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ABSTRACT

The landscape of healthcare is undergoing a transformative shift with the emer-
gence of artificial intelligence (Al) and machine learning (ML) technologies, particu-
larly in remote patient monitoring systems. These systems offer real-time data on
patients’ health conditions, enabling healthcare professionals to make informed de-
cisions and improve patient outcomes. This doctoral thesis presents a comprehen-
sive investigation into the role of Al in enhancing patient monitoring systems, focusing
on innovations in federated learning, reinforcement learning, and machine unlearn-
ing across various healthcare settings including remote patient monitoring, personal-
ized activity tracking, mental health facilities, and predictive monitoring. The research
outcomes reveal significant advancements in remote patient monitoring through Al-
powered systems, enabling early anomaly detection and personalized care. FedStack,
a novel federated learning architecture designed for personalized activity monitoring
in remote patient monitoring systems, is introduced. Experimental results demonstrate
its effectiveness in surpassing traditional approaches and optimizing sensor placement
for activity recognition. Furthermore, multi-agent deep reinforcement learning mod-
els empower healthcare professionals to predict patient behaviors and take proactive
interventions. The exploration of multimodality fusion and graph-enabled techniques
demonstrates the potential of comprehensive smart healthcare systems that integrate
diverse data sources and enable informed decision-making. Additionally, the thesis
introduces a Graph-enabled Reinforcement Learning framework for time series fore-
casting, leveraging graphical neural networks to outperform traditional models in dy-
namic environments. The thesis also explores the emerging field of machine unlearn-
ing, investigating techniques to address privacy and security concerns. Explainable
Al frameworks, such as QXAI, contribute to the reliability and interpretability of patient
monitoring systems, fostering trust and collaboration between Al and human experts.
FRAMU, a federated reinforcement learning framework with attention-based machine
unlearning, is introduced, demonstrating its effectiveness in improving model perfor-
mance and preserving privacy in dynamic data environments. QXAIl, an explainable Al
framework for quantitative analysis in patient monitoring, achieves state-of-the-art re-
sults in heart rate prediction and activity classification, enhancing model interpretability.
While the research demonstrates promising outcomes, it acknowledges certain limita-
tions, including data scale, explainability, and data privacy concerns. Future directions
such as dynamic clustering, predictive vital sign monitoring, ensemble methods, and
continued progress in machine unlearning are proposed to address these limitations
and propel Al-driven patient monitoring systems further. This thesis makes significant
contributions to the domain of Al-driven patient monitoring systems, paving the way
for personalized, proactive, and effective healthcare delivery globally. It posits that the
transformative potential of Al in healthcare is within reach, with continued research and
innovation shaping the future of patient care, where Al-driven monitoring becomes an
indispensable tool in enhancing patient well-being and transforming healthcare prac-
tices.
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CHAPTER 1: INTRODUCTION

1.1 Background

The contemporary healthcare landscape is undergoing a profound and extensive trans-
formation, primarily driven by the rapid emergence of artificial intelligence (Al) and
machine learning (ML) technologies [1]. This transformation is marked by a fundamen-
tal paradigm shift that transforms various healthcare domains, with patient monitoring
systems prominently positioned as a particularly auspicious application [2]. The ad-
vent of these cutting-edge technologies has prompted a fundamental reconfiguration
of conventional healthcare practices and processes. In this introductory chapter, we
provide an overview of this thesis. We delve into the challenges that have spurred our
research motivation, explore the key technologies essential for addressing these chal-
lenges, discuss our research questions and objectives, and outline the structure of this
thesis.

The significance of Al and ML in this transformative journey is of utmost impor-
tance and merits comprehensive examination [3]. These state-of-the-art tools exem-
plify the technological innovation within the healthcare sector. Al, in particular, has
demonstrated an exceptional capacity for pattern recognition, data analysis, and pre-
dictive modelling, rendering it an invaluable asset in unravelling the intricacies of patient
health [4]. As a subset of Al, ML excels in the development of algorithms and statisti-
cal models that facilitate automatic learning from data, subsequently empowering the
generation of insights and predictions [5]. Collectively, these technologies serve as the
catalysts for propelling innovative solutions within the healthcare landscape.

Amidst the manifold applications of Al and ML in healthcare, patient monitoring
systems have emerged as pivotal focal points of transformation [2]. These systems,
underpinned by Al and ML, have transcended the boundaries of conventional patient
care. They now function as indispensable conduits for the delivery of real-time and con-
tinuous patient health data, endowing healthcare professionals with an unprecedented
ability to make informed decisions [6].

Machine Learning (ML) and its specialized subset, Deep Learning, have played
instrumental roles in the revolutionization of patient monitoring. ML, as a subset of Al,
entails the development of algorithms and statistical models that empower computer
systems to learn from data and make predictions or decisions grounded in that data [7].
Deep Learning, a subfield of ML, leverages neural networks comprising multiple layers
to automatically extract intricate features from complex data, rendering it exceptionally
well-suited for tasks encompassing image and speech recognition [8].

In the healthcare domain, these technologies have enabled the analysis of vast
datasets encompassing medical images and clinical records. This analytical capability
aids in the detection of anomalies, prediction of disease outcomes, and tailoring of
personalized treatment plans [9]. Deep Learning, in particular, has garnered notable
success in image-based diagnostics, including the detection of tumours in medical
images such as X-rays and MRls [10].



The trajectory of patient monitoring traces its origins back to the early 20th century
when rudimentary techniques for measuring physiological parameters laid the foun-
dation for today’s sophisticated technologies [11]. After this nascent phase, remark-
able advancements in medical sensors, data acquisition methods, and communication
technologies have fueled the evolution of patient monitoring systems [12]. These inno-
vations have empowered healthcare professionals to continuously monitor vital signs
and health parameters, thereby facilitating the early detection of anomalies and timely
interventions [13].

Reinforcement Learning, as a subfield of machine learning, plays a pivotal role
in the realm of patient monitoring. Diverging from traditional machine learning ap-
proaches where models are trained on labelled data, reinforcement learning centres
on training intelligent agents to make sequential decisions by interacting with a dy-
namic environment [14]. In the context of healthcare, reinforcement learning is har-
nessed to develop intelligent agents capable of adapting treatment strategies based
on patient responses and evolving health conditions [15]. These agents undergo train-
ing to optimize actions, including medication dosages or treatment schedules, with the
overarching objective of maximizing patient well-being while simultaneously minimiz-
ing associated risks and costs [16]. Reinforcement learning also finds application in
optimizing resource allocation within healthcare settings, such as staff and equipment
assignment, to maximize patient outcomes [17].

Patient monitoring systems hold immense promise due to their inherent capacity to
facilitate proactive interventions. Traditionally, healthcare has predominantly adhered to
a reactive approach, with treatment initiated in response to the manifestation of symp-
toms or complications [18]. However, Al-enabled patient monitoring systems harbour
the potential to recalibrate this paradigm by enabling the early detection of deviations
from baseline health parameters [19]. This early detection, underpinned by Al’'s pre-
dictive capabilities, lays the foundation for timely and precisely targeted interventions.
Consequently, patient outcomes stand to be significantly enhanced, and the overall
quality of healthcare is poised for elevation [20].

The recent digital revolution has further transformed patient monitoring by seam-
lessly integrating monitoring devices into electronic health records and hospital infor-
mation systems [21]. This integration serves to streamline data management pro-
cesses and augments overall patient care efficiency. Furthermore, the ascent of Al
technologies, propelled by groundbreaking advancements in machine learning and
deep learning algorithms, has propelled patient monitoring systems to unprecedented
heights [22]. Al-driven remote patient monitoring systems have evolved beyond their
initial role as mere data collectors; they have now transitioned into intelligent platforms
capable of generating predictive insights [23]. These systems, through the analysis of
extensive datasets, identification of patterns, and precise predictions, harbour the po-
tential to revolutionize patient care through the delivery of personalized and proactive
interventions [24].

A nascent yet critical concept within the healthcare landscape is Machine Unlearn-
ing, particularly relevant in the context of patient monitoring. While Al models excel in
their ability to learn from data, they may inadvertently accumulate outdated, sensitive,
or irrelevant information over time, compromising both privacy and model performance.
Machine unlearning emerges as a pragmatic solution to address this challenge by de-
veloping techniques to systematically remove such data, thereby ensuring compliance
with stringent privacy regulations while concurrently maintaining model relevance [25].



Initial Phase

Machine Learning
Foundations

* Remote patient monitoring using

artificial intelligence: Current state,

applications, and challenges
 FedStack: Personalized activity
monitoring using stacked federated
learning
* Clustered FedStack: Intermediate
Global Models with Bayesian
Information Criterion

Intermediate Phase

Towards Adaptive
intelligence for
monitoring and

forecasting

* Al-Driven Patient Monitoring with

Multi-Agent Deep Reinforcement
Learning

* PDRL: Multi-Agent based

Reinforcement Learning for Predictive
Monitoring

* Multimodality Fusion for Smart

Healthcare: a Journey from Data,
Information, Knowledge to Wisdom

Advanced Phase
Machine Unlearning

* QXALI: Explainable AI Framework for

Quantitative Analysis in Patient
Monitoring Systems

« Exploring the Landscape of Machine

Unlearning: A Survey and Taxonomy

* FRAMU: Federated Reinforcement

Learning with Attention-based
Machine Unlearning Framework

* Graph-enabled Reinforcement
Learning for Time Series Forecasting
with Adaptive Intelligence

Figure 1.1: Journey from Machine Learning to Machine Unlearning

In the context of healthcare, where data privacy and model accuracy are of paramount
importance, machine unlearning assumes a vital role in safeguarding patient infor-
mation and ensuring that Al-driven patient monitoring systems remain adaptable and
responsive to the ever-evolving dynamics of healthcare environments [26]. This con-
cept inherently empowers models to shed obsolete data, thereby perpetuating their
effectiveness within dynamic healthcare ecosystems.

The integration of Al and ML technologies into patient monitoring systems signifies
an important journey in the evolution of healthcare [27]. These technologies transcend
the limitations of traditional healthcare paradigms by facilitating real-time data-driven
decision-making and enabling interventions that are not only timely but also profoundly
personalized [28]. Subsequent sections of this discourse will delve into the intricate
ways in which Al and ML are reshaping patient monitoring, focusing on machine learn-
ing and deep learning, historical antecedents of patient monitoring, the role of rein-
forcement learning, the digital revolution in patient monitoring, and the nascent yet
critical concept of machine unlearning within the healthcare landscape. Each of these
facets contributes uniquely to the overarching transformation, thereby reinforcing the
assertion that Al and ML constitute the fulcrum upon which modern healthcare pivots.
Fig. [1.1] presents the journey from machine learning to machine unlearning.

1.2 Challenges in Al-driven remote patient monitoring

While Al-driven remote patient monitoring systems offer immense promise, they also
present several critical challenges that must be addressed to fully harness their poten-
tial and ensure their effective integration into healthcare practices.

1.2.1 Privacy and security in healthcare

Remote patient monitoring (RPM) holds great potential for revolutionizing healthcare by
enabling real-time monitoring of patients in non-clinical environments. However, the de-
centralized nature of RPM, where data is collected from various remote sources, raises



concerns about patient privacy and data security [29]. Ensuring the confidentiality and
integrity of sensitive patient information is paramount, as any breach or unauthorized
access could lead to severe consequences for patient trust and overall healthcare op-
erations [30]. Developing robust and secure solutions that protect patient data through-
out its transmission and storage in RPM systems is a pressing challenge that demands
advanced cryptographic techniques [31], secure communication protocols, and compli-
ance with stringent regulatory standards like HIPAA (Health Insurance Portability and
Accountability Act) and GDPR (General Data Protection Regulation) [32].

1.2.2 Personalized activity monitoring and heterogeneous data analysis

Al-driven remote patient monitoring systems have the potential to offer personalized
insights and interventions based on individual patient data [33]. However, achieving
personalized activity monitoring is challenging due to the diversity of data sources and
the heterogeneity of patient data [34]. Healthcare data may come from various devices,
electronic health records, wearable sensors, and patient-reported information, leading
to variations in data formats, resolutions, and quality [35]. Addressing this challenge
requires the development of advanced algorithms capable of analyzing heterogeneous
data sources and generating personalized recommendations [36]. Effective solutions
call for the implementation of robust data preprocessing techniques, feature extraction
methods, and machine learning algorithms adept at handling the intricacies of diverse
data modalities [37].

1.2.3 Predictive monitoring and model validation

The realm of predictive monitoring in patient care strives to anticipate critical health
events and facilitate proactive interventions [13]. However, the development of accurate
and reliable predictive models presents formidable challenges that necessitate exten-
sive research, large-scale data collection, and rigorous model validation. Healthcare
data is often susceptible to noise, missing values, and imbalanced distributions, posing
additional complexities in training robust predictive models [38]. Ensuring the gener-
alizability and reliability of these predictive models across diverse patient populations
and healthcare settings is essential to mitigate potential biases and provide predic-
tions that are trustworthy [39]. The interpretability of predictive models also assumes
a pivotal role, enabling healthcare professionals to comprehend and trust the model’s
predictions, thereby fostering a symbiotic Al-human partnership in patient care [40].

1.2.4 Ethical considerations in healthcare

The application of Al-driven remote patient monitoring in mental health facilities in-
troduces distinctive ethical considerations [41]. While Al technologies offer valuable
insights and the potential for early detection of mental health issues, striking a deli-
cate balance between providing personalized care and upholding patient privacy and
consent is of paramount importance [42]. Ensuring that Al models are ethically respon-
sible, culturally sensitive, and respectful of patient autonomy and confidentiality holds
great significance in mental health monitoring [43].



1.3 Research motivation

The challenges encountered in the realm of Al and machine learning have led to the
emergence of a novel paradigm known as machine unlearning (MU). In sectors such
as healthcare and finance, the training data for Al models often contains sensitive
information. Stricter regulations like GDPR and HIPAA necessitate data handling in
compliance with privacy laws. Here, machine unlearning becomes indispensable to
remove specific data points, ensuring alignment with data protection regulations.

Another significant challenge arises as new data accumulates over time. Models
must dynamically adapt to integrate fresh information. However, reliance on outdated
or irrelevant data can significantly hamper performance. This is where machine un-
learning steps in as a solution, enabling models to shed obsolete data and thus remain
adaptable and responsive. To illustrate, consider a weather forecasting model learning
from historical weather patterns. As time passes, some historical data might become
irrelevant due to changing climate patterns. Machine unlearning can assist the model
in discarding outdated data, ensuring accuracy in predicting current weather trends.

In contexts like healthcare, transparency, and interpretability of Al decisions hold
paramount importance. A lack of insight into Al decision-making processes can erode
trust. Here, machine unlearning presents an avenue to enhance interpretability by
focusing on significant and easily understandable features. For example, in a credit
scoring model, machine unlearning could identify and eliminate obscure variables con-
tributing to biased credit decisions, promoting a more transparent and equitable as-
sessment process.

Furthermore, the adaptability of Al models to shifting circumstances is crucial. Un-
learning can facilitate the process of "untraining” models from behaviours or patterns
that are no longer relevant. Consider a recommendation system for streaming plat-
forms. If user preferences change due to evolving trends, unlearning can help the
model adjust from outdated user behaviour patterns, ensuring it offers more accurate
and current content suggestions.

Machine unlearning directly addresses the pressing need to enhance privacy and
accuracy within Al methodologies. As the research community continues to apply Al
methods across diverse domains, challenges related to explainability, interpretability,
and privacy are becoming increasingly apparent. These challenges require solutions
at a granular level of implementation. Consequently, a pivotal question arises: how
can machine unlearning effectively tackle these challenges? The answer lies in lever-
aging established methods like Federated Learning (FL), Reinforcement Learning, Ex-
plainable Al, and Attention mechanisms, as machine unlearning offers a promising
approach.

In the context of this thesis, the journey begins by exploring the efficacy of machine
learning methodologies and their performance in patient monitoring systems. This ex-
ploration then extends to the innovative concept of machine unlearning, as depicted in
Fig.[1.1] This concept adeptly addresses challenges linked with outdated, private, and
irrelevant data. Simultaneously, it strives to achieve a heightened degree of explain-
ability in model outcomes. By navigating this trajectory, the thesis aims to shed light
on the transformative potential of machine unlearning and its pivotal role in propelling
forward Al-driven remote patient monitoring systems.



1.4 Exploring key technologies

In the landscape of Al-powered patient monitoring systems, a set of crucial technolo-
gies profoundly shape its contours. Together, these technologies chart the course of
this thesis journey from machine learning to machine unlearning. This section sheds
light on the essence of each technology, laying the groundwork for their integration into
Al-driven remote patient monitoring systems.

1.4.1 Federated learning

Federated learning is an innovative approach within the realm of machine learning that
offers unique collaborative capabilities. It allows multiple entities, such as hospitals
or healthcare institutions, to work together to train a machine learning model without
the need to centralize or share their data. This approach has become increasingly
important due to growing concerns about data privacy, especially when dealing with
sensitive healthcare information [44].

Traditional machine learning models often require centralized data [45]. This means
that data from various sources needs to be collected, stored, and processed in a single
location. While this centralized approach can be effective for model training, it raises
significant privacy concerns [46]. Healthcare data, in particular, is highly sensitive and
subject to strict privacy regulations. Centralizing this data increases the risk of data
breaches, unauthorized access, and privacy violations [47].

Federated learning offers a solution to this privacy challenge. Instead of pooling
all the data into a central server, federated learning conducts model training using
localized data. Here’s how it works:

« Initialization: A global machine learning model is initialized on a central server.

* Local Training: The local data, which remains on the individual entities’ servers
(e.g., hospitals), is used to train the global model locally. This means that each
entity trains the model using its own data without sharing it with others.

* Model Update: After local training, only the model updates (not the data) are
shared with the central server.

» Aggregation: The central server aggregates these model updates to improve the
global model. This aggregation process typically involves mathematical opera-
tions like averaging or weighted averaging.

* lterative Process: Steps 2 to 4 are repeated iteratively, with the model getting
better after each round of updates.

In healthcare, federated learning has gained significant traction for applications
such as remote patient monitoring and personalized healthcare recommendations.
Here’s how it benefits the healthcare domain:

* Preserving Data Privacy: Healthcare institutions can keep patient data on their
premises, ensuring data privacy and compliance with regulations like HIPAA (Health
Insurance Portability and Accountability Act) in the United States. Data never
leaves the entity’s server, reducing the risk of data breaches [48].
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+ Collaborative Insights: Federated learning allows multiple healthcare providers
to collaborate on model training without sharing sensitive patient data [49]. This
collaboration results in a collective pool of knowledge that caters to the unique
health profiles and conditions of different patient populations.

» Personalized Healthcare: By training models on a diverse range of patient data
from various sources, federated learning enables the development of highly per-
sonalized healthcare recommendations and interventions. These recommenda-
tions can be tailored to an individual’s specific needs and medical history [50].

1.4.2 Reinforcement learning

Reinforcement learning is a dynamic and powerful approach to intelligent decision-
making in environments that are constantly changing [51]. At its core, it involves an
agent, which can be thought of as an Al entity, interacting with an environment to
maximize cumulative rewards [52]. What sets reinforcement learning apart from other
machine learning paradigms, like supervised learning, is that it doesn’t rely on pre-
labelled data [93]. Instead, it learns and improves by trial and error through continuous
interactions with its environment.
Reinforcement learning consists of several key components [54]:

1. Agent: This is the Al entity or system that is making decisions within the environ-
ment.

2. Environment: The environment is everything the agent interacts with. It could be
a physical space, a virtual world, or even a software application.

3. Actions: These are the choices or decisions the agent can make within the en-
vironment. Actions can range from simple movements to complex strategies.

4. Rewards: Rewards are numerical values that the agent receives from the en-
vironment based on the actions it takes. They serve as feedback to the agent,
indicating how good or bad its decisions were.

5. Policy: The policy is the strategy or set of rules that the agent uses to determine
its actions. The goal of the agent is to learn an optimal policy that maximizes its
cumulative rewards over time.

In the field of healthcare, reinforcement learning holds great promise. Here are
some ways in which it can be applied [55]:

» Optimizing Patient Treatment: Reinforcement learning can be used to find the
most effective treatment strategies for individual patients. By considering patient
data, medical history, and responses to previous treatments, the agent can adapt
and optimize treatment plans over time.

» Fine-Tuning Drug Dosages: Determining the correct dosage of medication for
a patient can be a complex task, as it depends on various factors. Reinforcement
learning agents can learn to adjust drug dosages based on patient feedback,
ensuring that treatments are both effective and safe.



* Resource Allocation: In healthcare settings, resources such as staff, equip-
ment, and hospital beds need to be allocated efficiently. Reinforcement learning
can help in making real-time decisions about resource allocation to maximize
patient outcomes and minimize costs.

» Patient Monitoring and Predictive Interventions: Within patient monitoring
systems, reinforcement learning agents analyze patterns of patient behaviour
and vital signs. By learning from this data, they can predict when interventions
are needed and initiate them proactively. This personalized and preemptive care
approach can lead to improved health outcomes and better patient experiences.

The core equation in reinforcement learning is the Bellman equation, which de-
scribes how an agent should update its value estimates based on the rewards it re-
ceives [56]. It's often written in recursive form as:

Q(s,a) = R(s,a) +7)_ P(s']s,a) - max Q(s', a') (1.1)

Where:
- (s, a) is the expected cumulative reward of taking action « in state s.
- R(s, a) is the immediate reward of taking action « in state s.
- v is the discount factor, which represents how much the agent values future rewards.
- P(s'|s,a) is the probability of transitioning to state s’ when taking action « in state s.
- max, Q(s', a’) represents the maximum expected cumulative reward in the next state
s" over all possible actions a'.

Reinforcement learning algorithms, like Q-learning and deep reinforcement learning
using neural networks, use variations of the Bellman equation to learn optimal policies
and make decisions that maximize cumulative rewards in complex and dynamic envi-
ronments.

1.4.3 Explainable Al

Explainable Al (XAl) stands as a beacon of transparency in the midst of the opacity
often associated with the decision-making processes of Al models [57]. The "black box”
nature of deep learning models, a term used to describe their inscrutable functioning,
can impede the widespread adoption of Al systems, especially in critical domains like
healthcare [58].

At the heart of Explainable Al is the aspiration to enable Al models to articulate the
rationale behind their decisions [59]. This transparency is achieved through various
techniques, including feature attribution, attention mechanisms, and rule-based expla-
nations [60]. These techniques unveil the factors that influence the model’s choices,
making the decision-making process more comprehensible.

One common method within XAl is feature attribution, which quantifies the impor-
tance of each feature in the model’s decision [61]. This can be represented mathemat-
ically as:

OPrediction

Feature Attribution(z;) = m (1.2)



Where:
- Feature Attribution(z;) represents the contribution of feature x; to the model’s predic-
tion.
- Ofredellon s the partial derivative of the model’s prediction with respect to feature ;.

In the context of neural networks, attention mechanisms are used to identify which
parts of the input data are most relevant for a particular task [62]. Mathematically,
attention mechanisms can be expressed as:

Attention(Q, K, V') = softmax (QKT) -V (1.3)
) Y \/@
Where:
- Attention(Q, K, V') computes the weighted sum of values (V') based on the compati-
bility of queries (@) and keys (K).
- The softmax function normalizes the dot product between queries and keys, making
it a set of attention scores.
- /d}, is a scaling factor to stabilize the gradients.

Rule-based explanations involve creating human-understandable rules or condi-
tions that the Al model follows when making decisions. For example, a rule might
state that if a patient’s temperature exceeds a certain threshold, a specific medical
action should be taken.

In healthcare, the transparency facilitated by XAl establishes a harmonious partner-
ship between Al algorithms and human caregivers [63]. This partnership instils trust
and promotes more enlightened decisions, as healthcare professionals can understand
and validate the reasoning behind Al-generated recommendations.

1.4.4 Attention mechanism

The attention mechanism, a cornerstone in the architecture of deep learning models,
possesses the remarkable ability to direct the model’s focus towards relevant aspects
of input data [62]. This selective focus enhances both model performance and inter-
pretability [64]. Widely applied across domains such as natural language processing,
computer vision, and sequential data analysis [65, |66], attention mechanisms have
gained significant recognition.

At its core, the attention mechanism aims to weigh different parts of input data to
varying degrees, emphasising the most relevant elements. This is typically achieved
through a process involving queries (@), keys (K), and values (V'), often referred to as
the "query-key-value” mechanism.

Attention(Q, K, V') = softmax <QKT> -V (1.4)
n Vi
Where:
- Attention(Q, K, V) computes the weighted sum of values (V') based on the compati-
bility of queries (Q) and keys (K).
- The softmax function normalizes the dot product between queries and keys, creating
a set of attention scores.



- \/dj, is a scaling factor used to stabilize gradients.

In the realm of patient monitoring systems, attention mechanisms assume a pivotal
role in elucidating the reasoning behind Al-driven decisions. By identifying significant
features or temporal aspects within patient data, attention mechanisms offer valuable
insights to healthcare professionals. This understanding fosters trust in Al-generated
recommendations, creating a collaborative environment where human expertise seam-
lessly integrates with Al capabilities.

Complementing the technologies discussed above, the innovative concept of ma-
chine unlearning emerges as a game-changer. This novel approach tackles the hurdles
posed by outdated, sensitive, or irrelevant data. Its essence lies in recalibrating mod-
els, discarding obsolete information, and fortifying their adaptability to evolving circum-
stances. By aligning these technologies in focus, the subsequent chapters of this thesis
embark on an expedition to showcase their transformative impact within Al-driven re-
mote patient monitoring systems. This journey delves into pioneering methodologies
and applications that leverage these technologies in machine learning and machine
unlearning, heralding a revolution in patient care and elevating healthcare practices to
unprecedented heights.

1.5 Research questions

In light of the challenges and opportunities presented by Al-driven remote patient mon-
itoring systems, this doctoral thesis embarks on a comprehensive investigation of the
role of Al in enhancing patient monitoring systems across various healthcare settings.
The research endeavours to answer the following key questions:

1. How can artificial intelligence be leveraged to enhance patient monitoring sys-
tems, addressing challenges in remote patient monitoring, personalized activity
tracking, and predictive monitoring in healthcare?

2. What are the advancements and implications of federated learning and reinforce-
ment learning techniques in patient monitoring systems, particularly in personal-
ized activity monitoring, human behaviour monitoring, and time series forecast-
ing?

3. What is the potential of multimodality fusion and graph-enabled techniques in cre-
ating comprehensive smart healthcare systems that integrate data, information,
and knowledge to support informed decision-making?

4. How do explainable Al frameworks contribute to the reliability and interpretability
of patient monitoring systems, and how does attention-based machine unlearning
further enhance federated reinforcement learning?

1.6 Objectives

With the aim of advancing knowledge and practice in Al-driven remote patient monitor-
ing, this thesis is designed to achieve the following objectives:
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Figure 1.2: Thesis Structure

* To critically evaluate the potential of artificial intelligence in advancing patient
monitoring systems, with a focus on devising strategies for safeguarding patient
privacy and ensuring effective model evolution.

 To explore and analyze the advancements and implications of reinforcement learn-
ing techniques within patient monitoring systems, specifically concentrating on
their application in the dynamic context of domain adaptation.

+ To investigate the role of explainable Al frameworks in enhancing the trustworthi-
ness and comprehensibility of patient monitoring systems, thereby mitigating the
challenge of model opacity inherent in machine learning.

 To assess the viability and effectiveness of machine unlearning as a solution to
address privacy-related challenges and to facilitate model refinement, leverag-
ing the advancements offered by federated learning, reinforcement learning, and
attention mechanisms.

1.7 Thesis structure

This thesis is structured into three parts each addressing specific aspects of Al-driven
remote patient monitoring.
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Part I: Enhancing patient monitoring through Al

Part | focuses on exploring the potential of Al to enhance patient monitoring systems,
addressing challenges in remote patient monitoring and personalized activity tracking
in healthcare via privacy preservation techniques and model update techniques. The
chapters in this part delve into the innovative approaches and advancements that Al
brings to patient monitoring.

Chapter 2: Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges

This chapter provides an in-depth survey of the current state of remote patient moni-
toring (RPM) in modern healthcare. It highlights the diverse applications of RPM, its
impact on patient care, and the challenges faced in implementing effective RPM sys-
tems. The chapter also explores the potential of Al-driven RPM solutions in enabling
real-time monitoring and early detection of health anomalies, with a particular focus
on patient privacy and data security concerns.

Chapter 3: FedStack: Personalized activity monitoring using stacked federated
learning

In this chapter, the research introduces an innovative approach to personalized ac-
tivity tracking using stacked federated learning. The chapter explains the concept of
federated learning and its application to personalized activity monitoring. It presents
the FedStack architecture, which ensembles local models into a robust global model,
surpassing traditional federated learning approaches. The chapter demonstrates how
FedStack can provide tailored insights to individual clients, enabling personalized care
and interventions based on specific patient needs.

Chapter 4: Clustered Fedstack: Intermediate Global Models with Bayesian In-
formation Criterion

This chapter explores the Clustered FedStack framework, which introduces interme-
diate global models with Bayesian Information Criterion (BIC). By incorporating BIC,
the chapter demonstrates how Clustered FedStack can optimize the selection of in-
termediate global models, improving the overall efficiency and effectiveness of per-
sonalized activity monitoring. This advancement further empowers healthcare profes-
sionals with more accurate and reliable insights for proactive patient care.

Chapter 5: Adaptive Multi-Agent Deep Reinforcement Learning for Timely Health-
care Interventions

Building on the concepts of reinforcement learning and Al-driven remote patient mon-
itoring, this chapter introduces the paradigm of multi-agent deep reinforcement learn-
ing (DRL) for patient monitoring. The chapter presents Al-driven agents capable of
learning behaviour patterns and predicting appropriate actions in dynamic healthcare
environments. The novel Al-driven patient monitoring framework has the potential to
revolutionize patient care by enabling proactive interventions and personalized treat-
ment strategies.

Chapter 6: PDRL: Multi-Agent based Reinforcement Learning for Predictive
Monitoring

This chapter introduces the novel PDRL framework, which extends predictive monitor-
ing capabilities using multi-agent reinforcement learning. By empowering Al agents
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to forecast future vital signs and health events, PDRL enhances the potential for early
detection and preventive measures in patient care. The chapter highlights how PDRL
contributes to reshaping patient monitoring systems by providing real-time, context-
aware predictions for improved healthcare outcomes.

Part ll: Smart Healthcare Systems with Multimodality Fusion and Graph-Enabled
Techniques

Part Il delves into the realms of multimodality fusion and graph-enabled techniques,
envisioning comprehensive smart healthcare systems that integrate data, information,
and knowledge. This encompasses domain adaptation through Reinforcement Learn-
ing. The chapters in this part explore how Al can transform patient monitoring through
multimodal data integration and dynamic reinforcement learning.

Chapter 7: A Survey of Multimodal Information Fusion for Smart Healthcare:
Mapping the Journey from Data to Wisdom

This chapter explores the transformative potential of multimodality fusion in creating
comprehensive smart healthcare systems. It discusses the integration of various Al
techniques, including feature selection, machine learning, and natural language pro-
cessing, to extract valuable insights from diverse data sources. The chapter empha-
sizes how this advancement facilitates informed decision-making, fosters knowledge
accumulation, and lays the foundation for predictive, preventive, personalized, and
participatory healthcare approaches.

Chapter 8: Graph-enabled Reinforcement Learning for Time Series Forecasting
with Adaptive Intelligence

In this chapter, the research investigates the integration of graph-enabled reinforce-
ment learning techniques to revolutionize time series forecasting in patient monitoring.
The chapter introduces the GraphRL framework, utilizing Temporal Graphical Convo-
lutional Networks (T-GCN) to forecast dynamic reinforcement learning scenarios. The
chapter showcases the potential of GraphRL beyond healthcare, presenting versatile
solutions for diverse prediction tasks.

Part lll: Advancing Patient Monitoring Systems with Explainable Al and Machine
Unlearning

Part 1ll embarks on an exploration of explainable Al and the profound impact of ma-
chine unlearning on patient monitoring systems. One of the chapters in this part fo-
cuses on enhancing the reliability and interpretability of Al-driven decisions, fostering
a collaborative Al-human partnership. It delves deeply into the taxonomy, challenges,
and emerging trends of machine unlearning. Building upon the knowledge acquired in
preceding chapters, this section endeavours to synthesize the insights gained into a
comprehensive framework. The primary goal of this framework is to facilitate the sys-
tematic removal of obsolete, confidential, and irrelevant data. This inclusive framework
is designed to be applicable in various contexts, encompassing both single-modality
and multi-modality scenarios, with a particular emphasis on the healthcare domain.

Chapter 9: QXAIl: Explainable Al Framework for Quantitative Analysis in Patient
Monitoring Systems
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This chapter in Part lll introduces the pioneering QXAI framework, which significantly
contributes to enhancing the explainability and interpretability of Al-driven remote
patient monitoring systems. By providing transparent and interpretable predictions,
QXA fosters trust in Al-driven recommendations, enabling a collaborative Al-human
partnership. The chapter emphasizes the paramount importance of explainable Al
in critical domains like healthcare, where decisions have significant implications for
patient well-being.

Chapter 10: Exploring the Landscape of Machine Unlearning: A Comprehen-
sive Survey and Taxonomy

This chapter embarks on a profound journey to explore the uncharted territory of
machine unlearning. It establishes the significance of dynamic model refinement, en-
abling Al models to shed outdated information, adapt to changing patient conditions,
and maintain relevance in the face of evolving healthcare dynamics. The chapter
presents a comprehensive survey and taxonomy of machine unlearning techniques,
paving the way for future research and advancements in this field.

Chapter 11: FRAMU: Attention-based Maching Unlearning using Federated Re-
inforcement Learning

In this chapter, the research introduces the groundbreaking FRAMU framework, a
novel intersection of federated reinforcement learning and attention-based machine
unlearning. The framework elucidates the potential to create Al models that continu-
ously learn and unlearn, ensuring robustness and reliability across disparate health-
care environments. The chapter showcases how FRAMU can contribute to enhancing
patient monitoring systems and fostering trust in Al-driven recommendations.

As we embark on this academic journey, this thesis seeks to contribute to the grow-
ing body of knowledge in the domain of Al-driven remote patient monitoring systems.
By addressing the research questions and objectives outlined, this research endeav-
ours to shed light on the challenges and opportunities in machine learning and machine
unlearning, guiding the seamless integration of Al technologies into healthcare prac-
tices. The subsequent chapters present a detailed exploration of each research ques-
tion, drawing upon rigorous methodologies, experimental investigations, and meticu-
lous analysis of findings.

14



CHAPTER 2: PAPER 1 - REMOTE PATIENT MONITORING
USING ARTIFICIAL INTELLIGENCE: CURRENT STATE,
APPLICATIONS, AND CHALLENGES

2.1 Introduction

This chapter marks the beginning of an insightful journey into the realm of RPM, sit-
uated within the expansive landscape of digital health transformation. It underscores
RPM’s crucial role in transcending conventional clinical boundaries to integrate health-
care into the fabric of everyday life. Through the adoption of state-of-the-art technolo-
gies like the Internet of Things (loT), wearable sensors, and Al, RPM stands out as
a key element in the interconnected narrative of this thesis. This narrative weaves
through the diverse impacts of digital innovations on patient care, data analytics, and
healthcare delivery models. The introduction outlines RPM’s scope and capabilities
while subtly drawing connections to forthcoming chapters that delve into Al’s role in
data analysis, patient engagement, and the ethical considerations in digital health. By
exploring the current state, applications, and challenges of Al-enhanced patient moni-
toring, the chapter sets the stage for addressing critical gaps and fostering innovative
solutions in the field.
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Abstract

The adoption of artificial intelligence (AI) in healthcare is growing rapidly.
Remote patient monitoring (RPM) is one of the common healthcare applications
that assist doctors to monitor patients with chronic or acute illness at remote loca-
tions, elderly people in-home care, and even hospitalized patients. The reliability
of manual patient monitoring systems depends on staff time management which
is dependent on their workload. Conventional patient monitoring involves inva-
sive approaches which require skin contact to monitor health status. This study
aims to do a comprehensive review of RPM systems including adopted advanced
technologies, Al impact on RPM, challenges and trends in Al-enabled RPM. This
review explores the benefits and challenges of patient-centric RPM architectures
enabled with Internet of Things wearable devices and sensors using the cloud,
fog, edge, and blockchain technologies. The role of AT in RPM ranges from physi-
cal activity classification to chronic disease monitoring and vital signs monitoring
in emergency settings. This review results show that Al-enabled RPM architec-
tures have transformed healthcare monitoring applications because of their ability
to detect early deterioration in patients’ health, personalize individual patient
health parameter monitoring using federated learning, and learn human behavior
patterns using techniques such as reinforcement learning. This review discusses
the challenges and trends to adopt AI to RPM systems and implementation issues.
The future directions of AI in RPM applications are analyzed based on the chal-
lenges and trends.
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1 | INTRODUCTION

Remote patient monitoring (RPM) is a rapidly growing field in healthcare that is designed to assist clinicians with addi-
tional support to provide care in a range of general hospital medical and surgical wards and using flexible materials for
wearable sensors (Joshi et al., 2021; Liu, Wang, et al., 2022; Weenk et al., 2020). This is achieved by incorporating new
Internet of Things (IoT) methodologies in healthcare such as telehealth applications (Heijmans et al., 2019), wearable
devices (Dias & Cunha, 2018), and contact-based sensors (Malasinghe et al., 2017). RPM is commonly used to measure
vital signs or other physiological parameters such as motion recognition that can assist with clinical judgments or treat-
ment plans for conditions such as movement disorders or psychological conditions (Shaik, Tao, Higgins, Gururajan,
et al., 2022; Shaik, Tao, Higgins, Xie, et al., 2022).

Artificial intelligence (AI) algorithms have been employed to perform analysis of medical images and correlate
symptoms and biomarkers from clinical data to characterize an illness and its prognosis (Miller & Brown, 2018; Schnyer
et al., 2017). There is immense potential for Al to benefit healthcare service delivery and clinicians are exploring a vari-
ety of practical issues for assessing the risk of disease, ongoing patient care, and how AI can help clinicians to alleviate
or reduce complications in illness progression (Torous et al., 2018). Medical research is also benefitting from Al by help-
ing to expedite genome sequencing and the development of new drugs and treatments from the knowledge that previ-
ously was not possible to obtain or observe from such complex data. Machine learning, a subset of AI, can potentially
assist clinicians in interpreting complex data in a relatively short period using specialized algorithms (Helm et al., 2020;
Krittanawong et al., 2022). They can assist with a patient assessment to help predict early deterioration of their health
status and even classify their types of motion or activities (Z. Liu, Zhu, et al., 2022; Huang et al., 2022). These AI algo-
rithms can process large datasets to recognize and learn complex patterns for decision-making (Dean et al., 2022).
Recent increases in computational speed have led to the development of even more powerful artificial neural networks
and deep learning algorithms that can handle and optimize very complex datasets (Bini, 2018; Kalfa et al., 2020). Many
routine tasks can be automated by incorporating an IoT model with a centralized control unit and interface. This could
potentially avoid human errors, and increase patient safety (Tandel et al., 2022).

RPM has traditionally been applied to monitoring patients in rural areas remotely using telehealth technol-
ogy, monitoring chronically ill people, and the elderly at home using wearable devices or sensors, but the non-
intrusive aspects are also attractive for use in hospitals for post-surgery patients, and those in intensive care
units using wireless body sensors. It is possible to enhance these monitoring systems to the next level by intro-
ducing noninvasive digital technologies which permit patients’ daily activities. To support healthcare profes-
sionals in visualizing the health status of patients based on vital signs and activity recognition, machine
learning (ML) and AI can be implemented as shown in Figure 1. These types of applications can present data
related to diagnosing and predicting patient health status and assist with clinical decision-making. This review
is motivated by potential advancements in healthcare using AI and machine learning to transform existing tradi-
tional medical practices.

This review aims to investigate technologies adopted in current RPM systems for noninvasive techniques. Current
trends in RPM and applications of Al to monitor vital signs, physical activities, emergency events, and chronic diseases
of patients and assist clinicians to diagnose and provide efficient care. The impact of AI on RPM applications for early
detection of health deterioration, personalized monitoring, and adaptive learning are discussed. Finally, the current
challenges to the widespread adoption of remote monitoring with AI or machine learning in healthcare are presented
and identify what is being done to address these. The contributions of this study are:

« Al impact of RPM applications is investigated and stressed the need for early detection of health deterioration.

« Traditional machine learning and deep learning applications in RPM are investigated.

+ Comprehensive review of advanced technologies such as video-based monitoring, IoT-enabled devices, cloud, edge,
fog, and blockchain and AI methodologies such as reinforcement learning, and federated learning adopted by RPM
systems.

+ Challenges in adopting Al-enabled RPM are investigated, and their trends are explored.

The review is organized as follows: Section 2 presents the research explored in this study, search strategies,
and inclusion criteria. Section 3 presents advanced RPM architectures including telehealth, 10T, cloud, fog, edge,
and blockchain technologies. The scope of AI in RPM applications like monitoring vital signs, physical activities,
emergencies, and chronic diseases are discussed in Section 3. In Section 4, the impact of AI on RPM has been
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FIGURE 1 Artificial intelligence-enabled remote patient monitoring architectures

discussed. Section 5 describes the challenges involved in adopting AI or machine learning to monitor patients.
Section 6 concludes the article with a finding summary and future work with recommendations.
2 | SEARCHSTRATEGY AND SELECTION CRITERIA
The objective of this review is to identify journal articles, review articles, and conference papers related to the role
of AI in monitoring a patient's health status. This can be done using IoT devices in geographically remote settings
or more locally through nontouch techniques. In doing so, the review will seek to address the following research
questions:

RQ1. What technologies have transformed conventional manual patient monitoring in hospitals?

RQ2. How has Al transformed the RPM with its advancements and their impacts?

RQ3. What are the challenges in adopting AI for RPM systems and learning healthcare data?

RQ4. What are the existing trends in RPM systems for using AI?
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TABLE 1 Selected limits for database searches

Inclusion criteria Exclusion criteria

Journal Article Books

Review Article Book chapters

Conference Paper Abstracts

Conference Paper Review Short survey Editorial

Published between 2016 and 2022 Letter

Literature in English Research works related to infants, neonates
Outpatients and inpatients Experiments on animals

Employs AI & ML Research work without AT & ML
Experiments on adult and elderly patients Image processing techniques

Abbreviations: Al artificial intelligence; ML, machine learning.

2.1 | Information sources

Literature was retrieved from the following bibliographic databases: Web of Science, Scopus, Springer, ACM
Digital Library, IEEE Xplore, Pub-Med, Science Direct, and Multidisciplinary Digital Publishing Institute (MDPI).
Search strategies were defined using keywords, Boolean operators, truncation, and wildcards. Each database was
filtered to search the keywords and their combinations in the title, abstract, and keywords. Results were sorted by
relevance, and the first 10 results were checked to ensure that a combination of search terms retrieved articles
relevant to the research questions. Finally, the results were exported to EndNote and grouped for each database.
Furthermore, the EndNote citations were exported to software called Rayyan (Ouzzani, Hammady, Fedorowicz, &
Elmagarmid, 2016) to facilitate the screening and selection process. As databases could host articles published
elsewhere, duplicate articles were excluded.

2.2 | Search strategy

Before defining the keywords, a random search was conducted to identify keywords that have been previously used to
retrieve relevant articles on these topics. Once this was completed, the main concepts in each article title were catego-
rized into five areas, and synonyms were created using a thesaurus. Table I presents the keywords used for each con-
cept's search, with truncation and wildcards.

Boolean operators AND, and OR were used to form different combinations of keywords within the five key con-
cepts. The final search string used in all the databases was:

(patient? OR victim? OR case? OR subject? OR human?) AND (observ* OR monitor* OR audit* OR
detect* OR estimat* OR forecast* OR check*) AND (remote OR distan* OR isolated OR inaccessib*
OR outlying) AND (RFID OR sensor* OR wire* OR accelerometer OR doppler OR ECG OR radio*
OR polysomno*) AND (“artificial intelligence” OR AI OR “machine learning” OR “neural
networks”)

2.3 | Selection criteria

As the review focused on the implementation of AI or machine learning in collaboration with information systems
infrastructures, this study excluded research articles with continuous monitoring without AI or machine learning.
Table 1 presents the chosen limits used to retrieve articles published between 2016 and 2021 and Figure 2 presents a
PRISMA flowchart for the review process.
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FIGURE 2 Study flow diagram PRISMA-ScR (Page et al., 2021)

3 | REMOTE PATIENT MONITORING ARCHITECTURES

In hospitals, medical staff monitored a patient's health status regularly and manually maintained the records. Collecting
patients’ vital signs manually in hospitals depends on factors like clinical workload, staff working hours, patients’ diag-
nosis, clinical leadership, and national guidance (Smith et al., 2017) and was limited due to the lack of resources. The
patient monitoring was with invasive devices requiring patients’ skin contact to estimate their vital signs. Technological
advancements in data transmission have disrupted the healthcare industry with noninvasive devices without touching
patients’ bodies and provided opportunities to monitor patients continuously. The innovations have transformed the
traditional patients' health status monitoring patterns and enabled to monitor of patients remotely in hospitals, patient
care hospitals, age care facilities, and even in their homes. In this section, technology-enabled RPM architectures are
discussed.

3.1 | Video-based monitoring

Telehealth monitoring allows patients to contact their doctors or medical staff via audio call or video call using smart
devices. Snoswell et al. conducted a systematic review to measure the clinical effectiveness of telehealth applications. In
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their study, Snoswell et al. (2021) reviewed 38 meta-analysis articles published between 2010 and 2019 and covered
10 medical disciplines including multidisciplinary care and other specialized disciplines like cardiovascular disease and
pulmonary diseases. The authors reported that the usage of telehealth has exponentially increased over the last decade
and demonstrated examples from mental health support, pain management, blood pressure and glucose control, stroke
management, and diagnostic services like dermatological and ophthalmic conditions.

As a result of the COVID-19 pandemic, telehealth became a common strategy for maintaining patients’ and clini-
cians' safety. Machine learning and image processing techniques played a vital role in telehealth monitoring. The AI
methods are capable of monitoring patients’ vital signs such as heart rate, respiratory rate, oxygen saturation (SpO,),
cough analysis, and blood pressure. Rohmetra surveyed Al-enabled telehealth monitoring of vital signs and compared
these with traditional methods of monitoring vital signs (Rohmetra et al., 2021). The image and video processing tech-
niques in ML helped identify a region of interest (ROI) on the patient such as facial landmarks and then focused on the
selected ROI to estimate vital signs that included heart rate, and respiratory rate. Bousefsaf et al. (2019) monitored the
patterns of patients’ pulse rates in an ROI of a video frame based on the fluctuations of movement during breathing.
Based on the breathing patterns detected in video monitoring, Cho et al. (2017) developed a deep learning model, con-
volutional neural networks (CNN), which recognizes people's psychological stress levels. Cough analysis was performed
based on auscultation sounds by employing a pretrained 3D ResNet18 neural network model to classify the sounds into
disease categories. The model achieved 94.57% accuracy, 100% sensitivity, and 94.11% specificity. Heart rate, blood vol-
ume pulse, and SpO, were measured based on remote Photoplethysmography (rPPG) detected in a video frame cap-
tured by a standard smartphone camera (Khalid et al., 2022). The change in blood volume pulse causes blood
absorption during a heartbeat was measured by focusing on forehead ROI using the Viola-Jones algorithm. The PPG
signal extracted from the video and the ground truth blood pressure from the algorithm was fed into a feed-forward
neural network model. The model achieved 85% accuracy in extracting the blood pressure. Laurie et al. further demon-
strated how an algorithm specifically designed to control exposure time during video capture improves the accuracy of
rPPG (Laruie et al., 2021).

Studies that explored the advantages and disadvantages of telehealth are also presented in Table 2. Telehealth cut
down travel time, clinic visits, and extended time off work (Nord, Rising, Band, Carr, & Hollander, 2019). However,
there are challenges associated with the benefits of telehealth monitoring. Overutilization or misuse of telehealth ser-
vices has increased healthcare costs to providers (Busso et al., 2022). Telehealth monitoring has widened the disparities
between rural and urban populations due to the accessibility of the internet and technology (Drake et al., 2019). Patient
data security is another challenge in telehealth monitoring, which jeopardizes patients' health information without an
end-to-end encrypted communication service (Fang et al., 2020).

Telehealth patient monitoring techniques have the potential to diagnose patients’ health status. Al-enabled
telehealth monitoring would be the more enhanced approach to classifying or predicting patients' vital signs.

3.2 | IoT-enabled devices

An IoT based real-time remote patient monitoring system would help achieve continuous patient monitoring (Yew
et al., 2020). The majority of IoT technology systems have been developed for use in a hospital setting or a private dwell-
ing. However, there are examples where a single system could be readily applied to both. Figure 3 presents an example
of typical architecture that could be used for patient monitoring. The architecture is breakdown into three sections
(Pan et al., 2020). Section A illustrates the wearable devices connected to patients to collect vital signs such as heart
rate, pulse rate, respiratory rate, breathing rate, body temperature, and so on. In Section B, the collection will be stored
in cloud services (Neto et al., 2017; Shao et al., 2020; Shi et al., 2020) for further analysis using machine learning meth-
odologies that could predict or classify the patient data. The process could then estimate any abnormal events in the
near future based on known threshold values of the vital signs and update medical staff or healthcare professionals
(Ankita et al., 2021; Bekiri et al., 2020; C. Liu et al., 2019; Lin et al., 2018; Devi & Kalaivani, 2019; Efat et al., 2020; Shao
et al., 2020) in Section C of the architecture. IoT has the potential to interconnect wearable sensors and their reader-
antennas with a patient body to the monitoring network. The types of wearable vital signs sensing technologies, their
architectures, and specifications range from physiological measurements, including electrocardiogram, blood oxygen
saturation, blood glucose, skin perspiration, and capnography, to motion evaluation and cardiac implantable devices
(Dias & Cunha, 2018). The devices can also take the form of wearable t-shirts, chest straps, or adhesive patches. Medical
staff or healthcare professionals would take appropriate actions to treat the patient and avoid abnormal events.
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DATA MINING AND KNOWLEDGE DISCOVERY

TABLE 2 Telehealth monitoring

References Algorithm Technology Advantages Disadvantages
Bousefsaf et al. (2019)  3D-CNN RGB camera » Improved access and « Overutilization or
Cho et al. (2017) CNN Thermal camera timeliness of care misuse of telehealth
. + Emergency services increase
Khalid et al. (2022) DFT, CWT Sensor, RGB camera
preparedness healthcare costs to
Laurie et al. (2021) Exposure control Sensor, RGB camera « Cost-effectiveness providers.
« Reduced doctor-patient « Disparities between
supply-demand rural and urban
mismatch populations.

Abbreviation: CNN, convolutional neural network.
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El-Rashidy et al. (2021) discussed trends and challenges of adopting a wireless body area network (WBAN), a sub-
domain of IoT which connects wireless sensors on a patient's body to the network. The WBAN challenges are transmis-
sion protocols, data privacy and security, interoperability, and integration. To transmit data from wireless sensors on a
human body to local and global networks would need standard data transmission networks like ZigBee, Lora, Wi-Fi,
and Bluetooth (Tripathi et al., 2020), and these networks have limitations in terms of energy and range of transmission.
Data privacy and security challenges are inevitable in technology-enabled applications, and vast research on secured
data transmission or data transaction processes and decentralized or distributed technology is being conducted to over-
come the security and privacy challenges. Integration of sensors and remote devices led to sensor interoperability and
combining heterogeneous data resources led to data interoperability in wireless sensor networks.

Sensors in RPMs require patients’ skin contact to retrieve vital signs, limiting the daily activities of chronically dis-
eased patients. Adopting radio frequency identification (RFID) technology overcomes the challenges of incisiveness in
RPM. RFID technology has battery-powered active tags and battery-less passive tags that work on Near-field Coherent
Sensing (NCS) principle. To enhance patient comfort and be less restrictive to their daily activities, noninvasive digital
technology with NCS has been proposed and developed by Cornell University researchers (Hui & Kan, 2017; Sharma &
Kan, 2018). NCS is a method developed by Hui and Kan (2017) that directly modulates the mechanical motion on the
surface and inside a body onto multiplexed radio signals. This is integrated with a unique digital identification. In this
mechanism, electromagnetic energy is directed into body tissue which reflects back-scattered signals from internal
organs and is implicitly amplified. Small mechanical motions inside the body that have a shorter wavelength can be
rendered into a large phase variation to improve sensitivity. NCS mechanisms were deployed to monitor vital signs,
score sleep (Sharma & Kan, 2018), and accurately extract heartbeat intervals (Hui & Kan, 2018).

Passive RFID tags can be deployed into garments at the chest and wrist areas. This is where the two multiplexed
far-field back-scattering waveforms are collected at the reader to retrieve the blood pressure, heart rate, and respiration
rate. This could minimize deployment and maintenance costs. Hui and Kan (2017) found that to maximize reading
range and immunity to multipath interference caused by indoor occupant motion, active tags could be placed in the
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TABLE 3 Internet of Things (IoT) devices monitoring

References Algorithm Technology Advantages Disadvantages
El-Rashidy et al., 2021 Wireless sensors, ZigBee, « Enable personalized « Patient privacy concerns
Lora, Wi-Fi, Bluetooth health monitoring « High dependence on the internet

Sharma & Kan, 2018 SVM model  NCS, RFID Passive tags + Noninvasive

. . monitoring
Hui & Kan, 2018 SVM model  NCS, RFID Passive tags .

« Continuous health
monitoring

Abbreviation: SVM, support vector machines.

front pocket. Also, placing the tags in the wrist cuff to measure the antenna reflection due to NCS. With this, vital sig-
nals can be sampled and transmitted digitally. Table 3 presents the IoT devices used by the research community for
patients’ monitoring, and their advantages and disadvantages are explained.

3.3 | Cloud computing

Cloud computing is an essential component of continuous patient monitoring systems. The huge amount of data gener-
ated for each patient from the IoT devices in RPMs needs storage to share data between different parties and analyze
trends (Zamanifar, 2021). Cloud computing technology is a powerful platform that holds servers, databases, network-
ing, software, and intelligence online (over the internet) for faster innovation and flexible resources. Iranpak et al.
(2021) used the features of cloud computing features and developed a patient monitoring system based on IoT devices.
The transmission of the data in the IoT platform to the cloud using the Fifth Generation Internet (5G) network. A deep
learning neural network model, long short-term memory (LSTM), was used to monitor patients and classify their health
conditions. The proposed deep learning model outperformed baseline models with an accuracy of 97.13%. Cloud com-
puting uses a centralized data server to manage large amounts of data from all IoT devices. Integrating the IoT platform
with cloud computing raises concerns about latency, real-time response delays, bandwidth overuse, and data security.
This led to decentralized or distributed computing approaches like fog computing and edge computing, in which cloud
services are brought close to IoT networks and overcome the cloud computing challenges (Pareek et al., 2021). The
major concern of data security in cloud computing can be addressed by encrypting the data at the IoT device level and
then sending data to cloud storage for data analysis. Siam et al. (2021) proposed the advanced encryption standard
(AES) algorithm to encrypt the vital signs retrieved from a patient and send the encrypted data to the cloud. This allows
only trusted medical organization servers to access the data with the appropriate decryption key, which will be kept
secret between the system and the healthcare center. The proposed approach outperforms the commercial devices avail-
able on the market with minimal root-mean-square error, mean absolute error, and mean relative error of 0.012, 0.009,
and 0.003, respectively.

3.4 | Fogand edge computing

Fog computing is an extension of cloud computing, which takes cloud computing services closer to IoT devices.
Advancements in applications of IoT, and integrated cloud computing such as real-time monitoring of patient vital
signs, physical activities have increased threats like security, performance, latency, and network breakdown to cloud
computing (Sabireen & Venkataraman, 2021). Fog computing is a distributed or decentralized virtual network to act as
a medium between 10T devices and the cloud (Alwakeel, 2021). Pareek et al. (2021) discussed IoT-Fog-based system
architectures in healthcare. The delay in real-time responses and latency issues in cloud computing can be addressed by
deploying fog nodes that analyze the data from the IoT platform with minimum delay time (Q. Qi & Tao, 2019). The
fog computing architecture provides real-time analysis and security of data by preserving sensitive data and performing
calculations closer to the IoT platform.

Similarly, cloud computing services are further pushed closer to the edge of the networks or IoT devices by introduc-
ing another decentralized or distributed concept called edge computing. The edge computing operations are executed
in intelligent devices like programmable controllers, which read IoT devices (Alwakeel, 2021). Edge computing nodes
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TABLE 4 Cloud/Fog/Edge monitoring

References Algorithm Technology Advantages Disadvantages

Uddin (2019) LSTM model IoT devices, edge + Real-time automated « Privacy and security
computing analytics of patient data

Vimal et al. (2021) CNN IoT devices, Edge/Fog/ » Cloud computing + Domain knowledge
Cloud computing services closer to training for

. . . patients medical staff

Siam et al. (2021) AES algorithm IoT dev1ce.s, cloud . Decentralized network

computing

support personalized
monitoring

Abbreviations: AES, advanced encryption standard; CNN, convolutional neural network; LSTM, long short-term memory.

deploy intermediate nodes closer to the network with storage and computation capabilities. The cloud/fog/edge moni-
toring architectures enable real-time monitoring with a decentralized approach for personalized care, but the technolo-
gies have their disadvantages, as shown in Table 4.

Uddin (2019) proposed a wearable sensor-based system with an Al-enabled edge device for patients’ physical activity
prediction. The graphics processing unit in the edge device was used for faster computation results. A deep learning
LSTM model was used in the edge for the physical activity classification. The model achieved an accuracy of 99.69%
mean prediction performance compared to 92.01% mean recognition performance of traditional approaches like the
hidden Markov model and deep belief network. An Al-enabled fog/edge computing approach for fall detection by
Vimal et al. (2021) to process binary images of elderly patients in a remote health monitoring setup. The proposed
approach has five layers a sensor elder patient body, edge gateway, fog node layer with LoRa connectivity, cloud layer,
and application layer for user accessibility. A deep learning convolutional neural networks (CNN) model was used for
image processing and compared its performance with support vector machines (SVM) and artificial neural networks
(ANN) models. The proposed deep learning model achieved an accuracy of 98% with a minimal processing time of
<200 s but with a higher power consumption of >65 decibels.

All the research works discussed in this section have been summarized with their application, algorithms, and tech-
nologies used in the RPM system, as shown in Table 4.

3.5 | Blockchain monitoring

Virtual technologies like fog computing and edge computing are prone to security and privacy challenges (Aliyu
et al., 2021). Hathaliya et al. (2019) proposed a Permissioned blockchain-based healthcare architecture to overcome
these challenges. The study focused on integrating decentralized AI with blockchain networks and discussed
blockchain applications in healthcare. Blockchain is a shared, decentralized, immutable ledger that connects multiple
parties and records transactions. In RPM applications, blockchain technology can secure data transactions between
patients and monitoring technologies like cloud, fog, and edge computing. Faruk et al. (2021) proposed an Ethereum-
based data repository for RPM electronic health records data management. The data repository enabled secure upload,
storage, analysis, retrieval, and transmit patient data according to the patient's instructions. The proposed decentralized
blockchain system supports hospitalized patients and outpatients. The cloud computing challenge of interoperability
can be addressed using MedHypChain proposed by Kumar and Chand (2021). MedHypChain is a privacy-preserving
medical data-sharing system based on Hyperledger Fabric, in which each data transaction is secured via an Identity-
based broadcast group encryption scheme. Another interesting patient-centric secured data recording and remote
patient monitoring application SynCare was proposed by Pighini et al. (2022). The study focused on interconnecting
patients, healthcare professionals, and caregivers, building secure data-sharing channels, and allowing patients to man-
age their health data. Blockchain architectures are known for their robust security features that record each transaction
throughout the system and cannot be altered. The architecture has the disadvantage of high implementations with com-
plex integration and high energy dependence. The research works adapted to blockchain technology in RPM have been
outlined in Table 5.

The technology-enabled RPMs are more concentrated on data acquisition and securing the data transmission to dif-
ferent parties involved in RPM. Adopting AI to the RPM architectures empowers the monitoring process with
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TABLE 5 Blockchain architectures

References Algorithm  Technology Advantages Disadvantages
Hathaliya et al. (2019) Al methods  Blockchain « Network security at all « High energy dependence
Faruk et al.. 2021 Blockchain. Ethereum levels of data collection « Integration complexity
. « Verification and « High implementation costs
Kumar and Chand (2021) Blockchain, Hyperledger . . .
B identification of
Fabric )
patients
« Authorize patients’
EHR data

Abbreviation: Al, artificial intelligence.

capabilities of prediction and classification of the patient data acquired. Each RPM architecture can be enhanced by
adding AI modeling to the data analytics step.

4 | AIIN RPM APPLICATIONS

In RPM applications, traditional machine learning and deep learning are common AI methods adopted to detect and
predict vital signs and classify patients’ physical activities. Malasinghe et al. (2017) present contact and noncontact-
based methodologies in RPM. Irrespective of contact or noncontact monitoring systems, all methodologies focus on
human vital signs extraction, such as heart rate, pulse rate, respiration rate, blood pressure, and oxygen volume in
blood, as the deterioration of these vital signs affects the human health system. Along with vital human signs, the
authors reviewed studies on the activity detection of patients like fall detection and mobility-related diseases. The chal-
lenges involved mainly include discerning the difference between deliberate quick movements and accidental drops.
Apart from wearable devices, the authors reviewed ambiance device-based and vision-based fall detection systems but
identified significant problems that remain for contactless monitoring. This section discusses applications of machine
learning and deep learning methodologies in RPM. The year-wise distribution of the Al-enabled RPM works discussed
in this section are presented in Figure 4.

4.1 | Vital signs monitoring

Wearable devices like smartwatches are new technological innovations that continuously track people's vital signs. A
system was developed by Bekiri et al. (2020) to monitor the health status of individuals at all times using connected
smartwatches. The smartwatches collect patient vital signs and send them to the administrator to analyze for decision-
making. The administrator used the SVM model to build a decision model. The results of the patient's status will be
informed to the doctors. The machine learning model achieved an accuracy of 90% and a recall is 99%. The proposed
system can identify 99% of patients affected by cardiovascular diseases. Shao et al. (2020) also designed an RPM system
to detect ECG signals. In that study, a decision tree ensemble classifier was trained using the CatBoost learning kit. The
classifier was trained with 20-fold cross-validation and 31 features. Feature importance was extracted from the trained
CatBoost model. The top-importance features were used to evaluate the performance based on the feature importance
ranking. The CatBoost model processed the 30 s ECG data in 0.5 s and achieved a sensitivity of 99.61%, a specificity of
99.64%, and an accuracy of 99.62% in detecting AF. A novel IoT-based wearable 12-lead ECG SmartVest system based
on the SVM model to assess signal quality has achieved an average accuracy of 97.9% and 96.4% for acceptable and
unacceptable ECG segments, respectively. Verified the model efficiency to choose good or exclude poor quality ECG
segments in the wearable.

ECG monitoring. An SVM model-based ECG telemetry system to monitor cardiac arrhythmia, which processes the
ECG signal, was designed by Devi and Kalaivani (2019) to send alerts to a physician in an emergency. Statistical fea-
tures of ECG signals were combined with dynamic features like heart rate variability (HRV) features from RR intervals
to classify cardiac arrhythmia. The SVM classifier model was trained and validated using 10-fold cross-validation. The
proposed classification model achieved the effectiveness of 88.9%, 90.8%, and 92.2% for statistical features, HRV fea-
tures, and statistical and HRV features, respectively.
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DATA MINING AND KNOWLEDGE DISCOVERY

FIGURE 4 Distribution of artificial intelligence-enabled remote patient monitoring applications in this section

Neto et al. (2017) designed an RPM system with a portable ECG device to assist remote electrocardiographic diagno-
sis and send the data to cloud service, where an intelligent arrhythmia detector IDAH-ECG) detected abnormal heart-
beats and informed physicians. Here, discrete wavelet transforms feature extraction, and principal component analysis
(PCA) dimensionality reduction was performed as part of data preprocessing. Multilayer perceptron (MLP) neural net-
work (MLP) classifier was trained using backpropagation and Gradient Descent techniques. This study implemented
10-fold cross-validation with the Monte Carlo testing scheme. The classifier achieved an average accuracy of 96.48%, a
sensitivity of 98.70%, and a specificity of 94.45%. Elola et al. (2019) used deep learning methods for sensor-based pulse
recognition from short electrocardiogram (ECG) segments that included a deep convolutional neural network (DCNN),
auto-encoder, restricted Boltzmann machine (RBM), and recurrent neural network (RNN). The system was designed to
detect a pulse in someone who had a heart attack during resuscitation efforts. Although the deep neural network
(DNN) architectures outperformed current methods, pulse detection during this scenario remains an unsolved problem.
J. Yang et al. (2020) developed a wireless nonline-of-sight (NLOS) bio-radar device that was used to collect physiological
parameters such as heart rate and respiratory rate. The device is portable, contactless, and interference-free. A deep
learning LSTM was employed at edge nodes to predict the physiological parameters. The authors used LSTM to predict
future short-term respiratory rates and patients’ heartbeats based on current data within just a few minutes. W. Qi and
Aliverti (2020) proposed a wearable respiratory and activity monitoring system to predict breathing patterns during
daily activities based on a novel multimodal fusion architecture, respiratory and exercise parameters and human activ-
ity. A hybrid hierarchical classification algorithm combining an LSTM model with a threshold-based approach to clas-
sify nine breathing patterns while performing 15 physical activities. The hybrid model achieved an accuracy of 97.22%
and outperformed the other models’ K-nearest neighbor (KNN), multiclass SVM, and artificial neural network (ANN)
in terms of classification. The proposed model outperformed LSTM, bidirectional LSTM (Bi-LSTM), and DCNN with a
minimal computational time of 0.0094 s. The research works related to vital signs monitoring with Al discussed are
consolidated in Table 6.

4.2 | Physical activities monitoring

Pan et al. (2020) designed a fall detection system for older people based on multisensor fusion with multiple three-
axis acceleration sensors placed on the waist. In this study, SVM and random forest (RF) algorithms were
implemented on the dataset with 100 healthy young volunteers simulating falls and daily activities to compare
their recognition time and recognition rate. The authors state that the model's accuracy is based on a large amount
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TABLE 6 Vital signs monitoring with artificial intelligence

Applications Algorithm Technology References
Vital signs SVM Model Smartwatches, smart vest, Bekiri et al. (2020), Shao et al. (2020), Devi
monitoring ECG telemetry and Kalaivani (2019)
CNN, LSTM, DCNN, Potable ECG device, Neto et al. (2017), Elola et al. (2019), J. Yang
DNN, RNN, ANN auto-encoder sensors, radar device et al. (2020), W. Qi and Aliverti (2020)

of valid data, but because SVM has fewer training and recognition times, it may be better suited to this task. Hsieh
et al. (2021) proposed a novel multiphase falls identification algorithm combining fragment modification algorithm
and machine learning techniques to identify prefall, free-fall, impact, resting, and recovery phases. The fragment
modification algorithm adopts rule-based fall identification and five machine learning techniques, SVM, KNN,
naive Bayes, decision tree, and adaptive boosting to identify the five phases. Out of the five models, the KNN algo-
rithm achieved the best performance with an accuracy of 90.28%, sensitivity of 82.17%, precision of 85.74%, and
Jaccard coefficient of 73.51%. The authors intend to further develop their model with real-world data and a greater
range and type of falls. Y. Wang and Zheng (2018) designed a framework for an RPM system to monitor human
activities and movement based on a signal reflection model. This framework detected the presence of human activ-
ities by analyzing the RSSI patterns from an RFID tag array and segmented phase values using the variance of
phase readings, which were used as an indicator for activity segmentation. Six machine learning classifiers RF,
multilayer Perceptron-based Neural Network, Decision Tree, SVM, Naive Bayes, and Quadratic Discriminant Anal-
ysis, were trained to classify activities raise a hand, drop hand, walk, sit, stand, fall, rotation, get-up, and non-
activity. The experiment results show that TACT is robust under different experimental settings and can achieve
an average recognition precision of up to 93.5%.

Salah et al. (2022) designed a resource-constrained microcontroller at the edge of the network using a wearable
accelerometer to overcome issues such as latency, high power consumption and poor performance in areas with unsta-
ble internet. The authors designed three layers edge layer, fog layer, and cloud layer to collect, analyze, and transmit to
an IoT gateway via long-range communication technology. Five AI models, KNN, SVM, LSTM, and CNN, were trained
to detect falls. The LSTM identified falls from daily activities with high accuracy of 96.78%, while sensitivity and speci-
ficity were 97.87%, and 95.21%, respectively. S. Yu et al. (2021) proposed a computational method with a Hierarchical
Attention-based Convolutional Neural Network (HACNN) model to detect falls based on wearable sensor data. The
novel deep learning model integrated a hierarchical attention mechanism into a CNN model and added two attention
layers beyond CNN to interpret which part of the sensor data contributed to the decision of fall or nonfall made by the
system. The CNN model outperformed deep learning models like CNN, LSTM, CNN-LSTM, MLP, and HALSTM. Accu-
racy depended on the two data sets used and their static nature.

