
A Novel File System Supporting Rich File Classification

Nehad Albadri1,2 , Stijn Dekeyser2

1University of Thi-Qar , Iraq
2University of Southern Queensland, Australia.

nihadghasab.comp@utq.edu.iq, dekeyser@usq.edu.au

corresponding Author: Nehad Albadri

Abstract: Existing implementations of file systems often seem to be made on an ad
hoc and implicit basis. This paper aims to enhance the organization of files and
retrieval of files by modifying the traditional hierarchical file system to improve built-
in query support and bulk metadata updates supported at the file system level. We
introduce tags in a hierarchy of file collections and use links to allow file retrieval
from multiple paths as files exist in multiple directories simultaneously. By using a
series of modest changes to the hierarchical file system, we propose a novel Linked
Tree Tags (LTTs) model. These changes include using multiple tags instead of names,
collections instead of directories, exposing a query language at the Application
Programming Interface (API) level, and allowing controlled file links. We assess our
model's expressive capability and demonstrate that LTTs overcome traditional file
systems' limits and provide users with the to manage their files easily.

Keywords: File System, classification, hierarchical file system, metadata capabilities,
linked tree tags.

1. Introduction
We interact with our computers every day, storing, organizing, and retrieving files.
These routine tasks are growing more difficult as the quantity of stored files increases,
thanks in part to increased storage capacity and quick access to data-generating
mobile applications [1]. We focus on the specific use case in which users save files in
a file system to which they have access and then want to find and recover these files.
Someone else created the file [2] [3], or programs are handling a set of files on behalf
of a person. The most important things are that the user knows that the file they are
looking for exists, that they remember some of the file's properties and that they have
direct access to the file system.
Since the 1970s, hierarchical file systems (HFS) have been accountable for personal
data management [4], even though the HFS is no longer adequate to successfully
support the tasks that users have in managing their saved data [5]. It results from the
number of individually [6] created or downloaded files increasing where users
commonly cannot recall where those files are stored [7] and how they are titled, so
support for successful searching is essential. It has been addressed by various
researchers [8] and in our research in the area of the file systems and metadata (e.g.
[9] that HFS is a single classification system where files can exist only in one specific
directory within the hierarchy [10]. Formally, single classification indicates to if an
entity belongs to two distinct classes c1 and c2 then either c1 ⊂ c2 or c2 ⊂ c1. It can
cause some problems when a user tries to build a hierarchy of files as directories that
reveals file properties and supports perceptive search strategies [11]. The problems
that arise from single-classification file systems are discussed in detail in this paper by
providing multiple-classification solutions [12]. It is noted that to overcome or

mailto:nihadghasab.comp@utq.edu.iq
mailto:dekeyser@usq.edu.au

alleviate the deficiencies of hierarchical (tree) file system structures, POSIX-
compliant operating systems provide both symbolic and hard links [13]. Symbolic
links are particular files that contain a reference to another file or directory. Whenever
the destination specified by the link is moved [14], renamed, or deleted, the link is not
updated; instead, it refers to something that no longer exists [15]. Other problems with
links, including hard links, have been described in previous papers [16]. To
summarise, the introduction of links does not sufficiently address classic file system
single categorization difficulties [17]. Other methods for bypassing HFS restrictions
have been described. Some of these recommendations were based on a thorough
collection of file metadata rather than a hierarchical directory structure [18]. These
recommendations are meant to replace the HFS. Another method for dealing with
HFS constraints is to build additional functionality on top of the existing file system.
Many comparable strategies have evolved [19], and in previous work [20], we
grouped models and applications depending on the primary strategy they employ.
However, each approach has limitations [21] that prohibit considering them as a
solution to the HFS problems in this paper [22].
We seek to strike a compromise between the HFS replacement and HFS add-on
methods in this study. We propose a minor modification to HFS semantics that adds
tagging to the core file system structure while retaining the familiar and beneficial
hierarchical container structure of traditional file systems [23][27][28]. Because of the
similarity in behavior, introducing such a system as a replacement for a purely
hierarchical file system would be simple, but more importantly, it would provide a
uniform API that could be used to build richer generic user interfaces that could
leverage the enhanced metadata structures to better support user file management
activities [29][30]. The issues associated with traditional hierarchical file systems in
terms of adequately solving file management and search [31][32] inspired this work.
Section 2 evaluated the aforementioned challenges, and Section 3 defined the needed
services and fundamental physical entities that would be employed in the suggested
model. The key contribution of this study is the innovative model known as LTTs,
which is discussed in Section 4. Section 5 reviews the suggested model in terms of
addressing HFS constraints as well as compared to other solutions; we compare our
proposed model to other prior models and demonstrate the differences and benefits of
our proposed model.

