the neural interactions during different human brain activities1,9–13.  

This study proposes a method that implements feature extraction in two 
steps and classifies them into sleep stages. 
Firstly, the preliminary features are extracted using a time-frequency analysis 
with multitapers and convolution (MT&C) method from 14. This initial stage 
transposes the data from lineal time series into spectral data in the frequency 
domain 2,9. In feature extraction, we use a convolutional neural network (CNN) 
in a visual geometric group network (VGGNet) with squeeze-and-excitation 
(SE) blocks and with an additional scaled exponential linear unit (SELU) and 
batch normalisation (BN). This is to identify important characteristics in the 
spectral estimations generated by the MT&C method 3,4,15,16. Finally, the sleep 
stage classification is performed using a multi-layer perceptron with the SELU 
and BN.  
This research uses the data from three different EEG databases to train, test and 
validate the performance of the proposed method. The data is initially pre-
processed using the Python library MNE (MEG & EEG analysis and 
visualisation).  

This research aims to contribute with a deep learning method that interprets 
preliminary features and extracts, identifies, and classifies sleep stages across 
databases with subjects without and with different neurological conditions.  
Combining two feature extraction methods aims to interpret and classify data 
relevant to the sleep stage characteristic based on medical definitions like the 
ones based on the R&K rules or the American Association of Sleep Medicine 
(AASM) standards. Also, the initial extracted features can be used to visually 
map and identify different characteristics at each sleep stage.  

This paper is structured into six sections. The next section offers an 
overview of the research background, while the third section summarises the 
EEG databases employed. The fourth section thoroughly discusses the pre-
processing, feature extraction, and stage classification methods, emphasising 
their significance with the proposed methodology. The experimental findings 

and results are presented in the fifth section. Finally, the last section 
encompasses the discussion and conclusion, summarising the key aspects of 
this research and proposing potential directions for future investigations. 
 

2. Related Work 
Sleep stage classification is a significant area of research in healthcare, as it 
helps to identify abnormalities, diagnose sleep disorders, and design 
appropriate treatment plans. Over the last few years, deep learning (DL) 
methods have emerged as a promising technology for classifying sleep stages 
6,17,18.  

Several studies have reported high accuracy rates for sleep stage 
classification using DL methods. However, the lack of a standardised database, 
evaluation metrics, and pre-processing techniques poses a challenge to directly 
comparing their results 9. 

2.1. Sleep stage classification 
Sleep stage classification has been a popular research area for several decades, 
from 1930, when the first EEG was used to measure brain waves during sleep, 
to the implementation of automated methods in the late 1970s.  
Several years later, when the first EEG was used on the scalp, Loomis 19,20 
published a study about the potentials in the human brain during sleep. That 
preliminary research proposed a set of markers that showed the patterns of sleep 
and awake subjects. However, only in 1968 when the R&K rules were 
established as a standardised guideline for visual sleep stage scoring based on 
EEG data 5. Almost a decade later, the AASM adopted the principles from the 
R&K rules with slight modifications. Since then, the research community has 
adopted and refined both principles. 

Recent studies from Supratak et al. 21 and ElMoaqet et al. 22 proposed a 
deep transfer learning method to classify bipolar-channel EEG data using a 
recurrent neural networks (RNN) method, which is a derivation from 
convolutional neural networks (CNNs) with an additional bidirectional long 
short-term memory (BLSTM). Supratak 21 used a bipolar channel from two 
open-source databases, where the raw EEG data were used directly without pre-
processing. ElMoaqet 22, on the other hand, first transferred their EEG data into 
images using a Fourier synchronisation transform (FST) and continuous 
wavelet transform (CWT) before classification. Both studies claim around 2-
8% improvement over other benchmark studies. 
A study by Diykh et al. 23 proposed a two-stage network classification method 
that used hand-crafted network features in a sequential learning model to 
classify sleep stages. That training and testing approach achieved an average 
accuracy of 78.6%. 

Meanwhile, Aboalayon et al. 24 proposed a U-network architecture to 
generate a spontaneous temporal scale based on interval classifications, which 
achieved an average accuracy of 72.8% for the St. Vincent's University Hospital 
database and 67.8% for the CAP’s Sleep database. 

Statement of Significance 
The research paper presents a significant contribution to the field of sleep stage classification by utilizing Electroencephalogram (EEG) data and implementing 
a time-frequency analysis for feature extraction using multitapers and convolution. The proposed method combines a visual geometric group network 
(VGGNet) with Squeeze-and-Excitation (SE) blocks, Scaled Exponential Linear Unit (SELU), and Batch Normalization (BN) to refine the features extracted 
from EEG data. A multi-layer perceptron is used for the final sleep stage classification. The proposed method integrates two feature extraction methods, 
effectively capturing essential characteristics and patterns associated with different sleep stages. The comprehensive evaluation using diverse databases 
enhances the relevance and application of the proposed method in future studies. Overall, this study demonstrates the feasibility and effectiveness of integrating 
time-frequency analysis and deep learning for sleep stage classification, making valuable contributions to the understanding and diagnosis sleep-related 
disorders. 
. 

SLEEP STAGES DATA (FROM 3 DATABASES AFTER PRE-PROCESSED): 

Database 
Total 

Subjects 
Epoch 
Size 

Awake 
Epochs 

Stage 1 (S1) 
Epochs 

Stage 2 (S2) 
Epochs 

Stage 3 & 4 (S3) 
Epochs 

REM 
Epochs 

Total Seep 
Time (Hours) 

St. Vinc. DB 25 30sec. 4729 3387 6985 2668 3005 173.24 
Dream’s DB 26 5sec. 38276 6764 67708 6196 16328 187.88 
CAP’s DB 16 30sec. 1380 580 6350 3360 3120 123.25 

         

Table 1: Sleep EEG Stages Databases 



 

102 

 

Zapata et al. | 3 

A study by Zapata et al. 14 used two different methods for sleep stage 
classification with an average accuracy of 85%. The first method was based on 
the definitions and the characteristics of the sleep stages according to the R&K 
rules, and the second method applied a support vector machine. The features 
used in those two methods were obtained using time-frequency signal analysis. 
 

3. Experimental Data 
This study employs three open-access databases that come with expert sleep 
stages labels, as shown in Table 1. The three databases used are the St. 
Vincent’s University Hospital and the University College Dublin Sleep Apnea 
Database (St. Vincent’s Database) published by Heneghan 25, the Dream’s 
Database published on ZENODO by Devuyst 26,27, and the Cyclic Alternating 
Pattern (CAP) database published on Physionet by Terzano et al. 28. 

3.1. St. Vincent’s Database  
The St. Vincent’s database contains the overnight polysomnogram EEG data 
from 25 adult subjects with suspected sleep disorders. The selection of such 
subjects claimed to be randomly from individuals over the age of 18 that did 
not present symptoms of cardiovascular diseases or dysautonomia. Sleep 
experts manually labelled the sleep stages using the R&R rules 25. 

3.2. Dream’s Database 
The Dream’s database contains two datasets of importance for this study. The 
first dataset (subjects DS) contains overnight sleep polysomnographic 
recordings from 20 healthy subjects. The second dataset (patients DS) contains 
overnight sleep polysomnographic recordings from 27 subjects with various 
pathologies. Both datasets contain two hypnograms labelled by experts using 
the R&K rules and the AASM standards 26. 

3.3. CAP’s Sleep Database 
The CAP’s database contains eight datasets, including healthy subjects and 
subjects with different pathologies. This research will use the n1-n16 (CAP_n1-
16) data from no-pathology subjects. The CAP_n1-16 contains whole-night 
sleep polysomnographic recordings from 16 subjects without medications or 
presenting neurological conditions. The hypnograms were scored using the 
R&K rules 29. 
 

4. Methodology 
The methodology of this research encompasses four essential parts: pre-
processing, preliminary and secondary feature extraction, and the 
implementation of the classification method, as shown in Figure 1. 

In the pre-processing stage, the EEG data are checked and filtered out 
various noises. The EEG segments with too much noise are removed using an 
independent component analysis method.  

In the preliminary feature extraction phase, the primary method is designed 
based on our existing studies 14,30. This technique applies time-frequency signal 
analysis, employing multitapers and convolution methods for signal 
decomposition. 

Moving on to the secondary feature extraction, the approach centres on 
convolutional neural networks (CNN) within a visual geometric group network 
(VGGNet). This integration incorporates squeeze-and-excitation (SE) blocks to 
optimise feature representation. Moreover, the method includes the utilisation 
of a scaled exponential linear unit (SELU) and batch normalisation (BN) 
techniques, illustrated in Figure 2. 
A multi-layer perceptron is employed to accomplish the task for the 
classification method. This classifier effectively integrates the SELU and BN 

techniques into its architecture, which were earlier discussed in the secondary 
feature extraction section. 
Subsequent subsections will delve into comprehensive explanations of each 
individual building block within the methodology. 

4.1. Data processing 
All the sleep EEG data are pre-processed using the MNE Python library 31. 
Firstly, the EEG data is filtered with a bandpass between 0.2 Hz and 200 Hz, 
followed by a denoising procedure using an independent component analysis 
(ICA) estimation method. The ICA is implemented by computing the 
covariance of the picks of each channel and selecting the 0.99 component with 
a maximum iteration of 3000. Subsequently, a notch filter is applied to the 
identified picks 32–34. Finally, the data segments identified by muscle movement 
are excluded from the databases 32–34.  

4.2. Feature Extraction: MT&C 
The multitapers and convolution (MT&C) method is the first feature extraction 
method, as shown in Figure 3. It is based on time-frequency analysis, proposed 
by Zapata et al. 14,30.  
The MT&C method generates a spectral density estimation (SDE) from the 
input EEG data using tapers that simulate the characteristic of the frequency 
found in sleep stages. The tapers or wavelets are created using a Gabor kernel 
(Eq. (1)) with the parameters of the sleep waves to highlight the spectra density 
in each sleep stage from EEG data 14,30,35.   

gk(t)=e
! "-t

2#
$2S2%

&
 e(i 2π fk t)                       (1) 

The Gabor function gk(t) comprises two parts, the Gaussian window and 
an imaginary sine wave. k in gk(t) refers to the frequency of the wave, and t 
refers to its time duration. 

The out-product section in each convolution from the MT&C method can 
be represented as follows: 

(# ∗ %))(&) = ( #()) ∗ %)(&)
*

+
(2) 

ConvMod1 

ConvMod2 

ConvMod3 Classification 

CNN+BN+SELU
+SE 
Max 
Pooling 

Figure 2: SE-VGGNet-S-BN architecture. ConvMod refers to the module of 
the CNN or internal layer. In the orange blocks are contained the 
CNN+BN+SELU+SE. 

Feature Extraction 

MT&C: 
 

30 Wavelets  
Decomposition 

Preliminary Feature 
(Time-Frequency)  

VGGNet: 
(CNN+BN+S+SE)*2 

Max-Pooling 
(CNN+BN+S+SE)*3 

Max-Pooling 
(CNN+BN+S+SE)*4 

 

Secondary Feature 
SE-VGGNet-S-SB  

Pre-processing 

MNE Python 
(ICA estimation 

method) 

EEG Data Classification 

Sequential Structure: 
LT+BN+SELU 

Figure 1: Methodology workflow diagram.  
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where the integral symbol ò denotes the integration over the entire domain 
presided by a and b, the asterisk symbol represents the convolution between the 
input signal l(t) and the Gabor taper gk(t) at the taper window k 14,30. 

The total output of the MT&C method (+,-(-.))) is given by Eq. (3): 
+,-(-.)) = /(%)(&) ∗ #(-.)	)	 (3) 

where F refers to the frequency domain. The SDE for each epoch in the 
signal is the computation of all sliding window k across the whole sleep stage. 
The resulting product is a two-dimensional matrix array that contains the power 
content of the frequencies (from 0.2Hz to 30Hz) at each instance of time for the 
signal. Eq. (4) represents the structure of the array: 

+,-(-.,) = 2

3-(&-)
⋮

3,(&-)

…

⋱
…

3-(&.*/)
⋮

301(&.*/)
7														(4) 

where 3,(&-) is the convolution at the time instance t1 of the kernel gk(t), 
and with the frequency n with the signal epoch -.,. The level of W (1 to n) 
indicates the convoluted frequency in Hz (1 to 30 in this specific case). The 
level of t (1 to max) refers to each one of the points in the signal that will go 
from 1 to the last (max). 

4.3. Feature Extraction: SE-VGGNet-S-BN 
The SE-VGGNet with SELU and BN (SE-VGGNet-S-BN) from Figures 4 and 
5 is a unified visual geometric group analysis framework with enhanced feature 
extraction. The main component of this method is the CNN module in a fully 
connected layer structure. It is implemented in conjunction with batch 
normalisation, scaled exponential linear units and squeeze-and-excitation in 
each CNN layer, followed by a max pooling module. 

The SE-VGGNet-S-BN architecture in Figure 5 comprises three fully 
connected layers, each with multiple CNNs that increment its size on each main 
layer.  

4.3.1. CNN in a VGGNet structure 
The role of the CNN in a VGG structure is to identify deep-relevant features or 
patterns in the SDE data obtained from the previous section. The CNN 
comprises multiple filters that slide over the input data to extract features. The 
input data of the SE-VGGNet-S-BN is a two-dimensional matrix (frequency, 
-.9:ℎ2345) that starts with a size 30x-.9:ℎ2345 . The filters in the CNN are 
small matrices with a defined size that slides over the input data and produces 
a singular output. The parameters refer to the learnable weights that are updated 
during the training process using gradient descent. The stride, which defines 
how the filters move over the input data, specifies the number of steps the filter 
takes at each iteration. The padding is an optional parameter that adds an extra 
set of zeros around the input matrix. It is used to avoid the loss of information 
at the boundaries of the data. The current VGGNet structure comprises a 3x3 
series of convolutional layers and a 2x2 max polling in three fully connected 
layers 36–38. 

4.3.2. Batch Normalisation 
The next module after the CNN is the batch normalisation (BN) unit. It is used 
to improve the training and performance of the CNN by normalising the 
activation of each layer across every batch of training data. During the training 
process, the BN operates on batches of training data. There, it computes the 
activation's mean and variance on each feature dimension. Then, the activation 
is normalised by deducting the mean and dividing it by the square root of the 
variance to ensure uniform distribution, as seen in Eq. (5). Next, a learnable 
parameter known as gamma and beta are applied to scale and shift the 
normalised activations as seen in Eq. (6). Finally, it passes into the activation 
function the scaled and shifted activations 39–41. 
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Figure 4: SE-VGGNet-S-BN structure 
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where <=3 is the value of a single input, ?.67! is the mean within the batch 
and ABC(<) is the variance within the batch. 

EFG3 = 	HΘ<=3 + K	 (6) 
where EFG3 is the final normalised value. H is gamma, and K is beta, values 

learned by the layers 39,40. 
4.3.3. Activation Function: SELU 

The activation function used in this study in Eq. (7) is the scale exponential 
linear unit (SELU), which contributes to the self-normalisation of the network. 
The primary attribute of the SELU is to help to maintain a mean activation close 
to zero and a standard deviation close to 1, stabilising the training process and 
improving the performance of the network.  

MN	O > 0 ⟶ 			N(O) = 	S ∗ O	 
(7) 

MN	O ≤ 0 ⟶ 			N(O) = 	S ∗ V(W/ − 1) 
where  N(O)  represents the SELU function, S  and V  are constant with 

approximated values of 1.051 and 1.673, respectively. The SELU functions 
have two possible outcomes, when the input is larger than zero and when the 
input is smaller. 

4.3.4. Squeeze-and-Excitation Blocks Module 
The squeeze-and-excitation blocks (SE) module is introduced into the proposed 
method to enhance the representational power of the CNN layer and improve 
its performance. This module dynamically adjusts the channel-wise feature 
response by capturing the relationships and independencies among different 
channels. Eq. (8) is the function of SE: 

[8 =
1

ℎ − \
]] [̂8,3,;]

=

;>-

?

3>-
(8) 

where [̂8,3,;] denotes the values at channel c and spatial position (i, j) in the 
input feature map. The final product of the squeeze operation (SO) is a vector 
of channel-wise statistics. 
Given the squeezed feature vector [8, generated from the SO, the excitation 
operation (EO) learns the scaling factors weighing from the importance of every 
channel so that: 

-O:M&B&M9`([) = +	 (9) 
where S is a size of a vector representing the learning scaling factor. 

+8 = b cΨ@ eN(O)fΨ-([8)ghi (10) 

where Ψ- and Ψ@ are fully connected layers (CNN in this case), f(x) is the 
activation function (SELU), and b is the sigmoid module.  

