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Abstract: Background: Electrocardiography (ECG) signals are commonly used to detect cardiac

disorders, with 12-lead ECGs being the standard method for acquiring these signals. The primary

objective of this research is to propose a new feature engineering model that achieves both high

classification accuracy and explainable results using ECG signals. To this end, a symbolic language,

named Cardioish, has been introduced. Methods: In this research, two publicly available datasets

were used: (i) a mental disorder classification dataset and (ii) a myocardial infarction (MI) dataset.

These datasets contain ECG beats and include 4 and 11 classes, respectively. To obtain explainable

results from these ECG signal datasets, a new explainable feature engineering (XFE) model has been

proposed. The Cardioish-based XFE model consists of four main phases: (i) lead transformation and

transition table feature extraction, (ii) iterative neighborhood component analysis (INCA) for feature

selection, (iii) classification, and (iv) explainable results generation using the recommended Cardioish.

In the feature extraction phase, the lead transformer converts ECG signals into lead indexes. To

extract features from the transformed signals, a transition table-based feature extractor is applied,

resulting in 144 features (12 × 12) from each ECG signal. In the feature selection phase, INCA is used

to select the most informative features from the 144 generated, which are then classified using the

k-nearest neighbors (kNN) classifier. The final phase is the explainable artificial intelligence (XAI)

phase. In this phase, Cardioish symbols are created, forming a Cardioish sentence. By analyzing

the extracted sentence, XAI results are obtained. Additionally, these results can be integrated into

connectome theory for applications in cardiology. Results: The presented Cardioish-based XFE model

achieved over 99% classification accuracy on both datasets. Moreover, the XAI results related to these

disorders have been presented in this research. Conclusions: The recommended Cardioish-based

XFE model achieved high classification performance for both datasets and provided explainable

results. In this regard, our proposal paves a new way for ECG classification and interpretation.

Keywords: Cardioish; symbolic language; feature extraction; machine learning

1. Introduction

Cardiovascular diseases (CVDs) are a major health problem worldwide [1,2]. This has
led to the need for effective and reliable diagnostic methods [3]. One of the most widely
used techniques for monitoring heart activity is electrocardiography (ECG), which offers a
non-invasive way to detect various heart conditions by monitoring the heart’s electrical
signals [4]. Traditionally, approaches to ECG analysis have emphasized classification
accuracy, with deep learning (DL) models being a popular choice [5]. However, while these
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models tend to perform well, they often come with the disadvantage of complexity, and
their results can be difficult for clinicians to interpret; this is especially important in medical
settings [6,7].

In recent years, the focus has shifted towards explainable artificial intelligence (XAI) [8–10].
The aim is to make machine learning models more transparent so that healthcare profes-
sionals can better understand and trust the results they provide [11]. This has led to the
development of newer methods that aim to balance strong performance with a level of
interpretability that is useful in everyday medical practice [12].

The Cardioish model provides a new perspective on ECG analysis. It offers a symbolic
language that not only achieves high classification accuracy but also facilitates the interpre-
tation of results. By converting the features of ECG signals into simpler symbols, this model
aims to make the data more understandable for clinicians. In addition, by integrating the
connectome theory [13], the approach provides not only diagnostic predictions but also
some insights into the physiological processes behind different heart conditions.

The Cardioish approach attempts to address some of the current challenges facing
machine learning in cardiology. By combining simple feature extraction methods with
a symbolic language, the model aims to offer a balance between accuracy and ease of
interpretation. The ultimate goal is to contribute to more accessible and reliable tools for
diagnosing heart conditions, presenting the information in a way that is easy for healthcare
providers to visualize and understand.

1.1. Literature Review

Different diseases have been detected using ECG in the literature. Some of these
studies are presented below.

