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Abstract

Machine translation is a popular automation approach for translating texts between
different languages. Although traditionally it has a strong focus on natural language,
images can potentially provide an additional source of information in machine trans-
lation. However, there are presently two challenges: (i) the lack of an effective fusion
method to handle the triangular-mapping function between image, text, and semantic
knowledge; and (ii) the accessibility of large-scale parallel corpus to train a model for
generating accurate machine translations. To address these challenges, this work pro-
poses an effective multimodality information fusion method for automated machine
translation based on semi-supervised learning. The method fuses multimodality in-
formation, texts and images to deliver automated machine translation. Specifically,
our objective fuses multimodalities with alignment in a multimodal attention network,
which advances the method through the power of mapping text and image features
to their semantic information with accuracy. Moreover, a semi-supervised learning
method is utilised for its capability in using a small number of parallel corpus for su-
pervised training on the basis of unsupervised training. Conducted on the Multi30k
dataset, the experimental results shows the promising performance of our proposed

fusion method compared with state-of-the-art approaches.
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1. Introduction

Multimodal machine learning is a vibrant field that aims to build models that pro-
cess and correlate information from different modalities. In recent years, many research
tasks based on multimodal information have been implemented, including multimodal
machine translation (MMT) [1-3], cross-modal generation [4-6], visual dialogue [7—
9], etc. Since the inputs and outputs of these models consist of different modal forms,
these tasks deal with multimodal data. More recent multimodal tasks [1, 2, 4, 8] have
produced state-of-the-art results based on Transformer structures [10], especially in
MMT.

Image-based MMT is one of the mainstream multimodal machine learning ap-
proaches, aiming to translate one language into another language with semantic con-
sistency via machine computation that uses images in the process. With image-based
MMT, images and text are used as input for the translation model (as shown in Fig. 1)
whereby images provide supplementary semantic information and disambiguation for
the textual data, to improve the accuracy of machine translation [11-13]. The initial ap-
proach for adding images to a machine translation model is by concatenating the image
and text features [2, 14]. However, since image and text belong to different modalities,
direct concatenation overlooks the “one-to-many” and “many-to-one” correspondent
relationships between text and image. Some studies [1, 15, 16] align image and text
features via attention structure [17] to achieve remarkable results. In particular, some
recent works [1, 18, 19] based on Transformer architecture have been outstanding. Our
literature review reveals that models with different training parameters often lead to dif-
ferent translation results [13, 20, 21]. This situation is more pronounced with ensemble
learning, as its quality depends on the accuracy and diversity of sub-models [22, 23].
Therefore, in addition to the accuracy of multimodal alignment, the diversity of trans-
lation models and their positive impact on machine translation needs to be considered.

Many studies also show that supervised machine translation (SMT) [24-26] has



Bmx-Fahrer
springt von
einer Rampe

Bmx biker jumps
off of ramp

Figure 1: An example for image-based MMT.

become the mainstream direction for enhancing machine translation quality. Com-
pared to statistical machine translation [27, 28], recent developments in deep learning
has empowered machine translation approaches to become more popular and competi-
tive [10, 17]. However, SMT model training requires large-scale, high-quality parallel
corpora, and the acquisition of such corpora requires a major investment of human
and material resources. In contrast, unsupervised machine translation (UMT) [29-31]
can be trained without parallel corpus. Although UMT effectively solves the depen-
dence of translation models on large-scale, high-quality parallel corpora, its translation
quality is poor. The main solution to this problem is to leverage additional informa-
tion, such as a large number of monolingual pre-training corpus [19, 30] or visual
pivots [31, 32], where pre-training corpora is more effective. However, this approach
not only increases material resources and training costs, but may also introduce low-
quality pseudo-sentence pairs in model training, which hurts the performance of the
machine translation model. Regardless of using supervised models or unsupervised
models, both approaches are limited to a large-scale corpus. To this end, our study
leverages a small amount of high-quality parallel corpus to establish a semi-supervised
multimodal machine translation (Semi-MMT).

We redefine the training of the Semi-MMT model, which consists of supervised
training and unsupervised training. In the unsupervised training component, a denois-
ing auto-encoder [33] is applied to a given monolingual, multimodal corpus to recon-
struct the source and target languages. Then, regularization pushes the latent encoding
spaces aligned between the source and target language by constructing pseudo-pairs.
For supervised training, a small parallel corpus is leveraged to further enhance this

latent alignment to train the model and improve machine translation quality.



In terms of modal fusion, the text features from the encoder and the image features
from the image feature extraction module are fused in a joint semantic space via weight
learning. Through this processing, the multimodal feature weights and biases are con-
tinuously converged towards making the translation results more accurate during the
training process. Finally, through integrating the prediction results of different param-
eter models, the diversity of models is more effectively utilized, which improves the
translation performance.

The main contributions of this work are as follows:

* On the basis of unsupervised training, we leverage a small number of parallel

corpora for further model training, thus forming Semi-MMT.

* Through a design of multi-perspective multimodal ensemble learning, we fuse
the results of sub-models, effectively exploiting the benefits of our multimodal

fusion method.

* The experimental results on the multimodal dataset Multi30k show that our
model achieves a remarkable performance compared to the baseline model, using

tens of millions of large-scale pre-training monolingual corpora.

The remainder of this paper is structured as follows. Section 2 introduces the recent
related work of machine translation. Then, section 3 describes task definition before
section 4 demonstrates the structure of the proposed model and its training paths. Sec-
tion 5 presents the experiment and its results to verify the effectiveness of our approach.