4.3.5. Max Pooling Module 
The max pooling (MP) module is introduced into the proposed method at the 
end of each internal CNN layer, as seen in Figures 2, 4 and 5. This module aims 
to down-sample the feature maps generated by the CNN internal layers and to 
reduce the spatial dimensions maintaining the essential characteristics of the 
features. The MP output Y(c, i, j) from Eq. (11) is derived from the convolution 
of a non-overlapping square-like region, and the input feature map X of size (c, 
h, w), where it selects only the most outstanding value from each region. So, 
given a specific pooling window (i, j), it can be expressed as Eq. (11): 

j(:, M, k) = lBO(^[:(B): (BA), (o): (oA)]) (11) 
where a is defined as (i*sh), BA  is defined as (i*sh+ph), b is defined as 

(j*sw), and oA is defined as (j*sw+pw). The sh and sw are the stride along the 
height and the width dimensions 42,43. 

4.4. Classification Method 
The classification method in Figure 6 is based on a custom sequential structure 
of one flattened layer followed by three sets of layers. Each set of layers 
contains a linear transformation (LT), BN, and the activation function SELU. 
The classification method includes reducing the dimensionality of the features 
and evaluating the most predominant characteristics embedded in the resulting 
features from the SE-VGGNet-S-BN method.  

The combination of the SELU and BN helps to moderate the issues of 
vanishing and exploding gradients and reduce sensitivity to weight 
initialisation. Leading to more stable and efficient training as the BN reduces 
internal covariance shifting and enables higher learning rates while reducing 
the need for extensive hyperparameter turning.  

4.4.1. Flatten Layer 
The flattening layer converts the data received from the SE-VGGNet-S-BN 
method (multidimensional data with a size of 122 x 1 x 128 into a flattened 
vector (one dimension) of the size of 15616. The flattening of the data improves 
the subsequent layer performance and helps extract relevant features from the 
input data. 

4.4.2. Transformation Layer and Activation Function 
The linear transformation (LT) layer in Eq. (12), aims to learn a linear mapping 
between the receiving and out features by adjusting the learnable values 
associated with the weight and bias vector during training. Considering that the 
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LT does not introduce non-linearity by itself, it requires an activation function, 
discussed in the next section. 

O3 = O ∗ \E + o	 (12) 
where  O3 is the output of the LT layer, x is the input, w is the learnable 

weight matrix of size (in-features, out-features), b is the learnable bias vector 
of shape (out-features), and T denotes the transpose of the weight matrix. 

The activation function used in the classification method was introduced in 
section 4.3.3. It leads to non-linearity in the classification by transforming the 
input signal into values that vary from 0 and 1. 

The output of each neuron in the LT is represented by the function in Eq. 
(13). 

BF = N c] \3F	O3 + oF
3

i (13) 

where BF is the output of the neuron q, fθ represents the activation function 
to the weighted sum, ∑i denoted the summation over the index, i,  that 
represents the inputs from the previous layer, \3F is the weight associated with 
the connection between the input i  and neuron q, O3 is the input or activation 
from the previous layer connected to neuron q, and oF is the bias expression 
that determines which node becomes activated at a specific input level. In other 
words, Eq. (13) calculates the weighted sum of the inputs or activations from 
the previous layer, adds the bias term, and applies the activation function fθ to 
generate the output or activation of neuron q. 

4.4.3. Loss Function Optimisation and Learning Rate 
Cross entropy is the loss function (LF) implemented for the classification. The 
cross-entropy measures the dissimilarity between the prediction distribution 
and each class's true values 44,45. 

The cross-entropy function is presented in Eq. (14): 

q/ = 	
−1

F
∗](r ∗ log(rv)) (14) 

where N is the number of the training samples on each batch, y is the true 
label in the training set, and rv is the predicted probability distribution over the 
five labels of the corresponding training example. (r ∗ log(rv)) computes the 
element-wise multiplication of the true values and the logarithmical provability 
of the prediction. The LF is then averaged over the batch size (N) to get the total 
loss value 44,45. 

 The optimiser is the stochastic gradient descent (SGD), which 
helps to optimise the model by minimising the loss. The SGD optimisation is 
presided by Eq. (17). 

w- = wG- − V ∗ ∇y(wG-) (17) 
where w- is the updated optimisation value, wG- is the current optimisation, 

V is the learning rate, and ∇y(wG-) is the gradient of the cost function R with 
respect to the current optimization46,47. 

 The classification uses the learning rate decay model, which is 
adjusted during the training. It allows the learning rate to fluctuate based on the 
training process, improving the overall performance and convergence of the 
classification method. 

The learning rate is presided by Eq. (18). 

#C- = 	
#CG-

(1 + zC ∗ -.)
	 (18) 

where #C-  is the updated learning rate at a given epoch (Ep), #CG-  is the 
initial learning rate, and dr is the decay rate, which controls the learning rate 
46,48.   

4.5. Performance Measurement Metrics  
The performance of the proposed method is assessed using six measurement 
metrics: Lin's concordance correlation coefficient (CCC), agreement rate (AR), 
sensitivity (SE), specificity (SP), positive predicted value (PPV), and F-
measure (F). 

4.5.1. Lin's Concordance Correlation Coefficient 
The CCC performance metric is applied to assess the level of agreement 
between two entities representing the same variable, aiming to demonstrate the 
concordance between the results obtained from the proposed method and the 
sleep stages provided by experts. The CCC in Eq. (19) combines the precision 

and the accuracy metrics to provide a single value representing the overall 
agreement between two variables 49–5253.  

{8=
2ρ	|/	|H

|/" + |H"+(?/ − ?H)@ 
                          (19) 

where r is the Pearson correlation between two variables, 	|/	|H are the 
standard deviations of the variables x and y, and ?/ − ?H are the means of the 
measurements of the preside variables 14,30,50,52. 

4.5.2. Agreement Rate 
The AR of sleep stages is based on each stage. It considers all the stages 
evaluated during testing and verification. The AR is defined as: 

<y=
(a+b) 

a+b+c+d
                          (20) 

where a is the number of positive sleep stages scored by the method, and 
the expert (TP), b is the number of sleep stages classified as false positives (FP), 
c is the number of sleep stages classified as false negatives (FN), and d is the 
number of true negatives TN 14,50,54. 

4.5.3. Sensitivity 
The sensitivity or recall metric evaluates the correctness of measurements in 
terms of true positives (TP) and false negatives (FN), as shown in Eq. (21) 14,55. 

SE =
TP

TP+FN
                             (21) 

4.5.4. Specificity 
Specificity is used to evaluate the performance of a binary classification model, 
which represents the capability of the method to identify (TN) from the actual 
negative cases, as shown in Eq. (22) 14,55,56. 

SP =
TN

TN+FP
                             (22) 

4.5.5. Positive Predicted Value 
The PPV, or precision, is used to assess the probability of a condition present 
on a subject. It represents the proportion of TP cases out of all cases predicted 
as positive by the model, as shown in Eq.(23) 14,55,56. The false positives refer 
to the sleep stages identified by the method but not by the expert. 

PPV =
TP

TP+FP
                                        (23) 

4.5.6. F-measure 
The F-measure or F1 score evaluates the performance of binary classification 
of the method by combining the precision (PPV) and recall (SE) of a model, as 
shown in Eq. (24) 14,30,57.  

F =
2(SE * PPV)
SE + PPV

=
2}~

2}~ + /F + /~
      (24) 

 

5. Experimental Results 
This study proposes a robust sleep stage classification method that significantly 
improves accuracy by utilising the features associated with the sleep stages 
based on the R&K rules and the AASM standards. 
The proposed method is evaluated based on over 480 hours of 
polysomnography (PSG) data across three databases. The data is pre-processed 
and filtered using the MNE Python tools, with around 10% of the stages rejected 

TRAINING AND VALIDATION DATA AFTER PRE-PROCESSING 

Databases 
Total Data 

(Ep) 
Training Data 

(Ep) 
Testing Data 

(Ep) 

St. Vinc. DB 18590 14868 3722 

Dream’s DB 121066 96851 24215 

CAP’s DB 13236 10587 2649 

 

Table 2: Training and validation data after pre-processing   
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due to excessive noise or abnormalities. Training and validation are performed 
on 152911 epochs, split randomly into 80% training and 20% testing, as shown 
in Table 2. Features are obtained using the MT&C and SE-VGGNet-S-BN 
methods. While the MT&C generates the spectral density estimation, which can 
be directly associated with the visual parameters used to score stages, the SE-
VGGNet-S-BN method extracts mathematical characteristics from the MT&C 
features. The classification employs a sequential structure with a SELU 
activation and batch normalisation, and it is evaluated using accuracy, recall, 
precision, and F-measure metrics. 

5.1. Method Performance on St. Vincent’s Database 
Table 3 contains the performance accuracy, recall, precision, and F-measure of 
the sleep stage classification on the St. Vincent’s DB. The overall accuracy on 
the test set was 80%, with the highest performance for the S2 and REM stages, 
having 87% and 84% accuracy, respectively.  

Figure 7 illustrates the confusion matrix for St. Vincent’s DB. The values 
correctly classified by the method (trues positive) are on the diagonal line, while 
the values off the diagonal line indicate misclassified ones.  
Comparing the results among our proposed method and the previous studies 
conducted by Zapata 14, Perslev 58, Langkvist 59, Sun 60, and Yilita 61, who also 
used the St. Vincent’s DB, our method demonstrated notable improvements in 
accuracy, recall, precision, and F-score across all sleep stages. 

Comparing to Zapata 14 that introduced the Rules-based and SVM-Q 
methods for sleep stage classification, the proposed method in this paper shows 
performance improvements of more than 3% for most stages based on the 
Rules-based method and over 2% for the case of the SVM-Q. 

Our proposed method significantly improves the performance in terms of 
all assessment metrics, achieving an average increase of 10% compared to 
Perslev’s results [58]. Perslev 58 employed a CNN for the sleep stage 
classification. 

With respect to Langkvist 59 who employed an unsupervised feature 
learning method for sleep stage classification, significant performance 
improvements are evident with our proposed method, with a 15-30% accuracy 
increase for classifying the sleep stages.  

Sun 60 and Yulita 61 who used Bi-directional long-short memory method 
with slight modifications between them, our proposed method shows notable 
advancements in performance with an average of 4% increase for S1 and S2 
stages compared to Sun [60], and an average 22% improvement for stages 
REM, S3, and W.  

5.2. Method Performance on Dream’s Database 
The performance accuracy, recall, precision, and F-measure for sleep stage 
classification in Dream’s DB are summarised in Table 4. The overall testing 
accuracy was 89%, with exceptionally high accuracy in stages W and S3 at 92% 
and 91%, respectively. Stage S2 had a precision, recall and F-score of 0.97, 
while stage S1 had the lowest performance with a precision, recall and F-score 
of 0.45. Another stage with a relatively low precision, recall and F-score was 
S3 at 0.73, despite its accuracy being 91%. 

Figure 8 shows the confusion matrix for Dream’s DB. In this matrix, the 
squares adjacent to the main diagonal, which correspond to the classifications 
by our proposed method, exhibit high values shaded in moderated dark blue, 
indicating that the classifier often encounters confusion among sleep stages that 
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ACCURACY FOR THE DREAM’S DATABASE: 
          Stages 
Metrics 

W S1 S2 S3 REM 

Total Stages 
Evaluated 

6852 1211 12120 1109 2923 

Total Stages 
Identified 

6310 873 10849 997 2616 

AR (%) 0.92 0.74 0.89 0.91 0.89 

SE 0.93 0.45 0.97 0.73 0.88 

SP 0.96 0.95 0.97 0.98 0.98 

PPV 0.92 0.45 0.97 0.73 0.88 

F-Score 0.93 0.45 0.97 0.73 0.88 

  

Table 4: The accuracy by the proposed method for Dream’s Database.  

METHOD ACCURACY ON ST. VINCENT’S DATABASE: 
          Stages 
Metrics 

W S1 S2 S3 REM 

Total Stages 
Evaluated 

847 607 1251 479 538 

Total Stages 
Identified 

689 385 1090 388 454 

AR (%) 0.81 0.63 0.87 0.81 0.84 

SE 0.81 0.63 0.87 0.81 0.84 

SP 0.93 0.96 0.90 0.96 0.95 

PPV 0.81 0.78 0.84 0.78 0.77 

F-Score 0.81 0.70 0.85 0.79 0.81 

  

Table 3: Proposed method accuracy on St. Vincent’s Database. 
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are closely related or have similar characteristics, for example, stage W with 
stages S1 and REM, and S2 with S1 and S3 stages. 

5.3. Method Performance on CAP’s Database 
Table 5 shows the performance metrics of our proposed method on CAP’s 
Database. The average testing accuracy was 92%, with the highest performance 
on stages W and REM with a 95% accuracy. The highest recalls were achieved 
by stages W and REM at 0.95, while the lowest was for the S3 stage at 0.47. As 
for the precision, stage S2 had the highest performance at 97, whereas stage S1 
had the lowest at 0.59. Regarding F-score, the stages of W, S2 and REM 
achieved the pick performance at 0.88, 0.96 and 0.91, respectively, while stages 
S3 and S1 were the lowest at 0.63 and 0.69. 

Figure 9 presents the confusion matrix for the CAP’s DB, revealing that 
most values located off the main diagonal are remarkably low. Notably, our 
proposed method reveals misclassifications primarily in the S2 stage, which has 
the most discrepancies.  

When comparing the performance of our proposed method to the results 
from Zapata 14 and Perslev 58, our method showcased significant improvements 
in accuracy, recall precision and F-score across all sleep stages, having an 
average improvement accuracy of 5%. It presented a slight improvement 
compared to the Rules-based method, which has an average classification rate 
of 87.6 5 and to the SVM-Q, which was 90%.   

Our proposed method demonstrates remarkable performance 
improvements compared to Perslev 58 for stage classification, ranging from 
11% to 50% accuracy. 

 

6. Discussion & Conclusion 
This study develops a deep-learning method that processes preliminary features 
and extracts, identifies, and classifies sleep stages using EEG signals from three 
databases that have subjects with and without different neurological conditions. 
The results demonstrated promising performance in accurately classifying 
different sleep stages.  

The proposed method achieved an impressive overall accuracy of 87% in 
sleep stage classification, an improvement compared to other state-of-the-art 
approaches.  

In the feature extraction section, two distinct methods are used, each with 
advantages. The first method (MT&C) is a comprehensive approach that 
utilises time-frequency analysis following the parameters outlined in the R&K 
rules and the AASM standards. This method effectively captures essential 
characteristics and patterns associated with different sleep stages, aligning with 
the visual scoring criteria. 

The second method involves a unified short-visual geometric group 
analysis framework with enhanced feature extraction. It establishes connections 
between the characteristics derived from the time-frequency analysis method, 
generating associations that the system interprets based on their relevance 
through weights and biases. By incorporating the two methods for feature 
extraction, our proposed algorithm can effectively extract relevant information 
embedded in the EEG data.  

This study also employed three well-known mid-size databases, 
incorporating diverse sleep study subjects. This inclusion enhances the 
relevance of our findings and increases the application of the proposed method 
in future studies. The arduous validation process, which included independent 
testing, further supports the consistency and robustness of our results. 

Nonetheless, some limitations should be mentioned. Firstly, this study 
focused exclusively on EEG and EOG signals and did not consider another 
physiological signal, such as EMG. Additionally, while our method 
demonstrated outstanding performance in distinguishing between sleep stages, 
further research is required to address the challenges associated with specific 
sleep stages, such as S1, W and S2 stages, which exhibit overlapping 
characteristics in the EEG signals. Moreover, it is essential to note that the 
performance of the proposed method may vary depending on the type or 
approach of data pre-processing employed. Likewise, Given the lack of united 
agreement on the interpretation of certain stages, training the method with 
labels from a specific expert may lead to decreased performance when testing 
data from another expert.  

This study opens opportunities for several future directions, like the 
implementation of multi-method approaches to improve accuracy and the 
incorporation of methods that can create features that are relevant and easy to 
interpret by medical experts.  

By exploring these future directions, we can advance the field of sleep stage 
classification, enhance the overall comprehension of sleep physiology, and 
make valuable contributions to developing more effective diagnostic and 
treatment approaches for sleep disorders. 

In conclusion, this study demonstrates the feasibility and effectiveness of 
integrating and utilising time-frequency analysis and deep learning for sleep 
stage classification. The outstanding accuracy achieved, along with the 
inclusive feature selection process and diverse databases, illustrates the 
capability of our approach in identifying visual characteristics and interpreting 
them to classify sleep stages. Future research can build upon our findings to 
develop more sophisticated models to address other challenges and further 
improve the accuracy and capability of sleep stage classification. 
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8. Data Availability 
The datasets used in the current study are open sources and are available in 
Open Science Framework (OSF) 62, ZENODO 26,27, and Physionet 28. 