Yoon et al. [14] proposed a bimodal CNN model to classify cardiovascular diseases
using ECG grayscale images and scalograms. Using a dataset of 10,588 ECG recordings,
their model co-trained both image types with Inception-v3 networks. The model achieved
95.08% accuracy and 99.20% AUC for lead II. Li et al. [15] presented a deep learning method
using ECG data from the MIT–BIH arrhythmia database. By applying Empirical Mode
Decomposition (EMD) and classifying 2D feature maps with a CNN, their model achieved
a 99.01% accuracy. Goud et al. [16] developed a Wolf-based Generative Adversarial System
(WbGAS) for heart disease classification using ECG data. Their model achieved 99.86%
accuracy, with 99.41% precision and 99.13% recall. Sharma et al. [17] suggested using
wavelet scattering on ECG signals to identify sleep disorders from the CAP sleep database.
Their method achieved an overall accuracy of 98%, with up to 99.65% accuracy for specific
disorders using the ensemble bag of trees classifier. Loh et al. [18] proposed a deep neural
network model for attention deficit hyperactivity disorder and conduct disorder detection
using ECG data. Their model, trained on 123 participants, achieved 96.04% accuracy and
used Grad-CAM for explainable feature analysis. Baygin et al. [19] presented an ECG-based
model for automated anxiety detection using data from 19 subjects. Their model, employ-
ing probabilistic binary patterns and wavelet transforms, achieved over 98.5% accuracy in
classifying anxiety levels. Khare et al. [20] developed ECGPsychNet, a hybrid ensemble
model for detecting psychiatric disorders using ECG data from 233 subjects. The model
achieved 98.15% accuracy, with detection rates of 98.96% for schizophrenia, 96.04% for
depression, and 95.12% for bipolar disorder. Malakouti et al. [21] proposed an approach
for heart disease classification using ECG data from 302 individuals. Their approach
achieved the highest accuracy at 96%. Parveen et al. [22] suggested a one-dimensional
residual deep convolutional auto-encoder model for heart disease classification using the
MIT–BIH arrhythmia dataset. Their model achieved 99.9% accuracy and 99.8% specificity.
Lee and Kim [23] proposed a vehicle-embedded ECG system using single-lead signals.
They used 8528 ECGs from the PhysioNet 2017 dataset and a two-stage machine learning
model. The system achieved an F1 score of 78.98% with real-time classification in 0.86 s.
Karapinar Senturk et al. [24] presented a deep learning model that converts ECG signals
into scalogram images using continuous wavelet transform. Using PhysioNet data, the
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model achieved 98.67% accuracy in classifying arrhythmia, congestive heart failure, and
normal sinus rhythm. Qin et al. [25] proposed the multi-view knowledge transferring-ECG
model to improve single-lead ECG classification using knowledge transfer from multi-
lead ECGs. Tested on PTB-XL and ICBEB2018 datasets, the model achieved performance
improvements of 1.3% and 3.2%, respectively. Han et al. [26] proposed a multimodal
learning model for long-term ECG classification using ECG signals and gramian angular
field images. Their model achieved over 86% F1 scores on the St. Petersburg INCART
and MIT–BIH Supraventricular datasets. Narotamo et al. [27] compared deep learning
methods for ECG classification using the PTB–XL dataset. Their study found that the gated
recurrent unit model, applied to 1D ECG signals, performed best with 79.67% sensitivity
and 81.04% specificity. Singhal et al. [28] proposed a method using high-resolution superlet
transform and VGG19 for classifying ECG and PCG signals. Using the PhysioNet/CinC
2016 database, their model achieved 93.1% accuracy for ECG and 82.1% for PCG. Nawaz
et al. [29] proposed the COVID–ECG–RSNet model using ECG images for COVID-19 clas-
sification. Using 1937 images, the model achieved 98.8% accuracy, with 98.9% precision
and 98.7% recall. Arslan et al. [30] developed a dilated convolutional autoencoder for ECG
classification using the MIT–BIH dataset, achieving 99.99% accuracy by simultaneously
training feature extraction and classification. Choudhury et al. [31] presented an expo-
nential political optimizer-trained deep quantum neural network model for arrhythmia
detection using the MIT–BIH databases, achieving 91.4% accuracy, 92% sensitivity, and
91.7% specificity. Abagaro et al. [32] proposed an ECG classification system using the
MIT–BIH dataset, employing discrete wavelet transform, principal component analysis,
and adaptive neuro-fuzzy inference system. Their model achieved 99.44% accuracy, with
99.36% sensitivity and 99.84% specificity. Sadad et al. [33] proposed a lightweight CNN
with an attention module for ECG classification, achieving 98.39% accuracy using a 12-lead
ECG dataset with various cardiac conditions. Kim et al. [34] suggested an ECG stitching
scheme for arrhythmia classification using data from the PhysioNet/CinC Challenge 2017.
Their CNN model achieved 82.39% accuracy on stitched ECG data, compared to 88.99% on
the original data.

1.2. Literature Gaps

The detected literature gaps are as follows:

• Due to their high classification performance, many researchers have turned to deep
learning (DL) models. However, DL models come with high computational complexities.

• Connectome theory is primarily associated with brain-related models. To our knowl-
edge, there are no existing connectome projects or research efforts in cardiology.

• Most machine learning-based ECG classification models have focused solely on clas-
sification performance. There is a lack of work on explainable artificial intelligence
(XAI) and cardiology in the literature.

1.3. Motivation and Our Model

Our main motivation is to introduce the Cardioish symbolic language to integrate con-
nectome theory into cardiology. Firstly, we need a lightweight model because most existing
models use deep learning (DL) approaches, which have high time complexity. Although
feature engineering models tend to have relatively lower classification performance, we ad-
dress this gap by presenting a new approach inspired by transformers. Therefore, we have
proposed a novel lead transformer technique to convert ECG signals into lead identifiers.
To extract hidden patterns and unseen transitions, we developed a transition table-based
feature extractor, which, together with the lead transformer, extracts 144 features.

In the feature selection phase, an iterative feature selection method has been employed.
Specifically, the iterative neighborhood component analysis (INCA) has been used to choose
the most informative features. These selected features have been used to generate both
classification and explainable results.
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To demonstrate the high classification capability of the proposed Cardioish-based XFE
model, we employed the k-nearest neighbors (kNN) classifier.

As stated in the literature, there are relatively few XAI-based biomedical signal classi-
fication models, and most existing XAI models rely on well-known techniques. To address
this gap, we have proposed a new symbolic language called Cardioish. Cardioish con-
sists of 12 symbols, each representing a different lead. By using this language, we aim to
integrate connectome theory into cardiology using easily collected biological signals.

1.4. Novelties and Contributions

Novelties:

• We have proposed a new transformation method named the “lead transformer”. By
using this transformation, the effects of the leads have been extracted.

• Cardioish, a new symbolic language, has been introduced, allowing explainable results
to be generated from ECG signals.

• A new XFE (Explainable Feature Engineering) model has been presented, utilizing the
recommended Cardioish language.

• By employing Cardioish, connectome theory has been integrated into cardiology.

Contributions:

• The proposed XFE model has significantly contributed to ECG signal classification,
achieving over 99% classification accuracy on the utilized ECG beat datasets. The high
classification accuracy across two datasets demonstrates the general applicability of
the presented model.

• Cardioish has been introduced to generate interpretable results from ECG signals. By
leveraging the findings from the proposed Cardioish, connectome theory has been
integrated into cardiology. Furthermore, this integration has the potential to inspire the
proposal of new explainable theorems, further contributing to the field of cardiology.

2. Materials and Methods

2.1. Material

In this research, two distinct ECG beat datasets were used, each containing 12 leads
with a length of 651 for all datasets. These datasets are (i) the MI (Myocardial Infarction)
dataset and (ii) the mental disorder detection dataset. The details of these datasets are
provided below.