2. Problems and Contributions
A. Problems
In the traditional hierarchical file system model, files are stored in directories. HFSs
make it possible for individuals to create their classification schemes. Classification is
a natural human activity that seeks to manage and understand complexity by
recursively grouping classes of entities (e.g., files or plants that share common
properties) [24] into subclasses (figure 1). Associated entities inherit more properties
as the classification tree descends, and there are fewer members of the subclass [25].
Iteratively, the searcher in a reasonably well-organized file system instance descends
the directory (classification) tree [26], choosing one new directory from each child
node of the current directory (which should reflect the categorical relationship it has
with its parent and siblings). Each step reduces the search space until a relatively
small selection of files is presented for selection. One of the reasons for their
longevity is the support provided by HFSs to organize files in directories and facilitate
iterative, navigational searches. Even though simple hierarchical directories may have
been sufficient decades ago, today’s ever-growing amount of data means that HFSs

are unable to meet the organizational and retrieval needs of modern users. We
discussed the problems of HFS in this context in our previous paper [2]. These issues
are summarised in the following paragraphs.

 Figure 1. Alternative classification hierarchies

Problem 1: Artificial hierarchies
It is typical to find that file attributes do not naturally establish subclass connections,
resulting in the formation of artificial hierarchies. Assume a user possesses files
connected with university courses on his or her computer, and these files include at
least two characteristics "course code" and "year of offer," although either of the
hierarchies presented in Figure 1 can be used to organize course files. The first
hierarchy includes the course code, followed by the year, or the second option on the
year might be used to categorize course files.
Problem 2: Classification
It is common for items to belong to more than one sub-tree in a hierarchy. Suppose
the hypothetical course files presented above are arranged by year, then by course. In
that case, how would you place the file that is to be included in both of the courses?
There are three options: place the files in one directory, keep duplicate copies (Figure
2), or keep one copy and place a hard or soft link to it in the sibling course directory.
All of these solutions are neither practical nor efficient.

Figure 2. Multiple classification choices

Figure 3. Adding metadata to a hierarchy

Problem 3: Problematic Pruning
Because of the classification problem (above), users are unable to find the files they
are looking for when orienting themselves through an imperfect classification
hierarchy. Therefore, in the search tree, a seeker will not be able to find the file if they
orient themselves the wrong way.
Problem 4: Metadata management
IHFSs have inefficient bulk metadata updates (figure 3). For example, if a user plans
to add or remove metadata, usually due to the need to update the classification, it
usually involves a sequence of nontrivial directory creation, deletion, and renaming
operations in the correct sequence.
Problem 5: Native query support
Conventional file system APIs (e.g., POSIX [15]) have limited query capabilities: you
can find a single file by typing its name (e.g., stat, open) or open and read a single
directory (opendir, readdir, scandir). Although this limited query capability supports
an orienteering style of search, it does not support file system-wide queries such as
those provided by the special purpose applications that are layered on top of the file
system. Users would be able to identify the structure of their existing file system
instance using a general, powerful query tool and therefore be helped spot errors in
classification (and correct them).
B. Contributions
We have made the following significant contributions to this paper.

• Proposed LTTs would add to the traditional hierarchical file system by using
tags and links as tools to deal with the issues that were mentioned above for
the existing file system.

