
Towards Human-Bot Collaborative Software Architecting with
ChatGPT

Aakash Ahmad

School of Computing and

Communications, Lancaster

University Leipzig, Leipzig, Germany

a.ahmad13@lancaster.ac.uk

Muhammad Waseem
∗

Faculty of Information Technology,

University of Jyväskylä, Jyväskylä,

Finland

mwaseem@jyu.fi

Peng Liang

School of Computer Science, Wuhan

University, Wuhan, China

liangp@whu.edu.cn

Mahdi Fahmideh

School of Business, University of

Southern Queensland, Queensland,

Australia

mahdi.fahmideh@usq.edu.au

Mst Shamima Aktar

School of Computer Science, Wuhan

University, Wuhan, China

shamima@whu.edu.cn

Tommi Mikkonen

Faculty of Information Technology,

University of Jyväskylä, Jyväskylä,

Finland

tommi.j.mikkonen@jyu.fi

ABSTRACT
Architecting software-intensive systems can be a complex process.

It deals with the daunting tasks of unifying stakeholders’ perspec-

tives, designers’ intellect, tool-based automation, pattern-driven

reuse, and so on, to sketch a blueprint that guides software imple-

mentation and evaluation. Despite its benefits, architecture-centric

software engineering (ACSE) suffers from a multitude of challenges.

ACSE challenges could stem from a lack of standardized processes,

socio-technical limitations, and scarcity of human expertise etc.

that can impede the development of existing and emergent classes

of software. Software Development Bots (DevBots) trained on large

language models can help synergise architects’ knowledge with

artificially intelligent decision support to enable rapid architecting

in a human-bot collaborative ACSE. An emerging solution to enable

this collaboration is ChatGPT, a disruptive technology not primarily

introduced for software engineering, but is capable of articulating

and refining architectural artifacts based on natural language pro-

cessing.We detail a case study that involves collaboration between a

novice software architect and ChatGPT to architect a service-based

software. Future research focuses on harnessing empirical evidence

about architects’ productivity and explores socio-technical aspects

of architecting with ChatGPT to tackle challenges of ACSE.

CCS CONCEPTS
• Software and its engineering→ Human-centered comput-
ing; • Computing methodologies → Artificial intelligence; •
Philosophical/theoretical foundations of artificial intelli-
gence; • Social and professional topics→ Empirical studies;

∗
Corresponding author

This work is licensed under a Creative Commons Attribution International

4.0 License.

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0044-6/23/06.

https://doi.org/10.1145/3593434.3593468

KEYWORDS
Software Architecture, ChatGPT, Large Language Models, DevBots

ACM Reference Format:
Aakash Ahmad, Muhammad Waseem, Peng Liang, Mahdi Fahmideh, Mst

Shamima Aktar, and Tommi Mikkonen. 2023. Towards Human-Bot Collab-

orative Software Architecting with ChatGPT. In Proceedings of the Inter-
national Conference on Evaluation and Assessment in Software Engineering
(EASE ’23), June 14–16, 2023, Oulu, Finland. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3593434.3593468

1 INTRODUCTION
Architecture of software-intensive systems enables architects to

specify structural composition, express behavioural constraints, and

rationalise design decisions - hiding implementation complexities

with architectural components - to sketch a blue-print for software

implementation [12]. Architecture-centric Software Engineering

(ACSE) aims to exploit architectural knowledge (e.g., tactics and

patterns), architectural languages, tools, and architects’ decisions

(human intellect) etc. to create a model that drives the implementa-

tion, validation, and maintenance phases of software systems [9]. In

recent years, ACSE approaches have been leveraged to research and

develop emergent classes of software systems such as blockchain ap-

plications and quantum computing services [1]. ACSE approaches

have been proven useful to systematize software development in

an industrial context [9]. Despite its potential, ACSE faces a several

challenges such as mapping stakeholders’ perspectives to archi-

tectural requirements, managing architectural drift, erosion, and

technical debts, or lack of automation and architects’ expertise in

developing complex and emergent classes of software [1, 12]. In

such a context, software architects/engineers may enter a phase

referred to as the ‘lonesome architect’. A lonesome architect requires

non-intrusive support rooted in processes and tools to address the

challenges of ACSE by reusing knowledge and exploiting decision

support to develop software systems [10].