Section 6 summarizes our work and gives an outlook for future directions.

2. Related work

With the development of deep learning, many researchers apply various network
structures to different natural language processing tasks, e.g., convolutional neural net-
work (CNN) [34, 35], and recurrent neural network (RNN) for text based machine
learning [36, 37], and deep recurrent belief networks for decision-making tasks [38].
In multimodal machine learning, since the data belongs to different modalities, bridg-

ing the gap between the different modalities is one of the major difficulties in this



task. Recently, several researchers proposed capsule networks as a potential solu-
tion to effectively address the problem of insufficient semantic interaction between
modalities[39, 40]. Among them, work by [39] applied capsule networks on the Trans-

former and achieved state-of-the-art results in MMT.

2.1. Monomodal machine translation

SMT. Machine translation is a sequence-to-sequence learning task, which is typi-
cally implemented by an encoder-decoder structure [25]. In this structure, the encoder
maps the source sentence into a distributed representation, which is then fed into the
decoder to generate the target sentence word by word. With the advancement of deep
learning, different neural networks have been used as encoder-decoder structure, such
as RNN [17, 41], CNN [26] and Transformer [10]. Recently, Transformer has ad-
vanced the field of machine translation further than CNN and RNN in terms of transla-
tion quality and speed of convergence [10, 18], thus becoming the mainstream machine
translation framework [1, 2, 18, 20]. Therefore, this study also uses Transformer as the
main model to inherit this existing advanced technology.

UMT. Considering the machine translation of low-resource language pairs, some
existing works [42, 43] have verified that UMT is a feasible solution. These works
generally use modifications of the encoder-decoder schema and build a common latent
space between two languages, learning translation by reconstruction in both domains.
In terms of training data, they use a large amount of data to pre-train models or word
embeddings. Although the above-mentioned studies do not leverage parallel corpus,
they still rely on a large number of pre-trained embeddings. Thus, our approach ex-
plores the feasibility of reducing reliance on large-scale corpora and improving trans-

lation quality by using a small number of parallel corpora.

2.2. Semi-supervised machine translation

Since machine translation relies heavily on large-scale parallel bilingual corpora
and only using monolingual corpora leads to the decline of translation quality, semi-

supervised machine translation has attracted intensive attention. It is generally trained



in the following three ways: (1) source-to-target and target-to-source translation mod-
els are jointly trained by reconstructing the observed monolingual corpus using an auto-
encoder [44]; (2) fusion between translation system and language model [45]; and (3)
generating pseudo sentence pairs from monolingual corpora [46]. Compared with our
model, the above works are performed on text-only data, with the parallel corpus ac-
counting for at least 20% of the entire training data, much larger than our 7%. Our
approach uses an image as a pivot to bridge the two unpaired languages, and with or
without parallel corpus, image also plays the role of supplementary information to dis-
ambiguate. To the best of our knowledge this is a new Semi-MMT approach, but our
task still draws on existing text-based ideas, such as reconstructing corpus and gener-

ating pseudo-sentences.

2.3. Multimodal machine translation

SMT. After several recent tasks [3, 11, 47] proposed image-based MMT, it has
attracted extensive attention from researchers. Recent works such as [1, 2, 48, 49] have
achieved remarkable translation results by feeding additional image information into
text-only models. To introduce image information into the translation model, the image
information is initially used as a part of the input sentence [47, 50] or used to initialize
the encoder and decoder hidden states [51]. Subsequently, researchers use the attention
mechanism to align and mine image information [11, 18, 21, 52]. The most recent state-
of-the-art models [1, 2, 18, 48] are basically built on the Transformer, which provides
the theoretical knowledge that support our decision to choose the Transformer as our
main mode.

However, through the analysis of the MMT dataset and existing experimental re-
sults, we discover that text still plays a leading role in MMT, while the image is ad-
ditional modal information. Treating text and image equally may encode too much
irrelevant information from the image [1, 48]. This paper validates the importance of
modal alignment methods by exploiting different multimodal alignment methods.

UMT. Recently, introducing image information into UMT has attracted widespread
attention [19, 30, 31]. A problem in UMT is the lack of a target language that corre-

sponds to the source language, therefore an additional image modality is introduced



Table 1: List of some abbreviations

Abbreviation Expansion Abbreviation Expansion

X source sentence X translation of x

y target sentence y translation of y

Z image t model text input
Zx image corresponding to x T text encoding

Zy image corresponding to y 1 image encoding
X reconstruction of x m model output

y reconstruction of y y translation reference

as a pivot between unpaired bilinguals. Su et al. [19] investigated the possibility of
using images for disambiguation and promoting the performance of UMT. Their hy-
pothesis is intuitively based on the invariant property of the image, which means that
the description of the same visual content in different languages should still be roughly
similar. They achieve current state-of-the-art performance by exploring two training
paths, such as auto-encoding loss and cycle-consistency loss. Thus, we use it as the
basis for the unsupervised part of our model training. Existing unsupervised MMT
models [19, 30] rely on large-scale corpora for model pre-training, which increases the
cost of training. In addition, the alignment of multimodal features brings additional
challenges to unsupervised MMT. Therefore, considering the above issues, this study

uses a small amount of data to implement Semi-MMT with different alignments.