2.1.1. MI Dataset

The first dataset used is the public MI ECG beat dataset [35], which contains 10 types
of myocardial infarctions (MIs) and a control group, totaling 11 classes. This dataset was
downloaded from PhysioBank. It includes 49,235 ECG beats with the following distribu-
tion: (0) Healthy—10,305 beats, (1) Anterior—4659 beats, (2) Anterior Lateral—6142 beats,
(3) Anterior Septal—7976 beats, (4) Inferior—10,215 beats, (5) Inferior Lateral—5822 beats,
(6) Inferior Posterior—48 beats, (7) Inferior Posterior Lateral—2495 beats, (8) Lateral—
459 beats, (9) Posterior—459 beats, and (10) Posterior Lateral—655 beats. This dataset is
commonly used in machine learning research for detecting MI types, which is why it was
selected for this study.

2.1.2. EEG Stress Dataset

We used this dataset to detect the cardiac effects of mental disorders on ECG signals.
The dataset was collected from 198 participants with mental disorders, distributed as
follows: 62 with bipolar disorder, 17 with depression, and 119 with schizophrenia (SZ).
Additionally, ECG beats from participants with no findings were included in the dataset.
In total, there are 841 ECG beats for bipolar disorder, 202 for depression, 1627 for SZ, and
900 for healthy individuals [36].
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2.2. The Proposed Cardioish-Based Explainable Feature Engineering Model

The main objectives of the proposed Cardioish-based XFE model are:

• Attaining high and general classification performance,
• Proposing a model with linear time complexity,
• Presenting XAI results.

Therefore, we have proposed the Cardioish-based XFE model, which consists of four
main phases:

• Feature extraction: In this phase, the presented lead transformer and transition table-
based feature extractor are used. A total of 144 features are extracted.

• Feature selection: To meticulously select the most informative features, we have used
the INCA feature selector, which is applied to the 144 generated features.

• Classification: The kNN classifier is employed to obtain classification results, demon-
strating the high classification ability of the selected features.

• XAI: In this phase, we use the recommended Cardioish language. By using the
selected features, Cardioish symbols are extracted, and a Cardioish sentence is created.
Subsequently, connectome graphs of the generated Cardioish sentence are created,
which are used to identify cardiac situations.

To better explain the proposed model, a graphical overview of this model is shown in
Figure 1.

ff

 tt
 
 

 

 

 

 

tt

 

Figure 1. Overview of the proposed Cardioish-based XFE model.

The details of the proposed Cardioish-based XFE model are provided below.

2.2.1. Feature Extraction

The first phase of the presented model is the feature extraction phase. To generate
features, a lead transformer and a transition table pattern-based feature extractor were
used. By applying the proposed lead transformer, the ECG signals were converted into lead
identities, and features were extracted based on the transitions between these identities.
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Since the ECG beat datasets used contain 12 leads, the proposed feature extraction function
generated 144 (12 × 12) features. The steps of the proposed model are as follows:

Step 1: Apply the proposed lead transformer to each ECG lead and obtain the trans-
formed signal.

bl(1 : 12) = ecg(1 : 12, i), i ∈ {1, 2, . . . , len} (1)

[sorted, id] = argsort(−bl) (2)

tr(c : c + 11) = id, c ∈ {1, 13, . . . , 12 × len} (3)

Herein, bl: lead block, ecg: ECG signal, argsort: sorting function, len: length of the
signal and tr: transformed signal. In this transformation, sorting by descending order
based on the ECG was used to identify the lead.

Step 2: Extract 144 features by deploying transition table-based feature extraction. We
have used this feature extraction function to detect the used leads.

mat(id(j), id(j + 1)) = mat(id(j), id(j + 1)) + 1, j ∈ {1, 2, . . . , 12 × len − 1} (4)

matn(k, 1 : 12) =
mat(k, 1 : 12)

sum(mat(k, 1 : 12)) + ε

, k ∈ {1, 2, . . . , 12} (5)

f v(u) = matn(k, l), l ∈ {1, 2, . . . , 12}, u ∈ {1, 2, . . . , 144} (6)

Herein, mat: transition matrix, sum: summation function and f v: feature vector with a
length of 144. Herein, we have applied row-based normalization to the transition matrix
and we obtained matn to create feature vector.

Step 3: Repeat Steps 1–2 to create the feature matrix (X) until all ECG leads are included.

2.2.2. Feature Selection

This phase is one of the most critical phases of the presented model since both clas-
sification and explainable results are obtained by utilizing the selected features. To select
the most informative features, the Iterative Neighborhood Component Analysis (INCA)
feature selector has been used, which was proposed by Tuncer et al. in 2020 [37]. INCA is
specifically designed to enhance the selection of features that contribute most significantly
to the model’s performance, thus improving the overall accuracy and interpretability of the
results. The effective use of INCA ensures that the model focuses on the most relevant data,
reducing complexity while maintaining or even increasing the classification performance.
In this feature selector, the qualified indexes are generated using the NCA feature selector.
A range of features is then selected by the user, and iterative feature selection is performed.
During this iterative process, the misclassification rate for each selected feature vector is
computed. In the final step, the feature vector with the minimum misclassification rate is
chosen. The steps of the INCA feature selector are outlined below to ensure that only the
most informative and relevant features are retained for further analysis and classification.
This approach allows for a more refined model that is both accurate and interpretable,
focusing on the features that contribute most significantly to the prediction task.

Step 4: Normalize each feature vector.

Xn(:, i) =
X(:, i)− min(X(:, i))

max(X(:, i))− min(X(:, i)) + ε

(7)

Herein, Xn: the normalized feature matrix using min-max normalization. The NCA
feature selector is a distance-based feature selector. Therefore, we have applied

Step 5: Generate the qualified indexes of each feature deploying NCA.

idx = NCA(Xn, y) (8)

Herein, NCA: NCA feature selector and y: actual outcome.
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Step 6: Select the features iteratively and compute the misclassification rate of each
selected features deploying the kNN classifier.

s f j(d, g) = Xn(d, idx(g)), j ∈ {1, 2, . . . , 144}, g ∈ {1, 2, . . . , j}, n ∈ {1, 2, . . . , NE} (9)

loss(j) = kNN
(

s f j, y
)

(10)

Herein, s f : selected feature vector, NE: number of ECG signals, loss: misclassification
rate and kNN: kNN classifier [38].