Context and motivation: The process to architect software

systems (a.k.a., ‘architecting process’) covers a number of activi-

ties that support an incremental, process-centric, and systematic

approach to apply ACSE in software development [1, 9]. Empiri-

cism remains fundamental to deriving and/or utilising architecting

processes that can support activities, such as analysis, synthesis,

279

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3593434.3593468
https://doi.org/10.1145/3593434.3593468
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3593434.3593468&domain=pdf&date_stamp=2023-06-14


EASE ’23, June 14–16, 2023, Oulu, Finland Ahmad et al.

and evaluation etc. of software architetures [10]. To enrich the ar-

chitecting process and empower the role of architects, research

and development has focused on incorporating patterns and styles

(knowledge), recommender systems (intelligence), and distributed

architecting (collaboration) in ACSE process. Artificial Intelligence

for Software Engineering (AI for SE) is an active area of research

that aims to synergize solutions of AI and practices of SE to instill

intelligence in the processes and tools for software development

[4, 19]. From an ACSE perspective, the research on AI primarily

focuses on developing decision support systems or development

bots that can assist architects with recommendations about design

decisions, selection of patterns and styles, or predict points of ar-

chitectural failure and degradation [8]. Currently, there is a lack

of research or solutions to enrich the AI-enabled collaborative ar-

chitecting process. Collaborative architecting can unify architects’

knowledge as human intellect and bot’s capability as an intelligent

agent who can lead the architecting process based on human con-

versation and supervision. Such collaboration can allow architects

to delegate their architecting tasks to the bot, supervise the bot via

dialog in natural language(s) to achieve automation, and relieve

architects from undertaking tedious tasks in ACSE.

Objective of the study: Chat Generative Pre-trained Trans-

former (ChatGPT) has emerged as a disruptive technology, rep-

resenting an unprecedented example of a bot, that can engage

with humans in context-preserved conversations to produce well-

articulated responses to complex queries [3, 16]. ChatGPT is not

specifically developed to address software engineering challenges,

however; it is well capable of generating versatile textual speci-

fications including architectural requirements, Unified Modeling

Language (UML) scripts, source code libraries, and test cases [11, 17].

Studies have started to explore the role of ChatGPT in engineering

education, software testing, and source code generation [16, 17].

Considering the benefits of ACSE, this study explores the role of

ChatGPT as a DevBot in the process of collaborative software archi-

tecting. This study aims to understand how ChatGPT can undertake
architecting activities to analyze, synthesize, and evaluate software
architecture in a human-bot collaborative architecting?

Contributions: We followed a process-centric approach [9] and

adopted scenario-based method [6] for ChatGPT-enabled architec-

tural analysis, synthesis, and evaluation of a microservices-based

software. Preliminary results highlight ChatGPT’s capabilities that

include but are not limited to processing an architecture story

(conversed to it by an architect) for articulating architectural re-

quirements, specifying models, recommending and applying ar-

chitectural tactics and patterns, and recommending scenarios for

architecture evaluation. Primary contributions of this study are to:

• Investigate the human-bot collaborative architecting that

can synergize ChatGPT’s outputs and architects’ decisions

to automate ACSE with a preliminary case study.

• Identify the pros and cons of ChatGPT assisted ACSE to

identify issues concerning ethics, governance, and socio-

technical constraints of collaborative architecting.

• Establish foundations for empirically-grounded evidence

about ChatGPT’s capabilities and architects’ productivity in

collaborative architecting (ongoing and future work).

The results can help SE researchers to formulate new hypothe-

ses about the role of ChatGPT in ACSE and investigate human-bot

collaborative architecting of emergent and futuristic software. Prac-

titioners can follow the presented guidelines to experiment with

delegating their tedious tasks of ACSE to ChatGPT.

2 RESEARCH CONTEXT AND METHOD
We contextualize some core concepts (Section 2.1, Figure 1) and

discuss the research method (Section 2.2, Figure 2).

Software
Requirements

Source
Code

Register User
(functionality)

Secure Registration
(quality)

Aarchitecture
Component

Software
Architecture

Analyse Synthesise Evaluate

Software
Architect

Architecting
Porcess

Large Language Model
(LLM)

Training Data

Dialog Classification Translation Text Generation

... ...

... ...
Cohere LaMDA

ChatGPT

Recommendations Stories

Software Development

Data and Model

Domain of Application for LLM-based Bots 

LLM-based Bots

Operationalisation of LLMs

Software architecture = blueprint for software 

Mapping requirements (functionality/quality) to
source code (implementations) etc. as
architectural elements (components).