• They would also add more features that can be used by users and include a
query language in the File System API level to make it easy to find files.

3. Framework
In the following section, we will describe the set of functions exposed at the
programming level API of LTTs. From the description, we exclude user-level file
system operations provided by applications that layer above the file system API. In
addition, we will only present parts of the API that deal with the file management
system’s organization. Operations such as file content manipulation and file
management system privileges and protections are not handled. We will compare our
approach to other research proposals, including those that also use tags in Section 5.
Our suggested system will provide three different types of services:

1. The process of creating a file and its related information. In addition to
the ability to connect a file in several paths at the same time, without the
hassles and constraints of current HFS linkages.

2. Identifying files
• The ability to look up or find a single file using a metadata standard. It

is necessary for a file's 'open' operation. The file system metadata must
be regulated to ensure that each file has a unique metadata definition.

• A query service that provides a collection of files that fulfill the class
membership criteria. At the very least, this would imply revealing the
contents of a file collection, such as a directory. We expand this
concept, however, to a general file system query. These actions are
crucial in the creation of file system user interfaces.

3. Modifying files’ Metadata
• Update an item of metadata for a single file, for instance to change a

name, a tag or its link.
• Reorganize a selected group of files by systematically applying

possibly complex changes to those files’ metadata, thereby potentially
reclassifying the files.

Tags, files, linkages, and groups of files are the most fundamental physical elements
in the proposed file system. These are specified here: along with the associated
metadata-based route and query ideas.
 A tag is a metadata item attached to a collection or a file. Conceptually it is a text
string that is unlimited in length. To some extent, it is a generalization of the name
that is associated with traditional HFS files and directories.
 A file is a sequence of bits (or maybe a larger atomic data unit) that is stored in the
file system. It has a unique system identifier. The logical organization of the file
system is unrelated to file content. Files are simply represented within these structures
by the system identifier. So, in the following, the word “file” can usually be
interpreted as synonymous with “file identifier”. A file may have associated tags.
 A link can be defined as special entries that enable multiple references to files and
thus, the use of multiple file and path names. The link in our proposal file system will
be like the links in the current file systems but without the mentioned limitation
(unidirectional) in Section 1. So, the proposed links are bidirectional as will be shown
in Section 5.
 A collection is a file container. From a logical view, it is an object that has some
unique system identifier; each collection is associated with zero or more files (file
identifiers).
 A path is a sequence of collections such that each member is a child of the
preceding collection. It is the route from the tree root to a collection, and so
unambiguously identifies a collection. Every collection can be uniquely identified by
a path. A file path is the combination of a (collection) path together with the identified
file within that collection. File system users navigate [18] paths to find files.
 A query specifies a search criterion in terms of collection and file metadata (tags).
Evaluating a query returns a set of zero or more files that may reside in many
different collections. The file system query is a key divergence from traditional HFS
APIs. While the functionality offered by a file system query can be duplicated by a
client program of a traditional HFS, it will likely suffer from poor efficiency due to
the need for repeated file system calls. A lack of integration with other components of
the file system will also make this approach less effective.

4. The LTTs Model
In conventional file systems, such as ext2 or NTFS, directories are organized
hierarchically. However, the hierarchy is only determined by the implementation
choices made. Directory structures are usually almost indistinguishable from regular
files, at least on a low level. We take a different approach to formalizing the data
model for our proposed system, where the hierarchy of collections is completely
separate from the set of files associated with each collection. The critical aspect of
these approaches is, however, their isomorphisms. We add links so the files can at the
same time connect to more than one collection without any deficiencies as in the
current file systems. We also use tags instead of names for files and directories in our
system. During the data model section, we will expose the reason why. Our model
differs from traditional file systems in that it includes a query language that is an
integral (but separate) part of its API. The following is a formal description (in Ƶ
notation) of the initial data model and its associated operations.