Step 7: Choose the optimal feature vector with greedy algorithm.

ind = argmin(loss) (11)

sel = s f ind (12)

Herein, sel: the final selected feature vector.

2.2.3. Classification

In the classification phase, the proposed model employs the commonly known distance-
based classifier, specifically the kNN classifier. This classifier is widely used in pattern
recognition and machine learning due to its simplicity and effectiveness. The steps for the
classification process in the proposed model are as follows:

Step 8: Classify the selected feature by deploying the kNN classifier.

pred = kNN(sel, y) (13)

Herein, pred : the predicted output.
The proposed Cardioish-based XFE model effectively extracts distinctive features

using a basic kNN classifier. The lead-based transformation and transition table-based
feature extractor demonstrate their effectiveness when combined with a simple classifier.
Additionally, the best results are achieved with the INCA feature selector, which, like kNN,
is a distance-based feature selection method.

2.2.4. Explainable Results Generation with Cardioish

To generate explainable results, we have introduced a new symbolic language called
Cardioish. This language is designed to provide a clear and interpretable representation of
ECG data by assigning specific symbols to each lead involved in the signal processing. The
graphical representation of how each lead corresponds to a symbol in Cardioish is shown
in Figure 2. This visual tool aids in understanding the relationship between the leads and
their respective symbols, facilitating the interpretation of ECG signals through an easily
understandable symbolic system.

Cardioish is a symbolic language developed to make ECG signal interpretation more
accessible and explainable, especially in integrating connectome theory into cardiology.
Each of the 12 symbols in Cardioish corresponds to a specific ECG lead, each representing
different parts of the heart’s electrical activity.

Symbols and Their Meanings:
Ld1 (Lead I): Focuses on the left atrium and left ventricle, useful for detecting atrial

arrhythmias and left atrial enlargement.
Ld2 (Lead II): Monitors general heart rhythm, particularly the P wave, and is crucial

for identifying atrial depolarization and sinus arrhythmias.
Ld3 (Lead III): Assesses the heart’s inferior wall, often used for diagnosing inferior

myocardial infarctions (MIs).
AVR: Reflects the right ventricle’s activity and the heart’s base, useful in detecting

severe global ischemia or improper lead placement.
AVL: Monitors the left ventricular lateral wall, important for diagnosing lateral MIs.
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AVF: Focuses on the inferior wall of the left ventricle, aiding in the detection of inferior
MIs.

V1S (Lead V1): Concentrates on the right ventricle and interventricular septum,
essential for assessing right ventricular hypertrophy and septal infarctions.

V2S (Lead V2): Assesses the anterior and septal regions, important for diagnosing
anterior and septal MIs.

V3A (Lead V3): Monitors the anterior wall and septum, sensitive to changes in the
anterior wall, helping to identify anterior MIs.

V4A (Lead V4): Focuses on the lower part of the left ventricle, crucial for diagnosing
anterior MIs.

V5L (Lead V5): Monitors the lateral wall of the left ventricle, playing a critical role in
lateral MI diagnosis.

V6L (Lead V6): Focuses on the lower-lateral wall of the left ventricle, crucial for lateral
MI diagnosis.

 

ff

𝐶 = {𝐿𝑑1, 𝐿𝑑2, 𝐿𝑑3, 𝐴𝑉𝑅, 𝐴𝑉𝐿, 𝐴𝑉𝐹, 𝑉1𝑆, 𝑉2𝑆, 𝑉3𝐴, 𝑉4𝐴, 𝑉5𝐿, 𝑉6𝐿}

Figure 2. The replacement of the 12-leads and the proposed Cardioish symbols.

These symbols form the basis of Cardioish, a language designed to interpret ECG
signals using a connectome graph, which visually represents the heart’s electrical activity
and its association with various cardiac conditions. This approach aims to provide more
explainable and interpretable results in cardiology by aligning ECG signal analysis with
connectome theory.

Step 9: Create Cardioish symbol by using the indexes of the selected features.

C = {Ld1, Ld2, Ld3, AVR, AVL, AVF, V1S, V2S, V3A, V4A, V5L, V6L} (14)

x1 =

⌈

sind(h)

12

⌉

, h ∈ {1, 2, . . . , nos f } (15)

x2 = sind(h)(mod 12) + 1 (16)

sent(w) = C(x1), w ∈ {1, 3, . . . , 2 × nos f − 1} (17)

sent(w + 1) = C(x2) (18)

sind(w) = x1 (19)

sind(w + 1) = x2 (20)

Herein, C : Cardioish symbol array, sind: indices of the selected features, nos f : num-
ber of the selected features, sent: the created Cardioish sentence and sind: indexes of
the symbols.
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Step 10: Compute the probability of each symbol to calculate the entropy value of the
generated sentence.

Step 11: Create the connectome graph by deploying the transition table of the symbols
in the generated Cardioish sentence.

The 11 steps given above have been defined in the presented Cardioish-based XFE model.

3. Performance Evaluation

In this section, the computed explainable and classification results are presented. The
proposed model was implemented using MATLAB (version 2024a) on a laptop equipped
with a 3.2 GHz central processing unit (CPU), 32 GB of main memory, and running Win-
dows 11 as the operating system.

The parameters used for the proposed Cardioish-based XFE model are outlined in
Table 1.

Table 1. The parameters of the methods used.

Phase Method Parameters

Feature extraction
Lead-transformer

Sorting criteria: Descending,
Length of the transformed signal: 12x

Transition table-based
feature extractor

Length of the features: 144,
Normalization: Row-based.