Architecturally Significant Requirements 
Functionality, Quality, Constraints, etc.

Software Architecting Process = enabling
designers and developers  to follow a structured
and systematic approach via a number of
architcting activities to enable ACSE.

- Analysis (reqirements, constraints, etc.),
- Synthesis (modeling, specification etc.),
- Evaluation (validation, testing, etc.)

Large Language Models (LLMs)
= deep learning methods and algorithms
to recognise, summarise, and generate
content based on knowledge gained
from massive datasets

Use cases of LLMs = Human-Bot
dialog, content classification,
translation, text generation with big
data analytics and processing. etc. 

Bots built on LLMs = agents that can
interact with humans to provide
intelligence and decision support to
human users. 

Domain of application = scenarios
such as recommender systems, story-
telling, and automating and enabling
software development. 

LLM-based
Bots in ACSE

Process for
Architecture 

Figure 1: Context: LLMs, DevBots, Process, and Architecture

2.1 Human-Bot Collaborative Architecting
SoftwareArchitecture as described in the ISO/IEC/IEEE 42010:2011
standard, aims to abstract complexities rooted in source code-based

implementations with architectural components and connectors

that represent a blueprint of software applications, services, and

systems to be developed [12]. To enable software architects with a

systematic and incremental design of software architectures, there

is a need for architecting process - also referred to as the process

for architecting software [1, 9]. Architecting process can have a

number of fine-grained architecting activities that support a separa-

tion of architectural concerns in ACSE. For example, the architect-

ing process reported in [9] and illustrated in Figure 1 is derived from

five industrial projects and incorporates three architecting activities

280



Towards Human-Bot Collaborative Software Architecting with ChatGPT EASE ’23, June 14–16, 2023, Oulu, Finland

namely architectural analysis, architectural synthesis, and architec-
tural evaluation. For instance, the architectural evaluation activity

in the process focuses on identifying, prioritizing, and documenting

architectural scenarios as use cases to evaluate the designed archi-

tecture [6]. In the architecting process, an architect can extract and

document the requirements that express the required functionality

and desired quality of the software, referred to as Architecturally

Significant Requirements (ASRs). ASRs need to be mapped to source

code implementations via an architectural model that can be vi-

sualized or textually specified using architectural languages, such

as the UML or Architectural Description Languages (ADLs) [13].

Architecture models that reflect the ASRs need to be evaluated

using an architecture evaluation method, such as Software Archi-

tecture Analysis Method (SAAM) or Architecture Tradeoff Analysis

Method (ATAM) [6].

Software Development Bots (DevBots) represent conversa-
tional agents or recommender systems, driven by AI, to assist soft-

ware engineers by offering certain degree of automation and/or

inducing intelligence in software engineering process [14, 15]. One

such example of a DevBot is the recently introduced GitHub Copi-

lot, an “AI pair programmer”, that can process natural language

descriptions provided by programmers to generate corresponding

source code in several programming languages [14]. From the soft-

ware architecting perspective, the role of AI in general and DevBots

to be specific is limited to bots answering questions or proposals

about providing recommendations to manage architectural erosion

and maintenance [8]. There is no research that investigates or any

solution that demonstrates an architecting process by incorporating

DevBots to enable human-bot collaborative architecting of software

systems. Such a collaboration can enrich the architecting process

that goes beyond questions & answers and recommendations, and

synergizes architects’ intellect (human rationale) and bot’s intel-

ligence (automated architecting process) in ACSE. Collaborative

architecting can empower novice designers or architects, who lack

experience or professional expertise to specify their requirements

in natural language and DevBots can translate them into ASRs,

architectural models, and evaluation scenarios.

2.2 Research Method
It comprises of three main phases, detailed below, as in Figure 2.

Phase 1 - Developing the Architecture Story: Software archi-
tecture story refers to a textual narration of the envisaged solution,

i.e., software to be developed by expressing the core functionality,

desired quality (i.e., ASRs) and any constraints in a natural language.

The story is developed based on analyzing software domain that

represents an operational context of the system or collection of

scenarios operationalised via a software solution. The architect can

analyze the domain and identify scenarios to write an architecture

story that is fed to ChatGPT via a prompt for phase 2.

Phase 2 - Enabling Collaborative Architecting based on

three activities adopted from [9], detailed below.