A. Data Models
The collection is organized in a hierarchical (tree) manner. Collections can contain
sub-collections, which are also known as sub-collections. The terms parent and child
naturally describe the relationship. A collection may have associated tags and it may
have links to any other collections. Every file in the collection is assumed to inherit
this tag, as well as any tags associated with ancestor collections. All files in a
collection have been placed there because they share some semantic properties (e.g.
all these files are associated with a particular project). The files can be linked to other
collections by bi-directional links. A file in a collection can be connected with a set of
tags that are directly related to the file. The file inherits from the contained collection,
and the file path is its parent. The main semantic distinction is that an atomic action
that affects a collection tag broadcasts to all files in that collection, whereas a file tag
affects only one file.

1.Hierarchy
 H:cid⇸ cid ∪ { τ } where

• cid is the type of collection identifiers. Note in the hierarchy, we use cid
instead of tag. This is to prevent involving the hierarchy in some operations
that are not needed such as changing the tags value, which does not need to
change the hierarchy. In other words, if we consider ctag, the hierarchy will be
changed with every operation.

• H describes a tree of collection identifiers with root τ.
• H (s) is the parent of s.
• Initial value : H=∅.
• Constraint: ∀𝑠𝑠 ∈ 𝑑𝑑𝑑𝑑𝑑𝑑 𝐻𝐻 • (𝑠𝑠, 𝜏𝜏) ∈ 𝐻𝐻+

All collection identifiers are part of a single rooted tree. This constraint also
precludes cycles.

2. Collection tags
 S : cid ∪ { τ } ⇸ ℙctag
where

• ctag is the type of collection tags. By allowing to have more that one
attached tag with collection, this might provide many options (flexibility) to
locate the collection.

• The collection tag for τ is the distinguished value root.

• Initial value: S={ τ ↦ root }
• Constraint:

∀ (i,p), (j,q) ∈ H • p=q ∧ i≠j ⇔S(i) ≠ S(j)

The collection tags of collection identifiers with the same parent must be
distinct; collection tags are unique within collections.

3. Files
F : cid⇸ (id ⇸ℙ ftag)
• Files are grouped in collections; each collection is identified by a collection

identifier.
• Each file is a bidirectional mapping between file tag (type ftag) and a physical

identifier (type id).
• Initial value: F=∅
• ∃ (s1,f1),(s2,f2)∈ F • s1≠s2 ∧ dom f1 ∩ dom f2 ≠ ∅ .

A physical file may exist in more than one collection by file links.

4. Collection path

 The following two functions are derived from H and S.
The path function D : cid ⇸ seq cid .
The path function P : cid ⇸ seq ℙ ctag is now a sequence of tag sets.
P(s) = {n:ℕ; id : cid | (n,id)∈ D(s) • (n,S(id))}
 The formal definition for P describes a collection path as a sequence of sets of
tags. Figure4 shows abstract syntax for paths where multiple tags exist for both
collections and files. Note that, while P defines paths that include all tags
associated with collections, in any given instance of a file system it may be
possible that a path specification with fewer tags per object will still identify a
single file. That is, a single object may be identified by more than one path
specification.

 Using fully populated path specifications can be useful however: if an object has
been created with fully specified path p, and if the tags associated with the objects in
p are not subsequently modified, that file can always be located (opened) using path
p.

 Figure 4. LTTs path syntax

B. LTTs Operations
This model allows the following function calls. Naturally, any interface built upon the
API may have different operations that translate to these functions.
1. CrCollection (tags, parentPath) Create a new collection: To complete this
operation, the precondition is to provide the input parameters which are new collection
(tags) and the parent: the path sequence of collections from the root node to a target
collection. First the parent parameter is checked where it must exist and then the tag

parameter is checked where it must not exist within the parent collection. For instance,
we want to add a new collection {068C,ref materials} within 2021 collection.
CrCollection({068C ,ref materials },2021/)