Feature selection INCA

Start value: 1,
Stop value: 144,
Loss generation function: kNN,
Optimal feature selection function: Greedy
function based on minimum loss value

Classification kNN
k: 1,
Distance: L1-norm,
Validation: 10-fold CV

XAI generation Cardioish
Number of symbols: 12,
XAI generation: Entropy and transition
table-based connectome graph generation.

In this research, two datasets were used to obtain results: (i) the MI classification
dataset and (ii) the mental disorder detection dataset. To evaluate the performance of these
datasets, classification accuracy and geometric mean performance metrics were employed.
Additionally, 10-fold cross-validation was utilized for validation.

The computed results are presented in Table 2, and the confusion matrices of the
proposed model for both datasets are shown in Figure 3.

Table 2. The results (%) of the proposed model for the datasets used.

Performance Metric MI Mental Disorder Detection

Classification accuracy 99.78 99.62

Geometric mean 99.79 99.61

The computed results are demonstrated in Table 2, based on the confusion matri-
ces obtained.

As shown in Table 2, the proposed model achieved over 99.5% classification accuracy
and geometric mean for both datasets. The explainable results have also been presented
using the proposed model. First, the model generates a Cardioish sentence, followed by
numerical analysis of this sentence. Additionally, connectome diagrams for these datasets
have been generated. The generated XAI results are demonstrated below.
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(a) 

 
(b) 

Figure 3. The computed confusion matrices of the proposed Cardioish-based XFE model on the MI
and mental disorder detection datasets. (a) MI detection. Here, 0: Normal, 1: Anterior, 2: Anterior
Lateral, 3: Anterior Septal, 4: Inferior, 5: Inferior Lateral, 6: Inferior Posterior, 7: Inferior Posterior
Lateral, 8: Lateral, 9: Posterior and 10: Posterior Lateral. (b) Mental disorder detection dataset. Here,
0: Normal, 1: Bipolar, 2: Depression, 3: Schizophrenia.

Based on the analysis of Table 3, the following interpretations for the MI and mental
disorder datasets are provided:
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Table 3. The Cardioish sentences generated for MI and mental disorder dataset.

XAI MI Dataset Mental Disorder Dataset

Cardioish sentence

AVLV1SV2SAVRAVRLd2Ld2AVLV3AV4AV6LV
4AV5LLd1V3AV1SV2SV2SV5LV3AV4AV2SV4A
Ld1V6LV3ALd1V5LLd3AVFAVFLd1AVFV2SLd1
Ld2V6LV6LAVLV4AAVRAVFLd2V4AV4AV4AV4
AAVRV1SLd2Ld1V3AAVLV2SV3AV6LV2SV3AV
6LAVRV1SLd3AVRAVRV5LV1SV5LV2SAVLLd3
AVRV4ALd1V2SAVLAVLLd2Ld2AVFV1SLd2V2
SLd3AVRV2SAVLLd3V2SLd2V5LV5LAVRV3AV
5LLd1AVFLd2AVRAVRV1SAVFLd3V6LV1SLd3
V6LV1SV4ALd1AVRV3AAVRLd1Ld1V6LAVLV3
AAVLV3ALd2V3ALd1V3AV3AAVRV3AAVRV2S
V5LLd2V4AV6LLd2V6LLd1AVLV4AAVLAVFLd
2V4AV5LAVLLd2V5LAVFV1SV1SLd1Ld3V5LV
5LV6LLd1V4ALd3AVFAVRLd3V4AV2SLd3Ld3L
d3AVLV3AV1SLd1V3AAVFAVLV6LV6LLd2V1S
V2SLd2V1SLd2V3AAVFV5LAVLV5LV1SV5LV4
AAVFV1SAVRV1SV3AV1SV6L

V4AV2SV5LV3AAVLV1SV2SV2SV6LV4AV4A
V4AAVFAVRLd2V6LV3AV1SLd1V5LV5LV5LL
d2AVLV2SV3AAVFLd3V1SLd3AVLV2SV6LV6
LLd1AVLV3AV4AV2SV4ALd1Ld2Ld2V5LV3AV
3ALd3V4AV4AAVLV4AAVRV1SLd2AVLAVLV
2SAVLAVFLd1Ld3AVFAVRLd2AVRAVFV2SV
5LAVLV4AAVRAVRV5LV1SV1SV1SAVLLd3L
d3V5LV2SAVRV5LAVLV6LLd1AVRAVLV4AV
1SAVRV3AV5LLd3V2SLd3Ld3AVRAVRV2SL
d3V6LAVFV2SLd1Ld1V4AV5LAVFAVFV3AA
VLV5LV2SV3AAVRLd3Ld1AVFV4ALd1Ld3V6
LLd3V3ALd1AVLLd2Ld1V4AAVLLd1V1SV3A
AVLV3ALd2AVRV1SV2SV6LLd2AVFV5LV5L
Ld1V6LV2SAVFV3AAVRV5LV1SAVLLd3V3A
AVRV4AV2SV6LV1SLd1V2SAVFAVRV1SV1S
V5LAVFV1SV5LV6LLd3Ld3V5LAVRLd2V2SL
d2V3ALd3AVLLd1AVRV1SAVRLd1V1S

Frequency
Ld1: 16, Ld2: 18, Ld3: 13, AVR: 18, AVL: 16, AVF: 13,
V1S: 18, V2S: 15, V3A: 19, V4A: 17, V5L:16, V6L:15

Ld1: 16, Ld2: 11, Ld3: 17, AVR: 19, AVL: 18, AVF: 13,
V1S: 17, V2S: 18, V3A: 15, V4A: 15, V5L:18, V6L:11

MI Dataset:
The patterns identified in the Cardioish sentence generated from the MI dataset can

be instrumental in refining algorithms within AI-driven ECG analysis tools. Notably, the
emphasis on the V3S and V4S leads could be leveraged to develop specific markers or
triggers for the early detection of anterior myocardial infarctions (MIs), a condition that
often necessitates prompt medical intervention. The identification of these specific leads
highlights their critical role in monitoring the anterior region of the heart, where early
detection of ischemic changes can significantly impact patient outcomes.