3. Task description

3.1. Task definition

As shown in Fig. 2, the training of the Semi-MMT model includes two parts: super-
vised and unsupervised. In unsupervised training, only monolingual corpora are used
on both the source and the target language sides, and they come in the paired form
of (x,2x) € X X Z and (y,2zy) € Y x Z. Therefore, the triple data of supervised
learning is no longer available. Unsupervised training allows the model to generate

a common latent space between the two languages and learns translation through re-
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Figure 2: Illustration of the input and output of the proposed model. Src and Tgt are denoted as source and
target. x and y denote source and target sentences, zx and zy represent images corresponding to x and y,
and Enc; (-) represents image encoding. In unsupervised training, x and y are non-parallel sentences. In
supervised training, x and y are parallel sentences, while z represents their corresponding image. X and y
represent the reconstruction of source and target sentences, X and y represent the translation of the target

and the source sentences.

construction in the two languages. This part is composed of auto-encoding loss and
cycle-consistency loss. In auto-encoding loss, the two mapping relations X' x Z2 — X
and Y X Z — ) are learned by reconstructing on the source and target languages, while
in cycle-consistency loss, regularization pushes the latent encoding spaces aligned be-
tween the source and the target language and learns the mappings V x Z — A and
X x Z — Y. In supervised training, an image and its descriptions in two different
languages form a triplet (x,y,z) € (X, ), Z), and supervised-loss is utilized to learn
the mapping relation X x Z — Y and Y x Z — X. Some abbreviations and their

extended meanings are shown in Table 1.

3.2. Unsupervised MMT

As shown in the unsupervised training part of Fig. 2, since UMT utilizes mono-
lingual corpus, the model has no input for translation reference. On both the source
and target languages, only non-overlapping monolingual multimodal data is provided
for training, and the available data is (x,zx) € X x Z and (y,zy) € Y x Z, where
{x} N{y} = ¢. Since there is no clear pairing information across the source and the
target languages, it is impossible to directly optimize the supervised likelihood. Al-
though each language has different expressions, languages with the same meaning are

similar in the latent space. In addition, visual content is used to disambiguate seman-
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Figure 3: The overall training path of the Semi-MMT. MA represents a multimodal attention. Unsupervised
training is implemented via src/tgt auto-encoding loss and src/tgt cycle-consistency loss, while supervised
training is implemented via src-tgt/tgt-src supervised-loss. The encoder and decoder in the figure are repre-

sented as the encoder and decoder of the Transformer.

tics and promote latent space alignment, thus improving machine translation perfor-
mance [19, 30]. The unsupervised part of our model is based on the UMNMT [19].
In this part, auto-encoding loss is used to reconstruct the source and target languages
and then cycle-consistency loss is used to learn the mapping relations X’ x Z — ) and

VxZ—->X.

3.3. Supervised MMT

As shown in the supervised training part of Fig. 2, the MMT model utilizes image
information, making up for the shortcomings of text-only translation and improving its
performance. In this task, the image z and the two different language word sequences
x = (z1,...,xy) andy = (y1, ..., Ym ) describing z form a triple (x,y, z) € (X, ), Z).
In the Transformer model, the encoder transforms the source language word sequence x
into a hidden representation {h¢, ..., h¢} = Enc,(x). Similarly, the image is encoded

as {hi7 .., hi } Enc,(z), where k represents the number of image features. In



the decoder, at the time stamp ¢ the encoder-decoder attention mechanism calculates
a context vector ¢} = > 7 a;hf via a attention-based alignment {as, ..., } =
Align(hy, {hi, ..., h}}), where >>7_; a; = 1 and h{ represents the decoder state.
In this paper, k and n are equal, {h‘fi7 e hfj} represents the linear weighted sum of
the corresponding items of {h{,...,h{} and {h¢,...,h¢}. The context vector of our

multimodal attention c; is as follows:
¢, = AhY,{h{, .. h¢}, {h{, .. hi}) 1)

The probability that the model predicts the next token in the decoder output can be

written as:
p(ys | y<t,X,2) = SOftmaX(g(Ctayt—uh?ﬂ)) ()

where g(-) represents a non-linear function.

4. Our Semi-MMT Method

As shown in Fig. 3, the training of the proposed Semi-MMT method includes un-
supervised and supervised parts. The unsupervised part includes four training paths,
which are src/tgt auto-encoding loss (lower region of the Fig. 3) and src/tgt cycle-
consistency loss (middle region of Fig. 3). The supervised part includes two training
paths, which are src-tgt/tgt-src supervised-loss (top region of Fig. 3). These training
paths are composed of a multimodal encoder-decoder structure, a multimodal attention

structure and an image feature extraction module. A detailed structure is shown Fig. 4.

4.1. Multimodal encoder-decoder structure

As shown in the encoder-decoder part of Fig. 4, the multimodal encoder-decoder
structure is built on the basis of Transformer [10]. For clarity, the layer normaliza-
tion [53] of encoder and decoder is omitted. The input and output embeddings are
trainable on the source and target sides, but are not pre-trained. Text and image fea-
tures are received and fused by introducing additional multimodal attention between
the encoder-decoder attention mechanism and the feed-forward sub-layer. The encoder

converts the input source sentence into a vector with semantic information, and the

10
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Figure 4: The detailed structure of the Semi-MMT. It includes a multimodal encoder-decoder structure,
multimodal attention structure, image feature extraction module and multi-perspective fusion. This figure
shows a part of the proposed model. The following takes the source language corpus as an example to
introduce the figure: (1) If this figure is regarded as an auto-encoding loss (lower region of the Fig. 3) path,
the encoder and decoder in the figure are in the source language; (2) If it is regarded as a cycle-consistency
loss (middle region of Fig. 3) path, the source encoder to target decoder and target encoder to source decoder
are applied jointly; (3) If it is regarded as a supervised-loss (top region of Fig. 3) path, the encoder and
decoder are in the source and target languages. The target corpus training is also similar, but the encoder and
decoder are on different corpora. The output of the decoder on the left of the figure represents multimodal

ensemble learning for multi-perspective fusion. Layer normalization of Transformer is omitted for clarity.

decoder generates the target sentence according to the semantic information. Since the
Transformer model does not use the display of sequence order, the model needs to en-
code the position of words to determine the positional relationship of different words
in the sequence.