ACCURACY FOR THE CAP’S DATABASE: 
          Stages 
Metrics 

W S1 S2 S3 REM 

Total Stages 
Evaluated 

247 104 1137 602 559 

Total Stages 
Identified 

235 88 1023 546 531 

AR (%) 0.95 0.84 0.89 0.91 0.95 

SE 0.95 0.84 0.90 0.47 0.95 

SP 0.98 0.97 0.97 0.99 0.97 

PPV 0.81 0.59 0.97 0.95 0.91 

F-Score 0.88 0.69 0.93 0.63 0.93 

     

Table 5: The accuracy by the proposed method for CAP’s Database.  
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9. Implementation Details 
The data were pre-processed using the MNE Python Library 31, and the methods 
were created and implemented in Python and MATLAB. 
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5.2. Chapter Summary 

In this chapter, the EEG-based sleep stage classification with a CNN in a short-visual 

geometric group method is presented to classify the sleep stage with the help of a time-

frequency analysis method. The preliminary features are extracted by combining 

multitapers and convolution, and then a visual geometric group network with SE 

blocks, SELU, and BN is applied to refine the features. The classification is performed 

using a multi-layer perceptron with SELU and BN. 

The research showcases promising results, achieving an average accuracy and precision 

of 87% in sleep stage classification across three different EEG databases. The proposed 

method outperforms several state-of-the-art approaches, demonstrating its efficacy in 

accurately classifying different sleep stages. This research included diverse healthy and 

unhealthy subjects and conducted a rigorous validation process that enhanced the 

relevance and reliability of the findings. 

However, limitations should be acknowledged, such as excluding other physiological 

signals and the challenges associated with specific sleep stages exhibiting overlapping 

characteristics. Future research could explore multi-method approaches to improve 

accuracy and incorporate features easily interpretable by medical experts. 

Overall, this research contributes to the field of sleep stage classification by effectively 

integrating time-frequency analysis and deep learning techniques. The proposed 

method can advance our understanding of sleep physiology and facilitate more effective 

diagnostic and treatment approaches for sleep disorders. 
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CHAPTER 6 

 

Conclusions and Future Research Directions 
6.1. Introduction 

Sleep constitutes a vital physiological process essential for upholding overall health and 

well-being. As humans, we spend a significant portion of our lives in a state of restful 

slumber, during which crucial bodily functions, such as memory consolidation, immune 

system regulation, and tissue repair, take place. The quality and quantity of sleep 

directly impact our cognitive abilities, emotional regulation, and physical health. 

Therefore, a comprehensive understanding of sleep patterns and stages is of utmost 

importance in the fields of sleep medicine, neuroscience, and public health. 

Sleep EEG analysis has emerged as a powerful tool to investigate and understand the 

complexities of sleep patterns. EEG data are non-invasive recordings of electrical brain 

activity, collected using electrodes on the scalp, which capture the dynamic changes in 

brain wave patterns throughout different stages of sleep. Analysing these EEG signals 

allows researchers to categorise sleep into distinct stages, such as awake, stage 1 (light 

sleep), stage 2 (intermediate sleep), stage 3 (deep sleep), and REM sleep. Each stage 

exhibits unique EEG wave characteristics that provide valuable insights into sleep 

physiology. 

In recent years, advancements in signal analysis techniques, machine learning, and deep 

learning models have presented exciting opportunities to automate and improve the 

accuracy of sleep stage classification. The integration of time-frequency analysis, 

which explores the temporal dynamics of EEG signals, has shown promise in extracting 

meaningful features that correlate with sleep stages. Additionally, machine learning and 

deep learning algorithms have demonstrated the ability to learn complex patterns from 

EEG data, enabling more precise and efficient sleep stage classification. 

This thesis delves into the realm of sleep EEG analysis, addressing five fundamental 

concerns and main objectives to enhance the accuracy and efficiency of sleep stage 

classification. The research aims to combine various signal analysis methods, such as 

multitapers and convolution, with machine learning and deep learning models such as 

rules-based approach, SVM-Q, CNN and VGG to develop innovative multi-method 

approaches. By integrating these approaches, the research strives to achieve a more 
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comprehensive understanding of sleep, sleep spindles and their distribution across the 

scalp, and sleep stages. Exploring advanced time-frequency analysis techniques and 

deep learning models aims to significantly improve sleep stage classification accuracy 

and facilitate personalised sleep health involvements. 

The thesis presents compelling evidence for the effectiveness of the proposed multi-

method approaches through extensive experiments and rigorous evaluations across 

different EEG databases. The findings enhance the understanding of sleep physiology 

and offer practical applications in sleep research, clinical diagnosis, and personalised 

treatment strategies. The visualisations and direct connections between the extracted 

features by the methods and EEG definitions further contribute to the interpretability of 

the classification results, providing valuable insights to medical experts and supporting 

the outcomes of the proposed methods. 

As chapters progress, we discuss the main contributions of this research in advancing 

sleep EEG analysis and sleep stage classification. Furthermore, we analyse and interpret 

the results of each chapter, addressing the research questions and objectives laid out at 

the beginning of the study. The investigated approaches, which encompassed the rules-

based, SVM-Q, SAMC, and CNN with squeeze-and-excitation blocks, exhibited 

encouraging outcomes in both features extraction and classification. By integrating 

time-frequency analysis, multitapers, and convolution, in addition to leveraging deep 

learning techniques, a substantial enhancement in the accuracy of sleep stage 

classification was observed across diverse databases. 

We conclude this thesis with a discussion of the potential implications and applications 

of the proposed methods, laying the groundwork for future research directions in this 

evolving field of study. By comprehensively evaluating the research outcomes, we 

strive to revolutionise sleep research, improve current deep learning and machine 

learning methods, expand clinical practice, and ultimately contribute to better sleep 

health outcomes for individuals. 

 

6.2. Discussions and Conclusions 

The research presented in this thesis aimed to enhance the understanding and accuracy 

of sleep EEG analysis and sleep stage classification using innovative multi-method 

approaches. The key findings and contributions can be summarised as follows: 

1. Development of Innovative Approaches: The thesis introduced novel methods 

for sleep EEG analysis, combining the MT&C method with advanced machine 
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learning and deep learning techniques. These approaches significantly 

improved the accuracy of sleep stage classification and provided valuable 

insights into the characteristics of sleep spindles across the brain. 

2. Enhanced Sleep Stage Classification Accuracy: Integrating the MT&C, 

machine learning algorithms, and deep learning models improved sleep stage 

classification accuracy. The proposed methods demonstrated superior 

performance, particularly in datasets with normal sleep patterns. 

3. Comprehensive Analysis of Sleep Spindles: The SAMC method offered a 

comprehensive analysis of sleep spindles by identifying and categorising them 

across multiple EEG channels. This approach provided valuable information 

about the distribution and characteristics of spindles in different cortical areas. 

4. Integration of Advanced Techniques: The integration of advanced time-

frequency analysis and deep learning techniques was proved to be highly 

effective in sleep EEG analysis and sleep stage classification, surpassing 

existing methods in accuracy and performance. 

Overall, this research contributes significantly to the field of sleep EEG analysis and 

sleep stage classification. The proposed approaches hold the potential to streamline the 

sleep stage scoring process, improve diagnostic accuracy, and provide visual support to 

medical experts, thereby enhancing sleep health outcomes for individuals. 

6.2.1. Sleep EEG Analysis and Sleep Stage Classification 

Implementing and evaluating the MT&C method for sleep EEG analysis and sleep stage 

classification showcased promising results. The SVM-Q and rules-based classifiers, in 

combination with the MT&C, achieved high accuracy and performance, particularly in 

datasets with normal sleep patterns. However, challenges in classifying stage 1 in 

subjects with abnormal sleep EEGs were identified, suggesting room for improvement 

in this aspect. Future research could explore incorporating additional descriptive 

wavelet methods into the rules-based classifier to enhance identifying specific 

characteristics in sleep stages. 

6.2.2. Sleep Spindles Identification 

The SAMC method demonstrated superiority over existing spindles identification 

methods, achieving higher agreement rates and precision than expert labels. Visualising 

spindles across multiple channels provides valuable insights into their characteristics 

and behaviours, enhancing the understanding of sleep dynamics and neural activities. 

Future research may focus on applying the SAMC method to different types of EEG 
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data and exploring its capabilities in various mental tasks and clinical applications 

beyond sleep spindles. 

6.2.3. Advanced Time-Frequency Analysis in Combination with Deep Learning Methods 

for Sleep Stage Classification 

Integrating time-frequency analysis techniques and deep learning models for sleep 

stage classification led to significant improvements in accuracy across different EEG 

databases. The proposed method outperformed several state-of-the-art approaches, 

demonstrating its efficacy in accurately classifying different sleep stages. While the 

results are promising, future research could explore additional multi-method techniques 

to improve accuracy further and incorporate other features easily interpretable by 

medical experts. 

In summary, this thesis has successfully addressed the research questions and 

objectives outlined at the beginning of the study. The proposed multi-method 

approaches have enhanced the accuracy and efficiency of sleep stage classification by 

combining various signal analysis methods, machine learning algorithms, and deep 

learning models. The integration of time-frequency analysis and advanced techniques 

has provided valuable insights into the characteristics of sleep spindles and their 

distribution, contributing to a deeper understanding of sleep physiology and cognitive 

processes during rest. 

Moreover, the proposed approaches have the potential to streamline the sleep stage 

scoring process and offer valuable visual support to medical experts, thereby improving 

the overall sleep stage classification efforts. 

6.2.4. Study Limitations 

6.2.4.1. Signal Processing Limitations: 

Frequency Range: The EEG signal processing focuses on a specific frequency range 

(0.2 Hz to 30 Hz). This might limit the detection of certain patterns or anomalies that 

occur outside this range, potentially missing relevant information. 

6.2.4.2. Feature Extraction Challenges: 

Data Quality: The efficacy of feature extraction methods, such as the MT&C 

technique, heavily relies on the quality of the input data. Noisy or artifact-ridden EEG 

data can affect the accuracy of feature extraction and methods classification. 

6.2.4.3. Algorithmic Constraints: 

Generalization: The paper mentions the use of a CNN with a specific architecture (SE-

VGGNet-S-BN). The effectiveness of this architecture might vary across different 
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datasets, and its ability to generalize to diverse populations or conditions might be 

limited. 

6.2.4.4. Pre-processing Assumptions: 

Assumed Noise Characteristics: The pre-processing steps involve filtering and 

denoising based on assumed characteristics of noise in EEG signals. If these 

assumptions don't hold true for all scenarios, it might lead to inadequate noise removal 

or even loss of relevant information. 

6.2.4.5. Diversity in Databases: 

Representativeness: The research uses several databases for classification, training 

and validation. Limitations may arise if these databases are not fully representative of 

the broader population, leading to potential biases in the algorithm's performance. 

6.2.4.6. Interpretability of Features: 

Clinical Correlation: While the presented studies discuss the association of features 

with sleep stages and sleep spindles based on medical definitions (R&K rules or AASM 

standards), the interpretability of features in a clinical context might be challenging, 

and certain nuances in sleep stage characteristics may be missed. 

6.2.4.7. Lack of Multimodal Integration: 

Single-Modality Data: The study exclusively focuses on EEG data. Integrating data 

from other modalities like EMG or EOG could potentially enhance the robustness of 

sleep stage classification. 

6.2.4.8. Subjectivity in Sleep Stage Labelling: 

Inter-Expert Variability: The research assumes accurate sleep stage labels in the 

training datasets. However, there might be variability in the interpretation of sleep 

stages among experts, potentially introducing inconsistencies. 

6.2.4.9. Performance Metrics: 

Comprehensiveness: While the studies use several performance metrics (CCC, AR, 

SE, SP, PPV, F-measure), the comprehensiveness of these metrics might be discussed. 

They offer specific insights, but a holistic view of the algorithm's performance might 

require additional evaluation criteria. 

6.2.4.10. Ethical Considerations: 

Data Privacy: The papers are limited to the databases ethical considerations, and most 

do not explicitly mention considerations regarding data privacy or ethical guidelines in 

using EEG data, which is crucial, especially when dealing with sensitive health 

information. 
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6.3. Future Work 

While this research has made significant strides in advancing sleep EEG analysis and 

sleep stage classification, several aspects for future work can be explored to enhance 

the field further: 

Incorporation of Other Physiological Signals: Future research could explore 

the integration of other physiological signals, such as heart rate variability and 

body movement data, to improve the accuracy and depth of sleep stage 

classification. 

Exploration of Collaborative Score Validation: To improve manual and 

automatic scoring accuracy, collaborative efforts between experts and modern 

algorithms could be explored. This could involve combining the strengths of 

different experts’ scoring with the objectivity and efficiency of the advanced  

methods. 

Real-Time Sleep Stage Classification: Developing real-time sleep stage 

classification algorithms could have practical applications in sleep monitoring 

devices and sleep health interventions, enabling immediate feedback and 

personalised sleep recommendations for individuals. 

Transfer Learning and Generalisation: Investigating transfer learning 

techniques to generalise the proposed methods across different EEG databases 

and diverse populations could further enhance the robustness and adaptability 

of the classification models. 

Integrating Semi-Supervised Learning Models: Incorporating semi-

supervised learning models offers the advantage of adjusting or refining the 

model using expert feedback. The performance of various models can be fine-

tuned and improved by utilising the initially labelled training model and 

subsequently incorporating additional observations from experts. This way, an 

expert's input facilitates the ability of a model to adapt and learn from new 

information or challenges. 

Explainable Artificial Intelligence (AI) for Sleep Stage Classification: 

Research in explainable AI techniques could be integrated into the proposed 

methods to provide medical experts with interpretable insights into the 
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classification results, fostering trust and acceptance in automated sleep stage 

scoring systems. 

Clinical Validation and Applications: Further validation of the proposed 

methods in clinical settings with a more extensive and diverse patient 

population would strengthen the practical applications of the research in 

diagnosing sleep disorders and improving patient care. 

Longitudinal Sleep Studies: Conducting longitudinal sleep studies with the 

proposed methods could provide valuable information on sleep patterns and 

changes over time, facilitating better understanding and personalised sleep 

health interventions. 

In conclusion, the research conducted in this thesis has laid a strong foundation for 

advancing sleep EEG analysis and sleep stage classification. The innovative multi-

method approaches, and the integration of advanced signal analysis and deep learning 

techniques have shown promising results in enhancing accuracy and understanding 

sleep physiology. With continued efforts in exploring the suggested future directions, 

this research has the potential to revolutionise sleep research, improve clinical practice, 

and contribute to better sleep health outcomes for individuals. 



References. 
 

122 

REFERENCES 
Aboalayon, K., Faezipour, M., Almuhammadi, W., & Moslehpour, S. (2016a). Sleep 

Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and 

New Investigation. Entropy, 18(9), 272. https://doi.org/10.3390/e18090272 

Aboalayon, K., Faezipour, M., Almuhammadi, W., & Moslehpour, S. (2016b). Sleep 

Stage Classification Using EEG Signal Analysis: A Comprehensive Survey and 

New Investigation. Entropy, 18(9), 272. https://doi.org/10.3390/e18090272 

Ahmed, N., Natarajan, T., & Rao, K. R. (1974). Discrete Cosine Transform. IEEE 

Transactions on Computers, C–23(1), 90–93. https://doi.org/10.1109/T-

C.1974.223784 

Al Ghayab, H. R., Li, Y., Siuly, S., & Abdulla, S. (2019). A feature extraction 

technique based on tunable Q-factor wavelet transform for brain signal 

classification. Journal of Neuroscience Methods, 312, 43–52. 

https://doi.org/10.1016/j.jneumeth.2018.11.014 

Albera, L., Kachenoura, A., Comon, P., Karfoul, A., Wendling, F., Senhadji, L., & 

Merlet, I. (2012). ICA-Based EEG denoising: a comparative analysis of fifteen 

methods. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(3), 

407–418. https://doi.org/10.2478/v10175-012-0052-3 

Al-Fahoum, A. S., & Al-Fraihat, A. A. (2014). Methods of EEG Signal Features 

Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. 

ISRN Neuroscience, 2014, 1–7. https://doi.org/10.1155/2014/730218 

Ali, H., Ahmed, S., Al-Naffouri, T. Y., & Alouini, S. (2014). Reduction of snapshots 

for MIMO radar detection by block/group orthogonal matching pursuit. 2014 

International Radar Conference, 1–4. 

https://doi.org/10.1109/RADAR.2014.7060279 

Alickovic, E., & Subasi, A. (2018). Ensemble SVM Method for Automatic Sleep 

Stage Classification. IEEE Transactions on Instrumentation and Measurement, 

67(6), 1258–1265. https://doi.org/10.1109/TIM.2018.2799059 

Al-Jumeily, D., Iram, S., Vialatte, F.-B., Fergus, P., & Hussain, A. (2015). A Novel 

Method of Early Diagnosis of Alzheimer’s Disease Based on EEG Signals. The 

Scientific World Journal, 2015, 1–11. https://doi.org/10.1155/2015/931387 

Allen, D. P., & MacKinnon, C. D. (2010). Time–frequency analysis of movement-

related spectral power in EEG during repetitive movements: A comparison of 



References. 
 

123 

methods. Journal of Neuroscience Methods, 186(1), 107–115. 

https://doi.org/10.1016/j.jneumeth.2009.10.022 

Angelov, P. P., & Gu, X. (2018). Deep rule-based classifier with human-level 

performance and characteristics. Information Sciences, 463–464, 196–213. 

https://doi.org/10.1016/j.ins.2018.06.048 

Antony, J. W., & Paller, K. A. (2017). Using oscillating sounds to manipulate sleep 

spindles. Sleep, 40(3). https://doi.org/10.1093/sleep/zsw068 

Antony, J. W., Piloto, L., Wang, M., Pacheco, P., Norman, K. A., & Paller, K. A. 