• Architectural analysis is driven by architecture story fed to

ChatGPT for articulating the ASRs via (i) automatically gen-

erated and recommended requirements (by ChatGPT), or

analyse

Developing
Architecture Story

Collaborative Architecting
Process

Empirical
Validations

Existing Scope  Future Work 

Architect Story

Domain

represent

writes
Analysis Synthesis Evaluation

Architect

ChatGPT automate

supervise SE teams

Scenarios

feedback

Survey

Ethics
Governance

Productivity

...

Figure 2: Overview of the Research Method

(ii) manual specification of the requirements (by the archi-

tect), or (iii) a continuous dialog between ChatGPT and the

architect to refine (add/remove/update) the requirements.

• Architectural synthesis consolidates the ASRs to create an

architecture model or representation that can act as a point

of reference, visualizing the structural (de-)composition and

runtime scenarios for the software. We suggest the UML as

a representative example for architectural synthesis due to

a number of factors, such as available documentation, ease

of use, diversity of diagrams, tool support, and wide-scale

adoption as a language to represent software systems [13].

• Architectural evaluation evaluates the synthesized architec-

ture against ASRs based on scenarios from the architectural

story. Architectural evaluation is conducted incrementally

for full or partial validation of the architecture based on use

cases or scenarios from ASRs. We used the Software Archi-

tecture Analysis Method (SAAM) to supervise ChatGPT for

evaluating the architecture [6].

Phase 3 - Conducting the Empirical Validations complements

the initial two phases with empirical validations of collaborative

architecting as an extension of this study, outlining future work.

The existing scope aims to explore and present the role of ChatGPT

in human-bot collaborative software architecting (in Section 3).

Future work on empirically grounded guidelines to understand a

multitude of socio-technical issues associated with ChatGPT-driven

architecting is discussed later (in Section 5).

3 COLLABORATIVE ARCHITECTING
This section details the process of collaborative architecting demon-

strated with a case study for scenario-based exemplification as

shown in Figure 3. The case study aims to develop a software

application named CampusBike that allows campus visitors to ‘reg-

ister’, ‘view available bikes’, ‘reserve a bike’, ‘make payments’, and

‘view usage reports’ etc. for eco-friendly mobility in and around the

campus. The architect has a working knowledge of software design
(UML, patterns etc.), implementation (programming and scripting

languages), architecture scenarios, and evaluation methods to de-

sign and develop the CampusBike application [2]. Figure 3 provides

an overview of the collaborative architecting process with three

architecting activities adopted from [9] and using SAAM as the

architecture evaluation method [6]. Figure 4 - Figure 6 show specific

examples of the interaction between the architect and ChatGPT to

collaboratively undertake each of the three activities namely archi-

tecture analysis, architecture synthesis, and architecture evaluation

as shown in Figure 3 with additional details in [2]

281



EASE ’23, June 14–16, 2023, Oulu, Finland Ahmad et al.

Architect

[Engineer/Developer]

Architecture Story

[Textual Scenarios]

system must allow user to view bikes available nearby
and enable reservation of bike instantly and securely

A

B

C

"view via location
proximity"

"under X
seconds"

"encrypt
reservation

token "

Function Quality
Constraints

Analysis

Registration: mail or SMS
Instant: <= 60 sec
Secure: encrypted

refine

B

C

A

refine story

Synthesis

Model Pattern
TacticStyle

user: U register: R

time (<=90 second)

caching

Evaluation

Architectural
Scanarios

Evaluation
Metric

A

B

A

B

A B C

show

ChatGPT

[Large Language Model]

type story
[write ASRs] evaluate archtecture

[validate ASRs]

specify architeture 
[model ASRs]

Architecture
Process

Architecture
Story

Architecture
Analysis

Architecture
Synthesis

Architecture
Evaluation

Scenarios Requirements Model

Validation

Process
Abstraction

Process
Example

CampusBike
[Case Study]

Figure 3: Overview of the Collaborative Architecting Process

3.1 Formulating the Architecture Story
Architecture story refers to a textual narration of the envisaged so-

lution, i.e., software to be developed by expressing the core function-

ality and any constraints as textual narrations. As per the research

method in Figure 2, the story is developed based on analysing soft-

ware domain that represents an operational context of the system

or collection of scenarios operationalized via a software solution.

The architect can analyze the domain and identify any scenarios

to write an architecture story, fed to ChatGPT, that sets the foun-

dation for architectural analysis activity in the process. A detailed

architecture story is available at [2], with its sample snippet and

two scenarios highlighted below.