To overcome the limitations of existing elderly fall detection methods requiring specialized hardware or invad-
ing people's daily lives, Zhu et al. (2017) presented the design and implementation of a motion detection system
based on passive radio frequency identification tags. The received signal strength indicator (RSSI) value and Dopp-
ler frequency value impacted by static, regular action, sudden falls, elderly movements, and fall actions were esti-
mated. Wavelet transform was implemented for the signal preprocessing, and the machine learning algorithm
SVM was adopted to classify the actions into fall detection or other actions. RFID technology could track their
motion and fall detection without any hindrance to the daily activities of elderly people. Gesture recognition or
motion detection has gained attention to enhance the user experience for human-computer interaction. An appli-
cation can be used in healthcare to recognize patient gestures or motions in-home or in the hospital using a
device-free system. Z. Wang et al. (2019) proposed RF-finger, a device-free system based on Commercial-Off-The-
Shelf (COTS) RFID, which leverages a tag array on a letter-size paper to sense the fine-grained finger movements
performed in front of the paper presented. Machine learning algorithms were implemented, such as the KNN
model to pinpoint the finger position and the CNN model to identify the multitouch gestures based on reflective
images. Both the machine learning algorithms yielded 88% and 92% accuracy for finger tracking and multitouch
gesture recognition, respectively. Estimate the correlation between RF phase values and human activities by
modeling intrinsic characteristics of signal reflection in contact-free scenarios. The research works related to
human activity recognition and fall detection are presented in Table 7.
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TABLE 7 Human activity recognition with artificial intelligence

Applications Algorithm Technology References
Physical Activities SVM, RF, KNN, naive Bayes, Sensors, RFID Tags Pan et al. (2020), Hsieh et al. (2021), Y.
Monitoring decision tree, adaptive boosting Wang and Zheng (2018), Zhu et al.
(2017); Z. Wang et al. (2019)
KNN, SVM, LSTM, CNN, HACNN ‘Wearable Salah et al. (2022), S. Yu et al. (2021)
accelerometer,

cloud, fog, edge

4.3 | Chronic disease monitoring
431 | Diabetes monitoring

Mujumdar and Vaidehi (2019) proposed a diabetes prediction model to classify diabetes which includes external factors
responsible other than regular factors like glucose, body mass index (BMI), age, insulin, and so on. In this study,
machine learning algorithms, including Support Vector Classifier, Decision Tree classifier, Extra Tree Classifier, Ada
Boost algorithm, Neural Networks, RF Classifier, Linear Discriminant Analysis algorithm, Logistic Regression, K-
Nearest Neighbor, Gaussian Naive Bayes, Bagging algorithm, and Gradient Boost Classifier was implemented for diabe-
tes prediction. All the models were trained and evaluated using a confusion matrix and classification report. Out of all,
the logistic regression model was able to classify diabetic and nondiabetic with an accuracy of 96%. To continuously
evaluate diabetic patients’ data such as sugar level, sleep time, heart pulse, food intake, and exercise collected through
sensors. Analyze the data using neural networks and classify the health risk status into four modes: low, medium, high,
and extreme (Efat et al., 2020). Based on national physical examination, the risk factors for type II diabetes mellitus
(T2DM) were computed using machine learning algorithms. A logistic regression model was implemented on physical
measurement and a questionnaire. The 14 risk factors selected in logistics regression were combined and implemented
with tree-based machine learning algorithms like decision tree, RF, AdaBoost, and XGBoost. Out of 4 algorithms,
XGBoost had achieved an accuracy of 90.6%, precision 91.0%, recall 90.2%, F1 score 90.6% and AUC 96.8%. XGBoost
model was used to output feature importance scores. BMI was the most important feature, followed by age, waist cir-
cumference, systolic pressure, ethnicity, smoking amount, fatty liver, hypertension, physical activity, drinking status,
dietary ratio (meat to vegetables), drink amount, smoking status, and diet habit (oil-loving) (Xue et al., 2020). Several
ML techniques could classify different states of diabetic patients with high accuracy.

4.3.2 | Mental health monitoring

Mental health illness is one of the most underestimated human states, which shortens the life span by 10-20 years
(McGinty et al., 2021). It would be difficult to manually monitor people with mental health illnesses such as schizophre-
nia, bipolar disorder, major depressive disorder, and suicidal tendency. Thieme et al. (2020) conducted a systematic
review on how implementing machine learning can assist in detecting, diagnosing, and treating mental health prob-
lems. Machine learning techniques can offer new routes for learning patterns of human behavior. It helps in identifying
mental health symptoms and risk factors. Also, it assists in predicting disease progression and personalizing and opti-
mizing therapies. Advances in machine learning will attempt to predict suicide based on the analysis of relevant data
and inform clinical practice. Adamou et al. (2019) proposed a text-mining approach to support risk assessment. Latent
Dirichlet allocation (LDA) is a special case of topic modeling for natural language processing. The technology was used
to process different types of information like demographics, appointments, progress notes, comprehensive assessments,
referrals, and Inpatient stays. Statistically equivalent signatures (SES) mechanism for feature selection. In this study,
support vector regression (SVR), RF, and linear ridge regression (RLR) models were implemented along with K-fold
cross-validation. The approach achieved the highest area under curve (AUC) value of 0.705. Continuous monitoring
would enable the record of abnormal vital sign measurements, and ML techniques have the potential to analyze the
data to detect underlying data patterns to take appropriate treatment steps. Diabetes and Mental Health monitoring dis-
cussed in this section are outlined in Table 8.
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TABLE 8 Chronic disease monitoring with artificial intelligence

Applications Algorithm Technology References
Diabetes monitoring Decision Tree, RF, AdaBoost, EHRs, Sensors Mujumdar and Vaidehi (2019), Efat et al.
XGBoost, RF, KNN, SVM (2020), Xue et al. (2020)

Mental health monitoring LDA, SVM, RF, RLR, SES Social media text, demographics Thieme et al. (2020), Adamou et al.
(2019), McGinty et al. (2021)

44 | Emergency monitoring
441 | Emergency department

RPMs Decision-making for emergency department patients using machine learning techniques would have helped to
improve existing methods. Taylor et al. (2016) compared clinical decision rule to a machine learning approach for
predicting in-hospital mortality of patients with sepsis. In this study, machine learning techniques were used to extract
a large number of variables through existing emergency department clinical records to predict patient outcomes and
facilitate automation and deployment within clinical decision support systems. Patients visiting the emergency depart-
ment visits were randomly partitioned into an 80%/20% split for training and validation. 500 clinical variables were
extracted from the real-time clinical records of four hospitals using an RF model to predict in-hospital mortality. Later,
the RF model was compared to the classification and regression tree (CART) and logistic regression models. The ran-
dom forest model AUC was statistically different from all other models (p < 0.003 for all comparisons). Kong et al.
(2016) designed a decision tool based on rule-based inference methodology using the evidential reasoning approach
(RIMER) that was developed and validated to predict trauma outcomes. It helps physicians to predict in-hospital death
and intensive care unit (ICU) admission among trauma patients in emergency departments. The prediction perfor-
mance of the RIMER was compared to logistic regression analysis, support vector machine, artificial neural network,
SVM models, and ANN models. Five-fold cross-validation was implemented, and the AUCs of RIMER, logistic regres-
sion, SVM, and ANN are 0.952, 0.885, 0.821, and 0.790, respectively. The results show that the RIMER model performs
the best. The machine learning techniques could classify near-term mortality based on vital signs analysis in emergency
department patients.

The machine learning approach is able to incorporate heart rate variability (HRV) for intensive monitoring, resusci-
tation facilities, and early intervention for critically ill patients in the emergency department by comparing the area
under the curve, sensitivity, and specificity with the modified early warning score (MEWS). In a study (Oh et al., 2018),
HRYV parameters were generated from a 5-min electrocardiogram (ECG) recording incorporated with age and vital signs
to generate the ML score for each patient. The area under the receiver operating characteristic curve (AUROC) for ML
scores in predicting cardiac arrest within 72 h is 0.781, compared with 0.680 for MEWS. For in-hospital deaths, the area
under the curve for ML score is 0.741, compared with 0.693 for MEWS. A cut-off machine learning score > 60 predicted
cardiac arrests with a sensitivity of 84.1%, specificity of 72.3%, and negative predictive value of 98.8%. A cut-off MEWS
>3 predicted cardiac arrest with a sensitivity of 74.4%, a specificity of 54.2%, and a negative predictive value of 97.8%
(Blasiak et al., 2020; Ong et al., 2012). Based on the results, machine learning scores were more accurate than the tradi-
tional MEWS in predicting cardiac arrest within 72 h.

442 | RPMsin the ICU

To predict near-term mortality in patients hospitalized with cirrhosis (Antunes et al., 2017), two machine learning
approaches (i) logistic regression and (ii) LSTM neural network on medical record entries of 500 patients staying ICU
and compared them (Xia et al., 2019). In total, 20 features, such as pulse, respiratory rate, systolic, and diastolic blood
pressure, were used for training the algorithm. The machine learning models outperformed the clinical decision tool, a
mathematical Chronic Liver Failure (CLIF) Score. A logistic regression model achieved an AUC of 0.80, the RNN-LSTM
model achieved an AUC of 0.77, and CLIF achieved an AUC of 0.72 (Harrison et al., 2018). A patient-specific model
could analyze vital signs based on historical data. Colopy et al. (2018) proposed Gaussian process regression (GPR) to
provide flexible, personalized models of time series of patient vital signs. This study uses a method to build GP models
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TABLE 9 Emergency and intensive care unit patients monitoring with artificial intelligence

Applications Algorithm Technology References
Emergency RF, RIMER, LSTM, GPR, EHRs, ECG, RIMER Taylor et al. (2016), Kong et al. (2016),
monitoring Logistics Regression, CLIF Oh et al. (2018), Ong et al. (2012), Blasiak

et al. (2020), Antunes et al. (2017), (Xia
et al. (2019), (Harrison et al. (2018),
Colopy et al. (2018)

TABLE 10 Facial and emotions recognition with artificial intelligence

Applications Algorithm Technology References
Facial and emotions LSTM, SVM Image Processing Mahesh et al. (2021), Chowdary et al. (2021),
monitoring Thermal sensors Zainuddin et al. (2020)
IoT devices
RFID signals Q. Xu et al. (2020)

with varying complexity and regularization using different hyperparameters on a patient-specific level to forecast
robust, vital signs. The authors used a random search algorithm to search for patient-specific parameters. Bayesian opti-
mization methods were implemented to accommodate any plausible parameterization in the patient population.
Patient-specific parameter optimization using machine learning techniques is the most advanced level of RPM. This
helps to build patient-specific models and break down a patient's health status to the lowest level. The Table 9 consoli-
dates the research works related to emergency and ICU patients monitoring.

4.5 | Facial and emotions recognition

Al can classify the patient's emotions based on patient face recognition. A smart integrated patient monitoring system
was proposed by Mahesh et al. (2021) to detect patients’ emotional states and heartbeat levels through face recognition
algorithms, heartbeat, and temperature sensors. Their RPM system presented the emotional data of the patients using
face recognition algorithms such as image preprocessing, feature extraction, and classification. The facial emotional rec-
ognition model is able to identify seven emotions: Anger, Happy, Sad, Neutral, Surprise, Disgust, and Fear. Based on
the heart rate sensor and thermal sensor, patients’ vital signs were measured with an interval of 5 s. Zainuddin et al.
(2020) used IoT technology to communicate facial emotions and vital signs to hospitals. Similarly, Chowdary et al.
(2021) designed an RPM system based on deep learning-based facial emotion recognition to overcome problems associ-
ated with mutual optimization of feature extraction and classification.

An experimental study to recognize user emotions of users with commercial RFID devices. Q. Xu et al. (2020) designed
an RPM system using an emotion recognition framework that first extracts respiration-based features and heartbeat-based
features from RFID signals. The extracted features were used in training a classifier that a user's different emotions. In this
study, the respiration rate was separated by using filters, whereas the heartbeat signal was retrieved by suppressing the respi-
ratory signal and improving the signal-to-noise ratio. Using their framework, a 2D emotional model divided emotions into
four states: joy, pleasure, anger, and sadness. An SVM model was able to classify the four emotion states with an accuracy of
80.65%, 61.29%, 83.87%, and 74.19%, respectively (Q. Xu et al., 2020). The research community developed RPM systems using
AT for facial and emotions recognition with technologies, as shown in Table 10.

5 | AIIMPACT ON RPM
5.1 | Early detection of patient deterioration

Early detection of vital signs deterioration is key to the timely invention and avoiding clinical deterioration in acutely
ill patients in hospitals. Traditional patient monitoring is to report individual vital signs of patients, which state their
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current clinical status. For example, vital signs such as temperature, pulse, respiratory rate, and mean arterial pressure
(MAP) are considered continuous predictors for emergency department patients (Asiimwe et al., 2020). New patient
monitoring algorithms analyze multiple features from physiological signals. This produces a predictive or prognostic
index that measures a specific critical health event or physiological instability (Helman et al., 2022). Posthuma et al.
(2020) presented a case series where wireless remote vital signs monitoring systems on surgical wards could reduce the
time to detect deteriorating patients. As part of this study, nursing staff found the systems somewhat useful, but still
required clinical judgment to assess the patient. They noted that there are still no set standards or guidelines for
implementing these types of systems, and the task remains for clinicians to judge which system best meets their needs.

Kellett and Sebat (2017) further elaborated on the need for clinicians to place more importance on regular and accu-
rate recording of vital signs. The authors noted that there is currently no agreement on how often vital signs need to be
recorded and that most hospital wards use periodic, manual observation of vital signs. Kellett also highlighted the need
for continuous patient monitoring and emphasized how vital this is to predict the onset of abnormal events.

Current approaches by clinicians for early prediction of patient deterioration can be estimated using manually cal-
culated screening metrics called early warning scores (EWS) (Garca-del Valle et al., 2021; Vinegar & Kwong, 2021).
Downey et al. (2018) demonstrated that although EWS systems have excellent predictive values, they are limited by
their intermittent nature. Until recently, continuous vital signs monitoring was limited to intensive care units that
require high staff-to-patient ratios. For example, Alshwaheen et al. (2021) proposed a novel framework of patient deteri-
oration prediction in ICUs based on LSTM-RNNs. The model acquired a significantly better classification performance
than the traditional method and could predict deterioration 1 h before onset. Muralitharan et al. (2020) further showed
that machine learning based EWS could be applied to a range of acute general medical and surgical wards, including
ambulatory and home care settings, and still perform better and with greater accuracy than the traditional manual
methods.

Although many studies have focused on the prediction of health outcomes, da Silva et al. (2021) predicted future
deteriorating vital signs based on applying RNNs and LSTM to historical data from electronic medical records (EMR).
These predicted vital signs were then applied to a clinical prognostic tool that used a combination of laboratory results
with vital signs for early diagnosis of worsening health status, with an accuracy of 80%.

Transparency and explainability are essential elements for Al models if they are going to be acceptable to clinicians.
Lauritsen et al. (2020) proposed an explainable AT EWS (XxAI-EWS) system for the early detection of acute critical ill-
ness. The xAI-EWS was composed of a temporal convolutional network (TCN) prediction module and a deep Taylor
decomposition (DTD) explanation module tailored to temporal explanations. Clinical experts evaluated the system
based on three emergency medicine cases: sepsis, acute kidney injury (AKI), and acute lung injury (ALI). The system
facilitated trust in the predictive capability by giving clinicians insights into the internal mechanics of the model with-
out any deep technical knowledge of the mechanisms behind it.

5.2 | Personalized monitoring

Conventional diagnoses of diseases and treatments from doctors are based on population averages and do not consider
the individual variability of patients to treatments (G. Chen, Xiao, et al., 2021). The IoT-enabled RPM architecture with
cloud computing discussed in previous sections combines patients' data for AI modeling. In contemporary settings,
patient-centric or personalized monitoring is critical, particularly for chronic diseases like mental health disorders, dia-
betes, and so on. Personalized monitoring can be carried out with distributed networks like fog and edge computing,
where an edge network is set up for a set of IoT devices on a patient. Mukherjee et al. (2020) proposed an edge-fog-
cloud framework for personalized health monitoring to predict patient mobility and advice nearby healthcare centers
in case of emergency. However, the data acquired from an IoT platform has to leave the devices and be merged into a
centralized cloud server for data analytics. This raises privacy and security concerns about patients’ health data. More-
over, it demands huge technological resources and power consumption.

A Federated learning framework in AT methods developed by Google could overcome the challenges by training an
Al model across multiple decentralized edge devices with local data available at each patient without exchanging or
merging them. The local model weights are aggregated and passed to a cloud server. The aggregated model weights are
used to train a robust global AI model. In this decentralized framework, the patient data will not leave their device and
ensure data privacy. The robust global model can be passed to local models for better prediction or classification results
on local data. The research community has widely adopted the approach for IoT applications. Zheng et al. (2021)
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FIGURE 5 Generic reinforcement learning mechanism

proposed a federated transfer learning mechanism for the internet of medical things (IoMT) healthcare. Nguyen et al.
(2023) discussed types of federated learning frameworks for smart healthcare, benefits, requirements, federated learning
applications in applications, trends, and challenges. Wu et al. (2022) proposed the FedHome framework, a novel cloud-
edge-based federated learning framework for in-home health monitoring to training local models. In that study, a gen-
erative convolutional autoencoder (GCAE) was designed to process imbalanced and nonidentical distribution data and
to achieve accurate results in personalized health monitoring. The proposed approach outperforms baseline models
with an accuracy of 95.87% and 95.41% for balanced data and imbalanced data, respectively. In personalized monitor-
ing, physical activity classification task was performed with FedHealth by Y. Chen et al. (2020). The federated learning
framework proposed in the study is based on data aggregation and builds personalized models with transfer learning.
FedHealth framework was evaluated with two classification problems. One is to classify physical activities and out-
perform the baseline models with an accuracy of 99.4%. The second one is to classify Parkinson's disease patient's arms
droop and postural tremor test and achieved an average accuracy of 84.3% and 74.9%, respectively. Similarly, Shaik,
Tao, Higgins, Gururajan, et al. (2022); Shaik, Tao, Higgins, Xie, et al. (2022) proposed a heterogeneous FedStack frame-
work to support diverse architectural local models at patients-end to classify their physical activities and build a robust
global model based on predictions of the local models.

5.3 | Adaptive learning

Reinforcement learning, a subset of Al, possess the ability to make a sequence of decision with its reward-driven behav-
ior. The machine learning approach learns to achieve a goal in a potentially uncertain, complex environment. It can
employ trial and error to solve a problem and get either rewards or penalties for the steps it executes (C. Yu
et al., 2023). In the reinforcement learning approach, a learning agent is deployed in an environment without any prior
information or knowledge. The agent has to learn the patterns based on their experience. To transit from the current
state (S,) at time ¢ to the next state (S,,,) at time step ¢t + 1, an action (A4,) is taken as shown in Figure 5. For these
actions, a predefined reward policy is designed. If the actions chosen is following the policy, the agent gets rewarded
(Ry), otherwise penalized. With the sequential decision-making capability, different reinforcement learning schemes are
applied to diverse dynamic treatment regimes (Laber et al., 2014) like chronic diseases, mental health diseases, and
infectious diseases which need a sequence of decision rules to determine a course of action to suggest treatment type,
drug dosage, or re-examination timing. C. Yu et al. (2023) surveyed the applications of reinforcement learning in
healthcare. The study has covered treatment strategies built on reinforcement to treat chronic diseases, cancer, diabetes,
anemia, HIV, and several common mental illnesses. I. Y. Chen, Joshi, et al. (2021) considered a clinician (learning
agent) who monitors the patient (environment) via actions like ventilation and observing the changes in the patient's
state (environment) to achieve a goal to discharge the patient successfully. This study provides a practical understand-
ing of the reinforcement learning approach in healthcare. Watts et al. (2020) developed a model to prescribe the timing
and dosage of medications using wearable sensors in real-time and deep reinforcement learning. Similarly, Naeem
et al. (2021) proposed an intelligent system that relies on algorithms of both Reinforcement Learning and Deep Learn-
ing to maximize the successful completion of the patient taking the right pill. Just-in-Time Adaptive Interventions
(JITAIs) are another healthcare applications which needs timely intervention to provide the right amount of support to
patients at right time. This can be achieved by adaptive learning of dynamic health changes in a patient (Nahum-Shani
et al., 2017). Wang, Zhang, et al. (2021) adopted reinforcement learning in a data-driven approach for mobile healthcare
user and optimize intervention strategies in their context. Similarly, Goniil et al. (2021) proposed a reinforcement

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

32




18 of 31 Wl LEY— WIREs SHAIK ET AL.

TABLE 11 Artificial intelligence (AI) impact on remote patient monitoring systems

AI impact Algorithms/technology  Applications References
Early detection of  explainable AI EWS, « Continuous monitoring of Asiimwe et al. (2020), Helman et al. (2022),
patient LSTM, TCN, DTD emergency patients, sepsis, acute Posthuma et al. (2020), Kellett and Sebat
deterioration kidney injury, acute lung injury (2017), Garca-del Valle et al. (2021),
« Early diagnosis with Early Vinegar and Kwong (2021), Downey et al.
Warning Scores and Predictive (2018), Alshwaheen et al. (2021), da Silva
Prognostic Index et al. (2021), Lauritsen et al. (2020)
Personalized Fog, Edge, IoMT, Cloud « Enable personalized monitoring G. Chen, Xiao, et al. (2021), Mukherjee et al.
monitoring GCAE, FedHealth, with decentralized learning (2020), Zheng et al. (2021), Nguyen et al.
FedStack « Overcome data privacy issues (2023), Wu et al. (2022), Y. Chen et al.

(2020), Shaik, Tao, Higgins, Gururajan,
et al. (2022); Shaik, Tao, Higgins, Xie,
et al. (2022)

Adaptive learning  DRL, A2C, DQN « Learn patient behavior patterns C. Yu et al. (2023), Laber et al. (2014), L. Y.
« Dynamic treatment regimes Chen, Joshi, et al. (2021), Watts et al.
« Just-in-time-adaptive- (2020), Naeem et al. (2021), Nahum-Shani
interventions et al. (2017), Wang, Zhang, et al. (2021),
« Sequential decision making tasks Goniil et al. (2021)

learning mechanism to personalize digital adaptive interventions as mobile notifications to the user in coping their
health problems. The authors deployed two models, intervention selection and opportune moment identification. With
respect to type and frequency, the intervention selection model adopts the intervention delivery. The opportune
moment identification is to detect the most opportune moments to intervene. Table 11 presents research works of Al
which can transform healthcare applications with advanced mechanism such as reinforcement learning and federated
learning.

6 | CHALLENGES AND TRENDS OF AI IN RPM

Implementing a technology-enabled patient monitoring system would require hospital staff support and their views.
Ede et al. (2021) did a qualitative study to explore staff expectations of wireless noncontact patient vital signs monitor-
ing, their perception of the utilization of the technology in the ICU, patients, and relative response to introducing the
technology. Nine nurses with a median duration experience of 2 years in ICU were interviewed on five different themes
such as ICU staff perceptions of the patient and relative monitoring experiences relating to current wired monitoring
and expectations of noncontact monitoring, staff expectation of continuous monitoring in ICU, troubleshooting, the
hierarchy of monitoring and consensus of trust. Although AI can transform healthcare with its potential to analyze,
predict and classify data efficiently, there remains a hesitancy to adopt the technology (Meskd et al., 2017). This
section discusses challenges in adopting Al to remote monitoring systems for vital signs precision and activity recogni-
tion. Initiatives to overcome the challenges are also presented.

6.1 | AI or ML explainability

The first and foremost challenge is the difficulty associated with interpreting the results generated by an AI or ML
model. Current models are better than humans at interpreting complex data and predicting outcomes but lack the
capacity to demonstrate how these conclusions were reached or if there were any weaknesses in the algorithm applied
by the ML model. This is one of the most challenging barriers for healthcare professionals to adopt AI or machine
learning methodologies (Mohanty & Mishra, 2022). Most of the machine learning models, such as neural networks,
SVM, and so on are black-box models. These models cannot elaborate their results and provide cause-and-effect rela-
tionships between predictor variables and target variables (G. Yang et al., 2022). AI or ML can be adaptable only when
interpretable structures and results for healthcare professionals (Sagi & Rokach, 2020).
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Sensitivity is one of the promising methods which can explain the cause-and-effect relationship between the input
and output variables of a trained neural network. Tree-based methods will not expect a parametric relationship between
input and output variables. Both classification and regression trees have been shown to provide interpretable structures
that would support clinical practice in decision-making (Jovanovic et al., 2016; Sagi & Rokach, 2020). Other than tree-
based methods, pattern-based classification, Naive Bayes, knowledge-based algorithms, logistic regression, and fuzzy
models can produce interpretable structures (Shouval et al., 2017).

SHapley Additive exPlanations (SHAP) (Lundberg & Lee, 2017), a method based on cooperative game theory
(Shapley, 1953), can increase the transparency and explainability of AT Models. In this method, the impact or contribu-
tion of input to the prediction output is represented with Shapley values and the values are calculated for each input
feature. The Shapley values of the prediction model were extracted in two forms: a global perspective of factors that
required special attention in overall prediction, and a local perspective of each feature in a single prediction. Linardatos
et al. (2020) reviewed machine learning interpretability methods. The study reported different scopes of interpretability
for deep learning models. It includes gradients explanation technique, integrated gradients, gradient-weighted class
activation mapping, DeepLIFT algorithm, deconvolution, and guided back-propagation. Raza et al. (2022) proposed a
framework for accurate and efficient personal healthcare using federated transfer learning and an explainable AI
(ExAI) model in EEG signal classification. Khodabandehloo et al. (2021) proposed a flexible AI system HealthXAI to
predict early symptoms of early decline in smart homes. The anomaly level of behavior was computed based on the
anomaly feature vector. The authors built a dashboard to allow clinicians to inspect anomalies, scores, and their auto-
matically generated natural language explanations. Trends in Explainable AI are sensitivity and Shapley values and the
research works exploring these trends in Table 12.

6.2 | Privacy

Considering the black-box nature of deep neural networks, it is impossible to predict what neural networks learn from
data. The problem with this is that they might unintentionally learn features that discriminate against user information.
This increases the risk of information disclosure. Iwasawa et al. (2017) analyzed the features learned by conventional
deep neural networks when applied to data of wearable to confirm this phenomenon. A simple logistic regressor could
achieve a high user classification accuracy of 84.7% when using the CNN features extracted from basic activity signals.
The same classifier could only obtain 35.2% user classification accuracy on raw sensor data. This reveals the privacy
leakage potentials of a deep learning model originally used for human activity recognition (K. Chen, Zhang,
et al., 2021).

In this study (K. Chen, Zhang, et al., 2021), data transformation and data perturbation techniques, were suggested
that could be used to overcome privacy issues with machine learning algorithms. User adversarial neural networks
were proposed to integrate an adversarial loss with the standard activity classification loss to minimize the user identifi-
cation accuracy. However, the adversarial loss technique has a limitation to protecting only private information, such
as user identity and gender. To protect all sensitive user identity information, the raw sensor signals were viewed from
two perspectives, style and content. D. Zhang et al. (2019) proposed to transform raw sensor data to have the “content”
unchanged, but the “style” is similar to random noises. For data perturbation, a deep private auto-encoder (dPA) was
proposed by Gati et al. (2021) to perturb the objective functions of the traditional deep auto-encoder to enforce
e-differential privacy. In addition to the privacy preservation in feature extraction layers, a e-differential privacy pre-
serving softmax layer was also developed for either classification or prediction. The blockchain technology discussed in
Section 3 of this study is one of the trends the research community is adopting to overcome the privacy issue. Hossein
et al. (2019) proposed a blockchain-based architecture for e-health applications in which users' data privacy is
maintained using features like immutability and anonymity. Ul Hassan et al. (2020) adopted the differential privacy
strategy in data perturbation and protect the data in the blockchain. The authors integrated the differential privacy
issues in each layer of the blockchain. Another trending AI mechanism, Federated Learning is being adopted for its
capacity to collaborate learning and maintain data privacy. The federated learning approach can maintain data privacy
by allowing local clients to share only their local Al model parameters, not private data. Singh et al. (2021) combined
blockchain and federated learning to propose a secure architecture for privacy-preserving in smart healthcare. The
authors take advantage of federated learning features and send only model parameters to the cloud. Data perturbation,
blockchain technology and federated learning techniques are being widely adopted to overcome patient privacy and
data leakage in healthcare applications as shown in Table 13.
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TABLE 12 Trends in explainable artificial intelligence (AI)

Challenge Trends References
Explainable AI or ML Sensitivity Sagi and Rokach (2020), Jovanovic et al. (2016), (Shouval
et al. (2017)
Shapley values Lundberg and Lee (2017), Shapley (1953), Linardatos et al.

(2020), Raza et al. (2022), Khodabandehloo et al. (2021)

TABLE 13 Trends in protecting privacy

Challenge Trends References
Privacy Differential privacy—Data perturbation K. Chen, Zhang, et al. (2021), Iwasawa et al. (2017), Gati
et al. (2021), D. Zhang et al. (2019),
Blockchain technology Hossein et al. (2019), Ul Hassan et al. (2020)
Federated Learning Singh et al. (2021), Shaik, Tao, Higgins, Gururajan, et al.

(2022); Shaik, Tao, Higgins, Xie, et al. (2022), Y. Chen
et al. (2020)

6.3 | Uncertainty

There are different uncertainties, such as the data acquisition process, deep neural networks (DNN) building process,
and modeling results in adopting AI methodologies to healthcare applications (Gawlikowski et al., 2021). Data acquisi-
tion plays a vital role in RPM systems. Still, error, noise in measurement systems, and variability in real-world situa-
tions cause uncertainty. While building and training the DNN model with the acquired data would lead to uncertainty
in the model structure and training procedure due to a large number of hyperparameters in DNN. The former two
uncertainties would lead to uncertainty in the modeling results can be split into data uncertainty (aleatoric uncertainty)
and model uncertainty (epistemic uncertainty) (Hiillermeier & Waegeman, 2021). Uncertainty quantification (UQ) can
reduce the impact of uncertainties during both the optimization and decision-making process. Abdar et al. (2021) sur-
veyed the research community's work on quantifying uncertainty in machine learning and deep learning models. The
review article discussed ensemble techniques and Bayesian techniques like Bayesian deep learning (BDL) (H. Wang &
Yeung, 2016) and Bayesian NNs (BNNs) (K. C. Wang et al., 2018) to address the reliability issue of the deep learning
models and can interpret their hyperparameters. Begoli et al. (2019) also discussed the need for UQ in machine
learning-assisted medical decision-making. The authors discussed four overlapping groups of challenges in UQ espe-
cially deep learning models being used in medical applications. The absence of theory in healthcare research is one of
the challenges, which means without a fundamental mathematical model, the research is bound to assumptions. The
second challenge is the absence of casual models due to limited conclusions from DL models. Sensitivity due to imper-
fect real-world data while quantifying the uncertainty. The last challenge discussed was computation expense due to
deep learning training and re-computation or re-evaluation, causing additional burdens.

6.4 | Signal processing

Most signal processing issues remained with noninvasive RPMs that did not touch the patient. Information system
infrastructure like RFID reader-antennas was able to retrieve data from RFID tags placed on different areas of the
patients. However, transforming the tags’ data into vital signs was a challenging task comprising noise (He et al., 2017;
Q. Xu et al., 2020). Environmental noise obscured respiration and heartbeat signals in these device-free scenarios. RFID
devices utilize a frequency hopping spread spectrum in many countries and regions, causing a discontinuous phase
stream. The signal fluctuation caused by intense emotions can overwhelm the respiration and heartbeat signals,
resulting in errors in signal extraction (Hou et al., 2017; Zhao et al., 2018). Signal processing challenges could be han-
dled by taking advantage of frequency differences in vital signs and noisy data. It is evident that the double parameter
of the least mean square (LMS) (He et al., 2017) can extract a respiration signal with a fundamental frequency
(H. Wang et al., 2016; X. Wang et al., 2017). Contact-less respiration and heartbeat monitoring (CRH) systems (Q. Xu
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et al., 2020; Zhao et al., 2018) that were designed to extract vital signs used smoothing, filtering on raw measurements,
and used an intense motion detector system to extract the coarse-grained signal. This was further processed to extract
respiratory and heartbeat signals. Noninvasive RPM systems have also used smoothing, unwrapping, interpolation, and
Fourier transform techniques to extract breathing and heartbeat signals (Hou et al., 2017). He et al. (2017) applied a
frequency-modulated continuous wave (FMCW) radar to monitor vital signs for multihuman targets. The data was col-
lected through the chest wall, with periodic vibration to record respiratory and heart rates. The study proposed a vital
signal separation method that could obtain accurate respiration and heartbeat signals using a novel double parameter,
the least mean square (LMS) filter. The respiration signal was extracted at the fundamental frequency, and the heart-
beat signal from the mixed physiological signal was based on the double-parameter LMS filter. Frequency differences
can help in signal processing by adopting techniques such as smoothing, interpolation, Fourier transforms, and fre-
quency filters as shown in Table 14.

6.5 | Imbalanced dataset

An imbalanced dataset is a common challenge in AI or ML for data scientists, as it can lead to bias in decision-making.
In the supervised machine learning technique, class-imbalanced datasets could affect the predictive ability of the model
(Gao et al., 2021). An imbalance in classification categories of a dataset where more samples are from one class is called
a majority class, with the other type called a minority class. Conventional machine learning algorithms tend to predict
the majority class while ignoring the minority class (Chen, Zhang, et al., 2021; Kaieski et al., 2020). The process could
be either using under-sampling techniques like EasyEnsemble and BalanceCascade (Choudhary & Shukla, 2021) to
reduce majority class samples or using an over-sampling technique like Synthetic Minority Oversampling Technique
(SMOTE) (Hambali & Gbolagade, 2016) to reproduce minority class samples (Alotaibi & Sasi, 2016). Either of these two
approaches would adequately deal with class imbalance.

Wang, Yao, and Chen (2021) proposed a long-tail data processing, undersampling-clustering-oversampling
algorithm, for heart rate prediction in stroke patients. The authors use a randomly undersampling technique on
majority labels and K-Means clustering on minority before applying SMOTE technique on the combined dataset.
Kumar et al. (2022) performed a review of class-imbalanced learning situations with six machine-learning classi-
fiers on five imbalanced clinical datasets. The authors explored seven different label balancing techniques such as
SMOTE, SVM-SMOTE, ADASYN, Undersampling, Random Oversampling, SMOTETOMEK, and SMOTEEN. Out
of all techniques, SMOTEEN with the KNN model achieved the highest accuracy, recall, precision, and F1 score.

Evaluation metrics also play a critical role in addressing bias in class imbalance problems. AI model evaluation
results can be misleading. For example, in a multilabel classification problem, considering the overall accuracy of an Al
model could show the model's performance in classifying each label. This can be addressed by adopting balanced
accuracy, precision, recall, and F1-score (Iwendi et al., 2020) metrics which provide model performance at each label.
Evaluation metrics may help to check the bias of model but oversampling and undersampling techniques are adopted
by the research community to overcome data imbalance or long tail data as shown in Table 15.

6.6 | Dataset volume

Another challenge in designing an RPM system that uses AI models is the size of the dataset used for its training and
predicting purposes. Most machine learning algorithms require large datasets to build a robust model. The size of the
dataset matters, as this would hinder the ability of a machine learning model to perform accurately. To analyze hospi-
talized data or outpatient data, a good model needs to be trained with informative features with a high number of sub-
jects (Ramos et al., 2021). A neural network model could enhance the performance as more data is available (Coppock
et al., 2021). Random forests need relatively few training cases to achieve near-peak performance, are computationally
cheap to train, and are able to handle large numbers of descriptors well (Teixeira et al., 2016). Data-driven models like
logistic regression, SVM, or neural networks have an advantage in model derivation as these models do not require
prior knowledge about the relationship between input predictor variables and output target variables. Models like deci-
sion trees, random forests, SVM, and Bayesian networks can handle large datasets and integrate background knowledge
into the analysis (Awad et al., 2017).
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TABLE 14 Trends in signal processing

Challenge Trends References
Signal processing Fourier transforms Hou et al. (2017), H. Wang et al. (2016), X. Wang et al. (2017)
Least mean square (LMS) filter He et al. (2017), Zhao et al. (2018), Q. Xu et al. (2020)

TABLE 15 Trends in data imbalance

Challenge Trends References
Imbalanced datasets OverSampling, SMOTE Hambali and Gbolagade (2016), Alotaibi and Sasi (2016),
Wang, Yao, and Chen (2021), Kumar et al. (2022)
Undersampling Choudhary and Shukla (2021), Wang, Yao, and Chen

(2021), Kumar et al. (2022)

TABLE 16 Trends in data imbalance

Challenge Trends References
Feature extraction Feature engineering feature K. Chen, Zhang, et al. (2021), Kaieski et al. (2020),
learning and representation X. Zhang et al. (2017), Y. Xu et al. (2018)
Deep learning Zhong et al. (2016)
6.7 | Feature extraction

Feature extraction is one of the key steps RPM systems perform in analyzing human vital signs and activity recog-
nition (K. Chen, Zhang, et al., 2021). T generate a model to predict, detect or score the patient's health state, the
definition of the features must be included (Kaieski et al., 2020). Lack of efficient feature engineering process, fea-
ture selection methods, and the heterogeneity of measured patient data are some challenges limiting the effective-
ness of machine learning-based predictive models (X. Zhang et al., 2017). Within ICU, patients are monitored
continuously by numerous specialized devices at the bedside, which generates high-density multiple data modali-
ties. As a result, the timestamps, order, and frequency of the measurements may be profoundly different from one
patient to another. This type of irregularity and heterogeneity in patient data make feature selection even more
challenging (Y. Xu et al., 2018). To overcome the lack of efficient feature engineering, feature selection techniques,
and the heterogeneity of measured patient data, feature learning or representation learning techniques can be
used. Deep learning algorithms such as RNNs, LSTM, CNN, and other algorithms based on neural networks have
the capability to learn this type of data structure (Zhong et al., 2016). The feature extraction challenge can be
addressed by adopting feature representation techniques. Deep learning can overcome this issue without any addi-
tional framework. The research works presenting the trends with corresponding research works are presented in
Table 16.

7 | FUTURE DIRECTION OF AI ON RPM

The future direction of the research is to extend the scope of AI in RPM applications to enhance healthcare services for
both providers and patients. To achieve this, the challenges in adopting AI to RPM as well as Al implementation have
to be addressed. As discussed in the previous section, the major challenges in adopting AI are Al or ML explainability,
privacy, and uncertainty. Explainability of Al results needs to be improved as it assists healthcare professionals in
understanding patients’ health status better and helps in decision-making. Explainable AI approaches are working in
this direction. Explainability techniques such as SHAP, LIME, DeepLIFT, and so on are being adopted to RPM systems
widely. This has to be further improved to breakdown the state-of-the-art deep learning and machine learning results
to healthcare practitioners to make informed decisions.
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Data privacy and the security of patients’ health is another major issue that could be addressed with federated learn-
ing. However, there is no strong research evidence in the federated learning concept to confirm that the reverse engi-
neering of the local client model parameters would not lead to a patient's private data. Future works should be focused
on strengthening the federated learning framework for data privacy and security. Blockchain technology has proved its
capacity in maintaining data privacy with transparency and immutability. However, the implementation of blockchain
technology demands high implementation costs and high energy dependence. Future works need to concentrate on
blockchain engineering issues.

Uncertainty due to model structure and hyperparameters causes uncertainty in results. UQ technique can play a
vital role to reduce uncertainties in the model during optimization and decision-making. The aleatoric and epistemic
uncertainty can be addressed through different probabilistic and nonprobabilistic, and inverse uncertainty techniques.
Focusing on this challenge would help to improve healthcare professionals' trust in machine learning or deep learning
model results.

Data-related challenges are inevitable in Al-based applications. It could be due to IoT devices' signal processing,
noise, data imbalance, limited labeled data, and feature extraction. Efficient and clean data is the first and most time-
consuming part of AI methodology. The challenges such as label imbalance or long-tail data have to be processed with
class balancing discussed in this study. The research community should concentrate on input data related at the most
to achieve efficient and effective results.

Reinforcement learning has the potential to mimic human behavior and build social assistive robots
for patients in a hospital or at home. Although this AI technique has been used for a while, there has not
been much research into applying it to healthcare applications. Taking advantage of the sequential decision-
making ability of reinforcement learning, healthcare applications such as dynamic treatment regimens
and Just-in-Time-Adaptive-Interventions (JITAIs) can be further enhanced. However, there have been
recent incidents of deploying physical robots causing threats to humans (Stein et al., 2022). It is recommended
to build virtual robots using reinforcement learning agents to monitor patients and predict unprecedented
events.

8 | CONCLUSION

Healthcare applications have been widely transformed by technological innovations in information systems and
Al In particular, the last decade has revolutionized monitoring patients’ health status by tracking their vital
signs and physical activities. Advancements in data transmission and data modeling enabled RPM systems to
detect patients’ health deterioration in advance, customize patient-centric applications, and learn their behavior
patterns adaptively. The transformation of RPM systems using noninvasive information system technologies like
telehealth, IoT, cloud, fog, edge, and blockchain are explored in this study. The primary focus of this survey
article is to present the role of AI in enhancing RPMs with its ability to learn, predict, and classify patients’
behavior and vital signs. Applications of AI in monitoring vital signs, physical activities, chronic diseases, and
patient emergencies are investigated. Federated learning facilitates a patient-centric monitoring system to focus
on their needs while protecting data privacy. Reinforcement learning enhances RPMs to learn patient behavior
patterns in a dynamic environment adaptively. The impact of such advanced AI methodologies on RPM systems
is detailed with evidence. Even though AI has the potential to transform RPM services, it has certain challenges
like explainability, privacy, and uncertainty. Other than this, data learning challenges include feature extrac-
tion, imbalanced labels, data volume, and data processing. In this study, the trends and challenges of Al in
RPM are discussed in detail.

This study's limitations are that study is focused on RPM systems with vital signs monitoring and physical activities
monitoring but not the electroencephalogram (EEG) monitoring and neurological system-related diseases. Also, this
study has not explored all chronic disease monitoring research works. While addressing the limitations and challenges
discussed in the study, healthcare applications should adopt advanced technological infrastructures like Cloud/Edge/
Fog/Blockchain and AI methods such as Federated Learning and Reinforcement Learning. So far, traditional AI
methods such as supervised and unsupervised have demonstrated state-of-the-results. However, this is the right time to
transform healthcare for preventive, predictive, and personalized monitoring of patients and provide enhanced assis-
tance to healthcare practitioners.

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

38




24 of 31 Wl LEY_ 75D WIREs SHAIK ET AL.

DATA MINING AND KNOWLEDGE DISCOVERY

AUTHOR CONTRIBUTIONS

Thanveer Shaik: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation (equal); meth-
odology (equal); writing — original draft (equal); writing — review and editing (equal). Xiaohui Tao: Conceptualization
(equal); formal analysis (equal); investigation (equal); methodology (equal); project administration (equal); supervision
(equal); writing - original draft (equal); writing — review and editing (equal). Niall Higgins: Conceptualization (equal);
methodology (equal); supervision (equal); writing — original draft (equal); writing — review and editing (equal). Lin Li:
Formal analysis (equal); investigation (equal); methodology (equal); writing - review and editing (equal). Raj
Gururajan: Project administration (equal); supervision (equal); writing — review and editing (equal). Xujuan Zhou:
Supervision (equal); writing — review and editing (equal). U. Rajendra Acharya: Writing - review and editing (equal).

ACKNOWLEDGMENT
Open access publishing facilitated by University of Southern Queensland, as part of the Wiley - University of Southern
Queensland agreement via the Council of Australian University Librarians.

CONFLICT OF INTEREST
All authors declare there is no conflict of interest in this work.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID

Thanveer Shaik “® https://orcid.org/0000-0002-9730-665X
Xiaohui Tao ‘® https://orcid.org/0000-0002-0020-077X

Niall Higgins © https://orcid.org/0000-0002-3260-1711

Raj Gururajan @ https://orcid.org/0000-0002-5919-0174
Xujuan Zhou @ https://orcid.org/0000-0002-1736-739X

U. Rajendra Acharya ‘® https://orcid.org/0000-0003-2689-8552

RELATED WIREs ARTICLES

Internet of Things and data mining: From applications to techniques and systems
Internet of Things and data analytics: A current review

Healthcare 4.0: A review of frontiers in digital health

FURTHER READING

Dev, A., & Malik, S. K. (2021). Artificial bee colony optimized deep neural network model for handling imbalanced stroke data. International
Journal of E-Health and Medical Communications, 12(5), 67-83. https://doi.org/10.4018/ijehmc.20210901.0a5

Guillame-Bert, M., Dubrawski, A., Wang, D., Hravnak, M., Clermont, G., & Pinsky, M. R. (2016). Learning temporal rules to forecast instabil-
ity in continuously monitored patients. Journal of the American Medical Informatics Association, 24(1), 47-53. https://doi.org/10.1093/
jamia/ocw048

Kam, H. J., & Kim, H. Y. (2017). Learning representations for the early detection of sepsis with deep neural networks. Computers in Biology
and Medicine, 89, 248-255. https://doi.org/10.1016/j.compbiomed.2017.08.015

Mahtta, D., Daher, M., Lee, M. T., Sayani, S., Shishehbor, M., & Virani, S. S. (2021). Promise and perils of telehealth in the current era.
Current Cardiology Reports, 23(9), 115. https://doi.org/10.1007/s11886-021

Wilcock, A. D., Schwamm, L. H., Zubizarreta, J. R., Zachrison, K. S., Uscher-Pines, L., Richard, J. V., & Mehrotra, A. (2021). Reperfusion
treatment and stroke outcomes in hospitals with telestroke capacity. JAMA Neurology, 78(5), 527. https://doi.org/10.1001/jamaneurol.
2021.0023

Williams, K., Markwardt, S., Kearney, S. M., Karp, J. F., Kraemer, K. L., Park, M. J,, Freund, P., Watson, A., Schuster, J., & Beckjord, E.
(2021). Addressing implementation challenges to digital care delivery for adults with multiple chronic conditions: Stakeholder feedback
in a randomized controlled trial. JMIR mHealth and uHealth, 9(2), €23498. https://doi.org/10.2196/23498

REFERENCES

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R.,
Makarenkov, V., & Nahavandi, S. (2021). A review of uncertainty quantification in deep learning: Techniques, applications and chal-
lenges. Information Fusion, 76, 243-297. https://doi.org/10.1016/].inffus.2021.05.008

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

39




SHAIK ET AL. 7:D) WIREs —Wl LEY 25 of 31

DATA MINING AND KNOWLEDGE DISCOVERY

Adamou, M., Antoniou, G., Greasidou, E., Lagani, V., Charonyktakis, P., Tsamardinos, I., & Doyle, M. (2019). Toward automatic risk assess-
ment to support suicide prevention. Crisis, 40(4), 249-256. https://doi.org/10.1027/0227-5910/a000561

Aliyu, F., Sheltami, T., Mahmoud, A., Al-Awami, L., & Yasar, A. (2021). Detecting man-in-the-middle attack in fog computing for social
media. Computers, Materials & Continua, 69(1), 1159-1181. https://doi.org/10.32604/cmc.2021.016938

Alotaibi, N. N., & Sasi, S. (2016). Stroke in-patients’ transfer to the ICU using ensemble based model. In In 2016 international conference on
electrical, electronics, and optimization techniques (ICEEOT). IEEE. https://doi.org/10.1109/iceeot.2016.7755040

Alshwaheen, T. I, Hau, Y. W., Ass'Ad, N., & Abualsamen, M. M. (2021). A novel and reliable framework of patient deterioration prediction
in intensive care unit based on long short-term memory-recurrent neural network. IEEE Access, 9, 3894-3918. https://doi.org/10.1109/
ACCESS.2020.3047186

Alwakeel, A. M. (2021). An overview of fog computing and edge computing security and privacy issues. Sensors, 21(24), 8226. https://doi.
org/10.3390/s21248226

Ankita, R. S., Babbar, H., Coleman, S., Singh, A., & Aljahdali, H. M. (2021). An efficient and lightweight deep learning model for human
activity recognition using smartphones. Sensors, 21(11), 3845. https://doi.org/10.3390/s21113845

Antunes, A. G., Teixeira, C., Vaz, A. M., Martins, C., Queiro's, P., Alves, A., Velasco, F., Peixe, B., & Guerreiro, H. (2017). Comparison of the
prognostic value of chronic liver failure consortium scores and traditional models for predicting mortality in patients with cirrhosis.
Gastroenterolog'ia y Hepatologa (English Edition), 40(4), 276-285. https://doi.org/10.1016/j.gastre.2017.03.012

Asiimwe, S. B., Vittinghoff, E., & Whooley, M. (2020). Vital signs data and probability of hospitalization, transfer to another facility, or emer-
gency department death among adults presenting for medical illnesses to the emergency department at a large urban hospital in the
United States. The Journal of Emergency Medicine, 58(4), 570-580. https://doi.org/10.1016/j.jemermed.2019.11.020

Awad, A., Bader-El-Den, M., McNicholas, J., & Briggs, J. (2017). Early hospital mortalityprediction of intensive care unit patients using an
ensemble learning approach. International Journal of Medical Informatics, 108, 185-195. https://doi.org/10.1016/j.ijmedinf.2017.10.002

Begoli, E., Bhattacharya, T., & Kusnezov, D. (2019). The need for uncertainty quantification in machine-assisted medical decision making.
Nature Machine Intelligence, 1(1), 20-23. https://doi.org/10.1038/s42256-018-0004-1

Bekiri, R., Djeffal, A., & Hettiri, M. (2020). A remote medical monitoring system based on data mining. In 020 1st international conference on
communications, control systems and signal processing (CCSSP). IEEE. https://doi.org/10.1109/ccssp49278.2020.9151713

Bini, S. A. (2018). Artificial intelligence, machine learning, deep learning, and cognitive computing: What do these terms mean and how will
they impact health care? The Journal of Arthroplasty, 33(8), 2358-2361. https://doi.org/10.1016/j.arth.2018.02.067

Blasiak, A., Khong, J., & Kee, T. (2020). CURATE.AI: Optimizing personalized medicine with artificial intelligence. SLAS Technology, 25(2),
95-105. https://doi.org/10.1177/2472630319890316

Bousefsaf, F., Pruski, A., & Maaoui, C. (2019). 3d convolutional neural networks for remote pulse rate measurement and mapping from facial
video. Applied Sciences, 9(20), 4364. https://doi.org/10.3390/app9204364

Busso, M., Gonzalez, M. P., & Scartascini, C. (2022). On the demand for telemedicine: Evidence from the COVID-19 pandemic. Health
Economics, 31(7), 1491-1505. https://doi.org/10.1002/hec.4523

Chen, G., Xiao, X., Zhao, X., Tat, T., Bick, M., & Chen, J. (2021). Electronic textiles for wearable point-of-care systems. Chemical Reviews,
122(3), 3259-3291. https://doi.org/10.1021/acs.chemrev.1c00502

Chen, L. Y., Joshi, S., Ghassemi, M., & Ranganath, R. (2021). Probabilistic machine learning for healthcare. Annual Review of Biomedical
Data Science, 4(1), 393-415. https://doi.org/10.1146/annurev-biodatasci-092820-033938

Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., & Liu, Y. (2021). Deep learning for sensor-based human activity recognition. ACM Computing
Surveys, 54(4), 1-40.

Chen, Y., Qin, X., Wang, J., Yu, C., & Gao, W. (2020). FedHealth: A federated transfer learning framework for wearable healthcare. IEEE
Intelligent Systems, 35(4), 83-93. https://doi.org/10.1109/mis.2020.2988604

Cho, Y., Bianchi-Berthouze, N., & Julier, S. J. (2017). DeepBreath: Deep learning of breathing patterns for automatic stress recognition using
low-cost thermal imaging in unconstrained settings. In In 2017 seventh international conference on affective computing and intelligent
interaction (ACII). IEEE. https://doi.org/10.1109/acii.2017.8273639

Choudhary, R., & Shukla, S. (2021). A clustering based ensemble of weighted kernelized extreme learning machine for class imbalance learn-
ing. Expert Systems with Applications, 164, 114041. https://doi.org/10.1016/j.eswa.2020.114041

Chowdary, M. K., Nguyen, T. N., & Hemanth, D. J. (2021). Deep learning-based facial emotion recognition for human-computer interaction
applications. Neural Computing and Applications, 1-18. https://doi.org/10.1007/s00521-021-06012-8

Colopy, G. W., Roberts, S. J., & Clifton, D. A. (2018). Bayesian optimization of personalized models for patient vital-sign monitoring. IEEE
Journal of Biomedical and Health Informatics, 22(2), 301-310. https://doi.org/10.1109/jbhi.2017.2751509

Coppock, H., Gaskell, A., Tzirakis, P., Baird, A., Jones, L., & Schuller, B. (2021). End-to-end convolutional neural network enables COVID-
19 detection from breath and cough audio: A pilot study. BMJ Innovations, 7(2), 356-362. https://doi.org/10.1136/bmjinnov-2021-000668

da Silva, D. B., Schmidt, D., da Costa, C. A., da Rosa Righi, R., & Eskofier, B. (2021). Deepsigns: A predictive model based on deep learning
for the early detection of patient health deterioration. Expert Systems with Applications, 165, 113905. https://doi.org/10.1016/j.eswa.2020.
113905

Dean, N. C., Vines, C. G., Carr, J. R., Rubin, J. G., Webb, B. J., Jacobs, J. R., Butler, A. M., Lee, J., Jephson, A. R., Jenson, N., Walker, M.,
Brown, S. M., Irvin, J. A., Lungren, M. P., & Allen, T. L. (2022). A pragmatic, stepped wedge, cluster-controlled clinical trial of real-time
pneumonia clinical decision support. American Journal of Respiratory and Critical Care Medicine, 205(11), 1330-1336. https://doi.org/10.
1164/rccm.202109-20920C

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

40




26 of 31 Wl LEY— 75D WIREs SHAIK ET AL.

DATA MINING AND KNOWLEDGE DISCOVERY

Devi, R. L., & Kalaivani, V. (2019). Machine learning and IoT-based cardiac arrhythmia diagnosis using statistical and dynamic features of
ECG. The Journal of Supercomputing, 76(9), 6533-6544. https://doi.org/10.1007/s11227-019-02873-y

Dias, D., & Cunha, J. P. S. (2018). Wearable health devices—Vital sign monitoring, systems and technologies. Sensors, 18(8), 2414. https://
doi.org/10.3390/518082414

Downey, C., Chapman, S., Randell, R., Brown, J., & Jayne, D. (2018). The impact of continuous versus intermittent vital signs monitoring in
hospitals: A systematic review and narrative synthesis. International Journal of Nursing Studies, 84, 19-27. https://doi.org/10.1016/j.
ijnurstu.2018.04.013

Drake, C., Zhang, Y., Chaiyachati, K. H., & Polsky, D. (2019). The limitations of poor broadband internet access for telemedicine use in rural
america: An observational study. Annals of Internal Medicine, 171(5), 382-384. https://doi.org/10.7326/m19-0283

Ede, J., Vollam, S., Darbyshire, J. L., Gibson, O., Tarassenko, L., & Watkinson, P. (2021). Non-contact vital sign monitoring of patients in an
intensive care unit: A human factors analysis of staff expectations. Applied Ergonomics, 90, 103149. https://doi.org/10.1016/j.apergo.
2020.103149

Efat, M. I. A., Rahman, S., & Rahman, T. (2020). IoT based smart health monitoring system for diabetes patients using neural network. In
Cyber security and computer science (pp. 593-606). Springer International Publishing. https://doi.org/10.1007/978-3-030-52856-047

Elola, A., Aramendi, E., Irusta, U., Picon, A., Alonso, E., Owens, P., & Idris, A. (2019). Deep neural networks for ECG-based pulse detection
during out-of-hospital cardiac arrest. Entropy, 21(3), 305. https://doi.org/10.3390/e21030305

El-Rashidy, N., El-Sappagh, S., Islam, S. M. R., El-Bakry, H. M., & Abdelrazek, S. (2021). Mobile health in remote patient monitoring for
chronic diseases: Principles, trends, and challenges. Diagnostics, 11(4), 607. https://doi.org/10.3390/diagnostics11040607

Fang, J., Liu, Y., Lee, E., & Yadav, K. (2020). Telehealth solutions for in-hospital communication with patients under isolation during
COVID-19. Western Journal of Emergency Medicine, 21(4), 801. https://doi.org/10.5811/westjem.2020.5.48165

Faruk, M. J. H., Shahriar, H., Valero, M., Sneha, S., Ahamed, S. I., & Rahman, M. (2021). Towards blockchain-based secure data manage-
ment for remote patient monitoring. In 2021 IEEE international conference on digital health (ICDH). IEEE. https://doi.org/10.1109/
icdh52753.2021.00054

Gao, L., Lu, P., & Ren, Y. (2021). A deep learning approach for imbalanced crash data in predicting highway rail grade crossings accidents.
Reliability Engineering & System Safety, 216, 108019. https://doi.org/10.1016/j.ress.2021.108019

Garca-del Valle, S., Arnal-Velasco, D., Molina-Mendoza, R., & Gomez-Arnau, J. I. (2021). Update on early warning scores. Best Practice &
Research Clinical Anaesthesiology, 35(1), 105-113. https://doi.org/10.1016/j.bpa.2020.12.013

Gati, N. J., Yang, L. T., Feng, J., Nie, X., Ren, Z., & Tarus, S. K. (2021). Differentially private data fusion and deep learning framework for
cyber-physical-social systems: State-of-the-art and perspectives. Information Fusion, 76, 298-314. https://doi.org/10.1016/j.inffus.2021.
04.017

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe, A., Triebel, R., Jung, P., Roscher, R., & Shahzad, M. (2021). A
survey of uncertainty in deep neural networks. https://doi.org/10.48550/ARXIV.2107.03342

Goniil, S., Namli, T., Cosar, A., & Toroslu, I H (2021). A reinforcement learning based algorithm for personalization of digital, just-in-time,
adaptive interventions. Artificial Intelligence in Medicine, 115(0933-3657), 102062. https://doi.org/10.1016/j.artmed.2021.102062

Hambali, A. M., & Gbolagade, D. M. (2016). Ovarian cancer classification using hybrid synthetic minority over-sampling technique and neu-
ral network. Journal of Advances in Computer Research, 7(4), 109-124 https://www.jacr.sari.iau.ir/article651012.html

Harrison, E., Chang, M., Hao, Y., & Flower, A. (2018). Using machine learning to predict near-term mortality in cirrhosis patients hospital-
ized at the university of Virginia health system. In In 2018 systems and information engineering design symposium (SIEDS). IEEE. https://
doi.org/10.1109/sieds.2018.8374719

Hathaliya, J., Sharma, P., Tanwar, S., & Gupta, R. (2019). Blockchain-based remote patient monitoring in healthcare4.0. In 2019 IEEE 9th
international conference on advanced computing (IACC). IEEE. https://doi.org/10.1109/iacc48062.2019.8971593

He, M., Nian, Y., & Gong, Y. (2017). Novel signal processing method for vital sign monitoring using FMCW radar. Biomedical Signal
Processing and Control, 33, 335-345. https://doi.org/10.1016/j.bspc.2016.12.008

Heijmans, M., Habets, J., Kuijf, M., Kubben, P., & Herff, C. (2019). Evaluation of Parkinson's disease at home: Predicting tremor from wear-
able sensors. In 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE. https://
doi.org/10.1109/embc.2019.8857717

Helm, J. M., Swiergosz, A. M., Haeberle, H. S., Karnuta, J. M., Schaffer, J. L., Krebs, V. E., Spitzer, A. I., & Ramkumar, P. N. (2020). Machine
learning and artificial intelligence: Definitions, applications, and future directions. Current Reviews in Musculoskeletal Medicine, 13(1),
69-76. https://doi.org/10.1007/s12178-020-09600-8

Helman, S., Terry, M. A,, Pellathy, T., Williams, A., Dubrawski, A., Clermont, G., Pinsky, M. R., Al-Zaiti, S., & Hravnak, M. (2022). Engaging
clinicians early during the development of a graphical user display of an intelligent alerting system at the bedside. International Journal
of Medical Informatics, 159, 104643. https://doi.org/10.1016/j.ijmedinf.2021.104643

Hossein, K. M., Esmaeili, M., Dargahi, T., & Khonsari, A. (2019). Blockchain-based privacy-preserving healthcare architecture. In
2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), (2576-7046). IEEE. https://doi.org/10.1109/
CCECE.2019.8861857

Hou, Y., Wang, Y., & Zheng, Y. (2017). TagBreathe: Monitor breathing with commodity RFID systems. In 2017 IEEE 37th international con-
ference on distributed computing systems (ICDCS). IEEE. https://doi.org/10.1109/icdcs.2017.76

Hsieh, C.-Y., Huang, H.-Y., Liu, K.-C., Liu, C.-P., Chan, C.-T., & Hsu, S. J.-P. (2021). Multiphase identification algorithm for fall recording
systems using a single wearable inertial sensor. Sensors, 21(9), 3302. https://doi.org/10.3390/521093302

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

41




SHAIK ET AL. 7:D) WIREs —Wl LEY. 27 of 31

DATA MINING AND KNOWLEDGE DISCOVERY

Hiillermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and
methods. Machine Learning, 110(3), 457-506. https://doi.org/10.1007/s10994-021-05946-3

Huang, C., Fukushi, K., Wang, Z., Nihey, F., Kajitani, H., & Nakahara, K. (2022). Method for estimating temporal gait parameters concerning
bilateral lower limbs of healthy subjects using a single in-shoe motion sensor through a gait event detection approach. Sensors, 22(1),
251. https://doi.org/10.3390/s22010351

Hui, X., & Kan, E. C. (2017). Monitoring vital signs over multiplexed radio by near-field coherent sensing. Nature Electronics, 1(1), 74-78.
https://doi.org/10.1038/s41928-017-0001-0

Hui, X., & Kan, E. C. (2018). Accurate extraction of heartbeat intervals with near-field coherent sensing. In 2018 IEEE international confer-
ence on communications (ICC). IEEE. https://doi.org/10.1109/icc.2018.8423000

Iranpak, S., Shahbahrami, A., & Shakeri, H. (2021). Remote patient monitoring and classifying using the internet of things platform com-
bined with cloud computing. Journal of Big Data, 8(1), 120. https://doi.org/10.1186/s40537-021-00507-w

Iwasawa, Y., Nakayama, K., Yairi, I., & Matsuo, Y. (2017). Privacy issues regarding the application of DNNs to activity-recognition using
wearables and its countermeasures by use of adversarial training. In Proceedings of the twenty sixth international joint conference on artifi-
cial intelligence. International Joint Conferences on Artificial Intelligence Organization https://www.ijcai.org/Proceedings/2017/0268.pdf

Iwendi, C., Bashir, A. K., Peshkar, A., Sujatha, R., Chatterjee, J. M., Pasupuleti, S., Mishra, R., Pillai, S., & Jo, O. (2020). COVID-19 patient
health prediction using boosted random forest algorithm. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00357

Joshi, M., Archer, S., Morbi, A., Arora, S., Kwasnicki, R., Ashrafian, H., Khan, S., Cooke, G., & Darzi, A. (2021). Short-term wearable sensors
for in-hospital medical and surgical patients: Mixed methods analysis of patient perspectives. JMIR Perioperative Medicine, 4(1), €18836.
https://doi.org/10.2196/18836

Jovanovic, M., Radovanovic, S., Vukicevic, M., Poucke, S. V., & Delibasic, B. (2016). Building interpretable predictive models for pediatric
hospital readmission using tree-lasso logistic regression. Artificial Intelligence in Medicine, 72, 12-21. https://doi.org/10.1016/j.artmed.
2016.07.003

Kaieski, N., da Costa, C. A., da Rosa Righi, R., Lora, P. S., & Eskofier, B. (2020). Application of artificial intelligence methods in vital signs
analysis of hospitalized patients: A systematic literature review. Applied Soft Computing, 96, 106612. https://doi.org/10.1016/j.as0c.2020.
106612

Kalfa, D., Agrawal, S., Goldshtrom, N., LaPar, D., & Bacha, E. (2020). Wireless monitoring and artificial intelligence: A bright future in car-
diothoracic surgery. The Journal of Thoracic and Cardiovascular Surgery, 160(3), 809-812. https://doi.org/10.1016/].jtcvs.2019.08.141

Kellett, J., & Sebat, F. (2017). Make vital signs great again—A call for action. European Journal of Internal Medicine, 45, 13-19. https://doi.
0rg/10.1016/j.¢jim.2017.09.018

Khalid, W. B., Anwar, A., & Waheed, O. T. (2022). Contactless vitals measurement robot. In In 2022 8th international conference on automa-
tion, robotics and applications (ICARA). IEEE. https://doi.org/10.1109/icara55094.2022.9738523

Khodabandehloo, E., Riboni, D., & Alimohammadi, A. (2021). HealthXAI: Collaborative and explainable Al for supporting early diagnosis of
cognitive decline. Future Generation Computer Systems, 116, 168-189. https://doi.org/10.1016/j.future.2020.10.030

Kong, G., Xu, D.-L., Yang, J.-B,, Yin, X., Wang, T., Jiang, B., & Hu, Y. (2016). Belief rule-based inference for predicting trauma outcome.
Knowledge-Based Systems, 95, 35-44. https://doi.org/10.1016/j.knosys.2015.12.002

Krittanawong, C., Johnson, K. W., Choi, E., Kaplin, S., Venner, E., Murugan, M., Wang, Z., Glicksberg, B. S., Amos, C. I,
Schatz, M. C., & Tang, W. W. (2022). Artificial intelligence and cardiovascular genetics. Life, 12(2), 279. https://doi.org/10.3390/
life12020279

Kumar, M., & Chand, S. (2021). MedHypChain: A patient-centered interoperability hyperledger-based medical healthcare system: Regulation
in COVID-19 pandemic. Journal of Network and Computer Applications, 179, 102975. https://doi.org/10.1016/j.jnca.2021.102975

Kumar, V., Lalotra, G. S., Sasikala, P., Rajput, D. S., Kaluri, R., Lakshmanna, K., Shorfuzzaman, M., Alsufyani, A., & Uddin, M. (2022).
Addressing binary classification over class imbalanced clinical datasets using computationally intelligent techniques. Healthcare, 10(7),
1293. https://doi.org/10.3390/healthcare10071293

Laber, E. B., Lizotte, D. J., Qian, M., Pelham, W. E., & Murphy, S. A. (2014). Dynamic treatment regimes: Technical challenges and applica-
tions. Electronic Journal of Statistics, 8(1), 1225-1272. https://doi.org/10.1214/14-ejs920

Laurie, J., Higgins, N., Peynot, T., Fawcett, L., & Robert, J. (2021). An evaluation of a video magnification-based system for respiratory rate
monitoring in an acute mental health setting. International Journal of Medical Informatics, 148, 104378. https://doi.org/10.1016/].
ijmedinf.2021.104378

Lauritsen, S. M., Kristensen, M., Olsen, M. V., Larsen, M. S., Lauritsen, K. M., Jorgensen, M. J., Lange, J., & Thiesson, B. (2020). Explainable
artificial intelligence model to predict acute critical illness from electronic health records. Nature Communications, 11(1), 3852. https://
doi.org/10.1038/s41467-020-17431-x

Lin, C., Zhang, Y., Ivy, J., Capan, M., Arnold, R., Huddleston, J. M., & Chi, M. (2018). Early diagnosis and prediction of sepsis shock by com-
bining static and dynamic information using convolutional-LSTM. In 2018 IEEE international conference on healthcare informatics
(ICHI). IEEE. https://doi.org/10.1109/ichi.2018.00032

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2020). Explainable AI: A review of machine learning interpretability methods.
Entropy, 23(1), 18. https://doi.org/10.3390/¢23010018

Liu, C., Zhang, X., Zhao, L., Liu, F., Chen, X,, Yao, Y., & Li, J. (2019). Signal quality assessment and lightweight QRS detection for wearable
ECG SmartVest system. IEEE Internet of Things Journal, 6(2), 1363-1374. https://doi.org/10.1109/jiot.2018.2844090

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

42




28 of 31 Wl LEY— 75D WIREs SHAIK ET AL.