2. DelCollection(tags,parentPath) Delete a collection: The precondition to completing
this operation is that the target collection tag must exist in the parent collection. In
addition, the collection must be empty which means that all its sub-collections and files
have already been deleted (no sub-collection and files at all). Note that we can locate
the collection by providing a subset of the collection tags which must uniquely identify
the collection. For instance, we want to delete {068C, ref materials} to do this by
providing the {068C, ref materials}, 068C, or ref materials as long as they uniquely
identify the collection.
3. UpCollection (operation, path, NewValue) Update a collection: the updating refers
to change the tag value or the path of the particular collection. The input parameters are
an operation that refers to the type of function call whether it is “move” the collection
(changing its location) or, “add”, “delete” -changing the set of associated collection
tags where in this model rename operation will be expressed by deleting the old one
and then adding the new one; old value always refers to the path (whether the operation
move, add, or delete as the location of the collection needed in all these operations);
and new value means the new path (location) if the operation is “move” while it is the
new tag value if the operation is “add” or without value if it is “delete”. The old and
new values will be checked where the old value must exist and the new one must not
exist and it will not affect the local uniqueness of the collection. This function means
that all the sub-collections and files underneath this collection will be immediately
changed as well.
4. CrFile (ftags, parentPath) create a new file: the input parameters of this operation
are a tag/set of tags and collection path where the file will be. The operation
preconditions are that the file does not exist and the new tag (set/subset of tags) must be
locally unique. For example CrFile({assignment1, answer1},CS /). id returns form this
operation.
5. DelFile(ftags,parentPath) refers to deleting a file from a collection with the
precondition that the file exists with providing its tags or part of tags which uniquely
identifies the file and its collection as well.
6. UpFile(operation,path,value) Update File: changing a tag value or the path of a
specific file with a precondition that it must not affect the uniqueness of the files within
its collection. This can be done by providing the input parameters that are: operation
that means the type of this function call which is either “move”, “add”, “delete” tags as
the files in this model may have set of associated tags, rename operation will be
expressed by deleting the old one and then add the new one; old value always refers to
path (whether the operation move or rename as the location of the collection needed in
both operations); and new value means new path (location) if the operation is “move”
while it is the new tag value if the operation is “rename” The old and new values will
be checked where the old value has to exist and the new one must not exist and it will
not affect the local uniqueness of the file within the collection.
7. CrFileLink(filePath,parentPath) Create a new file link: this means associating
existing file to another collection, so the file will exist in more than one collection at
the same time. This requires that the file and the parent exist and the file must not exist
in this parent.

8. DelFlileLink (filePath) Delete a file link: refers to delete one possible path by
deleting one membership of file with a collection. To complete this operation all we
need the file which must exist and the file must exist in another collection.
9. UpFileLink(oldFilePath,parentPath) Update File: This operation to change a file
link. It refers to two operations deleting the old link and then follow by creating the
new link. The preconditions to complete this operation are as the previous operations
(CrFileLink (oldFilePath,parentPath)and DelFileLink (oldFilePath)

C. LTTs Queries
LTTs model adds a query language to the file system API as mentioned early. The
query language for LTTs is shown in Figure 5. The main LTT features that set it apart
from the traditional Hierarchical File System are adding a query language to the file
system API, and allowing collections & files to have multi-tags attached. These
features add more expressive for LTT file system organizations in that the presence of
multiple tags at both collection and file-level support the disjunctive conditions at
both levels.

Figure 5. LTTs model query language

For example, the query CS2∧CS3/ identifies all collections that have tags ‘CS2’ and
‘CS3’ and will return all files recursive located within those collections that have both
tags. On the other hand, the query CS2∨CS3/ identifies all collections that have tags
‘CS2’ or ‘CS3’ and will return all files recursively located within those collections
that have either CS2 or CS3. In addition, the query language shows that it can re-find
files using different paths because of adding links to the data model. Allowing file
links facilitates re-find files and collections through links as highlighted.
Furthermore, the query language shows that it can re-find files using different paths
because of adding links to the data model. For example the query CS2∧CS3/
identifies all collections that have tags “CS2” and “CS3” and will return all files
recursive located within those collections. Complex queries that has both ∨ and ∧ are
also possible. Complex queries like the following are possible.
courses/2021/CS2∨CS3/assignment∨exam
courses/2021/CS2∧CS3/reference
courses/2021/CS20∧CS21/reference∧¬Git
Concrete query syntax would require addition of parentheses to resolve operator
precedence in cases like courses/2021/CS2/(assignment∨exam)∧results but has been
elided here for simplicity.