Specify functional, non-functional requirements, and any
relevant constraints for the campus bike application

Here are some example functional and non-functional
requirements, as well as constraints, for the Campus Bike
application:

Architect

ChatGPT

...
... ...

Functionality Quality Constraints

location
proximity

within X seconds

Dialog

reservation token encryption

Registration

View Bikes Reserve Bike

location privacy

Response Time Security

Scalability

Data
Minimisation

Consent
EnforcementData

Transfer 

[conversational interaction of architect with ChatGPT]

Figure 4: Formulating and Refining the Requirements

3.2 Architectural Analysis
During architectural analysis, the focus is to specify ASRs as re-

quired functionality (e.g., view available bikes) and desired quality

(e.g., response time < N) along with any constraints (e.g., compli-

ance with relevant data security policies) of CampusBike software.

ChatGPT is capable of outlining the ASRs or any necessary con-

straints if queried by the architect. However, ChatGPT expressed

the ASRs and constraints that were refined (add, remove, and mod-

ify any requirements) by the architect. For example, the ‘Reserve

Bike’ requirement articulated by ChatGPT read as: ‘... system must
allow user to view bikes available nearby and enable reservation of the
bike instantly and securely’. The architect refined the requirements:

After narrating the architecture story, Figure 4 shows architects’

query and ChatGPT’s response (human-bot collaboration) to spec-

ify the required functionality, desired quality, and any constraints

(i.e., ASRs) to complete architectural analysis. ASRs are iteratively

refined via human-bot dialog to complete architectural analysis [2].

3.3 Architectural Synthesis
The ASRs are synthesized into an architectural specification that

can be expressed with a modeling language like UML or other

architectural languages [13]. The architect used UML class and

component diagrams to represent the overall architecture and fine-

grained representation of the architectural design. During synthesis,

the UML class diagramwas refined with the application of singleton

pattern to ‘UserLogin’ class. Singelton helped to restrict a single

login session of the user across the devices. Figure 5 shows the

architect’s instruction for ChatGPT’s to create the script for UML

class diagram. Additional dialog between the two enabled appli-

cation of singleton pattern, caching tactic, and data minimisation

constraint on class diagram, presented in [2].

3.4 Architectural Evaluation
We used the SAAMmethod [6] to evaluate the synthesized architec-

ture, as illustrated in Figure 6. For example, the architect specifies

the application of SAAM to evaluate the ‘View Bike’ component.

ChatGPT presents the scenario for evaluating the ‘View Bike’ com-

ponent individually and also scenarios where it interacts with other

components. Using SAAM, ChatGPT identified and prioritized the

scenarios to evaluate the ASRs, i.e., three prioritized scenarios each

282



Towards Human-Bot Collaborative Software Architecting with ChatGPT EASE ’23, June 14–16, 2023, Oulu, Finland

Craete plantuml script for UML class diagram for Campus
Bike system

1

Refine plantuml script and apply
singelton pattern to User Login 

2 3 Refine plantuml script and apply
caching tactic to View Bikes

Apply data minimisation to User
Location 

4

Here's an example PlantUML script for a class diagram
for the Campus Bike System:

Architect

ChatGPT1

PlantUML script for
UML Class Diagram

2

Script updated with Singleton
pattern applied on User Login

3

Script updated withCaching
tactic applied to View Bikes

Script updated with Data
Minimisation on User Location

View
Cache

Repository

Login
Client_2

Client_1

Login

Client

Singelton

@startuml
class
UserLogin { }
...
@enduml

4

Repository

minimise

User
 Data

Figure 5: Modeling and Refining the Architecture Design

to evaluate the functionality (e.g., view bikes), quality (e.g., response

time < X), and constraints (e.g., data minimization).

Apply the Software Architecture Evaluation Method (SAAM)
to evaluate the ViewBike component of the CampusBike

1 Architect

To apply SAAM scenario to evaluate the "View Bikes"
feature in the Campus Bike System, you can follow these
steps:

1

Overall Evaluation

Functionality
Quality

Constraints

View Bike
Component

Classify and Prioritise
Evaluation Scenarios

View Bike
Evaluation Individual

Scenario
Scenario

Interaction

Evaluation Report
Classified and Prioritised
Evaluation Scaenarios

Evaluation of Individual and
Interacting Scaerios

Evaluation Report for ASRs and
Constraints

2 List Individual Scenarios and Interacting
Scenarios for Evaluation 

3 Share the list of functionality, quality and
constrainst that have been evaluated

2 3

Figure 6: Evaluating the Architecture

4 RELATEDWORK
We review the relevant existing research on AI for SE and ACSE

(Section 4.1) and the role of ChatGPT in SE (Section 4.2).