The encoder-decoder structure in the six training paths is designed as follows. In
auto-encoding loss, as shown in the lower region of Fig. 3, the encoder and decoder of
the same language and its corresponding images are applied once. In cycle-consistency
loss, as shown in the middle region of Fig. 3, the encoder and decoder of the two
languages and their corresponding images are cross-applied twice. Both the first two
encoders and decoders are locked, and there is no parameter update. In supervised-
loss, as shown in the top region of Fig. 3, the encoder and decoder of the source and

target languages are cross-applied once. During the training process, the encoder and

11



decoder of the source and target languages share the parameters of the first three layers,

respectively.

4.2. Image feature extraction module

As shown in Fig. 4, following prior work [47], a 4096 dimensional vector of the
second fully connected layer of VGG16 [54] pre-trained on ImageNet [55] is used as
the image feature. Then, it is averaged at every 8 dimensions and a 512 dimension
image feature vector is obtained. This vector represents rough image information and
the semantic value is greatly reduced compared to the original image. Finally, to cor-
respond to the length of 50 sentences, it is self-replicated 50 times to obtain 50 x 512
dimensional image features. Through these operations, the semantic content of the
image is greatly increased. Hereinafter, we call it one-dimensional (1D) global image

features.

4.3. Multimodal alignment for modality fusion

In multimodal tasks, modality alignment is defined as finding relationships and cor-
respondence between sub-components of instances from two or more modalities [56].
The attention mechanism allows the model to learn the alignment between different
modalities, such as image and text [57]. For MMT, the alignment of the multimodal
features is the most important factor affecting the results. Therefore, we introduce three
different multimodal feature alignment methods: encoder and decoder gate (Gate) [58],
double attentive (Arten) [18] and IVTA [59]. Furthermore, considering the impact of
different multimodal alignment methods on ensemble learning, we only fuse differ-
ent sub-models of these three models under the same model, but not all three models

together.

4.3.1. Gate

The Gate structure is added at both ends of the encoder and decoder of the Trans-
former and is used to introduce image features into the encoder and decoder. On the
decoder side, first its output s; is mapped to an unnormalized distribution over the

target vocabulary y; = W - s; + b and then a gating layer is added.

gi=0o (Udec -8 + Wdec . I+bdec ) (3)

gate gate gate

12



Yi =Y ©9gj “
where U, gd(ffc and ng;fc are two weights, and bzzic is the bias, and o represents the
sigmoid function. The operation of inserting image features / into the encoder side
is similar to that of the decoder, but they have different roles in the translation pro-
cess. The gate structure on the end of the decoder is used to filter out entity semantics

that do not exist in the image, while the gate structure on the encoder side is used to

disambiguate the encoded source sentence.

4.3.2. Atten

The image information is introduced into the model via an additional visual cross-
attention mechanism. This resultant visual cross-attention layer is inserted between
the encoder-decoder attention mechanism and the feed-forward sub-layer. Since the
image information is set as the key K and V values for visual cross-attention, the key
and value matrix are equal (K=V). They directly introduce image information into the
attention mechanism without any processing. Through the use of image information

for disambiguation, they can thus model the denotation of words.

A(Q, K, V) = softmax (%) |4 )

4.3.3. IVTA
As shown in the Fig. 4, we use coordinated representation learning to perform a
linear weighted transformation on text and image features and then add them to get

IVTA, such as in Eq. (6).
IVITA=W, - T+b,+W;-I+1b; (6)

where W, by, W; and b; represent the weights and biases of the linear transforma-
tion of text and image features, respectively, and 7 and [ represent text and image
features themselves. The weights and biases are trainable and they continuously con-
verge towards the accuracy of the translation results during training with the help of
a loss function. After the text and image vectors are mapped onto a similar common

semantic space, they satisfy the addition and subtraction operations. This means that

13



different modal features can be encoded in a similar semantic space via the multimodal
alignment of Eq. (6).

Text and image information is received via a multimodal attention structure, which
is inserted between text cross-attention and feed-forward layers, as shown in Fig. 4.
Unlike Atten, the multimodal attention structure in /VTA receives the output of text
cross-attention as (), IVTA as K, and the encoder output as V/, as shown in Eq. (7)

QUVTA)T
anzar),

The modal fusion part on Fig.3 and Fig. 4 refers to the IVTA alignment. Model

A = softmax ( @)

training and multimodal multi-perspective fusion are performed separately for the three

modality alignments.

4.4. Loss function

In this paper, mean_loss is selected as the loss function of the training. Mean_loss
is constructed on the cross-entropy loss function. Let y denote the distribution of the
machine translation model output and y denote the translation reference. The cross-

entropy loss can then be defined as:

[J]
H(gj,y;) ==Y _ Ujlog(y;) ®)
j=1

where y; and y; represent the j-th dimension of the vectors ¥, and y and |J| represent
the dimension of the output vector 3. The mean_loss can be written as follows:

L ~
Zj:l H(yj,v;)

mean_loss =
L

&)

where L represents the maximum length of the source sentence, which is set to 50.