Mental Disorder Detection Dataset:
Depression: The frequent utilization of lateral and anterior leads, such as V5S, V3S,

and V4S, may suggest a reduction in heart rate variability, a characteristic commonly
observed in depressive states. This consistent lead involvement might reflect a stable yet
abnormal autonomic tone, indicative of an underactive parasympathetic nervous system
often associated with depression.

Bipolar Disorder: The erratic transitions observed between leads could be indicative of
the alternating manic and depressive states characteristic of bipolar disorder. The frequent
engagement of AVR and V1S leads might point to the detection of fluctuations in autonomic
control, which are hallmarks of this condition.

Schizophrenia: In schizophrenia, the Cardioish sentence reveals more irregular and
varied transition patterns, particularly in the high frequency and transitions of the AVR
and Ld3 leads. These patterns could represent a dysregulated autonomic response, a
common feature in schizophrenia that can increase cardiovascular risk. The complexity and
irregularity in the lead transitions may correspond to the diverse and often disorganized
symptoms of schizophrenia, affecting multiple systems simultaneously.

Normal: The absence of abrupt or erratic patterns, coupled with a balanced distribu-
tion across leads, typically suggests normal autonomic regulation. This pattern indicates
no significant abnormalities in heart function, which is expected in the control group.

Moreover, the generated connectome graphs, which visually represent these Cardioish
sentences, provide a deeper understanding of the lead interactions and the spatial distribu-
tion of electrical activity across the heart. These graphs further emphasize the regularity
in MI-related cases versus the irregularity in mental disorders, offering critical insights
for differential diagnosis and targeted interventions. The generated connectome graphs
generated for these datasets are also shown in Figure 4.
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Figure 4. The generated connectome graphs. The number indicates the count of transitions.

The findings obtained using the above connectome graphs (see Figure 4) are as follows.
The irregularity of the transition tables related to mental disorders indicates that autonomic
nervous system dysfunction is widespread in these diseases and has a direct or indirect
effect on heart rhythm. This finding emphasizes the need to manage the cardiovascular
risks of patients with mental disorders. The regularity and localization of the transition
tables related to MI indicate that the heart damage in this disease is related to a specific
region and that this region is evident in certain ECG leads. This plays a critical role in the
early diagnosis and treatment of MI.

Moreover, we have computed the entropy values of these Cardioish sentences ob-
tained from MI and mental disorder classification datasets, and the computed results are
demonstrated in Table 4.
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Table 4. Information entropies of the generated Cardioish sentences.

Dataset Information Entropy Maximum Entropy

MI 3.5637 3.5850 (= log2(12))

Mental disorder classification 3.5752 3.5850 (= log2(12))

The entropies clearly demonstrate that both Cardioish models are complex, given the
presence of 11 and 4 classes in these datasets. However, the mental disorder classification
is more complex than MI detection when using ECG signals.

4. Discussion

In this research, we presented a new symbolic language called Cardioish, along with
a Cardioish-based XFE model. Our proposed XFE model delivered both classification
and explainable results. To demonstrate the high classification capability of the proposed
model, we utilized two publicly available datasets. The Cardioish-based XFE model
achieved classification accuracies of 99.78% on the MI dataset and 99.62% on the mental
disorder classification dataset. These results clearly highlight the strong classification
ability of the proposed model. The introduced Cardioish-based XFE model achieves high
classification performance by combining various metrics to address potential overfitting
concerns. The presented Cardioish-based XFE model uses 10-fold cross-validation (CV)
to validate its performance across different subsets of the data, minimizing the risk of
overfitting to the training dataset. Additionally, the INCA feature selector aims to extract
only the most relevant features and achieve the highest accuracy with the fewest features,
reducing noise and redundancy. By utilizing a simple kNN classifier, which is less prone to
overfitting compared to complex models, the Cardioish-based XFE model achieves even
more robust generalization. Performance metrics derived from two independent datasets
also demonstrate the model’s high generalizability. Moreover, Cardioish and connectome
diagrams provide transparency.

Additionally, a comparative results table is provided in this section to position our
model within the existing literature. The detailed results are presented in Table 5.

Table 5. Comparative results (%) for same datasets.

Study Method XAI Performance Measurements Time Burden

MI dataset

Martin et al. [39]
Long short-term memory neural
network

No Acc: 91.36 Exponential

Pal et al. [40] CardioNet No Acc: 98.92 Exponential

Hernandez et al. [41]
Recurrent neural networks and
distribution parameters

No
Acc: 97.40
Sen: 94.70
Spe: 100.0

Exponential

Kolhar et al. [42] i-AlexNet Architecture No

Acc: 98.20
Pre: 97.50
Rec: 97.20
F1: 97.90

Exponential

Our study Cardioish-based XFE model Yes
Acc: 99.78
Gm: 99.79

Linear

Mental disorder dataset

Tasci et al. [36] Ternary pattern No Acc: 96.25 Linear

Khare et al. [20] Optimized hybrid ensemble model No Acc: 98.15 Exponential

Our study Cardioish-based XFE model Yes
Acc: 99.62
Gm: 99.61

Linear
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Our proposed XFE model delivered both classification and explainable results. To
demonstrate the high classification capability of the model, we utilized two publicly avail-
able datasets. The Cardioish-based XFE model achieved classification accuracies of 99.78%
on the MI dataset and 99.62% on the mental disorder classification dataset, respectively.
These results clearly highlight the robust classification ability of the proposed model. Addi-
tionally, a comparative results table is provided in this section to position our model within
the existing literature. Furthermore, the presented model has linear time complexity and
is competitive with deep learning models, whereas deep learning or optimization-based
models have an exponential time burden. In this aspect, the presented model is a highly
accurate, interpretable, and lightweight ECG classification model. The results are detailed
in Table 5.

