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Abstract: This paper presents a preconditioning scheme to improve thecondition
number of integrated radial-basis-function (RBF) matrices in solving large-scale
2D elliptic problems. The problem domain is discretised using a Cartesian grid,
over which integrated RBF networks are employed to represent the field variable.
The present preconditioner is constructed from 1D integrated RBF networks along
grid lines. Test problems defined on rectangular and non-rectangular domains are
employed to study the performance of the scheme.
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1 Introduction

Integrated RBF networks (IRBFNs), which have the ability toavoid the reduction
in convergence rate caused by differentiation, were successfully developed for the
solution of partial differential equations (PDEs) [Mai-Duy and Tran-Cong (2005);
Mai-Duy and Tanner (2005); Mai-Duy and Tran-Cong (2006)]. IRBFN-based
methods were shown to work well with both scattered and gridded data points.
This paper is concerned with a preconditioning scheme designed for the latter in
solving large-scale problems such as porous rocks under high hydraulic pressure.

2 Integrated radial-basis-function networks incorporating Cartesian grids

RBFNs allow a conversion of a functionf from a low- to a high-dimensional space
in which the function can be expressed as a linear combination of RBFs

f (x) =
N

∑
i=1

w(i)G(i)(x), (1)

where the superscript(i) is the summation index,x the input vector,N the number
of RBFs,{w(i)}N

i=1 the set of weights to be found, and{G(i)(x)}N
i=1 the set of RBFs.
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This paper is concerned with second-order differential problems in two dimensions.
The integral approach uses RBFNs (1) to represent the second-order derivatives of
the field variableu in a given PDE. Approximate expressions for the first-order
derivatives and the variable itself are then obtained through integration as

∂ 2u(x)

∂x2
j

=
N

∑
i=1

w(i)G(i)(x), (2)

∂u(x)

∂x j
=

N

∑
i=1

w(i)H(i)(x)+C1(xk), (3)

u(x) =
N

∑
i=1

w(i)H
(i)

(x)+ x jC1(xk)+C2(xk), (4)

whereC1(xk) andC2(xk) are the constants of integration which are univariate func-
tions of the variable other thanx j (i.e. xk with k 6= j); H(i)(x) =

∫
G(i)(x)dx j and

H
(i)

(x) =
∫

H(i)(x)dx j.

Using IRBFNs to represent the variations of the constants ofintegration and then
expressing them in terms of the nodal values ofC1 andC2, one has

∂u(x)

∂x j
=

N

∑
i=1

w(i)H(i)(x)+
Nk

∑
i=1

P(i)(xk)C
(i)
1 , (5)

u(x) =
N

∑
i=1

w(i)H
(i)

(x)+
Nk

∑
i=1

x jP
(i)(xk)C

(i)
1 +

Nk

∑
i=1

P(i)(xk)C
(i)
2 . (6)

For convenience of presentation, expressions (2), (5) and (6) can be rewritten as

∂ 2u(x)

∂x2
j

=
N+2Nk

∑
i=1

w(i)G(i)(x), (7)

∂u(x)

∂x j
=

N+2Nk

∑
i=1

w(i)H(i)(x), (8)

u(x) =
N+2Nk

∑
i=1

w(i)H
(i)

(x), (9)

where
{G(i)(x)}N+2Nk

i=N+1 ≡ {0}2Nk
i=1,

{H(i)(x)}N+Nk
i=N+1 ≡ {P(i)(xk)}

Nk
i=1, {H(i)(x)}N+2Nk

i=N+Nk+1 ≡ {0}Nk
i=1,

{H
(i)

(x)}N+Nk
i=N+1 ≡ {x jP

(i)(xk)}
Nk
i=1, {H

(i)
(x)}N+2Nk

i=N+Nk+1 ≡ {P(i)(xk)}
Nk
i=1,
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{w(i)}N+Nk
i=N+1 ≡ {C(i)

1 }Nk
i=1, and{w(i)}N+2Nk

i=N+Nk+1 ≡ {C(i)
2 }Nk

i=1.

We seek an approximate solution in terms of nodal values of the field variable. To
do so, multiple spaces of the network weights will be transformed into the phys-
ical space. Collocating (9) at the nodal points associated with the x j grid lines,{

x(i)
}N

i=1, leads to

T̃




w̃
Ĉ1

Ĉ2


 = ũ, (10)

whereT̃ is aN×(N+2Nk) matrix,w̃ =
(
w(1)

, · · · ,w(N)
)T

, Ĉ1 =
(

C(1)
1 , · · · ,C(Nk)

1

)T
,

Ĉ2 =
(

C(1)
2 , · · · ,C(Nk)

2

)T
, andũ =

(
u(x(1)), · · · ,u(x(N))

)T
. The transformation ma-

trix T̃ has the entries̃Tli = H
(i)

(x(l)) for 1≤ l ≤ N and 1≤ i ≤ (N + 2Nk). It is

noted that at a grid nodeP(i)(x( j)
k ) is equal to 0 ifi 6= j and 1 ifi = j.

Solving (10) for the coefficient vector yields



w̃
Ĉ1

Ĉ2


 = T̃

+ũ, (11)

whereT̃ + is the generalised inverse of̃T .

The values of first- and second-order derivatives ofu at the nodal points associated
with thex j grid lines can then be computed in terms of nodal variable values as

∂̃u
∂x j

= H̃ T̃ +ũ, (12)

∂̃ 2u

∂x2
j

= G̃ T̃ +ũ, (13)

whereH̃ andG̃ areN×(N +2Nk) matrices, derived from (8) and (7), respectively.
Their corresponding entries arẽHli = H(i)(x(l)) andG̃li = G(i)(x(l)) for 1≤ l ≤ N
and 1≤ i ≤ (N +2Nk).