5. LTTs Evaluation

Firstly, we will expose why is a better solution model. This model supports metadata
management better than just tree-based models and rooted graph models (such as
VennFS [1]) in terms of the following reason:

• Simplicity: In rooted graph (VennFS), to add or remove a tag, usually because
the classification needs to be modified to better reflect reality, it often requires
creating a new collection which links to other collections that the files have to
belong to. This means that to solve the problem of collections’ links, many
operations should be done while with LTTs this problem can be solved in just
one operation by linking the file with a collection that reflects the new
classification desired.

• Another reason is that in the rooted graph model, the new collection created
will be unknown; which tag should be given? So, the updating operation will
not easy as the LTTs updating operation. Secondly, we will show how LTTs
solve the HFS problems. The LTTs file system structure provides a solution to
the problems detailed in Section 2. The provision of multiple tags for a
collection (file container) and files allows multiple classification schemes.
Figures 6 and 7 show how LTTs solve problems 1 (Artificial hierarchies) and
2 (Classification). More visible collection tags can better inform the
orienteering style of search that descends a tree to locate a file (Problem 3
(Problematic Pruning)). LTTs model also supports multi-classification by file
links. This means that files can exist in more than one collection and multi-
tags attached for both collections and files. Based on both file links and the set
of tags for collections and files, this model has the ability to provide most of
the users requirements by allowing to use ∧,∨,¬ to retrieve files where it can
be used as a complex query. The links in the model support metadata
management by reducing the number of operations required to update a file.
Multi-tags also shows support metadata management. As LTTs has both links
and multi-tags, it will be more powerful model in terms of solving the HFS
and reducing the required operations that users have to do for updating their
files.

Figure 6. Collections with multiple tags

Figure 7. Supporting multiple classifications

Finally, the LTTs model meets most of the metadata management criteria. The ease of
tag manipulation supports associating more relevant metadata with groups of files
(Problem 4 (Metadata management)).

6. Conclusions and Future Work

The HFS is ubiquitous and used in operating systems old and new. Over the years,
there have been many attempts to define new file and add-on applications that offer
much-improved metadata capabilities. The proposed model was motivated by the fact
that users of these systems struggle with both properly organizing files and simply
relocating them in the future. Researchers have looked at many elements of post-
hierarchical file management systems to solve the well-documented drawbacks of
conventional systems. In some cases, work has resulted in significantly different file
system architectures, while in others new functionality is added via user-space
applications on top of traditional architectures. Separately, some proposals prefer tags,
whereas others prefer named attribute-value pairs. In this paper, we discussed the
details of a file management system structure called LTTs that can reuse tags and
links without the disadvantages that exist with traditional HFS links, which refer to
linking files simultaneously in different paths. We showed that LTTs resolve the
identified HFS problems. Expanding on the current work will take two main
directions. We have evaluated the LTT model from a practical standpoint. Developing
a proof-of-concept implementation requires key decisions on data structures and
algorithms; comparing the software with traditional file systems requires the creation
of a metadata-oriented benchmark that could also be used to measure the efficacy of
other novel file systems. However, perhaps of greater importance is the possibility of
designing user interfaces that can take advantage of the LTTs file system’s rich
metadata schema and query API. Second, future research should look at alternative
models that can solve HFS problems by using attributes instead of tags and examine
how they differ in terms of how they solve the problems and whether or not they add
complexity for the end-user.

Acknowledgments
 The authors wish to thank Dr. Richard Watson in the University of Southern
Queensland for his valuable comments on the proposed model. Also, thanks to the
sponsor of the first author Ministry of higher education and scientific research (Iraqi
Government) and University of Thi-Qar. The first author also thanks the University of
Southern Queensland for accepting her in one-year sabbatical leave.