The smaller dataset used in this study is the mental disorder detection dataset, which
includes three disorders: Bipolar, Depression, and Schizophrenia. To extract the connectome
graphs for these disorders, we analyzed Bipolar vs. Control, Depression vs. Control, and
Schizophrenia vs. Control cases. The resulting connectome graphs are illustrated in
Figure 5.

  
(a) Bipolar (b) Depression 

 
(c) Schizophrenia 
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Figure 5. The connectome graphs of the mental disorders were utilized in this study. Herein, the
computed transition table related to mental disorders is defined. Figure 5 illustrates the cardiac
connectome diagrams for (a) Bipolar disorder, (b) Depression, and (c) Schizophrenia detection.
The red circles represent Cardioish symbols, while the edges depict the connections between these
symbols. The numbers indicate the counts of the transitions.

The connectome graph (Figure 5) for bipolar disorder, depression, and schizophrenia
shows distinct patterns of connections and transitions between various symbols (corre-
sponding to different ECG leads or regions). According to the obtained connectome dia-
grams, the findings are as follows: The connections in the bipolar disorder graph (Figure 5a)
are relatively spread out and have a more evenly distributed transition pattern between
the nodes. This suggests that bipolar disorder may have a more general or widespread
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effect on the electrical activity of the heart. The presence of more than one bidirectional
arrow between the nodes suggests cyclical or fluctuating activity that may reflect the
alternating phases of mania and depression in bipolar disorder. The depression graph
(Figure 5b) showcases denser connections between certain nodes, especially Ld3, V3A, and
V5L. This suggests that depression has a more localized effect on certain regions of the
heart’s electrical activity. The connectome graph (Figure 5c) for schizophrenia shows a
complex connection pattern with several nodes showing multiple transitions, such as AVR
and Ld2. The presence of more complex interactions and several nodes with higher connec-
tivity may indicate the widespread and multifaceted nature of the effects of schizophrenia
on the autonomic nervous system and cardiac function, or may indicate a cardiac effect
of schizophrenia medications. This complexity may correspond to the diverse and often
disorganized symptoms associated with schizophrenia, which may affect multiple systems
simultaneously. In the MI dataset, there are 11 classes, including 1 control and 10 MI
types. In this phase, to extract the specific graphs of the MIs, we defined 10 cases, which
include the MI type and control classes, to show MI connectome graphs. These graphs are
demonstrated in Figure 6.

  
(a) Anterior Accuracy: 99.99% (b) Anterior Lateral Accuracy: 99.99% 

  
(c) Anterior Septal Accuracy: 99.98% (d) Inferior Accuracy: 99.99% 

  
(e) Inferior Lateral Accuracy: 99.99% (f) Inferior Posterior Accuracy: 100% 
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Figure 6. Cont.
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(g) Inferior Posterior Lateral Accuracy: 100% (h) Lateral Accuracy: 99.99% 

  
(i) Posterior Accuracy: 100% (j) Posterior Lateral Accuracy: 99.99% 
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Figure 6. The identical connectome graphs of the MIs. Herein, the computed transition table related
to MIs are depicted using graphical demonstration to obtain cardiac connectome diagram. Figure 6
showcases the cardiac connectome diagrams for (a) Anterior MI, (b) Anterior Lateral MI, (c) Anterior
Septal MI, (d) Inferior MI, (e) Inferior Lateral MI, (f) Interior Posterior MI, (g) Interior Posterior
Lateral MI, (h) Lateral MI, (i) Posterior MI and (j) Posterior Lateral MI detection. The red circles
represent Cardioish symbols, while the edges depict the connections between these symbols. The
numbers indicate the counts of the transitions.

Figure 6 showcases that all MIs have unique connectome graphs. By using the pro-
posed Cardioish language, the connectome graphs for these MIs have been generated,
making the MI detection process easier. The provided connectomes in Figure 6 are used to
visualize the generated Cardioish sentences. In this aspect, these diagrams have showcased
the transition of the ECG leads.

Cardio connectome/Cardiac connectome diagrams have been proposed in cardiology
to visualize and understand the complex electrical interactions in the heart. Connectome
diagrams are commonly associated with neuroscience, where they map the neural con-
nections in the brain. In this article, cardio connectome diagrams are adapted to show
the relationships between the 12 leads of an ECG and the electrical activity of the heart,
as cardiac diseases have the highest mortality rate. The presented cardiac connectome
diagrams provide us with insights into the structure and condition of the heart.

Creating cardiac connectome diagrams involves converting raw ECG signals into
symbolic representations using the Cardioish language. Cardioish assigns specific symbols
to each ECG lead, effectively converting the complex electrical signals into a sequence of
symbols, or a “Cardioish sentence.” Transition tables are then used to map the transitions
between these symbols and capture the dynamic interaction of electrical impulses as they
propagate through the chambers of the heart. This process converts high-dimensional,
time-series ECG data into a structured format suitable for graphical display and analy-
sis. For example, leads II, III, and aVF focus on the lower part of the heart, while leads
V1 and V2 provide information about the septum region. By integrating data from all
leads, connectome diagrams provide the best model of how electrical signals flow through
various parts of the heart during each cardiac cycle, providing crucial insights into detect-
ing abnormalities.

Connectome diagrams allow patterns to be identified that are associated with spe-
cific cardiac conditions, and we have demonstrated these in this article. By comparing
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connectome diagrams of healthy individuals with those of patients who exhibit cardiac
abnormalities, researchers can identify trends and characteristics that indicate specific
conditions, thus providing more information from the ECG data.

Cardioish and connectome diagrams can also help simplify complex and difficult-to-
interpret ECG data, helping to quickly identify important patterns without being over-
whelmed by the details of ECG waveforms. They also facilitate communication between
medical professionals by providing a clear depiction of cardiac electrical activity.