Expressions (12) and (13) can be rewritten in compact form

∂̃u
∂x j

= D̃
′

jũ, (14)

∂̃ 2u

∂x2
j

= D̃
′′

j ũ, (15)
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whereD̃
′

j = H̃ T̃ + andD̃
′′

j = G̃ T̃ + are the first and second-order differentiation
matrices in the physical space.

Consider a Poisson equation∇2u = b with Dirichlet boundary conditions. Using
point collocation, it can be transformed into

Ã ũ(θ ) =
(
D̃

′′

1(η ,θ ) + D̃
′′

2(η ,θ )

)
ũ(θ ) = b̃(η), (16)

whereÃ is the system matrix, andη andθ the two sets of indices representing the
interior points. The integral solution procedure involvescomputing the transforma-
tion matrixT̃ and the system matrix̃A . From a computational point of view, it is
desirable to havẽT andÃ with low condition numbers.

3 Present preconditioning scheme

Consider the transformation system (10). The numerical stability of this system is
dependent on the condition number of̃T . In the case that̃T is ill-conditioned,
special treatments are required. Here, we adopt a preconditioning approach. Both
sides of (10) are multiplied by a matrix, denoted bỹB, that is close to the inverse
of T̃ .

We propose the use of 1D-IRBFNs to construct the preconditioner B̃. For 1D-
IRBFNs, the approximations are constructed “locally” on each grid line. On a grid
line that is parallel to thex j axis, the field variableu is sought in the form

u(x j) =
M

∑
i=1

w(i)h
(i)

(x j)+ x jc1 + c2, (17)

whereM is the number of RBF centres (interior and boundary points) on the grid
line (M = N j for a rectangular domain). It can be seen that the number of RBFs
used in (17) is much less than that in (2) (i.e.M ≪ N). One can describe the
transformation system for the 1D case as

T̂




ŵ
c1

c2


 = û, (18)

or



ŵ
c1

c2


 = T̂

+û, (19)

whereT̂ + is the generalised inverse of dimensions(M +2)×M, andŵ andû the
vectors of lengthM. The firstM rows of T̂ + are associated with the values ofw
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at the grid points and we use this sub-matrix to construct thepreconditionerB̃. In
the case of rectangular domains, the assembly process can besimply carried out by
means of Kronecker tensor products. Assume that the grid node is numbered from
bottom to top and from left to right. The preconditioner willtake the form

B̃ = T̂ (1 : N j, :)⊗1, (20)

for x j ≡ x1, and

B̃ = 1⊗ T̂ (1 : N j, :), (21)

for x j ≡ x2. In (20) and (21),1 represents a unit matrix of dimensionsN2×N2

andN1×N1, respectively. For the case of non-rectangular domains, the assembly
process is similar to that used in the finite-element method.

The transformation system (10) can be preconditioned as

B̃T̃




w̃
Ĉ1

Ĉ2


 = B̃ũ. (22)

It leads to



w̃
Ĉ1

Ĉ2


 =

(
B̃T̃

)+
B̃ũ. (23)

4 Numerical results

The proposed preconditioning scheme is examined numerically for both rectangu-
lar and non-rectangular domains.

4.0.1 Rectangular domain

Consider a square domain[0,1]2. Condition numbers of the transformation matrix
are computed for uniform grids,[3× 3, 5× 5, · · · , 95× 95]. The growth in the
condition number is reduced fromO(N2.71) (unpreconditioning) toO(N1.74) (pre-
conditioning). AtN = 9025, the proposed preconditioning scheme produces the
condition number lower by about 4 orders of magnitude than the original system.

To study the numerical stability of the system matrix̃A , we also employ conven-
tional RBFN techniques to provide a basis for the assessment. Conventional tech-
niques seek the solution in the RBF space so that their solution procedures involve
computing the system matrix only. The field variableu is decomposed into RBFs,
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which are then differentiated to obtain expressions for itsderivatives (differentiated
RBFNs (DRBFNs)). We employ a set of RBFs for DRBFNs which is exactly the
same as that for IRBFNs (i.e. both approaches have the same number of RBFs,
centres and widths (grid spacing)). Grid employed are[7×7,11×11, · · · ,71×71].
The present system matrix is much better conditioned. The condition number grows
at the rate ofO(N1.10) andO(N1.62) for IRBFNs and DRBFNs, respectively. At
N = 5041, the gap is about 4 orders of magnitude between the two RBF techniques
(i.e. 4.89×103 for IRBFNs and 2.58×107 for DRBFNs).

4.0.2 Non-rectangular domain

The domain of interest is a circular domain of radius 1/2. Theproblem domain is
embedded in a uniform Cartesian grid and the exterior grid nodes are removed. We
generate boundary nodes through the intersection of the grid lines and the boundary.
The preconditioned system has a much lower condition number. Its rate is reduced
from O(N2.52) (unpreconditioning) toO(N1.86) (preconditioning). The condition
number of the system matrix is in the range of 4.72×101 to 4.38×103 for grids,
[7×7,13×13, · · · ,61×61].

5 Concluding remarks

This paper presents a simple and effective preconditioningscheme for IRBFN-
based Cartesian-grid methods. Numerical results obtainedshow that the IRBFN
matrix condition number is significantly improved.
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