4.1 AI in Software Engineering and Architecting
The research on synergizing AI and SE can be generally classified

into two dimensions namely AI for SE (artificial intelligence for

software engineering) and SE for AI (software engineering for artifi-

cial intelligence) [19] [4]. Considering the AI for SE perspective, Xie

[19] argued that SE research needs to go beyond traditional efforts

of applying AI for tool-based automation and pattern selection with

an exploration of methods that instil intelligence in software engi-

neering processes and solutions. Specifically, SE solutions need to

maintain the so-called ‘intelligence equilibrium’ – i.e., unifying and

balancing machine intelligence and human intellect – in processes,

patterns, and tools etc. for emergent classes of software, such as

blockchain and quantum applications [18]. Barenkamp et al. [4]
combined the findings of a systematic review and interviews with

software developers to investigate the role of AI techniques in SE

processes. The results of their study pinpoint three areas where

SE solutions need intelligence to tackle (i) automation of tedious

and complex activities such as code debugging, (ii) big data analyt-

ics to discover patterns, and (iii) evaluation of data in neural and

software-defined networks. Considering AI for software architect-

ing, Herold et al. [8] investigated existing research and proposed a

conceptual framework for the application of machine learning to

mitigate architecture degradation. From the SE process perspective,

an empirical study reported by Nguyen et al. [14] (investigating

Github Copilot) and a tool (Chatbot named SOCIO) developed by

Pérez-Soler et al.[15] highlight the growing impacts and emerging

challenges of using bots in software modeling and programming.

4.2 ChatGPT Assisted Software Engineering
From the SE perspective, ChatGPT is viewed as an unprecedented

example of a chatbot that can produce well-articulated responses to

complex queries. However, it remains an unexplored area in terms

of its potential and perils in the context of software development

processes [5, 7]. Most recently, a number of proposals and exper-

imental findings indicate that the research on ChatGPT focuses

on supporting engineering education [11, 16], software program-

ming [3, 7], and testing [17]. Avila-Chauvet et al. [3] detailed how

conversational dialogs of a programmer with ChatGPT enable a

human-bot assisted development of an online behavioral task using

HTML, CSS, and JavaScript source code. They highlighted that al-

though ChatGPT requires human oversight and intervention, it can

write well-scripted programming solutions and reduces the time

and effort of a developer during programming. The narrative ex-

pressed in [7] advocates for an incremental process (human dialog

with ChatGPT) to enable genetic programming - JavaScript code

to solve the traveling salesman problem. In addition to developing

the source code, a couple of studies have focused on testing and

debugging with ChatGPT [11, 17]. Sobania et al. [17] evaluated the

performance of ChatGPT in automated bug fixing.

Conclusive summary This study complements the most recent

research efforts on software test automation and bug fixing with

ChatGPT [17] but focuses on architecture-centric development

for software systems. Considering AI for SE [19], collaborative

architecting can enrich ACSE process by synergizing architects’

knowledge with bot’s capabilities to architect software systems.

5 DISCUSSION AND VALIDITY THREATS
We highlight some socio-technical issues of collaborative architect-

ing (Section 5.1) and potential threats to validity (Section 5.2).

5.1 Socio-Technical Issues of ChatGPT in ACSE
The socio-technical aspects refer to a unified perspective on issues

such as what can be ‘social’ concerns and what are the ‘technical’
limitations of collaborative architecting.

Response Variation: In the context of human-bot conversa-

tional dialogs, ChatGPT may produce varied responses for exact

same queries. For example, we observed that a query such as ‘...
what architectural style can be best suited to CampusBike system’ may

yield varied responses, such as microservices, layered, client-server

etc. architecture can be best suited for the system. This and alike

variation in recommendations or scripted artifacts (UML script, ASR

specification etc.) can impact the consistency of architecting pro-

cess and ultimately varied analysis, synthesis, and evaluation of the

architecture. One of the solutions to minimize response variations is

an iterative dialog with ChatGPT to refine its output and architects’

oversight to ensure that architectural artifacts are consistent.