DATA MINING AND KNOWLEDGE DISCOVERY

Liu, H., Wang, L., Lin, G., & Feng, Y. (2022). Recent progress in the fabrication of flexible materials for wearable sensors. Biomaterials Sci-
ence, 10(3), 614-632. https://doi.org/10.1039/d1bm01136g

Liu, Z., Zhu, T., Wang, J., Zheng, Z., Li, Y., Li, J., & Lai, Y. (2022). Functionalized fiber-based strain sensors: Pathway to next generation
wearable electronics. Nano-Micro Letters, 14(1), 1-39. https://doi.org/10.1007/s40820-022-00806-8

Lundberg, S. M., & Lee, S. -L. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference
on Neural Information Processing Systems (NIPS'17) (pp. 4768-4777). Curran Associates Inc., Red Hook, NY, USA. https://dl.acm.org/
doi/epdf/10.5555/3295222.3295230

Mahesh, V. G. V., Chen, C., Rajangam, V., Raj, A. N.J., & Krishnan, P. T. (2021). Shape and texture aware facial expression recognition using
spatial pyramid zernike moments and law's textures feature set. IEEE Access, 9, 52509-52522. https://doi.org/10.1109/access.2021.
3069881

Malasinghe, L. P., Ramzan, N., & Dahal, K. (2017). Remote patient monitoring: A comprehensive study. Journal of Ambient Intelligence and
Humanized Computing, 10(1), 57-76. https://doi.org/10.1007/s12652-017-0598-x

McGinty, E. E., Presskreischer, R., Breslau, J., Brown, J. D., Domino, M. E., Druss, B. G., Horvitz-Lennon, M., Murphy, K. A,
Pincus, H. A., & Daumit, G. L. (2021). Improving physical health among people with serious mental illness: The role of the specialty
mental health sector. Psychiatric Services, 72(11), 1301-1310. https://doi.org/10.1176/appi.ps.202000768

Meské, B., Drobni, Z., Bényei, E., Gergely, B., & Gyorffy, Z. (2017). Digital health is a cultural transformation of traditional healthcare.
mHealth, 3, 38. https://doi.org/10.21037/mhealth.2017.08.07

Miller, D. D., & Brown, E. W. (2018). Artificial intelligence in medical practice: The question to the answer? The American Journal of Medi-
cine, 131(2), 129-133. https://doi.org/10.1016/j.amjmed.2017.10.035

Mohanty, A., & Mishra, S. (2022). A comprehensive study of explainable artificial intelligence in healthcare. In Augmented intelligence in
healthcare: A pragmatic and integrated analysis (pp. 475-502). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-1076-025

Mujumdar, A., & Vaidehi, V. (2019). Diabetes prediction using machine learning algorithms. Procedia Computer Science, 165, 292-299.
https://doi.org/10.1016/j.procs.2020.01.047

Mukherjee, A., Ghosh, S., Behere, A., Ghosh, S. K., & Buyya, R. (2020). Internet of health things (IoHT) for personalized health care using
integrated edge-fog-cloud network. Journal of Ambient Intelligence and Humanized Computing, 12(1), 943-959. https://doi.org/10.1007/
$12652-020-02113-9

Muralitharan, S., Nelson, W., Di, S., McGillion, M., Devereaux, P., Barr, N. G., & Petch, J. (2020). Machine learning-based early warning sys-
tems for clinical deterioration: Systematic scoping review (preprint). https://doi.org/10.2196/25187

Naeem, M., Paragliola, G., & Coronato, A. (2021). A reinforcement learning and deep learning based intelligent system for the support of
impaired patients in home treatment. Expert Systems with Applications, 168, 114285. https://doi.org/10.1016/j.eswa.2020.114285

Nahum-Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K., Tewari, A., & Murphy, S. A. (2017). Just-in-time adaptive interven-
tions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Annals of Behavioral Medi-
cine, 52(6), 446-462. https://doi.org/10.1007/s12160-016-9830-8

Neto, L. A. S. M., Pequeno, R., Almeida, C., Galdino, K., Martins, F., & de Moura, A. V. (2017). A method for intelligent support to medical
diagnosis in emergency cardiac care. In 2017 international joint conference on neural networks (IJCNN). IEEE. https://doi.org/10.1109/
ijcnn.2017.7966438

Nguyen, D. C., Pham, Q.-V., Pathirana, P. N., Ding, M., Seneviratne, A., Lin, Z., Dobre, O., & Hwang, W.-J. (2023). Federated learning for
smart healthcare: A survey. ACM Computing Surveys, 55(3), 1-37. https://doi.org/10.1145/3501296

Nord, G., Rising, K. L., Band, R. A., Carr, B. G., & Hollander, J. E. (2019). On-demand synchronous audio video telemedicine visits are cost
effective. The American Journal of Emergency Medicine, 37(5), 890-894. https://doi.org/10.1016/j.ajem.2018.08.017

Oh, J., Cho, D, Park, J., Na, S. H., Kim, J., Heo, J., Shin, C. S., Kim, J. J., Park, J. Y., & Lee, B. (2018). Prediction and early detection of delir-
ium in the intensive care unit by using heart rate variability and machine learning. Physiological Measurement, 39(3), 035004. https://
doi.org/10.1088/1361-6579/aaab07

Ong, M. E. H, Ng, C. H. L., Goh, K,, Liu, N., Koh, Z., Shahidah, N., Zhang, T. T., Fook-Chong, S., & Lin, Z. (2012). Prediction of cardiac
arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability
compared with the modified early warning score. Critical Care, 16(3), R108. https://doi.org/10.1186/cc11396

Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic
Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A.,
Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hrébjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E.,
McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71.
https://doi.org/10.1136/bmj.n71

Pan, D., Liu, H., Qu, D., & Zhang, Z. (2020). Human falling detection algorithm based on multisensor data fusion with SVM. Mobile Informa-
tion Systems, 2020, 1-9. https://doi.org/10.1155/2020/8826088

Pareek, K., Tiwari, P. K., & Bhatnagar, V. (2021). Fog computing in healthcare: A review. IOP Conference Series: Materials Science and Engi-
neering, 1099(1), 012025. https://doi.org/10.1088/1757-899x/1099/1/012025

Pighini, C., Vezzoni, A., Mainini, S., Migliavacca, A. G., Montanari, A., Guarneri, M. R., Caiani, E. G., & Cesareo, A. (2022). SynCare:
An innovative remote patient monitoring system secured by cryptography and blockchain. In Privacy and identity management.
Between data protection and security (pp. 73-89). Springer International Publishing. https://doi.org/10.1007/978-3-030-99100-57

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

43




SHAIK ET AL. 7:D) WIREs —Wl LEY. 29 of 31

DATA MINING AND KNOWLEDGE DISCOVERY

Posthuma, L., Downey, C., Visscher, M., Ghazali, D., Joshi, M., Ashrafian, H., Khan, S., Darzi, A., Goldstone, J., & Preckel, B. (2020). Remote
wireless vital signs monitoring on the ward for early detection of deteriorating patients: A case series. International Journal of Nursing
Studies, 104, 103515. https://doi.org/10.1016/j.ijnurstu.2019.103515

Qi, Q., & Tao, F. (2019). A smart manufacturing service system based on edge computing, fog computing, and cloud computing. IEEE Access,
7, 86769-86777. https://doi.org/10.1109/access.2019.2923610

Qi, W., & Aliverti, A. (2020). A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity.
IEEE Journal of Biomedical and Health Informatics, 24(8), 2199-2207. https://doi.org/10.1109/jbhi.2019.2963048

Ramos, G., Gjini, E., Coelho, L., & Silveira, M. (2021). Unsupervised learning approach for predicting sepsis onset in ICU patients. In 2021
43rd annual international conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 1EEE. https://doi.org/10.1109/
embc46164.2021.9629559

Raza, A., Tran, K. P, Koehl, L., & Li, S. (2022). Designing ECG monitoring healthcare system with federated transfer learning and explain-
able Al Knowledge-Based Systems, 236, 107763. https://doi.org/10.1016/j.knosys.2021.107763

Rohmetra, H., Raghunath, N., Narang, P., Chamola, V., Guizani, M., & Lakkaniga, N. R. (2021). Al-enabled remote monitoring of vital signs
for COVID-19: Methods, prospects and challenges. Computing, 29(3), 1-27. PMCID: PMC8006120. https://doi.org/10.1007/s00607-021-
00937-7

Sabireen, H., & Venkataraman, N. (2021). A review on fog computing: Architecture, fog with 10T, algorithms and research challenges. ICT
Express, 7(2), 162-176. https://doi.org/10.1016/j.icte.2021.05.004

Sagi, O., & Rokach, L. (2020). Explainable decision forest: Transforming a decision forest into an interpretable tree. Information Fusion, 61,
124-138. https://doi.org/10.1016/j.inffus.2020.03.013

Salah, O. Z., Selvaperumal, S. K., & Abdulla, R. (2022). Accelerometer-based elderly fall detection system using edge artificial intelligence
architecture. International Journal of Electrical and Computer Engineering (IJECE), 12(4), 4430. https://doi.org/10.11591/ijece.v12i4.
pp4430-4438

Schnyer, D. M., Clasen, P. C., Gonzalez, C., & Beevers, C. G. (2017). Evaluating the diagnostic utility of applying a machine learning algo-
rithm to diffusion tensor MRI measures in individuals with major depressive disorder. Psychiatry Research: Neuroimaging, 264, 1-9.
https://doi.org/10.1016/j.pscychresns.2017.03.003

Shaik, T., Tao, X., Higgins, N., Gururajan, R., Li, Y., Zhou, X., & Acharya, U. R. (2022). Fedstack: Personalized activity monitoring using sta-
cked federated learning. Knowledge-Based Systems, 257(12), 109929. https://doi.org/10.1016/j.knosys.2022.109929, https://doi.org/10.
1016/j.knosys.2022.109929

Shaik, T., Tao, X., Higgins, N., Xie, H., Gururajan, R., & Zhou, X. (2022). Al enabled RPM for mental health facility. In Proceedings of the 1st
ACM Workshop on Mobile and Wireless Sensing for Smart Healthcare (pp. 26-32). Association for Computing Machinery. https://doi.org/
10.1145/3556551.3561191

Shao, M., Zhou, Z., Bin, G., Bai, Y., & Wu, S. (2020). A wearable electrocardiogram telemonitoring system for atrial fibrillation detection.
Sensors, 20(3), 606. https://doi.org/10.3390/s20030606

Shapley, L. S. (1953). 17. A value for n-person games. Contributions to the Theory of Games (Am-28), II, 307-318. https://doi.org/10.1515/
9781400881970-018

Sharma, P., & Kan, E. C. (2018). Sleep scoring with a UHF RFID tag by near field coherent sensing. In 2018 IEEE/MTT-s international micro-
wave symposium IMS. IEEE. https://doi.org/10.1109/MWSYM.2018.8439216

Shi, H., Wang, H., Qin, C., Zhao, L., & Liu, C. (2020). An incremental learning system for atrial fibrillation detection based on transfer learn-
ing and active learning. Computer Methods and Programs in Biomedicine, 187, 105219. https://doi.org/10.1016/j.cmpb.2019.105219

Shouval, R., Hadanny, A., Shlomo, N., Iakobishvili, Z., Unger, R., Zahger, D., Alcalai, R., Atar, S., Gottlieb, S., Matetzky, S., Goldenberg, I., &
Beigel, R. (2017). Machine learning for prediction of 30-day mortality after ST elevation myocardial infraction: An acute coronary syn-
drome israeli survey data mining study. International Journal of Cardiology, 246, 7-13. https://doi.org/10.1016/j.ijcard.2017.05.067

Siam, A. I., Almaiah, M. A., Al-Zahrani, A., Elazm, A. A, Banby, G. M. E., El-Shafai, W., El-Samie, F. E. A., & El-Bahnasawy, N. A. (2021).
Secure health monitoring communication systems based on IoT and cloud computing for medical emergency applications. Computa-
tional Intelligence and Neuroscience, 2021, 1-23. https://doi.org/10.1155/2021/8016525

Singh, S., Rathore, S., Alfarraj, O., Tolba, A., & Yoon, B. (2021). A framework for privacy-preservation of IoT healthcare data using federated
learning and blockchain technology. Future Generation Computer Systems, 129, 380-388. https://doi.org/10.1016/j.future.2021.11.028

Smith, G. B., Recio-Saucedo, A., & Griffiths, P. (2017). The measurement frequency and completeness of vital signs in general hospital wards:
An evidence free zone? International Journal of Nursing Studies, 74, A1-A4. https://doi.org/10.1016/j.ijnurstu.2017.07.001

Snoswell, C. L., Chelberg, G., Guzman, K. R. D., Haydon, H. H., Thomas, E. E., Caffery, L. J., & Smith, A. C. (2021). The clinical effectiveness
of telehealth: A systematic review of meta-analyses from 2010 to 2019. Journal of Telemedicine and Telecare. https://doi.org/10.1177/
1357633x211022907

Stein, J.-P., Cimander, P., & Appel, M. (2022). Power-posing robots: The influence of a humanoid robot's posture and size on its perceived
dominance, competence, eeriness, and threat. International Journal of Social Robotics, 14(6), 1413-1422. https://doi.org/10.1007/s12369-
022-00878-x

Tandel, S., Godbole, P., Malgaonkar, M., Gaikwad, R., & Padaya, R. (2022). An improved health monitoring system using iot. SSRN 4109039.
https://doi.org/10.2139/ssrn.4109039

Taylor, R. A,, Pare, J. R., Venkatesh, A. K., Mowafi, H., Melnick, E. R., Fleischman, W., & Hall, M. K. (2016). Prediction of in-hospital mortal-
ity in emergency department patients with sepsis: A local big data-driven, machine learning approach. Academic Emergency Medicine,
23(3), 269-278. https://doi.org/10.1111/acem.12876

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

44




30 of 31 Wl LEY— 75D WIREs SHAIK ET AL.

DATA MINING AND KNOWLEDGE DISCOVERY

Teixeira, P. L., Wei, W.-Q., Cronin, R. M., Mo, H., VanHouten, J. P., Carroll, R. J., LaRose, E., Bastarache, L. A., Rosenbloom, S. T.,
Edwards, T. L., Roden, D. M., & Denny, J. C. (2016). Evaluating electronic health record data sources and algorithmic approaches to
identify hypertensive individuals. Journal of the American Medical Informatics Association, 24(1), 162-171. https://doi.org/10.1093/
jamia/ocw071

Thieme, A., Belgrave, D., & Doherty, G. (2020). Machine learning in mental health. ACM Transactions on Computer Human Interaction,
27(5), 1-53. https://doi.org/10.1145/3398069

Torous, J., Nicholas, J., Larsen, M., Firth, J., & Christensen, H. (2018). Clinical review of user engagement with mental health smartphone
apps: Evidence, theory and improvements. Evidence-Based Mental Health, 21(3), 116-119. https://doi.org/10.1136/eb-2018-102891

Tripathi, G., Ahad, M. A., & Paiva, S. (2020). SMS: A secure healthcare model for smart cities. Electronics, 9(7), 1135. https://doi.org/10.3390/
electronics9071135

Uddin, M. Z. (2019). A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. Journal of
Parallel and Distributed Computing, 123, 46-53. https://doi.org/10.1016/j.jpdc.2018.08.010

Ul Hassan, M., Rehmani, M. H., & Chen, J. (2020). Differential privacy in blockchain technology: A futuristic approach. Journal of Parallel
and Distributed Computing, 145, 50-74. https://doi.org/10.1016/.jpdc.2020.06.003

Vinegar, M., & Kwong, M. (2021). Taking score of early warning scores. University of Western Ontario Medical Journal, 89(2). https://doi.org/
10.5206/uwom;j.v89i2.10518

Vimal, S., Robinson, Y. H., Kadry, S., Long, H. V., & Nam, Y. (2021). Iot based smart health monitoring with cnn using edge computing.
Journal of Internet Technology, 22(1), 173-185. https://doi.org/10.3966/160792642021012201017

Wang, H., & Yeung, D.-Y. (2016). A survey on Bayesian deep learning. https://arxiv.org/abs/1604.01662

Wang, M., Yao, X., & Chen, Y. (2021). An imbalanced-data processing algorithm for the prediction of heart attack in stroke patients. IEEE
Access, 9, 25394-25404. https://doi.org/10.1109/access.2021.3057693

Wang, H., Zhang, D., Ma, J., Wang, Y., Wang, Y., Wu, D., Gu, T., & Xie, B. (2016). Human respiration detection with commodity wifi devices.
In Proceedings of the 2016 ACM international joint conference on pervasive and ubiquitous computing. ACM. https://doi.org/10.1145/
2971648.2971744

Wang, S., Zhang, C., Krose, B., & van Hoof, H. (2021). Optimizing adaptive notifications in Mobile health interventions systems: Reinforce-
ment learning from a data-driven behavioral simulator. Journal of Medical Systems, 45(12), 1-8. https://doi.org/10.1007/s10916-021-
01773-0

Wang, X., Yang, C., & Mao, S. (2017). PhaseBeat: Exploiting CSI phase data for vital sign monitoring with commodity WiFi devices. In 2017
IEEE 37th international conference on distributed computing systems (ICDCS). IEEE. https://doi.org/10.1109/icdcs.2017.206

Wang, Y., & Zheng, Y. (2018). Modeling RFID signal reflection for contact-free activity recognition. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2(4), 1-22. https://doi.org/10.1145/3287071

Wang, Z., Xu, M., Ye, N., Wang, R., & Huang, H. (2019). RF-focus: Computer vision-assisted region-of-interest rfid tag recognition and locali-
zation in multipath-prevalent environments. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(1),
1-30. https://doi.org/10.1145/3314416

Watts, J., Khojandi, A., Vasudevan, R., & Ramdhani, R. (2020). Optimizing individualized treatment planning for parkinson's disease using
deep reinforcement learning. In 2020 42nd annual international conference of the IEEE engineering in medicine & biology society (EMBC).
IEEE. https://doi.org/10.1109/embc44109.2020.9175311

Weenk, M., Bredie, S., Koeneman, M., Hesselink, G., van Goor, H., & van de Belt, T. H. (2020). Continuous monitoring of vital signs in the
general ward using wearable devices:Randomized controlled trial. Journal of Medical Internet Research, 22(6), e15471. https://doi.org/10.
2196/15471

Wu, Q., Chen, X., Zhou, Z., & Zhang, J. (2022). FedHome: Cloud-edge based personalized federated learning for in-home health monitoring.
IEEE Transactions on Mobile Computing, 21(8), 2818-2832. https://doi.org/10.1109/tmc.2020.3045266

Xia, J., Pan, S., Zhu, M., Cai, G., Yan, M., Su, Q., Yan, J., & Ning, G. (2019). A long short-term memory ensemble approach for improving the
outcome prediction in intensive care unit. Computational and Mathematical Methods in Medicine, 2019, 1-10. https://doi.org/10.1155/
2019/8152713

Xu, Q., Liu, X., Luo, J., & Tang, Z. (2020). Emotion monitoring with RFID: An experimental study. CCF Transactions on Pervasive Computing
and Interaction, 2(4), 299-313. https://doi.org/10.1007/s42486-020-00043-1

Xu, Y., Biswal, S., Deshpande, S. R., Maher, K. O., & Sun, J. (2018). RAIM. In Proceedings of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining. ACM. https://doi.org/10.1145/3219819.3220051

Xue, M., Su, Y., Li, C., Wang, S., & Yao, H. (2020). Identification of potential type II diabetes in a large-scale chinese population using a sys-
tematic machine learning framework. Journal of Diabetes Research, 2020, 1-12. https://doi.org/10.1155/2020/6873891

Yang, G., Ye, Q., & Xia, J. (2022). Unbox the black-box for the medical explainable Al via multi-modal and multi-centre data fusion: A mini-
review, two showcases and beyond. Information Fusion, 77, 29-52. https://doi.org/10.1016/j.inffus.2021.07.016

Yang, J., Xiao, W., Lu, H., & Barnawi, A. (2020). Wireless high-frequency NLOS monitoring system for heart disease combined with hospital
and home. Future Generation Computer Systems, 110, 772-780. https://doi.org/10.1016/j.future.2019.11.001

Yew, H. T., Ng, M. F,, Ping, S. Z., Chung, S. K., Chekima, A., & Dargham, J. A. (2020). IoT based real-time remote patient monitoring system.
In 2020 16th IEEE international colloquium on signal processing & its applications (CSPA). IEEE. https://doi.org/10.1109/CSPA48992.
2020.9068699

Yu, C., Liu, J., Nemati, S., & Yin, G. (2023). Reinforcement learning in healthcare: A survey. ACM Computing Surveys, 55(1), 1-36. https://
doi.org/10.1145/3477600

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

45




SHAIK ET AL. 7:D) WIREs —Wl LEY 31 0f 31

DATA MINING AND KNOWLEDGE DISCOVERY

Yu, S., Chai, Y., Chen, H., Brown, R. A., Sherman, S. J., & Nunamaker, J. F. (2021). Fall detection with wearable sensors: A hierarchical
attention-based convolutional neural network approach. Journal of Management Information Systems, 38(4), 1095-1121. https://doi.org/
10.1080/07421222.2021.1990617

Zainuddin, A. A., Superamaniam, S., Andrew, A. C., Muraleedharan, R., Rakshys, J., Miriam, J., Bostomi, M. A., Rais, A. M., Khalidin, Z.,
Mansor, A. F., & Taufik, M. S. M. (2020). Patient monitoring system using computer vision for emotional recognition and vital signs
detection. In 2020 IEEE student conference on research and development (SCOReD). IEEE. https://doi.org/10.1109/scored50371.2020.
9250950

Zamanifar, A. (2021). Remote patient monitoring: Health status detection and prediction in IoT-based health care. In IoT in healthcare and
ambient assisted living (pp. 89-102). Springer Singapore. https://doi.org/10.1007/978-981-15-9897-55

Zhang, D., Yao, L., Chen, K., Long, G., & Wang, S. (2019). Collective protection: Preventing sensitive inferences via integrative transforma-
tion. In 2019 IEEE international conference on data mining (ICDM). IEEE. https://doi.org/10.1109/icdm.2019.00197

Zhang, X., Kim, J., Patzer, R. E., Pitts, S. R., Patzer, A., & Schrager, J. D. (2017). Prediction of emergency department hospital admission
based on natural language processing and neural networks. Methods of Information in Medicine, 56(5), 377-389. https://doi.org/10.3414/
mel7-01-0024

Zhao, R., Wang, D., Zhang, Q., Chen, H., & Huang, A. (2018). CRH: A contactless respiration and heartbeat monitoring system with COTS
RFID tags. In 2018 15th annual IEEE international conference on sensing, communication, and networking (SECON). 1EEE. https://doi.
org/10.1109/sahcn.2018.8397132

Zheng, X., Shah, S. B. H,, Ren, X., Li, F., Nawaf, L., Chakraborty, C., & Fayaz, M. (2021). Mobile edge computing enabled efficient communi-
cation based on federated learning in internet of medical things. Wireless Communications and Mobile Computing, 2021, 1-10. https://
doi.org/10.1155/2021/4410894

Zhong, G., Wang, L.-N., Ling, X., & Dong, J. (2016). An overview on data representation learning: From traditional feature learning to recent
deep learning. The Journal of Finance and Data Science, 2(4), 265-278. https://doi.org/10.1016/j.jfds.2017.05.001

Zhu, L., Wang, R., Wang, Z., & Yang, H. (2017). TagCare: Using RFIDs to monitor the status of the elderly living alone. IEEE Access, 5,
11364-11373. https://doi.org/10.1109/access.2017.2716359

How to cite this article: Shaik, T., Tao, X., Higgins, N., Li, L., Gururajan, R., Zhou, X., & Acharya, U. R. (2023).
Remote patient monitoring using artificial intelligence: Current state, applications, and challenges. WIREs Data
Mining and Knowledge Discovery, 13(2), e1485. https://doi.org/10.1002/widm.1485

5US0 1 SUOWILLIOD BAIRRID) 3! (dde U Aq pauiench a1e sop1e WO 88N JO S3[n1 oy ARiq1 8UIIUO /B]IM UO (SUONIPUOD-PU.-SLLLBYLIOD™AB | I ARe1q1BU1UO//SUNL) SUORIPUOD PUE SWIS L U} 385 *[£202/.0/T2] U0 AfRiq1T8UIUO AB]IM ‘PURSLIBSNO UBUINOS JO AISIOAINN AQ S8YT WPIM/ZOOT OT/10p/W0" A3 | 1M A%iq 1 pu [UO'SS1IM/SANY 01 PAPEOIUMOQ ‘2 ‘€202 ‘SBLYZY6T

46




2.2 Summary

Chapter 2 provides an in-depth analysis of remote patient monitoring, highlighting its
significance and presenting the key challenges that drive the subsequent research en-
deavours. It sets the stage for the exploration of cutting-edge Al-driven approaches to
patient care. The summary bridges the discussion on Al’s integration into RPM with
a forward-looking perspective on its symbiotic relationship with emerging healthcare
technologies, as explored in later chapters. It underscores the challenges and oppor-
tunities that Al introduces to RPM, such as ethical data usage and the democratization
of healthcare, hinting at the broader thematic explorations of Al ethics, data gover-
nance, and the evolution of patient-centric care models in the continuum of the thesis.
This cohesive wrap-up not only reflects on the chapter’s contributions but also primes
the reader for the interconnected discussions that follow, emphasizing the thesis’s col-
lective advancement of knowledge in digital health.
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CHAPTER 3: PAPER 2 - FEDSTACK: PERSONALIZED
ACTIVITY MONITORING USING STACKED FEDERATED
LEARNING

3.1 Introduction

This chapter delves into the innovative FedStack framework, a novel approach to per-
sonalized activity monitoring within the realm of remote patient monitoring (RPM). It ex-
plores how FedStack leverages stacked federated learning to address the challenges
of data privacy and model heterogeneity in healthcare applications. By enabling decen-
tralized Al model training across diverse devices, FedStack enhances patient privacy
and supports the personalized monitoring essential for individualized healthcare. This
introduction outlines the integration of various Al models, including Artificial Neural Net-
works (ANNs), Convolutional Neural Networks (CNNs), and Bidirectional Long Short-
Term Memory (Bi-LSTM) networks, to achieve state-of-the-art performance in activity
recognition. The chapter sets the context for understanding how FedStack contributes
to the broader thesis by enhancing RPM’s efficacy and privacy.
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3.2 Summary

In summary, this chapter presents the FedStack framework as a significant advance-
ment in personalized activity monitoring through federated learning. By demonstrating
superior performance in recognizing diverse human activities with enhanced privacy,
FedStack embodies a significant leap forward in RPM technology. The chapter under-
scores the successful application of FedStack to a mobile health sensor benchmark
dataset, showcasing its effectiveness in leveraging heterogeneous Al models for im-
proved activity recognition. Furthermore, it highlights the optimal sensor placement for
accurate data collection, emphasizing the practical implications of FedStack in clinical
settings. This chapter’s findings not only contribute to the field of RPM but also bridge to
subsequent chapters, where the focus shifts to scaling these technologies for broader
healthcare applications, maintaining patient privacy, and addressing the challenges of
deploying Al-driven health monitoring systems in real-world scenarios.
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CHAPTER 4: PAPER 3 - CLUSTERED FEDSTACK:
INTERMEDIATE GLOBAL MODELS WITH BAYESIAN
INFORMATION CRITERION

4.1 Introduction

This chapter introduces "Clustered FedStack,” an advanced extension of the FedStack
framework, designed to address the challenges posed by non-identically and indepen-
dently distributed (non-lID) data in federated learning environments. By integrating
sophisticated clustering techniques and the Bayesian Information Criterion (BIC), this
framework innovatively groups local client models based on their output layer weights
to form intermediate global models. This approach not only enhances the personal-
ization of federated learning models but also significantly improves their performance
in diverse applications, from human activity recognition (HAR) to natural language pro-
cessing (NLP) tasks. This introduction sets the stage for a detailed exploration of the
clustered FedStack framework, its algorithmic underpinnings, and its empirical valida-
tion through rigorous experiments.
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Editor: Li Liu Federated Learning (FL) is currently one of the most popular technologies in the field of Artificial Intelligence
(AI) due to its collaborative learning and ability to preserve client privacy. However, it faces challenges such as
non-identically and non-independently distributed (non-IID) data with imbalanced labels among local clients.

To address these limitations, the research community has explored various approaches such as using local
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Federated learning study, we propose a novel Clustered FedStack framework based on the previously published Stacked Federated
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Information Criterion (BIC) is used with the maximum likelihood function to determine the number of clusters.
Our results show that Clustered FedStack models outperform baseline models with clustering mechanisms. To
estimate the convergence of our proposed framework, we use Cyclical learning rates.

addresses this issue through its collaborative learning approach, where
local models trained in each medical institute share their model weights
with a global model stored in a shared server [3]. This maintains
data privacy, as the institute’s data remains within its premises. The
process can be used at the patient level to monitor their health status by
predicting vital signs, such as heart rate and breathing, and classifying
their physical activities. It enables personalized patient monitoring with
enhanced data privacy.

1. Introduction

As Al techniques have matured, a vast amount of human data is
being generated every second around the world. To manage this huge
data, technology giant Google introduced a mechanism that trains a
machine learning (ML) algorithm across multiple decentralized de-
vices or servers without exchanging their local data samples. This is
called Federated Learning (FL), which is also known as collaborative
learning [1]. FL overcomes the issues of data privacy that exist in

traditional centralized learning techniques where all device or server
data is merged for analysis [2]. FL has garnered significant attention
since its introduction by Google as a ML technique for predicting users’
input from Gboard (a keypad) on Android devices. This technique has
been widely adopted in communication, engineering, and healthcare.
However, medical institutes in particular possess a vast amount of
patient data that may not be sufficient to train ML or deep learning
models, and may even be biased due to a lack of data diversity. FL
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different architectural models. However, it has a limitation of non-
identically and independently distributed (non-IID) data, where the
local clients’ data distributions may be different. This can be addressed
by allowing the global model to group the local clients based on their
deep learning model output weights. To avoid any bias in grouping the
local clients, unsupervised clustering methods can be adopted.

This study proposes a novel Clustered-FedStack framework to over-
come FL’s non-IID data challenge [5]. All models trained on local clients
pass their predictions and output layer weights to the server, which
builds a global server model based on the predictions received from the
local models. Later, the global server model clusters local client models
with output layer weights received and creates intermediate clustered
models between local clients and the server. In this unsupervised
process, the server model computes the cosine distance matrix among
the local model output layer weights. To determine the number of
clusters in this process, the BIC technique is adopted and maximum
likelihood estimation is applied to the local model weights in the
server. Three types of clustering techniques: centroid-based (k-Means),
hierarchical (Agglomerative), and distribution-based (Gaussian Mixture
Model) techniques are deployed. Cyclical learning rates are applied to
estimate the convergence of the clustered models.

The proposed framework is evaluated with a human activity recog-
nition (HAR) task using the publicly available sensor-based PPG-DALiA
dataset [6]. The results show that clustered models have state-of-the-art
performance in classifying human activities with the sensor data of 15
subjects. The performance of the clustered FedStack model is compared
with four clustered FL baseline models, and the proposed model has
outperformed the baseline models in all classification metrics. More-
over, the proposed framework can be scalable to Natural Language
Processing (NLP) tasks. This has been evaluated on the drug review
dataset [7], where the intermediate clustered models performed better
and could handle a huge number of local clients with non-IID data
to achieve superconvergence. Thus, the proposed clustered FedStack
framework can group local clients and overcome the non-IID challenge
in FL. The contributions of the present study include the following:

A novel Clustered-FedStack framework is proposed to group local
clients in an unsupervised approach and overcome the non-IID
challenge in FL.

Improved personalized modeling in FL by building intermedi-
ate clustered models between the global server model and local
clients.

Achievement of superconvergence of all clustered-FedStack mod-
els using Cyclical learning rates.

A Clustered-FedStack approach that proves scalable for Natural
Language Processing (NLP) tasks, effectively handling a high
number of local clients with non-IID data.

Section 2 presents related works on FL and different aggregating
techniques developed. Section 3 presents the formulation of the re-
search problem and the proposed Clustered-FedStack framework. In
Section 4, the proposed framework is evaluated in HAR and the results
are discussed. The framework optimization with Cyclical learning rates
is also presented in Section 4. In Section 5, we evaluate the scalability
of the proposed framework using a NLP dataset. Section 6 concludes
the paper.

2. Related works

Numerous studies have explored the aggregation of local model
parameters in FL and passed them to the global model on the server.
One of the first proposed aggregation techniques in FL is the Federated
Averaging (FedAvg) algorithm, which uses the average function to
aggregate local model weights and generate new weights to feed to
the global model [8]. However, the FedAvg technique cannot optimize
models if a client has a heterogeneous data distribution. To combat this,
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Arivazhagan et al. [9] proposed FedPer, which has two layers: a base
layer and a personalization layer. FedAvg trains the base layers, while
the personalization layers are trained with stochastic gradient descent,
helping to mitigate the ill effects of statistical heterogeneity. Wang
et al. [10] proposed Federated Matched Averaging (FedMA), which is
a layer-wise approach that matches and merges nodes with the same
weights, trains them independently, and communicates the layers to
the global model.

Osmani et al. [11] proposed a multi-level FL system for HAR, which
includes a reconciliation step based on FL aggregation techniques such
as FedAvg or Federated Normalized Averaging. Xiao et al. [12] pro-
posed another FL system for HAR with enhanced feature extractions.
They designed a Perceptive Extraction Network (PEN) with two net-
works: a featured network based on the convolutional block to ex-
tract local features, and a relation network based on Long Short-
Term Memory (LSTM) and an attention mechanism to mine global
relationships. Pang et al. [13] proposed a rule-based collaborative
framework (CloREF) that allows local clients to use heterogeneous local
models. Tian et al. [14] discussed the limitations of traditional FL
methods in heterogeneous IoT systems and proposed a novel Weight
Similarity-based Client Clustering (WSCC) approach to address the non-
IID challenge in FL. The WSCC approach involves splitting clients
into different groups based on their data set distributions using an
affinity-propagation-based method. Their proposed approach outper-
formed existing FL schemes under different non-IID settings, achieving
up to 20% improvements in accuracy without requiring extra data
transmissions or additional models.

Federated Learning in HAR The increasing use of electronic as-
sistive health applications such as smartwatches and activity trackers
has led to the emergence of pervasive or ubiquitous computing, where
devices can seamlessly exchange data with each other [15]. Although
this has the advantage of real-time tracking of human health changes, it
is vulnerable to security breaches that compromise data privacy [16].
The advancement of Al techniques as a whole is contributing to the
massive amount of human data being generated worldwide every sec-
ond. To handle such enormous data, Google introduced FL, which trains
a ML algorithm across decentralized devices or servers without ex-
changing their local data samples. FL overcomes the data privacy issues
associated with traditional centralized learning techniques, where all
device and/or server data is merged for analysis [1]. Sannara et al. [17]
evaluated the performance of FL aggregation techniques like Feder-
ated Averaging (FedAvg), Federated Learning with Matched Averaging
(FedMa), and Federated Personalization Layer (FedPer) against central-
ized training techniques. They used the CNN model to classify eight
physical activities. Zhao et al. [18] designed an activity recognition
system based on semi-supervised FL. Ouyang et al. [19] proposed the
ClusterFL approach, which exploits the similarity of users’ data to
minimize the empirical loss of trained models. This improved Federated
model accuracy and communication efficiency between local models
and global models.

Local clients may have different data distributions, demographics,
and model architectures. Passing all the local clients’ parameters to
build a robust global server model poses challenges such as label
imbalance and non-IID. To identify hidden patterns or relationships
among the local clients and overcome these challenges, unsupervised
clustering techniques can be adopted to improve personalized learning
in FL. This study proposes a clustered FL framework to overcome these
identified challenges.

3. Methodology

To accommodate heterogeneous architectural models for local
clients, we adopt the previously published FedStack framework by
Shaik et al. [4]. This study extends the FedStack framework to the
clustered-FedStack framework, facilitating the creation of heteroge-
neous multi-global FL models by clustering individual subjects with
local models.
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Fig. 1. Clustered FedStack model.

3.1. Research problem

In this study, the research problem is to overcome the non-IID data
challenge in a FL environment. Let S = {s;,s,,...,sy} be the set of
subjects, where the data is non-IID. The objective is to divide subjects
S into M clusters C = {c|, s, ..., cpr }, Where each cluster ¢, is a subset
of subjects .S, c,, C S. For each cluster c,,, there exists a local model /,,
that can be heterogeneous according to the subject’s convenience. The
predictions p,, from local models and their corresponding output layer
weights are passed to a global model server g. The training process for
the global model g is shown in Eq. (1).

M M

train(e) « Y ¢, « Y Lu(py) €8]
m=1 m=1

where: train(g) refers to the training process for the Global Model g

using local model predictions of cluster ¢, and /,(p,,) represents the

local model /,, and its predictions p,, for each subject in the cluster c,,.

3.2. Clustered-FedStack framework

In the Clustered-FedStack framework, local clients train their mod-
els on private data and then forward their model predictions p and
output layer weights Q to the global server model g for training, as
shown in Fig. 1. The figure’s arrow numbers indicate the framework
execution order. After receiving the local model predictions and out-
put layer weights, the global server model determines the number of
clusters using the BIC score. It then clusters the local clients based on
their output layer weights. For each label i in local model training, an
output neuron without a successor is configured to gather the computed
and accumulated values from the local model’s input and hidden layers.
The output neuron value ¢; is calculated using Eq. (2), with inputs x;,
weights w;, and bias b for a local model /,. By computing all output
neuron values, the local model /, predictions p can be estimated using
Eq. (3).

q; = 1,(b, x;, w;) 2

n
p=1yb+ Y x; - w) 3)
i=1
Output neuron values for each local model /, are consolidated into
a single set O using Eq. (4). This procedure is repeated for all local
models based on their output layer values, forming a large set O as

defined in Eq. (5).
(€]

0=1{q.90.43.--- 4}

0=10,.0,.....0,) ®)
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3.2.1. Clustering technique

Given the set O from Eq. (5), where each element of the set
represents the values of a local model’s /, output layer, the goal is to
divide Q into k clusters, where k < n, represented by C = {c|, ¢y, ..., ¢}
There are various techniques that can be applied to clustering, includ-
ing centroid-based, hierarchical, and distribution-based methods. The
general objective of these methods is to minimize the within-cluster
sum of squared differences or a related measure of dissimilarity, as
described in Eq. (6). The notation arg min. refers to finding the set
of clusters C that minimizes the following expression, where the “arg
min” stands for the argument of the minimum, i.e., the specific value
of the variable that results in the lowest possible value of the given
function.

k
argcmin <Z z lx— c,-||2>

i=1 xeC;

(6)

Here, C represents the set of clusters, x is a data point, and ¢; is
the representative point, such as a centroid. The term || - || represents a
distance measure.

Cosine similarity is utilized to assign each local model’s output
neuron set to a specific cluster, considering the angle between output
neuron sets of two local model /, as Q;, and Q,,, the cosine similarity
can be estimated using Eq. (7).

0,0,

s Wit N 7
0,110, 1 @

Sc(Q1] 5 le) =

3.2.2. Bayesian information criterion

The proposed Clustered-FedStack technique enables the global
server model to access local models’ predictions and layer weights.
However, using an unsupervised method to determine the number of
clusters in local models is challenging. The BIC technique is utilized to
overcome this. BIC calculates its value based on a clustering model M’s
maximum likelihood function M, representing the probability that
the layer weights data fits the clustering model [20]. This is shown
in Eq. (8). BIC values balance the maximum likelihood estimation
against the number of model parameters m,, seeking a model with
the fewest parameters that can accurately explain the data clusters, as
in Eq. (9).

M (M) = =21n(L) + m, In(n) ®)

BIC = =21In(L) + m, In(n) = M, (M) 9)

The BIC values for each clustering model are compared with the
minimum BIC value indicating the optimal clustering model. This pro-
cess ensures that the global model converges by configuring a suitable
number of clusters for local models, resulting in a consolidated global
model that represents heterogeneous subject models.

3.3. Clustered-FedStack algorithm

Algorithm 1 presents the proposed Clustered-FedStack process in
detail. Line 1 initializes empty sets to collect output layer weights and
clustered models, and datasets D and D’ for evaluating the global server
model. Lines 2-7 detail the FedStack process, where local client model
predictions and weights are passed to the global server model g for
training and testing. Lines 8-10 present the iteration through all local
model weights in g to collect their output layer weights. Lines 11-12
detail the determination of the number of clusters to be formed from
the weights W set. Line 13 computes the cosine distance among all
the local model weights collected. Lines 14-19 explain the clustering
process for all the local models, based on Lines 11-13.
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Algorithm 1 Proposed Clustered-FedStack Algorithm

Require:
Subjects set S = {s1,57,....5,}
Local Al models M = {my,m,,...,m,}
Labels set K = {1,2,....k}
Global Server Model g
Ensure: Classification probabilities of labels K for each intermediate cluster model C
. Initialization:
D: Dataset for training
D': Unseen Dataset for testing
W =@: Set to collect weights
CM = @: Set for clustered models
. stack = {(mf,m:“),(ml’.(.m?'), (mf,m:’)}; > Predictions and weights of local Al models
. for me M do
grain — stack;
glest D';
. end for
: for m e G(M) do
Collect weights of m: W « {m,w};
end for
. Determine Clusters:
: Compute BIC scores of CM > M;
: CM < min(BIC);
: Compute cosine distance among {{my,wy},{my,wy},.... {my wy}};
. Assignment:
. for ¢ in C do
¢ arg min (TL, Tyeq, IIx - al?);
c

CM «c;
. end for
. Return CM;

Local Client 1

Local Client 2

Pass Output
Layer Weights
and Predictions

Determine
Clusters

Calculate BIC

Local Client N

Fig. 2. Experimental design of the proposed framework.

4. Experiments on clustered FedStack in HAR

Conventional FL. methods assume that the data distribution is consis-
tent among all clients [21]. However, this assumption may not be valid
in FL, as data heterogeneity can be present [22]. This limitation forces
clients to have identical data distribution and architectural models
to build global models. FedStack [4] addressed the issue of identical
architectural models in FL. The goal of this study is to extend the
FedStack framework by introducing intermediate clustered models to
address the non-IID challenge in FL.

In this study, the objective is to overcome the non-IID challenge
in FL. To achieve this, the proposed Clustered-FedStack algorithm is
applied to the domain of human activity recognition, where patients’
physical activity is classified. The non-IID data distribution of the
dataset used in the experiment is presented. The proposed method-
ology involves passing the output layer weights and predictions of
local clients to the global model, which then calculates unsupervised
clustering of the local model layer weights to group the local clients
and establish clustered intermediate models. The experimental design
is presented in Fig. 2. The evaluation results compare the performance
of the proposed framework to the baseline models and show clustering
results leading to clustered FedStack models. Furthermore, the con-
vergence of the clustered FedStack models is analyzed using Cyclical
learning rates.

4.1. Dataset

The proposed Clustered-FedStack algorithm was evaluated on the
HAR problem, which involves classifying patients’ physical activity.
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Table 1

Non-IID data.
Local Distribution 1 2 3 4 5 6 7 8
clients
Subject 1 27724 2800 1148 1380 1648 3556 9420 3016 4756
Subject 2 22712 2400 1068 1216 1548 3680 4880 2756 5164
Subject 3 26900 2400 1740 1172 1516 3640 8640 2952 4840
Subject 4 26528 2280 2092 1312 1900 4028 7580 2376 4960
Subject 5 26924 2400 1860 1160 1728 3320 9020 2356 5080
Subject 6 11812 2532 1720 1236 2132 4192 9020 O 0
Subject 7 28580 2472 1624 1096 2012 4140 9700 2836 4700
Subject 8 23992 2400 1648 1292 1680 3080 7200 1924 4768
Subject 9 26212 2400 1932 1140 2216 3820 7368 2356 4980
Subject 10 28424 2392 1868 1220 1952 3748 8336 4328 4580
Subject 11 28052 2400 1828 1296 1960 3440 9632 2616 4880
Subject 12 23680 2408 1936 1120 1920 3560 5840 2116 4780
Subject 13 26996 2420 1988 1160 1992 3588 8112 2836 4900
Subject 14 25584 2432 1824 1300 2008 3816 6924 2460 4820
Subject 15 23504 2444 1676 1416 1620 3140 5760 2636 4812

The PPG-DALIA [6] dataset, which is publicly accessible and cited
in [6], was utilized for this study. This dataset includes physiological
and motion data gathered from 15 participants as they engaged in a di-
verse array of activities, closely mirroring real-life conditions. The data
was collected from both a wrist-worn (Empatica E4) and a chest-worn
(RespiBAN) device, and includes 11 attributes such as 3-Dimensional
(3D) acceleration data, Electrocardiogram (ECG), respiration, Blood
Volume Pulse (BVP), Electrothermal Activity (EDA), and body tempera-
ture. The 3D acceleration data was labeled with eight different physical
activities.

4.2. Non-IID data

Table 1 shows the distribution and activity of local clients in a FL
scenario with non-IID data. Each row represents a client, and each
column represents a feature. The “Distribution” column shows the num-
ber of data points available at each client, which varies across clients,
indicating non-IID in the dataset. The remaining columns represent
different activities that are each related to the type of data collected
or the task being performed. For instance, “Activity 1” to “Activity 8”
could be different types of sensor readings or behavioral data collected
from different sources. The non-IID nature of this data could potentially
impact the performance of the FL algorithm since the data distribution
across clients is not uniform, and the model may not generalize well
to all clients. Therefore, special attention must be given to handling
the non-IID data in FL, by using the technique of personalized FL to
improve model performance for each client’s unique data distribution.

4.3. Data modeling

In data modeling, three AI models were chosen: Artificial Neural
Networks (ANN), Convolutional Neural Networks (CNN), and Bidi-
rectional Long Short-Term Memory (BiLSTM) models, due to their
state-of-the-art performances in FL works [12] and activity classifica-
tion [23]. Each subject trained with one of the chosen models locally
and passed their predictions and local model output layer weights to
the global server model. The proposed framework clustered the global
model without any private information about local clients, based on the
output layer weights.

4.4. Baseline models

* ClusterFL [19]: A clustering-based FL system for the HAR appli-
cation. The ClusterFL approach captures the intrinsic clustering
relation among local clients and minimizes the training loss.

« FL+HC [24]: A hierarchical clustered FL system to separate clus-
ters of clients based on the similarity of their local updates to the
global server model.
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Fig. 3. Cosine distance among local clients.

9 |- —
5 8| .
& 7h :
= 6 B
@) 2 = -
— L B
s 3] ]
z 20 i
e ! ! ! ! i
-500 -400 -300 -200 -100 0
BIC Score

Fig. 4. BIC score to determine the number of clusters.

» HypCluster [25]: A hypothesis-based clustering with a stochastic
Expectation-Maximization (EM) algorithm adopted for the FL
approach, where local clients partition into a certain number of
clusters and then the model finds the best hypothesis for each
cluster.

Dynamic Clustering [26]: A three-phased data clustering algo-
rithm, namely, generative adversarial network-based clustering,
cluster calibration, and cluster division, designed to overcome the
fixed shape of clusters, data privacy breaches, and non-adaptive
numbers of clusters.

4.5. Results analysis

4.5.1. Clustering results

Before clustering, the cosine distance among all 15 local models
trained on clients is calculated to check their similarity in terms of the
models’ output layer weights, as shown in Fig. 3. The matrix heatmap
ranges on a scale from 0 to 0.6 where 0 shows no cosine distance
between the client output layer values, and 0.6 shows the maximum
cosine distance.

The proposed Clustered-FedStack algorithm employed the BIC ap-
proach to calculate the maximum likelihood function on the output
layer weights received from the local client models by the global
server model, as shown in Fig. 1. This process determines the num-
ber of clusters among the 15 local clients. Fig. 4 shows that the
lowest BIC score corresponds to three clusters in the global server
model. After determining the clusters, three clustering techniques were
applied: centroid-based clustering (K-Means) [27], hierarchical cluster-
ing (Agglomerative) [28], and distribution-based clustering (Gaussian
Mixture Model (GMM)) [29]. Fig. 5 shows that K-Means and Ag-
glomerative clustering produced similar groups of local client models,
while GMM clustering grouped all CNN models into the second cluster
and distributed other ANN and BiLSTM models in the first and third
clusters.
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Fig. 5. Clustering results.

4.5.2. Clustered FedStack model performances

After determining the clusters, each cluster of local clients passes
their output layer weights to an intermediate Clustered-FedStack
model, situated between the local clients and the global server model,
as shown in Fig. 1. This approach reduces the load on the global server
model and groups similar local models for more efficient Al results. The
three clustering techniques generate three Clustered-FedStack models
each, and their performance in HAR is shown in Table 2. All nine
Clustered-FedStack intermediate global models generated from the
clustering techniques have performed well in the HAR task. K-Means
and agglomerative clustering, having similar clustering results, showed
similar classification accuracy in HAR. While comparing the results,
the GMM Clustered FedStack models, which are distribution-based,
exhibited slightly better accuracy than the other two clustered models.

4.5.3. Baseline models comparison

The proposed framework was compared against four other baseline
models in FL approaches with clustering. All models were trained using
3D acceleration data for HAR tasks, and their evaluation results are
presented in Table 3. As K-Means and hierarchical clustering techniques
generate similar clusters from the 15 local client models, the table
shows three clustered models (Clustered FedStack 1, Clustered FedStack
2, Clustered FedStack 3) built based on K-Means and hierarchical
clustering, and three clustered models (Clustered FedStack 7, Clustered
FedStack 8, Clustered FedStack 9) built based on the GMM model. The
Table presents the mean of four metrics: balanced accuracy, precision,
recall, and Fl-score in classifying eight activities for six intermedi-
ate clustered models. The proposed approach outperformed all other
baseline models in terms of all the metrics.

4.6. Convergence analysis

The optimization of the proposed Clustered FedStack framework
is estimated using Cyclical learning rates [30] for convergence. The
performance of the intermediate Clustered FedStack models shown in
Fig. 1 is optimized using the Learning Rate («) of the deep learning
models. In the Cyclical learning rates process, the « values are cycled
with an initial learning rate of 0.00001 and a maximum learning
rate of 0.001, and stochastic gradient descent is performed. A scale
function is defined to control the change from the initial learning rate
to the maximal learning rate and back to the initial learning rate. The
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Table 2
Clustered FedStack model accuracy in HAR.
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Activity K-Means clusters Agglomerative clusters GMM clusters
Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3
Sitting 0.99 0.96 0.95 0.97 0.99 0.95 0.99 0.99 0.99
Ascending and descending stairs 0.92 0.96 0.94 0.96 0.92 0.94 0.92 0.92 0.92
Table soccer 0.96 0.95 0.95 0.97 0.95 0.95 0.95 0.96 0.97
Cycling 0.94 0.97 0.98 0.95 0.96 0.98 0.96 0.93 0.96
Driving a car 0.89 0.93 0.99 0.89 0.95 0.99 0.95 0.93 0.97
Lunch break 0.87 0.86 0.92 0.87 0.89 0.92 0.9 0.9 0.91
Walking 0.91 0.90 0.89 0.90 0.92 0.89 0.91 0.91 0.92
Working 0.92 0.96 0.95 0.97 0.97 0.95 0.96 0.92 0.97
Table 3 Table 4
Baseline models comparison. Clustered FedStack performance in classification of drug ratings.
Model Balanced accuracy Precision Recall F1-Score Model Accuracy Precision Recall F1-Score
ClusterFL [19] 0.93 0.78 0.86 0.82 ClusterFL 0.92 0.8 0.88 0.82
FL+HC [24] 0.94 0.85 0.89 0.83 FL+HC 0.93 0.87 0.91 0.83
HypCluster [25] 0.9 0.65 0.56 0.65 HypCluster 0.89 0.66 0.57 0.65
Dynamic clustering [26] 0.92 0.86 0.75 0.76 Dynamic clustering 0.91 0.88 0.77 0.76
Clustered FedStack 1 0.98 0.95 0.91 0.93 Clustered FedStack 1 0.99 0.92 0.93 0.91
Clustered FedStack 2 0.96 0.89 0.9 0.89 Clustered FedStack 2 0.98 0.91 0.92 0.91
Clustered FedStack 3 0.94 0.91 0.92 0.91 Clustered FedStack 3 1 0.96 0.95 0.95
Clustered FedStack 7 0.95 0.92 0.91 0.91 Clustered FedStack 4 0.97 0.94 0.93 0.93
Clustered FedStack 8 0.98 0.94 0.93 0.93 Clustered FedStack 5 0.98 0.97 0.94 0.96
Clustered FedStack 9 0.97 0.96 0.95 0.95 Clustered FedStack 6 1 0.97 0.93 0.95
Clustered FedStack 7 0.99 0.98 0.97 0.97
Clustered FedStack 8 0.98 0.97 0.94 0.96
Clustered FedStack 9 0.96 0.93 0.94 0.93
Clustered FedStack 10 0.94 0.93 0.92 0.91

Intermediate
Clustered Models

Clustered FedStack 1
Clustered FedStack 2
Clustered FedStack 3
Clustered FedStack 7
Clustered FedStack 8
Clustered FedStack 9

20

60 80

Fig. 6. Convergence of intermediate Clustered FedStack models on PPG-DALIA under
the Cyclical learning rates.

scale function, a lambda function shown in Eq. (10), scales the initial
amplitude by half with each cycle.

lambda x : ;
(2&=D)
Fig. 6 presents the convergence curves of six intermediate Clustered
FedStack models from the three clustering techniques proposed in this
study. The intermediate clustered models built based on K-Means and
Agglomerative clustering converge faster than the clustered models
built based on GMM clustering. There is not much difference in the
number of epochs required for each clustered model to converge. All
six models converge in less than 50 epochs. The results show that
the proposed Clustered FedStack framework can be implemented with
centroid-based, hierarchical or distribution-based clustering. The Clus-
tered FedStack models built based on any of these clustering techniques
converge quickly in 50 epochs.

(10)

5. Experiments on clustered FedStack scalability in NLP tasks

The scalability of the proposed Clustered FedStack model was rig-
orously assessed through a targeted evaluation. For this purpose, the
drug review dataset [7], containing reviews and ratings, was utilized.
This comprehensive dataset encompasses 3677 distinct drugs and 916
different medical conditions. The aim of this experiment is to classify
drug ratings (1-10) based on input data such as medical conditions. In
alignment with the clustering methodologies proposed in the Clustered
FedStack framework, the GMM clustering was employed to perform
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the clustering of 2191 drugs, resulting in 78 unique clusters as shown
in Supplementary Material. The Supplementary Material also includes
information on the cosine distance for 200 local clients (drugs).

The performance comparisons of different clustering models, in-
cluding the top 10 variations of the Clustered FedStack model, are
presented in Table 4. The metrics evaluated include accuracy, precision,
recall, and F1-score for classifying drug ratings. Four baseline models
are included: ClusterFL, FL+HC, HypCluster, and Dynamic Clustering.
Their performances are relatively consistent, with accuracy ranging
from 0.89 to 0.93. The Clustered FedStack models demonstrated supe-
rior performance, with notable improvements in all evaluated metrics.
The accuracy for these variations ranged from 0.94 to a perfect 1,
highlighting the efficiency and robustness of the model. The first five
Clustered FedStack models exhibited particularly impressive results,
achieving almost perfect or perfect accuracy. The precision, recall, and
F1-score also showcased strong consistency and harmony, reflecting the
model’s ability to balance both false positives and false negatives.

These results underscore the scalability and effectiveness of the
Clustered FedStack model across local clients with non-1ID data. The
model’s scalability and adaptability are evident, maintaining high levels
of accuracy and F1-scores regardless of the local clients’ variation. This
highlights the Clustered FedStack model’s potential in managing large
and intricate datasets like drug reviews and ratings, validating both its
resilience and relevance to real-world applications.

The convergence of the proposed Clustered FedStack on the drug
review dataset has been assessed, as shown in Fig. 7. The line chart
presents a convergence pattern that denotes accuracy in the y-axis
across 100 epochs in the x-axis. The values for Clustered FedStack 1
exhibited consistent growth, starting at 0.7882 and reaching 0.8556
by epoch 40. Similarly, other clustered FedStacks demonstrated a pro-
gressive increase in values across epochs, such as Clustered FedStack 2,
which advanced from 0.5188 to 0.8811, signifying a gradual strength-
ening of the model. These convergence trends shed light on the ef-
ficiency and efficacy of the iterative learning process. Variations in
convergence rates among different stacks were observed, reflecting
the distinct characteristics of each clustered FedStack. These find-
ings suggest a general trend of convergence towards higher values,
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Fig. 7. Convergence of intermediate Clustered FedStack models on drug review dataset
under Cyclical learning rates.

though occasional oscillations and fluctuations were detected in spe-
cific iterations. This in-depth analysis offers valuable insights into the
behavior of clustered FL systems, potentially opening new avenues for
enhanced optimization strategies and a more profound understanding
of convergence mechanisms within distributed ML frameworks.

6. Conclusion

In the present study, a novel framework named Clustered-FedStack
was introduced, designed to cluster local clients within the FL paradigm
based on the weights of their output layers. This methodology was
devised to address the non-IID challenge inherent to FL. It is impor-
tant to acknowledge certain limitations of the proposed framework,
notably its incompatibility with the application on local clients utiliz-
ing conventional Machine Learning models for the training of private
data. Moreover, the global server model’s process of clustering local
clients operates on an unsupervised basis, without access to specific
information about local clients, depending solely on the local model
rather than client demographics. In light of these considerations, future
investigations should aim to develop strategies for the dynamic cluster-
ing of local clients, taking into account meta-information that pertains
to client similarities.
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4.2 Summary

The chapter concludes by highlighting the notable achievements of the Clustered Fed-
Stack framework, demonstrating its superior performance in HAR and NLP tasks com-
pared to traditional federated learning models. The innovative use of clustering tech-
niques and BIC for model optimization has proven effective in overcoming the inher-
ent limitations of non-IID data in federated learning. The successful application of the
Clustered FedStack framework in classifying complex human activities and drug review
ratings underscores its potential for scalable, efficient, and privacy-preserving Al mod-
els in healthcare and beyond. This chapter not only contributes to the advancement of
federated learning but also sets a precedent for future research in optimizing federated
learning models for diverse and challenging datasets.
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CHAPTER 5: PAPER 4 - ADAPTIVE MULTI-AGENT DEEP
REINFORCEMENT LEARNING FOR TIMELY HEALTHCARE
INTERVENTIONS

5.1 Introduction

This chapter delves into an advanced Al-driven framework for patient monitoring, uti-
lizing the principles of multi-agent deep reinforcement learning (DRL) to offer unprece-
dented personalisation and responsiveness in healthcare settings. It meticulously ex-
amines the deployment of sophisticated DRL agents, each engineered to monitor spe-
cific physiological parameters, such as heart rate, respiration, and body temperature,
within a unified healthcare ecosystem. These agents are designed to learn and adapt
from continuous patient data streams, enabling them to make predictive and prescrip-
tive interventions. This section articulates how this approach surmounts the constraints
of conventional monitoring systems by dynamically adjusting to patient-specific condi-
tions, thereby elevating the standard of patient care, safety, and overall healthcare
efficiency.
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Abstract—Effective patient monitoring is vital for timely
interventions and improved healthcare outcomes. Traditional
monitoring systems often struggle to handle complex, dynamic
environments with fluctuating vital signs, leading to delays in
identifying critical conditions. To address this challenge, we
propose a novel Al-driven patient monitoring framework using
multi-agent deep reinforcement learning (DRL). Our approach
deploys multiple learning agents, each dedicated to monitoring
a specific physiological feature, such as heart rate, respiration,
and temperature. These agents interact with a generic healthcare
monitoring environment, learn the patients’ behavior patterns,
and make informed decisions to alert the corresponding Medical
Emergency Teams (METs) based on the level of emergency
estimated. In this study, we evaluate the performance of the pro-
posed multi-agent DRL framework using real-world physiological
and motion data from two datasets: PPG-DaLiA and WESAD.
We compare the results with several baseline models, including
Q-Learning, PPO, Actor-Critic, Double DQN, and DDPG, as
well as monitoring frameworks like WISEML and CA-MAQL.
Our experiments demonstrate that the proposed DRL approach
outperforms all other baseline models, achieving more accurate
monitoring of patient’s vital signs. Furthermore, we conduct
hyperparameter optimization to fine-tune the learning process
of each agent. By optimizing hyperparameters, we enhance the
learning rate and discount factor, thereby improving the agents’
overall performance in monitoring patient health status. Our Al-
driven patient monitoring system offers several advantages over
traditional methods, including the ability to handle complex and
uncertain environments, adapt to varying patient conditions, and
make real-time decisions without external supervision. However,
we identify limitations related to data scale and prediction of
future vital signs, paving the way for future research directions.

Impact Statement—The proposed approach, which combines
artificial intelligence and multi-agent deep reinforcement learn-
ing, revolutionizes patient monitoring by offering personalized
and real-time solutions. Unlike conventional systems, our ap-
proach empowers virtual agents to make autonomous deci-
sions based on raw patient data, adapting to each individual’s
physiological patterns and unique health conditions. Its signifi-
cance lies in its potential to improve patient outcomes, reduce
medical errors, and optimize medical resource allocation. The
continuous and dynamic monitoring enabled by our approach
ensures timely responses to critical situations, enhancing patient
safety. Moreover, the framework’s ability to learn from raw
data eliminates the need for complex feature engineering and
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large labeled datasets, allowing for scalability and application
in diverse medical scenarios. Beyond enhancing patient care, our
research drives advancements in AI-driven healthcare technology,
paving the way for more efficient, accurate, and patient-centric
healthcare systems.

Index Terms—Behavior Patterns, Decision Making, Patient
Monitoring, Reinforcement Learning, Vital Signs.

I. INTRODUCTION

In the dynamic domain of healthcare, the significance of
informed decision-making cannot be overstated. With the ad-
vent of continuous patient monitoring systems, it has become
possible to remotely track vital signs and physical movements,
thereby enhancing the decision-making capabilities of clin-
icians [1]. The application of machine learning models to
analyze transmitted vital sign data has seen a significant uptick
in various healthcare applications, ranging from pre-clinical
data processing and diagnosis assistance to early warning
detection of health deterioration, treatment decision-making,
and drug prescription [2], [3]. In this context, the monitoring
of human behavior patterns plays a crucial role, especially for
remote patient monitoring in hospitals or through Internet of
Things (IoT)-enabled home monitoring systems.
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Fig. 1: Human monitoring framework to monitor vital signs of
the client during regular activities and alert medical emergency
teams accordingly.

Traditionally, methodologies in this field have predomi-
nantly relied on unsupervised and supervised learning tech-
niques to identify patterns and classify patients’ activities and
vital signs [4], [5]. However, these techniques are limited
in their capacity to only observe data and suggest potential
decisions without the ability to act upon these observations.
In contrast, Reinforcement Learning (RL) introduces a novel
paradigm by deploying learning agents within complex and
uncertain environments. These agents are empowered to ex-
plore and exploit the environment through actions, learning
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from the outcomes of their actions [6]. A cornerstone of
RL is its reward mechanism, which provides the agent with
feedback in the form of rewards for its actions. These rewards
serve as crucial signals that guide the learning process of the
agent, encouraging actions that lead to favorable outcomes
and discouraging detrimental ones. This reward system is
instrumental in enabling the agent to iteratively refine its
strategy based on the consequences of its actions, thereby
enhancing its performance over time.

The versatility of RL has been demonstrated in various
dynamic domains, such as stock market trading [7], and is
increasingly being adapted for healthcare applications, includ-
ing diagnostic decisions and dynamic treatment regimes that
require the consideration of delayed feedback [8]. Specifically,
RL-based patient monitoring applications have focused on op-
timizing the timing and dosage of medications to ensure their
correct administration [9], [10]. The analogy of probabilistic
machine learning models, such as RL, to an ICU clinician
monitoring a patient’s state and making subsequent decisions
based on observed changes, underscores the potential of RL
in healthcare [11].

This study addresses the complex challenge of monitoring
multiple vital signs of the human body, tracking health status,
and initiating timely interventions during emergencies. We
propose an innovative approach that employs multiple deep
learning agents within a generic healthcare monitoring envi-
ronment. Each agent is tasked with monitoring specific vital
signs, taking into account different threshold levels for each
sign. These agents progressively learn the threshold levels of
vital signs based on Modified Early Warning Scores (MEWS)
and the rewards accumulated from previous iterations. The
well-trained DRL agents are capable of monitoring a patient’s
heart rate, respiration rate, and temperature, and alerting the
clinical team in case of deviations from predefined thresh-
olds [12].

The primary aim of this study is to learn human behavior
patterns in the context of clinical health by deploying a DRL
agent for each physiological feature. These agents are designed
to monitor, learn, and alert the respective clinical teams if any
vital signs deviate from the norms established by MEWS, as
shown in Fig. 1. We introduce a novel approach for rewarding
the actions of RL agents to facilitate the learning of behavior
patterns. The generic monitoring environment developed in
this study supports multi-agent functionality to monitor various
vital signs of a patient, thereby introducing a new paradigm
for remotely monitoring patients’ health status using a multi-
agent DRL environment.

The contributions of this study are as follows:

o Introduction of a novel approach for rewarding RL

agents’ actions to foster the learning of behavior patterns.

« Development of a generic monitoring environment that
accommodates multi-agents for monitoring various vital
signs of a patient.

« Establishment of a new paradigm for remotely monitor-
ing patients’ health status utilizing the multi-agent DRL
environment.

The paper is organized as follows: Section II presents related

works in the RL community, specifically focusing on learning

human behavior patterns and applications in the healthcare
domain. The research problem formulation and the proposed
multi-agent DRL methodology are detailed in Section III.
Section IV evaluates the proposed methodology on 10 different
subject vital signs, and baseline models are discussed. In
Section V, the results of the proposed approach are compared
with baseline models, and hyper-parameter optimization of the
learning rate and discount factor is discussed. Based on the
results, applications of the proposed framework are discussed
in Section VI. Section VII concludes the paper, including
limitations and future work.

II. RELATED WORKS
A. Machine Learning in Healthcare

Machine learning has transformed healthcare with its ability
to predict, detect, and monitor, as noted in [13]. Supervised
learning algorithms can learn from labeled data and make
predictions or classify based on the input features [14]. For
example, machine learning or deep learning techniques can
predict human vital signs like heart rate or classify physical
activities [15]. In a study by Oyeleye et al. [16], machine
learning and deep learning models were used to estimate heart
rate using data from wearable devices. The authors tested
different regression algorithms including linear regression, k-
nearest neighbor, decision tree, random forest, autoregressive
integrated moving average, support vector regressor, and long
short-term memory recurrent neural networks. Similarly, Luo
et al. [17] utilized the LSTM model to predict heart rate based
on five factors: heart rate signal, gender, age, physical activi-
ties [18], and mental state. Unsupervised learning algorithms
learn from unlabeled data and find patterns using association
and clustering techniques [19]. Sheng and Huber [19] devel-
oped an unsupervised method with an encoder and decoder
network to identify similar physical activities using clustering,
which achieved a clustering accuracy of 85% based on learning
embeddings and behavior clusters. RL, on the other hand, does
not require prior knowledge or information and works on an
environment-driven approach [20]. The agents learn through
receiving rewards or penalties based on their actions which is
called as experience. Unlike supervised learning, RL can learn
a sequence of actions through exploration and exploitation
and does not require extensive labeled data for data-driven
models [21].

B. Mimic Human Behavior Patterns

Tirumala et al. [22] studied how to understand human
behavior patterns and identify common movements and in-
teractions in a set of related tasks and situations. They used
probabilistic trajectory models to develop a framework for
hierarchical reinforcement learning (HRL). Janssen et al. [23]
suggested breaking down a complex task such as biological
behavior into smaller parts, with HRL able to organize sequen-
tial actions into a temporary option. They compared biological
behavior to options in HRL. Tsiakas et al. [24] proposed a
human-centered cyber-physical systems framework for per-
sonalized human-robot collaboration and training, focusing on
monitoring and evaluating human behavior. The authors aimed
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to effectively predict human attention with the minimum and
least intrusive sensors. Kubota et al. [25] investigated how
robots can adapt to the behavior of people with cognitive
impairments for cognitive neuro-rehabilitation. They explored
different types of robots for therapeutic, companion, and
assistive applications. For health applications, robots must
be able to perceive and understand human behavior, which
includes high-level behaviors like cognitive abilities and en-
gagement, as well as low-level behaviors like speech, gesture,
and physiological signs.

C. RL in Healthcare

Lisowska et al. [26] developed a digital intervention for
cancer patients to promote positive health habits and lifestyle
changes. They used RL to determine the best time to send
intervention prompts to the patients and employed three RL
approaches (Deep Q-Learning, Advance Actor Critic, and
proximal policy optimization) to create a virtual coach for
sending prompts. Other studies have also shown that personal-
ized messages can increase physical activity in type 2 diabetes
patients [27]. Li et al. [28] proposed a RL approach based on
electronic health records for sequential decision-making tasks.
They used a model-free Deep Q Networks (DQN) algorithm
to make clinical decisions based on patient data and achieved
better results with cooperative multi-agent RL. R decision-
making can also be used for human activity recognition, as
shown in a study that proposed a dynamic weight assignment
network architecture and used a twin delayed deep determin-
istic algorithm inspired by various other RL algorithms [29].

RL has been widely researched for various applications,
including gaming, learning and mimicking human behavior,
and deploying socially assistive robots. However, deploying
physical robots with human interaction capabilities in sensitive
locations such as hospitals, elderly care facilities, and mental
health facilities may pose safety risks to patients, carers, and
medical staff [?]. Existing health monitoring applications using
supervised or unsupervised learning cannot effectively handle
uncertain events in the dynamic hospital environment. To
address these challenges, virtual robots with adaptive learning
abilities can be deployed to monitor and learn human behavior
based on their vital signs. In this study, we developed a
custom human monitoring environment that can learn behavior
patterns from human vital signs and alert the appropriate
clinical team in case of an emergency. This work provides a
novel approach to learn and monitor human behavior patterns
in a safe and clinically effective manner.

III. DRL MONITORING FRAMEWORK

In this section, the design of a human behavior monitoring
system, DRL monitoring framework, that uses R is presented
in detail. The aim of the system is to monitor vital signs to
learn human behavior patterns and ensure clinical safety in
an uncertain environment. The proposed framework involves
a multi-agent system where each vital sign state is observed
by an individual agent, as shown in Fig.2. A DRL algorithm,
DQN, is used to learn effective strategies in the sequential
decision-making process without prior knowledge through
trial-and-error interactions with the environment [30].

A. Problem Formulation

The challenge addressed in this research is the develop-
ment of a multi-agent framework for real-time health status
monitoring by learning and interpreting patterns in vital signs
through wearable sensors. The agents must detect deviations
from normal vital sign patterns that exceed Modified Early
Warning Scores (MEWS) thresholds and alert the emergency
team accordingly.

To formulate this problem, we leverage the framework of
Markov Decision Processes (MDP), expressed as a 5-tuple
M = (S, A, P,R,~). Here, S represents the finite state space,
where each state s, € S corresponds to a distinct combination
of vital sign readings at time ¢. The action set A comprises
potential alerts the agents can issue based on the observed
vital signs. The transition function P(s,a,s’) models the
probability of moving from state s to state s’ upon taking
action a, reflecting the dynamic nature of human vital signs.

Central to our approach is the reward function R(s,a),
which is defined to prioritize actions that lead to the early
detection of potential health risks, thereby enabling timely
intervention. This is mathematically represented as:

R(s,ar) = Y A'r, 0]
t=0

where + is the discount factor that balances the importance
of immediate versus future rewards, ensuring the agents’ ac-
tions are aligned with long-term health monitoring objectives.