 References

1. N. Albadri, S. Dekeyser, and Richard Watson. VennTags : A file management system
based on overlapping sets of tags. In Proceedings of Conference 2017 Proceedings.
iSchool, 2017.

2. Nehad Albadri, Richard Watson, and Stijn Dekeyser. TreeTags: Bringing tags to the
hierarchical file system. In Proceedings of the Australasian Computer Science Week
Multiconference, Canberra, Australia, pages 21–31, 2016.

3. Alexander Ames, Nikhil Bobb, Scott A Brandt, Adam Hiatt, Carlos Maltzahn, Ethan L
Miller, Alisa Neeman, and Deepa Tuteja. Richer file system metadata using links and
attributes. In Proceedings of 22nd IEEE/13th NASA Goddard Conference on Mass
Storage Systems and Technologies, pages 49–60. IEEE, 2005.

4. Sasha Ames, Maya Gokhale, and Carlos Maltzahn. QMDS: a file system metadata
management service supporting a graph data model-based query language.
International Journal of Parallel, Emergent and Distributed Systems., 28(2):159–183,
2013.

5. Sasha Ames, Maya B Gokhale, and Carlos Maltzahn. A metadata-rich file system.
Technical report, Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
2009.

6. Deborah Barreau and Bonnie A Nardi. Finding and reminding: file organization from
the desktop. ACM SigChi Bulletin, 27(3):39–43, 1995.

7. Ofer Bergman, Noa Gradovitch, Judit Bar-Ilan, and Ruth Beyth-Marom. Folder versus
tag preference in personal information management. Journal of the American Society
for Information Science and Technology, 64(10):1995–2012, 2013.

8. Ofer Bergman, Tamar Israeli, and Yael Benn. Why do some people search for their
files much more than others? a preliminary study. Aslib Journal of Information
Management, 2021.

9. Ofer Bergman, Tamar Israeli, and Steve Whittaker. Search is the future? the young
search less for files. Proceedings of the Association for Information Science and
Technology, 56(1):360–363, 2019

10. Brian Carrier. File system forensic analysis. Addison-Wesley Reading, 2005.
11. Stijn Dekeyser and Richard Watson. Metadata manipulation interface design. In

Proceedings of the 14th Australasian User Interface Conference, pages 33–42.
Australian Computer Society, Inc., 2013.

12. Stijn Dekeyser, Richard Watson, and Lasse Motrøen. A model, schema, and interface
for metadata file systems. In Proceedings of the thirty-first Australasian conference on
Computer science, pages 17–26. Australian Computer Society, Inc., 2008.

13. Jesse David Dinneen and Charles-Antoine Julien. The ubiquitous digital file: A review
of file management research. Journal of the Association for Information Science and
Technology, 71(1):E1–E32, 2020.

14. David K Gifford, Pierre Jouvelot, Mark A Sheldon, et al. Semantic file systems. In
ACM SIGOPS Operating Systems Review, pages 16–25. ACM, 1991.

15. IEEE. IEEE standard for information technology - portable operating system interface
(posix). base definitions. IEEE Std 1003.1, 2004 Edition. The Open Group Technical
Standard Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std
1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. Base, 2004.

16. Thomas W Jackson and Stephen Smith. Retrieving relevant information: traditional file
systems versus tagging. Journal of Enterprise Information Management, 25(1):79–93,
2011.

17. William Jannen, Jun Yuan, Yang Zhan, Amogh Akshintala, John Esmet, Yizheng Jiao,
Ankur Mittal, Prashant Pandey, Phaneendra Reddy, Leif Walsh, et al. Betrfs: A right-
optimized write- optimized file system. In FAST, pages 301–315, 2015.

18. William Jones, Abe Wenning, and Harry Bruce. How do people re-find files, emails
and web pages? In Proceedings of iConference 2014. iSchools, 2014.

19. Peter Klemperer, Yuan Liang, Michelle Mazurek, Manya Sleeper, Blase Ur, Lujo
Bauer, Lorrie Faith Cranor, Nitin Gupta, and Michael Reiter. Tag, you can see it!:
using tags for access control in photo sharing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 377–386. ACM, 2012.