4.5. Training path

The model training is conducted according to the steps shown in Algorithm 1,
which includes unsupervised and supervised parts. Line 1 to line 4 corresponds to
the input data for the two training parts. Lines 8 and 9 represent the encoding of im-

age and text. Line 10 to 12 refers to decoding image and text fusion to obtain another

14



Algorithm 1 Training algorithm of the proposed model
Input: ¢t = {t1,....,tn}, 2 = {21, ..., 2n} > t: text, z: image and (x,y) € ¢

Output: ¥ = {y1,...,Un} > g is predicted sentence sequence
1: if Layo OF Loy then

2: Use monolingual data (x, zx) and (y, zy) >{zx} N{zy} =0
3: else > Lsup

4: Use parallel data (x,y, z)

5: repeat

6: i=1

7: for i<N do

8: T; < Enc(t;) > Use Section 4.1 for text encoding
9: I, + VGG16(z) > Use Section 4.2 for image encoding
10: Use Section4.3.3 to fuse 7; and I;

11: yi < Dec(T;, I;) > Use Section 4.5 for decoding
12: L + mean_loss(yi, y;) > y; is reference and use Section 4.4
13: Timely adjust Lauio , Leye and Lyyp in Section 4.5.
14: end for

15: until min(£)

16: end if

language sentence, and calculate the loss function between this language sentence and
the reference sentence. Line 13 corresponds to the training path in this section, and
these multiple training paths are adjusted during the training process. Line 15 indicates
that the training is carried out until the minimum loss is obtained. The unsupervised
part is based on the UMNMT model [19], which is trained via auto-encoding loss and
cycle-consistency loss. Supervised training is conducted via supervised-loss.
Auto-encoding loss. In unsupervised training, we leverage the denoising auto-
encoder to reconstruct the source and target languages. As shown in the lower region
of Fig. 3, two denoising auto-encoding losses are constructed with noisy monolingual

data x, y and their corresponding images.

Dec; (Enc,(x),Enc,(zx)) =X (10)

15



Lo (X,2x) = mean_loss (X, x) (11)

where X represents the output of the decoder in auto-encoding loss, Enc, (+) and Dec, (-)
represent the encoder and decoder of the source language, and Enc, (-) represents the
image encoder VGG16. Similarly, we derive the auto-encoding loss of the target lan-
guage part:

Decy (Ency(y),Enc,(zy)) =y (12)

Lao (¥, 2y) = mean_loss (y,y) (13)

Cycle-consistency loss. The central idea of auto-encoding loss is to use auto-
encoders to reconstruct monolingual corpora, in which source-to-source and target-to-
target relationships are learned. However, these two relationships are not the desired
result of this task, so we use cycle-consistency loss to regularize and push the latent
encoding spaces between the source and the target language. From this, the expected
mapping X X Z — ) is learned. As shown in the middle region of Fig. 3, in the
cycle-consistency loss of the source language, we input the encoded source sentence

and image into the decoder of the target language and infer the target sentence y.
Decy (Enc, (x), Enc,(zx)) =y (14)

Since the source sentence x does not have its corresponding target sentence y, the
loss function cannot be used directly. The decoder output y is a low-quality pseudo
target sentence, in which the source-to-target translation models serve as the encoder
and decoder. If the pseudo-sentence y and the golden reference x continue to be the
training data of the target-to-source model, then construct a pseudo-supervised triple

(X, y, Zx), which satisfies the parallel corpus for model training.
Dec, (Ency(y), Enc.(zx)) =X (15)

Finally, the outputs X corresponding to the pseudo input y, and learns the source-to-

target translation. In the source-to-target-to-source joint training process of the entire
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cycle-consistency loss, the input x and the output X are in the same language. The

relationship in this whole process can be written as:
Dec, (Enc, (Dec, [Enc,(x), Enc,(2z)]) , Enc.(z)) =X (16)

With the help of the loss function, the intermediate “pseudo-sentence ¥y is also updated
with a more correct trend during the training. From cycle-consistency loss function on

the source language, the mapping ) X Z — X can be successfully refined.
Leye(X,2x) = mean_loss (X, x) a7

Similarly, in the cycle-consistency loss of the target language, the mapping rela-
tionship & X Z — )Y can be learned.

Supervised loss. In the unsupervised training part, the use of low-quality pseudo-
sentences as model input and the large number of model layers make it difficult for
the model to update to the optimal level, which seriously hurts the performance of the
translation. Therefore, we continue to train the model with a small amount of parallel
corpus, through which the model can be further updated and achieve better translation
results. At this stage, an image z and the description of it in two languages form a
triplet (x,y,z) € (X,), Z), to directly train the model. As shown in the top region of

Fig. 3, the supervised-loss of the source language is:

Dec, (Enc,(x), Enc(z)) =y (18)

Lup(x,2.) = mean_loss (§.y) (19)

Similarly, the mapping relationship ) x Z — X’ is learned in the supervised-loss

of the target language.