The goal is to discover an optimal policy 7(s;) that maxi-
mizes the expected reward by selecting the most appropriate
action a; in any given state s;. This optimization is achieved
through the iterative update of the Q-function, as outlined in
the Bellman equation:

Q" (51, 1) + (1-0)Q(s1, ap)+a (ry +ymax Qsi1,a) ),
@

where « represents the learning rate, influencing the inte-
gration of new information into the Q-function. Through this
process, the agents continually refine their decision-making

strategy, enhancing the system’s capability to monitor and
respond to emerging health risks effectively.
TABLE I: Modified Early Warning Scores [31]
MEWS 4/MET 3 2 1 0 1 2 3 4/MET
RC‘E’““"’ <4 58 9.20 2124 25-30 31-35 >36
ate

S‘,)X’?":" <84 8589 90-92 93-94 >95

Saturation
‘Temperature <34.0 34.1-35.0 35.1-36.0 36.1-37.9 38.0-38.5 >38.6

Heart Rate <39 40-49 50-99 100-109 110-129 130-139 >140
Sedation Awake Mild  Moderate  Severe

Score

B. Monitoring Environment

A custom RL monitoring system based on MDP has been
created to have human vital signs data serve as the observation
space .S, action space A for learning agents to make decisions,
and rewards R for the agents’ actions as depicted in Fig. 2.
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Fig. 2: Multi-agent monitoring framework

This study introduces a novel isolated multi-agent MDP frame-
work that allows multi-agents to share the same environment
and make decisions based on the health parameters they are
monitoring, receiving rewards without being influenced by
the decisions of other agents. The goal of all agents in this
environment is to monitor the health of patients using the
predefined MEWS, as shown in Tab. I. In healthcare, each
vital sign plays a critical role in determining a person’s clinical
safety.

1) Observation Space: The environment in Fig.2 has a
state, represented by sieS, where ¢ = 0,1,2,...n, refers to
observations at time ¢. The aim is to divide the state into
observations and allocate them to multi-agents. Suppose S
represents the state of the human body, and there are three
observations, s, s}, s7€S, that represent different internal vital
signs of the human body at time ¢. The human health status is
controlled by multiple internal vital signs, each with a different
threshold as shown in MEWS Tab.l. Using a single agent
to monitor all the vital signs can result in a sparse rewards
challenge [32], where the environment might produce few
useful rewards and hinders the learning of an agent. Therefore,
multi-agents need to be deployed for each human to monitor
the critical vital signs. The expected return F, of a policy 7
in a state s can be defined by state-value Eq. 3 in the multi-
agent setting, where ¢ = 0,1,2,3,...n is a finite number of
observations n in the state.

S o R(se ()]s :s} 3

VT (st) = Eﬂ{
t=0,i=0
2) Action Space: The action space of the monitoring en-
vironment is defined based on the MEWS [31] as shown in
Tab. 1. The table presents early warning scores of adults’ vital
signs with the appropriate Medical Emergency Team (MET)
to contact if any escalations in the health parameters. Based
on the MEWS as threshold values, the action space has been
segmented to have five discrete actions to communicate the
vital signs to MET-0, MET-1, MET-2, MET-3, and MET-
4. Each of these actions will be taken by agents based on
the current state of the vital signs they are monitoring. The
expected return F, for taking an action a in a state s under
a policy 7 can be measured using the action-value function
Qr(s,a) defined in Eq. 4.

@7(s:0) = Be{ Y2 Rlsnavon(so)lso = s.00 = o}
t=0
4

3) Rewards: The goal of RL is to maximize cumulative
rewards obtained through the actions of learning agents in an
environment. In traditional RL, an agent is rewarded based
on its action that leads to a transition from state s; to S;i1.
In this study, the objective of the learning agent is to learn
patterns in human vital signs. This is achieved through the
design of an effective reward policy. The reward policy, as
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TABLE II: Rewards Policy

MEWS 4 3 2 1 0
Action 0 -4 -3 2 1 10
Action 1 -4 -3 2 10 1
Action 2 -4 -3 10 1 -2
Action 3 -4 10 -1 2 -3
Action 4 10 -3 -2 -1 -4

defined in this study, is calculated using Eq. 5. The agents are
positively rewarded if they monitor vital signs in a state and
take the correct action from the action space to communicate
with the correct MET as defined in MEWS Tab.l. On the
other hand, if the agent takes the wrong action, it is negatively
rewarded. The rewards are split into five categories for the five
actions in the action space based on the MET from MEWS
Tab.I. The full rewards for each action selected by the agents
are presented in Tab.Il. The reward policy utilizes the DRL
agents’ desire to maximize rewards in each learning iteration,
making them learn the behavior patterns. Under each category,
different levels of rewards were configured. For example, an
observation s;eS at the time ¢ is related to heart rate falling
under MET—4, the rewards are shown in Eq. 6.

+reward if action = MET

R(st,at) = 5
S {—reward if action # MET ©)

10 if MET = 4&action = 4
—1 if MET = 4&action = 3
if MET = 4&action = 2 (6)
-3 if MET = 4&action = 1
—4 if MET = 4&action =0

C. Learning Agent

In this study, a game learning agent DQN algorithm is
employed. The DQN algorithm was first introduced by Deep-
Mind, a subsidiary of Google, for playing Atari games. It
allows the agent to play games by simply observing the screen,
without any prior training or knowledge about the games. The
DQN algorithm approximates the Q-Learning function using
neural networks, and the learning agent is rewarded based
on the neural network’s prediction of the best action for the
current state. For this research, the reward policy is described
in more detail in Section III-B3.

1) Function Approximation: The neural network used in
this study to estimate the Q-values for each action has three
layers: an input layer, a hidden layer, and an output layer. The
input layer has a node for each vital sign in a state and the
output layer has a node for each action in the action space.
The model is configured with a relu activation function, mean
square error as the loss function, and an Adam optimizer. The
model is trained on the states and their corresponding rewards
and, once trained, it can predict the accumulated reward.

The learning agent takes an action a; € A in a transition
from state s; to 3; and receives a reward R. In this transition,
the maximum Q-function value is calculated according to

Eq. 4, and the calculated value is discounted by a discount
factor 7 to prioritize immediate rewards over future rewards.
The discounted future reward is combined with the current
reward to obtain the target value. The difference between the
prediction from the neural network and the target value forms
the loss function, which is a measure of the deviation of the
predicted value from the target value and can be estimated
using Eq. 7. The square of the loss function penalizes the
agent for large loss values.

loss = (R+ 7 -maz(Q™ (s,a))— Q7 (s,a) )2 (1)

predicted_value

target_value

2) Memorize and Replay: The basic neural network model
has a limitation in its memory capacity and can forget previous
observations as they are overwritten by new observations. To
mitigate this issue, a memory array that stores the previous
observations including the current state s;, action a;, reward
R, and next state s; is used. This memory array enables the
neural network to be retrained using the replay method, where
a random sample of previous observations from the memory is
selected for training. In this study, the neural network model
was retained by using a batch size of 32 previous observations.

3) Exploration and Exploitation: The exploration-
exploitation trade-off in RL refers to the balancing act
between trying out new actions to gather information and
exploiting the actions that lead to the highest rewards. This
balance can be modeled mathematically using the e-greedy
algorithm, which defines a probability e of choosing a
random action and a probability 1 — € of choosing the action
believed to lead to the highest reward based on the current
knowledge of the action-value function Q(s¢, a). The equation
to determine the action taken at time ¢ is as follows:

_Jrandom(a;) with probability € ®)
" ) greedy(a;)  with probability 1 — e
where the greedy action is defined as:
a; = argmax Q(s¢, a) ©)
a

The value of e determines the level of exploration versus
exploitation, with smaller values leading to more exploitation
and larger values leading to more exploration. Over time, as
the action-value function becomes more accurate, € can be
decreased to allow for more exploitation and convergence to
the optimal policy.

4) Hyper Parameters: Other than the parameters defined for
the neural networks, a set of hyperparameters has to supply
for the RL process. They are as follows:

« episodes (M): This is a gaming term that means the
number of times an agent has to execute the learning
process.

o learning_rate(a): Learning rate is to determine much
information neural networks learn in an iteration.

o discount_factor(): Discount factor ranges from O to 1
to limit future rewards and focus on immediate rewards.
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Algorithm 1 multi-agents Monitoring

Require: Input: a set of subjects C = {1,2,...,C};a set of vital
signs V = {1,2,...,V}; Episodes M ={1,2,...,M};
Ensure: Output: Rewards achieved by agentss in each episode.
1: Inmitialization : observation_space = sieS, action_space =
areA,reward R, v, €, €decay, Emin, memory = (), batch_size
. Set monitor_length = N
. if action is appropriate then
R < +reward

: R <+ —reward

: end if

: Define model < Neural NetworkM odel
9: memory < memory U (s¢, ar, R, $t41)
10: if np.random.rand < e then

2
3
4:
5: else
6
7
8

> Exploration

11: action_value < random(at)

12: else > Exploitation
13: action_value < greedy(at)

14: end if

15: for episode m € M do

16: score = 0

17: for time in range(monitor_length) do

18: az < action(st)

19: St4+1, R, done <+ step(at)

20: memory < memory U (s¢, at, R, s¢41)
21: St < St+1

22: if done then

23: displaym, score

24: break

25: end if

26: end for
27: replay < batch_size
28: end for

Algorithm 1 implements the proposed multi-agent human
monitoring framework. It takes as input a set of subjects C =
1,2,...,C and a set of vital signs V = 1,2,...,V, along
with the number of episodes M = 1,2, ..., M. The algorithm
outputs the rewards achieved by agents in each episode. Lines
1-2 initializes all the parameters needed for monitoring the
environment and learning agent. Lines 3-7 present the reward
policy. Lines 8-14 present the function approximation using
the neural networks model, memorize & replay, exploration
& exploitation of the DRL agent. Lines 15-28 are nested for
loops with conditional statements to check if the episode is
completed or not. The outer loop is to iterate each episode
while resetting the environment to initial values and score to
zero. The inner loop is to iterate timesteps which denote the
time of the current state and calls the methods.
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Fig. 3: Experiemental Design

IV. EXPERIMENT

In this study, the proposed multi-agent framework was eval-
uated by deploying an agent for each physiological feature of a
different set of subjects. The aim of the learning agents was to
monitor their respective vital signs, communicate with the cor-
responding MET based on the estimated level of emergency,
and learn the subjects’ behavior patterns. All the experiments
were conducted using Python programming language version
3.7.6 and related libraries such as TensorFlow, Keras, Open
Gym Al and stable_baselines3.

A. Dataset

o PPG-DaliA [33]: The dataset contains physiological
and motion data of 15 subjects, recorded from both a
wrist-worn device and a chest-worn device while the
subjects were performing a wide range of activities under
conditions close to real life.

o WESAD [34]: The WESAD (Wearable Stress and Affect
Detection) dataset is a collection of physiological signals
recorded from participants while they perform various
activities. It includes multi-modal signals such as ECG,
PPG, GSR, respiration, and body temperature.

B. Baseline Models

« WISEML [35]: Mallozzi et al. proposed an RL frame-
work for runtime monitoring to prevent dangerous and
safety-critical actions in safety-critical applications. In
this framework, runtime monitoring is used to enforce
properties to the agent and shape its reward during
learning.

o« CA-MQL [36]: Chen et al. proposed constrained action-
based MQL (CA-MQL) for UAVs to autonomously make
flight decisions that consider the uncertainty of the refer-
ence point location.

« Existing RL baseline models by Li et al. [28] were
deployed to optimize sequential treatment strategies based
on Electronic Health Records (EHRs) for chronic diseases
using DQN. The multi-agent framework results were
compared with Q-Learning and Double DQN.

« Similarly, RL was deployed to recognize human activity
using a dynamic weight assignment network architecture
with TD3 (a combination of Deep Deterministic Policy
Gradient (DDPG), Actor-Critic, and DQN) by Guo et al.
[29].

e Yom et al. [27] used Advantage Actor-Critic (A2C) and
Proximal Policy Optimization (PPO) algorithms to act as
virtual coaches in decision-making and send personalized
messages.

C. Performance Measure

Cumulative Rewards is a performance metric used in RL
to measure the total rewards obtained by an agent over a
specified period of time or number of actions. It is calculated
as the sum of all rewards received by the agent over the given
period of time or number of actions. The cumulative reward
can be used to evaluate the effectiveness of a RL algorithm or
to compare different algorithms.
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TABLE IIT: DRL Agents Performnce agents. While PPO and A2C showed promise, particularly in
PPG-Dalia Dataset WESAD Dataset agent 2’s pc?rformfince on the WESAD danltaseF, their overall ef-
RL Method _ agent | agent2  agent3 agont | agent2  agent 3 ficacy was inconsistent across different vital signs and datasets.
- Double DQN and DDPG, on the other hand, presented a more
Q Learning 25878 17304 23688 25318 16341 22823 . . .
balanced performance, suggesting their robustness but still
PPO 23688 20367 17688 23128 19404 16823 . , L
falling short of the proposed model’s results. This indicates
A€ 24717 13707 24369 24157 12744 23504 that while these algorithms are capable of learning complex
Double DQN 25569 15360 20367 25009 14397 19502 pagterns, they may require further tuning or modifications to
DDPG 26760 20754 23967 26200 19791 23102 achieve optimal performance in this specific domain.
WISEML 28654 25789 33669 28094 24826 32804 The WISEML and CA-MQL models, representing more
CA-MQL 32985 27856 34685 32425 26893 33820 specialized approaches to multi-agent learning in healthcare,
Proposed came close to matching the proposed framework’s perfor-
. DRL . 48354 30019 38651 47794 29056 37786  mance. Their success points to the potential benefits of
ramewor

V. EXPERIMENT RESULTS AND ANALYSIS

The advantage of RL for monitoring systems is that it can
learn to handle complex, dynamic environments. Many mon-
itoring tasks involve making decisions based on incomplete,
uncertain information, and the optimal decision may depend
on the context of the situation [37]. RL can learn to make
decisions in these types of problems by considering the current
state of the system and past experience. In this study, the aim is
to leverage the RL capability to optimize the decision-making
process in patient monitoring.

A. DRL Agents Performance

The performance of all baseline models alongside the pro-
posed algorithm was evaluated over 10 episodes using two
datasets, with the cumulative rewards at the 10th episode
detailed in Table III. The Q-Learning algorithm, despite its
foundational role in reinforcement learning, showed limited
capability in adapting to the complexity of vital sign pat-
tern recognition, lagging significantly behind more advanced
models like the proposed DQN-based framework. This gap
underscores the limitations of Q-Learning in handling high-
dimensional state spaces typically encountered in health mon-
itoring applications.

Among the baseline models, PPO, A2C, Double DQN,
and DDPG demonstrated varied performance across different

tailoring learning algorithms to the specific challenges of
health monitoring. However, the proposed DRL framework
outshined all baseline models across both datasets and all
agents, indicating its superior ability to navigate the com-
plexities of real-time health status monitoring using wearable
sensor data. This superior performance could be attributed
to the framework’s efficient exploration-exploitation balance,
effective reward structuring, and its capacity to handle the
multidimensional data inherent in monitoring multiple vital
signs.

All three learning agents were fed with physiological fea-
tures such as heart rate, respiration, and temperature, respec-
tively, from the PPG-DaLiA dataset. Based on the observation
space, action space, and reward policy defined for a cus-
tomized gym environment for human behavior monitoring,
the learning agents were run for 10 episodes, as shown in
Fig. 4. In the results, agent 1 refers to the heart rate monitoring
agent, which showed a constant increase in scores for each
episode for most of the subjects except subjects 5 and 6. The
intermittent low scores in agent 1 performance are due to the
exploration rate in DQN learning, where the algorithm tries
exploring all the actions randomly instead of relying on neural
networks’ predictions. Similarly, agent 2 and agent 3 monitor
two other physiological features, respiration and temperature,
respectively. agent 2 performed better than the other two
agents and achieved consistent scores for all subjects. Out of
all agents, agent 3, temperature monitoring performance, was
poor. This issue was traced back to the data level, where the
units of the temperature thresholds in the MEWS table and the
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input body temperature data from the dataset were different.
Still, agent 3 achieved high scores in monitoring subjects 9,
8, 4, and 10.

The reward policy designed in the proposed multi-agent
framework enables agents to learn the human physiological
feature patterns. For example, if a subject’s heart rate is 139
beats per minute, agent 1 takes Action 3 to communicate the
message to MET-3. The agent will get rewarded with +10
points only if Action 3 is taken; otherwise, the agent gets nega-
tively rewarded according to the reward policy (Table II). With
this example, the results in Fig. 4 can be interpreted better. An
increase in scores episode by episode, with the exception of
the exploration rate, actually infers an increase in the learning
curve of the agents in terms of human physiological patterns.

B. Hyper-Parameters Optimization

The DRL agents were further evaluated by hyperparameters
optimization. Out of all the hyperparameters discussed in this
study, two hyperparameters, learning rate (o) and discount
factor (), were optimized for all three agents, and the results
are shown in Figs.5 and6. The learning rate determines how
much information neural networks learn in an iteration to
predict action and approximate the rewards. The discount
factor measures how much RL agents focus on future rewards
relative to those in the immediate rewards. In Fig.5, Figs.5a,5b,
and5c show the agents’ performance while optimizing « of
neural networks. The x-axis of the plots represents scores

(cumulative rewards) achieved by an agent in each episode
shown on the y-axis. The bar plots show that the learning
rate « = 0.01 is a more optimized value in all the monitoring
agents. Similarly, Figs.6a,6b, and 6¢ present the v optimization
of agent 1, agent 2, and agent 3, respectively. The discount
factors v = 0.9 and v = 0.75 are the more optimized values
for agents 2 and 3, respectively, after 10 episodes of training.

VI. DISCUSSION

This study introduces an innovative approach to patient
monitoring within the unpredictable environment of healthcare
settings, employing adaptive multi-agent deep reinforcement
learning (DRL) to ensure timely healthcare interventions.
The fluctuating nature of vital signs, crucial indicators of
patient health, necessitates a robust system capable of real-
time analysis and decision-making. By leveraging the se-
quential decision-making prowess of RL algorithms, we have
established a framework where each vital sign is monitored
by a dedicated DRL agent. These agents operate within a
cohesive monitoring environment, guided by meticulously
defined reward policies to identify and respond to potential
health emergencies based on MEWS and MET standards.

A notable aspect of our research is the emphasis on the
design of the observation space for each DRL agent. This
design is pivotal in ensuring the accuracy and effectiveness
of the learning process, as it directly impacts the agent’s
ability to interpret vital sign data and make informed decisions.
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The challenge encountered with DRL agent 3, responsible for
monitoring body temperature, underscores the importance of
data consistency and the need for a harmonized observation
space. The discrepancy between the temperature units in the
MEWS table and the dataset highlighted a critical area for
improvement, emphasizing the need for standardized data
inputs to enhance agent performance.

The autonomous decision-making capability inherent in RL
represents a significant advancement in supporting clinicians.
By providing real-time updates on patient health, the DRL
framework facilitates a proactive approach to patient care,
extending its applicability beyond hospital settings to include
home and specialized care environments. This adaptability
is further enhanced by the strategic optimization of hyper-
parameters, which fine-tunes the learning process of DRL
agents to achieve optimal performance. Our investigation into
hyperparameters such as the learning rate and discount rate
reveals the critical balance between immediate and future
rewards, a balance that is essential for the effective monitoring
of patient health.

Comparatively, traditional supervised learning algorithms,
while accurate in predicting vital signs, fall short in dynamic
healthcare environments due to their reliance on extensive
labeled datasets and external supervision. The DRL approach,
free from the constraints of labeled data, offers a more flexible
and efficient solution for patient monitoring. However, it is
essential to acknowledge the considerable effort required in
data preparation and model tuning within supervised learning
frameworks, which, despite their limitations, contribute signif-
icantly to the development of informed clinical decisions.

The adaptive multi-agent DRL framework proposed in this
study represents a paradigm shift in patient monitoring, of-
fering a dynamic, efficient, and scalable solution for timely
healthcare interventions. The challenges and insights gleaned
from this research pave the way for future advancements in the
field, promising to enhance the quality of patient care through
innovative technological solutions.

VII. CONCLUSION

This study has pioneered an adaptive framework for health-
care interventions using multi-agent DRL to dynamically
monitor vital signs, establishing a novel approach in patient
care. Through the development of a generic monitoring en-
vironment coupled with a strategic reward policy, the DRL
agents were empowered to learn from and adapt to vital
sign fluctuations, enabling timely interventions by healthcare
professionals. Despite its innovative contributions, the research
faced challenges, such as discrepancies in body temperature
data scales and the absence of predictive capabilities for
future vital sign trends, which limited the effectiveness of
one DRL agent and the overall predictive potential of the
system. Addressing these limitations, future research will
focus on enhancing the framework with predictive analytics,
allowing DRL agents to forecast vital sign trends and thus
revolutionize patient monitoring. This advancement aims to
facilitate proactive healthcare measures, significantly reducing
the risk of critical health episodes and heralding a new era

in adaptive patient monitoring and healthcare management.
Having said that, the future direction of our research will be
focused on extending the scope of the research to predict future
vital signs using multi-agent DRL.
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5.2 Summary

This chapter highlights the transformative potential of the multi-agent DRL framework
in redefining the landscape of patient monitoring. It elaborates on the framework’s
adeptness in harnessing real-time physiological and behavioural data to enhance the
precision and timeliness of health assessments and interventions. The narrative un-
derscores this approach’s superiority over traditional models in terms of adaptability,
scalability, and predictive accuracy. It further reflects on the broader implications of
such Al-driven methodologies in improving clinical outcomes, minimizing healthcare
errors, and streamlining resource utilization, thereby setting a visionary path for the
next generation of healthcare innovations.
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CHAPTER 6: PAPER 5 - PDRL: MULTI-AGENT BASED
REINFORCEMENT LEARNING FOR PREDICTIVE
MONITORING

6.1 Introduction

This chapter introduces a cutting-edge Predictive Deep Reinforcement Learning (PDRL)
framework, employing multiple Reinforcement Learning (RL) agents in a time series
forecasting environment for predictive monitoring. By integrating Deep Q Network
(DQN) agents, the framework innovatively predicts future states of complex environ-
ments, leveraging a well-defined reward policy to maximize learning efficiency. The
chapter explores the application of this framework in monitoring vital signs such as
heart rate, respiration, and temperature, utilizing a Bi-LSTM model for prediction. This
novel approach aims to surpass traditional monitoring systems by enabling adaptive
decisions in dynamic, uncertain environments, showcasing the PDRL framework’s po-
tential in healthcare and beyond.
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Abstract—Reinforcement learning has been increasingly ap-
plied in monitoring applications because of its ability to learn
from previous experiences and can make adaptive decisions.
However, existing machine learning-based health monitoring
applications are mostly supervised learning algorithms, trained
on labels and they cannot make adaptive decisions in an uncertain
complex environment. This study proposes a novel and generic
system, predictive deep reinforcement learning (PDRL) with
multiple RL agents in a time series forecasting environment.
The proposed generic framework accommodates virtual Deep
Q Network (DQN) agents to monitor predicted future states
of a complex environment with a well-defined reward policy so
that the agent learns existing knowledge while maximizing their
rewards. In the evaluation process of the proposed framework,
three DRL agents were deployed to monitor a subject’s future
heart rate, respiration, and temperature predicted using a BiL-
STM model. With each iteration, the three agents were able
to learn the associated patterns and their cumulative rewards
gradually increased. It outperformed the baseline models for
all three monitoring agents. The proposed PDRL framework is
able to achieve state-of-the-art performance in the time series
forecasting process. The proposed DRL agents and deep learning
model in the PDRL framework are customized to implement the
transfer learning in other forecasting applications like traffic and
weather and monitor their states. The PDRL framework is able
to learn the future states of the traffic and weather forecasting
and the cumulative rewards are gradually increasing over each
episode.

Index Terms—Reinforcement Learning, Timeseries Forecast-
ing, Monitoring, Decision Making, Behavior Patterns

I. INTRODUCTION

Data mining has been widely adopted for analysis and
knowledge discovery in databases. This process involves data
management, data preprocessing, modeling, and results in
inferences and extracting latent data patterns [1]. Early warn-
ing systems based on data mining have enabled applications
to perform a risk analysis, monitoring and warning, and a
response capability [2]. Using existing knowledge or a set
of indicators can assist domains such as healthcare [3] and
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education [4] to design decision support systems. Radanliev
et al. [5] study used data mining to investigate scientific
research response to the COVID-19 pandemic and to review
key findings on how early warning systems developed in
previous epidemics responded to contain the virus.

Traditional unsupervised learning techniques discover un-
derlying patterns for knowledge discovery in unlabelled data
using association rule mining and clustering techniques [6].
Supervised learning strategies learn from labeled data to clas-
sify or predict patients’ physical activities and vital signs [7].
However, these methodologies are highly dependent on data
and can only observe the data and present possible decisions
in response, they cannot take actions based on observations.
Reinforcement learning (RL) deploys a learning agent in an
uncertain, complex environment that explores or exploits the
environment with its actions and learns the data based on its
experience [8], [9]. This allows the learning agent to gain
rewards based on learning and its actions.

e Forecasting RL Environment ™~ / n N
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Fig. 1:
applications and alert appropriate emergency teams.

PDRL framework to monitor different forecasting

RL is used in dynamic domains such as stockmarket
trading [10], [11], traffic prediction [12], [13], and weather
forecast [14] to tackle decision-making problems using agent-
environment interaction samples and potentially delayed feed-
back [15] that could also be applied to healthcare applica-
tions. In the healthcare domain, chronically diseased such
as Parkinson’s disease [16] and critical care patients often
require long-term dynamic treatment regimes with the timely
intervention of clinicians to avoid unwanted outcomes [17].
Zeng et al. [18] proposed an RL algorithm to optimize post-
operation warfarin anticoagulation dosage. The RL results
outperformed conventional clinical practice using rule-based
algorithms. Existing patient monitoring applications based on
RL primarily focus on prescribing the timing and dosage
of medications [19] so that patients are administered take
the right medication at the right time [20]. Chen et al. [21]
described Probabilistic machine learning models such as RL
using the analogy of an ICU clinician (learning agent) to
monitor a patient (environment) via actions like ventilation and
observing the changes in the environment (patient’s state) to
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make subsequent decisions that achieve the goal of discharging
the patient successfully.

The research problem addressed here is that of being
able to monitor the predicted state of an environment and
take appropriate actions to avoid an emergency. Traditional
supervised learning strategies can classify or predict based on
their training but cannot monitor and alert the appropriate
team for timely interventions. To assist with tracking the
environment state and monitor certain parameters we have
designed a virtual generic forecasting environment with obser-
vation space, actions, and rewards policy with multiple deep
learning agents. Deploying a single learning agent to monitor
all the parameters would complicate the environment as there
are different thresholds set up for each of the parameters
in an environment. For example, the learning agents learn
different threshold levels of each vital sign in modified early
warning scores (MEWS) [22] based on previous iterations and
rewards being accumulated for its actions. Well-trained RL
agents are capable of monitoring a patient’s vital signs such
as heart rate, respiration rate, and temperature, and alerting
the corresponding clinical team if the vital signs fall outside
any of the predefined thresholds [23].

Modeling forecasting applications, such as vital signs pre-
diction, traffic prediction, and weather prediction, as an RL
environment can enable RL agents to monitor tasks. RL agents
can learn from historical data and interact with the environ-
ment to make real-time decisions based on the predicted states
or actions. This approach can be used to develop intelligent
monitoring systems that can adapt to changing conditions,
optimize actions, and make informed decisions in complex
and dynamic environments. By using RL for monitoring, it
is possible to automate and optimize monitoring processes
in various domains, leading to more efficient and effective
monitoring outcomes. In this study, the RL environment is
configured with a deep learning model to predict future states,
which are then monitored by an RL agent.

The aim of this research is to create a multi-agent frame-
work that utilizes deep reinforcement learning (DRL) agents
to monitor and learn data patterns for various parameters.
Each parameter will have its own DRL agent, responsible
for monitoring, learning, and alerting respective teams if the
parameters deviate from predefined thresholds as shown in
Fig. 1. Conventional RL methodology is an agent performing
a task for a transition from one state to another state, where this
action might reward the agent either positively or negatively.
In this study, a novel approach is taken to assign rewards so
that the RL agents learn data patterns. An agent gets rewarded
for predicting an action and performing the action in its current
state. The rewards are designed in such a way that the learning
agents are penalized for predicting the wrong actions. To learn
behaviors we follow the Reward-is-enough hypothesis [24]
being that the learning agent always tries to maximize the
rewards based on their previous actions. The contributions of
this study are as follows:

« A generic monitoring environment accommodates multi-
ple agents to monitor the states of a forecasting environ-
ment.

o Proposed a model-free gaming agent to learn the existing
knowledge and monitor underlying data patterns adap-
tively.

o Transfer learning approach for time series forecasting
applications such as patients’ health status, traffic, and
weather using the multi-agents in the PDRL environment.

The paper is organized as follows: Section II presents the re-
lated works in the RL community to learning human behavior
patterns and application in the healthcare domain. Research
problem formulation and the proposed multi-agent PDRL
framework have been detailed in Section III. In Section IV, the
proposed methodology is evaluated on 10 different subject vi-
tal signs, and baseline models are discussed. In Section V, the
results of the proposed approach are compared with baseline
models, and hyper-parameter optimization of the learning rate
and discount factor are discussed. The comparison between
the supervised approach and the RL approach is discussed in
Section VII. Section VIII concludes the paper with limitations
and future work.

II. RELATED WORKS
A. Data Mining in Early Warning Systems

Akcapinar et al. [25] proposed a study that uses interaction
data from online learning to predict the academic performance
of students at end of term by using the kNN algorithm
which predicted unsuccessful students at an 89% rate. It
also suggests that performance can be predicted in 3 weeks
with 74% accuracy, useful for early warning systems and
selecting algorithms for analysis of educational data. Cano et
al. [26] presented a multiview early warning system for higher
education that uses comprehensible Genetic Programming
classification rules to predict student performance, specifically
targeting underrepresented and underperforming student pop-
ulations. The authors integrated various student information
sources and have interfaces to provide personalized feedback
to students, instructors, and staff. In healthcare, Hussain-
Alkhateeb et al. [27] conducted a scoping review to summarize
existing evidence of early warning systems for outbreak-prone
diseases such as chikungunya, dengue, malaria, yellow fever,
and Zika. It found that while many studies showed the quality
performance of their prediction models, only a few presented
statistical prediction validity of early warning systems. It
also found that no assessment of the integration of the early
warning systems into a routine surveillance system could be
found and that almost all early warning systems tools require
highly skilled users with advanced statistics. Spatial prediction
remains a limitation with no tool currently able to map high
transmission areas at small spatial levels. Liu et al. [28]
conducted a study on the use of data mining technology to
analyze college students’ psychological problems and mental
health. The authors use intuitionistic fuzzy reasoning judg-
ment, analytic hierarchy process, and expert scoring method to
construct a model for studying college students’ online public
opinion and use data mining techniques such as the decision
tree algorithm and Apriori algorithm to analyze students’
psychological problems and provide decision-making support
information for the school psychological counseling center.
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In [29], the authors talk about the challenges of managing
large amounts of data from connected devices and how data
mining can be used to extract valuable information. It also
mentions the use of fog computing technology to improve the
quality of service in healthcare applications. The article sug-
gests wearable clinical devices for continuous monitoring of
individual health conditions as a solution for chronic patients.
An EWS (Early Warning System) for heavy precipitation using
meteorological data from Automatic Weather Stations (AWSs)
is proposed by Moon et al. [30] and its performance are
measured by various criteria.

B. RL Monitoring

In the healthcare domain, Lisowska et al. [31] developed
a digital behavior-change intervention to help cancer patients
build positive health habits and enhance their lifestyles. The
authors used reinforcement learning to learn the appropriate
time to send the intervention prompts to the patients. Fur-
thermore, effective prompt policies to perform an activity
have been used in a custom patient environment. Three RL
approaches Deep Q-Learning (DQL), Advance Actor-Critic
(A2C) and proximal policy optimization (PPO) have been used
to suggest a virtual coach for sending a prompt. Similarly,
personalized messages enhance physical activity in type 2
diabetes patients [32]. Li et al. [33] proposed an electronic
health records (EHRs)-based reinforcement learning approach
for sequential decision-making tasks. The authors used a
model-free DQN algorithm to learn the patients’ data and
provide clinical assistance in decision-making. Co-operative
multi-agent RL has been deployed using value compositions
and achieved better results. RL decision-making ability can be
used for human activity recognition as per [34]. The authors
proposed a dynamic weight assignment network architecture
in which twin delayed deep deterministic (TD3) [35] algorithm
was inspired by Deep Deterministic Policy Gradient algorithm
(DDPG), Actor-Critic, and DQN algorithms. RL agents tend
to learn effective strategies while the sequential decision-
making process using trial-and-error interactions with their
environments [15].

C. Mimic Human Behavior Patterns

Tirumala et al. [36] discussed learning human behavior
patterns and capturing common movement and interaction pat-
terns based on a set of related tasks and contexts. The authors
discussed probabilistic trajectory models to learn behavior
priors and proposed a generic framework for hierarchical
reinforcement learning (HRL) concepts. Janssen et al. [37]
suggested breaking a complex task such as biological behavior
into more manageable subtasks. HRL is able to combine se-
quential actions into a temporary option. The authors discussed
how biological behavior is conceptually analogous to options
in HRL. Tsiakas et al. [38] proposed a human-centric cyber-
physical systems (CPS) framework for personalized human-
robot collaboration and training. This framework focuses on
monitoring and assessment of human behavior. Based on
the multi-modal sensing framework, the authors aimed for
effective human attention prediction with a minimal and

least intrusive set of sensors. Kubota et al. [39] examined
how robots can adapt the behavior of people with cognitive
impairments as part of cognitive neuro-rehabilitation. A variety
of robots in therapeutic, companion, and assistive applications
has been explored in the study.

In addition to RL applications in the gaming industry,
a great deal of research is being conducted using RL to
learn and mimic human behavior and also to deploy socially
assistive robots. However, physical robots with human inter-
action capability cannot be deployed at sensitive locations
like hospitals, educational institutions, elderly home care, and
mental health facilities as they might cause safety issues
for students, patients, carers, and medical staff [40]. Exist-
ing monitoring applications with supervised or unsupervised
learning cannot cope with uncertain events in a dynamic and
complex environment but the supervised approach is well
known for its achievement in regression problems. Virtual
robots with adaptive learning abilities can be deployed to
overcome these issues to monitor and learn the predicted states
from a supervised learning model. In this study, we developed
a custom monitoring environment to learn behavior patterns
from predicted states by designing rewards according to the
applications in certain domains. The framework is capable of
alerting the appropriate team based on the level of severity
and assisting in timely intervention.

III. PDRL MONITORING FRAMEWORK

In this section, custom behavior forecasting RL environment
and monitoring agents of the proposed predictive deep rein-
forcement learning(PDRL) framework has been discussed in
detail along with problem formulation. This study is to learn
data patterns in an uncertain environment by monitoring its
current state, taking appropriate actions, and getting rewarded
for the actions as shown in Fig. 2.

A. Problem Formulation

Knowledge discovery in data mining can be achieved by
utilizing previously known and potentially useful information
extracted from observations and various data mining tech-
niques. The research problem involves designing a multi-
agent framework to monitor data in a forecasting environment
and uncover underlying patterns in relation to thresholds
established by known knowledge. For example, consider a
scenario where a client, ¢,cC where n =1,2,3..N, C = |N|
is the number of clients with wearable sensors on their bodies
to track and forecast vital signs. Each client ¢ has a set of
DRL learning agents to monitor predicted vital signs and alert
the appropriate emergency team if health parameters exceed
modified early warning scores (MEWS) [22].

To formulate this problem, a customized RL forecasting
environment needs to be configured with an innovative reward
policy that links the current state and agent actions to learn
data patterns while maximizing their rewards. This can be
achieved based on a Markov Decision Process (MDP), which
can be defined as a 5-tuple M= (S,A,PR,v), where: S is a
finite state space, with s;eS denoting the state of an agent
at time ¢, A is a set of actions defined for the agent, with
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Fig. 2: PDRL monitoring Framework

ateA denoting the action taken by the agent at time ¢, P is a
Markovian transition function as shown in Equation 1, which
denotes how the agent transits from state s to state s’ while
performing an action a, R is a reward function, which returns
an immediate reward R(s,a) for the action a taken in a state
s defined in Equation 2, v is a discount factor that focuses
on immediate rewards instead of future rewards. It remains
between 0 and 1.

P,(s,8') =Pr(si41 =5 | st = s,a; = a) (1)
R(si,ar) = Y 4'mi, @)
t=0

The next step of the research problem is to compute the
optimal reinforcement learning policy 7 : S x A — [0,1],
which helps in predicting the probability that an agent selects
an appropriate action a;€A in a specific state s;eS at time t. To
do this, the action value (Q-function) needs to be updated in
each iteration and can be defined in Equation 3. Q™" (s¢, at)
is the new output of the action a; and state value s;. « is the
learning rate, which determines how much information from
the previously computed Q-value is used for the given state-
action pair. v is a discount factor that focuses on immediate
rewards instead of future rewards, and it remains between O
and 1.

Q" (s¢,at) +— (1 —a)Q(s¢,ar) + - (g +7m§x Q(st41,a))
3)

B. Forecasting Environment

In this section, forecasting applications are modeled as a
customized RL forecasting environment based on MDP has
been designed with observation space S, and action space A
for learning agents to take appropriate actions, and it rewards
R for the agents’ actions. The forecasting environment enables
a deep learning model to forecast the future states at time
t+1,t+2,t+ 3,1+ 4 based on the training data at previous
timesteps t — n,...,t — 2,t — 1, in the proposed PDRL
framework as shown in Fig. 2.

1) Forecasting States: In this study, forecasting the future
states of an environment is a supervised time series learning
approach. For this task, the recurrent neural network (RNN)
model variant, the bidirectional LSTM(Bi-LSTM) model is
deployed. Mathematically, the Bi-LSTM model is defined in
Equation 4. A regularization method, dropout [41] was used to
exclude activation and weight updates of recurrent connections
from LSTM units probabilistically.




n
ylx) = Z Activationl(b + w;x;)
=1 " @)
Bi — LSTM (y) = Activation2( ———)

1: 1 eYi

where b: Bias added on each hidden layer,z: Input value,
w: Weights added on each hidden layer, y: Output value from
each neuron, Activationl: Activation functions on input and
hidden layers, Activation2: Activation function on the output
layer.

Based on the forecasted states, the following components
are configured in the forecasting RL environment.

2) Observation Space: The environment shown in Fig. 2
has state sieS where i = 0,1,2,...n, observations in a state
at time t. The idea is to split the state into observations and
forecast the states based on the time series data. The predicted
states are getting assigned to multi-agents. Furthermore, con-
sidering a single agent to monitor the multiple states of a
complex environment might lead to a sparse rewards challenge
where the environment rarely produces a useful reward and
limits agent learning. Hence, multiple agents need to be
deployed to monitor multiple states. To determine the expected
return E; of a policy 7 in a state s can be defined in state-
value Equation 5 adopting multi-agent where ¢ = 0,1, 2,3, ...n
is a finite number of observations 7 in a state.

oo,n

VT(sh) = E,r{ Z Y R(ss,m(s¢))]s5 = s} )
t=0,i=0
3) Action Space: Defining actions for the RL agent in the
environment is the most critical part of the RL process as it
directly reflects the capacity of RL agents in adaptive learning.
In this study, a discrete set of actions are proposed for a
continuous observation space. Each of these actions will be
chosen by agents based on the current state of the forecasting
environment. The expected return E; for taking an action a in
a state s under a policy 7 can be measured using action-value
function Q(s,a) Equation 6.

Q7 (s,a) = E,r{ Zth(st,at,ﬂ(st)ﬂso =s,a0 = a}

t=0
Q)
Actions within an RL environment vary depending on the
application. For instance, in a health monitoring application,
the patient’s health status may change based on vital signs
such as heart rate, blood pressure, respiratory rate, and more.
Actions can be configured based on these vital signs, utilizing
modified early warning scores [22]. Threshold levels defined
for vital signs, such as heart rate, can be used to measure the
level of emergency, and appropriate alerts can be triggered
accordingly. For example, if the heart rate exceeds a predefined
threshold, a high-level emergency alert may be generated,
while a lower-level alert may be issued for a heart rate that
is moderately deviating from the normal range. This way, RL
agents can take actions based on the defined thresholds to

ensure timely and appropriate responses in health monitoring
applications.

4) Rewards: RL goals can be represented by cumulative
rewards achieved by learning agents with their actions in an
environment. Conventional reinforcement learning rewards an
agent based on their action for a transition from a state s; to
s¢+1. In this study, the goal of the learning agent is to learn
underlying data patterns in terms of states of a forecasting
environment and this can be achieved by the efficient design
of a reward policy. The reward policy defined for this study
is calculated using Equation 7 where agents get positively
rewarded only if an agent monitors the state and predicts the
right action from the action space. Otherwise, the agent will
be negatively rewarded.

+reward if action is appropriate

.R(St7 (lt) = {

—reward if action is not appropriate

Algorithm 1 Forecasting Environment

Require: time series data D = {s;_,.., St—2,5t—1, ¢, }; @
set of labels £ = {1,2,..., K}
Ensure: Predicted time series data of K, a set of labels, in
the form of states {s;1, St+2, St4+3, St+4}-
: Define forecast_model < Bi_LSTM M odel

1

2: Train(forecast_model) < forecast_model(D)

3: {St41, 8142, St43, St4a} — forecast_model (predict)

4: Initialization observation_space =
sieS, action_space = aseA, rewardR

5. Set monitor_length = N

6: if actionisappropriate then

7: R + +reward

8: else

9 R + —reward

10: end if

11: monitor_length <+ N — 1
12: $441 < S¢(monitor_length)
13: if N =0 then

14: done = True
15: else

16: done = False
17: end if

18: visualize(as, R, vital signs)

19: initial_state < s¢[0] > reset environment

The algorithm 1 presents the forecasting environment where
observation space, action space, and reward policy have been
configured based on the predicted states. Lines 1-3 in the
algorithm define the deep learning model to train and predict
the time series forecasting data. Lines 4-5 initialize the class
and set boundaries for the observation space, action space,
rewards, and monitoring length. Lines 6-10 explain the reward
policy for the actions of the learning agent and how the
agents get rewarded either positively or negatively. Lines
11-19 present monitoring length and visualization of agent
performance and reset the environment if needed.
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C. Learning Agent

In the proposed PDRL framework, the game learning agent
DQN algorithm was used. The algorithm was introduced by
Google’s DeepMind for playing Atari game to play games
by just observing the screen without any training or prior
knowledge about those games. In this algorithm, the Q-
Learning functions’ approximation will be computed using
neural networks, and the learning agent gets rewarded based
on the neural networks’ prediction of the right action for the
current state. The reward policy has been discussed in detail
in Section III-B.

1) QO-Function Approximation: The neural networks model
used in this study to approximate the rewards has three
layers input layer, a hidden layer, and an output layer. The
input layer has a node for each vital sign of a state, the
output layer has a node for each action in the action space.
The model is configured with parameters such as the relu
activation function, mean square error as loss function, and
Adam optimizer. The model gets trained with the state and
its corresponding reward. Upon training, the model is able to
predict reward for the current state.

The learning agent performs an action a:€A for a transition
from state s; to s; and achieves a reward R for the action.
In this transition process, the maximum of the Q-function in
Equation 6 is calculated, and the discount of the calculated
value uses a discount factor ~y to suppress future rewards and
focus on immediate rewards. The discounted future reward
is added to the current reward to get the target value. The
difference between the current prediction from the neural
networks and the calculated target value provides a loss
function. The loss function is a deviation of the predicted value
from the target value and it can be estimated from Equation 8.
The square of the loss function allows for the punishment of
the agent for a large loss value.

loss = (R+7-maz(Q™ (s,a))— Q7(s,a) )> (8)

predicted_value

target_value

2) Memorize and Replay: A simple neural network has
the challenge of limited memory and forgetting previous
observations once new observations overwrite them. To retrain
the model, previous observations can be stored in an array as
an experience e that acts as a memory and appends the current
state, action, reward, and next state to the memory at time ¢ as
er = (8¢, a¢, T, St+1). A sample of previous observations from
the memory is randomly selected to train the neural networks
using the replay method. In this study, a batch size of 32
previous observations was to retrain the neural network model.

3) Exploration and Exploitation: Exploration and exploita-
tion are two contradictory concepts in RL where exploration
is the selection of actions randomly that have never been
performed and exploring more possibilities. Exploitation is to
select known actions from existing knowledge and previous
experiences to maximize the rewards. To balance exploration
and exploitation, there are different strategies such as greedy
algorithm, epsilon-greedy algorithm, optimistic initialization,
and decaying epsilon-greedy algorithm. This study controls

the exploration rate by multiplying decay by the exploration
rate. This reduces the number of explorations in the execution
as the agents learn the patterns and maximize their rewards to
get high scores. While the neural networks model is getting
retrained with previous experiences in the replay, the decay
gets multiplied by the exploration rate based on how well the
agent can predict the right actions. All these parameters are
defined as hyper-parameters to DQN learning agents.

Algorithm 2 Learning Agent

: Initialize 7, €, €gecays Emin, Mmemory = 0, batch_size
: Define model <— NeuralNetworkM odel
: memory <— append(sy, a, R, si41)
if np.random.rand < € then
action_value < random(a;)
else
action_value < model.predict(s)
end if
: manibatch < random(memory, batch_size)
10: for s;, as, R, s¢+1, done in minibatch do
11: target < R
12: if not done then
13: target <— R + v(maz(model.predict(si+1)))
14: end if
15: target_f < model.predict(s)
16: target_fla;] + target
17: model. fit(s;, target_f)
18: end for
19: if € > €, then
20: € *= €decay
21: end if

> Exploration

> Exploitation

Rl A A o

The methods to perform function approximation, memorize,
replay, exploration, and exploitation are enclosed in a Learn-
ing Agent algorithm 2. Line 1-2 initializes all the hyper-
parameters required for the agent and a deep learning model
for Q-function approximation. Line 3 explains the memorize
and replay part to store neural-network experience where state,
action, reward, and next_state will be stored to retrain the
model using the replay method. Lines 4-8 in the algorithm
are responsible to predict an action either exploration or
exploitation methods. Lines 9-21 explain a batch of previous
experiences from memory will be retrieved to process and re-
train the neural networks model based on the hyper-parameters
defined earlier.

The Algorithm 3 is an extension to the previous two
Algorithms 1 2 and implements the proposed generic PDRL
monitoring framework. The inputs of the algorithm are a set
of subjects and their vital signs along with the number of
episodes the agents have to be trained. The algorithm 3 outputs
the learning agents score which is the cumulative sum of
rewards achieved in each episode. Lines 1-2 create objects of
ForecastingEnvironment and LearningAgent. Lines 3-17 are
nested for loops with conditional statements to check if the
episode is completed or not. The outer loop is to iterate each
episode while resetting the environment to initial values and
score to zero. The inner loop is to iterate timesteps which
denote the time of the current state and call the methods
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Algorithm 3 Proposed Multiple Agents Monitoring Frame-
work Implementation

Require: Input:
C=1,2,...,C: set of subjects
V=12,...,V: set of vital signs
M =1,2,...,M: number of episodes
Ensure: Output: Rewards achieved by Agents in each
episode.

1: env « ForecastingEnvironment() > Algorithm 1
2: agent < LearningAgent() > Algorithm 2
3: for episode m € M do

4: state + env.reset()

5: score =0

6: for time in range(timesteps) do

7: a; <+ agent.action(s;)

8: St41, R, done + env.step(ay)

9: agent.memorize(sy, a, R, Si41)

10: St <= St+1

11: if done then

12: print(m, score)

13: break;

14: end if

15: end for

16: agent.replay(batch_size)

17: end for

defined in Algorithm 1 2 to predict action for the current state,
to reward the agent for predicted action, to retrieve next_state,
and to memorize the previous experiences. Finally, the replay
method will be called to retain the neural network model with
the stored previous experiences.

IV. EXPERIMENT

The multi-agent PDRL monitoring framework proposed in
this study has been evaluated with experiments on different
datasets related to healthcare, traffic, and weather forecasting.
In healthcare, vital signs such as heart rate, respiration, and
temperature retrieved from a patient are processed into time
series data. The forecasting environment is responsible to learn
the time series data and forecast future vital signs in the
next 15 minutes, 30 minutes, 45 minutes, and 60 minutes.
The predicted data is passed to multiple DRL agents with
one vital sign for each agent. The agents are responsible to
monitor the vital signs in each iteration and take appropriate
actions. For this task, each agent gets rewarded as per the
reward policy discussed in the previous section III. As they
aim to increase their accumulated rewards, all the agents learn
each vital sign pattern of patients and collectively monitor
the patient’s health status. The isolated DRL agents monitor
their vital signs independently and update the corresponding
medical emergency team(MET) at the right time.

A. Dataset

o PPG-DaLiA [45]: The dataset contains physiological and
motion data of 15 subjects, recorded from both a wrist-
worn device and a chest-worn device, while the subjects

TABLE I: Proposed Multi-Agent PDRL framework perfor-
mance is compared with other baseline models

MAE MAPE RMSE
15Min 62 1391 8.75
ELMA [42] 30Min 62 1391 8.75
45Min 62 1391 8.75
60 Min 613 1391 8.67
15Min  0.95 5.47 1.25
GRU [43] 30 Min  0.95 5.48 125
45Min 097 551 127
60 Min 098 55 1.28
15Min  3.64 8 246
Mlﬁg_ﬁ;ﬁ*}ﬂm] 30 Min 3.9 347 258
45 Min 433 453 2.69
60 Min 573 527 3.0
15Min 044 26 085
PDRL 1}{‘;2:“‘;%?]‘: (Oursy 30 Min 065 2.67 1.05
45Min 052 317 093
60 Min  0.53 539 0.95

were performing a wide range of activities under close to
real-life conditions.

o Traffic Dataset [46]: The dataset includes 47 features such
as a historical sequence of traffic volume for the last 10
sample points, day of the week, hour of the day, road
direction, number of lanes, and name of the road.

« Meteorological Data [47]: This dataset aims to predict
the area affected by forest fires using meteorological data
such as temperature, relative humidity, wind, and rain.
The area affected by the fires is transformed using an
In(x+1) function before applying various Data Mining
methods.

B. Baseline Models

1) RL Algorithms:

« Existing RL baseline models by Li et al. [33] are de-
ployed to optimize sequential treatment strategies based
on EHRs for chronic diseases with DQN. The multi-agent
framework results are compared with Q Learning and
Double DQN.

« Additionally, Guo et al. [34] used RL and a dynamic
weight assignment network architecture with TD3 (com-
bination of DDPG, Actor-Critic, and DQN) to recognize
human activity.

e Yom et al. [32] used A2C and PPO algorithms to act as
virtual coaches in decision-making and send personalized
messages.

2) Predictive RL Frameworks:
o Li et al. [42] proposed simultaneous energy-based learn-
ing for multi-agent activity forecasting using graph neural

networks for activity forecasting based on spatio-temporal
data.
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e Ma et al. [43] proposed a multi-agent driving behavior
prediction across different scenarios based on the agent’s
self-supervised domain knowledge.

o Jiang et al. [44] proposed a study on internet traffic
prediction with distributed multi-agent learning using
LSTM and gated recurrent unit (GRU). GRU-based dis-
tributed multi-agent learning scheme achieved the best
performance compared to LSTM.

C. Evaluation Metrics

Mean Absolute Error (MAE) is a commonly used re-
gression metric that measures the average magnitude of errors
between the predicted and actual values for a set of data. It is
calculated as the average of absolute differences between the
predicted and actual values and is expressed as a single value.
Root Mean Squared Error (RMSE) is another commonly
used regression metric that measures the average magnitude
of the differences between the predicted and actual values.
RMSE is calculated as the square root of the mean of the
squared differences between the predicted and actual values.
Mean Absolute Percentage Error(MAPE) is a regression
metric that measures the average absolute percentage error
between the predicted and actual values. It is calculated as
the average of the absolute differences between the predicted
and actual values, expressed as a percentage of the actual
values. Cumulative Rewards is a performance metric used in
reinforcement learning to measure the total rewards obtained
by an agent over a specified period of time or number of
actions. It is calculated as the sum of all rewards received
by the agent over the given period of time or number of
actions. All the experiments were conducted using Python
version 3.7.6 and the TensorFlow, Keras, Open Al Gym, and
stable_baselines3 packages.

V. EXPERIMENT RESULTS AND ANALYSIS

In this section, we conduct an analysis and comparison
of the performance of the deep learning model within the
forecasting environment of the proposed framework against
baseline models. Additionally, we evaluate and compare the
performance of the monitoring RL agents with baseline mod-
els. The proposed framework utilizes deep learning for fore-
casting the states of the RL environment, while the RL agent
monitors the forecasted states. This makes RL a suitable ap-
proach for monitoring applications, such as health monitoring,
weather monitoring, traffic monitoring, and more. Moreover,
it enables the automation of monitoring tasks, reducing the re-
liance on manual intervention and increasing the efficiency of
monitoring processes. RL agents can continuously monitor the
environment, make real-time decisions, and take appropriate
actions, allowing human operators to focus on other critical
tasks.

A. Forecasting Environment Results

Traditional machine learning and deep learning algorithms
are capable of predicting heart rate in a supervised learning
approach. The baseline models with predicting capability are

TABLE II: Baseline Models Comparison

RL Method Agent 1 Agent 2 Agent 3

Q Learning 25878 17304 23688
PPO 23688 20367 17688
A2C 24717 13707 24369
Double DQN 25569 15360 20367
DDPG 26760 20754 23967
Proposed DQN (Ours) 48354 30019 38651

adopted in the PDRL framework to replace the proposed
DQN algorithm. They are trained with a subject from PPG-
DaLiA to forecast heart rate based on physiological features.
Tab. 1 presents the results of various frameworks for time
series forecasting in the RL environment. The frameworks
being compared are ELMA, GRU, GNN-Based Multi-Agent,
and the proposed generic Multi-Agent PDRL Framework. The
performance of each framework is evaluated using the three
metrics: MAE, MAPE, and RMSE. The results show that
the proposed multi-agent PDRL framework performs the best
among all the models across all time intervals (15 min, 30 min,
45 min, and 60 min). This can be seen by the lowest values of
MAE, MAPE, and RMSE for this model. The GRU model also
performs well across all time intervals, with MAE, MAPE,
and RMSE values significantly lower than those of the ELMA
and GNN-Based Multi-Agent models. It is also worth noting
that the performance of the GNN-Based Multi-Agent model is
inconsistent across all time intervals, showing varying results
for different time steps. The results suggest that the GRU and
the proposed Multi-Agent PDRL Framework models, which
are specifically designed for time series data, performed much
better than ELMA and GNN-Based Multi-Agent which are not
well suited for time series forecasting.

B. DRL Agents Performance

The multi-agent in the proposed PDRL monitoring frame-
work has been evaluated with vital signs such as heart rate,
respiration, and temperature predicted in the forecasting envi-
ronment. The agents are responsible to monitor the vital signs
in each iteration and take appropriate actions. For this task,
each agent gets rewarded as per the reward policy discussed
in the previous section III. As they aim to increase their
accumulated rewards, all the agents learn each vital sign
pattern of patients and collectively monitor the patient’s health
status. The isolated PDRL agents monitor their vital signs
independently and update the corresponding MET at the right
time.

All the baseline models and the proposed algorithm were
trained with the same client data for 10 episodes and their
cumulative rewards achieved in the 10th episode are shown
in Tab. II. Q-Learning algorithm which updates its action-
value Bellman equation stopped far behind in learning the
patterns of the vital signs compared to the proposed model-free
DQN algorithm. The other baseline models PPO, Actor-Ceritic,
Double DQN, and DDPG have considerable performance in all
three monitoring agents but couldn’t overshadow the results of
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the proposed DQN approach. The multi-model algorithm TD3
was able to score closer to the proposed approach. Overall, the
proposed PDRL algorithm has outperformed all other baseline
models in all three monitoring agents.
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Fig. 3: DQN Agents Performance

All three learning agents have been fed with physiological
features such as heart rate, respiration, and temperature re-
spectively. Based on the observation space, action space, and
reward policy defined for a customized gym environment for
human behavior monitoring, the learning agents were run for
10 episodes shown on the x-axis, and the cumulative rewards
have been awarded as scores for each episode shown on the
y-axis. The performance of each of the learning agents with
respect to each input client (Client 1 to Client 10) data can be
seen in Fig. 3. In the results, Agent 1 refers to the heart rate
monitoring agent which has a constant increase of scores for
each episode for most of the subjects except subjects 5 and
6. The intermittent low scores in Agent 1 performance is due
to the exploration rate in DQN learning where the algorithm
tries exploring all the actions randomly instead of using neural
networks prediction. Similarly, Agent 2 and Agent 3 monitor
two other physiological features respiration and temperature

respectively. Agent 2 has performed better than the other two
agents and achieved consistent scores for all subjects. Out of
all agents, Agent 3, temperature monitoring performance is
unsatisfactory. This actually drives us back to the data level
and found out the data is with a different scale compared to the
MEWS [22]. Still, Agent 3 achieved high scores in monitoring
subjects 9, 8, 4, and 10.

VI. OTHER TIME SERIES FORECASTING SYSTEMS

In the healthcare forecasting and monitoring experiment,
vital signs such as heart rate, respiration, and temperature are
predicted based on the time series data in the forecasting RL
environment and the DRL agents monitored the predicted vital
signs to communicate with the appropriate medical emergency
team in adverse situations. There are different domains such
as traffic and weather where time series forecasting is critical
and making sequential decisions are essential. In this study,
two such time series forecasting systems are evaluated using
the proposed PDRL framework. For these experiments, the
monitoring agents and forecasting environment trained in
the healthcare experiment are adopted for other time series
forecasting applications such as traffic and weather by storing
the knowledge gained from the health monitoring application.
In the transfer learning process, the traffic dataset [46] and
meteorological data [47] is used for the evaluation. In the
traffic dataset, a DRL agent is deployed for monitoring the
traffic forecasting process by customizing the observation
space, action space, and rewards in the RL environment.
Similarly, a DRL agent is deployed for monitoring the weather
forecasting process.

Tab. III appears to show the results of the transfer learning
experiment in which different models (ELMA, GRU, GNN-
Based Multi-Agent, the proposed Multi-Agent PDRL Frame-
work) are used to predict traffic and meteorological data.
The results are shown in terms of several evaluation metrics:
MAE, MAPE, and RMSE. The time intervals (15 min, 30
min, 45 min, 60 min) indicate the time intervals for which
the predictions are made. GRU and the proposed Multi-Agent
PDRL Framework models are performing the best for both
traffic and meteorological data forecasting across all time
intervals. The ELMA and GNN-Based Multi-Agent models,
on the other hand, do not perform as well as the GRU and the
proposed Multi-Agent PDRL Framework models.
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Fig. 4: PDRL Agent results on traffic and weather forecasting

The performance of the proposed PDRL monitoring agents
in traffic and weather monitoring applications is presented in
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TABLE III: Proposed Multi-Agent PDRL framework perfor-
mance for traffic and weather prediction

Traffic Data Meteorological
Forecasting Data Forecasting
MAE MAPE RMSE MAE MAPE RMSE
15 Min 6.73 15.14 9.4 6.69 15.02 9.39
ELMA [42] 30 Min 6.73 15.14 9.4 6.69 15.02 9.39
45 Min 6.73 15.14 9.4 6.69 15.02 9.39
60 Min 6.72 15.07 9.39 6.65 14.99 9.34
15 Min 1.04 6.04 1.36 1.03 5.96 1.36
GRU [43] 30 Min 1.04 6.01 1.36 1.03 5.94 1.35
45 Min 1.04 5.96 1.36 1.04 593 1.36
60 Min 1.04 6.1 1.36 1.04 6.02 1.36
15 Min 4.64 6.07 2.88 4.27 7.32 2.76
GNN-Based )
Multi-Agent [44] 30 Min 5.79 5.7 321 5.03 471 2.99
45 Min 6.57 4.93 343 5.61 4.89 3.16
60 Min 7.01 6.07 3.54 6.57 5.86 343
15 Min 0.47 2.94 091 0.44 2.83 0.89
Multi-Agent )
PDRL Fraemwork (Ours) 30 Min 0.56 5.61 1.01 0.6 4.21 1.04
45 Min 0.46 4.04 091 0.48 3.69 0.92
60 Min 0.58 571 1.01 0.54 571 0.99

Fig. 4. It appears that the PDRL agent is able to perform
well on both tasks, as the total rewards for both tasks increase
with episode number. However, it is also apparent that the
agent performs better on the traffic monitoring task than on
the weather monitoring task, as the total rewards for the traffic
monitoring task are consistently higher than those for the
weather monitoring task. Additionally, the gap between the
rewards for the two tasks is increasing as the episode number
increases, indicating that the agent is becoming increasingly
better at the traffic monitoring task.

VII. DISCUSSION

The primary objective of the proposed study is to design a
multi-agent framework to monitor the predicted future states
of a dynamic and complex environment. The proposed frame-
work has been adopted to monitor patients in an uncertain
hospital environment where the patient’s vital signs fluctuate
intermittently and might cause health deterioration with de-
lay in treatment. To overcome this challenge, the sequential
decision-making capability of RL algorithms was adopted in
this study. Each vital sign in the human body has different
threshold levels to determine the health emergency as per
MEWS [22] and medical emergency teams are predefined
for each emergency based on the threshold of the vital sign.
In this study, a PDRL agent was deployed for each vital
sign and three PDRL agents interacted with the same generic
healthcare monitoring environment. The PDRL agents have no
prior training or knowledge about patients’ vital signs. Based
on the reward policy defined in the forecasting environment,
the DRL agents learning agents predicted the right action or
right MET to communicate the emergency of each vital sign.
While designing the environment, setting up the observation
space for each DRL agent was critical as it would directly
affect the agent learning process and might lead to ambiguity
in communicating to the right MET. In this study, PDRL
agent 3 was deployed to monitor patients’ body temperature,

and its performance was unsatisfactory compared to the other
two agents. This raises the question of the sanity of input
data and observation space configured in the environment.
The issue was the units of the temperature thresholds in the
MEWS table and the input body temperature of data from
the dataset are different. The proposed multi-agent PDRL
framework is a generic framework that can be adapted to
different time series forecasting applications and monitored
to make sequential decisions. In this study, the experiments
on healthcare, traffic, and weather data showed promising
results. An added advantage of the proposed framework is
multi-agents for multiple monitoring parameters in a dynamic
environment. This avoids the sparse rewards challenge and can
be easily customized and adapted to different applications.

VIII. CONCLUSION

This study proposes a new paradigm of monitoring fore-
casted states using multiple DRL agents. A generic PDRL
monitoring environment was designed with a reward policy to
reward the DRL agents based on their actions in each iteration
of monitoring status. The learning agents were compelled to
learn the behavior of the data patterns based on the reward
policy for all possible actions in the action space for each state
in the continuous observation space. Based on the evaluation
results, all three DRL agents in the PDRL framework were
able to learn the patterns of the vital signs and predict
appropriate action to alert corresponding medical emergency
teams. Furthermore, the knowledge from health monitoring is
stored and performed transfer learning process on traffic and
weather monitoring. However, the limitation of this study is the
input data scale, or units of states, that the agent is monitoring.
This led to the under-performance of DRL agent 3 compared to
the other two DRL agents in the health monitoring application.
Ensemble methods, such as combining the predictions from
multiple DRL agents or combining the PDRL framework
with other machine learning approaches, could be explored to
further improve the accuracy and robustness of the forecasting
and decision-making capabilities of the system.
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6.2 Summary

The PDRL framework’s capability to significantly enhance predictive monitoring through
multi-agent deep reinforcement learning is underscored. The framework’s application
to vital sign monitoring demonstrates not only its ability to learn and adapt to com-
plex patterns but also its superiority over conventional models. The chapter highlights
the framework’s scalability and adaptability to various domains, including traffic and
weather forecasting, through transfer learning. The comprehensive evaluation and suc-
cessful deployment of this framework suggest a promising avenue for future research
and development in intelligent monitoring systems, potentially transforming the land-
scape of real-time data analysis and decision-making in healthcare and other critical
fields.
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CHAPTER 7: PAPER 6 - A SURVEY OF MULTIMODAL
INFORMATION FUSION FOR SMART HEALTHCARE:
MAPPING THE JOURNEY FROM DATA TO WISDOM

7.1 Introduction

This chapter embarks on an in-depth exploration of multimodal information fusion’s piv-
otal role in the evolution of smart healthcare systems. It meticulously examines how the
convergence of diverse data modalities—spanning electronic health records, wearable
technologies, genomics, and environmental factors—facilitates a holistic view of patient
health within the Data-Information-Knowledge-Wisdom (DIKW) hierarchy. This detailed
scrutiny not only sheds light on the theoretical foundations and methodologies of multi-
modal fusion but also highlights its instrumental role in refining clinical decision-making
processes, tailoring patient care, and enhancing the efficacy of healthcare interven-
tions.
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ARTICLE INFO ABSTRACT

Keywords: Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a
DIKW comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey
Multimodality from data to information to knowledge to wisdom (DIKW) is explored through multimodal fusion for smart

tha fa‘s'“"" healthcare. We present a comprehensive review of multimodal medical data fusion focused on the integration of
p4 medicine

various data modalities. The review explores different approaches such as feature selection, rule-based systems,
Smart healthcare

machine ;earning, deep learning, and natural language processing, for fusing and analyzing multimodal data.
This paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the
reviewed frameworks and theories, it proposes a generic framework for multimodal medical data fusion that
aligns with the DIKW model. Moreover, it discusses future directions related to the four pillars of healthcare:
Predictive, Preventive, Personalized, and Participatory approaches. The components of the comprehensive
survey presented in this paper form the foundation for more successful implementation of multimodal fusion in
smart healthcare. Our findings can guide researchers and practitioners in leveraging the power of multimodal
fusion with the state-of-the-art approaches to revolutionize healthcare and improve patient outcomes.

1. Introduction in turn, can then be applied in practical situations to make informed
decisions and solve complex problems, resulting in wisdom.

In the realm of smart healthcare, where cutting-edge technologies At the base of the pyramid in Fig. 1, we have the Data level,
and data-driven approaches are revolutionizing the field, the inte- which encompasses diverse sources of data such as Electronic Health
gration of multimodal data has emerged as a transformative tool to Records (EHRs), medical imaging, wearable devices, genomic data,
enhance decision-making and improve patient outcomes. This paper sensor data, environmental data, and behavioral data. This raw data
presents a comprehensive exploration of multimodal medical data fu- serves as the foundation for subsequent analysis and interpretation.
sion for smart healthcare, illustrating the journey from raw data to Moving up the pyramid, we reach the Information level, where the
actionable insights through the four-level pyramid shown in Fig. 1. raw data undergoes processing, organization, and structuring to derive

The Data Information Knowledge Wisdom (DIKW) model is a con- meaningful and contextualized information. For instance, heart rate
ceptual framework that illustrates the hierarchical progression of data data from a wearable device can be processed to determine average
into wisdom [1]. Through its process, raw data is transformed into resting heart rates, activity levels, and potential anomalies.
meaningful information, knowledge, and ultimately wisdom, which The Knowledge level, situated above Information, represents the
can be used for informed decision-making and problem-solving [2]. interconnected structure of the organized data from various sources.
The DIKW model recognizes that data alone is not sufficient to drive By establishing relationships and connections between entities like
insights and actions. Instead, data needs to be processed, organized, patients, diseases, or medical treatments, the Knowledge level enables
and contextualized to extract valuable information. This information the identification of patterns, trends, and correlations. It facilitates a
is then synthesized and combined with existing knowledge to gain holistic understanding of the data and serves as a powerful tool for
understanding, leading to the development of knowledge. Knowledge, generating insights.
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Fig. 1. DIKW Fusion conceptual model.

Finally, at the pinnacle of the pyramid, we have the Wisdom level.
This is where actionable insights are derived from the Knowledge
level, allowing informed decision-making, prediction of future out-
comes [3], and a deeper understanding of complex phenomena. These
insights enable personalized treatment plans, predictions about disease
progression, and the identification of risk factors.

It is important to point out a key feature of the model, its circular
structure, shown by the arrows in Fig. 1. These arrows indicate that
combining different types of data assists in the progression of Data to
Information, then to Knowledge and Wisdom. This cyclical nature adds
flexibility to the model, allowing for constant updates and improve-
ments in how data is processed. In this sense, reaching the level of
Wisdom helps to fine-tune the steps and methods used at earlier stages,
making future data collection, information gathering, and knowledge
creation more effective.

This paper further explores different approaches such as feature
selection, rule-based systems, machine learning, deep learning, and
natural language processing for multimodal fusion. It also addresses
challenges related to data quality, privacy, security, processing, anal-
ysis, clinical integration, ethics, and interpretation of results. With its
emphasis on the transformative potential of multimodal medical data
fusion, this paper sets the stage for future research and advancements
in the field of smart healthcare, and paves the way for improved patient
care outcomes and personalized healthcare solutions.

The following are the key contributions of this paper:

+ The application and adaptation of the existing DIKW conceptual
model to describe the journey of data to information to knowl-
edge to wisdom in the context of multimodality fusion for smart
healthcare.

A taxonomy that organizes state-of-the-art techniques in multi-
modality fusion with the DIKW conceptual model.

A proposed generic DIKW techniques framework for smart health-
care, that not only highlights the current efforts, but also provides
a vision for its future evolution.

A review of the challenges and recommended solutions associated
with multimodal fusion, informed by the existing DIKW concep-
tual model and the proposed framework, to guide future research
directions.

Information Fusion 102 (2024) 102040
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Fig. 2. Overview of multimodality fusion for smart healthcare.

The rest of this paper is organized as follows: Section 2 delves
into the representation of data in multimodal applications. Section 3
explores various approaches for integrating information from multiple
modalities, then outlines the proposed taxonomy. Section 4 examines
the challenges and trends associated with multimodal fusion. Section 5
presents a generic framework for multimodal fusion that aligns with
the DIKW model. In Section 6, we outline the future directions for
multimodal fusion in smart healthcare, with a particular focus on the
4Ps of healthcare. Finally, the paper concludes in Section 7.

2. Modalities in smart healthcare

There are various data modalities in healthcare, such as EHRs,
Medical Imaging, Wearable Devices, Genomic data, Sensor data, En-
vironmental data, and Behavioral data as shown in Fig. 2. These
modalities contain unstructured raw data specific to their respective
formats. As the data is processed, it is transformed into meaningful
information through the involvement of techniques such as structur-
ing EHRs, feature extraction from Medical Imaging, and analysis of
wearable device data.