Connectome diagrams can distinguish between local abnormalities and general dys-
functions by mapping the transitions between channels. For example, a blockage in a
particular coronary artery may only affect certain regions of the heart, resulting in local
changes in the connectome diagrams.

Incorporating connectome diagrams into machine learning models will improve both
performance and interpretability and will also make machine learning methods more
cardiologically meaningful.

By producing diagrams at different stages of a disease or before and after treatment
interventions, it is also possible to visualize improvements or deterioration in the electrical
activity of the heart. This capability provides valuable insights for evaluating the effective-
ness of treatments, adjusting therapies as needed, and providing patients with tangible
evidence of their progress.

Each cardiac condition can produce a unique connectome diagram that effectively acts
as a fingerprint for that condition. Alternatively, a dictionary of these connectomes can be
created that can be easily read by non-cardiologists.

The recommended Cardioish-based XFE models clinical applications have been given
below with two cases.

Case Study 1: A 58-year-old male patient presents to the clinic with chest discomfort,
and ECG data is obtained. The ECG data is processed using the Cardioish-based XFE
model, which produces a Cardioish sentence highlighting significant transitions involving
leads V1S, V2S, and V3A. The connectome plot shows connections concentrated in the
anterior leads.

Interpretation: The physician interprets these findings as indicative of an anterior
myocardial infarction. The visual representation aids in rapid decision-making and prompts
immediate intervention.

Case Study 2: A 43-year-old female patient with a history of depression presents to
the psychiatric ward reporting palpitations. The model analyzes the ECG data to produce
a Cardioish sentence with irregular patterns and a connectivity plot showing widespread
irregular transitions.

Interpretation: A psychiatrist identifies patterns associated with autonomic dysfunc-
tion linked to depressive disorders. This finding enables the interpretation of mental health
conditions from a cardiac perspective.

Integration into Clinical Practice: Physicians can gain an intelligent assistant by incor-
porating the Cardioish model into their diagnostic toolkit through learning the symbolic
language, which simplifies complex ECG data into understandable patterns. Additionally,
the creation of the Cardioish dictionary and its integration into the digital environment will
increase the speed of clinicians’ case resolution and improve accurate diagnosis rates.

Advantages, limitations and future work have also been discussed below.
Advantages:

• The presented Cardioish-based XFE model achieved over 99% accuracy in both MI and
mental disorder classification, highlighting its effectiveness in clinical applications.

• By introducing the Cardioish language, the model not only classifies but also provides
explainable results, which are crucial for clinical decision-making.

• Our model effectively bridges cardiology with connectome theory, offering a new
perspective on understanding the cardiac effects of various diseases. The advantages
of the connectome diagrams are as follows:

◦ By using connectome diagrams, cardiac functions have been effectively mapped.
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◦ ECG signals have 12 leads, and these signals involve complex interactions. Us-
ing Cardioish and Cardioish-based connectome diagrams, the meaning of these
complex interactions has been extracted.

◦ Cardiac connectome diagrams make it easier to understand specific patterns
and abnormalities.

◦ These cardiac diagrams can be utilized as XAI tools and features in machine
learning models to achieve high classification performance.

◦ By integrating connectome theory, commonly used in neuroscience, with cardi-
ology, researchers may gain new insights into how systemic disorders, such as
diabetes, stress, or mental health problems, affect heart function.

◦ These connectomes can also be used to monitor the progression of cardiac disorders
and the efficiency of treatments.

• The recommended lead transformation and transition table-based feature extraction
methods successfully captured essential patterns in ECG signals.

• The presented model generates unique connectome diagrams for each case. In this
aspect, the recommended Cardioish model simplifies the disorder detection processes.

Limitations:

• While the Cardioish language provides explainable results, the interpretation of these
results might still be complex for practitioners without a deep understanding of the
symbolic language.

Future works:

• The proposed Cardioish-based XFE model will be applied to more ECG signal datasets
to develop a comprehensive Cardioish dictionary.

• Tools and guidelines for using Cardioish will be prepared for students and profession-
als to enhance its accessibility.

• The feasibility of real-time application of Cardioish-based models in clinical settings
will be investigated.

5. Conclusions

In this study, the Cardioish-based XFE model was introduced for the classification
and interpretation of ECG signals. The model demonstrated high classification accuracy,
achieving 99.78% on the MI dataset and 99.62% on the mental disorder detection dataset.
These results highlight the model’s effectiveness in accurately identifying various car-
diac conditions.

Moreover, the Cardioish language provided a novel approach to generating explain-
able results, offering a symbolic representation of ECG data that aligns with connectome
theory. This integration was further enhanced by the generation of graph-based hash codes
using Cardioish symbols, allowing for the creation of connectome graphs that visually
represent the interactions and transitions between different ECG leads. These graphs not
only offer insights into the cardiac conditions being analyzed but also enable the generation
of unique identifiers for specific cardiac states through the hash codes derived from the
connectome graphs.

While the obtained high classification performances for both ECG datasets are impres-
sive, it is important to contextualize them within the broader landscape of ECG analysis
research, where numerous studies have reported comparable or even superior performance
using various machine learning and deep learning methodologies. However, the Cardioish
model differentiates itself from other ECG classification models through its emphasis on
interpretability. By incorporating the Cardioish symbolic language and connectome dia-
grams, the model not only delivers robust classification performance (using two separate
multi-lead datasets in this paper) but also provides interpretable results that are essen-
tial for clinical decision-making. Additionally, the computational efficiency of the model,
achieved through the use of a basic kNN classifier, demonstrates its suitability for real-
time applications and resource-constrained environments. Furthermore, the integration of
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connectome theory introduces a new framework for visualizing and understanding the
complex electrical interactions within the heart, enhancing both diagnostic accuracy and
clinical insights. The classification performance was also used to validate the accuracy of
the connectome diagrams and the resulting Cardioish strings. These features collectively
make the Cardioish model a valuable tool in cardiology.
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