20. Anghel Leonard. Manage symbolic and hard links. In Pro Java 7 NIO. 2, pages 35–42.
Springer, 2011.

21. Han Lin, Huang Hao, Xie Changsheng, and Wang Wei. Clustering files with extended
file attributes in metadata. Journal of Multimedia, pages 278–285, (2021).

22. Syed Rahman Mashwani, Azhar Rauf, Shah Khusro, and Saeed Mahfooz. Linked file
system:Towards exploiting linked data technology in file systems. In 2016
International Conference on Open Source Systems & Technologies (ICOSST), pages
135–141. IEEE, 2016.

23. Mahajan, H.B., Rashid, A.S., Junnarkar, A.A. et al. Integration of Healthcare 4.0 and
blockchain into secure cloud-based electronic health records systems. Appl Nanosci
(2022). https://doi.org/10.1007/s13204-021-02164-0

24. Ofer Bergman, Tamar Israeli, and Yael Benn. Why do some people search for their
files much more than others? a preliminary study. Aslib Journal of Information
Management, 2021.

25. Brackenbury, W., Harrison, G., Chard, K., Elmore, A., & Ur, B. Files of a feather flock
together? Measuring and modeling how users perceive file similarity in cloud storage.
In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, 2021.

https://doi.org/10.1007/s13204-021-02164-0

26. Brackenbury, W., McNutt, A., Chard, K., Elmore, A., & Ur, B. KondoCloud:
Improving Information Management in Cloud Storage via Recommendations Based on
File Similarity. In The 34th Annual ACM Symposium on User Interface Software and
Technology, 2021.

27. Conrad, L. Y. Managing academic information: A grounded theory of the student-
researcher information experience (Doctoral dissertation, Queensland University of
Technology), 2022.

28. Al-ali, A. H., Qalaja, L. K., & Abu-Rumman, A. (2019). Justice in organizations and
its impact on Organizational Citizenship Behaviors: A multidimensional
approach. Cogent Business & Management, 6(1).

29. Alon, L., & Nachmias, R. Gaps between actual and ideal personal information
management behavior. Computers in Human Behavior, 2020.

30. Alon, L., & Nachmias, R.The role of feelings in personal information management
behavior: Deleting and organizing information. Journal of Librarianship and
Information Science, 2022.

31. Mashwani, S. R., & Khusro, S. 360 semantic file system: Augmented directory
navigation for nonhierarchical retrieval of files. IEEE Access, 2019.

32. Tian, H., Ju, F., Nie, H., Wu, Y., Yang, Q. and Li, S., A new technology for real-time file
system of high-speed storage system in airborne sensors. IEICE Electronics
Express, 2021.

Biography

Nehad Albadri is now a lecturer with the College of Education for Pure Sciences, University of Thi-

Qar, Iraq. She has a PhD in computer science from USQ in Australia. She is interested in Digital
Signal Processing , operating systems, database management systems, and text mining.

Stijn Dekeyser is currently an associate Professor of Computer Science with the School of Sciences,

University of Southern Queensland, Australia. He earned his PhD from Antwerp University in
Belgium in 2003. His research interests include data management, metadata file systems, web
technology, and mobile systems.

Conflicts of Interest Statement

Title: A Novel File System Supporting Rich File Classification, We certify

that they have no any financial and personal relationships with other people
or organizations that could inappropriately influence (bias) their work.
Examples of potential conflicts of interest include Employment,
consultancies, stock ownership, honoraria, paid expert testimony, patent
applications, we are non-financial interest, and there are no conflicts of
interest.

 This study was self- funded, All authors declare, have no conflict of interest

(such as personal or professional relationships, affiliations, knowledge or
beliefs) in the subject matter or Materials discussed in this manuscript.

 This statement is signed by all the authors to indicate agreement that the
above information is true and correct

Authors Name
 Nehad Albadri and Stijn Dekeyser

