

VARIwise: towards autonomous irrigation and a grower's guide

Dr Alison McCarthy National Centre for Engineering in Agriculture Institute for Agriculture and the Environment mccarthy@usq.edu.au

A Research Centre of the University of Southern Queensland

Irrigation control system

A Research Centre of the University of Southern Queensland

SOUTHERN QUEENSLAN

'VARIwise' irrigation control system

A Research Centre of the University of Southern Queensland

fulfilling lives

SOUTHERN QUEENSLAND

UNIVERSITY OF

VARIwise control framework

- Use sensed data to determine irrigation application/timing
- 'VARIwise' simulates and develops irrigation control strategies at spatial resolution to 1m² and any temporal resolution
- Control strategies based on difference between measured and desired performance

Outline

Previous research projects PhD on VARIwise development Postdoc on field evaluation Current research project Fertigation/irrigation optimisation VARIwise Lite Spatial resolution of data collection and control Related NCEA projects Artificial intelligence Sensor refinement Future research

Grower tools, other crops

Previous research – development of control strategies

- 1. Iterative learning control
 - Uses the error between the *measured* and *desired* soil moisture deficit after the previous irrigation,
 - It is adjust the irrigation volume of the next irrigation event.
 - 'Learns' from history of prior error signals to make better adjustments.
- 2. Model predictive control
 - A *calibrated* crop model simulates and predicts the next required irrigation, i.e. volumes and timings
 - > according to evolving crop/soil/weather input
 - Separately for all cells/zones
 - can choose alternative end of season targets

Previous research – spatial resolution data requirements

Previous research – sensor development for surface irrigation

A Research Centre of the University of Southern Queensland

Previous research – sensor development for overhead irrigation

Overhead-mounted platform for centre pivots/lateral moves

A Research Centre of the University of Southern Queensland

Previous research – adaptive control of surface irrigation

Does not allow high resolution of irrigation application control

fulfilling lives

Previous research – surface irrigation trial

A Research Centre of the University of Southern Queensland

Previous research – overhead irrigation trial

dł	Îllu
NO	EA

	Control strategy	Performance objective	Data input
А	MPC	Maximise yield	WSP
В	MPC	Maximise yield	WS
С	MPC	Maximise yield	WP
D	MPC	Maximise CWUI	WSP
E	MPC	Maximise CWUI	WS
F	MPC	Maximise CWUI	WP
G	ILC	Fill soil water profile	WS
Н	ILC	Achieve set soil water deficit	WS
Ι	FAO-56	Fill soil water profile	WS
J	FAO-56	Achieve set soil water deficit	WS

USQ UNIVERSITY OF SOUTHERN QUEENSLAND

Previous research – overhead irrigation results

A Research Centre of the University of Southern Queensland

Current project – spatial resolution of measurement and control

Current project – irrigation/fertigation control

A Research Centre of the University of Southern Queensland

Current project – simulation studies

- Monitoring weather, soil, plant and irrigation infiltration
- Simulation studies in VARIwise:
 - How many soil/plant/irrigation measurements
 - Irrigation/fertigation optimisation
 - Which performance objective

USQ

Current project – VARIwise Lite

- Pre-run lookup tables of irrigation scenarios
- Different regions, soils, weather profiles
- OZCOT model will be used
- Calibration checked using industry data

A Research Centre of the University of Southern Queensland

Other NCEA research

Control system:

- Sensing remote advance rate detection, soil-water, nitrogen status
- Control strategies artificial intelligence for irrigation/fertigation optimisation

A Research Centre of the University of Southern Queensland

Advance rate – infield camera

A Research Centre of the University of Southern Queensland

Future research

- Sensors, control strategies need to be integrated as a user tool for growers:
 - Grower guide for general management
 - Software and hardware integrated with commercial automated variable-rate hardware
 - Application to other crops

VERSITY OF

OUTHERN QUEENSLAND

Conclusion

Control strategies and sensors for automated, site-specific irrigation management

- Evaluated irrigation control strategies on surface and overhead irrigation systems
- Need to develop grower tools for industry to use the control system

A Research Centre of the University of Southern Queensland

Acknowledgements

- Cotton Research and Development Corporation
- Nigel Hopson, Lindsay Evans, Neil Nass and Ian Speed for providing field trial sites
- Dr Malcolm Gillies for surface irrigation model support
- Dr Jochen Eberhard for data collection assistance