Ethics and Intellectual Property: Textual specifications, ar-
chitecture specific scripts, and source codes etc. articulated by Chat-

GPT could give rise to ethical issues or in some cases copyright or

283



EASE ’23, June 14–16, 2023, Oulu, Finland Ahmad et al.

intellectual property infringements. For example, ChatGPT gener-

ated script for a component (getLocation) that senses user location

in CampusBike system may lead to leakage of user location privacy

and non-compliant software with regulatory guidelines (GDPR etc.)

that must be dealt with vigilance. In such cases, the role of the

architect is critical to ensure the generated architecture does not

violate ethics or intellectual property rights (if any).

Biased Outputs: The biases in outputs of such conversational

bots can be attributed to a number of possible aspects including but

not limited to input, training data, and/or algorithmic bias. From

an architectural perspective, recommendation bias about specific

architectural modeling notation, tactic, pattern, or style etc. may

be based on its widespread adoption or bias in training data. Archi-

tectural recommendations (specific style), design decisions (pattern

selection), or validation scenarios (evaluation method) may suffer

such bias to produce sub-optimal artifacts in ACSE.

5.2 Threats to Validity
These represent the limitations, constraints, or flaws in the study

that affect the generalization, replicability, and validity of results.

Internal validity examines the extent to which any systematic

error (bias) is present in the design, conduct, and analysis etc. of

the study. To design and conduct this study, and considering the

internal validity, we followed a systematic approach and utilized

a well-known architecting process [9] and architecture evaluation

method [6]. The case study based approach combined with incre-

mental architecting (Figure 3) helped us to analyze and refine the

study.

External validity examines whether the findings of a study

can be generalized to other contexts. We only experimented with

a single case study of moderate complexity that can confine the

study’s generalization. Scenarios with the increased complexity of

architecting process (cross-organisational development), class of

software to be developed (mission-critical software), and human

expertise (novice/experienced engineers) can affect the external

validity of this research. Future work is planned to validate the

process of collaborative architecting by engaging teams of archi-

tects to understand the extent to which external validity can be

minimized.

Conclusion validity determines the degree to which the con-

clusions reached by the study are credible or believable. In or-

der to minimize this threat, we followed a three-step process (Fig-

ure 2) to support a fine-grained process to architect the software

and validate the results (future work). Moreover, a case study

based approach was adopted to ensure scenario-based demonstra-

tion of the study results. However, some conclusions (e.g., archi-

tect’s productivity, ChatGPT’s efficacy) can only be validated with

more experimentation and real context scenarios of collaborative

architecting.

6 CONCLUSIONS AND FUTURE RESEARCH
This research investigates the role of ChatGPT to assist the archi-

tects who in ACSE process. The research advocates that in the

context of AI for SE, traditional efforts of applying AI for tool-based

automation should focus on a broader perspective, i.e., enriching

existing processes by instilling intelligence in them via efforts like

human-bot collaborative architecting. The case study reflects a case

of (i) how a software can be architected with ChatGPT and (ii)

what factors need to be considered in collaborative architecting.

Variation in responses and artifacts, types of ethical implications,

level of human decision support/supervision, along with legal and

socio-technical issues must be considered while integrating Chat-

GPT in ACSE. The research requires an empirical understanding of

architects’ productivity in developing software with ChatGPT.

Needs for future research: We plan to extend this study to

explore human feedback and validation (i.e., architects’ perspec-

tive) and integrate ChatGPT in a process to develop software for

quantum computing systems. More specifically, quantum software

engineering has emerged as a quantum specific genre of SE that

faces a lack of human expertise to synergize the skills of engineer-

ing software and knowledge of quantum physics. We are currently

working on engaging a number of software development teams

with diverse demography (e.g., geo-distribution, type of expertise,

level of experience, class of software) in controlled experiments to

architect software and document architects’ responses.

ACKNOWLEDGMENTS
This work is funded by the University of Jyväskylä, Finland research

grant, and the NSFC China with grant number 62172311.

REFERENCES
[1] Aakash Ahmad, Arif Ali Khan, Muhammad Waseem, Mahdi Fahmideh, and

Tommi Mikkonen. 2022. Towards process centered architecting for quantum soft-

ware systems. In Proceedings of the 1st IEEE International Conference on Quantum
Software (QSW). IEEE, 26–31.