2.1. Electronic Health Records (EHRs)

EHRs serve as a central repository of medical data for healthcare
providers, the adoption of which has led to a surge in the amount of
intricate patient data [4]. These datasets, although extensive and tai-
lored to each patient, are often fragmented and may lack organization.
They encompass diverse variables like medications, laboratory values,
imaging results, physiological measurements, and historical notes [5],
which lead to increased complexity in analysis. Machine learning (ML)
provides a potential solution to this complexity by enabling the explo-
ration of intricate relationships among the diverse variables present in
EHR datasets [6].

EHRs play a crucial role in multimodal fusion systems within smart
healthcare, especially for multidisciplinary and life-threatening diseases
like diabetes [7]. However, managing and analyzing unstructured data
collected from sensors and EHRs is challenging. Data fusion is crucial
for accurate predictions, and deep learning approaches are effective
for larger healthcare datasets. Healthcare datasets can be enhanced
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by collecting patients’ data through wearable sensors and EHRs. An
ensemble ML approach is employed to develop a recommendation
system for accurate prediction and timely recommendations for patients
with multidisciplinary diabetes.

To optimize multimodal fusion strategies in EHR data, Xu et al. [8]
proposed MUFASA, a novel approach that extends Neural Architecture
Search (NAS). The authors based their model on the Transformer archi-
tecture, which has shown promise in leveraging EHR’s internal struc-
ture. Experimental results demonstrated that MUFASA outperformed
Transformer, Evolved Transformer, RNN variants, and traditional NAS
models on public EHR data. MUFASA architectures achieved higher
top-5 recall rates compared to Transformer in predicting CCS diagnosis
codes, and they outperformed unimodal NAS by customizing modeling
for each modality. MUFASA also exhibited effective transfer learning to
ICD-9, another EHR task. The representation of EHR data is challenging
due to different modalities, such as medical codes and clinical notes, all
of which have distinct characteristics.

Another challenge is the extraction of inter-modal correlations,
which are often overlooked or not effectively captured by existing
models. An et al. [9] proposed the Multimodal Attention-based fuslon
Networks (MAIN) model, which aims to address two key challenges
in healthcare prediction using EHR data. The MAIN model incor-
porates multiple independent feature extraction modules tailored to
each modality, including self-attention and time-aware Transformer for
medical codes, and a CNN model for clinical notes. It also introduces an
inter-modal correlation extraction module composed of a low-rank mul-
timodal fusion method and a cross-modal attention layer. The model
combines the representations of each modality and their correlations to
generate visit and patient representations for diagnosis prediction [10],
by leveraging attention mechanisms and neural networks. Overall,
MAIN offers a comprehensive framework for multimodal fusion and
correlation extraction in EHR-based prediction tasks.

2.2. Wearable devices

Wearable devices have become increasingly prevalent in the field
of smart healthcare, offering the potential to monitor and track various
aspects of an individual’s health and well-being. These devices, typi-
cally worn on the body or incorporated into clothing or accessories, can
collect real-time data about vital signs, physical activity, sleep patterns,
and other health-related metrics [11,12]. The data gathered by wear-
able devices can provide valuable insights into an individual’s overall
health status, enabling personalized health monitoring and preventive
care [13]. Moreover, wearable devices can facilitate remote patient
monitoring, allowing healthcare professionals to track patients’ health
remotely and intervene when necessary. The integration of wearable
devices with smart healthcare systems enables continuous monitoring,
early detection of health issues, and the ability to deliver personalized
interventions and recommendations [14].

2.3. Sensor data

Sensor data plays a crucial role in enabling smart healthcare by
providing real-time monitoring and tracking of various physiological
parameters and activities. Wearable devices, implantable sensors, and
remote monitoring systems collect data such as heart rate, blood pres-
sure, temperature, glucose levels, physical activity, sleep patterns, and
so on. Sensor data in smart healthcare enables continuous monitoring of
an individual’s health status, facilitating early detection and interven-
tion for potential health issues [15]. It allows healthcare providers to
gather objective and accurate data, leading to more informed decision-
making and personalized treatment plans. For example, sensor data can
help in managing chronic conditions like diabetes or cardiovascular dis-
eases by monitoring glucose levels or heart rate variability. Real-time
sensor data can also enable remote patient monitoring, telemedicine,
and telehealth services, allowing healthcare professionals to monitor
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patients’ conditions from a distance [16]. This is particularly beneficial
for individuals with limited mobility or those residing in remote areas,
by providing access to healthcare services without the need for frequent
hospital visits [17].

The life cycle for data from EHRs, wearable devices, and sensors
in the context of smart healthcare each follow a similar trajectory,
encompassing stages such as raw data acquisition, data structuring,
data fusion, and ultimately, predictive modeling. This cyclical process
is graphically illustrated in Fig. 3.

2.4. Medical imaging

Medical imaging plays a crucial role in smart healthcare by pro-
viding valuable diagnostic information and aiding in the management
of various medical conditions [18-23]. It involves the use of advanced
imaging technologies to capture detailed images of the human body,
allowing healthcare professionals to visualize and analyze anatomical
structures, detect abnormalities, and monitor the progress of treat-
ments. In smart healthcare, medical imaging is integrated with digital
technologies and data analytics to enhance the efficiency, accuracy, and
accessibility of healthcare services [18].

2.5. Genomic data

Genomic data plays a significant role in the realm of smart health-
care, offering valuable insights into an individual’s genetic makeup and
its impact on their health. This type of data includes information about
an individual’s DNA sequence, genetic variations, and gene expression
patterns [24]. With advancements in genomic sequencing technologies,
it has become more accessible and affordable to obtain a person’s
genetic information. In smart healthcare, genomic data can be utilized
for various purposes, such as in the diagnosis and prediction of genetic
disorders, as well as in the identification of genetic markers associated
with increased disease risk or treatment response [25]. Genomic data
can also enable personalized medicine by guiding treatment decisions
based on an individual’s unique genetic profile [26]. For example, it can
help determine optimal drug choices and dosages, minimizing adverse
reactions and improving treatment outcomes. Integrating genomic data
with other health data sources, such as EHRs and wearable devices,
can provide a comprehensive overview of an individual’s health [27].
This multimodal approach allows for practices such as more accurate
assessment of disease risks, personalized prevention strategies, and
targeted interventions.

2.6. Environmental data

Environmental data can significantly contribute to smart healthcare
by providing insights into the impact of environmental factors on indi-
vidual health and well-being. Environmental data includes information
about air quality, temperature, humidity, pollution levels, noise levels,
and other relevant parameters in a person’s surroundings. By incor-
porating environmental data into smart healthcare systems, healthcare
providers can better understand the environmental conditions that may
influence a person’s health outcomes [28]. For example, monitoring
air quality can help identify areas with high pollution levels, which
is particularly valuable for individuals with respiratory conditions like
asthma.

Analyzing this environmental data in real-time allows healthcare
professionals to provide personalized recommendations and interven-
tions to mitigate the impact of poor air quality on patients’ health [29].
Environmental data can also aid in preventive healthcare by iden-
tifying patterns and correlations between environmental factors and
specific health conditions [30,31]. For instance, studying the rela-
tionship between temperature and heat-related illnesses facilitates the
implementation early warning systems and interventions during heat
waves or extreme weather events.
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Fig. 3. The lifecycle of electronic health records, wearable devices, and sensors in smart healthcare.

Table 1
Multimodal Datasets for smart healthcare.
Modality Datatype Dataset No. of Instances No. of Attributes Task Popularity®
EHR eICU Collaborative 200,000 admissions Varies Various tasks, mainly Medium
Research Database diagnosis and prognosis
[32]
MIMIC-IIT [33] 40,000 patients Varies Various tasks, mainly High
diagnosis and prognosis
MRNet [34] 1370 exams MRI data Disease detection Low
Single Modality - - - - -
RSNA Pneumonia 30,000 images Pneumonia labels Disease detection Low
Detection Challenge
[35]
MURA [36] 40,895 images Abnormal/normal Disease detection Medium
Imagin
&g Pediatric Bone Age Thousands of images Bone age Bone age estimation Medium
Challenge Dataset
[37]
Indiana University 8000 images Chest radiograph Various tasks Medium
Chest X-ray DICOM images
Collection [38]
FastMRI [39] Thousands of scans MRI data Image reconstruction Medium
CheXpert [40] 224,316 images 14 labels per image Disease detection High
OASIS Brains Project [41] Varies with dataset MRI and clinical data Brain studies High
LIDC-IDRI [42] Over 1000 patients CT scans with Nodule detection High
marked-up
annotated lesions
TCIA [43] Millions of images Various data types Cancer research High
ChestX-ray8 [44] 108,948 images 8 labels per image Disease detection High
BraTS [45-47] Varies annually MRI data Tumor segmentation High
Genomics, TCGA [48] Thousands of patients Genomic and clinical data Cancer research High
Imaging
Multimodality Genomics, UK Biobank [49] 500,000 individuals Various data types Various tasks Medium
Imaging, EHR
Imag- ADNI [50] Thousands of patients MRI and clinical data Alzheimer’s research High
ing,Genomics,
EHR
Imaging, Text ImageCLEFmed [51] Varies annually Various data types Various tasks Low
Openi [52] 4.5 million images Various data types Various tasks Low
Various PhysioNet [53] Various datasets Various data types Various tasks High
modalities

2 Popularity is determined by the citation count in Google Scholar as of 05/06/2023. It is categorized as Low (<200 citations), Medium (> 200 and <1000 citations), and High

(>1000 citations).
2.7. Behavioral data

Behavioral data plays a crucial role in smart healthcare by providing
valuable insights into individuals’ habits, lifestyles, and behaviors,
which have a significant impact on their overall health and well-
being. Behavioral data encompasses various aspects of human behavior,
including physical activity, sleep patterns, dietary habits, stress lev-
els, social interactions, and adherence to medical treatments [54].
By leveraging behavioral data, smart healthcare systems can monitor
and analyze individuals’ behaviors in real time, allowing healthcare
providers to comprehensively understand their patients’ daily routines

and habits [55]. This data can help identify patterns, trends, and
deviations from normal behavior, enabling early detection of potential
health issues and the implementation of timely interventions.

Stress levels and emotional well-being can also be monitored through
behavioral data, enabling healthcare providers to identify triggers and
patterns that may impact individuals’ mental health [56]. This data has
been used to guide the development of stress management techniques,
relaxation strategies, and personalized interventions to support individ-
uals in maintaining good mental health [57]. Furthermore, behavioral
data can facilitate patient engagement and self-management.
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Through interactive platforms and feedback mechanisms, individ-
uals can actively participate in monitoring their own behaviors, goal-
setting, and receive personalized recommendations based on their pro-
vided data. This empowerment can lead to increased motivation and
accountability in someone managing their health and well-being. How-
ever, the collection and analysis of behavioral data raises important
ethical considerations, including privacy, data security, and informed
consent. It is crucial to ensure that individuals’ privacy is protected,
their data is securely stored, and proper consent is obtained for data
collection and usage.

2.8. Multimodality data

Multimodality data fusion in smart healthcare involves integrat-
ing information from various sources, such as EHRs, medical imag-
ing, wearable devices, genomic data, sensor data, environmental data,
and behavioral data. By combining data from different modalities,
healthcare professionals can gain a comprehensive understanding of a
patient’s health, leading to personalized care and informed decision-
making. Each modality provides unique insights, and their fusion en-
hances the accuracy and completeness of the analysis. For example, in
a fusion approach, EHRs provide historical medical records, medical
imaging offers anatomical details, wearables capture real-time physio-
logical data, genomics reveal genetic predispositions, sensors provide
contextual information, and behavioral data reflect lifestyle choices.

By integrating these modalities, healthcare professionals can un-
cover hidden patterns, correlations, and relationships that contribute
towards techniques for optimizing treatment strategies, predicting dis-
ease progression, identifying risk factors, and implementing preventive
measures. Multimodality data fusion is a crucial step towards a holis-
tic approach for advancing smart healthcare and improving patient
outcomes.

2.9. Datasets for multimodal fusion for smart healthcare

An overview of multimodal datasets used in smart healthcare is
presented in Table 1. It includes information on the modality, dataset
name, number of instances, number of attributes, task, popularity,
and reference count. The datasets cover various modalities such as
EHRs, Genomics, Imaging, and Text. Examples of datasets include the
eICU Collaborative Research Database, TCGA, UK Biobank, MRNet,
RSNA Pneumonia Detection Challenge, MURA, and ChestX-ray8. These
datasets are used for diagnosis, prognosis, cancer research, disease
detection, and image segmentation [58]. The popularity of the datasets
depends on the reference counts, and the table provides reference
counts for further exploration.

3. SOTA techniques in multimodal fusion for smart healthcare

Multimodal medical data fusion involves combining information
from multiple modalities such as medical imaging, genomic data, EHRs,
wearable devices, and more. In this section, we explore state-of-the-
art (SOTA) techniques for multimodal fusion across these multiple
modalities within the context of smart healthcare.

3.1. Feature selection

Feature selection focuses on identifying and selecting relevant fea-
tures from raw data to transform them into meaningful information. In
the context of multimodal medical data fusion for smart healthcare,
recent studies have highlighted the importance of feature selection.
Albabhri et al. [59] emphasized its role in effective decision-making and
improved patient care by identifying the most relevant features, reduc-
ing dimensionality, and enhancing the accuracy and interpretability of
the fusion process. Similarly, Alghowinem et al. [60] emphasized its
impact on improving result interpretability. By systematically applying
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feature selection techniques, healthcare professionals can extract the
most relevant information from the diverse data sources available, to fa-
cilitate a more comprehensive understanding of a patient’s health con-
ditions and support informed decision-making in personalized health-
care settings. Feature selection ensures efficient and effective data
analysis and integration, ultimately enhancing the quality of data-
driven insights and improving patient outcomes in smart healthcare
environments.

Before fusion, it is important to perform feature selection within
each modality separately. This can be achieved using various tech-
niques, such as statistical tests, information gain, correlation analysis,
or ML algorithms [61]. By selecting relevant features within each
modality, noise and irrelevant information can be reduced, leading
to improved fusion outcomes [62]. Certain modalities may contain
more inherent noise or provide less relevant information compared
to others. In such cases, modality-specific feature selection methods
can be employed to identify the most informative features within each
modality [63]. This can be done by leveraging domain knowledge,
statistical analysis, or ML techniques tailored to the specific modal-
ity. After performing feature selection within each modality, the next
step is to select features that are relevant across different modalities.
Cross-modal feature selection methods aim to identify features that
carry complementary information from multiple modalities [64]. These
methods can involve techniques such as correlation analysis, mutual
information, or joint optimization algorithms [65].

Feature selection and fusion should be performed in a coordinated
manner to optimize the overall process. The selected features can be
used as input for the fusion algorithm, which combines the informa-
tion from different modalities [66]. This integration can be achieved
through techniques such as early fusion, late fusion, or hybrid fusion
approaches, depending on the nature of the data and the problem at
hand [67].

It is important to evaluate the performance of the feature selection
and fusion methods using appropriate evaluation metrics. Evaluation
can involve assessing classification accuracy, regression performance,
clustering quality, or other domain-specific evaluation criteria [68].
Cross-validation or independent validation on separate datasets can
help validate the effectiveness of the feature selection techniques [69].
In healthcare applications, interpretability and explainability of the
selected features and fusion results are crucial for building trust and
understanding the decision-making process [70]. Various methods can
be employed to enhance interpretability, such as feature importance
ranking, visualization techniques, or rule extraction algorithms [71].

It is worth noting that the choice of feature selection methods may
vary depending on the specific data characteristics, the fusion task,
and the available computational resources. Additionally, the field of
multimodal medical data fusion is an active area of research, and new
techniques and algorithms are continuously being developed to address
its challenges. The feature selection techniques of multimodal fusion
are summarized in Fig. 4.

3.2. Rule-based systems

Rule-based systems operate to process and interpret information
using predefined rules or logical statements. By employing these rules,
these systems can make inferences and derive knowledge from the
available data. The defined rules capture relationships and patterns,
enabling decision-making based on the processed information. In the
context of multimodal medical data fusion for smart healthcare, rule-
based systems play a crucial role. They provide a structured approach
to decision-making and knowledge representation [72], offering a sys-
tematic framework for integrating information from various modalities.
By employing a set of predefined rules, these systems can effectively
process and integrate data from multiple sources, enabling informed
decisions and providing valuable recommendations [73]. The utiliza-
tion of rule-based systems in multimodal medical data fusion enhances
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Fig. 4. Multimodal fusion — feature selection.

the overall knowledge generation process, aiding in accurate diagnoses,
personalized treatment plans, and improved healthcare outcomes.

Rules in a rule-based system are typically defined using an “if-then”
format, meaning that each rule consists of an antecedent (if) and a
consequent (then). The antecedent represents the conditions or criteria
that need to be satisfied, while the consequent specifies the action or
conclusion to be taken if the conditions are met [74]. Rule-based sys-
tems can also contribute to feature selection in multimodal fusion. For
example, rules can be designed to identify and select relevant features
from different modalities based on their contribution to the decision-
making process [70]. These rules can incorporate domain knowledge
or statistical analysis to determine the importance of the features.

In multimodal medical data fusion, rules can be designed to ac-
commodate multiple modalities. The antecedent of a rule can include
conditions from different modalities, allowing the system to consider
information from various sources simultaneously [75]. This integra-
tion can leverage the complementary nature of different modalities to
enhance decision-making [76].

Medical data often contains uncertainty and imprecision. Rule-
based systems can leverage fuzzy logic, a mathematical framework that
handles uncertainty, to model and reason with uncertain or imprecise
data [77]. Fuzzy rules allow for more flexible decision-making by
assigning degrees of membership to antecedents and consequents, cap-
turing the inherent uncertainty in medical data fusion [78]. In scenarios
where multiple rules are applicable, conflicts may arise. Here, rule-
based systems can employ strategies for rule prioritization and conflict
resolution. These strategies determine the order in which rules are
applied and resolve conflicts when multiple rules have conflicting con-
clusions [79]. This ensures a systematic and consistent decision-making
process.

Rule-based systems also offer transparency and interpretability by
providing explicit rules that can be examined and understood by health-
care professionals [80]. The rules provide explanations for the sys-
tem’s decisions, allowing users to understand the underlying reason-
ing process. This transparency is crucial in building trust and fa-
cilitating collaboration between clinicians and the decision-support
system [81]. Furthermore, rule-based systems enable the incorporation
of expert knowledge into the decision-making process. Domain experts
contribute their expertise by defining the rules that encapsulate their
knowledge and clinical guidelines [73]. This allows the system to lever-
age the collective intelligence of healthcare professionals and enhance
the accuracy and reliability of decision-making [82].

By monitoring a system’s performance and collecting feedback from
its users, rule-based systems can be adapted or refined over time to
improve decision-making [83]. This adaptive capability enables the
system to evolve with new insights, changes in medical guidelines, or
updates in the underlying data.

Although rule-based systems provide a structured and interpretable
framework for multimodal medical data fusion, it is important to
consider the limitations of these approaches, such as the challenge
of capturing complex relationships or interactions between modalities,

and the potential for a large number of rules to manage. Hybrid
approaches that combine rule-based systems with ML techniques can
offer more flexibility and scalability in handling multimodal fusion
tasks. The rule-based systems discussed in this subsection are outlined
in Fig. 5.

3.3. Machine learning

Machine Learning (ML) encompasses the creation of algorithms
capable of learning from data, enabling them to make predictions and
informed decisions. By analyzing and processing vast amounts of data,
ML algorithms can identify patterns, extract knowledge, and generate
valuable insights to support decision-making processes. In the context
of smart healthcare, ML techniques play a critical role in multimodal
medical data fusion. These methods harness the capabilities of algo-
rithms and statistical models to autonomously detect and understand
patterns, relationships, and representations within diverse medical data
sources. Through this automated learning process, ML contributes to
overall knowledge generation within the healthcare sector, facilitating
accurate diagnoses, personalized treatment plans, and improved patient
outcomes.

Ensemble methods, such as Random Forests, gradient boosting, or
AdaBoost, can be employed to combine the predictions or decisions
of multiple ML models that have been trained on different modal-
ities. Each modality can be processed independently using suitable
algorithms, and their outputs can be fused using ensemble techniques
to make a final decision [84]. Ensemble learning helps leverage the
diversity and complementary information present in different modal-
ities [85]. Its adaptive weights combination approach works by as-
signing weights to different modalities based on their relevance or
importance for the fusion task. The weights can be learned using vari-
ous techniques, such as feature selection algorithms, statistical analysis,
or ML models [86]. The modalities are then combined using weighted
fusion strategies, such as weighted averaging or weighted voting, to
generate a fused representation [87].

Bayesian networks provide a probabilistic graphical model frame-
work for representing and reasoning about uncertainty in medical data
fusion. Each modality can be treated as a node in the network, and
the dependencies between modalities can be modeled using conditional
probability distributions [88]. Bayesian networks allow for principled
fusion of multimodal information, enabling probabilistic inference and
decision-making [89].

Multiple Kernel Learning (MKL) is a technique that combines mul-
tiple kernels, which capture different types of information or relation-
ships, into a unified representation. Each modality can be represented
using a separate kernel, and MKL methods can learn the optimal
combination of these kernels to maximize the performance of the
fusion task [90]. MKL allows for flexible and effective integration of
information from different modalities. Feature-level fusion techniques
combine features extracted from different modalities to create a unified
feature representation. This can involve techniques like concatenation,
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feature stacking, or feature selection, based on relevance or mutual
information [91]. The fused features can then be used as input for tradi-
tional ML algorithms, such as support vector machines (SVM), logistic
regression, or k-nearest neighbors (k-NN), to perform classification,
regression, or clustering tasks [92].

Canonical Correlation Analysis(CCA) is a statistical technique that
aims to find linear transformations of multiple modalities to maximize
their correlation. It identifies common underlying factors that explain
the correlations between modalities [93]. The fused representation can
then be used as input for subsequent ML algorithms [94]. Manifold
learning techniques, such as t-SNE (t-Distributed Stochastic Neighbor
Embedding) or Isomap, can be used to map multimodal data into a
lower-dimensional space, while preserving the underlying structures
and relationships [95]. By projecting the multimodal data onto a com-
mon latent space, these techniques facilitate the fusion of modalities
and enable visualization and analysis of the fused data.

Graph-based methods offer a framework for representing and fusing
multimodal medical data using graph structures. Each modality can be
represented as nodes, and edges can be defined based on the relation-
ships or correlations between modalities [96]. Graph-based algorithms,
such as graph convolutional networks (GCNs) or graph regularized non-
negative matrix factorization (GNMF), can then be applied to capture
the dependencies and interactions between modalities [97].

ML techniques, even without deep learning, can still be effective in
multimodal medical data fusion for smart healthcare. It is important
to note that the selection of specific ML techniques for multimodal
medical data fusion depends on the nature of the data, the fusion

task, and the available computational resources. Careful consideration
should be given to feature selection, normalization, and data pre-
processing steps to ensure optimal fusion performance. Additionally,
model evaluation and validation using appropriate metrics and cross-
validation techniques are crucial to assess the effectiveness of the fusion
approach in smart healthcare applications. In Fig. 6, the ML techniques
in multimodal fusion are presented.

3.4. Deep learning

Deep learning, as a subset of ML, plays a crucial role at the knowl-
edge level of the DIKW framework. It specializes in training neural
networks with multiple layers to extract intricate features and repre-
sentations from data. By processing vast amounts of data, deep learning
models can learn complex patterns and generate valuable knowledge
for decision-making purposes. In the context of smart healthcare, deep
learning has emerged as a potent approach for multimodal medical
data fusion. Its unique capability to automatically learn hierarchical
representations from diverse and complex medical modalities makes
it particularly well-suited for integrating and extracting meaningful
information. With its ability to handle diverse data types and cap-
ture intricate relationships, deep learning contributes to the overall
knowledge-generation process in healthcare, enabling more accurate
diagnoses, personalized treatment plans, and improved patient out-
comes. Here are some key aspects of deep learning in multimodal
medical data fusion.
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Deep learning architectures, such as convolutional neural networks
(CNNs), recurrent neural networks (RNNs), or transformers, can learn
representations directly from multimodal medical data [98]. By jointly
processing multiple modalities, these models capture both local and
global dependencies, enabling the extraction of rich and informative
features. This facilitates the fusion of modalities at various levels,
ranging from low-level pixel or waveform data to high-level semantic
representations [99]. Deep learning models with recurrent or tempo-
ral components, such as RNNs or long short-term memory (LSTM)
networks, can handle sequential or temporal aspects of multimodal
medical data [100]. These models can capture temporal dependencies,
changes over time, or dynamic patterns across modalities. This is par-
ticularly relevant for applications such as physiological signal analysis,
time-series data fusion, or modeling disease progression [101].

Deep learning models that have been pre-trained on large-scale
datasets, such as ImageNet or natural language corpora, can be lever-
aged for multimodal medical data fusion [102]. Transfer learning tech-
niques allow the transfer of knowledge from pretraining to the medical
domain, enabling the models to learn relevant representations from
limited medical data. This approach can boost performance, especially
when multimodal medical datasets are small or resource-intensive to
collect [103]. Attention mechanisms in deep learning models provide
a mechanism for focusing on salient regions or modalities within the
input data. They learn to allocate attention to the most relevant fea-
tures or modalities, enhancing the fusion process [104]. Attention
mechanisms can be employed within CNNs, RNNs, or transformer archi-
tectures to selectively combine or weigh the contributions of different
modalities based on their importance for the task at hand [105].

Generative models, such as generative adversarial networks (GANs)
or variational autoencoders (VAEs), can be used for multimodal fusion.
These models learn to generate new samples from the joint distribution
of multiple modalities, capturing their underlying correlations [106].
Generative models can aid in data augmentation, missing data impu-
tation, or synthesis of multimodal data, facilitating improved training
and fusion outcomes [107]. Deep fusion architectures combine multiple
modalities at different stages of the network, allowing for the ex-
plicit integration of multimodal information. For example, early fusion
involves combining modalities at the input level, while late fusion
integrates modalities at higher layers or during decision-making [108].
Hybrid fusion approaches leverage both early and late fusion strategies
to capture complementary information effectively. Deep fusion archi-
tectures can enhance the performance and robustness of multimodal
fusion tasks [109].

Deep learning models will benefit from the integration of clinical
knowledge, domain expertise, or prior medical information. Archi-
tectures that incorporate domain-specific constraints, expert rules, or
Bayesian priors can enhance the fusion process and align the models
with established medical knowledge [110]. Integrating clinical knowl-
edge helps improve the interpretability, reliability, and acceptance of
deep learning models in smart healthcare settings [111].

Deep learning models, although powerful, can be challenging to
interpret. However, techniques such as attention visualization, saliency
mapping, or gradient-based methods can provide insights into the
model’s decision-making process [112]. Interpretable deep learning
architectures, such as CNNs with structured receptive fields or inter-
pretable RNN variants, are also being explored to enhance transparency
and explainability in multimodal medical data fusion [113].

Deep learning techniques offer promising avenues for multimodal
medical data fusion, but challenges such as the need for large labeled
datasets, interpretability, and generalization to new patient populations
must be addressed. Collaboration between deep learning researchers,
healthcare professionals, and data scientists is crucial to developing
effective and reliable deep learning approaches for multimodal medical
data fusion in smart healthcare. The deep learning techniques for
multimodal fusion are outlined in Fig. 7
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3.5. Natural language processing

NLP plays a vital role in transforming textual data into structured
information, uncovering insights, and facilitating informed decision-
making. In the context of multimodal medical data fusion for smart
healthcare, NLP is particularly valuable for processing textual informa-
tion from clinical notes, reports, and records. It extracts relevant details,
identifies relationships, and discovers hidden patterns within the text.
By incorporating NLP into the data fusion process, healthcare profes-
sionals can gain a comprehensive understanding of patients’ health,
improve diagnosis accuracy, and enhance personalized treatment plan-
ning. NLP is a powerful tool for integrating text-based information
with other data modalities, enabling a holistic approach to healthcare
decision-making.

NLP techniques are employed to process and extract meaning-
ful information from unstructured textual data. Tasks such as tok-
enization, sentence segmentation, part-of-speech tagging, named entity
recognition, and syntactic parsing help structure and analyze clinical
text [114]. NLP enables the extraction of relevant concepts, medical
terms, and relationships from textual data, facilitating their integration
with other modalities [115]. NLP techniques can extract structured
information from clinical narratives, such as diagnoses, medications,
procedures, and patient demographics. Named entity recognition and
relationship extraction algorithms identify and classify relevant entities
and their associations, contributing to the fusion of textual information
with other modalities. This extracted information can be used for
decision support, clinical coding, or cohort identification [116]. NLP
techniques, including semantic parsing, semantic role labeling, and
medical concept normalization, each of which enable the understand-
ing of clinical text in a structured manner [117]. This facilitates the
extraction of clinical concepts, relations, and contextual knowledge,
which can be fused with other modalities for comprehensive analysis,
decision support, or knowledge discovery [118].

NLP models can be trained to classify clinical text into various
categories, such as disease categories, severity levels, or treatment
options [119,120]. Sentiment analysis techniques can also assess the
sentiment or opinion expressed in patient feedback, social media data,
or clinical notes. Text classification and sentiment analysis provide
valuable insights, and can be integrated with other modalities for a
comprehensive understanding of the patient’s condition [3,121]. NLP
can also bridge the gap between textual and visual modalities in medi-
cal data fusion. By analyzing textual descriptions or radiology reports,
NLP techniques can extract relevant information about anatomical
locations, findings, or abnormalities [122]. This information can be
linked to corresponding images or visual data, enabling the fusion of
text and image modalities for improved diagnosis, treatment planning,
or image interpretation [123].

NLP methods aid in identifying and monitoring adverse events
by analyzing textual data sources such as EHRs, patient complaints,
or pharmacovigilance reports [124]. Sentiment analysis, information
extraction, and text mining techniques can automatically detect and
categorize adverse events [125], enabling timely interventions and
enhancing patient safety [126]. NLP techniques contribute to patient
risk assessment by analyzing clinical narratives and extracting relevant
information related to patient history, comorbidities, and lifestyle fac-
tors [127]. By integrating this textual information with other patient
data, such as vital signs, imaging results, or genetic information, mul-
timodal medical data fusion can provide a comprehensive risk assess-
ment strategy for personalized healthcare interventions and preventive
measures [128].

NLP techniques support the development of clinical decision sup-
port systems by extracting relevant clinical knowledge from medical
literature, clinical guidelines, or research articles [129,130].

NLP techniques provide valuable capabilities in extracting, process-
ing, and integrating textual information within multimodal medical
data fusion. They improve the comprehension of clinical text, enable
the incorporation of clinical knowledge, and facilitate comprehensive
and effective analysis in smart healthcare applications. Fig. 8 presents
the NLP techniques that can be adopted for multimodal fusion.
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3.6. Taxonomy of approaches in multimodal fusion

The taxonomy of approaches in multimodal fusion for smart health-
care encompasses feature selection, rule-based systems, ML, deep learn-
ing, and NLP, as shown in Fig. 9. These techniques play a crucial
role in integrating and analyzing diverse data modalities to extract
valuable insights and support informed decision-making in healthcare
applications.

Feature selection focuses on identifying relevant features to create
a concise representation of the data.

Rule-based systems utilize predefined rules to process and com-
bine data from multiple modalities.

ML leverages patterns and relationships in the data to predict,
classify, or cluster information from different modalities.

Deep learning employs neural networks to automatically learn
hierarchical representations and capture complex relationships.
NLP techniques process and analyze textual information, enhanc-
ing the understanding of clinical data and facilitating its integra-
tion with other modalities.

.

By leveraging these approaches, researchers and healthcare pro-
fessionals can gain a deeper understanding of patient health, enable
personalized care, and make more informed decisions in intelligent
healthcare systems, ultimately advancing patient care and well-being.
In Fig. 9, we provide a comprehensive taxonomy of multimodal fusion
methods relevant to smart healthcare. The Fig. 9 categorizes SOTA
techniques, including feature selection, rule-based systems, machine
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learning, deep learning, and NLP, and aligns them with the different Advancements in ML techniques offer promising avenues for ad-
levels of the DIKW conceptual model. dressing data integration and interoperability challenges [137]. ML
algorithms can learn patterns and relationships in data obtained from

4. Challenges in adopting multimodal fusion different sources, facilitating automated data mapping, harmonization,
and integration. Leveraging ML enables organizations to streamline the

There are numerous challenges in adopting multimodal data fusion data fusion process, improving efficiency and accuracy in multimodal

approaches that influence different stages and aspects of the DIKW integration [138].
framework. These challenges include issues such as data quality and

interoperability, privacy and security, data processing and analysis, 4.2. Privacy and security
clinical integration and adoption, ethical considerations, and interpre-
tation of results, all of which impact the transformation of data into Privacy and security pose significant challenges in the integra-
meaningful information, knowledge, and wisdom in healthcare. tion of sensitive patient data from multiple sources within the DIKW
framework. Protecting patient privacy and ensuring data security are
4.1. Data quality and interoperability paramount concerns in healthcare, particularly when dealing with
sensitive health information [139]. Robust privacy and security mea-
Data quality and interoperability present significant challenges in sures are necessary to safeguard patient confidentiality and prevent
the context of multimodal fusion for smart healthcare within the DIKW unauthorized access or data breaches in the integration of multimodal
framework. The integration of data from diverse sources and ensuring medical data.
its quality and compatibility across different healthcare systems and To address these challenges, implementing data encryption tech-
modalities can be complex and time-consuming [131]. Insufficient data niques is essential to protect patient data during transmission and
quality and a lack of interoperability can result in inaccurate analysis storage [140]. Encryption converts data into an unreadable form, en-
and hinder the effectiveness of the data fusion process [132]. suring that only authorized individuals with decryption keys can access
Addressing these challenges necessitates the development and adop- and interpret the data [141]. Secure storage methods, such as secure
tion of data standards and protocols. Standardizing data formats, such servers or cloud platforms with robust access controls, play a crucial
as HL7 for EHRs or DICOM for medical imaging, facilitates seamless role in safeguarding patient data from unauthorized access, loss, or
integration and data exchange across healthcare systems and modali- theft [142]. In addition, adopting privacy-preserving techniques is cru-
ties [133]. These standards establish a shared language for data rep- cial to protect patient privacy during data fusion. Differential privacy,

resentation, simplifying the processing and integration of data from for example, adds noise to aggregated data to prevent individual iden-
various sources [134]. Establishing interoperability frameworks plays tification while preserving the utility of the fused data [64,143]. Secure
a vital role in promoting smooth data sharing and exchange among multiparty computation (SMC) techniques allow collaboration on data
different healthcare systems and modalities [135]. These frameworks fusion without revealing individual-level data to any party involved,

provide guidelines and best practices for data integration, harmoniza- ensuring privacy during the fusion process [144]. The continuous mon-

tion, and transmission, since they define the protocols, data models, itoring and auditing of data access and usage are vital in detecting and

and communication standards that enable efficient interoperability preventing unauthorized activities and potential data breaches [145].

across diverse the data sources. Adhering to interoperability frame- Robust auditing mechanisms and log analysis techniques enable orga-

works enhances data compatibility and coherence, thereby facilitating nizations to track and investigate any suspicious or anomalous access

effective multimodal fusion [136]. patterns or data breaches [146]. Real-time monitoring systems can
10
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provide alerts and notifications in case of any unauthorized access
attempts or potential security incidents [147]. By implementing these
privacy and security measures, healthcare organizations can ensure the
protection of patient data, maintain privacy during data fusion, and
mitigate the risks associated with unauthorized access or data breaches.

4.3. Data processing and analysis

Data processing and analysis play a critical role in the DIKW frame-
work, particularly in multimodal medical data fusion. Challenges arise
in handling large volumes of data, scalability of data processing, and
extracting actionable insights from the fused data [148]. To address
these challenges, ML algorithms and Al techniques are leveraged to en-
able efficient processing and analysis of multimodal medical data [70,
149]. Supervised and unsupervised learning algorithms are utilized for
classification, prediction, and pattern discovery [150]. Deep learning
models, such as CNNs and RNNss, are applied to tasks involving medical
imaging and sequential data analysis [151]. Reinforcement learning
techniques optimize treatment plans and interventions based on patient
outcomes [152].

Collaboration between clinicians and data scientists are crucial in
developing effective data processing and analysis solutions that align
with clinical needs [153,154]. Integration of multimodal medical data
fusion into Clinical Decision Support Systems (CDSS) enhances clinical
decision-making and improves patient outcomes [155,156]. Scalable
data processing techniques, including distributed computing frame-
works and cloud computing platforms, handle large-scale datasets [157,
158]. Real-time data analytics enable immediate insights and proac-
tive interventions [159]. Effective visualization techniques can aid in
interpreting and communicating analysis results [160]. By addressing
these challenges and utilizing advanced data processing and analysis
techniques, healthcare organizations can unlock the full potential of
multimodal medical data fusion within the DIKW framework.

4.4. Clinical integration and adoption

Clinical integration and adoption present significant challenges in
the successful implementation of multimodal fusion within the DIKW
framework in healthcare [70]. To address these challenges, involving
clinicians and other stakeholders in the development and implementa-
tion process is crucial for both ensuring successful adoption and maxi-
mizing the impact of multimodal fusion in clinical practice [161,162].
Their input and feedback contributes towards designing technologies
that align with clinical workflows and meet end-users needs [163].

The design of user-friendly interfaces and intuitive workflows is
essential to facilitate the integration of multimodal fusion into clini-
cal practice. Applying user-centered design principles and conducting
usability testing can identify and address usability issues, enhancing
user satisfaction and adoption rates [83,164]. Integrating multimodal
fusion technologies with CDSS can enhance clinical decision-making
processes by providing real-time recommendations and alerts based on
the fused data [155,165]. Embedding these technologies into familiar
clinical tools streamlines the integration process and facilitates adop-
tion. To ensure successful adoption, it is crucial to provide adequate
training and education to healthcare professionals [166,167]. Training
programs should focus not only on the technical aspects, but also on
the clinical relevance and potential impacts on patient care. Continual
education and support help healthcare professionals remain proficient
in using the technologies and stay updated on advancements.

4.5. Ethical considerations

Ethical considerations are of utmost importance in the context of
multimodal medical data fusion within the DIKW framework. Ensuring
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patient privacy, autonomy, and fairness is essential in utilizing patient
data ethically [168]. Obtaining informed consent from patients is a
fundamental ethical requirement in multimodal medical data fusion.
Patients should be fully informed about the purpose, risks, and ben-
efits of data fusion, and consent processes should be transparent and
understandable [169]. Clear mechanisms for patients to withdraw their
consent should also be provided.

Defining data ownership and governance policies is crucial. Health-
care organizations should establish guidelines to determine data own-
ership, usage, and access [170]. Transparent governance mechanisms,
such as data access committees, should oversee the ethical use of
patient data and compliance with privacy regulations. Respecting pa-
tient privacy and ensuring data confidentiality is paramount. Robust
security measures, including encryption and access controls, should be
implemented [171]. Compliance with privacy regulations like HIPAA
or GDPR should be ensured.

Addressing potential biases is essential in multimodal fusion. Efforts
should be made to mitigate biases through rigorous data collection
processes, algorithmic fairness assessments, and diverse representation
in data and development teams [172]. Regular monitoring and au-
diting can help identify and address biases. Ethical frameworks and
guidelines should be developed and followed. These frameworks should
outline principles and best practices for ethical data collection, fusion,
analysis, and decision-making [173]. Guidelines should cover areas
such as data privacy, informed consent, fairness, transparency, and ac-
countability. Engaging the public and stakeholders in discussions about
ethical considerations is crucial. Open communication channels should
be established to foster trust and incorporate patient perspectives into
decision-making processes [174]. By addressing ethical considerations,
healthcare organizations can ensure the responsible and ethical use
of patient data in multimodal medical data fusion, promoting patient
privacy, fairness, and trust within the DIKW framework.

4.6. Interpretation of results

Interpreting the results of multimodal medical data fusion within
the DIKW framework can be challenging due to the complexity of in-
tegrating multiple modalities and the large volumes of generated data.
Effective interpretation is crucial for extracting meaningful insights and
making actionable decisions in clinical settings [175].

To facilitate interpretation, the development of visual analytics
tools and techniques is essential. Interactive visualizations, such as
heatmaps, scatter plots, or network diagrams, can assist clinicians in
identifying patterns, correlations, and outliers in the fused data [176].
These visualizations should provide intuitive representations and en-
able interactive exploration at different levels of detail [177]. Enhanc-
ing the interpretability of fusion models and algorithms is another im-
portant aspect. Techniques like explainable Al, interpretable machine
learning, or rule-based systems can provide transparent explanations
for the fusion process and decision-making [178].

Understanding how the fusion models arrive at certain conclusions
helps clinicians trust the results and make informed decisions based
on the interpretation of the fused data. Clinical validation studies are
crucial for assessing the clinical utility and effectiveness of the inter-
pretation results. Real-world evaluation with healthcare professionals
provides insights into the practical applicability of the interpretation
and helps refine the techniques to ensure meaningful and actionable
results are aligned with clinical practice. Involving domain experts,
such as clinicians or medical researchers, in the interpretation process
is vital. They bring valuable insights into the clinical relevance of the
fused data and help interpret the results within the context of patient
care [179].

Collaboration between data scientists and domain experts fosters
mutual understanding and enables the development of interpreta-
tion techniques that meet the specific needs of healthcare profes-
sionals [180]. Incorporating clinical guidelines and contextual infor-
mation into the interpretation of fused data is crucial. Considering
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patient-specific factors, such as demographics, medical history, or treat-
ment guidelines, helps provide personalized interpretations and rec-
ommendations [181]. Aligning the interpretation with existing clinical
knowledge and guidelines ensures clinically meaningful and actionable
results for healthcare providers.

5. DIKW fusion framework with multimodality

Based on the data representation modalities and multimodal fusion
approaches, we present a universal framework that can be applied
to diverse applications in Fig. 10. In the framework for multimodal
fusion in smart healthcare, several components are identified that
facilitate the progression towards wisdom. At the data level, strategies
for efficient data acquisition are employed, followed by data integration
and harmonization processes to create a unified dataset.

Moving to the information level, context-aware fusion incorporates
contextual information to enhance the fusion process, while multi-
level fusion techniques capture complex relationships and patterns.
Explainable fusion models provide transparency and trust, and uncer-
tainty modeling supports decision-making based on fused data. Privacy-
preserving fusion techniques ensure responsible data handling, and
validation and evaluation methods assess the performance of the fusion
framework. At the knowledge level, continuous learning and adaptabil-
ity mechanisms enable the framework to stay up-to-date, while ethical
considerations and governance frameworks address ethical issues in
healthcare fusion.

In the landscape of multimodal data fusion for healthcare applica-
tions, the journey towards wisdom can be conceptualized as a hierar-
chical framework consisting of four integral stages: data fusion, infor-
mation fusion, knowledge fusion, and ultimately, wisdom, as shown in
Fig. 11. In the first stage, data fusion, we employ techniques such as fea-
ture selection, ensemble learning, and graph-based methods to combine
and select the most relevant features from diverse data sources [182].
This crucial step forms a solid groundwork for effectively integrating
and processing multimodal data.

Moving on to the second stage, information fusion, we delve deeper
into the data by utilizing advanced techniques such as deep fusion
architectures, transfer learning, attention mechanisms, and sequential
modeling. These sophisticated approaches enable us to uncover intri-
cate relationships and patterns across modalities, providing a more
profound understanding of the data at hand. Additionally, we employ
explainability and interpretability techniques to gain valuable insights
into the decision-making process of the fusion models.
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In the final stage, knowledge fusion, we take integration to the next
level by incorporating clinical knowledge and domain expertise. Here,
techniques like CDSS, adverse event detection, patient risk assessment,
and clinical natural language understanding come into play. By leverag-
ing this wealth of clinical knowledge, we can extract actionable insights
and make informed decisions in the healthcare domain.

By following this progressive journey from data fusion to informa-
tion fusion and knowledge fusion, we empower ourselves to enhance
our understanding and analysis of multimodal data. This, in turn,
contributes to the development of wisdom in the field of multimodal
data fusion, enabling us to make more impactful advancements in smart
healthcare and its applications.

6. Future directions of DIKW fusion in smart healthcare

The field of multimodal medical data fusion for smart healthcare
is expected to evolve in line with the 4Ps of healthcare — Predic-
tive, Preventive, Personalized, and Participatory [183,184]. Predictive
healthcare data fusion aims to anticipate health events and outcomes
by combining data from various sources, while Preventive data fusion
focuses on identifying risk factors and promoting healthy behaviors.
Personalized fusion caters to individual-specific data for customized
care, and Participatory fusion involves patients and stakeholders in the
data fusion process, enhancing transparency and trust. The progress
towards these goals forms the crux of our future research.

6.1. Predictive healthcare

In the context of the DIKW framework and the generic framework
discussed, the “Predictive” component of multimodal fusion in smart
healthcare focuses on utilizing diverse data sources to anticipate health
events and outcomes, thereby enabling proactive interventions and
personalized healthcare strategies [183]. Within the DIKW framework,
the Predictive component involves leveraging multimodal fusion to
generate predictive models for assessing disease likelihoods [113]. By
integrating and analyzing data from various modalities, such as ge-
nomics, medical imaging, and clinical records, healthcare professionals
can identify early indicators or risk factors [185]. ML algorithms play
a key role in analyzing the combined data and uncovering patterns
indicative of disease risk [186].

In the generic framework, the Predictive component of multimodal
fusion aims to identify potential risk factors or biomarkers for disease
prediction [128]. Healthcare professionals gain insights into genetic
predispositions, imaging abnormalities, and the clinical context [187].
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ML algorithms enable the development of predictive models by lever-
aging the combined data and considering variables such as genetic
markers, imaging features, clinical parameters, lifestyle factors, and
environmental exposures [188,189].

By applying predictive multimodal fusion within the framework,
healthcare professionals can proactively identify individuals at higher
risk of developing specific diseases or conditions, facilitating preven-
tive interventions and personalized healthcare strategies [27,190]. For
instance, early identification of individuals at risk of cardiovascu-
lar disease enables targeted lifestyle modifications, medication inter-
ventions, and regular monitoring to prevent or manage the condi-
tion [15]. Through the integration of multimodal data and the applica-
tion of predictive analytics, the Predictive component enhances health-
care decision-making and supports proactive interventions, ultimately
improving patient outcomes and healthcare delivery [191].

6.2. Preventive healthcare

In the DIKW framework, the “Preventive” component of multimodal
fusion focuses on utilizing diverse data sources to develop personalized
preventive strategies for patients. By integrating and analyzing data
from various sources, such as mHealth devices and EHRs, healthcare
providers can gain insights into patients’ lifestyle factors and health
issues, enabling them to develop targeted interventions and preven-
tive measures [113,190]. By combining data from sources such as
mHealth devices and EHRs, healthcare providers can gain a comprehen-
sive understanding of patients’ health status and develop personalized
preventive strategies [72,192].

Multimodal data fusion enables the integration and analysis of
data from diverse sources, such as wearable fitness trackers or smart
watches for monitoring physical activity, heart rate, and sleep pat-
terns, and EHRs containing medical history, diagnoses, and laboratory
results [193]. By combining these data sources, healthcare providers
obtain a holistic view of patients’ health and lifestyle factors [194].
Through multimodal fusion, healthcare providers can identify lifestyle
factors that may contribute to patients’ health issues. Data from mHealth
devices and EHRs may indicate emergent patterns such as sedentary
behavior, inadequate sleep, or poor nutrition that may impact the
development or progression of certain health conditions [187-189].

Based on the analysis of multimodal data, healthcare providers can
develop personalized preventive strategies tailored to each patient’s
unique needs. For instance, if data fusion analysis reveals that a pa-
tient’s sedentary behavior contributes to their health issues, healthcare
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providers may prescribe regular physical activity, provide educational
materials on exercise, or suggest behavioral change techniques to pro-
mote a more active lifestyle [195]. Furthermore, multimodal fusion
facilitates ongoing monitoring and feedback, empowering patients to
maintain their preventive strategies and make informed decisions about
their health. By leveraging technology and data integration, patients
can receive real-time feedback on their health behaviors, track their
progress, and receive personalized recommendations to support their
preventive efforts [196,197]. By incorporating the Preventive com-
ponent within the DIKW and generic frameworks, multimodal fusion
plays a vital role in developing personalized preventive strategies for
patients, aligning with the broader goals of precision medicine and
personalized healthcare [184,198].

6.3. Personalized healthcare

In the DIKW framework, the “Personalized” component of mul-
timodal fusion focuses on utilizing diverse data sources to develop
personalized treatment plans for patients. By integrating and analyzing
data from different modalities, such as imaging and genomics, health-
care providers can gain a deeper understanding of the patient’s molec-
ular profile and tailor treatment strategies based on their individual
characteristics [113,190].

Within the generic framework, the Personalized component of mul-
timodal fusion aims to identify specific genetic mutations or variations
that underpin the patient’s disease. By combining imaging data with
genomics data, healthcare providers can obtain a comprehensive view
of the patient’s health condition and uncover genetic markers associ-
ated with conditions such as tumor growth [72,192]. Multimodal data
fusion allows for the integration and analysis of data from diverse
sources, such as magnetic resonance imaging (MRI), computed tomog-
raphy (CT), positron emission tomography (PET), and genomics data.
These modalities provide detailed anatomical, functional, and genetic
information about the patient’s body and disease state [194].

By fusing imaging and genomics data, healthcare providers can
identify specific genetic mutations or variations that inform the under-
lying molecular mechanisms of the disease. This knowledge guides the
development of personalized treatment plans tailored to the patient’s
individual molecular profile [195]. The analysis of multimodal fusion
enables healthcare providers to make informed treatment decisions,
such as recommending targeted therapies for specific genetic muta-
tions. This personalized approach ensures that patients receive the most
effective treatments based on their unique genetic characteristics [196].
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Moreover, multimodal fusion facilitates ongoing monitoring of treat-
ment response and enables treatment adjustments over time. By in-
tegrating data from imaging, genomics, and other modalities, health-
care providers can assess treatment effectiveness and make informed
decisions regarding treatment modifications to optimize patient out-
comes [197]. By incorporating the Personalized component within
the DIKW and generic frameworks, multimodal fusion can play a
significant role in tailoring treatment plans based on individual patient
characteristics and molecular profiles. This personalized approach to
patient care and treatment outcomes aligna with the broader goals of
precision medicine and personalized healthcare [198].

6.4. Participatory healthcare

In the DIKW framework, the “Participatory” component of multi-
modal fusion in smart healthcare focuses on empowering patients to
actively participate in their own healthcare journey, fostering collab-
oration and shared decision-making with healthcare providers [199,
200]. Within the DIKW framework, the Participatory component in-
volves leveraging multimodal fusion to provide patients with real-time
feedback and insights into their health status [201]. By integrating
data from mHealth devices and patient-reported information, patients
can actively monitor and track their health, enabling them to make
informed decisions about their well-being [202].

In the generic framework, the Participatory component of multi-
modal fusion emphasizes the active engagement of patients in their
healthcare by combining data from mHealth devices and patient-
reported data [203]. Through real-time access to their health infor-
mation, patients can receive personalized feedback and recommenda-
tions, and participate in discussions about their treatment plans [199].
This collaborative approach enables patients to actively contribute to
decision-making based on their preferences, values, and personal health
goals. Multimodal data fusion also enables patients to participate in
larger-scale initiatives, such as contributing their data to aggregated
and anonymized datasets [200]. By participating in research studies,
clinical trials, or public health monitoring programs, individuals can
contribute to advancements in medical research, personalized interven-
tions, and population health initiatives. By embracing the Participatory
component of multimodal fusion, patients become active partners in
their own healthcare, and can be further empowered to make proactive
choices and actively contribute to their own well-being. This collabo-
rative approach enhances patient-centered care and fosters a stronger
partnership between patients and healthcare providers.

7. Conclusion

Multimodal medical data fusion, integrating various modalities like
EHRs, medical imaging, wearable devices, genomic data, sensor data,
environmental data, and behavioral data, has the potential to revo-
lutionize smart healthcare. By leveraging approaches such as feature
selection, rule-based systems, ML, deep learning, and NL, practitioners
can extract valuable insights from a wealth of diverse sources, which
will advance gains in knowledge and wisdom in healthcare.

However, the challenges related to data quality, interoperability,
privacy, security, data processing, clinical integration, and ethical con-
siderations must be addressed. Future research should focus on Pre-
dictive, Preventive, Personalized, and Participatory approaches, the
implementation or combination of which can enable better anticipation
of health events, identify risk factors, deliver tailored interventions, or
further empower patients in their healthcare journeys. Embracing these
opportunities will transform healthcare by improving patient well-
being, treatment outcomes, and the overall function of the healthcare
industry.
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7.2 Summary

This chapter consolidates the comprehensive insights derived from an extensive re-
view of multimodal information fusion in the context of smart healthcare. It empha-
sizes the critical contribution of this technology in realizing the aspirations of predic-
tive, preventive, personalized, and participatory healthcare. The nuanced integration
of heterogeneous data streams through advanced fusion techniques marks a paradigm
shift towards intelligent healthcare ecosystems. The chapter advocates for sustained
innovation and interdisciplinary research to navigate the complexities of multimodal
data, envisioning a future where integrated, data-driven insights form the cornerstone
of proactive and patient-centric healthcare.
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CHAPTER 8: PAPER 7 - GRAPH-ENABLED
REINFORCEMENT LEARNING FOR TIME SERIES
FORECASTING WITH ADAPTIVE INTELLIGENCE

8.1 Introduction

This chapter delves into the innovative GraphRL framework, which marries Graph Neu-
ral Networks (GNNs) with Reinforcement Learning (RL) to pioneer time series forecast-
ing in dynamic environments. By leveraging the structural and temporal insights pro-
vided by GNNs, and the adaptive decision-making prowess of RL, the framework sets a
new benchmark in predictive analytics. The introduction outlines the motivation behind
GraphRL, its architectural nuances, and its application across diverse domains such as
healthcare, traffic, and weather forecasting, setting the stage for a detailed exploration
of its capabilities and contributions to smart monitoring and predictive analytics.
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Abstract—Reinforcement learning is well known for its ability
to model sequential tasks and learn latent data patterns adap-
tively. Deep learning models have been widely explored and
adopted in regression and classification tasks. However, deep
learning has its limitations such as the assumption of equally
spaced and ordered data, and the lack of ability to incorporate
graph structure in terms of time-series prediction. Graphical neu-
ral network (GNN) has the ability to overcome these challenges
and capture the temporal dependencies in time-series data. In
this study, we propose a novel approach for predicting time-series
data using GNN and monitoring with Reinforcement Learning
(RL). GNNs are able to explicitly incorporate the graph structure
of the data into the model, allowing them to capture temporal
dependencies in a more natural way. This approach allows
for more accurate predictions in complex temporal structures,
such as those found in healthcare, traffic and weather forecast-
ing. We also fine-tune our GraphRL model using a Bayesian
optimisation technique to further improve performance. The
proposed framework outperforms the baseline models in time-
series forecasting and monitoring. The contributions of this study
include the introduction of a novel GraphRL framework for time-
series prediction and the demonstration of the effectiveness of
GNN s in comparison to traditional deep learning models such as
RNNs and LSTMs. Overall, this study demonstrates the potential
of GraphRL in providing accurate and efficient predictions in
dynamic RL environments.

Index Terms—Graph Neural Networks, Reinforcement Learn-
ing, Intelligent Monitoring, Bayesian Optimization

I. INTRODUCTION

The emergence of Machine Learning (ML) in healthcare
signifies a paradigm shift towards automating clinician tasks
and augmenting patient care capabilities [1]. Amidst the evolv-
ing ML landscape, Federated Learning has gained traction
for preserving data privacy while constructing sophisticated
server models [2]. Reinforcement Learning (RL), another
ML strategy, has demonstrated substantial improvements in
prediction performance and decision-making tasks [3], [4].
RL’s application is particularly noteworthy in controlling au-
tonomous systems, such as robots and drones, training them to
make optimal decisions in real-time based on environmental
sensor data.
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Fig. 1: Graphical Abstract

In various sectors, including healthcare, traffic, and weather
forecasting, Early Warning Systems (EWS) play a pivotal
role. They analyze real-time monitoring data and issue alerts
for potential issues, facilitating proactive responses. RL-based
EWS can adapt over time, refining their predictions and sup-
porting clinical decision-making. This adaptability has proven
effective in applications like predicting hospital readmissions
and sepsis detection.

Time-series data modeling, vital in monitoring and predict-
ing future states, has seen advancements with deep learning
models like Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks [5]. These models are
adept at capturing temporal dependencies, yet face limitations
in handling irregularly structured data and integrating complex
graph structures. This study introduces the GraphRL frame-
work, an innovative amalgamation of RL and Temporal Graph-
ical Convolutional Networks (T-GCN), aiming to surpass the
constraints of traditional deep learning models in time-series
prediction. GraphRL’s design facilitates handling complex
temporal structures and incorporates additional information
such as node and edge attributes, as depicted in Fig. 1. The
GraphRL framework’s core contributions include:

o A versatile framework capable of providing early warn-
ings and monitoring in complex settings.

« A customizable RL environment designed for effective
forecasting in dynamic domains like healthcare and traffic
systems.

e A novel approach to virtual monitoring of predicted
states in RL, enhancing decision-making and intervention
capabilities.

Our comparative analysis with state-of-the-art models across
various datasets showcases GraphRL’s superior performance,
underscoring its potential as a versatile solution for time-series
prediction challenges.

The paper is organized as follows: Section II reviews
existing literature on self-learning systems and prediction
tasks. Section III outlines the research problem. The proposed
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GraphRL framework and its algorithm are detailed in Sec-
tion IV. Section V describes the datasets and baseline models
used for evaluation. The performance of the predictive RL
environment and agent is compared with baseline models
in Section VI. Section VII discusses the fine-tuning of the
framework’s hyperparameters using Bayesian optimization.
The paper concludes in Section VIII.

II. RELATED WORKS
A. Self Learning Systems

Self-learning systems, particularly those utilizing Reinforce-
ment Learning (RL), have seen significant advancements in
various applications. For instance, Shin et al. [6] introduced
a dual-agent framework in mobile health, effectively demon-
strating user modeling and behavior intervention strategies.
This work underscores the potential of RL in personalizing
user experiences, a concept that aligns with our GraphRL
framework’s goal of adaptive learning in dynamic environ-
ments. Similarly, Taylor et al. [7] applied RL in model-
ing maladaptive eating behaviors, further showcasing RL’s
versatility in behavior prediction and modification. Chen et
al. [8] developed the MIRROR framework, emphasizing the
rapid learning capabilities of RL in human behavior modeling.
These advancements set a precedent for our work in complex
sequential decision-making tasks. Zhou et al.’s [9] CalFit app
and Li et al’s [10] method in autonomous driving highlight
RL’s efficacy in personalized goal setting and complex urban
scenario navigation, respectively, which are foundational to
our GraphRL framework’s approach in handling dynamic and
intricate patterns in data.

B. Early Detection of Patient Deterioration

In the healthcare domain, early detection of patient deterio-
ration is vital. Traditional vital signs monitoring, as discussed
by Asiimwe et al. [11] and evaluated by Scully et al. [12],
Baig et al. [13], and others, has laid the groundwork for our
study. These works highlight the importance of continuous
monitoring and early warning systems (EWS), which are
integral to GraphRL'’s objective. The limitations in existing
methods, such as the need for manual calculations and the
inability to handle large, unstructured data effectively, are
addressed in our framework through the integration of GNNs,
which can process complex temporal data more efficiently.

C. Vital Signs Prediction

Vital signs prediction has been explored through various
machine learning models. Alghatani et al. [14] and Youssef et
al. [15] demonstrated the use of traditional machine learning in
mortality prediction and vital signs forecasting, respectively.
Harerimana et al’s [16] work with multi-head transformers
and Xie et al.’s [17] DeepVS model highlight the potential of
deep learning in this domain. However, these methods often
assume equally spaced and ordered data and lack the ability to
incorporate complex graph structures, limitations our GraphRL
framework aims to overcome.

D. Temporal Graphical Convolutional Networks (T-GCN)

The integration of T-GCN within our GraphRL frame-
work is pivotal. T-GCNs, known for their ability to capture
temporal dependencies and complex relationships in graph-
structured data, offer significant enhancements in processing
time-series data [18]. This technology addresses limitations
in traditional deep learning models by effectively managing
irregular time intervals and integrating additional contextual
information (such as node and edge attributes) for richer data
representation [19]. The inclusion of T-GCN in GraphRL
allows for a more nuanced understanding and prediction of
dynamic systems [20], making it highly suitable for applica-
tions in healthcare monitoring, traffic forecasting, and weather
prediction. The capability of T-GCNs to handle non-linear and
complex temporal patterns [21] aligns with the core objectives
of GraphRL, pushing the boundaries of current self-learning
systems in real-world scenarios.

In summary, while existing works in self-learning systems,
patient deterioration detection, and vital signs prediction have
laid a strong foundation, our GraphRL framework aims to
address their limitations by introducing a novel approach that
combines the strengths of GNNs and RL. This approach allows
for a more sophisticated handling of temporal dependencies
and real-time monitoring, which is crucial in dynamic envi-
ronments such as healthcare, traffic management, and weather
forecasting.

The motivation behind the use of RL in our framework
primarily arises from the need to tackle the challenges of
multi-step time series prediction, where traditional supervised
learning approaches may encounter limitations. Although su-
pervised learning methods like GNN+Bert and GNN+TCN
are indeed common and effective for time series forecasting,
RL offers a unique advantage in dealing with situations
where errors can accumulate over time, especially in dynamic
environments. RL enables our predictive GraphRL Environ-
ment not only to forecast future states but also to actively
influence decision-making, a capability particularly valuable
in applications such as healthcare monitoring and the gaming
industry.

III. RESEARCH PROBLEM

The research problem addresses deep learning challenges
in predicting future states of a complex and dynamic Rein-
forcement Learning (RL) environment and adaptively learning
latent behavior patterns of data.

Definition 1 (Vital Parameters and Time-Series Forecast-
ing): In the context of our framework, we consider a set
V of n vital parameters, denoted as V; = {v!,v?,... 0"},
which represent continuous time-series data reflecting the
health status of a subject S. These vital parameters are
dynamic and change over time, providing valuable insights
into the subject’s well-being. To facilitate time-series fore-
casting, we segment these continuous vital parameters into
time windows, denoted as 7', which encompasses data points
from the past (Vi;_s,Vi—1,V;) and extends into the future
(Vig1, Vixa, ..., Vign). Non-linear models are trained on his-
torical data within the time windows {V;_2,V;_1,V;} to
predict future values {Vi11, Vito,. .., Vign}
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Definition 2 (Learning Agents and Markov Decision Pro-
cess): Following the training phase, subject S is associated
with a group of learning agents that operate based on the
principles of the Markov Decision Process (MDP). This MDP
is a 5-tuple denoted as M = (S, A, P,R,~), and it forms
the foundation for continuous monitoring and pattern learning
of the vital parameters V; = {vl,v2 ... v"}. Here’s a
breakdown of each component:

« S represents a finite state space, where s; € S signifies
the state of an agent at a specific time ¢,

« A is the set of actions available to each agent, and a; € A
represents the action taken by the agent at time ¢,

e P is a Markovian transition function P(s,a,s’) that
quantifies the probability of the agent transitioning from
state s to state s’ while executing action a,

e R is a reward function R : S x A — R that provides an
immediate reward R(s,a) for the action a performed in
state s,

e 7y is a discount factor, ranging between O and 1, which
emphasizes immediate rewards over future rewards.

R(sp,ar) = Y 2'r, ¢)
t=0

This equation returns the immediate reward R(s,a) for the
action taken in state s, as defined in Eq. 1.

IV. GRAPHRL FRAMEWORK

To address the research problem, a novel graphical neu-
ral network (GNN) enabled reinforcement learning (RL)
framework is proposed. In the graph-enabled RL frame-
work(GraphRL), two GNNs are deployed: one for forecasting
time-series data and another for Q-function approximation as
shown in Fig. 2. The proposed framework is demonstrated in
Fig. 2 in which the interaction between an environment and an
Al agent is illustrated. As discussed in the research problem,
finite MDP is adopted to formulate the process of modelling
current and past states.

A. Predictive GraphRL Environment

The primary objective of the proposed study is to learn
from the past and current states of a dynamic environment
and predict the future states of the complex environment. To
achieve this objective, we propose a predictive monitoring
environment which is responsible for defining the observation
space with state sieS where i = 0,1,2, ...n, action space with
actions ajeA where j = 1,2,3,...m, and rewards R for each
action taken by the agent as it transitions from a state s; to
S¢+1 in a real-world scenario. For example, consider a subject
in a dynamic environment whose current state is denoted as
Vi = o', 0%, ...,o" at time t. Similarly, the subject holds
historical data of their state at times t—1,t—2,¢t—3,...,t—n.In
traditional reinforcement learning formulations, the monitoring
environment is a static entity that cannot forecast future states,
which might affect the subjects in the environment.

1) T-GCN Forecast: Forecasting the future states of a
subject before a few time steps can revolutionise the most
dynamic industries such as gaming, healthcare, and so on by
identifying the deteriorating state of the subject in the environ-
ment. To predict the future state in a reinforcement learning
environment, a temporal graph convolutional network(T-GCN)
is adopted. The graphical network is trained with past and
current states at their timestamps in a supervised approach as
shown in Eq. 3. The training process also includes the features
leading to those states.

y=rflb+> viw) (@)

i=1

y(v) = Z Activationl(b + w;v;)
i=1 ” 3)
y(v) = Activationl(—;
j=1

evi

Eq. 2 describes a basic neural network neuron, with y as
the output, f as the activation function, b as the bias, v; as the
input features, and w; as the weights; while Eq. 3 involves an
’Activationl’ function, computing a weighted sum of inputs
and normalizing these outputs, possibly into a probability
distribution, akin to a softmax function.

2) Static Spatial-temporal modelling: A two-layered graph-
ical network is adopted for Spatial-temporal modelling, a
spatial modelling layer is based on a graphical convolutional
network (GCN), and a temporal layer based on recurrent
neural networks (RNN) is configured. The spatial layer is
responsible to capture spatial features among nodes which are
input states sieS. This can be achieved by constructing Fourier
transform filter and it acts on the graph nodes and its first-order
neighbourhood. In this study, a static graph temporal signal is
adopted in which the node positions in the graph remain the
same and the label information is dynamic. The spatial layer
is to set the static graph with nodes as input states sieS. The
two-layered GCN model is defined in Eq. 4.

F(X,A) = o(ARelu(AX Wo)Wh) )

Where X is the input matrix, A represents the graph
adjacency matrix, A and A represent the preprocessing step
and self-connection structure respectively. Wy, W, represents
weights of the first and second layers of ST-GCN, and o(+).
Relu() is an activation function.

Temporal modelling is based on the RNN variant gated
recurrent unit (GRU) [22] which has a simple structure and
faster training ability. In the GRU model, an update gate z;
controls the degree of information retrieved from the previous
state and a reset gate 7; controls the degree of ignoring the
status information at the previous moment are configured as
shown in Eq. 5.
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2t = Ug(WZ[f(Xh A), ht,ﬂ +b,)

re = og(We[f (X, A), he—1] + by)

he = on(Wi[f(Xe, A), he—1](re © hy—1) + by)
hy :Zt(Dht_1+(1—Zt)®}A1,t

®

x¢ : input vector, h; : output vector, he : candidate activation
vector, z; : update gate vector, r; : reset gate vector, W,U,b :
parameter matrices and vector, o, : The original is a sigmoid
function, ¢;, The original is a hyperbolic tangent.

In the training process, the T-GCN model predicts the future
states at time ¢t + 1,t +2,t+3,....,t +n as )Aft and compares
with the real-data Y;. This determines the loss function of the
graph network [23] as shown in Eq. 6. To avoid over-fitting
problems in the training process, the loss function is optimised
with L2 regularisation L,., and a hyperparameter \.

loss = ||1}t —Yi|| 4+ ALyeg 6)

B. Predictive GraphRL Environment Algorithm

Algorithm 1 outlines the creation of the Predictive GraphRL
Environment, a crucial component of the proposed GraphRL
framework. This environment leverages the T-GCN, chosen
for its effectiveness in capturing spatial-temporal dynamics
essential for complex systems. The T-GCN’s ability to forecast
future states, in addition to analyzing current and historical
data, makes it invaluable for critical applications like health
monitoring and traffic management, where early detection
and timely response are key. A significant feature of this

Algorithm 1 Predictive GraphRL Environment

Ensure: Input: time series data D = {s¢_,,, ..
K={1,2,...,K}

Ensure: Output: Predicted time series data of /C, a set of labels, in the form of states
{st+1,St42, St43, 5t4a}

: Define forecast_model «+— T — GCN M odel

: Train(forecast_model) < forecast_model(D)

D {St41, St+2, St43, St4a ) + forecast_model(predict)

: Initialization : observation_space = {s; € S},action_space =
{a; € A}, rewardR

. Set monitor_length = N

. if action is appropriate then

R « +reward

.,St—2,S¢—1,S¢}; a set of labels

SN~

: R + —reward
. end if

11: monitor_length <+ N — 1

12: s¢41 < s¢(monitor_length)

13: if N = 0 then

14: done <+ True

15: else

16: done <+ False

17: end if

18: visualize(at, R, vital signs)

initial_state < s¢[0]

5
6
7
8: else
9:
10

> reset environment

algorithm is its reward mechanism, which is instrumental
in guiding the learning process. By awarding rewards based
on the suitability of the agent’s actions, the environment
ensures that the agent’s policy is aligned with the primary
objectives of accurate forecasting and effective intervention.
This design was motivated by the need for a proactive system,
capable of not only forecasting but also informing real-time
decision-making. The algorithm is meticulously structured to
set up the observation space, action space, and reward policy
based on predicted states. The initial lines (1-3) justify the
use of the T-GCN model, especially for its applicability in
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dynamic and nonlinear data contexts like vital sign monitor-
ing. The subsequent lines (4-5) are dedicated to initializing
the environment, forming the basis for RL-driven decision-
making. The reward policy, detailed in lines 6-10, aligns with
standard RL practices, promoting actions that yield beneficial
outcomes. Finally, lines 11-19 focus on continuous monitoring
and adaptation, a critical aspect for applications that demand
real-time responsiveness, such as in healthcare scenarios. This
algorithm represents a significant step in advancing the field
of RL, moving from passive observation to an active role in
shaping decisions.