4.6. Multimodal multi-perspective fusion

With the improvement of computer processing capabilities, machine translation
adopts the end-to-end translation structure of a neural network [10, 24, 25] to imple-
ment the mapping from the source sequence to target sequence. However, since neural

network training tends to fall into the local optimal solution, the final model training
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Algorithm 2 Multimodal multi-perspective fusion algorithm
Input: sub-model probability p1, p2, ..., pj, maximum length of sentence /

Output: probability distribution p of the ensemble model
1: [=505i=1

2: for i</ do

3: ps=0;n=1

4 for n<j do

5 pln]li] = sub_model[n](p[1], p[2], ..., p[i-1])

6: p-s +=plnlli] > j is the number of sub-models
7: n++

8: pli] = arg max(p_s / j) > p_s is the probability vector
o: end for

10: i++

11: end for

12: return p

result may not be the global optimal solution [13, 60, 61]. To avoid this situation, en-
semble learning is used to fuse several models with different parameters. Traditional
direct ensemble learning [62] has achieved significant improvements by fusing mul-
tiple locally optimal solutions. However, there is a word order constraint in the text
sequence of machine translation, and directly fusing translation results from different
training setting is unsatisfactory.

To address the above challenges, in the later stage of training we save one check-
point model at each epoch with better performance, as shown in Fig. 4, and regard the
model as a sub-model. In the test process, multiple sub-models with different optimal
solutions are fused using a multimodal multi-perspective fusion Algorithm 2.

For example, as shown in Fig. 5 and line 5 in Algorithm 2, the sentence “ein junger
mann wirft einen football” is input into three different sub-models, and the current word
“ein” outputs different translation results across these sub-models. These probability
values are averaged according to line 8 in Algorithm 2, and the word corresponding to

the maximum value of the averaged vector is regarded as the translation result of “ein”.
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Figure 5: An example for multimodal and multi-perspective fusion based on the prediction results of the

three models.

In machine translation, each current sequence depends on the result of the previous
sequence. As shown in line 5 in Algorithm 2, the next word is predicted by inputting
the prediction result of the current word into the decoder of a different sub-model, then
repeating the above process until the end of the sentence. We added the symbol “+”
after the model name to indicate that the model has used the multi-perspective fusion

method.

5. Experiments

In this section, we firstly introduce the experimental dataset, pre-processing meth-
ods, experimental settings and baseline models. Secondly, the baseline model and the
proposed model are tested, and the effectiveness of the method is verified by the ex-
perimental results. Thirdly, the multimodal multi-perspective fusion method is applied
to the models with different parameters. Finally, experiments are conducted on models
with parallel data of different sizes. Our translation experiments are all conducted on

English = German.

5.1. Dataset

This study conducts experiments on the Multik30k [63] dataset, which is an ex-
tended version of Flickr30k [64]. As shown in Fig. 6, the dataset contains 29,000 train-
ing and 1,014 validation images. For testing, we used the 2016 and 2017 test sets, each

containing 1,000 images. Each image is paired with its English descriptions, as well
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Figure 6: Multi30k multimodal data distribution and the process of reorganizing training set of Para data. To
aid comprehension of data adjustment, a dotted line is used to indicate the random split of the paired of the

two languages to form a monolingual corpus of the source and target languages.

as human translations of German. The training dataset Para is composed of monolin-
gual corpus and parallel corpus, and the size of Para is adjusted in three ways, namely
Para514, Paral014 and Para2014. For supervised training, Para514 uses the 514 data
in the Multi30k validation set as training parallel corpus, Paral014 uses the entire val-
idation set as training parallel corpus and Para2014 takes the entire validation set and
1,000 Multi30k training sets as training parallel corpus.

In unsupervised training, to ensure that the model does not see any pairwise sen-
tence, we follow the approaches in works such as [19, 30] that randomly split half of
the training set into one language and the complementary half for the other language.
After reorganizing a parallel corpus of each Para data, the remaining training data (500
validation instances not included in the Para 514) is randomly split for unsupervised
training. The distribution of supervised and unsupervised training data is shown in

Fig. 6.

5.2. Experimental setup

We implemented our experiments on a machine with a single 12GB TITAN Xp
GPU. For text pre-processing, this paper follows the work of [3] and uses the hyper-
parameters listed in Table 2 to train model. And then, label smoothing [65] is set to
0.1 and Adam optimizer [66] is applied for parameter optimization. In unsupervised

training, injecting noise into the input data is a common trick, which generally includes
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Table 2: List of some hyperparameters

Hyperparameter Value

Word embedding dimension 512
Position encoding dimension 512

Feed forward layer dimension | 2,048

Sentence length 50
Multi-head attention heads 8
Encoder/decoder layers 4
Dropout rate 0.1

disrupting the order of sentences, and dropping and/or shielding some words [42]. Sim-
ilar to the work [42], we use prob_drop = 0.1 to indicate that each word has a 10%
probability of being deleted and word_-move_dis = 2 to indicate that the displacement

of each word does not exceed 2.

5.3. Evaluation indicator

For evaluating translation quality of our model, we use three different evaluation
indicators: BLEU [67], METEOR [68] and ROUGE [69]. They focus on different parts
of the sentence during the evaluation process. We define each in detail as follows.