(2018). Sleep Spindle Refractoriness Segregates Periods of Memory 

Reactivation. Current Biology, 28(11), 1736-1743.e4. 

https://doi.org/10.1016/j.cub.2018.04.020 

Armitage, R. (1995). The Distribution of EEG Frequencies in REM and NREM Sleep 

Stages in Healthy Young Adults. Sleep, 18(5), 334–341. 

https://doi.org/10.1093/sleep/18.5.334 

Babadi, B., & Brown, E. N. (2014). A review of multitaper spectral analysis. In IEEE 

Transactions on Biomedical Engineering (Vol. 61, Issue 5, pp. 1555–1564). 

IEEE Computer Society. https://doi.org/10.1109/TBME.2014.2311996 

Bagur, S., Lacroix, M. M., de Lavilléon, G., Lefort, J. M., Geoffroy, H., & 

Benchenane, K. (2018). Harnessing olfactory bulb oscillations to perform fully 

brain-based sleep-scoring and real-time monitoring of anaesthesia depth. PLOS 

Biology, 16(11), e2005458. https://doi.org/10.1371/journal.pbio.2005458 

Bandarabadi, M., Herrera, C. G., Gent, T. C., Bassetti, C., Schindler, K., & 

Adamantidis, A. R. (2020). A role for spindles in the onset of rapid eye 

movement sleep. Nature Communications, 11(1). 

https://doi.org/10.1038/s41467-020-19076-2 

Baranowski, M., & Jabkowski, P. (2023). Gender and socioeconomic patterning of 

self-reported sleep problems across European countries. European Journal of 

Public Health, 33(2), 242–248. https://doi.org/10.1093/eurpub/ckad012 

Baranwal, N., Yu, P. K., & Siegel, N. S. (2023). Sleep physiology, pathophysiology, 

and sleep hygiene. Progress in Cardiovascular Diseases, 77, 59–69. 

https://doi.org/10.1016/j.pcad.2023.02.005 

Barlow, J. S. (1984). EMG artifact minimization during clinical EEG recordings by 

special analog filtering. Electroencephalography and Clinical Neurophysiology, 

58(2), 161–174. https://doi.org/10.1016/0013-4694(84)90030-0 



References. 
 

124 

Bazil, C. W., & Walczak, T. S. (1997). Effects of Sleep and Sleep Stage on Epileptic 

and Nonepileptic Seizures. Epilepsia, 38(1), 56–62. 

https://doi.org/10.1111/j.1528-1157.1997.tb01077.x 

Bénar, C. G., Papadopoulo, T., Torrésani, B., & Clerc, M. (2009). Consensus 

Matching Pursuit for multi-trial EEG signals. Journal of Neuroscience Methods, 

180(1), 161–170. https://doi.org/10.1016/j.jneumeth.2009.03.005 

Berry, R. B. (2012). Fundamentals of Sleep Medicine: Expert Consult - Online and 

Print (2nd ed.). ELSEVIER Saunders. 

Berry, R. B., Brooks, R., Gamaldo, C., Harding, S. M., Lloyd, R. M., Quan, S. F., 

Troester, M. T., & Vaughn, B. V. (2017). AASM Scoring Manual Updates for 

2017 (Version 2.4). Journal of Clinical Sleep Medicine, 13(05), 665–666. 

https://doi.org/10.5664/jcsm.6576 

Berry, R. B., & Wagner, M. H. (2015). Sleep Medicine Pearls (3rd ed., Vol. 1). 

Elsevier/Saunders. 

Biau, G., & Scornet, E. (2016). A random forest guided tour. TEST, 25(2), 197–227. 

https://doi.org/10.1007/s11749-016-0481-7 

Boashash, Boualem. (2015). Time-frequency signal analysis and processing: a 

comprehensive reference. Academic press. 

Boostani, R., Karimzadeh, F., & Nami, M. (2017). A comparative review on sleep 

stage classification methods in patients and healthy individuals. Computer 

Methods and Programs in Biomedicine, 140, 77–91. 

https://doi.org/10.1016/j.cmpb.2016.12.004 

Brice, C., & Smith, A. (2002). Effects of caffeine on mood and performance: a study 

of realistic consumption. Psychopharmacology, 164(2), 188–192. 

https://doi.org/10.1007/s00213-002-1175-2 

Brunner, D., Vasko, R., Detks, C., Monahan, J., Reynolds III, C., & Kupfer, D. 

(1996). Muscle artifacts in the sleep EEG: Automated detection and effect on all‐

night EEG power spectra. Journal of Sleep Research, 5(3), 155–164. 

https://doi.org/10.1046/j.1365-2869.1996.00009.x 

Buysse, D. J., Cheng, Y., Germain, A., Moul, D. E., Franzen, P. L., Fletcher, M., & 

Monk, T. H. (2010). Night-to-night sleep variability in older adults with and 

without chronic insomnia. Sleep Medicine, 11(1), 56–64. 

https://doi.org/10.1016/j.sleep.2009.02.010 



References. 
 

125 

Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and 

neuroimaging studies. Psychological Bulletin, 132(2), 180–211. 

https://doi.org/10.1037/0033-2909.132.2.180 

Canal, M. R. (2010). Comparison of Wavelet and Short Time Fourier Transform 

Methods in the Analysis of EMG Signals. Journal of Medical Systems, 34(1), 

91–94. https://doi.org/10.1007/s10916-008-9219-8 

Caporro, M., Haneef, Z., Yeh, H. J., Lenartowicz, A., Buttinelli, C., Parvizi, J., & 

Stern, J. M. (2012). Functional MRI of sleep spindles and K-complexes. Clinical 

Neurophysiology, 123(2), 303–309. https://doi.org/10.1016/j.clinph.2011.06.018 

Caspary, O., Caspary, O., Nus, P., & Devillard, F. (1996). Spectral analysis methods 

applied to Sleep Spindles Smart Building View project Signal Processing View 

project Spectral analysis methods applied to Sleep Spindles. 

https://www.researchgate.net/publication/305558582 

Casson, A. J., & Rodriguez-Villegas, E. (2011). A 60 pW g$_{m}$C Continuous 

Wavelet Transform Circuit for Portable EEG Systems. IEEE Journal of Solid-

State Circuits, 46(6), 1406–1415. https://doi.org/10.1109/JSSC.2011.2125010 

Castagna, J. P., & Sun, S. (2006). Comparison of spectral decomposition methods. 

First Break, 24(3). https://doi.org/10.3997/1365-2397.24.1093.26885 

Chaovalit, P., Gangopadhyay, A., Karabatis, G., & Chen, Z. (2011). Discrete wavelet 

transform-based time series analysis and mining. ACM Computing Surveys, 

43(2), 1–37. https://doi.org/10.1145/1883612.1883613 

Chediak, A., Esparis, B., Isaacson, R., Cruz, L. D. la, Jos&eacute, Ramirez, 

Rodriguez, J. F., & Abreu, A. (2006). How Many Polysomnograms Must Sleep 

Fellows Score Before Becoming Proficient at Scoring Sleep? Journal of Clinical 

Sleep Medicine, 02(04), 427–430. https://doi.org/10.5664/jcsm.26659 

Chen, S., Luo, C., Wang, H., Deng, B., & Qin, Y. (2018). Matched Filtering and 

Orthogonal Matching Pursuit for Terahertz Coded-Aperture Imaging. 2018 5th 

International Conference on Information, Cybernetics, and Computational 

Social Systems (ICCSS), 102–104. https://doi.org/10.1109/ICCSS.2018.8572441 

Chen, X., Peng, H., Yu, F., & Wang, K. (2017). Independent Vector Analysis Applied 

to Remove Muscle Artifacts in EEG Data. IEEE Transactions on 

Instrumentation and Measurement, 66(7), 1770–1779. 

https://doi.org/10.1109/TIM.2016.2608479 



References. 
 

126 

Chen, X., Xu, X., Liu, A., Lee, S., Chen, X., Zhang, X., McKeown, M. J., & Wang, Z. 

J. (2019). Removal of Muscle Artifacts From the EEG: A Review and 

Recommendations. IEEE Sensors Journal, 19(14), 5353–5368. 

https://doi.org/10.1109/JSEN.2019.2906572 

Chiu, C.-C., Hai, B. H., Yeh, S.-J., & Liao, K. Y.-K. (2014). Recovering EEG signals: 

muscle artifact suppression using wavelet-enhanced, independent component 

analysis integrated with adaptive filter. Biomedical Engineering: Applications, 

Basis and Communications, 26(05), 1450063. 

https://doi.org/10.4015/S101623721450063X 

Choi, H.-I., & Williams, W. J. (1989). Improved time-frequency representation of 

multicomponent signals using exponential kernels. IEEE Transactions on 

Acoustics, Speech, and Signal Processing, 37(6), 862–871. 

https://doi.org/10.1109/ASSP.1989.28057 

Chokroverty, S., & Thomas, R. J. (Professor of medicine). (2014). Atlas of sleep 

medicine (Vol. 1). 

Claasen TA, & Mecklenbräuker W. (1980). Time-frequency signal analysis. Philips 

Journal of Research , 35(6), 372–389. 

Clawson, B. C., Durkin, J., & Aton, S. J. (2016). Form and function of sleep spindles 

across the lifespan. In Neural Plasticity (Vol. 2016). Hindawi Publishing 

Corporation. https://doi.org/10.1155/2016/6936381 

Cohen, L. (1989). Time-frequency distributions-a review. Proceedings of the IEEE, 

77(7), 941–981. https://doi.org/10.1109/5.30749 

Cohen, M. X. (2014). Analyzing Neural Time Series Data. The MIT Press. 

https://doi.org/10.7551/mitpress/9609.001.0001 

Cox, R., Schapiro, A. C., Manoach, D. S., & Stickgold, R. (2017). Individual 

differences in frequency and topography of slow and fast sleep spindles. 

Frontiers in Human Neuroscience, 11. 

https://doi.org/10.3389/fnhum.2017.00433 

Criswell, Eleanor., & Cram, J. R. (2011). Cram’s introduction to surface 

electromyography (Eleanor Criswell, Ed.; 2nd ed., Vol. 2). Jones and Bartlett. 

Dagher, I. (2008). Quadratic kernel-free non-linear support vector machine. Journal 

of Global Optimization, 41(1), 15–30. https://doi.org/10.1007/s10898-007-9162-

0 



References. 
 

127 

Daly, I., Pichiorri, F., Faller, J., Kaiser, V., Kreilinger, A., Scherer, R., & Muller-Putz, 

G. (2012). What does clean EEG look like? 2012 Annual International 

Conference of the IEEE Engineering in Medicine and Biology Society, 3963–

3966. https://doi.org/10.1109/EMBC.2012.6346834 

Danker-Hopfe, H., Kunz, D., Gruber, G., Klösch, G., Lorenzo, J. L., Himanen, S. L., 

Kemp, B., Penzel, T., Röschke, J., Dorn, H., Schlögl, A., Trenker, E., & 

Dorffner, G. (2004). Interrater reliability between scorers from eight European 

sleep laboratories in subjects with different sleep disorders. Journal of Sleep 

Research, 13(1), 63–69. https://doi.org/10.1046/j.1365-2869.2003.00375.x 

Danker-Hopfer, H., ANDERER, P., ZEITLHOFER, J., BOECK, M., DORN, H., 

GRUBER, G., HELLER, E., LORETZ, E., MOSER, D., PARAPATICS, S., 

SALETU, B., SCHMIDT, A., & DORFFNER, G. (2009). Interrater reliability 

for sleep scoring according to the Rechtschaffen &amp; Kales and the new 

AASM standard. Journal of Sleep Research, 18(1), 74–84. 

https://doi.org/10.1111/j.1365-2869.2008.00700.x 

Das, P., & Babadi, B. (2020). Multitaper spectral analysis of neuronal spiking activity 

driven by latent stationary processes. Signal Processing, 170, 1–6. 

https://doi.org/10.1016/j.sigpro.2019.107429 

Debnath, L. (2001). Wavelet transforms and time-frequency signal analysis. Springer 

Science & Business Media. 

Dement, W., & Kleitman, N. (1957). Cyclic variations in EEG during sleep and their 

relation to eye movements, body motility, and dreaming. 

Electroencephalography and Clinical Neurophysiology, 9(4), 673–690. 

https://doi.org/10.1016/0013-4694(57)90088-3 

Dequidt, P., Seraphim, M., Lechervy, A., Gaez, I. I., Brun, L., & Etard, O. (2023). 

Automatic Sleep Stage Classification on EEG Signals Using Time-Frequency 

Representation (pp. 250–259). https://doi.org/10.1007/978-3-031-34344-5_30 

Dettoni, J. L., Consolim-Colombo, F. M., Drager, L. F., Rubira, M. C., Cavasin de 

Souza, S. B. P., Irigoyen, M. C., Mostarda, C., Borile, S., Krieger, E. M., 

Moreno, H., & Lorenzi-Filho, G. (2012). Cardiovascular effects of partial sleep 

deprivation in healthy volunteers. Journal of Applied Physiology, 113(2), 232–

236. https://doi.org/10.1152/japplphysiol.01604.2011 

Devuyst, S., Dutoit, T., Stenuit, P., & Kerkhofs, M. (2011). Automatic sleep spindles 

detection - Overview and development of a standard proposal assessment 



References. 
 

128 

method. Proceedings of the Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, EMBS, 1713–1716. 

https://doi.org/10.1109/IEMBS.2011.6090491 

Dietz, O., & Nagel, E. (1967). [Clinical appearance of functional stenosis in cattle]. 

Monatshefte Fur Veterinarmedizin, 22(13), 538–544. 

Dimitriou, D., Le Cornu Knight, F., & Milton, P. (2015). The Role of Environmental 

Factors on Sleep Patterns and School Performance in Adolescents. Frontiers in 

Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01717 

Doghramji, K., & Jangro, W. C. (2016). Adverse Effects of Psychotropic Medications 

on Sleep. Psychiatric Clinics of North America, 39(3), 487–502. 

https://doi.org/10.1016/j.psc.2016.04.009 

Durka, P. J., Malinowska, U., Zieleniewska, M., O’Reilly, C., Różański, P. T., & 

Żygierewicz, J. (2015). Spindles in Svarog: framework and software for 

parametrization of EEG transients. Frontiers in Human Neuroscience, 9. 

https://doi.org/10.3389/fnhum.2015.00258 

Durka, P. J., Matysiak, A., Montes, E. M., Sosa, P. V., & Blinowska, K. J. (2005). 

Multichannel matching pursuit and EEG inverse solutions. Journal of 

Neuroscience Methods, 148(1), 49–59. 

https://doi.org/10.1016/j.jneumeth.2005.04.001 

Edinger, J. D., Marsh, G. R., McCall, W. V., Erwin, C. W., & Lininger, A. W. (1991). 

Sleep Variability Across Consecutive Nights of Home Monitoring in Older 

Mixed DIMS Patients. Sleep, 14(1), 5–12. https://doi.org/10.1093/sleep/14.1.13 

Edwards, B., O’Driscoll, D., Ali, A., Jordan, A., Trinder, J., & Malhotra, A. (2010). 

Aging and Sleep: Physiology and Pathophysiology. Seminars in Respiratory and 

Critical Care Medicine, 31(05), 618–633. https://doi.org/10.1055/s-0030-

1265902 

ElMoaqet, H., Eid, M., Ryalat, M., & Penzel, T. (2022). A Deep Transfer Learning 

Framework for Sleep Stage Classification with Single-Channel EEG Signals. 

Sensors, 22(22), 8826. https://doi.org/10.3390/s22228826 

Elobeid, A., Soininen, H., & Alafuzoff, I. (2012). Hyperphosphorylated tau in young 

and middle-aged subjects. Acta Neuropathologica, 123(1), 97–104. 

https://doi.org/10.1007/s00401-011-0906-z 

Emmady, P. D., & Anilkumar, A. C. (2023). EEG Abnormal Waveforms. 



References. 
 