C. GraphRL Agent

In this study, the Deep Q-Networks (DQN) algorithm is
used. The Deep Q-Networks (DQN) algorithm, developed by
Google’s DeepMind, was initially designed for playing Atari
games. This algorithm enabled the Al to learn game strategies
directly from visual input, without requiring pre-programmed
rules or prior game-specific training. In this algorithm, the
Q-Learning functions are approximated using the proposed T-
GCN model, and the learning agent is rewarded based on the
graph network prediction of the right action for the current
state.

1) Q-Function Approximation: T-GCN model used in this
study to approximate the Q-Function for each action in the
action space as shown in Fig. 2. The model is configured
with parameters such as the relu activation function, mean
square error as loss function, and Adam optimiser. The model
gets trained with the state and its corresponding action. The
learning agent performs an action a.eA for a transition from
state s to ,s; and achieves a reward R for the action. In this
transition process, the maximum of the Q-function in Eq. 7
is calculated, and the discount of the calculated value uses
a discount factor v to suppress future rewards and focus on
immediate rewards. The discounted future reward is added
to the current reward to get the target value. The difference
between the current prediction from the neural networks and
the calculated target value provides a loss function. The loss
function is a deviation of the predicted value from the target
value and it can be estimated from Eq. 8. The square of the
loss function allows for the punishment of the agent for a large
loss value.

Q" (s,a) = E,r{ Z'th(st7at,7r(st))|so =s,a0 = a}
t=0
(7

loss = (R+~-maz(Q™ (s,a))— Q7(s,a) )*> (8)

predicted_value

target_value

2) Exploration and Exploitation: The concepts of explo-
ration and exploitation are at odds with each other. Exploration
involves randomly selecting actions that have not been per-
formed before to uncover more possibilities and enhance the
agent’s understanding. Exploitation, on the other hand, entails
selecting actions based on past experiences and knowledge to

maximize rewards. To balance the trade-off between explo-
ration and exploitation, different strategies such as the greedy
algorithm, epsilon-greedy algorithm, optimistic initialization,
and decaying epsilon-greedy algorithm are employed. This
study proposes controlling the exploration rate by multiplying
the decay by the exploration rate. This approach reduces the
number of explorations during execution as the agent learns
patterns and maximizes rewards to achieve high scores. As
the T-GCN model is retrained with previous experiences in
the replay, the decay is multiplied by the exploration rate
depending on the agent’s ability to predict the right actions.
All these parameters are defined as hyper-parameters for DQN
learning agents.

Algorithm 2 Learning Agent

1: Initialize 7, €, €gecay, Emin, memory = 0, batch_size
2: Define model <+~ T — GC N_model

3: memory < append(s¢, ar, R, St41)

4: if np.random.rand() < € then > Exploration
5 action_value < random(a;)

6: else > Exploitation
7 action_value < model.predict(s;)

8: end if

9: minibatch + random(memory, batch_size)

10: for s¢, a¢, R, s¢+1, done in minibatch do

11: target + R

12: if not done then

13: target « R + ~ - max(model.predict(s¢+1))
14: end if

15 target_f < model.predict(s;)

16 target_flat] + target

17: model. fit(se, target_f)

18: end for

19: if € > €min then

20 €4 € €decay

21: end if

3) GraphRL Agent Algorithm: Algorithm 2 introduces the
GraphRL Agent, presents the functionality of the GraphRL
Agent within a complex action-state environment, utilizing T-
GCN for Q-function approximation. This integration enables
effective handling of spatial-temporal data complexities, en-
hancing decision-making. The algorithm’s design is founded
on a strategic balance between exploration and exploitation,
achieved via an epsilon-greedy strategy, crucial for adaptive
learning and continual improvement in decision-making. It
starts with initializing key parameters (Line 1), defining a
T-GCN model for handling complex data structures (Line
2), and storing memories for experience replay (Line 3).
The agent’s learning process involves iterative learning from
minibatches of experiences, computing target Q-values, and
adjusting its policy (Lines 8-21), with a dynamic adjustment
of the exploration rate (Lines 16-18). The predict() function,
pivotal in the exploitation phase, utilizes the T-GCN model’s
predictions to guide actions, showcasing the algorithm’s ad-
vanced approach in navigating dynamic environments through
a blend of exploration and strategic exploitation.

4) Implementation Algorithm: Algorithm 3 serves as the
comprehensive implementation of the GraphRL framework,
intricately combining the Predictive GraphRL Environment
(Algorithm 1) with the GraphRL Agent (Algorithm 2). This
pivotal algorithm orchestrates the real-time interactions be-
tween the agent and the environment, thus forming the op-
erational core of the framework. It outlines the simulation
scope, input parameters (subjects C, vital signs V, and episodes
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Algorithm 3 Proposed GraphRL Framework Implementation

Require: Input:
C ={1,2,...,C}: set of subjects
V ={1,2,..., V}: set of vital signs
M = {1,2,..., M}: number of episodes
Ensure: Output: Rewards achieved by Agents in each episode.
1: env <+ ForecastingEnvironment()
2: agent + LearningAgent()
3: for episode m € M do
4 state < env.reset()
5 score < 0
6: for time in range(timesteps) do
7:
8
9

> Algorithm 1
> Algorithm 2

a; <+ agent.action(sy)
St+1, R, done < env.step(ay)
agent.memorize(sy, ar, R, si41)

10: St 4 St41

11: if done then

12: print(m, score)

13: break;

14: end if

15: end for

16: agent.replay(batch_size)
17: end for

M), and the output in the form of cumulative rewards. The
initialization phase prepares the environment env and the agent
for interaction. The episodic loop, encompassing the agent’s
action-response cycle, is vital for continuous learning and
adaptation. Crucial to this process is the memorize() function,
which stores experiences for later recall during experience
replay, allowing the agent to learn from past actions and refine
its decision-making strategy. This algorithm thus encapsulates
the dynamic and iterative nature of the GraphRL framework,
highlighting the importance of memory and experience in the
realm of advanced reinforcement learning, and showcasing its
functionality in complex, evolving environments.

D. Bayesian Optimisation

Bayesian optimisation is a global optimisation method that
uses a probabilistic model to guide the search for the optimal
solution. The model is updated as new data points are sampled
and evaluated, allowing the algorithm to improve its predic-
tions over time by fine-tuning the L,.4, A and minimising the
loss function defined in Eq. 6. The basic idea behind Bayesian
optimisation is to model the objective function, f(x), as a
Gaussian process (GP). The GP model is used to predict the
objective function value at any point X, given the observations
of the function at other points. The prediction is given by
the posterior distribution of the GP, which is a Gaussian
distribution with mean and variance given by Eq. 9.

(w) = k(a, X)T(K +0*1) "y
o?(x) = k(z,2) — k(z, X)T(K 4+ ¢*1) 7 k(X, x)

Where X is the matrix of previously sampled points, y is the
vector of corresponding function values, K is the Gram matrix
of the covariance function evaluated at X, and o2 is the noise
level in the function evaluations. The next point to sample
is chosen based on an acquisition function, which balances
the trade-off between exploration and exploitation. Common
acquisition functions include the probability of improvement
and the expected improvement. Given a set of observed points
(X,y) and a Gaussian process prior, Bayesian optimisation
seeks the point x* that minimises the loss function value, given

©))

by Eq. 10. The optimisation process continues iteratively,
sampling new points and updating the GP model until a
stopping criterion is met.

El(z) = Efmaz(0, f(z) - f(a"))]

Where x* is the current best point.

(10)

V. EXPERIMENT

The primary objective of this study is to overcome deep
learning challenges such as the assumption of equally spaced
and ordered data [24] and the lack of ability to incorporate
graph structure where the data has a complex temporal struc-
ture [25]. These challenges are particularly relevant in domains
such as health, weather, and traffic where it is important to
analyze temporal patterns and make accurate forecasts for
early warning systems. However, traditional deep learning
models often fail to capture these complex patterns, limiting
their effectiveness in these critical domains.

The proposed GraphRL framework is evaluated on three
different forecasting applications: heart rate prediction, traffic
forecast, and weather forecast. The framework predicts future
events in the form of states and optimizes actions based on
those predictions. The observation space is customized for
each application and actions for the agent are pre-defined.
The agent receives a reward for correctly predicting a state and
communicating with the relevant team. The proposed approach
is a generic framework that can be applied to monitor and
predict time-series data and train an RL agent to learn the
latent patterns of the monitoring process. The baseline models
for comparison include traditional deep learning models such
as GRU, LSTM, and RNNs.

A. Datasets

The GraphRL framework’s testing with datasets from
healthcare, traffic, and weather domains was a deliberate
strategy to assess its versatility and robustness in handling
diverse time-series data. The choice of these varied domains
was intended to demonstrate the framework’s adaptability
and efficacy in different contexts. Each domain poses unique
challenges: healthcare data’s complexity and sensitivity, traf-
fic data’s dynamic patterns requiring real-time analysis, and
weather data’s intricate interplay of environmental factors.
Successfully navigating these distinct datasets underscores the
framework’s capability for widespread real-world application.
Additionally, using datasets from different fields facilitates a
thorough evaluation of the framework, ensuring its versatility
and effectiveness across various problem types and data struc-
tures. This comprehensive approach is vital for a tool designed
for extensive applications in data analysis and prediction.
Three datasets utilized for evaluating the GraphRL framework
as shown in Fig. I, each from a different domain: health-
care, traffic, and weather. In healthcare, the WESAD dataset,
containing electrocardiogram (ECG) and photoplethysmogram
(PPG) data from 17 participants, offers a rich source of
biometric time-series data for pattern recognition analysis.
The Los Angeles (LA) Traffic dataset, sourced from the Los
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Angeles Department of Transportation (LADOT), provides
real-time urban traffic data like traffic counts and speeds, while
the Large-Scale Traffic and Weather Events (LSTW) dataset,
with data across the United States, uniquely combines traffic
conditions and weather events, posing a multifaceted challenge
for the framework.

TABLE I: Datasets

Key Features
Physiological data

Dataset Domain Suitability

Rich biometric time-series,

WESAD (ECG, PPG), . data, ideal for testing pattern
126] Healthcare - ion data 17 participants . gnition in hoalthrelated
(accelerometers) data.

A Traffic counts, Data from Real-time urban traffic data,

Traffic  Traffic speeds, Do useful for analyzing and

127) travel times predicting dynamic traffic flows.
N Dats sorns Combines traffic and weather

LSTW o Toaffic conditions, ' SO data, challenging the framework

28] weather events o handle complex, multifactorial

States N
scenarios.

B. Baseline Models

In our study, we selected three baseline models for com-
parison, each epitomizing state-of-the-art approaches in multi-
agent forecasting, graph neural networks, and traffic pre-
diction. These models were chosen based on their innova-
tive methodologies and proven effectiveness in areas closely
aligned with our research objectives.

« ELMA Method [29]: Developed by Li et al. [29],
the ELMA method utilizes graph neural networks for
forecasting multi-agent activities, particularly adept at
handling spatiotemporal data. Its novelty lies in the use of
energy-based learning, making it an excellent benchmark
against our framework, which similarly leverages graph-
based techniques in complex environments.

o Self-Supervised Technique [30]: This technique is pio-
neering in self-supervised learning for predicting multi-
agent driving behavior. Its relevance to our study comes
from its focus on behavior prediction in diverse scenarios,
using self-supervised domain knowledge—an advanced
trend in multi-agent learning.

o Internet Traffic Prediction Study [31]: It involves
internet traffic prediction using distributed multi-agent
learning, employing LSTM and GRU models. GRU’s
superior performance in their study provides a valuable
point of comparison for our research, which focuses on
sophisticated learning techniques in traffic prediction.

Each of these models represents a significant stride in their

respective fields. Their selection for comparison in our study
is justified by their alignment with our research goals and their
benchmark status in handling complex, dynamic datasets. By
comparing our GraphRL framework against these models, we
aim to demonstrate our approach’s novelty and effectiveness
in diverse real-world applications.

C. Evaluation Metrics

Mean Absolute Error (MAE) is a widely-utilized regression
metric that gauges the average magnitude of errors between
predicted and actual values in a dataset. It is calculated
by averaging the absolute differences between these values,
yielding a singular metric. Root Mean Squared Error (RMSE)

TABLE II: Performance of the proposed framework in health
forecasting

15Min 30 Min 45 Min 60 Min
MAE 6.2 6.2 62 613
ELMA [29] MAPE 1391 1391 1391 1391
RMSE 875 8.75 875 867
MAE 0.95 0.95 097 098
GRU [30] MAPE 547 5.48 551 55
RMSE  1.25 125 127 128
GRU-Based  MAE 1.02 1.02 125 165
Multi-Agent [31] MAPE 8 347 453 527
RMSE 246 2.58 269  3.09
MAE  0.56 0.87 068 07
GraphRL (Qurs) "\ pr ™ 53 29 265 398
RMSE 1.18 147 1.3 1.32

is another prominent regression metric, assessing the average
magnitude of differences between predicted and actual values.
RMSE is computed as the square root of the mean of these
squared differences. Mean Absolute Percentage Error (MAPE)
represents yet another regression metric, quantifying the aver-
age absolute percentage error between predicted and actual
values. It is derived by averaging the absolute differences
between these values, expressed as a percentage of the actual
values. Conversely, Cumulative Rewards is a performance
metric specific to reinforcement learning. It measures the total
rewards an agent accumulates over a specified timeframe or
across a set number of actions, calculated by summing all
rewards received during this period.

In the context of the experiments conducted for this study,
Python version 3.7.6 served as the programming environment,
with the deployment of several packages including Tensor-
Flow, Keras, OpenAl Gym, and stable_baselines3.

VI. RESULTS AND ANALYSIS

In this section, the proposed framework performance in
terms of time series forecasting and RL monitoring is com-
pared to the baseline models in each application.

A. Predictive GraphRL Performance

Healthcare Forecasting: The proposed framework is eval-
uated to monitor health status by predicting future vital signs
such as heart rate. Based on the sensor data and other clinical
parameters such as ECG, Respiration, the time series predic-
tion of the heart rate is conducted. The predicted values of
heart for the next one hour are break-down into different time
intervals (15 minutes, 30 minutes, 45 minutes, 60 minutes).
Each of these time interval values acts as an observation for
the GraphRL agent to monitor and communicate with the
appropriate emergency team. The observation space of the vital
sign, action space of different emergency teams and rewards
for the agent actions in the predictive GraphRL environment
are defined based on the modified early warning scores
(MEWS) [32]. For the evaluation process, the WESAD dataset
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TABLE III: Performance of the proposed framework in traffic
forecasting

TABLE IV: Performance of the proposed framework in
weather forecasting

15Min 30 Min 45 Min 60 Min 15 Min 30 Min 45 Min 60 Min
MAE 6.73 6.73 6.73 6.72 MAE 6.69 6.69 6.69 6.65
ELMA [29] MAPE 6.73 15.14 15.14 15.07 ELMA [29] MAPE 6.69 15.02 15.02 14.99
RMSE 6.72 9.4 9.4 9.39 RMSE 6.69 9.39 9.39 9.34
MAE 1.04 1.04 1.04 1.04 MAE 1.03 1.03 1.04 1.04
GRU [30] MAPE 6.04 6.01 5.96 6.1 GRU [30] MAPE 5.96 5.94 5.93 6.02
RMSE 1.36 1.36 1.36 1.36 RMSE 1.36 1.35 1.36 1.36
GRU-Based MAE 1.85 1.85 1.96 1.82 GRU-Based MAE 1.65 1.65 1.85 2.02
Multi-Agent [31] MAPE 6.07 5.7 4.93 6.07 Multi-Agent [31] MAPE 7.32 4.71 4.89 5.86
RMSE 2.88 3.21 343 3.54 RMSE 2.76 2.99 3.16 343
MAE 0.65 0.78 0.64 0.8 MAE 0.61 0.83 0.66 0.75
GraphRL (Ours) \ipe 41 7.85 565 799 GraphRL (Ours)  \i\pr 395 5.88 515 7.99
RMSE 1.27 1.22 1.26 1.41 RMSE 1.23 1.12 1.28 1.26
TABLE V: Proposed GraphRL Performance
is adopted to conduct time series forecasting of heart rate.
The proposed T-GCN in the predictive GraphRL environment Al Agents WESAD LAM Tr:ffﬁc Us Weat.h er
performs better than the other baseline frameworks ELMA, Forecasting Forecasting
GRU, and GRU-Based Multi-Agent as shown in Tab. II. It Q Learning 43130 28840 39480
achieves the lowest MAE, MAPE and RMSE values in all the
time intervals. PPO 39480 33945 29480
Traffic Forecasting: The goal of the proposed framework A2C 41195 22845 40615
is to predict traffic using the predictive GraphRL environment.
The fystem takes in dfta wilih the followiI;lg features: Even- Double DQN 42615 25600 33945
tld, Type, Severity, TMC, Description, StartTime, EndTime, DDPG 44600 34590 39945
TimeZone, LocationLat, LocationL.ng, Distance, AirportCode,
Number, Street, Side, City, County, gState, and Zipépode. The DQN 41986 35219 40985
observation space includes the current traffic state, which GraphRL 48790 36195 53145

is represented by the traffic events and their severity in
a particular region. The actions referred to possible traffic
management strategies, such as altering traffic light timings or
changing the speed limit. The rewards are defined based on the
efficiency of the chosen strategy, such as reduced travel time
or decreased congestion. For all the baseline models and the
proposed framework, the MAE, MAPE, and RMSE values are
reported for forecasting at 15, 30, 45, and 60-minute intervals.
As shown in Tab. III, T-GCN outperforms the other models for
all the forecasting intervals with the lowest MAE, MAPE, and
RMSE values. The second-best performer is the GRU-Based
Multi-Agent model, followed by GRU and ELMA.

Weather Forecasting: In weather forecasting, the goal of
the proposed framework is to use past weather data to predict
future weather events and to optimise actions based on those
predictions. In the predictive environment, the observation
space is configured based on both the traffic and weather
events datasets, including the event type, severity, start time,
end time, location (latitude and longitude), and timezone.
The actions represent the decisions the RL agent can take
based on the observation space. For example, the agent could
decide to issue a warning or alert for severe weather, adjust
traffic signals or road signs, or change the speed limit on
certain roads. The agent could receive a reward for correctly
predicting severe weather and issuing a timely warning. Using

the proposed GraphRL framework allows modelling the rela-
tionships between different weather events and their impact on
traffic in a more efficient way than traditional machine learning
methods. The GraphRL agent learns from these relationships
to make better decisions and improve its predictions over
time. Comparing the different models, T-GCN had the best
performance across all metrics and different time intervals:
15, 30, 45, and 60 minutes, followed by GRU-Based Multi-
Agent, GRU, and ELMA. The results show that the T-GCN
model had the lowest MAE, MAPE, and RMSE values for all
forecasting intervals, indicating its superior forecasting perfor-
mance compared to the other models as shown in Tab. IV.

B. GraphRL Agent Performance

The proposed RL agent was enabled with T-GCN and its
performance is compared with other traditional RL agents
as shown in Tab. V. The table provides a comparison of
different Al agents and their performance on three different
datasets: WESAD, LAM Traffic Forecasting, and US Weather
Forecasting. The performance of each agent is measured by
a score, which is the total score achieved by the agent on
the task over ten episodes. From the table, it can be seen
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that the proposed GraphRL agent is the most efficient agent
on the WESAD dataset, as it scored the highest score. The
DDPG and Q-Learning agents have the second-highest score
on the WESAD dataset. On the LAM Traffic Forecasting
dataset, the Q-Learning agent scored the lowest, and the
proposed GraphRL agent scored the highest. On the US
Weather Forecasting dataset, the A2C agent scored the lowest,
while the GraphRL agent scored the highest. The GraphRL
agent has outperformed other RL agents in all three predictive
and monitoring applications.
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Fig. 3: GraphRL Agent Rewards Distribution

The performance of the GraphRL agent is measured by the
episode score, which appears to be the total score achieved by
the agent after a certain number of episodes. The breakdown
of the proposed agent’s score in each episode of the three
applications is presented and compared in Fig. 3. The agent’s
performance on the WESAD dataset is relatively consistent,
with the scores fluctuating between 32245 and 57280. On the
LAM Traffic Forecasting dataset, the agent’s performance is
relatively inconsistent, with the scores fluctuating between -
11845 and 46295. On the US Weather Forecasting dataset,
the agent’s performance is also relatively inconsistent, with
the scores fluctuating between -6765 and 58530. This incon-
sistency of the scores is due to the exploration rate where the
algorithm tries exploring all the actions randomly instead of
using T-GCN model predictions.

VII. BAYESIAN OPTIMISATION RESULTS
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Fig. 4: Bayesian optimisation of « for GraphRL Agent

The results of Bayesian optimisation for the proposed
GraphRL agent using different values of the learning rate
parameter, «, during different episodes are shown in Fig. 4.
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Fig. 5: Bayesian optimisation of v for GraphRL Agent

The values in the y-axis of the line chart represent the scores
or rewards obtained by the agent during each episode. It can be
observed that the performance of the agent varies for different
values of alpha. For example, in episode 1, the agent performs
better with alpha = 0.001 (20630) compared to the other
values. Similarly, in episode 10, the agent performs better with
alpha = 0.001 (97380) compared to the other values. These
results suggest that the optimal value of alpha for the agent is
a = 0.001, and Bayesian optimisation can be used to find the
best value of alpha for a given task.

These results in Fig. 5 show the performance of an RL
agent using temporal GCN for Q function approximation,
using different values of the discount factor gamma. As we
can see, the performance varies greatly depending on the value
of the gamma chosen. A high value of gamma (0.95) results
in poor performance, while lower values (0.75) result in better
performance. This suggests that a lower discount factor is more
appropriate, as it gives more weight to immediate rewards and
less to future rewards. It also suggests that there is an optimal
value of gamma, which would need to be further explored
through more extensive experimentation.

VIII. CONCLUSION

The GraphRL framework, introduced in this study, embod-
ies an innovative amalgamation of T-GCN and RL. It is specif-
ically engineered to augment the prediction of future states
in dynamic environments. Rigorous evaluations, utilizing an
array of datasets such as WESAD, LA Traffic Forecasting, and
US Weather Forecasting, have substantiated the framework’s
enhanced performance compared to conventional RL agents.
Nonetheless, it is imperative to acknowledge that the efficacy
of GraphRL is significantly contingent upon the caliber of
the input data and necessitates substantial computational re-
sources. The framework’s reliance on data of high quality
and structure constitutes a considerable limitation, with its
accuracy and effectiveness being closely bound to the data’s
integrity. Additionally, the computational requisites, predomi-
nantly due to the T-GCN model integration, present challenges
in scalability and broader applicability.

Future enhancements of the GraphRL framework will be
directed towards surmounting these constraints and broaden-
ing its functional scope. Prospective developments entail the
incorporation of spatial data processing, aimed at bolstering
the framework’s analytical prowess, particularly in processing
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data with spatial or geographical dimensions. Investigating
a spectrum of graph-based models could yield insights for
enhancing both the efficiency and efficacy of the framework.
Furthermore, the exploration of real-time adaptive learning
strategies presents a promising avenue for subsequent research.
Such advancements are anticipated to enable the framework to
dynamically adapt to evolving data patterns and environmental
shifts. In summation, the GraphRL framework signifies a sub-
stantial advancement in the domain of time-series prediction
and monitoring. Its adeptness in managing complex temporal
data surpasses traditional RL methodologies, heralding inno-
vative applications in sectors such as healthcare, traffic man-
agement, and environmental forecasting. As the framework
undergoes continued refinement and evolution, it is positioned
to emerge as an instrumental component in the progression of
predictive analytics and intelligent monitoring systems, with
extensive applicability across diverse fields.
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8.2 Summary

The GraphRL framework is showcased as a significant leap forward in the realm of
time series forecasting, especially in applications requiring nuanced interpretation of
complex, dynamic data. Through rigorous comparative analysis, GraphRLs superior
performance over traditional and contemporary models is highlighted, underscoring its
efficacy in capturing intricate temporal patterns and its versatility across varied appli-
cation domains. The chapter emphasizes the framework’s potential in revolutionizing
early warning systems and real-time monitoring solutions, paving the way for future
advancements in intelligent, data-driven decision-making processes.
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CHAPTER 9: PAPER 8 - QXAI: EXPLAINABLE Al
FRAMEWORK FOR QUANTITATIVE ANALYSIS IN PATIENT
MONITORING SYSTEMS

9.1 Introduction

This chapter presents the QAXI framework, a pioneering approach in explainable Al tai-
lored for quantitative data analysis in healthcare. It intricately combines Shapley values
and attention mechanisms within deep learning models to demystify Al predictions, of-
fering both local and global interpretability. This novel framework is designed to bridge
the gap between Al’'s predictive power and the clinical need for understandable and
trustworthy decision-making support, particularly in patient monitoring systems where
interpreting Al-driven predictions is crucial for clinical interventions.

130



arXiv:submit/5384726 [cs.Al] 2 Feb 2024

QXAI: Explainable AI Framework for Quantitative
Analysis in Patient Monitoring Systems

Thanveer Shaik, Xiaohui Tao, Haoran Xie, Lin Li, Juan D. Veldsquez, and Niall Higgins

Abstract—Artificial Intelligence techniques can be used to
classify a patient’s physical activities and predict vital signs for
remote patient monitoring. Regression analysis based on non-
linear models like deep learning models has limited explainability
due to its black-box nature. This can require decision-makers to
make blind leaps of faith based on non-linear model results,
especially in healthcare applications. In non-invasive monitor-
ing, patient data from tracking sensors and their predisposing
clinical attributes act as input features for predicting future
vital signs. Explaining the contributions of various features
to the overall output of the monitoring application is critical
for a clinician’s decision-making. In this study, an Explainable
Al for Quantitative analysis (QXAI) framework is proposed
with post-hoc model explainability and intrinsic explainability
for regression and classification tasks in a supervised learning
approach. This was achieved by utilizing the Shapley values
concept and incorporating attention mechanisms in deep learning
models. We adopted the artificial neural networks (ANN) and
attention-based Bidirectional LSTM (BiLSTM) models for the
prediction of heart rate and classification of physical activities
based on sensor data. The deep learning models achieved state-of-
the-art results in both prediction and classification tasks. Global
explanation and local explanation were conducted on input
data to understand the feature contribution of various patient
data. The proposed QXAI framework was evaluated using PPG-
DaLiA data to predict heart rate and mobile health (MHEALTH)
data to classify physical activities based on sensor data. Monte
Carlo approximation was applied to the framework to overcome
the time complexity and high computation power requirements
required for Shapley value calculations.

Index Terms—Explainability, Shapley, Attention, Monte Carlo,
Vital Signs, Physical Activities

I. INTRODUCTION

In the realm of modern healthcare, the integration of cutting-
edge technology, notably through remote monitoring systems,
represents a pivotal advancement in patient care and the
management of diseases. These systems play an essential
role in the prompt detection and averting of grave health
events, chiefly through their capacity to precisely monitor
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and scrutinize vital signs such as temperature, pulse, respi-
ratory rate, and mean arterial pressure [1, 2]. However, the
scope of traditional monitoring systems is often constrained
to displaying a patient’s current health status, which limits
their effectiveness in preemptively predicting and managing
potential health complications.

The advent of Artificial Intelligence (Al) and deep learning
heralds a new era in healthcare, transcending the boundaries of
traditional methods by offering predictive insights that are in-
dispensable for early and effective medical interventions [3, 4].
Nevertheless, these advanced methodologies come with their
own set of complexities, chief among them being the lack of
transparency and comprehensibility in deep learning models.
These models, often labeled as “black-box” models, pose a
significant challenge in elucidating how input factors correlate
with the predictive outcomes [5, 6]. This issue is particularly
critical in healthcare, where understanding the rationale behind
Al-driven decisions is vital for their acceptance in clinical
settings and for ensuring ethical applications of such tech-
nologies.

In response to these challenges, our research presents an
innovative Explainable Al framework tailored for Quantitative
data (QXAI), ingeniously amalgamating the Shapley values
concept [7] with an attention mechanism in the realm of deep
learning models. Our approach is uniquely poised to demystify
Al predictions on both granular (local) and aggregate (global)
scales. It provides insightful revelations on how each indi-
vidual feature contributes to specific input records and offers
a comprehensive overview of feature contributions through-
out the entire model. This dual-level explanation capability
is adeptly employed in our framework for the purpose of
predicting human vital signs and classifying physical activities,
utilizing two advanced deep learning models: Artificial Neural
Networks (ANN) and attention-based Bidirectional LSTM
(BiLSTM). The empirical evidence from our study highlights
the framework’s proficiency in delivering detailed Shapley
values and attention weights for each input feature, thereby
clarifying their respective impacts on the outcomes of deep
learning models.

Recognizing the computational demands in calculating
Shapley values for extensive datasets, we have judiciously
integrated the Monte Carlo method of approximation with
random sampling. This strategic addition not only mitigates
the computational complexities but also augments the practical
utility of our framework across a spectrum of real-world
applications.

Overall, our study represents a significant advancement
in the field of explainable Al within healthcare. The key
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contributions of our research are:

o Development of an innovative, adaptable Explainable
Al framework (QXAI) for quantitative data analysis in
healthcare. This framework uniquely combines attention
layer mechanisms with Shapley values within deep learn-
ing models, setting a new standard in Al explainability.

o Comprehensive evaluation of the framework’s explain-
ability capabilities, focusing on the importance of features
and providing both local and global explanations. This
dual approach significantly enhances the understanding
of Al models, offering insights into their cognitive and
behavioral aspects.

Adoption of the Monte Carlo method to address the

computational challenges in calculating Shapley values,

especially for large datasets. This method significantly re-
duces the computational overhead, making the framework
more practical for real-world applications.

Establishment of a new paradigm in patient monitoring

systems for interpreting and explaining Al predictions

related to vital signs and physical activity classification.

This advancement is pivotal for clinical decision-making,

offering a more nuanced and in-depth understanding of

patient health dynamics.

The remainder of the article is organized as follows: Sec-
tion II presents related works on explainability in healthcare
applications. Section III presents a formal definition of the re-
search problem addressed. Section IV details the novel QXAI
framework to explain prediction and classification problems
proposed in this study. Experimental design, dataset descrip-
tion, data modelling, and traditional models are discussed
in Section V. In Section VI, experimental results of the
QXALI framework are discussed, along with its explainability
and feature identification performance. Section VII discusses
the random sampling approximation using the Monte Carlo
method. In Section VIII, we discuss implications, strengths,
and limitations of the study. Finally, the paper concludes with
Section IX.

II. RELATED WORK

In the realm of remote patient monitoring systems, the
primary objective is to promptly identify high-risk patients,
enabling clinicians to allocate resources effectively and inter-
vene in a timely manner. The integration of machine learning
and Al in these systems has led to significant advancements
in predictive healthcare.

A. Machine Learning in Healthcare Prediction

Gong et al. [8] developed a machine learning-based frame-
work for predicting acute kidney injury (AKI), showcasing
an end-to-end decision support system that encompasses data
pre-processing, risk prediction, and model explanation. This
framework utilized logistic regression, random forest, and a
voting-based ensemble model, along with gradient boosting
algorithms, to address the challenges posed by imbalanced
datasets. The model’s prediction capability within 48 hours
was complemented by SHapley Additive exPlanations (SHAP)
values for a dual perspective: a global view highlighting

critical factors and a local view detailing individual patient-
level feature contributions. In addition, Wu et al. [9] compared
eight feature selection methods to enhance AKI prediction,
underlining the importance of feature selection stability and
similarity.

B. Assessment of Interpretability Techniques

ElShawi et al. [10] proposed quantitative measures to assess
the quality of several model-agnostic interpretability tech-
niques, including LIME, SHAP, Anchors, and others. Their
study utilized a random forest model to predict mortality and
diabetes risk, evaluating the performance of these interpretabil-
ity techniques in terms of similarity, bias detection, execution
time, and trust. In a separate study, Elshawi et al. [11] applied
global and local explainability techniques to predict the risk of
hypertension, enhancing the transparency of machine learning
outcomes. Ilic et al. [12] introduced an explainable boosted
linear regression (EBLR) algorithm for time series forecast-
ing, demonstrating that maintaining interpretability does not
necessarily compromise model performance.

C. Attention Mechanism in Deep Learning

The attention mechanism, initially a breakthrough in ma-
chine translation tasks, has been adapted for healthcare ap-
plications. Bari et al. [13] conducted an empirical evaluation
of attention-based deep neural networks, assessing prediction
performance, explainability correctness, and sensitivity. Their
results indicated that multi-variable LSTM models with ex-
plainability features performed well with complex data. Kaji et
al. [14] implemented an attention-based LSTM model for pre-
dicting medical conditions like sepsis and myocardial infarc-
tion, using MIMIC-III dataset patient data. They highlighted
the importance of the attention layer in extracting influential
input features for better explainability. Chen et al. [15] further
advanced this field by proposing bilateral asymmetric skewed
Gaussian attention (bi-SGA) to improve the performance and
interpretability of deep convolutional neural networks.

D. Gap in Literature and Study Contribution

The literature reveals that while deep learning is capable
of predicting vital signs with minimal healthcare domain
knowledge, its lack of explainability remains a significant
drawback. This underscores the need for explainable Al
methods to demystify the results produced by these “black-
box” models. Our study addresses this gap by introducing a
novel framework that not only estimates feature importance
for enhancing explainability but also provides both global
and local interpretations of deep learning model predictions.
This comprehensive framework aims to balance the trade-off
between deep learning model performance and its explainabil-
ity, thereby contributing significantly to the field of predictive
healthcare.

III. RESEARCH PROBLEM

The central research problem tackled in this study is the
elucidation of deep learning model results, particularly the in-
terpretation of predictions based on independent feature inputs
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in healthcare settings. This task involves comprehending the
causal relationships between input factors and their effect on
model predictions. It’s crucial for healthcare professionals to
grasp the rationale behind Al-driven predictions, understand-
ing how variations in input feature values can influence these
predictions. In a scenario where a deep learning model M uses
N features, denoted as x; (where j = 1,..., N), to predict
an output y, the research aims to elucidate how each input
feature = contributes to this prediction. This understanding is
vital for models where weights w; are applied to respective
features j at different layers of model M. This process can be
mathematically represented as:

y<+— fu(w; - zj) ¢))

To enhance the explainability of predictions from complex,
non-linear models such as neural networks and deep learning,
it is essential to quantify the contribution of each feature, px7,
in a comprehensible manner. To enhance the explainability of
non-linear model predictions, the contribution of each feature
¢z; can be estimated into two patterns.

z; = wj * x5 — E(w; * Xj) ®)

N

thzy' =

N
wjy x x; — E(wj * ;) 3)

Jj=1 Jj=1

o The first pattern estimates the model output with each
feature and subtracts the output with the average effect
of all the features, F(w; * X;) as shown in Equation 2.
The same approach can estimate the contributions of all
features. Summing up all the features’ contribution in
a prediction instance is, where Equation 3 shows the
predicted value fy(z) minus the average predicted value
E(fy(x)) for the instance x.

o The second pattern adds an attention layer to the non-
linear model and enables the model to focus on certain
important features contributing to the output. This pat-
tern creates a representation hj with j = 1,..., N of
each input in vector space, and the weighted sum of
the representation act as context vectors as shown in
Equation 4. Extracting the weights for each input feature
can influence output feature contribution @, .

N
c=> ajha, )
j=1

In this current study, the two patterns estimate feature
contribution to explain the prediction process of the deep
learning model.

IV. EXPLAINABLE Al FOR QUANTITATIVE DATA (QXAI)

In this section, Explainable Al for Quantitative data (QXAI)
is proposed to estimate input feature importance in deep
learning model results that could be prediction or classification
tasks. The proposed framework can provide explainability
at two levels, one is post-hoc explainability using Shapley
values and the other is intrinsic explainability using attention
mechanism as shown in Fig. 1.

A. Shapley Values Calculation

To explain the contribution of input features, the Shapley
value concept based on a coalition game was adopted [7].
The coalition game theory can be defined by designating a
value for each coalition game with a limited set of players
N, S C N to be a subset of |S| players and a characteristic
function v : 2V — R from the set of all possible coalitions
of players to a set of players that satisfies v()) = 0 where
(@) is an empty set. This function determines each player’s
contribution to the outcome, and the game can be called a
profit game or value game.

The profit game or value game can be adapted to the
proposed QXAI framework to determine players (features)
contributing to the prediction capacity of a trained deep
learning model. To attribute a value to the contribution of each
feature, the Shapley value concept can be adapted to explain
the contribution in terms of expected marginal contribution.
Shapley values assume that all the features contribute to the
outcome, and the amount that each feature x; contributes in
a coalition game (v, N) is shown in Equation 5.

> W(U(S U {z;}) —v(9))
SCN\{z;}
)

where the sum extends over all subsets S of N not containing
feature i and n is the total number of features.

The above Equation 5 can further break-down to have
individual feature contribution as v(S U z;) — v(S). The
characteristic function v(S) can be calculated by using Kernel
SHAP.

P (U) =

pe,(0) = =3 [o(PE U ) —o(PD)] ©
"R

where the sum iterates over all n! orders R of the features
and Pff is the set of features in N which proceeds the order
R. '

In simple terms, Shapley of a feature x; can be defined as
below, Equation 7:

pr @)=Y % ™
K

Where n is a number of features, ¢(x;) is marginal con-
tribution of feature x; to coalition, K is coalitions excluding
x4, Z is a number of coalitions excluding x;.

Shapley proposed four conditions (or axioms) below that
must be satisfied to have fair contribution of features to a pre-
diction. Equations 5,6 obey these conditions while estimating
the contribution value of each feature.

« The summation of Shapley values of all agents equals the
value of the total coalition.

« All features have a fair chance to participate in a pre-
diction outcome by including in all permutations and
combinations of the features.

o If a participated feature x; contributes nothing to a
prediction outcome, then zero value is attributed to the
feature’s contribution.
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Fig. 1: Explainable Al (QXAI) framework

« For any pair of predictions v,w : (v + w) = p(v) +
@(w) in which the values are based on additive property
(v+w) =v(S) + w(S) for all subsets S.

B. Kernel SHAP

Kernel SHAP is a model-agnostic method from the combi-
nation of classical Shapley values discussed in Equations 5,6
and local explainable model-agnostic explanations (LIME)
to approximate SHAP values. Instead of retraining models
with a subset of features |S|, the full model f can be used
which is already trained, while replacing missing features
with marginalized features. Considering an instance with three
features 1, x2, z3 and following Equation 8§ estimates a partial
model with 3 being missed. However, p(x3) is still required
to approximate the missing x3 feature. To address this, a cus-
tom proximity function 7 from LIME as shown in Equation 9
and SHAP similarity kernel equation 10 can be used.

fwl,wz(‘zhmz)—)/f(I17I2,CC3)p(-T3)dI3 ®)
7r£IME(Z) = exp(—D(x, 2)2/02) ()]
SHAP (r-1) (10)

)=
=) N IEACEED)

Equation 9 penalizes the distance between sample points
and the original features’ data, for which explainability is
being estimated. In Equation 10, coalitions with a number
of features that are far from O and p will be penalized. The
equation adds more weight to coalitions with a small set of
features or almost all the features to highlight the independent
behavior of the feature or the impact of the features in inter-
action with others. The choice of this SHAP similarity kernel
is based on three properties of additive feature attribution

methods local accuracy, missingness, and consistency [7]. In
this study, Kernel SHAP is used to estimate the contributions
of each feature x; value to the prediction. It consists of five
steps: 1) Sample coalitions with features and without features.
2) Get prediction for each sample coalition by first converting
to the original feature space and applying the machine learning
model. 3) Estimate the weight for each coalition with the
SHAP kernel. 4) Fit the weighted linear model. 5) Return
Shapley value ¢, (v) and the coefficients of the model.

C. Attention Mechanism

The attention mechanism is a widely adopted concept in
Natural Language Processing (NLP) tasks like neural machine
translations and extracting the cause-effect of input features to
model output [16, 17]. The attention mechanism predicts the
outcome with better accuracy because its cognitive capability
can enhance certain parts of important input data for deep
learning model training. The idea of using the attention mech-
anism to model explainability is to identify the weights beings
assigned to each input feature in predicting the outcome. This
assists in decoding the importance of each feature and enables
human explanation of the cause-effect of the input features.

An attention layer added to a deep learning model can
mimic the cognitive capability of the attention mechanism.
Given a set of input features IV, x; is a feature value, with
7 =1,...,N to predict an output value y. A Bidirectional
Long Short-Term Memory (BiLSTM) model can generate
vector representations of the input features, such as h; with,
7 =1,..., N based on the forward and backward hidden states
in the deep learning model. A generic encoder-decoder model
focuses on the last state of the encoder LSTM model and
uses it as a context vector. This would cost the information
loss of previous states. Attention acts as an interface between
the encoder and decoder states of the BiLSTM model and
provides a context vector to the decoder with information
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from every encoder’s hidden states. For each prediction value
y, a context vector c¢ is generated using the weighted sum
of the vector representations, as shown in Equation 11. The
weights o; are computed using a softmax function as shown in
Equation 12. The output score ¢; is calculated in a feedforward
neural network described by a function f to capture alignment
between input feature x; and output y. The input features are
then multiplied (dot product) with (w;+B) where w; is weight
and B bias followed by a tan hyperbolic function to estimate
the score e; as shown in Equation 13

N
c=> ajha, an
j=1
a; = softmaz(e;) = % (12)
> j—1exp(e;)
ej = f(x5, ha;) = tanh(zj - (w; + B)) 13)

For input features x1,x2,73,74 , let the weights a; be,
[0.2,0.4,0.6,0.1] then the context vector would be as shown
in equation 14. This can assist in estimating the importance
of each input feature in the context vector, which will be fed
to the decoder network for model predictions.

c=02x714+04xa2+06x23+01x2s (14

D. Global and Local explanation

Two different forms of explanation perspectives such as
global explanation and local explanation are proposed in this
study. The global explanation can provide the contribution of
each feature in the prediction of vital sign. This is designed
to assist clinicians by providing holistic information about the
prediction and to identify which clinical factors or features
need special attention. To estimate the global importance of
the features in the prediction, the absolute Shapley values
calculated from Equation 5 are averaged for each feature
across the data, as shown in Equation 15. Based on this
calculation, the features can have their importance sorted in
descending order.

1 n
L= ; il (15)

Although feature importance can provide an overview of all
selected features’ importance towards a prediction, it cannot
uncover the correlation of the features with a target variable
and estimate contributing and non-contributing data points of
a feature. This, however, can be achieved by using Shapley
values of each feature on a summary plot showing the level
of positive and negative contribution to a target variable.

In the case of local explanation, vital signs prediction at
each time step can be decrypted. This can summarize features
that are aiding the patient’s health in terms of vital signs
and can enable personalized monitoring, which is critical in
healthcare applications. The Shapley values of each feature
can be positive or negative, and each value is considered a
force that either increases or decreases the prediction value.

This helps to explain individual features that are forcing the
prediction value to either increase or decrease. The local
explanation concept can be applied to an individual record in
a prediction or a group of records related to a specific subject
or activity.

Algorithm 1 Feature contribution estimation

Require: a set of features F = {1,2,..., N};a set of deep
learning models M = {mj,ms} where m; is without
attention and mo is with attention;a input dataset D

Ensure: Contributions of the features 7 = {1,2,..., N} in

the form of Shapley values and attention weights;

: Split dataset: D = Dtrain v ptest

Global explanation

mirain «— Dt'rain

. 77L§€St - Dtest

Shapley_values + kernelshap(mi ", Dtest)

. nlfz,rain — Dtrain

. mé&st — Dtest

. attention_weights < model.attention_weights()

Local explanation

: for d in D do

9:  Shapley_values + kernelshap(m!re, d)

10:  attention_weights < mqy.attention_weights()

11: end for

oo

E. OXAI Algorithm

The proposed QXAI framework comprises two deep learn-
ing model approaches, one with model attention and the
second without. The framework can be implemented with
the Algorithm 1 and can be adapted to execute global and
local explanations. In Algorithm 1, line 1 splits the input
data into test and train sets to train and evaluate the deep
learning models. Lines 2-7 present the global explanation
using kernel SHAP and attention layer weights. Lines 2-4 train
a deep learning model without an attention layer and pass it
to the kernel SHAP explainer to extract Shapley values of
the input features. Lines 5-7 present the attention-based deep
learning model and extracts the attention layer weights, thus
defining input feature importance. Lines 8-11 present the local
explanation for each input record d from data D.

V. EXPERIMENT

The two key aspects of an explainable Al framework are
the understanding phase and the explaining phase [18]. The
former is concerned with improving models during training
by interpreting critical features and building robust models,
while the latter involves deploying and providing human-
readable explanations to end users. Striking a balance between
model performance and explainability is always a challenge
in Al applications. In Al applications, there is always a
trade-off between model performance and explainability [19].
According to Zacharias et al. [20], the preprocessing stage,
specifically feature selection, has been overlooked in explain-
able Al applications and requires attention. The importance of
each feature to the outcome can be used for semantic labeling
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Fig. 2: Experimental Design

and to improve cognitive understanding, as it provides positive
framing and direction (positive or negative contribution).

To address the limitations of explainable Al, the proposed
QXAI framework in this study focuses on feature selection
and provides local and global explanations through post-hoc
models and intrinsic weights. The study evaluates feature
importance in the QXAI framework, which can reduce di-
mensionality, improve cognitive understanding, and help with
decision-making. Good explanations are crucial for making
informed decisions, especially in dynamic domains like health-
care. In addition to the feature importance step in explainabil-
ity, this study further breaks down the explainability into local
and global explanations for each supervised learning task in
classification and regression. Local and global explanations
help in understanding the positive or negative contribution of
features at the model and individual levels. The study used
publicly available benchmark datasets for evaluation. Figure 2
illustrates the experimental design of the proposed framework.

A. Datasets

o PPG-DaLiA [21]: This dataset from 15 subjects com-
prised physiological and motion data while performing
a wide range of activities under close to real-life con-
ditions. The collected data were from both a wrist-worn
(Empatica E4) and a chest-worn (RespiBAN) device. The
dataset consists of 11 attributes, including 3-dimensional
(3D) acceleration data, electrocardiogram (ECG), respi-
ration, blood volume pulse (BVP), electrothermal activity
(EDA), and body temperature.

« MHEALTH [22]: This dataset comprises the body mo-
tion of ten volunteers while performing 12 physical activ-
ities recorded from three sensors at the chest, left ankle,
and right lower arm. There were 21 independent attributes
including acceleration, gyroscope, and magnetometer of
the three sensors. A dependent variable classifying the 12
activities was based on the sensor data.

B. Data Modelling

Datasets consisted of preprocessed raw data from the sen-
sor’s signal and features were stored in different CSV files. In

this step of data preparation, the dataset was further prepro-
cessed to have a single structured file with a set of features
for each subject. The datasets were prepared for two different
tasks: regression and classification. The regression task was
to predict the heart rate of the subjects based on their sensor
readings. The classification task was to classify the physical
activities of the subjects based on their motion data recorded
from three axes of sensors. The physical activities label was
preprocessed to have a multi-label classification. Each of these
datasets was split into an 80:20 ratio for 80% of data for
training and 20% of data for testing.

In this study, two deep learning models artificial neural
networks (ANN), and Bidirectional LSTM (BiLSTM) models
were adopted. The ANN model was configured with an input
layer, hidden layers, and an output layer. The traditional acti-
vation function rectified linear unit (ReLLU) has a limitation of
defining negative inputs to zero which deactivates the nodes or
neurons. Considering the negative values in 3D sensor data, the
ANN model used the activation function LeakyReLU in input
and hidden layers to avoid the zero input values of the negative
attributes. The output layer was configured with the traditional
activation function ReLU to predict the target variable heart
rate greater than zero based on the activation function property.
The loss function used for the regression study was mean
absolute error, which also acted as a performance metric for
the model. For the classification task, binary cross entropy
acted as a loss function along with metrics like accuracy. The
Adam adaptive optimizer [23] was chosen for the model for
its quick computational time, it requires fewer parameters for
tuning compared to other optimizers. The attention mechanism
discussed in the proposed framework was added to the BiL-
STM model, which has encoder and decoder states to generate
vector representations. The preprocessed data was fed to the
attention-based BiLSTM model and extracted the attention
layer weights. This determined the input feature importance
in the deep learning model prediction.

The datasets in this study were created by preprocessing raw
data from sensor signals and storing the features in separate
CSV files. These datasets were then combined into a single
structured file for each subject, with separate datasets prepared
for regression and classification tasks. The regression task
involved predicting the subject’s heart rate based on sensor
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TABLE I: Implementation details

Regression Classification
Shapley Attention Shapley Attention
Values Mechanism Values Mechanism
Models ANN BiLSTM ANN BiLSTM
No of Layers 5 4-+attention layer 5 4-+attention layer

Activation relu, relu, LeakyReLU, relu,
Functions sigmoid Softmax Sigmoid Softmax
Optimizers Adam Adam

loss Functions

mean_absolute_error

binary_crossentropy

Epochs 100

100

Batch Size 64

64

readings, while the classification task involved categorizing
the subject’s physical activities using motion data from three
axes of sensors. The datasets were split into 80% for training
and 20% for testing. Two deep learning models, ANN and
BiLSTM, were used in this study as shown in Tab. I. The
table presents implementation details of ANN and BiLSTM
models in regression and classification tasks.

For regression tasks, the models use the Shapley Values
and attention mechanism. The ANN model has 5 layers with
the activation functions of relu and sigmoid. The BiLSTM
model has 4 layers with an additional attention layer with the
activation functions of ReLU and softmax. The optimizer used
is Adam, and the loss function is mean_absolute_error. For
classification tasks, the models also use ANN and BiLSTM
architectures, Shapley Values, and attention mechanisms. The
ANN model has 5 layers with the activation functions of
LeakyReLU and sigmoid. The optimizer used is Adam, and
the loss function is binary_crossentropy. The BiLSTM model
has 4 layers with an additional attention layer. The activation
functions used are ReLLU and softmax. For both prediction and
classification tasks, the models are trained for 100 epochs with
a batch size of 64.

C. Traditional Models

By comparing the feature importance estimated using Shap-
ley values and intrinsic weights of the attention mechanism
with the traditional machine learning models, the explainabil-
ity of the proposed framework was evaluated. The two deep
learning models in the framework, ANN and BiLSTM, were
also evaluated to ensure high performance and robustness with
explainability. This allowed the study to evaluate the effective-
ness of the framework in explainability without compromising
model performance.

The proposed approach was evaluated with models with
state-of-art performances. The deep learning models adopted
in the proposed approach were compared with heart rate
prediction and human activity recognition performances. The
feature importance was compared with traditional machine
learning models, which had the capability to produce feature

importance for prediction and classification results.
Prediction

o Ni et al. [24] proposed context-aware sequential models
to capture personalized fitness data and forecast heart
rate to recommend suitable activities. The authors used a
multi-layer perceptron model to forecast heart rate.

e Zhu et al. [25] proposed four LSTM models for an
optimization training system to predict heart rate under
three different types of exercises walking, rope jumping,
and running. Three of the four LSTM models were used
for heart rate prediction and one for human activity
recognition.

Classification

« In a previous study, we proposed FedStack [26], a novel
federated framework to classify patients’ physical activ-
ities. We adopted deep learning models such as CNN,
ANN, and BiLSTM for the classification.

o Bozkurt et al. [27] compared deep learning model per-
formance with traditional machine learning models for
human activity recognition. Deep Neural Network (DNN)
model achieved an accuracy of 96.81% and outperformed
other models.

Feature Importance

o Li et al. [28] proposed an explainable machine learning
model named cardiac arrest prediction index for early
detection of cardiac arrest. The authors used the XGBoost
model for the prediction and achieved an area under the
receiver operating characteristic curve (AUROC) of 0.94.

e Gong et al. [8] used XGBoost and voting ensemble
method combining random forest and logistic regression
to predict acute kidney injury. For explanation, the SHAP
technique was used to understand important predictors
and relationships among the predictors.

o Ali et al. [29] proposed supervised machine learning
algorithms such as Random Forest, Decision Tree, and
KNN for heart disease prediction. Feature importance
scores for each feature were computed with Decision Tree
and Random Forest [30].
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Fig. 3: Regression Model—Feature Importance Plots

D. Performance Metrics

Explainability is a multifaceted concept, and there is no
single metric to measure it. The evaluation of explainability
involves comparing the feature importance provided by dif-
ferent models, such as comparing the explanations of ANN
and BiLSTM with those of traditional models. In this study,
another two sets of performance metrics were adapted to
evaluate deep learning models’ prediction and classification
results. For prediction, mean absolute error (MAE) and mean
squared error (MSE) was used to evaluate the performance
of the prediction model. Both metrics measure the deviation
or difference of a predicted value from its actual value.
For classification, a traditional confusion matrix was used to
calculate precision, F1-Score, recall, and balanced accuracy
metrics of deep learning results on multi-label classification.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we analyze the evaluation results of the
proposed QXAI framework. The results are focused on ex-
plainability in terms of feature importance for positive fram-
ing, local explanations for semantic labelling to explain the
positive or negative contributions of each input feature to
the deep learning model’s prediction, and global explanations
that can explain a model’s overall predictions with interactive
plots. To address the trade-off between explainability and
model performance in Al applications [31], the performance
of the deep learning models, ANN and BiLSTM-attn, in the
framework for both regression and classification tasks was
evaluated and compared with those of traditional machine
learning models.
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TABLE II: QXAI Prediction Performance

Model MAE MSE
ANN 3.33 24.51
BiLSTM-attn 4.40 43.72
MLP [24] 4.71 47.95
LSTM [25] 5.54 69.03

A. OXAI in Regression Problem

The proposed QXALI approach was evaluated on its ability to
predict heart rate based on sensor data and clinical indicators.
Other vital signs retrieved from human subjects were in the
PPG-DaLiA dataset. The two deep learning models ANN
and attention-based BiLSTM proposed in the framework were
trained on the data to predict the vital signs. The models’
performance was compared with other traditional models
shown in Tab. II. The ANN model performed better than the
attention-based BiLSTM, MLP, and LSTM models with MAE
and MSE of 3.33 and 24.51 respectively.

1) Feature Importance: Feature importance of input fea-
tures was estimated using the proposed QXAI approach and
compared with traditional machine learning model feature
importance. The three feature importance plots shown in
Fig. 3a, 3b,and 3c present attention weights retrieved from
the BiLSTM model, Shapley values estimated from Kernel
SHAP, and traditional model feature importance respectively.
The y-axes in each subplot hold the input features, with
x-axes showing the importance of each feature to the re-
spective model’s prediction. The large value of the x-axis
determines the importance or contribution of a feature to
model performance in predicting heart rate. Activity, chest, and
wrist sensors data had high feature importance for heart rate
prediction compared to other input vital signs like wrist_ BVP,
chest_Resp, and chest ECG. The Shapley values plot 3b and
attention weights plot 3a presented the negative dimensions of
each feature’s contribution.

2) Explainability: As discussed in Section IV, global and
local explanations both contribute to presenting a patient’s
health status at different levels. The local explanation assists
the clinician to explain the health status at a particular time
step of patient monitoring. Fig. 4a presents feature contribution
to the ANN model label prediction for a selected random
record. The randomly selected record is of a male subject aged
25 years, height 168 centimeters, weight 57 kilograms with
fitness level 5 on a scale 1-6 where 1 refers to them exercising
less than once a month and 6 refers to 5-7 times a week.
The subject’s activity was measured during his lunch break,
and his heart rate prediction was 71.24. The red highlighted
features in Fig. 4a indicated a negative contribution and pushed
the prediction value to the right (higher) side of the scale,
whereas the blue features positively contributed and pushed
the prediction value to the left (lower) side of the scale. This
infers activity, wrist_ ACC_y, and wrist_ACC_x features are
negatively contributing and trying to decrease the heart rate
value. The Rpeaks and wrist_ TEMP features are balanced by
increasing the heart rate to the expected value of 72.95. The
SHAP values of each feature can be positive or negative. Sim-

ilarly, Fig. 4b presents a subject-level explanation of features’
contribution to their heart rate prediction based on 200 records.
The chart is related to a subject and presents each predicted
value on the y-axis with its feature contribution spread on the
x-axis in blue and red highlight. This is an interactive plot
with dropdowns on the x-axis and y-axis changing and shows
the impact of individual features on all 200 predictions. The
plot is a screenshot of a prediction value of 107.9 in which
the feature activity from wrist ACC_x and wrist. TEMP are
negatively contributing to the heart rate prediction.

TABLE III: QXALI Classification Performance

Precision  Recall :Tclc;re ‘]:zlg::::;
ANN 1 1 1 1
BiLSTM-Atten 0.92 0.78 0.77 0.88
CNN [26] 0.99 0.98 0.98 0.98
DNN [27] 0.97 0.97 0.97 0.97

B. QXAI in Classification Problem

The proposed QXAI approach was also used to explain the
classification of human physical activities. Both the deep learn-
ing models ANN and attention-based BiLSTM were trained on
the MHEALTH dataset. Model classification performance was
compared to DNN and CNN, as shown in Tab. III. The ANN
model had the best performance, with all evaluation metric
values equalling 100%. CNN and DNN models also performed
better than the attention-based BiLSTM model. The proposed
framework disclosed the intrinsic weights of each feature in
classification and post-hoc model explanations with Shapley
values.

1) Feature Importance: The Shapley values and attention
weights computed from the deep learning models determined
the input feature importance in classifying human physical
activities. Feature importance from the deep learning model
was compared with feature importance in traditional machine
learning models as shown in Fig. 5. The y-axes in all three
subplots, 5a, Sb,and Sc refer to the 21 input features passed
to the deep learning and the x-axes present the importance of
a feature to model classification results. The attention-based
BiLSTM model assigned more negative weights to all the
input features. The sensor attributes at the wrist and ankle
area were assigned with more weights in terms of magnitude
to classify human physical activities as shown in Fig. 5a. The
Shapley values plot 5b shows full body motion activities such
as climbing stairs, jogging, walking, running, and jump front
& back rely on left ankle sensor gyroscope data. The feature
importance metrics from traditional machine learning models
could not differentiate labels in their plot, as shown in Fig. Sc,
but the results show that gyroscope data features contribute
more to physical activity classification.

2) Explainability: The patients’ physical activity classifica-
tion can be explained in detail by breaking down the Shapley
values with force plots as shown in Fig. 6a, 6b. The local
explanation at each input record level can assist clinicians to
explain physical activity classification and can explain which
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Fig. 4: Explanations for prediction: (a) Local explanation illustrating individual feature contributions. (b) Global explanation

showing overall feature contributions.

sensor features are actually contributing to the classification.
In plot 6a, the ANN model prediction probability of an
arbitrarily selected record shows that the x, and z dimensions
of the left ankle gyroscope try to push the model probability
higher but the y-axis of the right lower arm and left ankle
sensors are pushing the probability negatively according to
Shapley values’ feature importance. Similarly, Fig. 6b presents
a subject-level interpretation of features that contribute to their
physical activity classification based on 200 records. The chart
is related to a subject and presents each predicted value on
the y-axis with its feature contribution spread on the x-axis
in blue and red highlights. This is an interactive plot with
dropdowns on the x-axis and y-axis to change to see the
impact of the individual feature on all 200 predictions. The
plot is a screenshot of a predicted value 1 in which chest
sensor acceleration positively contributes and left ankle and
right lower arm sensor features negatively contribute to the
heart rate prediction.

VII. MONTE CARLO APPROXIMATION

Feature contributions in model prediction can be estimated
based on Shapley value computed using Equation 5 proposed
in Section IV. These computations have an exponential time
complexity and increase in number of features makes the
Shapley value calculation unfeasible. In this study, Monte

Algorithm 2 Monte Carlo Approximation on Feature contri-
bution estimation

Require: a set of features z; = {1,2,..., N};a set of deep
learning models M = {mj,ms} where m; is without
attention and my is with attention;input data D

Ensure: Contribution of the features x; = {1,2

1: marginal contribution ¢, < ()
2: for all z; = {1,2,...,N} do
3:  z4 random sample from D

., N}

4: x4 random sample from N
5. choose random permutation o of the feature z;
6: TiTo=T1y...,T5
7 212 = 21,375
Build two new samples
8:  with factor F":
9 @y = (T1, e Tj1s 20 = 215, Zio1)
10:  without factor F":
11: x—j:($17~~~733j+17zo:'317-~7Zj+1)

Compute marginal contribution of feature F":
12: qsz <—m1($+j) —ml(x_j)
13: end for

~ 1 x;
14: ¢y, z; Y om=1 oy
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Fig. 5: Classification Model—Feature Importance Plots

Carlo approximation was adopted to calculate each feature
contribution as shown in Equation 16. This approximation
technique can extract Shapley values for each feature for both
deep learning models. The results have been discussed in this
section.

1 N

b= SR = 1)

n=1

(16)

where f(-) is the contribution of subset features. The d’; and
d™; is the subset of with and without factor 7 in subset n
features, respectively.

The implementation of the Monte Carlo approximation is
presented in algorithm 2. Lines 3-7 obtain sampled data from
the input data D. Lines 8-11 build new samples with or
without consideration of a feature ;. Line 12 calculates the
marginal contribution ¢, of feature z;. Lines 2-13 are a loop
iterating to calculate the contribution of each feature one by
one. Finally, line 14 calculates the Shapley value by averaging
the outputs of multiple runs.

Monte Carlo approximation was applied to both deep
learning models in the proposed QXAI framework. In ANN
model prediction results, the approximation technique estimate
wrist_TEMP is the most contributing feature in terms of
magnitude, but the negative value shows that the feature
is inversely proportional to the heart rate prediction. The
other chest ACC_z, chest_ACC_x, and chest_Resp features
contributed positively towards the heart rate prediction. The at-
tention weights from the BILSTM model show that most of the
input features are inversely proportional to the model output
with negative values. The heat map shows that wrist. TEMP,
wrist_ACC_z, and chest_ACC_z are the most contributing
features to the heart rate prediction as shown in Fig. 7a.
Similarly, the Monte Carlo approximation was applied to
the deep learning classification models. The 3D axes of the
sensor inputs were merged to have chest sensor acceleration,
left ankle sensors’ acceleration, gyroscope, and magnetometer,
and right lower arm sensors’ acceleration, gyroscope, and
magnetometer as shown in Fig. 7b. The figure shows ANN
model classification Shapley values for the consolidated input
feature in the top heat map. The bottom heat map shows the
attention-based BiLSTM model Shapley values. The full body
activity like climbing stairs classification was more contributed
by gyroscope data of the left ankle and right lower arm sensors
and acceleration data of the chest sensor.

VIII. DISCUSSION

The research presented in this paper makes a significant
contribution to the emerging field of explainable Al (XAI) in
healthcare, particularly by addressing the challenge of inter-
pretability in deep learning models for vital sign prediction and
physical activity classification. The proposed Explainable Al
for Quantitative data (QXAI) framework is noteworthy for its
innovative approach that combines Shapley values and atten-
tion mechanisms, offering a comprehensive dual perspective
on both post-hoc and intrinsic explainability. This discussion
delves into the implications, strengths, limitations, and future
directions of this study.

Implications and Contributions: The QXAI framework
addresses a critical gap in healthcare Al by providing a solu-
tion to the ’black-box’ nature of deep learning models. This
is crucial as the explainability of Al models is increasingly
becoming a requirement, especially in high-stakes fields like
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Fig. 6: Explanations for classification: (a) Local explanation illustrating individual feature contributions. (b) Global explanation

showing overall feature contributions.

healthcare. The integration of Shapley values for post-hoc ex-
plainability and attention mechanisms for intrinsic understand-
ing allows for a nuanced interpretation of Al decisions. This
dual perspective of explainability not only enhances the trust-
worthiness of AI models but also makes them more practical
and useful for clinicians. By enabling healthcare professionals
to understand the reasoning behind Al-driven predictions,
the framework facilitates informed decision-making in patient
care.

Strengths of the Study: One of the major strengths of this
study is the robust performance of the QXAI framework in
both vital sign prediction and physical activity classification
tasks. The superior performance, as compared to traditional
models, highlights the potential of deep learning in enhanc-
ing healthcare diagnostics and monitoring. Furthermore, the
comprehensive nature of the explainability approach employed
in this study marks a significant advancement over existing
methods that typically focus on either post-hoc or intrinsic
explainability. The practical application of the framework,
demonstrated through its effectiveness on real-world datasets
like PPG-DaLiA and MHEALTH, underscores its potential for
implementation in real healthcare settings.

Limitations and Future Directions: Despite its strengths,
the study is not without limitations. The computational de-
mands, particularly with large datasets due to the use of kernel
SHAP, highlight the need for more efficient XAl algorithms.
Additionally, while the framework shows promise, its gen-
eralizability across a broader range of healthcare scenarios
remains to be tested. Future research should aim at scaling

the framework for different types of healthcare data and
conditions. Another area for future improvement is the user-
centric design of the framework. Tailoring explanations to
be intuitive for healthcare practitioners, with varying levels
of technical expertise, could enhance its clinical adoption.
Moreover, the integration of the framework within existing
clinical workflows and ensuring data privacy and ethical Al
use are crucial considerations for future development.

IX. CONCLUSION

In healthcare applications, the explainability of machine
learning model predictions or results is critical. This can assist
clinicians in understanding the results to assist with clinical
decisions that take appropriate steps for treatment. Existing
deep learning models have a limitation in the explainability or
interpretability of their results. The prediction or classification
capacity of the proposed QXAI framework is outstanding com-
pared to traditional machine learning models, with minimal
knowledge of the healthcare domain knowledge to address the
research problem. To utilize the advantage of the prediction
capacity, this study proposed to adopt the Shapley values
concept to vital signs prediction and decode global explanation
at the overall population and local explanation at the subject
level. However, the study was limited by the kernel SHAP
method, which required significant memory and storage for
large datasets. Future directions include incorporating more
diverse feature inputs to enhance remote monitoring systems
for clinical decision support.
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9.2 Summary

This chapter underscores the transformative impact of the QAXI framework in enhanc-
ing the explainability of Al models within healthcare. By providing clear insights into
the contribution of individual features to model predictions, QAXI facilitates a deeper
understanding of Al-driven decisions, fostering trust and transparency in clinical set-
tings. The successful application of QAXI in vital sign prediction and physical activity
classification exemplifies its potential to revolutionize patient monitoring by offering a
more nuanced and interpretable Al-driven approach.
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CHAPTER 10: PAPER 9 - EXPLORING THE LANDSCAPE OF
MACHINE UNLEARNING: A COMPREHENSIVE SURVEY
AND TAXONOMY

10.1 Introduction

This chapter presents an in-depth survey on Machine Unlearning (MU), an emerging
field addressing the need to efficiently remove specific data or knowledge from trained
machine learning models. MU is driven by increasing privacy concerns, regulatory re-
quirements, and the dynamic nature of data, making it imperative to develop models
capable of "forgetting.” The introduction explores various MU techniques, challenges,
and their implications in ensuring model compliance with privacy standards and en-
hancing model adaptability.
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Abstract—Machine unlearning (MU) is gaining increasing
attention due to the need to remove or modify predictions made
by machine learning (ML) models. While training models have
become more efficient and accurate, the importance of unlearning
previously learned information has become increasingly signifi-
cant in fields such as privacy, security, and ethics. This paper
presents a comprehensive survey of MU, covering current state-
of-the-art techniques and approaches, including data deletion,
perturbation, and model updates. In addition, commonly used
metrics and datasets are presented. The paper also highlights
the challenges that need to be addressed, including attack
sophistication, standardization, transferability, interpretability,
training data, and resource constraints. The contributions of this
paper include discussions about the potential benefits of MU
and its future directions. Additionally, the paper emphasizes the
need for researchers and practitioners to continue exploring and
refining unlearning techniques to ensure that ML models can
adapt to changing circumstances while maintaining user trust.
The importance of unlearning is further highlighted in making
Artificial Intelligence (AI) more trustworthy and transparent,
especially with the increasing importance of AI in various
domains that involve large amounts of personal user data.

Index Terms—Machine Unlearning, Privacy, right to be for-
gotten, Federated Unlearning, Graph Unlearning

I. INTRODUCTION

Machine learning (ML) refers to the process of training an
algorithm to make predictions or decisions based on data [1].
ML has become increasingly important in applications such
as health, higher education, and other relevant domains. In
healthcare, ML models can be used to predict patient out-
comes, identify high-risk patients and personalize treatment
plans [2]. For higher education, ML has been used to improve
student outcomes and enhance the learning experience, or even
used to analyze student data and predict their online class
engagement [3].

In ML, an algorithm is trained on a dataset to learn patterns
and relationships in the data. Once the algorithm has been
trained, it can be used to make predictions on new data.
Thus, the goal of ML is to create accurate models that can
generalize well onto new data [4]. On the other hand, machine
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unlearning (MU) is the process of removing certain data points
or features from a trained ML model without affecting its
performance [5]. MU is a relatively new and challenging field
of research that is concerned with developing techniques for
removing sensitive or irrelevant data from trained models. The
goal of MU is to ensure that trained models are free from
biases and sensitive information that could lead to negative
outcomes [6].

