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Abstract: This paper presents a preconditioning scheme to improveotidition
number of integrated radial-basis-function (RBF) masiae solving large-scale
2D elliptic problems. The problem domain is discretisechgsa Cartesian grid,
over which integrated RBF networks are employed to repitebenfield variable.
The present preconditioner is constructed from 1D integk&BF networks along
grid lines. Test problems defined on rectangular and notamgalar domains are
employed to study the performance of the scheme.
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1 Introduction

Integrated RBF networks (IRBFNSs), which have the abilityatoid the reduction
in convergence rate caused by differentiation, were sstalgsdeveloped for the
solution of partial differential equations (PDEs) [Mai-{pand Tran-Cong (2005);
Mai-Duy and Tanner (2005); Mai-Duy and Tran-Cong (2006)RBFN-based
methods were shown to work well with both scattered and gdddata points.
This paper is concerned with a preconditioning scheme dedidor the latter in
solving large-scale problems such as porous rocks undieryidgraulic pressure.

2 Integrated radial-basis-function networksincorporating Cartesian grids

RBFNs allow a conversion of a functiodnfrom a low- to a high-dimensional space
in which the function can be expressed as a linear combmafiRBFs

f(x) = _§w<i>e<”<x>, (1)

where the superscripit) is the summation index the input vectorN the number
of RBFs,{w()1N | the set of weights to be found, a6 (x)} , the set of RBFs.
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This paper is concerned with second-order differentiablenms in two dimensions.
The integral approach uses RBFNs (1) to represent the sexrded derivatives of
the field variableu in a given PDE. Approximate expressions for the first-order
derivatives and the variable itself are then obtained #indategration as
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whereC; (x¢) andC;(xi) are the constants of integration which are univariate func-
tions of the variable other thax (i.e. xc with k # j); HV(x) = [G"(x)dx; and
AY(x) = [HO(x)dx;.

Using IRBFNSs to represent the variations of the constaniategration and then
expressing them in terms of the nodal value€pandC,, one has
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For convenience of presentation, expressions (2), (5) @nchh be rewritten as
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We seek an approximate solution in terms of nodal valueseofigd variable. To
do so, multiple spaces of the network weights will be tramsfed into the phys-
ical space. Collocating (9) at the nodal points associati the x; grid lines,

{x(i)}iN:l, leads to
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G
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whereZ is aN x (N +2Ny) matrix, W= (w(¥), ... ,W(N))T,Clz (Cgl),--- ,CgNk)> ,
. T
C,= (Cél),--- ,CéNk)> ,andti = (u(x®),-- ,u(x(N)))T. The transformation ma-

trix .7 has the entriesf; — ﬁ(")(x(')) for1<l<Nand1<i< (N+2Ny). ltis
noted that at a grid nodé(”(xf(’)) is equal to 0ifi # j and 1 ifi = j.
Solving (10) for the coefficient vector yields
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where 7+ is the generalised inverse .

The values of first- and second-order derivatives af the nodal points associated
with thex; grid lines can then be computed in terms of nodal variableesahs

% = AT, (12)
|
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where# and¥ areN x (N+2Ny) matrices, derived from (8) and (7), respectively.
Their corresponding entries aze; = HO (x()) and%; = GO (x)) for 1< <N
and 1<i < (N+2Ny).

Expressions (12) and (13) can be rewritten in compact form
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where.@} — # 7" and @}' — 4 7+ are the first and second-order differentiation
matrices in the physical space.

Consider a Poisson equati@ifu = b with Dirichlet boundary conditions. Using
point collocation, it can be transformed into

/g = (% 6T %m,e)) Ue) = ben), (16)

whered/ is the system matrix, angl and 8 the two sets of indices representing the
interior points. The integral solution procedure involeesputing the transforma-
tion matrix.7 and the system matrix/. From a computational point of view, it is
desirable to haveZ and.¥ with low condition numbers.