129 

Esposito, S., Laino, D., D’Alonzo, R., Mencarelli, A., Di Genova, L., Fattorusso, A., 

Argentiero, A., & Mencaroni, E. (2019). Pediatric sleep disturbances and 

treatment with melatonin. Journal of Translational Medicine, 17(1), 77. 

https://doi.org/10.1186/s12967-019-1835-1 

Farid, D. Md., Al-Mamun, M. A., Manderick, B., & Nowe, A. (2016). An adaptive 

rule-based classifier for mining big biological data. Expert Systems with 

Applications, 64, 305–316. https://doi.org/10.1016/j.eswa.2016.08.008 

Fatourechi, M., Bashashati, A., Ward, R. K., & Birch, G. E. (2007). EMG and EOG 

artifacts in brain computer interface systems: A survey. Clinical 

Neurophysiology, 118(3), 480–494. https://doi.org/10.1016/j.clinph.2006.10.019 

Feinberg, I., Braun, M., & Shulman, E. (1969). EEG sleep patterns in mental 

retardation. Electroencephalography and Clinical Neurophysiology, 27(2), 128–

141. https://doi.org/10.1016/0013-4694(69)90165-5 

Fernandez Guerrero, A., & Achermann, P. (2019). Brain dynamics during the sleep 

onset transition: An EEG source localization study. Neurobiology of Sleep and 

Circadian Rhythms, 6, 24–34. https://doi.org/10.1016/j.nbscr.2018.11.001 

Fogel, S. M., & Smith, C. T. (2011). The function of the sleep spindle: A 

physiological index of intelligence and a mechanism for sleep-dependent 

memory consolidation. In Neuroscience and Biobehavioral Reviews (Vol. 35, 

Issue 5, pp. 1154–1165). https://doi.org/10.1016/j.neubiorev.2010.12.003 

Frauscher, B., von Ellenrieder, N., Dolezalova, I., Bouhadoun, S., Gotman, J., & 

Peter-Derex, L. (2020). Rapid Eye Movement Sleep Sawtooth Waves Are 

Associated with Widespread Cortical Activations. The Journal of Neuroscience, 

40(46), 8900–8912. https://doi.org/10.1523/JNEUROSCI.1586-20.2020 

Freeman, D., Sheaves, B., Waite, F., Harvey, A. G., & Harrison, P. J. (2020). Sleep 

disturbance and psychiatric disorders. The Lancet Psychiatry, 7(7), 628–637. 

https://doi.org/10.1016/S2215-0366(20)30136-X 

Frohlich, J., Toker, D., & Monti, M. M. (2021). Consciousness among delta waves: a 

paradox? Brain, 144(8), 2257–2277. https://doi.org/10.1093/brain/awab095 

Gerla, V., Bursa, M., Lhotska, L., Paul, K., & Krajca, V. (n.d.). Newborn Sleep Stage 

Classification Using Hybrid Evolutionary Approach. 

www.cs.waikato.ac.nz/ml/weka 



References. 
 

130 

Ghasemzadeh, P., Kalbkhani, H., & Shayesteh, M. G. (2019). Sleep stages 

classification from EEG signal based on Stockwell transform. IET Signal 

Processing, 13(2), 242–252. https://doi.org/10.1049/iet-spr.2018.5032 

Goldberger, A. , A. L. , G. L. , H. J. , I. P. C. , M. R. , & S. H. E. (2000). Components 

of a new research resource for complex physiologic signals. Circulation 

(PhysioBank, PhysioToolkit, and PhysioNet), 101(23), 215–220. 

Goldman, S. E., Stone, K. L., Ancoli-Israel, S., Blackwell, T., Ewing, S. K., 

Boudreau, R., Cauley, J. A., Hall, M., Matthews, K. A., & Newman, A. B. 

(2007a). Poor Sleep is Associated with Poorer Physical Performance and Greater 

Functional Limitations in Older Women. Sleep, 30(10), 1317–1324. 

https://doi.org/10.1093/sleep/30.10.1317 

Goldman, S. E., Stone, K. L., Ancoli-Israel, S., Blackwell, T., Ewing, S. K., 

Boudreau, R., Cauley, J. A., Hall, M., Matthews, K. A., & Newman, A. B. 

(2007b). Poor Sleep is Associated with Poorer Physical Performance and Greater 

Functional Limitations in Older Women. Sleep, 30(10), 1317–1324. 

https://doi.org/10.1093/sleep/30.10.1317 

Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003a). EMG 

contamination of EEG: spectral and topographical characteristics. Clinical 

Neurophysiology, 114(9), 1580–1593. https://doi.org/10.1016/S1388-

2457(03)00093-2 

Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003b). EMG 

contamination of EEG: spectral and topographical characteristics. Clinical 

Neurophysiology, 114(9), 1580–1593. https://doi.org/10.1016/S1388-

2457(03)00093-2 

Gotman, J., Ives, J. R., & Gloor, P. (1981). Frequency content of EEG and EMG at 

seizure onset: Possibility of removal of EMG artefact by digital filtering. 

Electroencephalography and Clinical Neurophysiology, 52(6), 626–639. 

https://doi.org/10.1016/0013-4694(81)91437-1 

Grandner, M. A., & Rosenberger, M. E. (2019). Actigraphic sleep tracking and 

wearables: Historical context, scientific applications and guidelines, limitations, 

and considerations for commercial sleep devices. In Sleep and Health (pp. 147–

157). Elsevier. https://doi.org/10.1016/B978-0-12-815373-4.00012-5 



References. 
 

131 

Gribonval, R. (2001). Fast matching pursuit with a multiscale dictionary of Gaussian 

chirps. IEEE Transactions on Signal Processing, 49(5), 994–1001. 

https://doi.org/10.1109/78.917803 

Grigg-Damberger, M. M. (2012). The AASM Scoring Manual Four Years Later. 

Journal of Clinical Sleep Medicine, 08(03), 323–332. 

https://doi.org/10.5664/jcsm.1928 

Gulia, K. K., & Kumar, V. M. (2018). Sleep disorders in the elderly: a growing 

challenge. Psychogeriatrics, 18(3), 155–165. https://doi.org/10.1111/psyg.12319 

Hale, L., & Guan, S. (2015). Screen time and sleep among school-aged children and 

adolescents: A systematic literature review. Sleep Medicine Reviews, 21, 50–58. 

https://doi.org/10.1016/j.smrv.2014.07.007 

Hamaneh, M. B., Chitravas, N., Kaiboriboon, K., Lhatoo, S. D., & Loparo, K. A. 

(2014). Automated Removal of EKG Artifact From EEG Data Using 

Independent Component Analysis and Continuous Wavelet Transformation. 

IEEE Transactions on Biomedical Engineering, 61(6), 1634–1641. 

https://doi.org/10.1109/TBME.2013.2295173 

Hamida, S. T.-B., & Ahmed, B. (2013). Computer based sleep staging: Challenges for 

the future. 2013 7th IEEE GCC Conference and Exhibition (GCC), 280–285. 

https://doi.org/10.1109/IEEEGCC.2013.6705790 

Haustein, W., Pilcher, J., Klink, J., & Schulz, H. (1986). Automatic analysis 

overcomes limitations of sleep stage scoring. Electroencephalography and 

Clinical Neurophysiology, 64(4), 364–374. https://doi.org/10.1016/0013-

4694(86)90161-6 

Heneghan, C., de Chazal, P., Ryan, S., Chua, C.-P., Doherty, L., Boyle, P., Nolan, P., 

& McNicholas, W. T. (2008). Electrocardiogram Recording as a Screening Tool 

for Sleep Disordered Breathing. Journal of Clinical Sleep Medicine, 04(03), 

223–228. https://doi.org/10.5664/jcsm.27184 

Herrmann, C., & Demiralp, T. (2005). Human EEG gamma oscillations in 

neuropsychiatric disorders. Clinical Neurophysiology, 116(12), 2719–2733. 

https://doi.org/10.1016/j.clinph.2005.07.007 

Himanen, S.-L., & Hasan, J. (2000). Limitations of Rechtschaffen and Kales. Sleep 

Medicine Reviews, 4(2), 149–167. https://doi.org/10.1053/smrv.1999.0086 

Hori, T., Sugita, Y., Koga, E., Shirakawa, S., Inoue, K., Uchida, S., Kuwahara, H., 

Kousaka, M., Kobayashi, T., Tsuji, Y., Terashima, M., Fukuda, K., & Fukuda, 



References. 
 

132 

N. (2001). Proposed supplements and amendments to ‘A Manual of Standardized 

Terminology, Techniques and Scoring System for Sleep Stages of Human 

Subjects’, the Rechtschaffen &amp; Kales (1968) standard. Psychiatry and 

Clinical Neurosciences, 55(3), 305–310. https://doi.org/10.1046/j.1440-

1819.2001.00810.x 

Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. (2019). Squeeze-and-Excitation 

Networks. Journal Version of the CVPR , V1, 1–13. 

http://arxiv.org/abs/1709.01507 

Huang, Y., Wen, P., Song, B., & Li, Y. (2022). Real-Time Depth of Anaesthesia 

Assessment Based on Hybrid Statistical Features of EEG. Sensors, 22(16), 6099. 

https://doi.org/10.3390/s22166099 

Huang, Z., Ng, T., Liu, L., Mason, H., Zhuang, X., & Liu, D. (2020). SNDCNN: Self-

Normalizing Deep CNNs with Scaled Exponential Linear Units for Speech 

Recognition. ICASSP 2020 - 2020 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 6854–6858. 

https://doi.org/10.1109/ICASSP40776.2020.9053973 

Hussain, J., Ling, L., Alonzo, R. T., Rodrigues, R., Nicholson, K., Stranges, S., & 

Anderson, K. K. (2022). Associations between sleep patterns, smoking, and 

alcohol use among older adults in Canada: Insights from the Canadian 

Longitudinal Study on Aging (CLSA). Addictive Behaviors, 132, 107345. 

https://doi.org/10.1016/j.addbeh.2022.107345 

Huyett, P., & Bhattacharyya, N. (2021). Incremental health care utilization and 

expenditures for sleep disorders in the United States. Journal of Clinical Sleep 

Medicine, 17(10), 1981–1986. https://doi.org/10.5664/jcsm.9392 

Hyvärinen, A., Ramkumar, P., Parkkonen, L., & Hari, R. (2010). Independent 

component analysis of short-time Fourier transforms for spontaneous EEG/MEG 

analysis. NeuroImage, 49(1), 257–271. 

https://doi.org/10.1016/j.neuroimage.2009.08.028 

Institute of Medicine (US), & Committee on Sleep Medicine and Research. (2006). 

Sleep Disorders and Sleep Deprivation. National Academies Press. 

https://doi.org/10.17226/11617 

Ioannides, A. A., Liu, L., & Kostopoulos, G. K. (2019). The emergence of spindles 

and K-complexes and the role of the dorsal caudal part of the anterior cingulate 



References. 
 

133 

as the generator of K-complexes. Frontiers in Neuroscience, 13(JUL). 

https://doi.org/10.3389/fnins.2019.00814 

Ioffe, S., & Szegedy, C. (n.d.-a). Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift. 

Ioffe, S., & Szegedy, C. (n.d.-b). Batch Normalization: Accelerating Deep Network 

Training by Reducing Internal Covariate Shift. 

Jeyaseelan, A. S., & Balaji, R. (2015). Spectral analysis of wave elevation time 

histories using multi-taper method. Ocean Engineering, 105, 242–246. 

https://doi.org/10.1016/j.oceaneng.2015.06.051 

Ji, X., Li, Y., & Wen, P. (2022). Jumping Knowledge Based Spatial-Temporal Graph 

Convolutional Networks for Automatic Sleep Stage Classification. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 30, 1464–1472. 

https://doi.org/10.1109/TNSRE.2022.3176004 

Jiang, Y., Wang, B., Huang, Z., Ji, H., Li, H., & Li, X. (2017). A Model-Based 

Transit-Time Ultrasonic Gas Flowrate Measurement Method. IEEE Transactions 

on Instrumentation and Measurement, 66(5), 879–887. 

https://doi.org/10.1109/TIM.2016.2627247 

Jian-Zhong Xue, Hui Zhang, Chong-Xun Zheng, & Xiang-Guo Yan. (n.d.). Wavelet 

packet transform for feature extraction of EEG during mental tasks. Proceedings 

of the 2003 International Conference on Machine Learning and Cybernetics 

(IEEE Cat. No.03EX693), 360–363. 

https://doi.org/10.1109/ICMLC.2003.1264502 

Jobert, M., Wilson, F. J., Roth, T., Ruigt, G. S. F., Anderer, P., & Drinkenburg, W. H. 

I. M. (2013). Guidelines for the Recording and Evaluation of Pharmaco-Sleep 

Studies in Man: The International Pharmaco-EEG Society (IPEG). 

Neuropsychobiology, 67(3), 127–167. https://doi.org/10.1159/000343449 

Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., Mckeown, M. J., Iragui, V., & 

SEJNOWSKI, T. J. (2000). Removing electroencephalographic artifacts by blind 

source separation. Psychophysiology, 37(2), S0048577200980259. 

https://doi.org/10.1017/S0048577200980259 

Kabir, M. M., Tafreshi, R., Boivin, D. B., & Haddad, N. (2015). Enhanced automated 

sleep spindle detection algorithm based on synchrosqueezing. Medical & 

Biological Engineering & Computing, 53(7), 635–644. 

https://doi.org/10.1007/s11517-015-1265-z 



References. 
 

134 

Kato, T., Yorifuji, T., Yamakawa, M., & Inoue, S. (2018). National data showed that 

delayed sleep in six-year-old children was associated with excessive use of 

electronic devices at 12 years. Acta Paediatrica, 107(8), 1439–1448. 

https://doi.org/10.1111/apa.14255 

Kaulen, L., Schwabedal, J. T. C., Schneider, J., Ritter, P., & Bialonski, S. (2022). 

Advanced sleep spindle identification with neural networks. Scientific Reports, 

12(1), 7686. https://doi.org/10.1038/s41598-022-11210-y 

Kaur, A., & Budhiraja, S. (2014). Wavelet based sparse image recovery via 

Orthogonal Matching Pursuit. 2014 Recent Advances in Engineering and 

Computational Sciences (RAECS), 1–5. 

https://doi.org/10.1109/RAECS.2014.6799549 

Kaur, H., Adar, E., Gilbert, E., & Lampe, C. (2022). Sensible AI: Re-imagining 

Interpretability and Explainability using Sensemaking Theory. 2022 ACM 

Conference on Fairness, Accountability, and Transparency, 702–714. 

https://doi.org/10.1145/3531146.3533135 

Kemp, B., Zwinderman, A. H., Tuk, B., Kamphuisen, H. A. C., & Oberye, J. J. L. 

(2000). Analysis of a sleep-dependent neuronal feedback loop: the slow-wave 

microcontinuity of the EEG. IEEE Transactions on Biomedical Engineering, 

47(9), 1185–1194. https://doi.org/10.1109/10.867928 

Kim, H., & Choi, S. (2018). Automatic Sleep Stage Classification Using EEG and 

EMG Signal. 2018 Tenth International Conference on Ubiquitous and Future 

Networks (ICUFN), 207–212. https://doi.org/10.1109/ICUFN.2018.8436712 

Kim, Y., Kurachi, M., Horita, M., Matsuura, K., & Kamikawa, Y. (1992). Agreement 

in visual scoring of sleep stages among laboratories in Japan. Journal of Sleep 

Research, 1(1), 58–60. https://doi.org/10.1111/j.1365-2869.1992.tb00011.x 

Kinoshita, T., Fujiwara, K., Kano, M., Ogawa, K., Sumi, Y., Matsuo, M., & Kadotani, 

H. (2020). Sleep Spindle Detection using RUSBoost and Synchrosqueezed 

Wavelet Transform. IEEE Transactions on Neural Systems and Rehabilitation 

Engineering. https://doi.org/10.1109/TNSRE.2020.2964597 

Ko, J., & Fox, D. (2009). GP-BayesFilters: Bayesian filtering using Gaussian process 

prediction and observation models. Autonomous Robots, 27(1), 75–90. 

https://doi.org/10.1007/s10514-009-9119-x 



References. 
 

135 

Koupparis, A. M., Kokkinos, V., & Kostopoulos, G. K. (2013). Spindle Power Is Not 

Affected after Spontaneous K-Complexes during Human NREM Sleep. PLoS 

ONE, 8(1). https://doi.org/10.1371/journal.pone.0054343 

Kramer, M. A., Stoyell, S. M., Chinappen, D., Ostrowski, L. M., Spencer, E. R., 

Morgan, A. K., Emerton, B. C., Jing, J., Westover, M. B., Eden, U. T., Stickgold, 

R., Manoach, D. S., & Chu, C. J. (2021). Focal sleep spindle deficits reveal focal 

thalamocortical dysfunction and predict cognitive deficits in sleep activated 

developmental epilepsy. Journal of Neuroscience, 41(8), 1816–1829. 

https://doi.org/10.1523/JNEUROSCI.2009-20.2020 

Kramer, O. (2013). K-Nearest Neighbors (pp. 13–23). https://doi.org/10.1007/978-3-

642-38652-7_2 

Kubek, L. A., Kutz, P., Roll, C., Zernikow, B., & Wager, J. (2022). Applicability of 

Actigraphy for Assessing Sleep Behaviour in Children with Palliative Care 

Needs Benchmarked against the Gold Standard Polysomnography. Journal of 

Clinical Medicine, 11(23), 7107. https://doi.org/10.3390/jcm11237107 

Kumar, S., Narayan, Y., & Amell, T. (2003). Power spectra of sternocleidomastoids, 

splenius capitis, and upper trapezius in oblique exertions. The Spine Journal, 

3(5), 339–350. https://doi.org/10.1016/S1529-9430(03)00077-9 

Kuna, S. T., Benca, R., Kushida, C. A., Walsh, J., Younes, M., Staley, B., Hanlon, A., 

Pack, A. I., Pien, G. W., & Malhotra, A. (2013). Agreement in Computer-

Assisted Manual Scoring of Polysomnograms across Sleep Centers. Sleep, 36(4), 

583–589. https://doi.org/10.5665/sleep.2550 

Kuś, R., Różański, P. T., & Durka, P. J. (2013). Multivariate matching pursuit in 

optimal Gabor dictionaries: theory and software with interface for EEG/MEG via 

Svarog. BioMedical Engineering OnLine, 12(1), 94. 

https://doi.org/10.1186/1475-925X-12-94 

Kushida, C. A., Littner, M. R., Morgenthaler, T., Alessi, C. A., Bailey, D., Coleman, 

J., Friedman, L., Hirshkowitz, M., Kapen, S., Kramer, M., Lee-Chiong, T., 

Loube, D. L., Owens, J., Pancer, J. P., & Wise, M. (2005). Practice Parameters 

for the Indications for Polysomnography and Related Procedures: An Update for 

2005. Sleep, 28(4), 499–523. https://doi.org/10.1093/sleep/28.4.499 

Lafortune, M., Gagnon, J. F., Martin, N., Latreille, V., Dubé, J., Bouchard, M., 

Bastien, C., & Carrier, J. (2014). Sleep spindles and rapid eye movement sleep as 

predictors of next morning cognitive performance in healthy middle-aged and 



References. 
 