MU was first introduced by Cao et al. [7], who recognized
the need for a “forgetting system” and developed one of
the initial unlearning algorithms called machine unlearning.
This approach efficiently removes data traces by converting
learning algorithms into a summation form, which can help
counter data pollution attacks. The increasing need for reg-
ulatory compliance with modern privacy regulations led to
the creation of MU, which involves deleting data not only
from storage archives but also from ML models [8]. Existing
studies update the model weights for unlearning using either
the whole training data, a subset of training data, or some
metadata stored during training [9]. Although strict regulatory
compliance requires the timely deletion of data, there are
instances where data about the training process may not be
available for unlearning purposes. Companies and organiza-
tions commonly employ user data to train ML models, but
legal frameworks like GDPR, CCPA, and CPPA demand that
user data be erased when requested [10]. The question is
whether merely deleting the data is sufficient, or if the models
trained on this data should also be adjusted [11]. However,
straightforward techniques like retraining models from scratch
or check-pointing can be computationally costly and require
significant storage resources [12]. With MU, we can modify
models to exclude specific data points more efficiently [13].

Following the introduction of ML, the discussion on MU
emerges as an important counterpart, especially with the
current privacy regulations. The surveys by Nguyen et al. [9]
and Xu et al. [14] offer initial insights into MU, but they
differ in depth and scope compared to this proposed survey.
Nguyen et al. [9] provide a broad overview of machine
unlearning with a focus on privacy, while Xu et al. [14] mainly
categorize existing unlearning solutions. Unlike these surveys,
the proposed survey explores detailed challenges such as attack
sophistication and lack of standardization, going beyond the
general challenges discussed by Nguyen et al. [9]. Moreover,
this survey introduces a structured discussion through Data-
centric and Model-centric approaches, enriching the technical
dialogue beyond the basic methods presented in the referenced
surveys. The addition of Machine Unlearning Evaluation Met-
rics in this survey creates a solid framework for assessing
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unlearning techniques, an aspect not well-covered in the
referenced surveys. This survey also expands the discussion
to domain-specific unlearning scenarios like Natural Language
Processing (NLP), Computer Vision (CV), and Recommender
Systems, broadening the survey’s scope and applicability.
Further, it delves into detailed solutions to the identified chal-
lenges and provides an expansive outlook on future directions,
thus offering a more thorough exploration of the MU domain.
Through these aspects, this survey not only addresses the
identified challenges in a structured manner but also suggests
potential solutions, advancing the MU discourse beyond the
foundational inquiries made by Nguyen et al. [9] and Xu
et al. [14], and aligning with the modern privacy-centric
regulatory frameworks mentioned in the previous discourse
on MU.

Various techniques have been suggested for managing user
data deletion requests, such as optimization, clustering, and
regression methods [15]. By conducting a comprehensive
survey of existing literature on managing user data deletion
requests we can identify gaps and trends in the field, which
in turn will both guide future research and provide insights
for the organizations handling such requests. In this study, we
address the following research questions:

1) What are the most effective techniques for unlearning
data from ML models?

2) How can the impact of unlearning on model performance
be measured and evaluated?

3) What are the challenges in MU, and how can these
challenges be addressed?

The contributions of this study are:

e A comprehensive and up-to-date taxonomy about the
emerging field of MU, including an explanation of its
importance and potential applications;

A detailed taxonomy of the various techniques and ap-
proaches that have been developed for unlearning data
from ML models, such as data deletion, data perturbation,
and model update techniques;

« A discussion of different evaluation methods for assessing
the effectiveness of MU techniques, such as measuring
the degree of forgetting or their impact on model perfor-
mance;

A taxonomy of several key challenges in the field of MU,
including attack sophistication, standardization, transfer-
ability, interpretability, training data, and resource con-
straints;

Finally, a discussion of the potential benefits of MU and
its future directions in natural language processing (NLP),
computer vision, and recommender systems.

The remainder of the paper is organized as follows. Sec-
tion II outlines the aims and objectives of MU. In Section III,
we delve into data deletion, data perturbation, and model
update techniques in greater depth. Section IV details the
evaluation metrics of MU, while Section V discusses the
challenges associated with the field and proposes potential
solutions. In Section VI, we explore the future directions
of MU in NLP, computer vision, and recommender systems.
Finally, Section VII concludes the paper.

II. OVERVIEW OF MACHINE UNLEARNING

The “right to be forgotten” is an evolving concept, empha-
sizing the need for individuals to have personal data expunged
from online platforms in specific circumstances [16], [17].
While its definition and classification as a human right remain
contested, countries like Argentina, the European Union (EU),
and the Philippines are inching towards regulatory frameworks
around this proposal .

Past information, even if outdated or resolved, can signifi-
cantly impact an individual’s present reputation. An illustrative
case is the 2018 incident involving Disney’s dismissal of James
Gunn over previously tweeted controversial content [18].
Similarly, removal requests, such as those lodged against
Google, underscore the intricate challenges surrounding data
persistence on the Internet and the growing demands for data
erasure [19].

MU sits at the nexus of these discussions, especially within
the broader artificial intelligence (AI) landscape. It seeks a
harmonious equilibrium between retaining model efficacy and
adapting to the shifting data paradigms, regulatory mandates,
and ethical considerations [20]. This practice, termed as
“selective amnesia” [21], has myriad applications and goals,
spanning various dimensions. We derive a definition of MU,
building upon comprehensive literature reviews:

General Definition: Machine unlearning is the recalibra-
tion of machine learning models by selectively discarding
specific data points, patterns, or predictions. While traditional
machine learning accentuates pattern recognition and predic-
tion from data, machine unlearning modulates these patterns
or predictions in response to data shifts, privacy imperatives,
or model performance enhancements.

MU aims to achieve multiple objectives, including:

Privacy-Preserving Adaptation: In an era of rigid data
privacy norms, MU aids models in adhering to directives such
as the “right to be forgotten”. This usually implies excluding
specific data instances linked to personal or sensitive details
rather than erasing entire learned patterns [22]-[29].
Accuracy and Fairness Enhancement: MU can rectify
biases in ML models, enhancing fairness and accuracy by
unlearning certain patterns or data [30]-[33].

Adaptive Learning: With evolving data landscapes, MU
ensures models remain pertinent by shedding obsolete or
irrelevant information [34]-[36].

Reducing Computation Costs: MU offers computational
efficiency by updating models based on data changes, avoid-
ing the need for complete retraining and thereby saving
resources [37]-[42].

While companies invest substantially in AI model training,
rising regulatory cautions - especially from bodies in the EU
and the U.S. - indicate potential data and model deletions. For
instance, the U.S. Federal Trade Commission recently directed
Paravision to delete data and associated models derived from
inappropriately gathered facial photos 2. Although retraining

Thttps://link.library.eui.eu/portal/The-Right-To-Be-Forgotten—A-
Comparative-Study/twOVHCyGceDc/
Zhttps://www.wired.com/story/startup-nix-algorithms-ill-gotten-facial-data/
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remains the most straightforward strategy for data point re-
moval, it is also a resource-intensive one, as evidenced by the
significant costs incurred for training models like GPT-3 [43].
This emphasizes the need for cost-effective solutions in the
realm of MU.

Balancing privacy and the right to expression is paramount
to prevent misuse of the “right to be forgotten” [44]. With
emerging technologies like blockchain, this balance becomes
even more intricate. As data privacy concerns surge, compa-
nies (exemplified by Google’s recent policy expansion) are
taking proactive steps. However, the actual challenge lies in
ensuring that AI models are cleansed appropriately once data
points are removed to prevent biases or sensitive information
propagation. MU, although intricate, is pivotal in this endeavor.
As data privacy regulations intensify, the role of MU in
fostering transparent and ethical AI models will become even
more critical.

III. TECHNIQUES AND APPROACHES

This section discusses the taxonomy of MU techniques,
which are categorized as data-centric unlearning approaches,
model-centric unlearning approaches, federated unlearning ap-
proaches, and graph unlearning, as shown in Fig. 1. In this
section, the first research question “What are the most effective
techniques for unlearning data from ML models?” will be
addressed.

A. Data-Centric Unlearning Approaches

1) Data Deletion

The concept of data deletion within the domain of MU
presents a complex and multifaceted challenge, drawing sig-
nificant attention from researchers. This process transcends
the simple removal of data points, aiming to eradicate their
influence on machine learning models while preserving the
models’ utility and ensuring data privacy.

Chourasia et al. [45] highlight the limitations of straight-
forward deletion or retraining approaches, noting that subtle
influences or traces of the deleted data might persist in
retrained models, thereby compromising privacy. They propose
leveraging noisy gradient descent to illustrate the interplay
between deletion privacy and differential privacy, emphasizing
the criticality of existing data’s privacy for the authentic
deletion of removed data. This underscores a pivotal aspect
of MU: genuine data deletion necessitates deep, algorithmic
interventions beyond mere model retraining.

Conversely, Garg et al. [46] provide a structured framework
for data deletion, emphasizing the need for a technically sound
foundation for MU methodologies. Their work not only show-
cases the intricacies involved in ensuring genuine data deletion
but also delves into the legal and ethical dimensions, proposing
a blueprint that could steer future unlearning methodologies.
This emphasizes the importance of harmonizing technical
approaches with regulatory and ethical considerations in MU.

Exploring the vulnerabilities inherent in the data deletion
process, Gao et al. [47] shed light on potential risks associated
with MU. They advocate for a Deletion Compliance frame-
work, highlighting the possibility of exploiting the deletion
process to reconstruct or infer deleted data, thus breaching

privacy. This underscores the necessity for unlearning method-
ologies to be resilient against such exploitations, ensuring both
the genuineness and security of the deletion process.

Focusing on the operational perspective, Wang et al. [48]
and Ginart et al. [49] discuss the computational and practical
complexities involved in updating or ’unlearning’ models
efficiently in response to data deletion requests. They navigate
the delicate balance between model utility, compliance with
deletion requests, and computational resource management,
advocating for unlearning methodologies that are efficient and
effective.

Collectively, these studies navigate the intricate landscapes
of MU and data deletion, highlighting the need to bridge
the gaps between privacy, utility, operational efficiency, and
regulatory compliance. They convey a unified message: data
deletion in MU is a complex, multidimensional challenge
that requires a cohesive, robust, and multifaceted approach.
This approach must integrate algorithmic, operational, legal,
and ethical considerations into a comprehensive methodology,
underscoring the need for holistic research and development
in MU to develop secure, efficient, and comprehensive data
deletion methodologies.

2) Mitigating Data Poisoning

Data poisoning represents a formidable challenge in MU,
where adversaries intentionally corrupt the training dataset
with malicious data to degrade the model’s performance or
induce biased decision-making. This nefarious activity is par-
ticularly problematic in privacy-centric systems or automated
decision-making processes where integrity and accuracy are
paramount.

Consider a dataset D = {(x1,91), (x2,92), -, (Tn,yn)}-
An adversary aims to compromise the model by introducing a
poisoned data point (z/,y’) with the intention of causing the
model to misclassify a specific target label yarger. The resulting
poisoned dataset is denoted as:

D/ = {(xbyl)a (-7727?/2)7 ceey (xiaytarget)w cey (1'n7y7z)} (l)

where (z;, ymrgel) represents the adulterated data point.

The objective is to minimize the model’s loss function
L(6; D’) while ensuring the model’s accuracy on the original
dataset D does not fall below a specified threshold Accg:

min L(0; D’) subject to  Acc(0; D) > Accy )

Data poisoning exploits vulnerabilities in data collection and
processing, injecting data that, while appearing legitimate, is
designed to bias or corrupt the model’s outputs.

Marchant et al. [50] propose a solution using projected gra-
dient descent (PGD) to address data poisoning, underscoring
the challenges of adhering to data protection regulations such
as the right to erasure. They unveil a novel vulnerability in ML
systems—poisoning attacks—that not only compromise accu-
racy but also resemble denial-of-service attacks by impeding
the unlearning process.

Sun et al. [51] explore the threats posed by attackers lever-
aging federated learning (FL) to conduct poisoning attacks
across various nodes. They introduce the Attack on Federated
Learning (AT?F L) framework, which employs systems-aware
optimization techniques to discern and mitigate the effects
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of poisoned data. Their framework demonstrates enhanced
resilience against both direct and indirect poisoning attacks in
a federated multitask learning setting, highlighting its potential
in safeguarding FL systems.

Furthermore, data poisoning is not limited to direct attacks
but can also manifest through adversarial manipulations such
as random label flipping and distance-based label flipping
attacks. Yerlikaya et al. [52] assess the susceptibility of six
ML algorithms to these adversarial tactics, noting variability
in algorithm performance based on dataset characteristics.
Anisetti et al. [53] evaluate the robustness of a hash-based
ensemble approach against data poisoning in tabular datasets,
demonstrating that even modestly sized ensembles can offer
significant protection against poisoning attacks. This suggests
that ensemble methods possess inherent strengths that can be
harnessed to counteract adversarial attacks.

Maabreh et al. [54] propose the development of deep learn-
ing (DL) models optimized with the particle swarm optimizer
(PSO), designed to perform effectively even when confronted
with fake or poisoned data samples. However, they caution
that PSO’s efficacy may be compromised in scenarios where
the dataset is heavily contaminated with malicious data.

These studies collectively emphasize the complexity and

multi-dimensional nature of mitigating data poisoning in MU.
They advocate for a holistic approach that encompasses algo-
rithmic innovations, robust optimization techniques, and the
leveraging of ensemble methods to enhance the resilience of
ML models against sophisticated poisoning attacks, ensuring
the integrity and reliability of automated decision-making
processes in the face of adversarial threats.

3) Data Subsampling and Shuffling

In the realm of MU, safeguarding the integrity of models
and ensuring the privacy of user data necessitate innovative
and robust techniques. Data subsampling and shuffling stand
out as key strategies in this context, offering distinct but
complementary approaches to mitigating risks associated with
data management and model training.

Data Subsampling is particularly advantageous when deal-
ing with extensive datasets or when computational resources
are constrained. This technique involves selecting a random
subset S from the original dataset X = {x1, 2o, ..., 2, } with
corresponding labels Y = {y1,¥2,...,yn}, thereby creating
reduced training sets X’ and Y”:

X'=X\S§,

Y =Y\S. ©)
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Iterative application of subsampling with varying subsets S
can diminish the model’s dependency on the initial training
data, thereby bolstering its resilience, particularly against
Membership Inference (MI) attacks, which aim to deduce
individual data points’ presence in the training dataset [55].

Data Shuffling, on the other hand, aims to obfuscate sen-
sitive information by randomizing the sequence of data points
within the dataset, thus preserving its statistical properties
while protecting individual data entries. For a labeled dataset
X, shuffling reorganizes the data to form a new dataset X’
with the same elements but in a different order. This shuffled
dataset is then partitioned into training and validation sets,
Xy and X4, respectively, upon which the model is trained
and validated. Repeating this shuffling process ensures diverse
model initializations and data presentations, contributing to the
development of models that are more robust and generalizable.

When combined, data subsampling and shuffling provide
a multi-layered defense mechanism for ML models. Sub-
sampling addresses computational efficiency and reduces the
risk of overfitting by minimizing the reliance on extensive
or potentially biased datasets. Shuffling, by disrupting the
data order, further complicates malicious attempts to reverse-
engineer or compromise the dataset, enhancing data security.

The implementation of these strategies is facilitated by
algorithms such as the Fisher-Yates shuffle [56] and utilities
provided in ML libraries like Scikit-learn, which offer practical
tools for executing data shuffling and subsampling efficiently.
Integrating these techniques within a broader MU framework,
especially alongside other strategies like data deletion and
poisoning mitigation, could pave the way for a comprehensive
solution that not only ensures the integrity of the learning and
unlearning processes but also robustly secures both the data
and the models involved. This integrated approach represents
a significant stride towards realizing secure, efficient, and
transparent MU paradigms, aligning with the overarching
goals of user privacy protection and model reliability in the
evolving landscape of machine learning.

4) Inverse Data Generation

Inverse Data Generation (IDG) has emerged as a pivotal
technique within the domain of MU, particularly in its ca-
pacity to synthesize datasets that retain the statistical essence
of the original data while meticulously excluding sensitive
information. This technique leverages the prowess of gen-
erative models to fabricate data points that not only mirror
the characteristics of the original dataset but also ensure the
omission of privacy-compromising elements.

Generative Models in IDG: The cornerstone of IDG lies in
the utilization of advanced generative models, notably Gener-
ative Adversarial Networks (GANSs) [57], Variational Autoen-
coders (VAEs) [58], and Deep Belief Networks (DBNs) [59].
These models are adept at learning the intricate distributions of
the original data and generating new instances that adhere to
these learned distributions, thereby facilitating the creation of
a sanitized dataset that closely resembles the original without
encroaching upon sensitive information.

Zero-shot Machine Unlearning: A notable advancement
in the field is the concept of zero-shot MU, as proposed by
Chundawat et al. [60], which addresses scenarios where the

Data Deletion

[74), [75), [76], [77],
[78]

Data Poisoning

Mitigation [79, 80, 81, 82, 83, 84]

{ Data Sampling and
Shuffling

Inverse Data
Generation

Fig. 2. Data-centric Unlearning Approaches

original data samples are not accessible. The authors intro-
duce innovative solutions centered around error-minimizing-
maximizing noise and gated knowledge transfer, aiming to
eradicate the model’s reliance on the data slated for unlearning
while maintaining the model’s performance on the residual
data. This approach is particularly significant as it offers a
robust defense mechanism against potential model inversion
attacks and membership inference attacks, thereby enhancing
the privacy-preserving capabilities of MU methodologies.

As MU continues to evolve, the exploration of IDG and
its integration with advanced generative models will play
a crucial role in shaping the future of privacy-preserving
machine learning. The ability to generate data that is both
representative of the original dataset and devoid of sensitive
attributes will not only enhance the unlearning process but also
pave the way for more secure and adaptable Al systems.

B. Model-Centric Unlearning Approaches

1) Transfer Learning

Transfer learning emerges as a pivotal strategy in MU,
offering a pathway to efficiently repurpose the knowledge
acquired by one ML model to facilitate or expedite the training
of another model. This approach harnesses the capabilities of
a pre-trained model, typically a Deep Neural Network (DNN),
to serve as a foundational basis for a new model tailored to a
different, yet related, task [61].

MU involves the strategic removal of specific training data
from a model, simulating a scenario where the model is
oblivious to the said data. This process poses significant com-
putational challenges, especially when retraining models from
scratch is deemed impractical due to resource constraints or
the real-time demands of certain applications. In this context,
transfer learning not only offers a solution to these challenges
but also enhances the efficiency and applicability of MU across
various contexts.

Baumhauer et al. [62] introduce an innovative approach
to modify and cleanse classification models by employing
a method termed “linear filtration.” This technique involves
adjusting the model’s output predictions through a series of
mathematical operations, effectively removing unwanted class-
specific information. This process, coined as “sanitize classifi-
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cation,” requires minimal computational resources and can be
applied in a ”black-box” manner, maintaining the model’s in-
ternal workings concealed while ensuring the effective removal
of sensitive information. Their methodology’s practicality is
further demonstrated through its resilience against attacks
aimed at compromising ML model privacy.

SISA Training and Transfer Learning: Bourtoule et
al. [63] explore the synergy between MU and Sharded, Iso-
lated, Sliced, and Aggregated (SISA) training, revealing that
constraining individual data points’ influence during training
can significantly accelerate the unlearning process. This syn-
ergy is particularly beneficial for algorithms such as stochastic
gradient descent used in DNNs, where optimizing performance
is crucial. The integration of SISA training with transfer
learning has shown to enhance retraining speed by 1.36 times
for complex tasks like ImageNet classification, albeit with a
slight compromise in accuracy.

Kochno et al. [42] delve into the effects of SISA un-
learning within contexts characterized by imbalanced class
distributions and a correlation between class membership and
unlearning probability. Their findings suggest that while SISA
training can expedite unlearning, it may disproportionately
affect the performance of minority classes. They propose that
in scenarios with significant class imbalance, simpler strategies
such as down-sampling could outperform SISA in maintaining
unlearning efficiency without sacrificing model fairness.

Dynamic Selection in MU: Zhou et al. [64] propose
the Dynamically Selected Mix-up (DSMixup) strategy, build-
ing upon the SISA framework to enhance MU’s efficiency.
DSMixup dynamically selects mix-up data augmentation to
merge shards requiring retraining, thereby reducing the need
for comprehensive retraining. This approach not only boosts
unlearning efficiency but also maintains system stability.
Through empirical evaluations, DSMixup has demonstrated
superior performance over traditional SISA in both unlearning
cost and overall model performance.

In essence, transfer learning stands as a cornerstone in the
evolution of MU, offering a robust framework for repurposing
pre-existing model knowledge to facilitate the unlearning
process. Its integration with MU methodologies like linear
filtration, SISA training, and dynamic selection underscores
its potential to address the computational challenges inherent
in MU, paving the way for more efficient, scalable, and
adaptable unlearning processes in the ever-evolving landscape
of machine learning.

2) Model Pruning

Model pruning stands as a critical technique within the
domain of ML, primarily aimed at optimizing model effi-
ciency by judiciously removing non-essential parameters, thus
preserving computational resources without significantly com-
promising the model’s performance [65]. Within the context
of MU, model pruning assumes a pivotal role in facilitating
the removal of sensitive or private data from a trained model,
ensuring that the model’s accuracy remains largely intact.

Pruning Techniques: The essence of model pruning lies
in the iterative elimination of weights or neurons considered
least crucial for the model’s output. This selection is typically
based on specific criteria, such as the magnitude of weights

or their contribution to the model’s output predictions [66].
Among the array of pruning techniques, weight magnitude
pruning and sensitivity-based pruning are notably prevalent.
Weight magnitude pruning targets weights with the smallest
absolute values for elimination, while sensitivity-based prun-
ing focuses on removing weights whose absence minimally
impacts the model’s output, thereby preserving the integrity
and performance of the model post-pruning.

Pruning in Federated Learning: Wang et al. [67] introduce
an innovative ML unlearning method tailored to comply with
the General Data Protection Regulation (GDPR), particu-
larly focusing on the removal of specific categories from
trained Convolutional Neural Network (CNN) models within
a Federated Learning (FL) framework. By employing Term
Frequency - Inverse Data Frequency (TF-IDF), the federated
server evaluates the relevance scores between channels and
categories, facilitating the construction of a pruner that targets
the most discriminative channels associated with the category
in question. This approach underscores the significance of
model pruning as an integral component of FL, aligning with
both legal and ethical standards.

Pruning Strategies for Unlearning: Jia et al. [68] pro-
pose a novel “prune first, then unlearn” paradigm, positing
that initiating the unlearning process on an already sparse
model can minimize unlearning errors and enhance the over-
all efficiency of MU. Their discussion encompasses various
pruning methodologies, including one-shot magnitude pruning
(OMP) [69], which involves a single iteration of pruning based
on weight magnitudes, pruning at random initialization [70],
which suggests pruning weights before the commencement of
model training, and iterative magnitude pruning (IMP) [71],
a method that combines pruning with concurrent training to
iteratively refine the model’s sparsity. They advocate for the
selection of a pruning technique that minimally relies on the
dataset intended for forgetting, thus ensuring that the prun-
ing process does not compromise the model’s generalization
capabilities.

Model pruning emerges as an indispensable tool in the
arsenal of MU techniques, offering a strategic pathway to
optimize model efficiency while safeguarding data privacy
and compliance with regulatory standards. The integration of
model pruning within MU, particularly in conjunction with
advanced methodologies like federated learning, opens new
vistas for developing ML models that are not only efficient
and accurate but also adaptable and compliant with evolving
data privacy norms. As the field of ML continues to evolve,
the role of model pruning in facilitating effective and efficient
unlearning processes is poised to become increasingly signif-
icant, heralding a new era of privacy-conscious and resource-
efficient ML models.

3) Knowledge Distillation

Knowledge distillation emerges as a strategic approach in
MU, aimed at condensing the knowledge of complex, large-
scale models into more compact and efficient counterparts
while preserving the essence of their predictive capabili-
ties [72]. This technique is predicated on the paradigm of a
teacher-student relationship, wherein a smaller, less complex
model (the student) is trained to mimic the predictive behavior
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exhibited by a larger, pre-trained model (the teacher), thereby
encapsulating the core knowledge in a more resource-efficient
framework [73].

Distillation Process: The distillation process commences
with the training of the teacher model on an extensive dataset,
post which it generates soft targets for the student model.
These soft targets, representing probability distributions over
the output space of the teacher model, encapsulate richer
information than traditional hard labels, thereby facilitating
a more nuanced learning experience for the student model.
The student model’s training objective is to minimize the
divergence between its predictive probabilities and the soft
targets derived from the teacher model, effectively absorbing
the distilled knowledge while maintaining a reduced compu-
tational footprint.

Knowledge Distillation in Federated Unlearning: Wu et
al. [74] introduce a pioneering federated unlearning method-
ology that leverages knowledge distillation to eliminate the
influence of specific clients from a global model post-federated
training. This approach utilizes the global model as a teacher
to guide the training of an unlearning model, effectively
mitigating the attacker’s influence while preserving the in-
tegrity and performance of the global model. This method
offers significant advantages, including the reduction of client-
side computational demands and the enhancement of model
generalization, thereby bolstering the robustness and efficacy
of the federated learning ecosystem.

Knowledge Distillation for Heterogeneous Learning:
Zhu et al. [75] propose the FedLU framework, tailored for
heterogeneous knowledge graph (KG) embedding learning
and unlearning within a federated setting. By employing
mutual knowledge distillation, the framework facilitates the
bidirectional transfer of knowledge between local and global
levels, enabling the systematic unlearning of specific knowl-
edge components from local embeddings. This methodology
underscores the versatility of knowledge distillation in man-
aging data heterogeneity and fostering coherent knowledge
integration and unlearning across diverse data partitions.

Mitigating Backdoor Attacks: Addressing the challenge
of backdoored Deep Neural Networks (DNNs), Li et al. [76]
present the Neuron Attention Distillation (NAD) framework,
designed to neutralize backdoor triggers embedded within
DNNs. NAD employs a fine-tuning process guided by a
teacher network, ensuring the alignment of intermediate-layer
attentions between the teacher and the backdoored student
network. This alignment, achieved through fine-tuning on a
subset of clean training data, effectively diverts the student
network’s attention away from the malicious triggers, thereby
restoring the network’s integrity. The empirical validation of
NAD demonstrates its superior efficacy in mitigating backdoor
influences compared to conventional fine-tuning and pruning
techniques.

Knowledge distillation stands as a cornerstone in the ad-
vancement of MU, offering a pathway to encapsulate and
transfer essential knowledge across models in a resource-
efficient manner. Its application spans federated unlearning,
heterogeneous learning environments, and the mitigation of
backdoor attacks [77], highlighting its versatility and po-

tential in enhancing the privacy, efficiency, and security of
machine learning models. As the landscape of MU continues
to evolve, knowledge distillation is poised to play an integral
role in shaping the next generation of privacy-preserving and
resource-efficient machine learning paradigms.

4) Model Inversion

Model inversion has emerged as a sophisticated technique
within MU, primarily aimed at elucidating sensitive informa-
tion encoded within ML models. This technique capitalizes
on the capacity to reverse-engineer a model’s predictions to
infer the characteristics of the underlying training data, thereby
posing potential risks to data privacy and security [78].

Inversion Mechanism: The crux of model inversion lies
in manipulating a model’s inputs in such a manner as to
elicit a particular output, which, in turn, sheds light on the
original input data’s attributes. This process essentially enables
the extraction of confidential information from the model,
potentially compromising data privacy. For instance, attackers
can utilize model inversion to deduce specific characteristics
or features that a model heavily relies on for classification
tasks, subsequently exploiting this knowledge to circumvent
model predictions or to reconstruct sensitive data.

Mitigating Inversion Attacks: To counteract the threats
posed by model inversion attacks, various defensive strategies
have been proposed, including the adoption of differential
privacy measures, regularization techniques, and adversarial
training methodologies. These approaches aim to fortify model
resilience against inversion attempts, thereby safeguarding sen-
sitive data from unauthorized reconstruction or inference [78].

Innovative Inversion Approaches: Graves et al. [79] in-
troduce a refined inversion attack strategy, extending beyond
conventional model inversion paradigms. Their methodology
commences with an initial feature vector assigned null values,
subsequently iteratively modified to mirror what the model
perceives as representative of a given class. This iterative
process is augmented with periodic application of image pro-
cessing techniques, enhancing the fidelity of the reconstructed
data. Such advancements underscore the evolving complexity
of inversion attacks, necessitating continual enhancement of
defensive measures.

Few-shot Unlearning via Model Inversion: Yoon et
al. [80] explore the application of model inversion in the
context of few-shot unlearning, presenting a novel framework
that leverages inversion techniques to approximate and sub-
sequently eliminate specific data distributions from a model.
This approach not only facilitates the efficient unlearning of
targeted data but also introduces a mechanism for identifying
and filtering out noisy samples, thereby enhancing the preci-
sion of the unlearning process.

The exploration of model inversion within MU encapsulates
a broad spectrum of techniques and methodologies, aimed at
both exploiting and defending against inversion attacks. The
strategies encompass not only the direct inversion of model
predictions but also the utilization of inversion techniques to
facilitate targeted unlearning and data extraction processes, as
illustrated in Fig. 3.

Model inversion represents a critical aspect of MU, offering
both challenges and opportunities in the realm of data privacy
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Fig. 3. Model-centric Unlearning Approaches

and model integrity. As ML models continue to pervade di-
verse domains, the imperative to develop and refine inversion-
resistant models becomes increasingly paramount. The ongo-
ing advancements in inversion techniques and countermeasures
herald a dynamic and evolving landscape in MU, underscoring
the need for vigilant and innovative approaches to safeguard
sensitive data within ML models.

C. Federated Unlearning

Federated Unlearning represents a cutting-edge paradigm
within the broader MU domain, focusing on the meticulous
erasure of specific data contributions from models trained in
a Federated Learning (FL) framework, while simultaneously
preserving the model’s overall functionality and accuracy. This
subsection delves into the multifaceted methodologies and
frameworks that embody federated unlearning, as summarized
in Table I, each tailored to harmonize the triad of privacy,
efficiency, and model performance.

Enhancing Data Privacy: A pivotal aspect of federated
unlearning is its commitment to bolstering data privacy with-
out compromising the efficacy of the model. Illustrative of
this commitment is the FedME2 framework [81], which pio-
neers a pathway to privacy-centric unlearning by orchestrating
data forgetting with model accuracy within Digital Twins for
Mobile Networks (DTMN) via a nuanced multi-loss training
approach. Complementarily, FedRecovery [82] leverages dif-
ferential privacy to obfuscate a client’s data footprint from
the global model, circumventing the need for retraining and
ensuring a seamless congruence between unlearned and re-
trained models. These innovative methodologies underscore
the quintessential challenge federated unlearning aims to ad-
dress: ensuring robust privacy protections while minimizing
the computational demands associated with model retraining.

Optimizing Resource Utilization: In scenarios character-
ized by limited server storage or computational resources,
the significance of efficient unlearning mechanisms becomes
paramount. For instance, the Subspace-based Federated Un-
learning (SFU) approach [83] negates the necessity for addi-
tional storage by conducting gradient ascent in the orthogonal
complement of input gradient spaces, effectively nullifying a

target client’s influence on the model. Similarly, the Federated
Clusters method [84] significantly expedites the unlearning
process, offering a substantial reduction in time compared to
traditional retraining methods. These strategies highlight the
critical need for judicious resource management, a cornerstone
for achieving scalable federated unlearning solutions.

Leveraging Bayesian Methodologies: Bayesian ap-
proaches offer a structured framework for federated unlearn-
ing, ensuring a systematic and principled removal of data
while maintaining model integrity. The Bayesian Variational
Federated Learning and Unlearning technique [85] exempli-
fies this approach by employing federated variational infer-
ence to facilitate efficient unlearning via local free energy
minimization within exponential-family models. Additionally,
FORGET-SVGD [86] introduces a particle-based Bayesian
unlearning method, which enacts local updates on agents
desiring to unlearn, punctuated by communication rounds
with a parameter server, thereby providing a non-parametric
strategy for federated unlearning.

Assuring Verifiable Data Removal: The aspect of ensuring
verifiable and credible data removal, without impinging on
model performance, is a critical facet of federated unlearning.
The Forgettable Federated Linear Learning (2F2L) frame-
work [87] epitomizes this by employing a linear approximation
on model parameters and introducing an efficient removal
strategy that constrains the variances in model weights, thereby
ensuring reliable data removal. This facet of providing val-
idated and certified unlearning is paramount for upholding
the reliability and trustworthiness of federated unlearning
processes.

Guaranteeing Execution of Unlearning: The VERIFI
framework [88] represents a seminal advancement in federated
unlearning by not only facilitating data removal but also
enabling the verification of the unlearning effect, thus ensuring
both the execution and quantifiability of the unlearning pro-
cess. This framework empowers departing participants with
the right to verify (RTV) the efficacy of unlearning, thereby
instilling a tangible assurance in the “right to be forgotten.”

Adaptive Learning Mechanisms: The FRAMU frame-
work [35] adopts a holistic stance by integrating adaptive
learning mechanisms with privacy preservation strategies and
optimization techniques, ensuring the model’s adeptness in
unlearning obsolete or irrelevant data, thereby supporting
continual model evolution in accordance with dynamic data
landscapes without compromising privacy norms.

The exploration of federated unlearning traverses through
the intricate challenges of ensuring privacy, computational
efficiency, and model integrity, weaving a comprehensive nar-
rative that shapes the future trajectory of federated unlearning
within the domain of privacy-preserving ML. This dynamic
landscape beckons for innovative, balanced solutions that
adeptly navigate the complexities of data privacy and efficient
model unlearning.

D. Graph Unlearning

Graph unlearning, as an emerging field within MU, addresses
the complex challenge of retracting specific nodes, edges,
or attributes from models trained on graph-structured data.
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TABLE I
SUMMARY OF FEDERATED UNLEARNING FRAMEWORKS

| Framework | Description | Reference |

Managing data forgetting and
model accuracy in DTMN through [81]
a multi-loss training approach.

FedME2

Utilizes differential privacy to erase
a client’s data influence without
retraining, ensuring statistical
indistinguishability between models.

FedRecovery [82]

Performs gradient ascent in orthogonal
space of input gradient spaces, negating
a target client’s contribution without
additional storage.

SFU [83]

Accelerates the unlearning process,
providing a significant speed-up [84]
compared to retraining.

Federated Clusters
Method

Utilizes federated variational inference
solutions, offering an efficient unlearning
mechanism via local free

energy minimization.

Bayesian Variational
Federated Learning
and Unlearning

(85]

Employs a particle-based Bayesian
unlearning method, providing a non-
parametric strategy for

federated unlearning.

FORGET-SVGD [86]

Ensures certified data removal by
employing a linear approximation
of the model parameter space [87]
and introducing an efficient
removal strategy.

2F2L

Facilitates federated unlearning and
enables verification of the unlearning
the effect, ensuring both execution and
quantifiability of removal of a
participant’s gradients from the

global model.

VERIFI [88]

Amalgamates adaptive learning
mechanisms, privacy preservation, and
optimization strategies for model [35]
evolution without infringing upon
privacy while unlearning outdated data.

FRAMU

Given the inherent interconnectedness of graph data, graph un-
learning requires nuanced approaches that ensure the efficient
removal of data without degrading the model’s performance.
This section explores the forefront methodologies and frame-
works devised to address these challenges, as summarized in
Table II.

Innovative Unlearning Methods: Leading the charge in
graph unlearning are methodologies like PROJECTOR and
GRAPHEDITOR, developed by Cong et al. [89], [90]. PRO-
JECTOR employs projection techniques to effectively erase
specific nodes from GNNSs, ensuring that the unlearned node
features are completely purged from the model parameters.
Conversely, GRAPHEDITOR offers a dynamic solution to
graph unlearning by facilitating various operations such as
node/edge deletion, addition, and node feature modification,
thereby showcasing the adaptability required in graph unlearn-
ing [89], [90].

Guaranteeing Certified Unlearning: The realm of certified
graph unlearning has witnessed significant contributions, with
frameworks providing theoretical guarantees for unlearning
processes. Noteworthy among these is the CEU framework,
which introduces a single-step update methodology for the

removal of specific edges, backed by robust theoretical un-
derpinnings [91]. Such certified approaches are crucial for
applications requiring verifiable assurances of data removal.

Diverse Approaches to Graph Unlearning: The diver-
sity in graph unlearning methodologies is further exemplified
by GUIDE, FedLU, and GNNDELETE. GUIDE focuses on
inductive learning and unlearning within dynamic graphs,
emphasizing the need for adaptable models in evolving graph
environments [92]. FedLU, on the other hand, addresses the
unlearning challenges in federated settings for heterogeneous
KG embeddings, underscoring the complexities of data het-
erogeneity in graph unlearning [75]. GNNDELETE introduces
optimization strategies for node and edge deletions, ensuring
the preservation of learned knowledge post-unlearning [93].

Exploring Alternative Perspectives: Frameworks like GST
and GIF provide alternative viewpoints on graph unlearning.
GST, or Graph Scattering Transform, focuses on the math-
ematical robustness of unlearning processes, while GIF, or
Graph Influence Function, highlights the role of influence
functions in graph unlearning [94], [95]. These perspectives
enrich the discourse on graph unlearning, offering novel in-
sights into the unlearning mechanisms.

GraphEraser: A Paradigm Shift: GraphEraser emerges
as a paradigm-shifting framework, emphasizing efficient par-
titioning and aggregation mechanisms for unlearning in graph
data. This framework illustrates the potential of MU in ad-
dressing the privacy and integrity concerns inherent in graph-
structured data [96].

These methodologies and frameworks signify a pivotal
evolution in graph unlearning, each contributing unique solu-
tions to the challenges posed by graph-structured data. The
amalgamation of these diverse approaches underscores the
multidimensional nature of graph unlearning, driving forward
the agenda of privacy preservation and the “right to be
forgotten” in the context of Graph Neural Networks (GNN).

IV. ADVANCED METRICS FOR EVALUATING MACHINE
UNLEARNING

Evaluating the efficacy and integrity of MU methodolo-
gies necessitates a comprehensive set of metrics that cater
to various aspects of model performance and data privacy
post-unlearning. This section delineates an array of advanced
metrics, each offering unique insights into the MU process,
thereby addressing the critical research question: “How can
the impact of unlearning on model performance and privacy
be measured and evaluated comprehensively?” The metrics
discussed herein are summarized in Table III, offering a
holistic view of their applications and implications within
the MU paradigm. Supplementary Material provides a curated
list of publicly accessible datasets, detailing their categories,
instances, attributes, tasks, and citation frequency, facilitating
empirical evaluations.

Accuracy and Precision: Accuracy, a fundamental metric,
offers a straightforward assessment of a model’s predictive
performance post-unlearning [98]. While its simplicity is com-
mendable, it may not fully capture the nuanced effects of
unlearning on specific data classes or distributions. Precision,
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TABLE 11
SUMMARY OF GRAPH UNLEARNING FRAMEWORKS

‘ Topic ‘ Methodologies ‘ Reference ‘
1. PROJECTOR - Uses projection techniques to
remove specific nodes, ensuring no trace in
Unique model parameters. [89], [90]
Methods 2. GRAPHEDITOR - Manages dynamic graphs g
and supports operations like node/edge deletion
and feature updates.
Emphasis on theoretical insights and performance
. uarantees in unlearning.
Certified (gZEU framework pmvid%:s a single-step update [91], [97]
Guarantees . . . .
mechanism with theoretical support for removing
specific edges.
1. GUIDE - Inductive graph learning/unlearning in
dynamic graphs.
Diverse 2. FedLU - Federated learning for KG embedding, [751, [92]
Approaches addressing data heterogeneity. [93]
3. GNNDELETE - Optimization strategies for
node/edge deletions without loss of knowledge.
1. GST (Graph Scattering Transform) - Focus on
Alternative mathematical robustness in unlearning. [94], [95]
Perspectives | 2. GIF (Graph Influence Function) - Highlights g
influence functions in unlearning.
. GraphEraser - Stresses efficient partitioning
Innovative . R .
and aggregation mechanisms for unlearning [96]
Framework .
in graph data.

on the other hand, provides a finer granularity by measuring
the model’s ability to correctly predict positive instances
among all predicted positives, which becomes crucial in im-
balanced datasets where specific classes are more sensitive to
unlearning.

Anamnesis Index (AIN): The Anamnesis Index quantifies
the extent to which a model retains information about un-
learned data, serving as a direct measure of the unlearning ef-
fectiveness [99]. This metric is particularly relevant in scenar-
ios where regulatory compliance demands verifiable evidence
of data removal. However, it might not fully encapsulate the
model’s retained knowledge on the remaining dataset.

Internal Representation Distances: Metrics such as Ac-
tivation Distance and Layer-wise Distance delve into the
model’s internal state changes post-unlearning, shedding light
on the structural and functional modifications within the
network [98]. These metrics are invaluable for understanding
the deeper implications of unlearning on model architecture.
Their complexity, however, might obscure their interpretability
in relation to direct model output or user-facing performance
metrics.

Membership Inference (MI) Attacks Vulnerability:
Assessing the model’s susceptibility to MI attacks post-
unlearning is crucial for ensuring data privacy [28]. This metric
evaluates the model’s propensity to leak information about
whether a specific data point was part of the training set, a
critical aspect in the context of privacy-preserving MU. While
highly relevant for security assessments, this metric might not
directly correlate with the model’s predictive accuracy.

Behavioral Divergence Metrics: Metrics like JS-
Divergence and Zero Retrain Forgetting Metric offer
quantitative measures to evaluate the divergence in model
behavior before and after unlearning [100]. These metrics
are instrumental in assessing the stability and consistency of

model predictions, ensuring that unlearning does not lead to
erratic or significantly altered model behavior.

Epistemic Uncertainty: Quantifying epistemic uncertainty
post-unlearning provides insights into the model’s confidence
in its predictions, reflecting the impact of unlearning on
the model’s knowledge base [101]. This metric is especially
pertinent in high-stakes applications where decision-making
relies on model certainty. However, the computation of un-
certainty metrics can be resource-intensive and may require
sophisticated probabilistic models.

Specialized Unlearning Metrics: Metrics such as Fisher
Forgetting and Variational Forgetting delve into the model’s
ability to effectively “forget” specific tasks or data points,
crucial for targeted unlearning scenarios [102], [103]. These
metrics are tailored to assess the model’s resilience to adversar-
ial manipulations and its capacity for task-specific unlearning.
Their specialized nature, however, may limit their applicability
across diverse unlearning contexts.

In essence, the selection and application of evaluation
metrics in MU must be context-driven, taking into account
the specific goals of unlearning, the nature of the data and
model, and the regulatory and ethical standards governing data
privacy. The comprehensive assessment facilitated by these
metrics enables a nuanced understanding of MU’s impact,
guiding the development of more robust, efficient, and privacy-
preserving unlearning methodologies.

V. CHALLENGES AND POTENTIAL SOLUTIONS

The landscape of MU is riddled with complex challenges,
necessitating innovative solutions to ensure robust and ef-
fective unlearning mechanisms. This section delves into the
prevalent challenges within MU, offering insights into poten-
tial strategies for addressing these hurdles, thereby answering
the pivotal research question: “What are the predominant
challenges in MU, and how can these challenges be effectively
addressed?” Figure 4 provides a visual roadmap linking these
challenges to their corresponding solutions.
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Fig. 4. A Roadmap of Machine Unlearning Challenges and Corresponding
Solutions
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TABLE III
MACHINE UNLEARNING - EVALUATION METRICS

Metric Description Equation References
) The proportion of correctly classified _ TPLTN
‘ Accuracy ‘ instances in the test set Accuracy = rprTNLFPFFN (981
. Measures the extent to which unlearned ) .
‘ Anamnesis Index ‘ data has been forgotten ‘ AI(T) = (Ace(M,T) — Ace(M — T,T))/Acc(Naive, T) ‘ [99] ‘
Activation Measures the difference between the
‘ Distance ‘ activations of two models on a given input ‘ AD(A(z), B(x)) = ||A(z) — B(2)]]2 ‘ 8] ‘
Layer-wise Measures the difference between the _ "
‘ Distance ‘ weight matrices of two models ‘ LWDy =W, = Willr [104]
Membership Measures the degree to which an attacker can
Inference infer whether a particular instance was included N/A [28]
(MI) Attacks in the training data
. Jensen-Shannon divergence between the predictions Cns .
‘ JS-Divergence ‘ of the unlearned and retrained model JS(M(z), Td(xz)) = 0.5 x KL(M(x) || m)+ 0.5 x KL(Td(z) || m) | [100]
Zero Retrain Measures the change in accuracy on the unlearned -
. . data after retraining the model without the data ZFR=1- LS JS(M(z;), Td(z;)) [100]
Forgetting Metric nyg £i=0
to be unlearned
Reconstruction Measures the difference between the original input _
‘ Error ‘ and the reconstructed input RE = ||z = f(g(2))]|2 ([105]
Ensures that all traces of the unlearned data have
‘ Completeness ‘ been removed from the model ‘ NA ‘ (106] ‘
Unlearn time substantial number<of ep()?hs for the network to NA 71
unlearn the forget samples
Relearn time substantial anmber of epochs mf tlhe unlearned NA (7], [104]
model to achieve accuracy of original model
. . Measures the model’s uncertainty regarding its 1/i(0: D i i(6: D
5‘:5:::;5[ predictions due to a lack in knowledge efficacy(6; D) = { /U8; D), if i . )>0 [101]
Y (model uncertainty) 00, otherwise
Model Inversion Quantifies the success of reconstructing input NA [102]
attack data from model outputs by an adversary
. o Measures the forgetting of task A while 2y -t
‘ Fisher Forgetting ‘ learning task B using Fisher Information S(w)=w+ ()‘J h) s [103]
Variational Quantifies forgetting by measuring the variational
Forgetting distance between posterior distributions of the VF = Dgr(q(0|Doia)||a(6]Dnew)) 98]

parameters before and after learning new data

A. Complexities of Attack Sophistication

As MU evolves, so does the sophistication of potential ad-
versarial attacks aimed at compromising the privacy and
integrity of ML models. These advanced threats often com-
bine techniques such as data poisoning, model inversion,
and adversarial attacks to exploit vulnerabilities within MU
mechanisms [107], [108]. Addressing the challenge of attack
sophistication in MU encompasses a multifaceted approach,
focusing on enhancing the resilience of MU techniques against
a diverse array of sophisticated adversarial strategies.

Evolving Attack Strategies: Adversaries continually refine
their techniques, crafting more complex and stealthy attacks
that can bypass conventional MU defenses, challenging the
detection and mitigation capabilities of these systems [34].
Adaptive Adversaries: Attackers adeptly modify their strate-
gies in response to the deployment of new MU defenses,
creating a dynamic adversarial landscape that necessitates
continuous adaptation from MU mechanisms [109].

Stealth and Subtlety of Attacks: Advanced attacks are
designed to be less detectable by MU systems, subtly manip-
ulating data or model behavior in ways that evade traditional
detection methods [110].

Robustness Limitations: Current MU techniques may lack
the robustness required to counteract sophisticated attacks,
especially those exploiting specific vulnerabilities in the
unlearning processes [111].

Addressing the nuanced challenge of attack sophistication
necessitates the development of MU defenses that are not only
robust but also adaptive, capable of evolving in tandem with
the changing adversarial tactics.

Adversarial Training: Enhancing the resilience of ML mod-
els through adversarial training, which involves incorporating
adversarial examples into the training process, thereby forti-
fying the model against potential attacks [112].
Development of Robust MU Techniques: Crafting MU
mechanisms that can withstand sophisticated attacks, possi-
bly by integrating advanced adversarial training methods to
bolster their efficacy against evolving threats [113].
Model-Agnostic Approaches: Leveraging techniques that
are independent of specific model architectures to detect and
mitigate biases or vulnerabilities, thereby offering a broader
defense mechanism against complex attacks [114], [115].
Diversifying Training Data: Ensuring a wide-ranging and
diverse dataset for training to reduce the model’s susceptibil-
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ity to targeted attacks, thereby enhancing the robustness of
MU processes [116].

Continuous Re-evaluation and Updating: Implementing
a dynamic framework for the regular assessment and en-
hancement of MU techniques, ensuring they remain effec-
tive against the continuously evolving strategies of adver-
saries [117].

B. Lack of standardization

The absence of standardization in the application of MU
techniques presents a significant challenge, hindering the
ability to effectively compare, evaluate, and validate different
approaches within the field [41], [118]. This gap in standard-
ization spans across various dimensions, including method-
ologies, evaluation metrics, data and model compatibility,
ethical considerations, and the interpretability of unlearning
outcomes. This lack of standardization can pose challenges
across several areas:
Diverse Methodologies: The field currently lacks a univer-
sally accepted framework for implementing unlearning, lead-
ing to a proliferation of disparate techniques and algorithms.
This diversity complicates the comparison and reproduction
of results across different studies, potentially resulting in
inconsistent outcomes [118].
Evaluation Metrics: The evaluation of MU techniques is
encumbered by the lack of standardized benchmarks and
metrics. This makes it challenging to objectively assess the
effectiveness, fairness, and robustness of various unlearning
methods [41].
Data and Model Compatibility: The absence of a stan-
dardized approach for ensuring compatibility across different
data types, ML models, and applications complicates the
adaptation of unlearning methods to diverse contexts [119].
Ethical and Transparency Concerns: MU raises ethical
issues related to fairness, accountability, and transparency.
The lack of standardized ethical guidelines can lead to
varied interpretations and implementations, potentially re-
sulting in biases or unintended consequences in unlearning
outcomes [120], [121].
Interpretability and Explainability: There is a notable
absence of standardized methods for explaining the modifica-
tions made by unlearning techniques to ML models, which is
crucial for ensuring the trustworthiness and comprehensibility
of the unlearning process [122].

Addressing the challenge of standardization in MU ne-
cessitates collaborative efforts aimed at developing common
frameworks, benchmarks, and guidelines, thereby fostering
a cohesive and transparent approach to unlearning. Some
potential approaches to promote standardization in the MU
community include:

Community-wide Collaborations: Fostering dialogue and
cooperation among researchers, practitioners, and stakehold-
ers to establish consensus on standards, guidelines, and
best practices for MU. Such efforts could include dedicated
workshops, symposiums, and forums to facilitate knowledge
exchange [123].

Benchmark Datasets and Evaluation Metrics: Creating
benchmark datasets and defining clear evaluation metrics

tailored for MU. These benchmarks will enable the objective
assessment of unlearning methods and facilitate comparisons
across different studies [124].

Standardized Reporting: Advocating for transparent and
uniform reporting of unlearning studies, encompassing
methodologies, algorithms, datasets, and evaluation metrics
used. This approach will enhance the reproducibility and
comparability of research findings in the MU domain [125].
Ethical Guidelines: Developing comprehensive ethical
guidelines that address the unique challenges posed by
MU, including considerations of fairness, accountability,
and transparency. These guidelines can guide practitioners
in addressing ethical concerns associated with unlearning
techniques [126], [127].

Interpretability and Explainability Frameworks: Estab-
lishing standardized methods for interpreting and explaining
the outcomes of unlearning processes. Techniques for model
introspection, visualization, and explanation can contribute
to a better understanding and communication of unlearning
results [128].

Documentation and Dissemination: Encouraging thorough
documentation and open sharing of unlearning methodolo-
gies, techniques, and findings. Open repositories and code li-
braries can promote knowledge sharing and the development
of common practices in MU [129].

Cross-disciplinary Collaboration: Engaging with adjacent
fields such as machine learning, ethics, and fairness research
to leverage established standards and practices. This cross-
pollination can enrich the MU field with proven methodolo-
gies and foster interdisciplinary collaboration [130].
Education and Training Initiatives: Integrating MU con-
cepts, methodologies, and best practices into educational and
training programs. This effort will cultivate a shared under-
standing and widespread adoption of standardized approaches
within the MU community [131], [132].

Engagement with Industry and Regulatory Bodies: In-
volving industry stakeholders and regulatory authorities in
the standardization process to ensure the practical relevance
and regulatory compliance of MU standards. This collabora-
tion can facilitate the responsible and ethical application of
unlearning techniques in real-world scenarios [133], [134].

C. Lack of transferability

The challenge of transferability in MU encompasses the diffi-
culty in applying unlearning techniques developed for specific
models or datasets to other contexts effectively. This lack of
transferability hampers the scalability and adaptability of MU
methods across diverse ML models and real-world scenar-
ios [135], [136]. Several factors contribute to this challenge:

Model-Specific Biases: The efficacy of MU techniques can
vary significantly across different ML models due to model-
specific biases. Techniques optimized for deep neural net-
works, for instance, may not be directly applicable to simpler
models like decision trees [137], [138].

Dataset-Specific Biases: The success of unlearning ap-
proaches can depend heavily on the characteristics of the
training data. Techniques designed for a particular dataset
may lose effectiveness when applied to datasets with different
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distributions or types of biases [31], [139].
Domain-Specific Challenges: MU methods developed
within a specific domain (e.g., healthcare or finance) might
not translate well to other domains, which could have unique
data distributions and domain-specific biases [30], [140].
Lack of Labeled Data: The transferability of MU techniques
is also hindered by the scarcity of labeled data in new
domains or datasets, which is crucial for training, validating,
or fine-tuning unlearning models [141].
Overcoming the transferability challenge in MU involves
developing strategies that enhance the adaptability of unlearn-
ing techniques across various models, datasets, and domains.
Some potential approaches to mitigate this challenge include:
Domain Adaptation: Leveraging domain adaptation and
generalization methods can facilitate the adaptation of MU
techniques to new domains, even with limited labeled data in
the target domain. These methods focus on bridging the gap
between source and target domains, enhancing the applica-
bility of unlearning methods across different contexts [142],
[143].
Transfer Learning: Employing transfer learning strategies
can enable the transfer of unlearning knowledge from one
model or dataset to another. This approach can be particularly
effective in utilizing pre-trained models or algorithms to
adapt unlearning techniques to new models with varying
architectures.
Development of Transferable Unlearning Techniques:
Crafting debiasing and unlearning methods with built-in
transferability, potentially through the incorporation of gen-
eralization principles or domain-independent features, can
facilitate their application across diverse settings. Model-
agnostic approaches can also contribute to this adaptability,
ensuring that unlearning techniques remain effective irrespec-
tive of model architecture [144], [145].
Exploration of Unsupervised and Weakly Supervised
Methods: Investigating unsupervised or weakly supervised
MU techniques can mitigate the dependency on labeled data,
enhancing the transferability of these methods. Approaches
such as unsupervised learning or self-supervised learning
can provide viable pathways for applying MU techniques in
scenarios where labeled data is scarce [146], [147].
Utilization of Benchmark Datasets: Establishing and em-
ploying benchmark datasets that cover a wide range of
models, datasets, and domains can aid in the standardized
evaluation of MU techniques. This approach can offer valu-
able insights into the transferability and generalizability of
unlearning methods, facilitating their refinement and adapta-
tion to new contexts [148], [149].

D. Lack of interpretability

The challenge of interpretability in MU revolves around the
difficulty in understanding and explaining the mechanisms and
outcomes of unlearning techniques, especially when involv-
ing complex models like deep neural networks (DNNs) or
generative models [150]. The complexity of these techniques,
coupled with the potential loss of transparency during the un-
learning process, complicates efforts to achieve interpretability.
This section outlines several strategies aimed at addressing

these challenges and enhancing the interpretability of MU
techniques.

Addressing this challenge requires careful consideration of
the specific de-biasing or unlearning techniques used and their
impact on model interpretability. Some potential approaches to
enhance interpretability include:

Explaining the Unlearning Process: Providing detailed
explanations about the data modifications, feature alterations,
or the mechanisms employed during the unlearning process
can help stakeholders comprehend the rationale behind the
model’s revised outputs [32], [33], [151]. This involves
elucidating the specific actions taken to remove biases or un-
desired information from the model, enhancing transparency.
Simplification of Unlearning Techniques: Developing MU
techniques that are inherently simpler and more interpretable
can make it easier for both developers and end-users to
understand how unlearning is achieved [97]. Simplification
might involve adopting less complex models or mechanisms
that are easier to explain and validate.

Model-Agnostic Explanations: Employing model-agnostic
interpretability tools, such as feature importance measures or
partial dependence plots, can offer insights into how different
features or data points influence the model’s predictions after
unlearning [152], [153]. These tools can provide a layer of
interpretability that is independent of the underlying model
architecture or the specific unlearning method applied.
Incorporating Interpretability in Evaluation: Making in-
terpretability an explicit criterion during the development
and evaluation of MU techniques can ensure that it is not
compromised in the pursuit of performance [154], [155].
This involves assessing the interpretability of models post-
unlearning, alongside traditional performance metrics like
accuracy or precision.

Standardization of Unlearning Methods: Establishing stan-
dardized approaches and guidelines for implementing and
evaluating MU techniques can foster consistency and inter-
pretability within the field [156]. Standardization can also
facilitate the replication of unlearning studies and the com-
parison of different unlearning approaches, contributing to a
more transparent and accountable MU ecosystem.

E. Lack of training data

The effectiveness of MU techniques is significantly influenced
by the availability and quality of training data. However,
obtaining sufficient and relevant training data for MU, par-
ticularly in contexts where original training data is scarce
or sensitive, presents a notable challenge [157]. This section
explores several approaches to mitigate the impact of limited
training data on MU.
Data Augmentation: Utilizing data augmentation tech-
niques, such as synthetic data generation or oversampling
of underrepresented groups, can help address issues of data
scarcity and imbalance [158], [159]. This approach can
expand the available training data pool, making it more
representative and balanced for effective unlearning.
Data Pre-processing and Cleaning: Implementing rigorous
data pre-processing and cleaning procedures can enhance the
quality and reliability of training data [160], [161]. This
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involves removing inaccuracies, inconsistencies, or noise
from the data, thereby improving the foundation upon which
MU techniques are applied.

Leveraging Transfer Learning and Domain Adaptation:
Employing transfer learning and domain adaptation tech-
niques can facilitate the application of knowledge from
data-rich source domains to target domains with limited
data [160], [162]. This approach can enhance the perfor-
mance of MU models in new contexts, despite the scarcity
of labeled data.

Collaborative Data Sharing and Pooling: Fostering collab-
orative efforts among researchers, organizations, and stake-
holders to share and pool data resources can collectively over-
come data limitations [163]. Shared datasets and benchmarks
can provide a valuable resource for the MU community,
facilitating research and development efforts.

Adherence to Privacy and Legal Guidelines: Ensuring
compliance with privacy regulations and ethical guidelines
is paramount when addressing data scarcity [164]. This
may involve anonymizing data, obtaining necessary consents,
or adhering to data-sharing agreements, ensuring that MU
techniques are applied responsibly and ethically.

F. Resource constraints

Resource constraints represent a significant challenge in the
domain of MU, referring to the limitations associated with
computational resources, time, and data availability. These
constraints can hinder the effective and efficient implementa-
tion of unlearning techniques, particularly in scenarios requir-
ing intensive computations, real-time processing, or substantial
labeled data [10], [165]. Some common types of resource
constraints in MU include:
Computational Resources: The requirement for high pro-
cessing power, memory, or storage can be a barrier, espe-
cially for deep learning-based MU methods that necessitate
substantial computational resources for training and applica-
tion [166], [167].
Time Constraints: The significant time required for training
or applying MU techniques can be problematic in real-
time or online learning contexts where prompt unlearning
is essential [79], [168].
Data Availability: The need for extensive labeled data for
training, validation, or fine-tuning poses challenges, particu-
larly in situations involving sensitive, proprietary, or hard-to-
collect data [169], [170].

Addressing resource constraints requires careful considera-
tion of the available resources and the specific requirements
of the unlearning techniques. Some potential approaches to
mitigate resource constraints in MU include:

Model Optimization: Techniques such as model compres-
sion, quantization, or approximation can mitigate the compu-
tational demands of MU methods, facilitating deployment in
environments with limited computational capabilities [171],
[172].

Parallelization: Employing parallel computing strategies,
including distributed computing and the use of multi-core
processors or GPUs, can expedite MU processes, addressing
computational and time constraints [83], [173].

Online and Incremental Learning: Updating MU models in
an online or incremental fashion, as opposed to batch retrain-
ing, can enhance time efficiency and resource utilization by
incrementally adjusting models with new data [174]-[176].
Transfer Learning: Applying transfer learning, through
techniques like fine-tuning or domain adaptation, leverages
pre-trained models or knowledge from related tasks, reducing
the dependency on extensive labeled data for MU [177].

Data Augmentation: Generating synthetic data points
through data synthesis, generation, or simulation techniques
can augment existing datasets, thereby alleviating the chal-
lenges posed by limited data availability [109], [178], [179].

VI. FUTURE DIRECTIONS

A. Machine Unlearning in Natural Language Processing
(NLP)

The dynamic landscape of Natural Language Processing

(NLP) presents unique challenges and opportunities for MU.

NLP models, designed to understand, interpret, and generate

human language, often rely on vast datasets to learn patterns,

semantics, and syntax [11], [180]. However, the mutable
nature of language, influenced by cultural shifts, emerging
terminologies, and evolving social contexts, necessitates con-
tinuous adaptation of these models to remain relevant and
accurate [181].
1) Challenges in NLP MU
Rapid Evolution of Language: The fast-paced evolution of
linguistic patterns, especially in online and informal com-
munication, requires NLP models to constantly update to
understand contemporary usage and semantics [182].
Bias and Ethical Considerations: NLP models can inadver-
tently learn and perpetuate biases present in the training data.
MU is essential for identifying and rectifying these biases to
ensure that models do not propagate harmful stereotypes or
misinformation [14].
Adaptation to New Contexts: The application of NLP
models across diverse domains necessitates their adaptation
to domain-specific terminologies and contexts, which can
significantly differ from the data on which the models were
originally trained [183].
2) Opportunities and Future Directions
« Continual Learning: Integrating MU with continual
learning frameworks can enable NLP models to adapt
to new linguistic trends and data streams without the
need for complete retraining, thereby maintaining their
relevance and accuracy over time.

Ethical AI and Fairness: Developing MU techniques

that specifically target and mitigate biases in language

models can contribute to the advancement of ethical

Al, ensuring that NLP applications promote fairness and

inclusivity.

o Cross-Domain Adaptability: Enhancing MU method-
ologies to facilitate seamless adaptation of NLP mod-
els across different domains can significantly broaden
their applicability and utility, enabling more accurate and
context-aware language processing.
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« Interactive and Explainable MU: Fostering research in
interactive MU techniques that involve human-in-the-loop
approaches can enhance the interpretability and trust-
worthiness of NLP models, allowing for more nuanced
unlearning and relearning based on expert feedback.

MU in NLP is pivotal for addressing the dynamic challenges

posed by the evolving nature of language and societal norms.
Future research in this domain should focus on developing
robust, adaptable, and ethical MU strategies that ensure the
continual relevance and fairness of NLP models.

B. Machine Unlearning in Computer Vision

Computer Vision (CV) stands at the forefront of fields bene-
fiting from MU, addressing challenges inherent to visual data
processing and interpretation. The integration of MU in CV is
driven by the need for models that are adaptable, interpretable,
and ethically aligned [184].

1) Challenges and Future Directions in CV MU
Adaptability to Evolving Visual Data: The ever-expanding
diversity in visual content necessitates CV models that can
dynamically adapt to new data types, environmental varia-
tions, and evolving user needs. Future MU research should
focus on developing models capable of incremental learning
and real-time adaptation, especially crucial for applications
like autonomous driving and real-time surveillance [185].
Enhanced Model Robustness: Robustness in CV models
entails resilience against adversarial attacks, noise, and data
corruption. MU can contribute to enhancing robustness by
allowing models to unlearn vulnerabilities and adapt to
counteract adversarial techniques [128].

Bias Mitigation and Ethical AI: CV applications, particu-
larly those involving facial recognition and social analytics,
are prone to biases that can perpetuate stereotypes and
discrimination. MU offers a pathway to identify and rectify
these biases, ensuring models reflect ethical considerations
and fairness [104].

Explainability and Transparency: As CV systems become
integral to critical decision-making processes, explainability
becomes paramount. Future MU initiatives should aim at
developing techniques that not only allow models to unlearn
but also provide insights into how and why certain decisions
are made, facilitating human oversight and trust [186].
Privacy and Security in MU: With the increasing use of
personal and sensitive visual data, ensuring the privacy and
security of this information during the unlearning process
is essential. Future research must address the development
of secure MU processes that safeguard data integrity while
enabling effective unlearning [187].

Human-in-the-loop Unlearning: In complex or ambiguous
scenarios, human expertise may be required to guide the un-
learning process. Incorporating human feedback can enhance
the relevance and accuracy of unlearning, making models
more aligned with real-world needs and ethical standards.

2) Implications for Real-world Applications

MU in CV holds significant implications for a broad spec-

trum of applications, from enhancing the ethical deployment of
facial recognition technologies to ensuring the safety and reli-
ability of autonomous systems. By embedding MU principles,

CV models can become more adaptable, ethically conscious,
and aligned with user expectations and societal norms. This
not only enhances the performance and reliability of CV
systems but also fosters trust and acceptance among users and
stakeholders [188].

The future of MU in CV is intertwined with advancements
in model adaptability, robustness, ethical Al, and explain-
ability. Addressing these challenges through innovative MU
techniques will pave the way for CV models that are not only
technically proficient but also ethically responsible and user-
centric.

C. Machine Unlearning in Recommender Systems

The evolution of MU within Recommender Systems (RS) is
poised at a crucial juncture, shaped by rapid advancements in
ML methodologies and the escalating emphasis on core princi-
ples such as interpretability, fairness, and privacy [189], [190].
The dynamic and personalized nature of RS, coupled with the
complexities of user data, necessitates the integration of MU
to ensure the adaptability, accuracy, and ethical integrity of
recommendations [191].

1) Adaptability and Personalization

MU’s role in enhancing the adaptability and personalization
of RS is paramount. With user preferences and needs con-
tinually evolving, RS must leverage MU to remain relevant
and accurate. Unlearning mechanisms enable the iterative
refinement of RS models, allowing them to discard outdated or
irrelevant user interactions and adapt to current user behaviors
and preferences [192]. This dynamic adjustment ensures that
recommendations stay aligned with user interests, thereby
enhancing user engagement and satisfaction.

2) Transparency, Fairness, and Explainability

The pursuit of transparency and fairness in RS is sig-
nificantly bolstered by MU. By facilitating the removal of
biased, misleading, or irrelevant features from the recom-
mendation algorithms, MU contributes to the development
of more transparent and fair RS. This not only improves
the explainability of the recommendations provided but also
ensures that the RS adheres to ethical standards, mitigating
the risks of perpetuating biases or inaccuracies [193], [194].

3) Privacy Preservation

MU emerges as a critical tool in safeguarding user privacy
within RS. Through the strategic removal or obfuscation of
sensitive or identifying information from the training datasets,
MU ensures that personal user data is handled with the
utmost integrity, preventing inappropriate use or unauthorized
disclosure [195].

4) Challenges in MU for RS

Implementing MU in RS entails navigating a series of
challenges related to the model’s complexity, data characteris-
tics, learning algorithms, volume of data removal, and initial
model training strategies [196]-[200]. The interplay of these
factors determines the model’s post-unlearning performance
and efficiency, highlighting the need for a comprehensive
approach to optimize MU.

MU in RS holds the promise of revolutionizing the way
recommendations are curated and presented, ensuring they are
not only reflective of current user preferences but also ethically
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sound and privacy-conscious. As RS continues to evolve, the
integration of MU will be crucial in overcoming the inherent
challenges of adaptability, transparency, fairness, and privacy,
thereby shaping a future where recommendations are not only
accurate but also responsible and user-centric.

VII. CONCLUSION

MU is a relatively new and rapidly evolving field that
has gained increasing attention in recent years. While the
process of training ML models to recognize patterns and make
predictions has become more efficient and accurate, the need to
remove or modify these predictions is now equally important.
Unlearning, as the name implies, refers to the process of
removing previously learned information from a model, and it
has important applications in areas such as privacy, security,
and fairness. As our literature survey has shown, there are
a variety of approaches and techniques being developed for
unlearning data, ranging from regularization methods to model
inversion techniques. However, there are still challenges that
must be addressed in this area, such as scalability to larger
datasets, the ability to unlearn specific subsets of data, and the
impact of unlearning on model performance. However, despite
these challenges, the benefits of MU are significant, and we
expect to see continued progress in this field in the coming
years as researchers develop even more effective and efficient
methods for unlearning data from ML models. Researchers and
practitioners must continue to explore and refine unlearning
techniques to ensure that ML models can adapt to changing
circumstances and maintain the trust of their users. With the
increasing importance of Al in various domains, unlearning
will play a crucial role in making AI more trustworthy and
transparent.
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appeared in four to six sources, and poorly popular if it was

mentioned in three or fewer sources.