BLEU. It is a document-level automatic indicator that calculates the geometric
mean of the n-gram matching accuracy between the translation reference and the trans-
lation output. Generally, n-gram is defaulted to 4-gram. The calculation formula of

BLEU score is as follows:

N
BLEU = BP - exp <Z wy, - log Ch) (20)
Co

n=1
where N represents the size of the largest n-gram considered, BP is the Brevity Penalty.
w, generally takes a constant value for all n, namely 1/N. ¢ represents the number of

hits of the n-gram in the translation reference and ¢, represents the total number of
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n-grams. The Brevity Penalty calculation formula can be written as follows:

1 c>r
BP = (21)
exp (1 — ﬁ) c<r
where c represents the sentence length of the translation and r represents the sentence
length of the translation reference.
METEOR. It combines unigram accuracy and recalls with internal alignment mech-
anisms between words in the translation reference and the translation output. It aims to

solve some deficiencies in BLEU, such as the matching of synonyms. The calculation

formula of METEOR is:
METEOR = (1 — Pen)Fyean (22)

where the punishment mechanism is: Pen = ~ (c./cn)’ and the score of machine
translation is: Fiean = PR/[aP 4 (1 — a)R]. The accuracy rate P is the ratio of
the number of hits in the translation to the total number of words. The recall rate R is
the ratio of the number of hit words in the translation to the total number of translation
reference words. c. represents the number of matching chunks, «,~ and 6 are the
default parameters for evaluation.

ROUGE. It is a commonly used evaluation metric for machine translation and
article summaries. There are four ROUGE methods proposed in the original paper [69].
We utilize ROUGE-L, which takes into account the longest common sub-sequence
between the reference and the translation result when calculating. The procedure for

calculating it is as follows:
(23)

where Ri.s = LCS(y,y)/len(y), Ries = LCS(y,y)/len(y) and 8 = Pies/Rics- ¥
is the model-generated answer and y is the reference answer. LC'S(y,y) is to get the

length of the longest common subsequence.

5.4. Baseline models

To verify the feasibility of the proposed method, we compare it with the existing

works, such as UMNMT [19], 3Iter [42] and B+img [31].
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* UMNMT. It is the basic model of the unsupervised part of our model, which
is built through training paths such as auto-encoding loss and cycle-consistency
loss. We take its four experiments as the baseline model, namely S-txt, S-txt-
img, P-txt and P-txt-img. S-txt: Only half of the text training set of Multi30k is
used for training. S-txt-img: Half of the text and image training set of Multi30k
is used for training. P-txt: More than 10 million text-only monolingual corpus
are used for pre-training and then half of the text training set of Multi30k are
used for fine-tuning. P-txt-img: More than 10 million text-only monolingual
corpora are used for pre-training and then half of the text and image training set

of Multi30k are used for fine-tuning.

* 3lter. The principle is to iteratively improve the model based on reconstruction
loss, then use a discriminator to align the latent distribution of the source and
target language. Before training the model with monolingual text-only corpus, a

large amount of synthetic pairing data is used for pre-training.

* Base+img. To the best of our knowledge, it is the most recent work on multi-
modal UMT. It uses additional visual modalities to recover sentences that has
previously masked some words and it is trained using Multi30k monolingual

data.

5.5. Experimental results

5.5.1. Comparison with the baseline models

As shown in Table 3, we compare our experimental results with those of existing
works. It is noted that Gate, Atten, and IVTA models are trained on 2,014 parallel
and 14,000 non-parallel instances. Gate, Atten and IVTA belong to our Semi-MMT
systems, and training on 2,014 small-scale parallel and 1,4000 non-parallel instances
sees their results surpass the P-txt-img pre-trained on tens of millions of large-scale
monolingual corpora. Compared with the S-txt-img model, the BLEU value of the our
(IVTA™) model increased from 8.85 to 25.54, and even for the P-txt-img, the BLEU of

our model increased by 8.59%. Compared with 3Iter, the BLEU value increased from
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Table 3: Comparison of experimental results

Test2016 Test2017
Model
BrLeu MereorR RouUGE | BLEu  METEOR  ROUGE
Existing UMT systems

S-txt [19] 6.27 11.60 30.60 — — =
S-txt-img [19] | 8.85 13.80 34.20 — = —
P-txt [19] 20.97 2540 53.90 — = -
P-txt-img [19] | 23.52  26.10 55.10 — — —
3lter [42] 22.74 — — — S —

Base+img [31] | 16.58 — — — — —
Our Semi-MMT Systems (Trained on Para2014 data)

Gate 2339 46.84 63.13 | 16.33  31.83 41.17
Atten 23.41 4775 62.80 | 16.95  35.83 42.14
IVTA 2295 47.14 56.32 | 15.62  32.36 41.61
Gate™ 2379 46.96 62.92 | 16.52  32.28 42.65
Atten™ 2535 48.22 63.26 | 1791  36.24 44.77
IVTA* 25.54  50.18 65.21 | 18.04  36.94 46.85

22.74 to 25.54. Finally, compared with the Base-img, our model obtained 9 BLEU
scores improvement, thus verifying the effectiveness of the proposed method.

It can be seen in Table 3 that there is a clear gap between the results of S-txt and S-
txt-img. The only difference between these two models is that S-txt-img uses additional
image features but S-txt does not. Therefore, it can be concluded that the performance
improvement of S-txt-img is from the image. It also supports our view that images play

a pivotal role in unsupervised training.

5.5.2. Modality fusion

Gate model utilizes the Gate structure to introduce image information into the en-
coder and decoder of the Transformer. Atten introduces an additional attention mech-
anism in the Transformer decoder to introduce image information. IVTA is the fusion

of text and image features in a joint semantic space through weight learning. The mul-

24



timodal feature weights and biases are continuously converged, making the translation
results more accurate during training. The experimental results of these three multi-
modal fusion methods without ensemble learning are basically similar, and the results

of IVTA are not as good as the other two.