136 

older participants. Journal of Sleep Research, 23(2), 159–167. 

https://doi.org/10.1111/jsr.12108 

Lafta, R., Zhang, J., Tao, X., Li, Y., Abbas, W., Luo, Y., Chen, F., & Tseng, V. S. 

(2017). A Fast Fourier Transform-Coupled Machine Learning-Based Ensemble 

Model for Disease Risk Prediction Using a Real-Life Dataset (pp. 654–670). 

https://doi.org/10.1007/978-3-319-57454-7_51 

Lajnef, T., Chaibi, S., Ruby, P., Aguera, P.-E., Eichenlaub, J.-B., Samet, M., 

Kachouri, A., & Jerbi, K. (2015). Learning machines and sleeping brains: 

Automatic sleep stage classification using decision-tree multi-class support 

vector machines. Journal of Neuroscience Methods, 250, 94–105. 

https://doi.org/10.1016/j.jneumeth.2015.01.022 

Lam, R. W. (2006). Sleep disturbances and depression: a challenge for 

antidepressants. International Clinical Psychopharmacology, 21(Supplement 1), 

S25–S29. https://doi.org/10.1097/01.yic.0000195658.91524.61 

Längkvist, M., Karlsson, L., & Loutfi, A. (2012). Sleep Stage Classification Using 

Unsupervised Feature Learning. Advances in Artificial Neural Systems, 2012, 1–

9. https://doi.org/10.1155/2012/107046 

Lavie, P. (2008). Who was the first to use the term Pickwickian in connection with 

sleepy patients? History of sleep apnoea syndrome. Sleep Medicine Reviews, 

12(1), 5–17. https://doi.org/10.1016/j.smrv.2007.07.008 

Lee, Y. J., Lee, J. Y., Cho, J. H., & Choi, J. H. (2022). Interrater reliability of sleep 

stage scoring: a meta-analysis. Journal of Clinical Sleep Medicine, 18(1), 193–

202. https://doi.org/10.5664/jcsm.9538 

Lewandowski, A. S., Ward, T. M., & Palermo, T. M. (2011). Sleep Problems in 

Children and Adolescents with Common Medical Conditions. Pediatric Clinics 

of North America, 58(3), 699–713. https://doi.org/10.1016/j.pcl.2011.03.012 

Li, C., Qi, Y., Ding, X., Zhao, J., Sang, T., & Lee, M. (2022). A Deep Learning 

Method Approach for Sleep Stage Classification with EEG Spectrogram. 

International Journal of Environmental Research and Public Health, 19(10), 

6322. https://doi.org/10.3390/ijerph19106322 

Li, X., Zhou, T., Ma, H., Huang, T., Gao, X., Manson, J. E., & Qi, L. (2021). Healthy 

Sleep Patterns and Risk of Incident Arrhythmias. Journal of the American 

College of Cardiology, 78(12), 1197–1207. 

https://doi.org/10.1016/j.jacc.2021.07.023 



References. 
 

137 

Liguori, C., Toledo, M., & Kothare, S. (2021). Effects of anti-seizure medications on 

sleep architecture and daytime sleepiness in patients with epilepsy: A literature 

review. Sleep Medicine Reviews, 60, 101559. 

https://doi.org/10.1016/j.smrv.2021.101559 

Limoges, É., Mottron, L., Bolduc, C., Berthiaume, C., & Godbout, R. (2005). 

Atypical sleep architecture and the autism phenotype. Brain, 128(5), 1049–1061. 

https://doi.org/10.1093/brain/awh425 

Lin, L., Hedayat, A. S., Sinha, B., & Yang, M. (2002). Statistical Methods in 

Assessing Agreement. Journal of the American Statistical Association, 97(457), 

257–270. https://doi.org/10.1198/016214502753479392 

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A 

Review of Machine Learning Interpretability Methods. Entropy, 23(1), 18. 

https://doi.org/10.3390/e23010018 

Lindberg, C. R., & Park, J. (1987). Multiple-taper spectral analysis of terrestrial free 

oscillations: part II. Geophysical Journal International, 91(3), 795–836. 

https://doi.org/10.1111/j.1365-246X.1987.tb01669.x 

Liu, B., Ma, Y., & Wong, C. K. (2000). Improving an Association Rule Based 

Classifier (pp. 504–509). https://doi.org/10.1007/3-540-45372-5_58 

Liu, S., & Deng, W. (2015). Very deep convolutional neural network based image 

classification using small training sample size. 2015 3rd IAPR Asian Conference 

on Pattern Recognition (ACPR), 730–734. 

https://doi.org/10.1109/ACPR.2015.7486599 

Liu, W., Cao, S., & Chen, Y. (2016). Seismic Time–Frequency Analysis via 

Empirical Wavelet Transform. IEEE Geoscience and Remote Sensing Letters, 

13(1), 28–32. https://doi.org/10.1109/LGRS.2015.2493198 

Liu, Y., Wheaton, A. G., Chapman, D. P., Cunningham, T. J., Lu, H., & Croft, J. B. 

(2016). Prevalence of Healthy Sleep Duration among Adults — United States, 

2014. MMWR. Morbidity and Mortality Weekly Report, 65(6), 137–141. 

https://doi.org/10.15585/mmwr.mm6506a1 

Loomis AL, Harvey EN, & Hobart G. (1935). Potential Rhythms of the Cerebral 

Cortex during Sleep. Science, 597–605. 

Loredo, J. S., Clausen, J. L., Ancoli-Israel, S., & Dimsdale, J. E. (1999). Night-to-

Night Arousal Variability and Interscorer Reliability of Arousal Measurements. 

Sleep, 22(7), 916–920. https://doi.org/10.1093/sleep/22.7.916 



References. 
 

138 

Loza, C. A., & Principe, J. C. (2016). Transient model of EEG using Gini Index-based 

matching pursuit. 2016 IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), 724–728. 

https://doi.org/10.1109/ICASSP.2016.7471770 

Magalang, U. J., Chen, N.-H., Cistulli, P. A., Fedson, A. C., Gíslason, T., Hillman, 

D., Penzel, T., Tamisier, R., Tufik, S., Phillips, G., & Pack, A. I. (2013). 

Agreement in the Scoring of Respiratory Events and Sleep Among International 

Sleep Centers. Sleep, 36(4), 591–596. https://doi.org/10.5665/sleep.2552 

Malhotra, R. K., & Avidan, A. Y. (2014). Sleep Stages and Scoring Technique. In 

Atlas of Sleep Medicine (pp. 77–99). Elsevier. https://doi.org/10.1016/b978-1-

4557-1267-0.00003-5 

Malinowska, U., Klekowicz, H., Wakarow, A., Niemcewicz, S., & Durka, P. J. 

(2009). Fully parametric sleep staging compatible with the classical criteria. 

Neuroinformatics, 7(4), 245–253. https://doi.org/10.1007/s12021-009-9059-9 

Mallat, S. G., & Zhifeng Zhang. (1993). Matching pursuits with time-frequency 

dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415. 

https://doi.org/10.1109/78.258082 

Mayeli, A., Janssen, S. A., Sharma, K., & Ferrarelli, F. (2022). Examining First Night 

Effect on Sleep Parameters with hd-EEG in Healthy Individuals. Brain Sciences, 

12(2), 233. https://doi.org/10.3390/brainsci12020233 

McMenamin, B. W., Shackman, A. J., Greischar, L. L., & Davidson, R. J. (2011). 

Electromyogenic artifacts and electroencephalographic inferences revisited. 

NeuroImage, 54(1), 4–9. https://doi.org/10.1016/j.neuroimage.2010.07.057 

Mei, N., Grossberg, M. D., Ng, K., Navarro, K. T., & Ellmore, T. M. (2017). 

Identifying sleep spindles with multichannel EEG and classification 

optimization. Computers in Biology and Medicine, 89, 441–453. 

https://doi.org/10.1016/j.compbiomed.2017.08.030 

Mei, Y., Jin, H., Yu, B., Wu, E., & Yang, K. (2021). Visual geometry Group-UNet: 

Deep learning ultrasonic image reconstruction for curved parts. The Journal of 

the Acoustical Society of America, 149(5), 2997–3009. 

https://doi.org/10.1121/10.0004827 

Mert, A., & Akan, A. (2018). Emotion recognition based on time–frequency 

distribution of EEG signals using multivariate synchrosqueezing transform. 



References. 
 

139 

Digital Signal Processing, 81, 106–115. 

https://doi.org/10.1016/j.dsp.2018.07.003 

Minecan, D., Natarajan, A., Marzec, M., & Malow, B. (2002). Relationship of 

Epileptic Seizures to Sleep Stage and Sleep Depth. Sleep, 25(8), 56–61. 

https://doi.org/10.1093/sleep/25.8.56 

Mishra, P., & Singla, S. K. (2013). Artifact Removal from Biosignal using Fixed 

Point ICA Algorithm for Pre-processing in Biometric Recognition. Measurement 

Science Review, 13(1). https://doi.org/10.2478/msr-2013-0001 

Miwakeichi, F., Martı́nez-Montes, E., Valdés-Sosa, P. A., Nishiyama, N., Mizuhara, 

H., & Yamaguchi, Y. (2004). Decomposing EEG data into space–time–

frequency components using Parallel Factor Analysis. NeuroImage, 22(3), 1035–

1045. https://doi.org/10.1016/j.neuroimage.2004.03.039 

Moser, D., Anderer, P., Gruber, G., Parapatics, S., Loretz, E., Boeck, M., Kloesch, G., 

Heller, E., Schmidt, A., Danker-Hopfe, H., Saletu, B., Zeitlhofer, J., & Dorffner, 

G. (2009). Sleep Classification According to AASM and Rechtschaffen &amp; 

Kales: Effects on Sleep Scoring Parameters. Sleep, 32(2), 139–149. 

https://doi.org/10.1093/sleep/32.2.139 

Mourad, N., Sharkas, M., & Elsherbeny, M. M. (2016). Orthogonal Matching Pursuit 

with correction. 2016 IEEE 12th International Colloquium on Signal Processing 

& Its Applications (CSPA), 247–252. 

https://doi.org/10.1109/CSPA.2016.7515840 

Mulyadi, M., Tonapa, S. I., Luneto, S., Lin, W.-T., & Lee, B.-O. (2021). Prevalence 

of mental health problems and sleep disturbances in nursing students during the 

COVID-19 pandemic: A systematic review and meta-analysis. Nurse Education 

in Practice, 57, 103228. https://doi.org/10.1016/j.nepr.2021.103228 

Murmu, G., & Bhattacharya, S. (2011). A comparative study of different wavelets 

used in transformed domain LMS filter. 2011 Annual IEEE India Conference, 1–

4. https://doi.org/10.1109/INDCON.2011.6139489 

Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts 

in MEG/EEG: a review and recommendations. Frontiers in Human 

Neuroscience, 7. https://doi.org/10.3389/fnhum.2013.00138 

Nefedov, A., Ye, J., Kulikowski, C., Muchnik, I., & Morgan, K. (2009). Comparative 

Analysis of Support Vector Machines Based on Linear and Quadratic 



References. 
 

140 

Optimization Criteria. 2009 International Conference on Machine Learning and 

Applications, 288–293. https://doi.org/10.1109/ICMLA.2009.52 

Nir, Y., Staba, R. J., Andrillon, T., Vyazovskiy, V. V., Cirelli, C., Fried, I., & Tononi, 

G. (2011). Regional Slow Waves and Spindles in Human Sleep. Neuron, 70(1), 

153–169. https://doi.org/10.1016/j.neuron.2011.02.043 

Norman, R. G., Pal, I., Stewart, C., Walsleben, J. A., & Rapoport, D. M. (2000). 

Interobserver agreement among sleep scorers from different centers in a large 

dataset. Sleep, 23(7), 901—908. http://europepmc.org/abstract/MED/11083599 

Novelli, L., Ferri, R., & Bruni, O. (2010). Sleep classification according to AASM 

and Rechtschaffen and Kales: effects on sleep scoring parameters of children and 

adolescents. Journal of Sleep Research, 19(1p2), 238–247. 

https://doi.org/10.1111/j.1365-2869.2009.00785.x 

O’Callaghan, F., Muurlink, O., & Reid, N. (2018). Effects of caffeine on sleep quality 

and daytime functioning. Risk Management and Healthcare Policy, Volume 11, 

263–271. https://doi.org/10.2147/RMHP.S156404 

O’Donnell, R. D., Berkhout, J., & Adey, W. R. (1974). Contamination of scalp EEG 

spectrum during contraction of cranio-facial muscles. Electroencephalography 

and Clinical Neurophysiology, 37(2), 145–151. https://doi.org/10.1016/0013-

4694(74)90005-4 

Onton, J. A., Kang, D. Y., & Coleman, T. P. (2016). Visualization of whole-night 

sleep EEG from 2-channel mobile recording device reveals distinct deep sleep 

stages with differential electrodermal activity. Frontiers in Human Neuroscience, 

10(NOV2016). https://doi.org/10.3389/fnhum.2016.00605 

O’Reilly, C., Gosselin, N., Carrier, J., & Nielsen, T. (2014). Montreal archive of sleep 

studies: An open-access resource for instrument benchmarking and exploratory 

research. Journal of Sleep Research, 23(6), 628–635. 

https://doi.org/10.1111/jsr.12169 

Oviedo, F., Ferres, J. L., Buonassisi, T., & Butler, K. T. (2022). Interpretable and 

Explainable Machine Learning for Materials Science and Chemistry. Accounts of 

Materials Research, 3(6), 597–607. https://doi.org/10.1021/accountsmr.1c00244 

Oweis, R. J., & Abdulhay, E. W. (2011). Seizure classification in EEG signals 

utilizing Hilbert-Huang transform. BioMedical Engineering OnLine, 10(1), 38. 

https://doi.org/10.1186/1475-925X-10-38 



References. 
 

141 

Ozel, P., Akan, A., & Yilmaz, B. (2019). Synchrosqueezing transform based feature 

extraction from EEG signals for emotional state prediction. Biomedical Signal 

Processing and Control, 52, 152–161. 

https://doi.org/10.1016/j.bspc.2019.04.023 

Park, J., Lindberg, C. R., & Thomson, D. J. (1987). Multiple-taper spectral analysis of 

terrestrial free oscillations: part I. Geophysical Journal International, 91(3), 

755–794. https://doi.org/10.1111/j.1365-246X.1987.tb01668.x 

Park, J., Lindberg, C. R., & Vernon, F. L. (1987). Multitaper spectral analysis of high-

frequency seismograms. Journal of Geophysical Research, 92(B12), 12675. 

https://doi.org/10.1029/JB092iB12p12675 

Parrino, L., Ferri, R., Zucconi, M., & Fanfulla, F. (2009). Commentary from the 

Italian Association of Sleep Medicine on the AASM manual for the scoring of 

sleep and associated events: For debate and discussion. Sleep Medicine, 10(7), 

799–808. https://doi.org/10.1016/j.sleep.2009.05.009 

Patel, A. K., Reddy, V., Shumway, K. R., & Araujo, J. F. (2023). Physiology, Sleep 

Stages. 

Patti, C. R., Penzel, T., & Cvetkovic, D. (2018). Sleep spindle detection using 

multivariate Gaussian mixture models. Journal of Sleep Research, 27(4). 

https://doi.org/10.1111/jsr.12614 

Perslev, M., Jensen, M. H., Darkner, S., Jennum, P. J., & Igel, C. (n.d.). U-Time: A 

Fully Convolutional Network for Time Series Segmentation Applied to Sleep 

Staging. 