In this section, we present supplementary details for Table
IV “Public Datasets for Machine Unlearning” in the survey,
which includes an approximation of their popularity based on
the frequency of their references. The popularity of datasets is
classified into three categories, namely, “High”, “Moderate”,
or “Low”, depending on the frequency they were referenced.
Specifically, a dataset is considered highly popular if it was
referred to in seven or more sources, moderately popular if it

TABLE I

PUBLIC DATASETS FOR MACHINE UNLEARNING WITH SUPPLEMENTARY INFORMATION FOR POPULARITY

Modality Dataset El(:t:lfces ﬁft‘r?lfutes Task Popularity  References ng:;fnces
SVHN [1] 600,000 3072 Object recognition High [2]-[10] 9
CIFAR-100 [11] 60,000 3072 Object recognition High [12]-[18] 7
Image Tmagenet [19] 1.2 million 1,000 Object recognition Medium  [20]-[23] 4
Mini-Imagenet [24] 100,000 784 Object recognition Low [25] 1
LSUN [26] 1.2 million  varies Scene recognition Low [27], [28] 2
MNIST [29] 70,000 784 Object recognition High [20], [30]-[48] 20
IMDB [49] 50,000 varies Sentiment analysis Medium [50]-[54] 5
Text Newsgroup [55] 19,188 varies Text classification Low [56] 1
Reuters [57] 10,788 varies Text classification Low [58], [59] 2
SQuAD [60] 100,000 Varies Question answering Low [61]-[63] 3
Adult [64] 48,842 14 Income prediction Low [65]-[67] 3
Tabular Breast Cancer [68] 286 9 Cancer diagnosis Low [691, [70] 2
Diabetes [71] 768 8 Diabetes diagnosis Low [72], [73] 2
Time series Epileptic Seizure [74] 11,500 178 Seizure prediction Low [32], [75] 2
Activity Recognition [76] 10,299 561 Activity Classification Low [75], [77], [78] 3
OGB [79] 1.2 million  varies Graph classification Low [80] 1
Graph Cora [81] 2,708 1,433 Graph classification Low [82], [83] 2
Yelp Dataset [84] 8,282,442 Varies Recommendation Low [85], [86] 2
Fashion-MNIST [87] 70,000 784 Image classification Medium [88]-[91] 4
Computer Vision Caltech-101 [92] 9,146 Varies Object recognition Low [93]-[95] 3
COCO [96] 330,000 Varies Object detection Medium [97]-[101] 5
YouTube Faces [102] 3,425 2,622 Face recognition Medium [103]-[107] 5
EuroSAT [108] 27,000 13 Land use classification Low [10], [109] 2
Transaction Purchase [110] 39,624 8 Purchase prediction Medium [111]-[115] 5
Sequence Human Activity Recognition [116] 10,299 561 Activity recognition Low [117] 1
Recommendation ~ MovieLens [118] 100,000 varies Movie recommendation ~ High [119]-[125] 7
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10.2 Summary

The chapter concludes by synthesizing the state-of-the-art in MU, highlighting its signif-
icance in addressing privacy, security, and ethical considerations in Al. It underscores
the challenges faced in MU, such as attack sophistication, lack of standardization, and
resource constraints, and proposes future directions for research. The summary em-
phasizes the need for continued innovation in MU techniques to ensure Al systems are
not only efficient and effective but also align with evolving privacy norms and ethical
standards.
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CHAPTER 11: PAPER 10 - FRAMU: ATTENTION-BASED
MACHINE UNLEARNING USING FEDERATED
REINFORCEMENT LEARNING

11.1 Introduction

This chapter introduces the FRAMU framework, an innovative solution that combines
federated learning with reinforcement learning and attention mechanisms to address
the challenges of machine unlearning in dynamic data environments. It delves into
the necessity for models that can adaptively forget outdated, irrelevant, or private data,
ensuring data privacy and model efficiency. The chapter explores FRAMU’s unique
approach to handling single-modality and multimodality data, emphasizing its potential
to revolutionize privacy-preserving machine learning by enabling models to dynamically
adapt to changing data distributions and privacy requirements.
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Abstract—Machine Unlearning, a pivotal field addressing data
privacy in machine learning, necessitates efficient methods for the
removal of private or irrelevant data. In this context, significant
challenges arise, particularly in maintaining privacy and ensuring
model efficiency when managing outdated, private, and irrelevant
data. Such data not only compromises model accuracy but
also burdens computational efficiency in both learning and
unlearning processes. To mitigate these challenges, we introduce
a novel framework, Attention-based Machine Unlearning using
Federated Reinforcement Learning (FRAMU). This framework
incorporates adaptive learning mechanisms, privacy preserva-
tion techniques, and optimization strategies, making it a well-
rounded solution for handling various data sources, either single-
modality or multi-modality, while maintaining accuracy and
privacy. FRAMU’s strength lies in its adaptability to fluctuating
data landscapes, its ability to unlearn outdated, private, or
irrelevant data, and its support for continual model evolution
without compromising privacy. Our experiments, conducted on
both single-modality and multi-modality datasets, revealed that
FRAMU significantly outperformed baseline models. Additional
assessments of convergence behaviour and optimization strategies
further validate the framework’s utility in federated learning
applications. Overall, FRAMU advances Machine Unlearning
by offering a robust, privacy-preserving solution that optimizes
model performance while also addressing key challenges in
dynamic data environments.

Index Terms—Machine Unlearning, Privacy, Reinforcement
Learning, Federated Learning, Attention Mechanism.

I. INTRODUCTION

The widespread availability of decentralized and heteroge-
neous data sources has created a demand for Machine Learning
models that can effectively leverage this data while preserving
privacy and ensuring accuracy [1]. Traditional approaches
struggle to handle the continual influx of new data streams,
and the accumulation of outdated or irrelevant information
hinders their adaptability in dynamic data environments [2],
[3]. Moreover, the presence of sensitive or private data in-
troduces concerns regarding data breaches and unauthorized
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Fig. 1: Graphical abstract depicts the evolution of the FRAMU
framework

access, necessitating the development of privacy-preserving
techniques [4]. The concept of the “right to be forgotten”
allows individuals to have their personal information removed
from online platforms, although there’s no universal agreement
on its definition or its status as a human right [5]. Despite
this, countries like Argentina, the Philippines, and large parts
of the EU are working on regulations '. Therefore, there is
a pressing need to advance the field of Machine Unlearning
to ensure both adaptability and privacy in Machine Learning
applications.

Example 1. In a landmark 2014 decision that underscored
the pressing need for Machine Unlearning, a Spanish court
ruled in favor of an individual who sought the removal of
specific, outdated Google search results related to a long-
settled debt [6]. This verdict not only led to Google taking
down the search results but also influenced broader European
Union policies on the subject, emphasizing the urgent need
for mechanisms that can efficiently erase outdated or private
information from Machine Learning models without sacrificing
accuracy. This critical requirement for Machine Unlearning is
further highlighted by high-profile cases such as that of James
Gunn, the famed writer and director, who was dismissed by
Disney in 2018 when old, inappropriate tweets resurfaced [7].
Although social media platforms like Facebook offer features
like ”Off-Facebook Activity” to disconnect user data from
third-party services, this does not guarantee the complete
erasure of that data from the internet >. Together, these in-
stances accentuate the growing imperative for the development
of robust Machine Unlearning technologies, especially in an
era where data privacy regulations are continuously evolving

Thttps://link.library.eui.eu/portal/The-Right-To-Be-Forgotten—A-
Comparative-Study/twOVHCyGceDc/
Zhttps://www.facebook.com/help/2207256696182627
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and the “right to be forgotten” is increasingly recognized as
essential.

Challenges. In today’s digitally connected environment, data
is distributed in various forms and from different sources,
such as sensors, text documents, images, and time series data.
For unlearning outdated or private data, Machine Unlearning
presents unique challenges depending on whether it is a single
type of data (known as single-modality) or multiple types of
data (referred to as multimodality) [8]. With single-modality
data, the issue primarily lies in the build-up of outdated or
irrelevant information, which can negatively affect the model’s
effectiveness and precision [9], [10]. On the other hand,
multimodality situations are even more complicated. Here,
each type of data can have different characteristics and varying
contributions to the overall model’s performance [11], [12]. As
we discussed in example 1, the need to unlearn outdated or
private data is most important. This ensures individuals have
the “right to be forgotten” about their information in publicly
available platforms. However, the unlearning needs to happen
in both single-modality and multimodality data to make it a
holistic unlearning.

Distributed learning systems, particularly federated learning,
have made significant strides forward in enabling Machine
Learning models to train on decentralized data, offering the
dual advantage of reduced communication costs and enhanced
privacy [13], [14]. Notable efforts have been made to incorpo-
rate Differential Privacy (DP) into these systems [15], ensuring
robust privacy safeguards through techniques like DP-SGD
and DP-FedAvg [16], [17]. However, these existing frame-
works face limitations when confronted with the dynamic
nature of data distribution, an intrinsic challenge in distributed
learning [18]. Although some efforts have been made in
Machine Unlearning to address data irrelevancy over time,
such as Sharded, Isolated, Sliced, and Aggregated(SISA) train-
ing methods, these solutions often operate in isolation from
privacy-preserving mechanisms [19], [20]. This bifurcation
leaves a crucial research gap: the absence of a unified approach
that addresses both privacy concerns and the adaptability re-
quirements in the face of ever-changing data landscapes. There
is a need to bridge this gap by providing an integrated solution
for robust privacy measures and efficient selective unlearning,
thereby enabling Machine Learning models to be both secure
and adaptable in dynamic, distributed environments.

The primary challenges in Machine Unlearning involve
addressing the buildup of outdated or irrelevant information in
single-modality data, which affects model precision, and han-
dling the complexity of multimodality data where each type
contributes differently to model performance. Additionally,
current distributed learning systems, while advancing privacy
and reducing communication costs, face limitations in adapting
to dynamic data distributions and integrating robust privacy
measures with efficient unlearning mechanisms, highlighting
a need for a unified approach that ensures both security and
adaptability in rapidly evolving data environments.

To address these challenges, we propose an Attention-based
Machine Unlearning using Federated Reinforcement Learning
(FRAMU) as shown in Fig. 1. By integrating federated learn-

ing, adaptive learning mechanisms, and privacy preservation
techniques, FRAMU aims to leverage the diverse and dynamic
nature of data in both single-modality and multimodality
scenarios, while upholding privacy regulations and optimizing
the learning process. An attention mechanism is incorporated
into FRAMU to ensure responsible and secure handling of
sensitive information across modalities. FRAMU leverages
reinforcement learning and adaptive learning mechanisms to
enable models to dynamically adapt to changing data distribu-
tions and individual participant characteristics in both single-
modality and multimodality scenarios. This adaptability facil-
itates ongoing model evolution and improvement in a privacy-
preserving manner, accommodating the dynamic nature of the
data present in federated learning scenarios. In addition to
addressing the challenges associated with unlearning outdated,
private, and irrelevant data in both single-modality and mul-
timodality scenarios, FRAMU offers valuable insights into
the convergence behaviour and optimization of the federated
learning process. The major contributions of our work are as
follows:

« We propose an adaptive unlearning algorithm using an
attention mechanism to adapt to changing data distri-
butions and participant characteristics in single-modality
and multimodality scenarios.

« We develop a novel design to personalize the unlearning
process using the FedAvg mechanism [21] and unlearn
the outdated, private, and irrelevant data.

« We propose an efficient unlearning algorithm that demon-
strates fast convergence and achieves optimal solutions
within a small number of communication rounds.

« We conduct extensive experiments to demonstrate the
efficiency and effectiveness of the proposed approach
using real-world datasets.

Organization. In Section II, we review related works. Sec-
tion IIl outlines the problem addressed in this study. We
present the proposed framework FRAMU in Section IV. The
applications of FRAMU in single-modality and multimodality
are discussed in Section V. In Section VI, we present the
experimental setup and the evaluation results of the proposed
framework, along with convergence and optimization analysis.
Section VII delves into the implications of the proposed
framework. Finally, in Section VIII, we conclude the paper.

II. RELATED WORKS

The importance of data privacy in distributed learning
systems has garnered significant attention, especially when
handling sensitive types of data like medical or behavioral
information [22]. Differential Privacy (DP), a mathematically
rigorous framework for ensuring individual privacy, has been
widely adopted for this purpose [23], [24]. Efforts to integrate
DP within distributed learning environments, particularly in
federated learning, have been increasing [13], [14]. Abadi et
al. [16] developed a seminal approach called Deep Learn-
ing with Differential Privacy (DP-SGD), which adapts the
Stochastic Gradient Descent (SGD) algorithm to meet DP
standards by clipping gradients and injecting noise, thereby of-
fering stringent privacy safeguards during deep neural network
(DNN) training. Building on this, McMabhan et al. [17] further
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tailored DP mechanisms for federated learning through an
extension called DP-FedAvg. While these methods effectively
address privacy concerns, they often fall short in dealing with
dynamic data distributions, a prevalent issue in distributed
learning [18]. Specifically, data sets can evolve over time,
rendering some information outdated or irrelevant, and the per-
sistence of such data in the learning process can compromise
model efficacy. Although Machine Unlearning approaches like
Sharded, Isolated, Sliced, and Aggregated (SISA) training [19]
have emerged to tackle this issue by enabling efficient selective
forgetting of data, these methods are not yet designed to
work synergistically with privacy-preserving techniques like
DP [20].

Federated learning has substantially revolutionized dis-
tributed learning, enabling the training of Machine Learning
models on decentralized networks while preserving data pri-
vacy and minimizing communication costs [25]. Among the
pioneering works in this area is the FedAvg algorithm by
McMahan et al. [21], which relies on model parameter averag-
ing across local models and a central server. However, FedAvg
is not without its limitations, particularly when handling non-
IID data distributions [26]. Solutions like FedProx by Li et
al. [27] have sought to address this by introducing a proximal
term for improved model convergence. While other researchers
like Sahu et al. [28] and Konec¢ny et al. [29] have made strides
in adaptive learning rates and communication efficiency, the
realm of federated learning still faces significant challenges in
dynamic adaptability and efficient Machine Unlearning. While
privacy has been partially addressed through Differential Pri-
vacy [30] and Secure Multiparty Computation [31], these tech-
niques often compromise on model efficiency. Additionally,
the applicability of federated learning in diverse sectors like
healthcare and IoT emphasizes the unmet need for a model
capable of dynamically adapting to varied data distributions,
while preserving privacy and efficiency [32], [33].

Reinforcement Learning has garnered much attention for its
ability to train agents to make optimal decisions through trial-
and-error interactions with their environments [34], [35]. Sev-
eral pivotal advancements have shaped the field, including the
development of Deep Q-Networks (DQNs) [36]. DQNs com-
bine traditional reinforcement learning techniques with DNNs,
significantly enhancing the system’s ability to process high-
dimensional inputs such as images. Furthermore, experience
replay mechanisms have been integrated into them to improve
learning stability by storing and reusing past experiences [37].
Mnih et al. [38] significantly accelerated the reinforcement
learning field by implementing DQNs that achieved human-
level performance on a variety of complex tasks. However,
there are evident gaps in addressing challenges posed by
non-stationary or dynamic environment situations where the
statistical properties of the environment change over time.
Under such conditions, a reinforcement learning agent’s ability
to adapt quickly is paramount. Several approaches like meta-
learning [39] and attention mechanisms [40], [41] have sought
to remedy these issues to some extent. Meta-learning, for
example, helps models quickly adapt to new tasks by training
them on a diverse range of tasks. However, the technique does
not offer a robust solution for unlearning or forgetting outdated

or irrelevant information, which is crucial for maintaining
performance in dynamic environments. In a similar vein,
attention mechanisms help agents focus on important regions
of the input space, but they also fail to address the need for
efficient unlearning of obsolete or irrelevant data. This leaves
us with a significant research gap: the lack of mechanisms for
efficient unlearning and adaptability in reinforcement learning
agents designed for non-stationary, dynamic environments.

A key challenge for federated learning when faced with
dynamic data distributions and the accumulation of outdated
or irrelevant information is its adaptability in evolving environ-
ments. Reinforcement learning has been instrumental in train-
ing agents for optimal decision-making in dynamic environ-
ments, yet it too grapples with the need to efficiently unlearn
outdated or irrelevant data. These challenges underscore the
importance of integrating attention mechanisms into the Ma-
chine Unlearning process. Unlike selective data deletion, atten-
tion mechanisms assign reduced weights to outdated, private,
or irrelevant information. The dynamic adjustment of attention
scores allows these models to prioritize relevant data while
disregarding obsolete or extraneous elements. By bridging
the worlds of federated learning and reinforcement learning
with attention mechanisms, our study addresses the pressing
need for an integrated solution that optimizes decision-making
in distributed networks with changing data landscapes [42].
In addition, this approach must preserve data privacy and
adaptively forget outdated, private, or irrelevant information.

III. PRELIMINARIES & PROBLEM DEFINITION

This section establishes the foundational concepts and math-
ematical notations essential for the discussions and analyses
presented in this paper. These concepts are summarized in
Tab. I and form the basis for understanding the subsequent
problem definitions and solution approaches. Our research is
centered around the exploration of unlearning mechanisms in
Machine Learning models, focusing on maintaining accuracy
and computational efficiency while addressing the challenges
posed by outdated or irrelevant data.

The problem is defined by two distinct settings: single-
modality and multimodality. The single-modality setting is
simpler and widely applicable in scenarios with uniform data
types, such as sensor networks or content recommendation sys-
tems. However, it may lack the context provided by different
types of data, potentially leading to less nuanced decisions.
On the other hand, the multimodality setting is more complex
but highly relevant in fields like healthcare, where a range
of data types (e.g., medical imaging, patient history, etc.) can
be used for more comprehensive understanding and decision-
making. By exploring the problem in both these settings, we
offer solutions that are both versatile and contextually rich.
A. Problem Definition - Single Modality
Problem Definition 1. Let AG = {ag1,ags,...,ag,} be
a set of agents, where each agent ag € AG represents an
entity like an IoT device, traffic point, wearable device, edge
computing node, or content recommendation system. Each
agent ag observes states S; = {s1,82,...,8m} and takes
actions A = {a1,aq9,...,a,} based on a policy m;(s,a).
Rewards R;(s,a) evaluate the quality of actions taken in
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TABLE I: Summary of Notations and Descriptions

Symbol Description
AG Set of agents in the model
ag An individual agent in the set AG
Si States observed by an agent ag
A Set of possible actions
(s, a) Policy followed by the agent
Ri(s,a) Rewards for actions in different states
Oag Parameters of local models for agent ag
[ Parameters of global model
Wi ag Attention score for a data point ¢ in agent ag
M Set of modalities in multimodality setting
Xm Data vectors for modality m
Om Parameters for modality m
Wi m Attention scores within a modality m
i Time step
St State at time step ¢
at Action at time step ¢
Tt Reward at time step ¢
Ry Cumulative reward
m(at]st) Policy function
Q(s¢,at) Q-function
~ Discount factor
a; Attention score for feature 7
Abag Update sent by agent ag
Function for calculating attention scores
Wg,ag Global attention score for update from agent ag

AG Number of local agents

Qayg Average attention score
Predetermined threshold for attention score
ag € AG A specific agent within the set of all agents AG
m Number of modalities
L1, X2y ey Ty Data vectors for each modality
v; Feature vector for modality 7
_ Averaged attention score across
Wi modalities for data point j
A Mixing factor
T The total number of training rounds
« Learning rate for Q-value function updates
n Scaling factor for attention score updates
Mixing factor for combining
B global and local model parameters
€ Convergence threshold for global model parameters
Wag Local model parameters for agent ag
w Global model parameters
A; Attention score for data point ¢
Aiag Attention score for data point ¢ within agent ag
N Total number of data points across all agents
Nag Number of data points in agent ag
St+1 ,
Rt+1 ’
Decision Making
Model ©;
Reward
1.
{Reduce Wait Timd,
Action o Traffic Light  [€——endestion} |
i {Number of Cars,

Speed of Cars}

Fig. 2: Single Modality Example

different states. Agents possess local models with parameters
0;, while a central server maintains a global model with
parameters 0.

Example 2. In the single-modality setting shown in Fig. 2,
let AG = {ag1,aga,...,agn} be a set of agents. An agent
ag can represent a real-world entity such as a traffic light
in a city. These traffic lights observe various states S; =
{$1,82,...,8m}, such as the number and speed of passing
cars, and the change of colors (actions A = {ay,as,...,an})
according to an algorithmic policy 7;(s,a). The system eval-
uates the effectiveness of the traffic light changes in reducing
wait time or congestion (rewards R;(s,a)). Each traffic light
has its own local decision-making model characterized by
parameters 0;, and there is a global model for optimizing city-
wide traffic flow with parameters 8.

Modalities Data Attention
Vectors Weights
©1
X1 2{211,212,---,2171} Wim
02
Xp = {za1,2,..., %20} Wam

Fig. 3: Multimodality Example

To address the challenge of preserving data privacy and
adaptively forgetting private, outdated, or irrelevant informa-
tion, attention scores w;; are assigned to each data point
j in the local dataset of agent ag € AG. These attention
scores, computed using a function f that considers the current
model state or contextual information, guide the learning and
unlearning process within each agent. By assigning higher
attention scores to relevant data and potentially forgetting
or down-weighting irrelevant data, the agents can effectively
focus on the most informative and up-to-date information.

B. Problem Definition - Multimodality

Problem Definition 2. In the multimodality setting, let M =
{1,2,...,m} represent the set of modalities, where m is the
total number of modalities. Each modality m € M is associ-
ated with a set of data vectors X, = {Tm1,Tm2,- - Tmn}
and has its local model with parameters 0. Attention scores
Wiy are assigned to individual data points x;,, within each
modality to guide the learning and unlearning process.

Example 3. In the multimodality setting shown in Fig. 3,
consider a healthcare system as a collection of agents in
set M = {1,2,...,m}, where m represents different types
of medical data (modalities) such as medical imaging and
patient history. For instance, medical imaging (modality M)
would have a set of MRI scans represented as data vectors
X1 ={z11,212,...,%1n}. Likewise, patient history (modality
M) might involve a set of past diagnosis records that are
represented as data vectors Xo = {x21,%22,...,Tan}. Each
modality has a specialized model with parameters 0 for
medical imaging and 0o for patient history. These models
use attention mechanisms to weigh the importance of each
data point, represented by attention scores w1, for MRI scans
and way, for patient history records. These scores guide the
decision-making process in diagnosis and treatment.

In the multimodality setting, the complexity is elevated by
the integration of heterogeneous data types and the application
of specialized machine learning models for each modality.
For example, in a healthcare system, combining data from
disparate sources like medical imaging and patient history
presents a unique challenge. Each data type, or modality, not
only varies in format but also in the nature of the informa-
tion it conveys, necessitating distinct processing and analysis
methods. The key challenge here is to develop an integrated
approach that effectively synthesizes these diverse data streams
into a coherent understanding, enhancing decision-making in
critical applications such as patient diagnosis and treatment.
Attention mechanisms play a crucial role in this context,
determining the relevance of each data point across different
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Fig. 4: An overview of the proposed FRAMU framework, illustrating its end-to-end adaptive algorithm that incorporates an
attention mechanism. The figure is divided into multiple components, each corresponding to a specific phase in the federated
learning process. Starting from the left, the diagram begins with data collection from diverse modalities. The framework applies
an adaptive learning algorithm that not only updates the global model, but also incorporates an efficient unlearning mechanism

for discarding outdated, private, or irrelevant data.

modalities. However, assigning and calibrating these attention
scores is non-trivial and introduces an additional layer of
complexity. The successful implementation of multimodal
systems has profound implications, particularly in improving
the accuracy and efficacy of decision-making processes.

IV. FRAMU FRAMEWORK

In an era marked by an ever-increasing influx of data, the
need for adaptive Machine Learning models that can effi-
ciently unlearn outdated, private, or irrelevant information is
paramount. The methodology proposed in this paper addresses
this necessity by introducing two key technical contributions.
First, we propose an adaptive unlearning algorithm that utilizes
attention mechanisms to tailor the learning and unlearning
processes in a single-modality, and then extend the process
to multimodality. This innovative approach allows the model
to adapt to dynamic changes in data distributions, as well as
variations in participant characteristics such as demographic
information, behavioural patterns, and data contribution fre-
quencies among others. Second, we put forth a novel design
that employs the FedAvg mechanism [21] to personalize the
unlearning process. This design ensures that the model is
able to discard data that has become irrelevant, outdated, or
potentially invasive from a privacy perspective, thus preserving
the integrity of the learning model while adapting to new or
changing data. The following sections will elaborate on these
contributions, providing a detailed discussion of the proposed
framework as depicted in Fig. 4.

The FRAMU framework adopts a federated learning archi-
tecture comprising Local Agents and a Central Server, each
with distinct roles in model training, unlearning, and adapta-
tion. It employs a reinforcement learning paradigm where each
agent iteratively learns from its environment. This integration
of federated learning and reinforcement learning is termed
federated reinforcement learning. However, what sets FRAMU
apart is the integration of attention mechanisms to weigh
the relevance of each data point in learning and unlearning.
The attention scores are then aggregated and processed at the
Central Server to refine the global model.

« Local Agents: Responsible for collecting real-time data

and performing local model updates. They observe states,

take actions, and calculate rewards to update their Q-

values and attention scores.

Central Server: Aggregates local models and attention

scores, filters out irrelevant data points, and updates the

global model.

Attention Mechanism: Dynamically calculates attention

scores for each data point to inform the unlearning

process.

« FedAvg Mechanism: Utilized for global model updates,
ensuring that the global model represents a consensus
across all agents.

The FRAMU framework, as outlined in Algorithm 1, has
been carefully designed to facilitate adaptive decision-making
in distributed networks through federated reinforcement learn-
ing. Each step within the algorithm is crafted with specific
intentions: The initialization stage (Lines 1-3) sets the ground-
work by initializing local and global model parameters, as
well as attention scores. These initializations are crucial for
ensuring that both local and global perspectives are considered
right from the start of the learning process. The iterative
learning process (Lines 4-24) involves several key compo-
nents. Local Agent Decision-Making (Lines 5-11) enables
each local agent to observe states, take actions, and update its
Q-values and attention scores, ensuring that local knowledge
is continuously updated to reflect the dynamic nature of the
agents’ environments. Central Server Aggregation (Lines 12-
17) plays a pivotal role in integrating local updates and refining
the global model. By assessing the attention scores, the server
can identify and diminish the influence of less relevant data
points, thereby enhancing the model’s focus on significant
information. Model Synchronization (Lines 18-24) involves
the dissemination of global model parameters back to local
agents for fine-tuning, ensuring a bi-directional flow of infor-
mation that keeps local models informed by their immediate
environment and aligned with the broader objectives of the
global model.
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Algorithm 1: FRAMU Framework
Input: a set of Local Agents, a Central Server, T', 6, a, 7,
7. B, €
Output: W : Trained global model parameters for federated
reinforcement learning

1 Initialize local model parameters wq4 for each agent ag;

2 Initialize global model parameters W at the central server;

3 Initialize attention scores A; ag,m for each data point ¢ in
agent ag and modality m;

4 while t < T do

5 foreach local agent ag do
6 Observe current states s; », for each modality m;
7 Take action a; based on policy derived from
Q(s, a5 Wag)s
8 Observe reward r, and next states s; ,,, for each
modality m;
9 Compute TD error § =
Tt + 7 Maxa Q(s{i,wu a; wag) - Q(si,m, Qt; wag);
10 Update Q(Si,m,at; Wag) < Q(Si,m, at; Wag) + a0;
1 Update attention scores A; ag,m  Ai,ag,m + 1|d|;
12 Send local model parameters wqa, and attention scores
A ag,m to Central Server;
13 foreach data point i in modality m do
14 if 3., 2 Aiagim/Nag < 0 then
15 Reduce influence of data point ¢ in the global
L model;
16 Aggregate local model parameters to update global
parameters: W < Zaq ("%) Wags
17 Send updated global model parameters W to local
agents;
18 foreach local agent ag do
19 Fine-tune local model with global model:
20 Weg — BW + (1 = B)wag;
21 if |[P(Wig1) — P(Wy)| < € then
2 L Break;
23 Increment t¢;
24 return W

V. APPLICATIONS OF FRAMU

This section explores the practical applications of the
FRAMU framework across different settings, single-modality
and multimodality, and its continuous adaptation and learning.

A. FRAMU with Single Modality

Central to FRAMU is an attention layer that functions as a
specialized approximator, augmenting the learning capability
of individual agents. This attention layer distinguishes itself
by assigning attention scores to individual data points during
the function approximation process. These scores serve as
indicators of each data point’s relevance in the agent’s local
learning. The agent updates these scores as it interacts with its
environment and receives either rewards or penalties, thereby
continually refining its model. Specifically, an agent operates
in discrete time steps, current state s;, taking action a;, and
receiving reward r, at each time step t. The ultimate goal
is to determine an optimal policy m(a:|s;) that maximizes
the accumulated reward R;. The Q-function, which quantifies
expected accumulated rewards with a discount factor ~, is
given by Equation 1.

Q(st,ar) = E[Ry | 5, a¢] = 14 + YE[Q(st41, ar41) | 5t a4
Q)]
The attention layer further characterizes each state s; by its
features [x1, T2, ..., 2], and assigns attention scores «; as per:

a; = Attention(x;, context) )

Here, the context may include additional data such as pre-
vious states or actions. The Q-function is then approximated
using a weighted sum of these features:

Qlstyar) = Y (- 4) (3)

After completing their respective learning cycles, agents
forward their model updates 6 and attention scores « to the
Central Server as a tuple (0, «).

1) Local and Global Attention Score Estimation

FRAMU estimates attention scores both locally and glob-
ally. On the local front, each agent employs its attention
mechanism to compute scores for individual data points based
on their relevance to the task at hand. For an agent ag with
local model parameters 6, the attention score w;; for data
point j is given by:

wij = f(85,0ag) (C))

At the global level, these scores assist the Central Server
in prioritizing updates or pinpointing data points for global
unlearning. For global parameters 6, the global attention score
derived from the updates of agent ag is:

Wy,ag = f(Abag,0) (©)

In this equation, Af,, is the model update from agent ag,
and the function f calculates attention scores while taking into
account the aggregated local scores and other global contextual
cues.

2) Global Model Refinement and Unlearning

Model updates from local agents are aggregated at the
Central Server using FedAvg [43]. The attention scores are
instrumental in the global unlearning process, with the average
attention score calculated as:

1
Qave = Z Qag (6)

When «,y falls below a predetermined threshold J, the
server adjusts the contribution of the respective feature in the
global model as given by Equation 7:

aglobal' = g(eglobah aavg) (7)

Once refined, this global model is sent back to the local
agents. The enhanced model shows improved adaptability
and robustness to changes in data distributions due to the
integration of aggregation and unlearning mechanisms. Conse-
quently, the local agents are better positioned to excel within
their particular operational environments. These revised global
model parameters, denoted as Ogjopar, are then dispatched from
the Central Server to the local agents, where 0, = Oqiopar -
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B. FRAMU with Multimodality

The multimodal FRAMU Framework extends its capabil-
ities to seamlessly incorporate various data types, including
images, text, audio, and sensor readings. This integration
not only enriches decision-making but also optimizes the
performance of local agents. By fine-tuning their models to
multiple data types, agents are better equipped to operate in
complex environments.

1) Modality-Specific Attention Mechanisms

To effectively manage data from diverse sources, the frame-
work employs specialized attention mechanisms for each
modality. These mechanisms generate unique attention scores
for data points within a given modality, aiding in both learning
and unlearning processes. By doing so, the framework allows
local agents to focus on the most relevant and informative
aspects of each modality.

The attention scores for a specific modality j for an agent
ag € AG can be mathematically represented as:

wiz = f;(s45,0:), (8

Here, s;; signifies a data point from modality j related
to agent ag € AG, while 6, represents that agent’s local
model parameters. The function f; considers modality-specific
attributes and context to compute these attention scores.

For a feature vector v; derived from modality j within agent
ag € AG, feature-level fusion can be represented as:

2) Unlearning and Adaptation across Modalities

v; = [111;$¢27~~

In a multimodal setup, attention scores from all modalities
collectively inform the unlearning process. If a data point
consistently receives low attention scores across different
modalities, it indicates that the point is either irrelevant or
outdated. The Central Server uses this multimodal insight to
refine the global model.

The average attention score across all modalities for a
specific data point is:

1 m
W = - ; Wi (10)

If w; falls below a predefined threshold, the Central Server
de-emphasizes or removes that data point from the global
model, ensuring that only current and relevant data contribute
to decision-making.

During the adaptation phase, local agents utilize the updated
global model to enhance their local models. The interplay
between global and local parameters is regulated by a mixing
factor, which allows local agents to leverage shared insights
while preserving modality-specific skills. This relationship can
be denoted by:

07 = Mgiobal + (1 — )69 a1

Here, 67V represents the updated local model parameters,
Ogiobar signifies the global model parameters, 699 is the pre-
vious local parameters, and A serves as the mixing factor.

Through this, the multimodal FRAMU framework maintains
an up-to-date and relevant global model, while enabling local
agents to make better decisions across a range of data types.

C. Continuous Adaptation and Learning in the FRAMU
Framework

Continuous adaptation and learning are critical in the
FRAMU framework, enabling it to thrive in dynamic and
changing environments. These processes create an iterative
exchange of knowledge between local agents and a Central
Server, which leads to consistent model refinement on both
local and global scales.

1) Local-Level Adaptation

Local agents need the ability to adapt in real time to changes
in their operational environments. Within reinforcement learn-
ing paradigms, agents continually update their policies in
response to actions taken and rewards observed. Furthermore,
attention scores allocated to data points or features can vary
dynamically based on new data or shifts in relevance. This
adaptability ensures that the models of individual local agents
remain current. Let s; denote the state of the environment at
time ¢, and a, represent the action taken by the agent. After
receiving a reward r; and transitioning to a new state sy, the
agent aims to maximize the expected cumulative reward. The
Q-value function Q(s, a) serves as a proxy for this cumulative
reward, and it is updated using temporal-difference learning
algorithms as follows:

Q(st; ar) = Qst,ar)+a |re +ymaxQ(si1, a) — Q(ss, ar)
12)
Here, « is the learning rate, and ~ is the discount factor.
Attention scores, denoted by A; for data point , are updated
based on the temporal-difference error §:

where 7 is a scaling factor, and § = 71 +
Y maxg Q(3t+17 CL) - Q(St, at)-
2) Global Model Aggregation and Adaptation

As local agents continuously update their models, these
adaptations are communicated to the Central Server. It ag-
gregates this information to refine the global model while
also tracking the attention scores from local agents. If these
scores reveal diminishing importance for certain data points,
the server may initiate global unlearning. This ensures the
global model remains current and avoids obsolescence. Local
agents send their updated model parameters, w,, for agent ag,
and attention scores A; o4 to the Central Server. The server
aggregates these to update the global model parameters W as
follows:

1
W« A—Ggww, (14)

where AG represents the total number of local agents.
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3) Feedback Mechanisms

After the global model is updated, it is disseminated back to
local agents through a feedback loop. This cyclic interaction
allows local agents to either initialize or further refine their
models based on the global one. This is particularly beneficial
when local agents confront new or unfamiliar data points
that other agents have encountered. Through this mechanism,
the global model acts as a repository of shared knowledge,
enhancing the decision-making capabilities of all local agents.
The global model parameters W are sent to local agents, who
then adjust their local models using a mixing factor 3 as
follows:

Wy = BW + (1 = B)way, (15)

where [ ranges from 0 to 1 and regulates the influence of
the global model on local models.

VI. EXPERIMENTAL SETUP AND RESULTS ANALYSIS

To effectively evaluate the performance of the FRAMU
framework, we undertook comprehensive experiments using
real-world datasets. These experiments were designed to vali-
date not only the efficiency and effectiveness of our approach
but also to establish the practical utility of FRAMU in real-
world applications. Our experimental setup encompassed sev-
eral components, including datasets, baseline models, evalua-
tion metrics, and specific FRAMU configurations, as depicted
in Fig. 5. A critical aspect of our experimentation involved
fine-tuning key thresholds to guide the unlearning process,
particularly the outdated_threshold and irrelevant_threshold.
These parameters were adjusted based on domain expertise
and sensitivity analysis, with the outdated_threshold defin-
ing the time frame for data obsolescence and the irrele-
vant_threshold setting criteria for data’s statistical insignifi-
cance. Additionally, we introduced a privacy_epsilon parame-
ter to balance data utility with privacy preservation, aligning
with GDPR regulations.

Deep learning methods are known for their ability to
learn features autonomously and automate model-building
processes. Despite criticisms of neural network family algo-
rithms for their *black box’ nature, deep learning models are

renowned for their robust and efficient performance. These
models are widely adopted by the research community [44],
[45]. In our work, we utilized a Convolutional Neural Network
(CNN) for image and sensor data, and a Long Short-Term
Memory (LSTM) network for time series and text data,
specifically tailored for federated learning scenarios. This
model choice was made to efficiently handle both single and
multimodal data types, integrating attention mechanisms and
unlearning processes to enhance overall functionality.

We found the tuning of parameters such as the outdated
threshold, irrelevant threshold, and the 3 value for local model
fine-tuning to be crucial. It was essential to strike the right
balance in the outdated threshold to prevent premature data
discarding or retention of outdated information, which could
affect model accuracy and relevancy. Similarly, careful cali-
bration of the irrelevant threshold was necessary to maintain a
balance between data comprehensiveness and quality, ensuring
useful data was not excluded nor excessive noise retained. The
(8 value, crucial in determining the extent of global model
influence on local models, required fine-tuning to ensure an
optimal balance between local and global learning. This was
key for local models to benefit from global insights while
preserving their unique learning characteristics. The interplay
of these hyperparameters significantly influenced FRAMU’s
performance, particularly in its ability to adapt to new data
and retain relevant historical information. Through sensitivity
analyses, we determined their optimal ranges, aiming to max-
imize FRAMU’s efficiency and adaptability in various real-
world scenarios.

TABLE II: Datasets for evaluation

Modality Dataset OD* | PD* | ID* Description
Electricity, water, and
. AMPds2 v v v natural gas consumption data
Single [46] - "
. from a Canadian household.
Modality Trafn T
METR-LA raffic speed dalq Tom
[47] v X v over 200 sensors in Los
Angeles Metropolitan area.
Health-related data from
critical care units,including
MIMIC-IIT v v v demographics, vital
[48] .
signs, laboratory results,
and medications.
Records of complaints filed
. NYPD v v v with the New York City
Multi [49] . §
I Police Department.
¥ Chest radiographs with
MIMIC-CXR v v v associated radiology
[50] reports for medical
image analysis tasks.
Smart Home Energy consumption data
EnergyDataset v v v from smart home devices
(SHED) o e
[51] and appliances.

“OD - Outdated Data, PD - Privacy Data, ID - Irrelevant Data.

A. Datasets

In this study, publicly available datasets that encompass
various modalities and address specific challenges related to
outdated, private, and irrelevant data are adopted. Tab. II
provides detailed information about each dataset, including the
data modality, number of instances, attributes, target variables,
and specific characteristics pertinent to our study. In order to
evaluate FRAMU, we conducted a comprehensive compari-
son of its performance against several contemporary baseline
models.
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B. Baseline Models

In the evaluation of the FRAMU framework’s performance
and robustness, we have carefully selected several baseline
models for comparison. The models in baseline models were
adopted from the original work. The rationale behind choosing
each model and its relevance to our study is elaborated below:

« Single-modality

— FedLU [52]: FedLU represents a significant advance
in federated learning, integrating knowledge graph em-
bedding with mutual knowledge distillation. Its selec-
tion as a baseline is due to its innovative approach
to collaborative learning, which is closely aligned
with FRAMU'’s objectives in single-modality settings.
FedLU’s methodology provides a comparative frame-
work for assessing FRAMU?’s efficiency in knowledge
synthesis and distribution.

— Zero-shot MU [53]: Zero-shot MU specializes in
Machine Unlearning, employing error-minimizing-
maximizing noise and gated knowledge transfer. This
model was chosen for its novel approach to unlearning,
providing a benchmark to evaluate FRAMU’s capabil-
ity in effectively removing learned information without
extensive retraining, a crucial aspect in dynamic envi-
ronments.

— SISA Training [19]: The SISA Training framework is
a strategic model that limits data points for optimized
unlearning. Its inclusion as a baseline allows us to
compare FRAMU’s efficiency in data management and
unlearning processes, especially in scenarios where
data minimization is key to performance and privacy.

o Multimodality

— MMOoE [54]: The MMoE model, optimized for han-
dling multimodal data via ensemble learning, serves
as a benchmark for evaluating FRAMU'’s performance
in multimodality settings. Its approach, employing ex-
pert networks for different data modalities, provides a
comparative perspective for FRAMU’s adaptability and
efficiency in handling diverse data types.

— CleanCLIP [55]: CleanCLIP, a fine-tuning framework
that mitigates spurious associations from backdoor
attacks, is pivotal for comparing FRAMU'’s robustness
against data security threats. Its focus on weakening
spurious correlations offers insights into FRAMU’s
capabilities in maintaining data integrity and security.

— Privacy-Enhanced Emotion Recognition
(PEER) [56]: The PEER model, utilizing adversarial
learning for privacy-preserving emotion recognition,
aligns well with FRAMU’s privacy objectives. Its
comparison with FRAMU highlights the effectiveness
of FRAMU in safeguarding privacy while performing
complex analytical tasks.

C. Evaluation Metrics

The FRAMU framework is evaluated using several impor-
tant metrics: Mean Squared Error (MSE) [57], Mean Abso-
lute Error (MAE) [58], Reconstruction Error (RE) [59], and
Activation Distance (AD) [60]. A lower MSE or MAE score
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Fig. 6: Comparative Analysis of MSE and MAE Differences
between Original and Unlearned Single Modality Data

shows that the unlearning process is closely aligned with what
was expected, indicating a high quality of unlearning. The
RE measures how well the model can rebuild data that it has
unlearned, with a lower score being better. AD measures the
average distance between the predictions of the model before
and after unlearning, using what is known as L2-distance, on
a specific set of forgotten data. These metrics together give a
well-rounded evaluation of how well the unlearning process is
working.

All the experiments were run using Python programming
language (version 3.7.6) and related TensorFlow, Keras, Open
Gym Al and stable_baselines3 packages.

D. FRAMU Unlearning Results in Single Modality Context

To assess the effectiveness of FRAMU in unlearning out-
dated, private, and irrelevant data, we analyzed the results
from various experiments. FRAMU’s performance was bench-
marked against that of established baseline models: FedLU,
Zero-shot MU, and SISA Training. It’s important to note that
the METR-LA dataset [47] was excluded from the private data
unlearning evaluation due to its lack of privacy-sensitive data.
For a thorough comparison, we present the performance met-
rics of FRAMU in unlearning outdated, private, and irrelevant
data alongside the results from baseline models in Tab. III. The
p-values in these comparisons are indicative of the statistical
significance of FRAMU'’s performance improvements.

1) Outdated Data

The unlearning of outdated data is vital for maintaining
model accuracy and relevance. Outdated data might introduce
noise, biases, or outdated patterns. By selectively unlearning
such data, FRAMU aims to align the model with the latest
data distribution. FRAMU consistently achieved lower MSE
and MAE than the baseline models in unlearning outdated data
across various datasets. This improvement, evident from the
low p-values in Tab. III, demonstrates FRAMU?’s statistically
significant superiority in adapting models to current data
distributions.

2) Private Data

The retention of private data in models can pose significant
privacy and legal risks. To mitigate this, FRAMU incorpo-
rates techniques for unlearning private data while preserving
privacy. Excluding the METR-LA dataset from this analysis,
FRAMU consistently outperformed the baseline models in
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TABLE III: FRAMU - Evaluation Results in Single Modality Context

Unlearning Dataset FedLU [52] Zero-shot [53] SISA [19] FRAMU (Ours)
MSE MAE p-value MSE MAE p-value MSE MAE p-value MSE MAE
AMPds2 0.063 6.740 0.024 0.061 6.890 0.031 0.059 6.760 0.041 0.046 5.570
Original METR-LA 0.079 7.140 0.016 0.082 7.210 0.038 0.078 7.090 0.029 0.065 5.930
Outdated MIMIC-III 0.099 12.800 0.031 0.102 12.930 0.045 0.097 12.680 0.032 0.083 10.650
Data AMPds2 0.060 6.630 0.015 0.055 6.860 0.029 0.056 6.690 0.036 0.038 4.670
Unlearned METR-LA 0.075 7.020 0.029 0.077 7.100 0.025 0.072 6.960 0.032 0.052 4.910
MIMIC-IIT 0.095 12.650 0.023 0.098 12.820 0.041 0.094 12.580 0.017 0.069 8.900
Original AMPds2 0.052 6.780 0.014 0.054 6.930 0.037 0.053 6.810 0.041 0.041 5.540
Private MIMIC-IIT 0.078 12.870 0.035 0.080 13.010 0.043 0.079 12.760 0.045 0.064 10.600
Data Unlearned AMPds2 0.049 6.670 0.011 0.052 6.910 0.035 0.051 6.740 0.015 0.033 4.590
MIMIC-III 0.075 12.720 0.031 0.077 12.900 0.038 0.076 12.650 0.016 0.053 8.860
AMPds2 0.047 6.700 0.035 0.050 6.850 0.044 0.048 6.730 0.031 0.037 5.440
Original METR-LA 0.054 7.100 0.027 0.056 7.170 0.041 0.055 7.050 0.025 0.043 5.830
Irrelevant MIMIC-IIT | 0.070 | 12730 | 0.038 | 0.072 | 12.870 | 0.031 0.071 | 12.620 | 0.039 | 0.057 | 10.410
Data AMPds2 0.045 6.590 0.011 0.047 6.830 0.036 0.046 6.660 0.029 0.030 4.510
Unlearned METR-LA 0.052 6.980 0.014 0.054 7.070 0.019 0.053 6.930 0.022 0.035 4.750
MIMIC-IIT | 0.068 | 12580 | 0.029 | 0.070 | 12760 | 0.024 | 0.069 | 12.510 | 0.027 | 0.047 | 8.690
TABLE IV: Comparative analysis of FRAMU’s performance 1073
in single modality against baseline models in RE and AD e O
metrics. s 4
Zero-shot SISA FRAM g 3
Unlearning Dataset FedLU [52] MU [53] trai:i:g [191 (Ours)U = 2 H’_‘ HH’_‘ H
RE [ AD | RE | AD | RE | AD | RE | AD ] /=
Outdated AMPds2 0.03 0.66 | 0.029 | 0.68 | 0.028 | 0.67 | 0.024 | 0.57
Data METR-LA | 0.038 0.7 0.039 | 0.71 0.037 | 0.69 | 0.033 | 0.59
MIMIC-IIT | 0.048 1.26 | 0.049 1.28 [ 0.047 125 1 0.043 | 1.1I5 . 0.25 |-
Private AMPds2 | 0.031 | 0.67 | 0.032 | 069 | 003 | 0.67 | 0026 | 0.57 b=
Data MIMIC-IIT | 0.049 | 1.27 | 0.051 | 1.29 | 0.048 | 127 | 0.044 | .17 8 0.2
oun [P OB [0S Lo [t [oom [ns fon (w2
Data MIMIC-IT | 0.05 | 1.26 | 0.052 | 1.28 | 0.049 | 125 | 0045 | 115 = 0 I_]ﬂ]_\ ﬂmm ﬂ,—‘ﬂ

both MSE and MAE metrics in scenarios involving private
data. For example, in the AMPds2 dataset, FRAMU’s superior
performance in MSE (0.038) and MAE (4.670) is a testament
to its effective federated reinforcement learning approach that
respects privacy concerns. The significance of these perfor-
mance gains is reinforced by the associated p-values.

3) Irrelevant Data

Unlearning irrelevant data helps reduce noise and inter-
ference from non-contributory data points, enhancing model
accuracy and prediction. FRAMU showed exceptional perfor-
mance in unlearning irrelevant data, recording the lowest MSE
and MAE values across all datasets in comparison to the base-
line models. For instance, in the AMPds2 dataset, FRAMU’s
MSE of 0.033 and MAE of 5.600 surpassed other models.
The low p-values validate FRAMU?’s significant advantage in
discarding irrelevant data.

Fig. 6 visually compares the differences in MSE and MAE
between original and unlearned data across various datasets
and models. FRAMU consistently exhibited the largest differ-
ences, indicating a strong response to the unlearning process.
In contrast, other models displayed varying degrees of differ-
ence across datasets.

Moreover, in the comparison of RE and AD metrics as
illustrated in Tab. IV, FRAMU consistently outperformed its
counterparts. Specifically, in the AMPds2 dataset, FRAMU’s
RE and AD values (0.024 and 0.57, respectively) were superior
to those of FedLU (0.03 and 0.66). Similar trends were
observed in the METR-LA and MIMIC-III datasets, further
establishing FRAMU’s robust performance in diverse data
scenarios.

NYPD MIMIC-CXR SEHD

‘ [ o MMoE [1 0 cleancLip [] 0 PEER [l B FRAMU ‘

Fig. 7: Comparative Analysis of MSE and MAE Differences
between Original and Unlearned multimodality Data

E. FRAMU Unlearning Results in Multimodality Context

In the multimodality experiment, the FRAMU framework
demonstrated its capability to handle diverse data types, in-
cluding images, text, and sensor data. The aim was to assess
FRAMU?’s effectiveness in unlearning outdated, private, and
irrelevant data in a multimodal context. For this, we utilized
benchmark datasets like MIMIC-CXR [50], NYPD Complaint
Data [49], and SHED [51]. The key focus was on evaluating
error reduction and performance improvements in comparison
to baseline models, with p-values highlighting the statistical
significance of FRAMU’s advancements.

1) Outdated Data

FRAMU consistently outperformed baseline models across
all datasets in handling outdated data. In the NYPD Complaint
Data [49], for instance, it achieved a lower MSE (0.047) and
MAE (5.037) compared to MMoE, CleanCLIP, and Privacy-
Enhanced Emotion Recognition. Similar trends were observed
in the MIMIC-CXR [50] and SHED [51] datasets. FRAMU’s
proficiency in adapting to temporal changes and focusing on
current, relevant data contributed to its superior performance.
The statistical significance of these results, as indicated by
the p-values, confirms FRAMU’s advantage in unlearning
outdated data.

2) Private Data

FRAMU also excelled in handling private data, achieving
superior MSE and MAE values. In the NYPD Complaint Data,
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TABLE V: FRAMU - Evaluation Results in Multimodality Context

Unlearning Dataset MMOoE [54] CleanCLIP [55] PEER [56] FRAMU (ours)
MSE MAE p-value MSE MAE p-value MSE MAE p-value MSE MAE
NYPD 0.064 7.28 0.024 0.062 6.95 0.031 0.06 6.41 0.041 0.055 5.77
Original MIMIC-CXR | 0.075 8.71 0.016 0.079 8.31 0.038 0.074 7.67 0.029 0.071 6.9
Outdated SHED 0.095 11.27 0.031 0.098 10.76 0.045 0.093 9.92 0.032 0.089 8.93
Data NYPD 0.061 7.13 0.015 0.059 6.78 0.029 0.058 5.71 0.036 0.042 4.54
Unlearned | MIMIC-CXR | 0.071 8.55 0.029 0.075 8.12 0.025 0.07 6.84 0.032 0.052 5.45
SHED 0.091 11.1 0.023 0.094 10.54 0.041 0.09 9.76 0.017 0.067 7.07
NYPD 0.053 7.33 0.014 0.055 7 0.037 0.054 6.45 0.041 0.051 5.81
Original MIMIC-CXR | 0.063 8.76 0.035 0.065 8.36 0.043 0.064 7.71 0.045 0.062 6.94
Private SHED 0.078 11.34 0.035 0.08 10.82 0.044 0.079 9.98 0.031 0.077 8.98
Data NYPD 0.051 7.17 0.011 0.053 6.82 0.035 0.052 6.31 0.015 0.039 4.57
Unlearned | MIMIC-CXR 0.06 8.6 0.031 0.062 8.17 0.038 0.061 7.56 0.016 0.046 5.48
SHED 0.075 11.17 0.011 0.077 10.61 0.036 0.076 9.81 0.029 0.058 7.11
NYPD 0.047 7.25 0.027 0.05 6.92 0.041 0.048 6.38 0.025 0.046 5.74
Original MIMIC-CXR | 0.054 8.66 0.038 0.056 8.27 0.031 0.055 7.63 0.039 0.053 6.87
Irrelevant SHED 0.07 11.21 0.045 0.072 10.7 0.032 0.071 9.87 0.042 0.069 8.88
Data NYPD 0.045 7.1 0.014 0.047 6.74 0.019 0.046 6.24 0.022 0.034 4.52
Unlearned | MIMIC-CXR | 0.052 8.5 0.029 0.054 8.08 0.024 0.053 7.48 0.027 0.04 5.42
SHED 0.068 11.04 0.025 0.07 10.49 0.022 0.069 9.71 0.021 0.052 7.04

TABLE VI: Comparative analysis of FRAMU’s performance
in multimodality against baseline models in RE and AD
metrics.

FRAMU

Unlearning Dataset MMOoE [54] | CleanCLIP [55] PEER [56] (Ours)
RE AD RE AD RE AD RE AD
Outdated NYPD 0.029 [ 0.71 [ 0.028 0.68 | 0.029 [ 0.57 [ 0.022 | 045
Data MIMIC-CXR | 0.035 | 0.85 | 0.037 0.81 [ 0.034 [ 0.68 [ 0.027 | 0.54
SHED 0.045 | 1.11 [ 0.047 1.05 | 0.045 | 097 | 0.035 0.7
Private NYPD 0.031 | 0.71 | 0.031 0.68 | 0.031 | 0.63 | 0.023 0.‘}6
Data MIMIC-CXR | 0.038 [ 0.86 0.04 0.81 [ 0.039 [ 0.75 [ 0.028 | 0.54
SHED 0.046 [ I.IT [ 0.048 1.06 | 0.047 [ 0.98 [ 0.036 | 0.71
Irrelevant NYPDﬂ 0.028 | 0.71 [ 0.029 0.67 | 0.028 | 0.62 | 0.021 | 0.45
Data MIMIC-CXR | 0.033 | 0.85 | 0.034 0.8 [ 0032 | 0.74 | 0.027 | 0.54
SHED 0.043 I.1 [ 0.044 1.04 | 0.043 | 097 | 0.035 0.7

it showed notable performance with an MSE of 0.043 and
an MAE of 5.067. This trend was consistent in the MIMIC-
CXR and SHED datasets. The framework’s attention-based
unlearning approach effectively balanced privacy protection
with predictive accuracy, outshining the baseline models in
safeguarding privacy. The p-values further affirm FRAMU’s
significant outperformance in unlearning private data.

3) Irrelevant Data

Similarly, FRAMU demonstrated exceptional performance
in unlearning irrelevant data. In the NYPD Complaint Data
dataset, it surpassed baseline models with an MSE of 0.038
and an MAE of 5.012. This pattern persisted in the MIMIC-
CXR and SHED datasets. FRAMU'’s focused attention mecha-
nism enhanced its predictive accuracy by emphasizing relevant
features and discarding noisy information. The p-values rein-
force FRAMU’s notable superiority in filtering out irrelevant
data.

Fig. 7 illustrates the differences in MSE and MAE be-
tween original and unlearned data across datasets and models.
FRAMU consistently exhibited the most substantial differ-
ences, suggesting its heightened responsiveness to the un-
learning process. Other models showed less pronounced but
variable patterns across datasets.

In Tab. VI, FRAMU’s performance in RE and AD metrics
is compared against baseline models. FRAMU consistently
achieved lower average RE and AD scores, underscoring
its efficiency and applicability in Machine Unlearning tasks
across various unlearning scenarios and datasets. This robust
performance confirms FRAMU'’s leading position in the field

of multimodal Machine Unlearning.

F. Convergence Analysis
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Fig. 8: Convergence Analysis

In this study, we proposed an efficient unlearning al-
gorithm within FRAMU that showcased fast convergence.
The algorithm had achieved optimal solutions within a lim-
ited number of communication rounds, thereby substantiating
FRAMU's efficiency and scalability. The convergence analysis
of FRAMU, as shown in Fig. 8, evaluated its performance over
multiple communication rounds using MSE and MAE metrics
across three types of data: outdated, private, and irrelevant. The
analysis revealed a consistent decline in both MSE and MAE
values for all data categories as the number of communication
rounds increased, confirming FRAMU’s ability to refine its
models and improve accuracy over time. Specifically, MSE
values for outdated, private, and irrelevant data had shown
reductions from initial to final values of 0.053 to 0.039, 0.044
to 0.030, and 0.039 to 0.025, respectively. Similarly, MAE
values had also demonstrated improvements, with outdated,
private, and irrelevant data showing reductions from 7.201 to
4.845, 7.17 to 4.409, and 6.75 to 4.210, respectively.

This behavior indicated that FRAMU was effective in cap-
turing underlying data patterns and optimizing its predictions.
It continuously refined its models through iterative optimiza-
tion, leading to a decrease in both MSE and MAE values.
The analysis confirmed the robustness of FRAMU in adapting
to various types of data and highlighted its effectiveness in
progressively improving its predictive performance. Overall,
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FRAMU?’s strong convergence characteristics across different
data categories have demonstrated its versatility and capability
in minimizing errors, making it a robust choice for various
federated learning applications.
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Fig. 9: Optimization Analysis - Outdated Data

G. Optimization

The performance of the FRAMU framework is evaluated
through MSE and MAE metrics across various communication
rounds and thresholds, as presented in Fig. 9 and Fig. 10. Fig .9
investigates FRAMU’s efficiency with outdated data across
time durations that ranged from 24 hours to a year. Both MSE
and MAE metrics demonstrate decreasing trends with more
communication rounds, indicating enhanced model accuracy
over time. The algorithm is more effective in capturing short-
term patterns, as evidenced by higher MSE and MAE values
for the 24-hour duration.

Fig. 10 shifts the focus to FRAMU'’s performance on private
data, revealing that the algorithm not only maintains but even
improves its accuracy compared to outdated data scenarios.
Lower MSE and MAE values in the private data analysis affirm
this observation. Additionally, the trade-off between privacy
preservation and accuracy is examined. Although increasing
privacy guarantees (lower € values) generally leads to higher
MSE and MAE, FRAMU still manages to maintain reasonable
accuracy levels. This indicates FRAMU'’s capability to balance
privacy concerns with modeling accuracy.

VII. RESEARCH IMPLICATIONS

The FRAMU framework presented in this study has signif-
icant implications for both single-modality and multimodality
scenarios within the domain of federated learning. It addresses
crucial aspects such as privacy preservation, adaptability to
changing data distributions, unlearning mechanisms for model
evolution, attention mechanisms for model aggregation, and
strategies for efficient resource utilization and scalability.
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Fig. 10: Optimization Analysis - Private Data

One of the key achievements of FRAMU is its approach
to privacy preservation. In a time where data privacy is
paramount, FRAMU introduces mechanisms to prevent over-
reliance on sensitive or private demographic data. Importantly,
this emphasis on privacy does not detract from accuracy. Our
empirical evaluations demonstrate that FRAMU successfully
balances the often conflicting goals of data privacy and model
performance, marking a significant milestone in federated
learning and paving the way for future research in privacy-
preserving algorithms.

Adaptability is another strength of FRAMU. Dealing with
non-IID (non-Independently and Identically Distributed) data
across various participants and evolving patterns is a core
challenge of federated learning. FRAMU addresses this by
utilizing adaptive models that can adjust to changes in data
distribution, making it highly valuable for applications char-
acterized by data heterogeneity and dynamism.

The unlearning mechanisms within FRAMU are also note-
worthy. The ability to identify and remove outdated or irrele-
vant data is crucial for the practical deployment of federated
learning models, allowing the system to concentrate resources
on the most pertinent and current data. This capability not only
maintains but can improve model accuracy and relevance over
time. Incorporating attention mechanisms, FRAMU signifi-
cantly contributes to the field of intelligent model aggregation
in federated learning systems. By filtering out noise and
focusing on the most informative features during learning and
aggregation, FRAMU sets a foundation for the development
of more efficient and effective federated learning systems.

FRAMU’s optimization strategies, particularly in reduc-
ing the number of communication rounds needed for model
convergence, significantly contribute to both the efficiency
and scalability of federated learning systems. This is con-
firmed through empirical validation and convergence analyses,
showcasing the framework’s ability to reduce communication
overheads while achieving optimal solutions more rapidly.

FRAMU represents a major advancement in federated rein-
forcement learning, particularly in its proficient management
and unlearning of various data types. Its effectiveness is clearly
demonstrated through its statistical superiority over baseline
models in crucial metrics such as MSE and MAE across
different datasets. The combination of a sophisticated attention
mechanism and federated learning approach enhances the
model’s adaptability and accuracy in dynamic environments.
This achievement is a substantial contribution to the areas of
adaptive learning and privacy preservation, applicable to both
single-modality and multimodal settings.

VIII. CONCLUSION

The FRAMU framework marks a substantial advancement
in Machine Unlearning for both single-modality and multi-
modality contexts. It adeptly integrates privacy preservation,
adaptability to evolving data distributions, effective unlearn-
ing of outdated or irrelevant data, attention mechanisms for
model aggregation, and optimization strategies. This results in
enhanced performance, privacy, efficiency, and scalability in
federated learning. Empirical evaluations indicate FRAMU’s
superiority in model accuracy, data protection, adaptability,
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and optimization, outperforming baseline models in metrics
like MSE and MAE. However, limitations exist in retraining,
computational complexity, scalability, and hyperparameter op-
timization. Future research is needed to address these chal-
lenges, focusing on optimizing retraining, enhancing scalabil-
ity, and improving adaptability and fairness in diverse data
environments. These developments could revolutionize feder-
ated learning, paving the way for robust, privacy-respecting,
and efficient Al systems across various domains.
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11.2 Summary

The chapter concludes by highlighting FRAMU'’s significant contributions to the field of
machine unlearning, showcasing its effectiveness in addressing the dual challenges
of maintaining model accuracy while ensuring data privacy. Through extensive exper-
iments, FRAMU demonstrates superior performance in unlearning outdated, private,
and irrelevant data across various datasets. The summary emphasizes the frame-
work’s adaptability, privacy preservation, and efficiency in federated learning environ-
ments, offering valuable insights into future directions for research and development in
adaptive and privacy-preserving machine learning models.
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CHAPTER 12: CONCLUSIONS

This doctoral thesis embarked on a transformative journey into the realm of patient
monitoring systems, harnessing the potential of Al and cutting-edge techniques such
as federated learning, reinforcement learning, and machine unlearning. Through a
comprehensive investigation of various Al in healthcare scenarios, the thesis made
significant strides in enhancing patient care and revolutionizing healthcare practices.

The first part of this research journey delved into using Artificial Intelligence (Al)
to enhance patient monitoring systems. It focused on remote patient monitoring and
personalized activity tracking, addressing the significant challenges with innovative so-
lutions like FedStack and Clustered FedStack. These models used stacked federated
learning to improve personalized care, allowing healthcare providers to offer more spe-
cific and effective interventions based on individual patient needs. Additionally, the
development of Multi-Agent Deep Reinforcement Learning and PDRL frameworks was
crucial, offering innovative methods for predictive monitoring and enabling the early
detection of health anomalies, which is vital for providing proactive and personalized
treatments.

The second part of this research extended the exploration into multimodality fu-
sion and graph-enabled techniques, aiming to develop a holistic smart healthcare sys-
tem. The synthesis of diverse Al techniques, as outlined in this section, emphasized
the transformative potential of integrating various data sources for informed decision-
making in healthcare. Furthermore, the GraphRL framework showcased the capa-
bility of Temporal Graphical Convolutional Networks (T-GCN) in enhancing dynamic
reinforcement learning scenarios in patient monitoring, indicating a broad spectrum of
potential applications beyond the healthcare sector.

In the third part, the focus shifted to explainable Al and machine unlearning, unveil-
ing the importance of transparency and interpretability in Al-driven systems. The devel-
opment of the QXAIl framework highlighted the necessity for explainability in healthcare
applications of Al, aiming to strengthen trust and facilitate more effective collaboration
between Al systems and human practitioners. Moreover, the exploration of machine
unlearning underscored its role in adapting Al models to the continuously evolving
landscape of healthcare, with the FRAMU framework illustrating the convergence of
federated reinforcement learning and attention-based machine unlearning to ensure
the robustness of Al models.

This thesis represents a comprehensive exploration into the realms of Al-driven
patient monitoring systems. It has traversed the landscapes of enhanced patient mon-
itoring, smart healthcare systems, and the subtleties of explainable Al and machine
unlearning. By integrating innovative Al technologies into healthcare, this research il-
luminates the possibilities of creating a seamless and symbiotic relationship between
technological advancements and healthcare needs. The insights and frameworks pre-
sented herein are hoped to serve as catalysts for future research, outlining a progres-
sive path forward in the pursuit of more personalized and impactful healthcare solu-
tions.
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Figure 12.1: Contributions in Revolutionizing Healthcare

12.1 Contributions

This research explores various aspects of Al methodologies, encompassing federated
learning, reinforcement learning, attention mechanisms, and machine unlearning, seg-
mented into three parts within this thesis, with an aim to revolutionize healthcare and
refine patient monitoring systems As shown in Fig[12.1] The objective is to enable
the prediction of vital signs and the classification of physical activities while ensuring
the provision of transparent, personalized, and patient-centric Al mechanisms. This
study stands as a multi-dimensional contribution to the domain of Al in Healthcare.
It primarily focuses on amplifying the efficacy of remote patient monitoring using ad-
vanced Al techniques and underscores the importance of multimodal fusion in the con-
text of smart healthcare systems. Furthermore, this research promotes the integration
of transparent and explainable Al to advance patient monitoring systems and employs
machine unlearning to safeguard patient privacy. This approach also works to enhance
model accuracy by unlearning outdated and irrelevant data, thereby aligning the sys-
tem with contemporary healthcare requirements. The major contributions of our work
in each part of this thesis are as follows:

Part I: Enhancing Patient Monitoring through Al

« We present a comprehensive review of Al's impact on remote patient monitoring
systems and identify challenges in adopting Al-enabled remote patient monitor-
ing systems

» We proposed novel federated learning approaches such as FedStack and Clus-
tered FedStack enabling personalized monitoring in human activity recognition.

189



» We designed multi-agent deep reinforcement learning frameworks that have re-
shaped patient monitoring by learning behavior patterns and predicting appropri-
ate responses, allowing medical teams to act proactively during emergencies.

Part Il: Smart healthcare systems with multimodality fusion and graph-enabled
techniques

» We present the journey of data to information to knowledge to wisdom in the
context of multimodality fusion for smart healthcare.

« We proposed a generic DIKW techniques framework for smart healthcare, that
not only highlights the current efforts but also provides a vision for its future evo-
lution.

» We proposed a novel and generic GraphRL framework with predictive and mon-
itoring capabilities for early warnings in a complex environment.

Part lll: Advancing patient monitoring systems with explainable Al and machine
unlearning

» We propose a new paradigm to interpret and explain the vital sign prediction and
physical activity classification in patient monitoring systems through a generic
Explainable Al framework(QXAl).

» We present a detailed taxonomy of techniques in machine unlearning that can
adopted in natural language processing (NLP), computer vision, and recom-
mender systems which act as important roles in patient monitoring systems.

« We present a novel adaptive unlearning framework to unlearn outdated, private,
and irrelevant data to protect patient privacy and enhance model accuracy by
removing outdated and irrelevant data.

12.2 Limitations

The doctoral thesis acknowledges certain limitations that need attention:

Scope of applications: The study primarily focused on remote patient monitoring,
personalized activity tracking, and predictive monitoring in healthcare. Future re-
search should encompass a broader range of healthcare applications, including neu-
rological system-related diseases and other chronic conditions.

Data scale and explainability: Some frameworks faced challenges related to data
scale and explainability. Ensuring the robustness and reliability of Al-driven decisions
in patient monitoring requires addressing these limitations. Models should not only
deliver accurate predictions but also provide clear explanations to healthcare profes-
sionals for informed decision-making.

Data privacy and security: Al-driven patient monitoring relies on diverse data sources,
making data privacy and security critical concerns. Future research should focus
on developing privacy-preserving techniques and protocols to safeguard patient data
while enabling efficient and effective Al model training.

190



Exploring the Landscape of Machine Unlearning: A Comprehensive Survey and Taxonomy
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Figure 12.2: Machine Unlearning Taxonomy

12.3 Future directions

The doctoral thesis, by incorporating insights from the multifaceted machine learning
and machine unlearning taxonomy, sets the stage for groundbreaking research and ad-
vancements in Al-driven patient monitoring systems as shown in Fig. [12.2] illustrating
convergent paths between future directions and the taxonomy’s core components:

Refined Federated Learning and Privacy Preservation: Integrating insights from
the first axis of the taxonomy, focused on Privacy Preservation and Model Update
Techniques, future endeavours will delve into refining federated learning frameworks
such as Clustered-FedStack through dynamic clustering and enhanced incorporation
of client demographics [560]. These nuanced advancements are anticipated to or-
chestrate more personalized, improved outcomes and advance privacy preservation,
a pivotal aspect of machine unlearning.

Proactive predictive monitoring and domain adaptation: Aligned with the sec-
ond axis emphasizing Domain Adaptation through Reinforcement Learning, exploring
proactive predictive capabilities in patient monitoring using multi-agent DRL exempli-
fies an innovative frontier in preventive patient care [67]. By resolving challenges re-
lated to limited training data and leveraging transfer learning, this direction is poised to
offer adaptive intelligence, making monitoring frameworks more versatile and domain-
adaptable [68].

Enhanced accuracy and robust monitoring: The synergistic exploration of ensem-

191



ble methods and transfer learning resonates with the aspirations of the taxonomy’s
second axis. The union of diverse insights from multiple DRL agents is set to for-
tify the robustness and accuracy of patient monitoring systems [69], addressing the
ever-evolving needs and challenges in healthcare.

Holistic remote patient monitoring: Envisioned advancements in the integration of
a broader spectrum of feature inputs and patient data sources align with the overarch-
ing goals of the machine unlearning taxonomy [70], aiming to provide comprehensive
remote monitoring solutions and augmented clinical decision support, thereby push-
ing the boundaries of Al in healthcare.

Trustworthy machine unlearning: Continuing advancements in machine unlearn-
ing, focusing on enhanced transparency and trustworthiness of Al models, align with
the intrinsic objectives of the taxonomy [71]. Addressing aspects such as scalabil-
ity, selective unlearning, and performance impacts is pivotal for the widespread and
ethical deployment of machine unlearning across various sectors.

Explainable Al frameworks and interpretability: Further refinement and explo-
ration of frameworks like QXAI, drawing insights from the third axis concentrating on
Explainability and Interpretability, aim to bring clarity and transparency to Al-driven
predictions, fostering enriched collaborations between Al and human insights and en-
hancing the overall healthcare experience [72].

This doctoral thesis has significantly contributed to advancing knowledge and prac-
tice in Al-driven patient monitoring systems. By addressing limitations and embracing
future directions, the transformative potential of Al in healthcare is within reach. Contin-
ued research and innovation in Al, combined with a patient-centric approach, will usher
in a new era of personalized, proactive, and effective healthcare delivery, benefiting in-
dividuals worldwide. The collective efforts of researchers and practitioners in the field
will shape the future of healthcare, where Al-driven patient monitoring becomes an
indispensable tool in enhancing patient well-being and transforming healthcare prac-
tices.
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