[2] Anonymous. 2023. Replication Package: Towards Human-Bot Collaborative

Software Architecting with ChatGPT. In https://anonymous.4open.science/ r/
ChatGPT4SA-2B61.

[3] Laurent Avila-Chauvet, Diana Mejía, and Christian Oswaldo Acosta Quiroz. 2023.

ChatGPT as a Support Tool for Online Behavioral Task Programming. SSRN
preprint SSRN:4329020 (2023).

[4] Marco Barenkamp, Jonas Rebstadt, and Oliver Thomas. 2020. Applications of AI

in classical software engineering. AI Perspectives 2, 1 (2020), 1.
[5] Ali Borji. 2023. A Categorical Archive of ChatGPT Failures. arXiv preprint

arXiv:2302.03494 (2023).
[6] LilianaDobrica and Eila Niemela. 2002. A survey on software architecture analysis

methods. IEEE Transactions on Software Engineering 28, 7 (2002), 638–653.

[7] Fernando Doglio. 2022. The Rise of ChatGPT and the Fall of the Software

Developer — Is This the Beginning of the End? https://tinyurl.com/3mxrfmjh

[8] Sebastian Herold, Christoph Knieke, Mirco Schindler, and Andreas Rausch. 2020.

Towards Improving Software Architecture Degradation Mitigation by Machine

Learning. In Proceedings of the 12th International Conference on Adaptive and
Self-Adaptive Systems and Applications (ADAPTIVE). IARIA, 36–39.

[9] Christine Hofmeister, Philippe Kruchten, Robert L Nord, Henk Obbink, Alexander

Ran, and Pierre America. 2007. A general model of software architecture design

derived from five industrial approaches. Journal of Systems and Software 80, 1
(2007), 106–126.

[10] Johan F Hoorn, Rik Farenhorst, Patricia Lago, and Hans Van Vliet. 2011. The

lonesome architect. Journal of Systems and Software 84, 9 (2011), 1424–1435.
[11] Sajed Jalil, Suzzana Rafi, Thomas D LaToza, Kevin Moran, and Wing Lam. 2023.

ChatGPT and Software Testing Education: Promises & Perils. arXiv preprint
arXiv:2302.03287 (2023).

[12] Philippe Kruchten, Henk Obbink, and Judith Stafford. 2006. The past, present,

and future for software architecture. IEEE Software 23, 2 (2006), 22–30.
[13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony

Tang. 2012. What industry needs from architectural languages: A survey. IEEE
Transactions on Software Engineering 39, 6 (2012), 869–891.

[14] Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s

code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories (MSR). IEEE, 1–5.

[15] Sara Pérez-Soler, Esther Guerra, and Juan de Lara. 2018. Collaborative modeling

and group decision making using chatbots in social networks. IEEE Software 35,
6 (2018), 48–54.

284

https://anonymous.4open.science/r/ChatGPT4SA-2B61
https://anonymous.4open.science/r/ChatGPT4SA-2B61
https://tinyurl.com/3mxrfmjh


Towards Human-Bot Collaborative Software Architecting with ChatGPT EASE ’23, June 14–16, 2023, Oulu, Finland

[16] Junaid Qadir. 2022. Engineering Education in the Era of ChatGPT: Promise

and Pitfalls of Generative AI for Education. TechRxiv preprint techrxiv.21789434
(2022).

[17] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An

Analysis of the Automatic Bug Fixing Performance of ChatGPT. arXiv preprint
arXiv:2301.08653 (2023).

[18] Eoin Woods. 2016. Software architecture in a changing world. IEEE Software 33,
6 (2016), 94–97.

[19] Tao Xie. 2018. Intelligent software engineering: Synergy between AI and soft-

ware engineering. In Proceedings of the 11th Innovations in Software Engineering
Conference (ISEC). ACM, 1–1.

285


	Abstract
	1 Introduction
	2 Research Context and Method
	2.1 Human-Bot Collaborative Architecting
	2.2 Research Method

	3 Collaborative Architecting
	3.1 Formulating the Architecture Story
	3.2 Architectural Analysis
	3.3 Architectural Synthesis
	3.4 Architectural Evaluation

	4 Related Work
	4.1 AI in Software Engineering and Architecting
	4.2 ChatGPT Assisted Software Engineering

	5 Discussion and Validity Threats
	5.1 Socio-Technical Issues of ChatGPT in ACSE
	5.2 Threats to Validity

	6 Conclusions and Future Research
	Acknowledgments
	References