Pevernagie, D., STANLEY, N., BERG, S., KRIEGER, J., AMICI, R., BASSETTI, C., 

BILLIARD, M., CIRIGNOTTA, F., GARCIA-BORREGUERO, D., TOBLER, 

I., & FISCHER, J. (2009). European guidelines for the certification of 

professionals in sleep medicine: report of the task force of the European Sleep 

Research Society. Journal of Sleep Research, 18(1), 136–141. 

https://doi.org/10.1111/j.1365-2869.2008.00721.x 

Phillips, B. A., Collop, N. A., Drake, C., Consens, F., Vgontzas, A. N., & Weaver, T. 

E. (2008). Sleep Disorders and Medical Conditions in Women. Journal of 

Women’s Health, 17(7), 1191–1199. https://doi.org/10.1089/jwh.2007.0561 

Podvezko, V. (2007). Determining the level of agreement of expert estimates. 

International Journal of Management and Decision Making, 8(5/6), 586. 

https://doi.org/10.1504/IJMDM.2007.013420 



References. 
 

142 

Prerau, M. J., Brown, R. E., Bianchi, M. T., Ellenbogen, J. M., & Purdon, P. L. 

(2017). Sleep neurophysiological dynamics through the lens of multitaper 

spectral analysis. In Physiology (Vol. 32, Issue 1, pp. 60–92). American 

Physiological Society. https://doi.org/10.1152/physiol.00062.2015 

Qiang, H., Yang, R., & Zhang, G. D. (2011). Wavelet-Based Filtering Method for 

Sleep EEG Signal. Applied Mechanics and Materials, 130–134, 2160–2165. 

https://doi.org/10.4028/www.scientific.net/AMM.130-134.2160 

Raja, J., Shanmugam, P., & Pitchai, R. (2021). An Automated Early Detection of 

Glaucoma using Support Vector Machine Based Visual Geometry Group 19 

(VGG-19) Convolutional Neural Network. Wireless Personal Communications, 

118(1), 523–534. https://doi.org/10.1007/s11277-020-08029-z 

Rajbhandari, E., Alsadoon, A., Prasad, P. W. C., Seher, I., Nguyen, T. Q. V., & Pham, 

D. T. H. (2021). A novel solution of enhanced loss function using deep learning 

in sleep stage classification: predict and diagnose patients with sleep disorders. 

Multimedia Tools and Applications, 80(8), 11607–11630. 

https://doi.org/10.1007/s11042-020-10199-8 

Rajendran, V. G., Jayalalitha, S., & Adalarasu, K. (2022). EEG Based Evaluation of 

Examination Stress and Test Anxiety Among College Students. IRBM, 43(5), 

349–361. https://doi.org/10.1016/j.irbm.2021.06.011 

Rechtschaffen, A., & Kales, A. (1968). A manual of standardized terminology, 

techniques and scoring system for sleep stages of human subjects. Arch. Gen. 

Psychiatry, 20(2), 246–247. 

Rezaie, L., Fobian, A. D., McCall, W. V., & Khazaie, H. (2018). Paradoxical 

insomnia and subjective–objective sleep discrepancy: A review. Sleep Medicine 

Reviews, 40, 196–202. https://doi.org/10.1016/j.smrv.2018.01.002 

Rodenbeck, A., Binder, R., Geisler, P., Danker-Hopfe, H., Lund, R., Raschke, F., 

Weeß, H.-G., & Schulz, H. (2006). A Review of Sleep EEG Patterns. Part I: A 

Compilation of Amended Rules for Their Visual Recognition according to 

Rechtschaffen and Kales. Somnologie, 10(4), 159–175. 

https://doi.org/10.1111/j.1439-054X.2006.00101.x 

Rodriguez-Martinez, I., da Cruz Asmus, T., Dimuro, G. P., Herrera, F., Takáč, Z., & 

Bustince, H. (2023). Generalizing max pooling via (a,b)-grouping functions for 

Convolutional Neural Networks. Information Fusion, 101893. 

https://doi.org/10.1016/j.inffus.2023.101893 



References. 
 

143 

Roebuck, A., Monasterio, V., Gederi, E., Osipov, M., Behar, J., Malhotra, A., Penzel, 

T., & Clifford, G. D. (2014). A review of signals used in sleep analysis. 

Physiological Measurement, 35(1), R1–R57. https://doi.org/10.1088/0967-

3334/35/1/R1 

Rosado Coelho, C., Fernandez-Baca Vaca, G., & Lüders, H. O. (2018). 

Electrooculogram and submandibular montage to distinguish different eye, 

eyelid, and tongue movements in electroencephalographic studies. Clinical 

Neurophysiology, 129(11), 2380–2391. 

https://doi.org/10.1016/j.clinph.2018.09.011 

Rosenberg, R. S., & Van Hout, S. (2013). The American Academy of Sleep Medicine 

Inter-scorer Reliability Program: Sleep Stage Scoring. Journal of Clinical Sleep 

Medicine, 09(01), 81–87. https://doi.org/10.5664/jcsm.2350 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead. Nature Machine Intelligence, 

1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x 

Rudzik, F., Thiesse, L., Pieren, R., Wunderli, J. M., Brink, M., Foraster, M., Héritier, 

H., Eze, I. C., Garbazza, C., Vienneau, D., Probst-Hensch, N., Röösli, M., & 

Cajochen, C. (2018). Sleep spindle characteristics and arousability from 

nighttime transportation noise exposure in healthy young and older individuals. 

Sleep, 41(7). https://doi.org/10.1093/sleep/zsy077 

Ruehland, W. R., O’Donoghue, F. J., Pierce, R. J., Thornton, A. T., Singh, P., 

Copland, J. M., Stevens, B., & Rochford, P. D. (2011). The 2007 AASM 

Recommendations for EEG Electrode Placement in Polysomnography: Impact 

on Sleep and Cortical Arousal Scoring. Sleep, 34(1), 73–81. 

https://doi.org/10.1093/sleep/34.1.73 

Sack, R. L., Auckley, D., Auger, R. R., Carskadon, M. A., Wright, K. P., Vitiello, M. 

V., & Zhdanova, I. V. (2007). Circadian Rhythm Sleep Disorders: Part II, 

Advanced Sleep Phase Disorder, Delayed Sleep Phase Disorder, Free-Running 

Disorder, and Irregular Sleep-Wake Rhythm. Sleep, 30(11), 1484–1501. 

https://doi.org/10.1093/sleep/30.11.1484 

Santurkar, S., Tsipras, D., Ilyas, A., & Mit, A. M. ˛ A. (n.d.). How Does Batch 

Normalization Help Optimization? 



References. 
 

144 

Schönauer, M., & Pöhlchen, D. (2018). Sleep spindles. In Current Biology (Vol. 28, 

Issue 19, pp. R1129–R1130). Cell Press. 

https://doi.org/10.1016/j.cub.2018.07.035 

Shen, M., Wen, P., Song, B., & Li, Y. (2023). Detection of alcoholic EEG signals 

based on whole brain connectivity and convolution neural networks. Biomedical 

Signal Processing and Control, 79, 104242. 

https://doi.org/10.1016/j.bspc.2022.104242 

Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for 

Large-Scale Image Recognition. http://arxiv.org/abs/1409.1556 

Siuly, Li, Y., & Wen, P. (2010). Analysis and classification of EEG signals using a 

hybrid clustering technique. IEEE/ICME International Conference on Complex 

Medical Engineering, 34–39. https://doi.org/10.1109/ICCME.2010.5558875 

Siuly, S., & Li, Y. (2012). Improving the Separability of Motor Imagery EEG Signals 

Using a Cross Correlation-Based Least Square Support Vector Machine for 

Brain–Computer Interface. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 20(4), 526–538. 

https://doi.org/10.1109/TNSRE.2012.2184838 

Siuly, S., & Li, Y. (2015). Discriminating the brain activities for brain–computer 

interface applications through the optimal allocation-based approach. Neural 

Computing and Applications, 26(4), 799–811. https://doi.org/10.1007/s00521-

014-1753-3 

Siuly, S., Li, Y., Wen, P., & Alcin, O. F. (2022). SchizoGoogLeNet: The GoogLeNet-

Based Deep Feature Extraction Design for Automatic Detection of 

Schizophrenia. Computational Intelligence and Neuroscience, 2022, 1–13. 

https://doi.org/10.1155/2022/1992596 

Skarpsno, E. S., Mork, P. J., Nilsen, T. I. L., & Holtermann, A. (2017). Sleep 

positions and nocturnal body movements based on free-living accelerometer 

recordings: association with demographics, lifestyle, and insomnia symptoms. 

Nature and Science of Sleep, Volume 9, 267–275. 

https://doi.org/10.2147/NSS.S145777 

Stephanie Devuyst., Myriam Kerkhofs, & Thierry Dutoit. (2005). The DREAMS 

Databases and Assessment Algorithm [Data set]. 



References. 
 

145 

St-Onge, M.-P., Mikic, A., & Pietrolungo, C. E. (2016). Effects of Diet on Sleep 

Quality. Advances in Nutrition, 7(5), 938–949. 

https://doi.org/10.3945/an.116.012336 

Strang, G. (1999a). The Discrete Cosine Transform. SIAM Review, 41(1), 135–147. 

https://doi.org/10.1137/S0036144598336745 

Strang, G. (1999b). The Discrete Cosine Transform. SIAM Review, 41(1), 135–147. 

https://doi.org/10.1137/S0036144598336745 

Sun, C., Fan, J., Chen, C., Li, W., & Chen, W. (2019). A Two-Stage Neural Network 

for Sleep Stage Classification Based on Feature Learning, Sequence Learning, 

and Data Augmentation. IEEE Access, 7, 109386–109397. 

https://doi.org/10.1109/ACCESS.2019.2933814 

Sundararajan, D. (2016). Discrete wavelet transform: a signal processing approach. 

John Wiley & Sons. 

Supratak, A., Dong, H., Wu, C., & Guo, Y. (2017). DeepSleepNet: A model for 

automatic sleep stage scoring based on raw single-channel EEG. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 1998–

2008. https://doi.org/10.1109/TNSRE.2017.2721116 

Suthaharan, S. (2016). Support Vector Machine (pp. 207–235). 

https://doi.org/10.1007/978-1-4899-7641-3_9 

Sweeney, K. T., Ward, T. E., & McLoone, S. F. (2012). Artifact Removal in 

Physiological Signals—Practices and Possibilities. IEEE Transactions on 

Information Technology in Biomedicine, 16(3), 488–500. 

https://doi.org/10.1109/TITB.2012.2188536 

Sweeney-Reed, C. M., & Nasuto, S. J. (2007). A novel approach to the detection of 

synchronisation in EEG based on empirical mode decomposition. Journal of 

Computational Neuroscience, 23(1), 79–111. https://doi.org/10.1007/s10827-

007-0020-3 

Sweeney-Reed, C. M., Nasuto, S. J., Vieira, M. F., & Andrade, A. O. (2018). 

Empirical Mode Decomposition and its Extensions Applied to EEG Analysis: A 

Review. Advances in Data Science and Adaptive Analysis, 10(02), 1840001. 

https://doi.org/10.1142/S2424922X18400016 

Terzano, M. G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, 

C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., & 

Walters, A. (2001). Atlas, rules, and recording techniques for the scoring of 



References. 
 

146 

cyclic alternating pattern (CAP) in human sleep. Sleep Medicine, 2(6), 537–553. 

https://doi.org/10.1016/S1389-9457(01)00149-6 

Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of 

the IEEE, 70(9), 1055–1096. https://doi.org/10.1109/PROC.1982.12433 

Tsanas, A., & Clifford, G. D. (2015). Stage-independent, single lead EEG sleep 

spindle detection using the continuous wavelet transform and local weighted 

smoothing. Frontiers in Human Neuroscience, 9. 

https://doi.org/10.3389/fnhum.2015.00181 

Twenge, J. M., Hisler, G. C., & Krizan, Z. (2019). Associations between screen time 

and sleep duration are primarily driven by portable electronic devices: evidence 

from a population-based study of U.S. children ages 0–17. Sleep Medicine, 56, 

211–218. https://doi.org/10.1016/j.sleep.2018.11.009 

Tzimourta, K., Tzallas, A., Tsilimbaris, A., Tsipouras, M., & Giannakeas, N. (2018). 

EEG-Based Automatic Sleep Stage Classification. Biomedical Journal of 

Scientific & Technical Research, 7(4). 

https://doi.org/10.26717/bjstr.2018.07.001535 

Urigüen, J. A., & Garcia-Zapirain, B. (2015). EEG artifact removal—state-of-the-art 

and guidelines. Journal of Neural Engineering, 12(3), 031001. 

https://doi.org/10.1088/1741-2560/12/3/031001 

Vitiello, M. V, Larsen, L. H., & Moe, K. E. (2004). Age-related sleep change. Journal 

of Psychosomatic Research, 56(5), 503–510. https://doi.org/10.1016/S0022-

3999(04)00023-6 

Vos, D. M., Riès, S., Vanderperren, K., Vanrumste, B., Alario, F.-X., Huffel, V. S., & 

Burle, B. (2010). Removal of Muscle Artifacts from EEG Recordings of Spoken 

Language Production. Neuroinformatics, 8(2), 135–150. 

https://doi.org/10.1007/s12021-010-9071-0 

Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, 

J. C., Cirelli, C., & Tononi, G. (2009). Cortical Firing and Sleep Homeostasis. 

Neuron, 63(6), 865–878. https://doi.org/10.1016/j.neuron.2009.08.024 

Wamsley, E. J., Tucker, M. A., Shinn, A. K., Ono, K. E., McKinley, S. K., Ely, A. V., 

Goff, D. C., Stickgold, R., & Manoach, D. S. (2012). Reduced sleep spindles and 

spindle coherence in schizophrenia: Mechanisms of impaired memory 

consolidation? Biological Psychiatry, 71(2), 154–161. 

https://doi.org/10.1016/j.biopsych.2011.08.008 



References. 
 

147 

Wang, B., Duan, R., & Duan, L. (2018). Prevalence of sleep disorder in irritable 

bowel syndrome: A systematic review with meta-analysis. Saudi Journal of 

Gastroenterology : Official Journal of the Saudi Gastroenterology Association, 

24(3), 141–150. https://doi.org/10.4103/sjg.SJG_603_17 

Warby, S. C., Wendt, S. L., Welinder, P., Munk, E. G. S., Carrillo, O., Sorensen, H. 

B. D., Jennum, P., Peppard, P. E., Perona, P., & Mignot, E. (2014). Sleep-spindle 

detection: Crowdsourcing and evaluating performance of experts, non-experts 

and automated methods. Nature Methods, 11(4), 385–392. 

https://doi.org/10.1038/nmeth.2855 

Watson, N. F., Badr, M. S., Belenky, G., Bliwise, D. L., Buxton, O. M., Buysse, D., 

Dinges, D. F., Gangwisch, J., Grandner, M. A., Kushida, C., Malhotra, R. K., 

Martin, J. L., Patel, S. R., Quan, S. F., & Tasali, E. (2015). Recommended 

Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the 

American Academy of Sleep Medicine and Sleep Research Society. Journal of 

Clinical Sleep Medicine, 11(06), 591–592. https://doi.org/10.5664/jcsm.4758 

Weiner, O. M., & Dang-Vu, T. T. (2016). Spindle oscillations in sleep disorders: A 

systematic review. In Neural Plasticity (Vol. 2016). Hindawi Limited. 

https://doi.org/10.1155/2016/7328725 

Weis, M., Romer, F., Haardt, M., Jannek, D., & Husar, P. (2009). Multi-dimensional 

space-time-frequency component analysis of event related EEG data using 

closed-form PARAFAC. 2009 IEEE International Conference on Acoustics, 

Speech and Signal Processing, 349–352. 

https://doi.org/10.1109/ICASSP.2009.4959592 

Wen, J., Zhou, Z., Wang, J., Tang, X., & Mo, Q. (2016). A sharp condition for exact 

support recovery of sparse signals with orthogonal matching pursuit. 2016 IEEE 

International Symposium on Information Theory (ISIT), 2364–2368. 

https://doi.org/10.1109/ISIT.2016.7541722 

Wen, J., Zhou, Z., Wang, J., Tang, X., & Mo, Q. (2017). A Sharp Condition for Exact 

Support Recovery With Orthogonal Matching Pursuit. IEEE Transactions on 

Signal Processing, 65(6), 1370–1382. https://doi.org/10.1109/TSP.2016.2634550 

Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., 

Broberg, M., Wallace, A., DeLosAngeles, D., Lillie, P., Hardy, A., Fronsko, R., 

Pulbrook, A., & Willoughby, J. O. (2007). Scalp electrical recording during 

paralysis: Quantitative evidence that EEG frequencies above 20Hz are 



References. 
 