3 Present preconditioning scheme

Consider the transformation system (10). The numericailgtaof this system is
dependent on the condition number &f. In the case that” is ill-conditioned,
special treatments are required. Here, we adopt a preeamidg approach. Both
sides of (10) are multiplied by a matrix, denoted 48y that is close to the inverse
of 7.

We propose the use of 1D-IRBFNs to construct the precomrditi@. For 1D-
IRBFNSs, the approximations are constructed “locally” ontegrid line. On a grid
line that is parallel to the; axis, the field variable is sought in the form

ZIW U (X)) + XjC1 + Ca, 17)

whereM is the number of RBF centres (interior and boundary pointsihe grid
line (M = N; for a rectangular domain). It can be seen that the number ¢fsRB
used in (17) is much less than that in (2) (.M < N). One can describe the
transformation system for the 1D case as

(W
Tl a | =0 (18)
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or
V/\\I —
a | =77, (29)
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where 7+ is the generalised inverse of dimensidg+ 2) x M, andw andu the
vectors of lengtiM. The firstM rows of 7+ are associated with the valueswof
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at the grid points and we use this sub-matrix to construcptheonditioner@. In
the case of rectangular domains, the assembly process camilg carried out by
means of Kronecker tensor products. Assume that the grid isogumbered from
bottom to top and from left to right. The preconditioner wake the form

#B=7T(1:Nj,) @1, (20)

for x; =x¢, and

~ —

B=12 7 (1:N;,2), (21)

for Xj = x2. In (20) and (21),1 represents a unit matrix of dimensioNs x N
andN; x N1, respectively. For the case of non-rectangular domaimsatisembly
process is similar to that used in the finite-element method.

The transformation system (10) can be preconditioned as

W
37| C | =%u (22)
C
It leads to
W +
G | = (@ij F. (23)
G

4 Numerical results

The proposed preconditioning scheme is examined numigricalboth rectangu-
lar and non-rectangular domains.

4.0.1 Rectangular domain

Consider a square domaj@, 1)2. Condition numbers of the transformation matrix
are computed for uniform gridg3 x 3, 5x 5, ---, 95x 95. The growth in the
condition number is reduced fro@(N%"1) (unpreconditioning) t@®@(N174) (pre-
conditioning). AtN = 9025, the proposed preconditioning scheme produces the
condition number lower by about 4 orders of magnitude tharotiiginal system.

To study the numerical stability of the system matwX we also employ conven-
tional RBFN techniques to provide a basis for the assessn@amiventional tech-
niques seek the solution in the RBF space so that their salptiocedures involve
computing the system matrix only. The field variables decomposed into RBFs,



which are then differentiated to obtain expressions faldisvatives (differentiated
RBFNs (DRBFNSs)). We employ a set of RBFs for DRBFNs which iaatly the
same as that for IRBFNs (i.e. both approaches have the sambenwf RBFs,
centres and widths (grid spacing)). Grid employed[@re7,11x 11,---,71x 71].
The present system matrix is much better conditioned. Thdition number grows
at the rate oO(N*1%) and O(N%2) for IRBFNs and DRBFNSs, respectively. At
N = 5041, the gap is about 4 orders of magnitude between the tvot&Biniques
(i.e. 489x 10° for IRBFNs and 258 x 10’ for DRBFNSs).

4.0.2 Non-rectangular domain

The domain of interest is a circular domain of radius 1/2. prablem domain is
embedded in a uniform Cartesian grid and the exterior grates@re removed. We
generate boundary nodes through the intersection of tdigeis and the boundary.
The preconditioned system has a much lower condition nuniiseate is reduced
from O(N252) (unpreconditioning) t@(N'8®) (preconditioning). The condition
number of the system matrix is in the range of2x 10! to 4.38 x 10° for grids,
[7x7,13x13,---,61x 61].

5 Concluding remarks

This paper presents a simple and effective preconditiosititeme for IRBFN-
based Cartesian-grid methods. Numerical results obtahed that the IRBFN
matrix condition number is significantly improved.
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