148 

contaminated by EMG. Clinical Neurophysiology, 118(8), 1877–1888. 

https://doi.org/10.1016/j.clinph.2007.04.027 

Xu, X., Lian, Z., Shen, J., Lan, L., & Sun, Y. (2021). Environmental factors affecting 

sleep quality in summer: a field study in Shanghai, China. Journal of Thermal 

Biology, 99, 102977. https://doi.org/10.1016/j.jtherbio.2021.102977 

Xu, X., Zhang, D., Bai, Y., Chang, L., & Li, J. (2020). Evidence reasoning rule-based 

classifier with uncertainty quantification. Information Sciences, 516, 192–204. 

https://doi.org/10.1016/j.ins.2019.12.037 

Yan, A., Zhou, W., Yuan, Q., Yuan, S., Wu, Q., Zhao, X., & Wang, J. (2015). 

Automatic seizure detection using Stockwell transform and boosting algorithm 

for long-term EEG. Epilepsy & Behavior, 45, 8–14. 

https://doi.org/10.1016/j.yebeh.2015.02.012 

Ye, E., Sun, H., Leone, M. J., Paixao, L., Thomas, R. J., Lam, A. D., & Westover, M. 

B. (2020). Association of Sleep Electroencephalography-Based Brain Age Index 

With Dementia. JAMA Network Open, 3(9), e2017357. 

https://doi.org/10.1001/jamanetworkopen.2020.17357 

Yi Li, Fan Yingle, Li Gu, & Tong Qinye. (2009). Sleep stage classification based on 

EEG Hilbert-Huang transform. 2009 4th IEEE Conference on Industrial 

Electronics and Applications, 3676–3681. 

https://doi.org/10.1109/ICIEA.2009.5138842 

You, H., Yu, L., Tian, S., Ma, X., Xing, Y., Xin, N., & Cai, W. (2021). MC-Net: 

Multiple max-pooling integration module and cross multi-scale deconvolution 

network. Knowledge-Based Systems, 231, 107456. 

https://doi.org/10.1016/j.knosys.2021.107456 

Younes, M., & Hanly, P. J. (2016). Minimizing Interrater Variability in Staging Sleep 

by Use of Computer-Derived Features. Journal of Clinical Sleep Medicine, 

12(10), 1347–1356. https://doi.org/10.5664/jcsm.6186 

Younes, M., Raneri, J., & Hanly, P. (2016). Staging Sleep in Polysomnograms: 

Analysis of Inter-Scorer Variability. Journal of Clinical Sleep Medicine, 12(06), 

885–894. https://doi.org/10.5664/jcsm.5894 

Younes, M., Thompson, W., Leslie, C., Egan, T., & Giannouli, E. (2015). Utility of 

technologist editing of polysomnography scoring performed by a validated 

automatic system. Annals of the American Thoracic Society, 12(8), 1206–1218. 

https://doi.org/10.1513/AnnalsATS.201411-512OC 



References. 
 

149 

Yulita, I. N., Fanany, M. I., & Arymuthy, A. M. (2017). Bi-directional Long Short-

Term Memory using Quantized data of Deep Belief Networks for Sleep Stage 

Classification. Procedia Computer Science, 116, 530–538. 

https://doi.org/10.1016/j.procs.2017.10.042 

Zabidi, A., Mansor, W., Lee, Y. K., & Che Wan Fadzal, C. W. N. F. (2012). Short-

time Fourier Transform analysis of EEG signal generated during imagined 

writing. 2012 International Conference on System Engineering and Technology 

(ICSET), 1–4. https://doi.org/10.1109/ICSEngT.2012.6339284 

Zandi, A. S., Javidan, M., Dumont, G. A., & Tafreshi, R. (2010). Automated Real-

Time Epileptic Seizure Detection in Scalp EEG Recordings Using an Algorithm 

Based on Wavelet Packet Transform. IEEE Transactions on Biomedical 

Engineering, 57(7), 1639–1651. https://doi.org/10.1109/TBME.2010.2046417 

Zapata, I. A., Li, Y., & Wen, P. (2022). Rules-Based and SVM-Q Methods with 

Multitapers and Convolution for Sleep EEG Stages Classification. IEEE Access, 

10. https://doi.org/10.1109/ACCESS.2022.3188286 

Zapata, I. A., Li, Y., & Wen Peng. (n.d.). EEG-Based Sleep Stage Classification 

Using CNN with Squeeze-and-Excitation Blocks in a Short-Visual Geometric 

Group. [Manuscript in Preparation]. 

Zapata, I. A., Wen, P., Jones, E., Fjaagesund, S., & Li, Y. (2023). Automatic Sleep 

Spindles Identification and Classification with Multitapers and Convolution. 

SLEEP. https://doi.org/10.1093/sleep/zsad159 

Zeng, B., & Fu, J. (2008). Directional Discrete Cosine Transforms—A New 

Framework for Image Coding. IEEE Transactions on Circuits and Systems for 

Video Technology, 18(3), 305–313. https://doi.org/10.1109/TCSVT.2008.918455 

Zhang, G., & Li, H. (2018). Effectiveness of Scaled Exponentially-Regularized Linear 

Units (SERLUs). http://arxiv.org/abs/1807.10117 

Zhao, D., Wang, Y., Wang, Q., & Wang, X. (2019). Comparative analysis of different 

characteristics of automatic sleep stages. Computer Methods and Programs in 

Biomedicine, 175, 53–72. https://doi.org/10.1016/j.cmpb.2019.04.004 

Zhao, J., & Bai, X. (2017). An improved orthogonal matching pursuit based on 

randomly enhanced adaptive subspace pursuit. 2017 Asia-Pacific Signal and 

Information Processing Association Annual Summit and Conference (APSIPA 

ASC), 437–441. https://doi.org/10.1109/APSIPA.2017.8282071 



References. 

150 

Zhenyu Guo, Durand, L.-G., & Lee, H. C. (1994). Comparison of time-frequency 

distribution techniques for analysis of simulated Doppler ultrasound signals of 

the femoral artery. IEEE Transactions on Biomedical Engineering, 41(4), 332–

342. https://doi.org/10.1109/10.284961

Zhu, G., Li, Y., & Wen, P. (2014). Analysis and Classification of Sleep Stages Based 

on Difference Visibility Graphs From a Single-Channel EEG Signal. IEEE 

Journal of Biomedical and Health Informatics, 18(6), 1813–1821. 

https://doi.org/10.1109/JBHI.2014.2303991 

Zieleniewska, M., Duszyk, A., Różański, P., Pietrzak, M., Bogotko, M., & Durka, P. 

(2019). Parametric Description of EEG Profiles for Assessment of Sleep 

Architecture in Disorders of Consciousness. International Journal of Neural 

Systems, 29(03), 1850049. https://doi.org/10.1142/S0129065718500491 



Appendix. 
 

152 

 

 

 

 

 
 

 

 

 

 

APPENDICIES



Appendix. 
 

153 

A 
Size of Gabor Dictionary 

The size of the Gabor dictionary is determined by the number of atoms generated across 

frequencies. This number is equal to the sample rate (Fs) divided by two, plus one 

((Fs/2) + 1). The "two" represents the vanishing point between one wavelet and the 

next. The first wavelet is generated at 0, and the last at the final point. Therefore, for 

each frequency iteration in the Gabor dictionary, ((Fs/2) + 1) atoms are spread across 

the time duration of the signal. 

The Gabor dictionary created for this research includes frequencies from 1Hz to 40Hz. 

If the sample rate Fs is an odd number, the division by two results in a float number 

approximated to the nearest preceding integer. As a result, the size of the Gabor 

dictionary is given by Fs x (((Fs/2) + 1) * 40). 
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B 
Gabor Dictionaries in MP 

According to Mallat and Zhang (1993), a Gabor dictionary for time-frequency atomic 

decomposition is constructed by scaling (s), translating (u), and modulating (ξ) a 

window function. This window function corresponds to the Gaussian element of the 

equation, depending on the three parameters (s, u, ξ). It is assumed that the integral of 

g(t) is a continuous variable and real while ensuring that the essential of g(t) ≠ 0 and 

the norm of g is equal to 1 (∥g∥ = 1). For any s > 0, ξ, and u, denoted as γ = (s, u, ξ), it 

is defined as shown in Eq.1. 

𝑔!(𝑡) =
1
√𝑠
𝑔 J
𝑡 − 𝑢
𝑠 K 𝑒35+	 (1) 

where γ ∈ Γ and Γ = R^2 × R^+, the normalisation factor 6
√'
𝑔 is employed to ensure 

that ∥g_γ (t)∥ is normalised to 1 (for a more comprehensive understanding of the 

window function generation, kindly refer to Mallat and Zhang, 1993). 

The initial Gaussian window generates a highly redundant dictionary, necessitating the 

inclusion of time-frequency atoms of different scales, as shown in Eq.2, to ensure the 

presence of efficient functions. 

The functional application of MP, as presented by Mallat and Zhang (1993), has been 

utilised by Malinowska (2009) and Kus (2013). Both studies followed the same 

principle of γ = (s, u, ξ) in a Gabor atom, with slight variations. For further details on 

their methodologies, please refer to Malinowska et al. (2009) and Kus et al. (2013). 

𝑥 ≈ O〈𝑅8𝑥, 𝑔!"〉
9"6

8:;

𝑔!" 	 (2) 

In Eq.2, M represents the number of iterations, 𝑔!" 	denotes the Matching Pursuit (MP) 

of the signal x at the nth iteration, and 𝑅8𝑥 represents the nth residuals of the signal. A 

Gabor function was then formulated as shown in Eq.3. 
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On the other hand, Kus, Różański, and Durka (2013) introduced a neutral variable 

(K(γ)) in the Gabor equation mentioned in Eq.3. This neutral variable can be 

interpreted as the amplitude of the Gaussian window, where γ= (s, u, ξ). The neutral 

variable was defined in such a way that ∥g∥=1 based on the expansion function 

presented in Eq.2. 

𝑔!(𝑡) = 	𝐾(𝛾)	ℯ
"#$𝓉"𝓊' (

!

		cos(𝜔(𝑡 − 𝓊) + 𝜙) (3) 

In contrast, Malinowska (Malinowska et al., 2009) introduced an additional parameter, 

the offset or phase of the sine/cosine wave (ϕ), into the definition of γ, resulting in the 

extended form γ = (s, u, ξ, ϕ). Consequently, the Gabor function was reformulated as 

shown in Eq.4: 

𝑔!(𝑡) = 	 ℯ
"#$𝓉"𝓊𝓌 (

!

		cos(2𝜋𝑓(𝑡 − 𝓊) + 𝜙) (4) 

In both Eq.3 and Eq.4, the first part (ℯ"#$
𝓉$𝓊
𝓌 (

!

 or 𝐾(𝛾)	ℯ"#$
𝓉$𝓊
' (

!

		) represents the 

Gaussian window, and the second part cos(𝜔(𝑡 − 𝓊) + 𝜙) or cos(2𝜋𝑓(𝑡 − 𝓊) + 𝜙) 

represents the sine or cosine element of a Gabor wavelet. 

As previously mentioned in Eq.3, K(γ) is a neutral value (K(γ)=1), indicating that it 

does not significantly affect the outcome of the Gabor wavelet. It can also be noted that 

ω in Eq.3 can be represented as 2πf, as defined in Eq.4. 

Although there is no substantial difference in the conceptual interpretation of the 

functions presented in Eq.3 and Eq.4, their practical applications and manipulation of 

parameters vary. Eq.4 provides a more versatile and robust dictionary for the Gabor 

function, as ϕ becomes an essential parameter of the sine/cosine wave. Thus, ϕ is no 

longer fixed at a nominal value but adapts to the phase of each structure detected in the 

signal. For a Gabor function 𝑔!"with a 𝛾8 = (𝓊8, 𝑓8, 𝜔8, 𝜙8), where 𝓊8 represents the 

time position at the nth iteration, 𝑓8 is the frequency at the nth iteration, 𝜔8 is the time 

width at the nth iteration, and 𝜙8 is the phase at the nth iteration (Kuś et al., 2013). 
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C 
Periodogram 

In EEG data analysis, the periodogram (Fig. 1A) is a straightforward method to perform 

spectral density estimation (SDE) using a fast Fourier transform (FFT). However, many 

scientists consider it a suboptimal application of the SDE due to its composition. The 

periodogram consists of a large main lobe representing the peak oscillation frequency 

and fragmented peaks (side lobes) on both sides of the main lobe, exhibiting a 

decreasing power. This power distribution on the side lobes renders the periodogram a 

biased estimator spectrum for non-stationary data, as it introduces noise data into the 

estimation of surrounding frequencies. Consequently, the real spectral content of the 

signal is misrepresented, leading to reduced accuracy in spectral estimation. Ideally, the 

power should be concentrated on the main lobe, which is the source of power (M. X. 

Cohen, 2014; Gribonval, 2001; Lafta et al., 2017). 

To reduce the power distribution across the side lobes, improve the SDE, and 

minimise the periodogram bias, it is recommended to apply a window function, 

commonly known as a taper function or Gaussian window, to the data before 

computing the SDE function. This process, called single taper estimation spectrum 

(STE) (Figure 2.2.5 (B)), smooths out the abrupt transition between the main lobe and 

Fig. 1: (A) Periodogram Spectrum, (B) Single-Taper Spectrum.  

A B 
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the side lobes. The single taper estimation approach exhibits less bias than the 

periodogram, as it significantly reduces the power spectrum of the side lobes. 

However, it should be noted that this method may increase the estimation variance 

(Babadi & Brown, 2014; Lindberg & Park, 1987; Park, Lindberg, & Thomson, 1987; 

Park, Lindberg, & Vernon, 1987). 
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D 
Dot-product and Convolution 

The dot product between a wavelet and a signal is computed as the sum of all points of 

the wavelet multiplied by the corresponding points of the signal (indicated by the red 

mark in Figure 2.2.5 (A)). This computation involves convolving every point of a 

wavelet kernel with the raw signal. During the convolution process, if no additional 

points are added to the original signal, the resulting signal will be shorter in size than 

the raw signal due to the size of the kernel. To address this issue, a zero-padding of half 

the size of the kernel is applied at the beginning and the end of the raw signal, 

effectively enlarging the original signal. The added zero values cancel any potential 

biased values and noise in the resulting signal. 

Consequently, the rightmost point of the kernel aligns with the leftmost point of the raw 

signal at the start and end of a convolution. The resulting size of the signal will equal 

the original size of the signal and the kernel minus one point. One subtraction is 

necessary because the kernel overlaps the raw signal by one point (Figure 2.2.5 (B)).  
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E 
Code Repository for Chapter 3 

The code used in the experiments and analysis presented in Chapter 3 of this thesis is 

available on GitHub. You can access the code repository at the following URL: 

GitHub Repository: https://github.com/ZapataIgnacio/Chapter-3-Rules-Based-and-

SVM-Q.git 

Please refer to this repository for detailed code implementation, data pre-processing, 

and any additional materials related to the experiments conducted in Chapter 3. If you 

encounter any issues or have questions regarding the code, please feel free to contact 

the author at Ignacio.zapata@usq.edu.au.  

Please note that due to the size of the databases used in this research, they are provided 

on an external drive. For access to the databases, please contact the author at 

Ignacio.zapata@usq.edu.au. 

Please note that the code may be subject to updates or revisions beyond the completion 

of this thesis.

mailto:Ignacio.zapata@usq.edu.au
mailto:Ignacio.zapata@usq.edu.au
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F 
Code Repository for Chapter 4 

The code used in the experiments and analysis presented in Chapter 4 of this thesis is 

available on GitHub. You can access the code repository at the following URL: 

 

GitHub Repository: https://github.com/ZapataIgnacio/Chapter-4-Sleep-Spindles.git 

 

Please refer to this repository for detailed code implementation, data pre-processing, 

and any additional materials related to the experiments conducted in Chapter 3. If you 

encounter any issues or have questions regarding the code, please feel free to contact 

the author at Ignacio.zapata@usq.edu.au.  

Please note that due to the size of the databases used in this research, they are provided 

on an external drive. For access to the databases, please contact the author at 

Ignacio.zapata@usq.edu.au. 

Please note that the code may be subject to updates or revisions beyond the completion 

of this thesis.

mailto:Ignacio.zapata@usq.edu.au
mailto:Ignacio.zapata@usq.edu.au
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G 
Code Repository for Chapter 5 

The code used in the experiments and analysis presented in Chapter 5 of this thesis is 

available on GitHub. You can access the code repository at the following URL: 

 

GitHub Repository: https://github.com/ZapataIgnacio/Chapter-5-EEG-Based-Sleep-

Stage-Classification-Using-CNN-with-SE-B-in-a-SVGG.git 

 

Please refer to this repository for detailed code implementation, data pre-processing, 

and any additional materials related to the experiments conducted in Chapter 3. If you 

encounter any issues or have questions regarding the code, please feel free to contact 

the author at Ignacio.zapata@usq.edu.au.  

Please note that due to the size of the databases used in this research, they are provided 

on an external drive. For access to the databases, please contact the author at 

Ignacio.zapata@usq.edu.au. 

Please note that the code may be subject to updates or revisions beyond the completion 

of this thesis. 
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