5.5.3. Multimodal multi-perspective fusion

The symbol “+” represents the model using the multi-perspective fusion method.
To avoid the model result being a local optimal solution and improve model perfor-
mance, we use an ensemble learning method for each sub-model saved in the later
stage of model training to fuse their prediction results. Meanwhile, to observe the
impact of different multimodal alignment methods on multimodal multi-perspective
fusion, ensemble learning is used for these three models. Note that the fused models
are sub-models of the same model, not sub-models of the three models fused together.

From our Semi-MMT systems in Table 3, it can be seen that the results of the
three ensemble models demonstrate improved performance compared to the results of
their sub-models. The ensemble learning strategy fuses some sub-models with dif-
ferent parameters, which gives the model better performance. There is no significant
improvement between Gate and Gate™, while there is an improvement between At-
ten and Atten™. Compared with these three models, the improvement between IVTA
and IVTA is the most obvious. Although the performance of the IVTA sub-model is
not the best, the ensemble model IVTA™T results are better than the other two models.
The only difference between these three models is multimodal alignment. From this,
it can be seen that IVTA multimodal alignment method has the best performance in
multimodal multi-perspective fusion.

To further verify our conclusions, we calculated pared-samples T-test on the results
of the three indicators between the sub-model and the fusion model. The p-value is
0.146 between Gate and Gate™, 0.029 between Atten and Attent, and 0.007 between
IVTA and IVTA™. The smaller the p-value, the greater the deviation of the correspond-

ing two model results. Therefore, these results further support our conclusion.
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Table 4: Experiment results of parallel data of different sizes

Training Test2016 Test2017

Model

data BLeu MeteorR RoUGE | BLEu  METEOR  ROUGE
Para514 | 17.02  34.83 4570 | 10.11  21.95 29.56
Gate ParalO14 | 21.08  41.05 52.62 | 1547  29.71 40.24
Para2014 | 23.39  46.84 63.13 | 16.33  31.83 41.17
Para514 | 17.60  34.47 4589 | 11.12  22.04 29.73
Atten | ParalO14 | 22.71  45.71 5424 | 1593  37.58 44.15
Para2014 | 23.41  47.75 62.80 | 1695 35.83 42.14
Para514 | 17.08  34.23 44.81 | 9.26 19.04 24.46
IVTA | ParalO14 | 21.70  42.17 52.79 | 1549 3092 39.35
Para2014 | 22.95 47.14 56.32 | 15.62 3236 41.61

5.6. Experiments on parallel datasets of different sizes

It can be seen in Table 4 that for the Gate, Atten and IVTA models, the expansion
of the parallel corpus significantly improves translation quality. The parallel training
corpus Para is increased twice, with 500 for the first time and 1,000 for the second time,
respectively. In this process, BLEU indicator showed that the Gate model increased
by 23.85% and 10.96%, the Atten model increased by 29.03% and 3.08%, and the
IVTA model increased by 27.05% and 5.76% in the Test2017. It can be observed that
although the increase of the parallel corpus the second time is larger than that of the first
time, the improvement of translation quality in the second time is not as high as that of
the first time. In Test2016 and other indicators, with the increase of parallel corpora, the
improvement of translation performance of the three modes is still gradually declining.
In addition, in order to further verify the above conclusions, as shown in Table 5 we
used pared-samples T-test to calculate the deviation of three indexes between Para514
and Paral014 (p-valuel) and between Paral014 and Para2014 (p-value2). As can be
seen from Table 5, for these three models, p-valuel is smaller than the corresponding
p-value2, which means that the improvement between Para514 and Paral014 is greater

than that between Paral014 and Para2014.
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Table 5: pared-samples T-test of experimental results with parallel data of different sizes

Model p-valuel p-value2
Gate 0.001 0.058
Atten 0.032 0.404
IVTA 0.022 0.024

Table 6: Experimental results on Multi30k fully parallel data

Test2016 Test2017 MSCOCO
Model
BLeu MEeTeEOR | BLEU METEOR | BLEU  METEOR

TFMT [10] | 37.65  64.81 | 30.28  57.11 | 2594  54.02

Under 1D Image Features
Gate [58] 3845 6563 | 3036 57.78 | 2742 54.15
Atten [18] | 38.84  65.65 | 30.54 5845 | 27.68 55.04
IVTA[59] | 38.82 65.78 | 31.21  58.17 | 28.12  55.17

Under 2D Image Features
Gate [58] 38.23 6447 | 3064 57.82 | 27.34 5454
Atten [18] | 38.71  65.75 | 30.65 5845 | 27.83 54.70
IVTA[59] | 38.80 65.70 | 31.32  58.26 | 27.97 54.29

In Table 6, to further observe the effect of parallel corpora of different sizes, the
experiments of these three models were conducted on fully parallel data of Multi30k.

As can be seen from Tables4 and 6, semi-supervised machine translation techniques

still lag behind machine translation techniques with fully parallel corpora.

These models apply six training paths, among which src-tgt/tgt-src supervised-loss
uses the parallel data of the Para set for training. Although the Para training data is
adjusted, the total data volume remains the same. Therefore, the model training time

cost on different Para datasets is not much different. The experiments on a commodity

machine equipped with TITAN Xp and 12G memory take about 5 hours.
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Table 7: Experimental results on different image granularities (in Para2014 data)

Test2016 Test2017
Model

BLeu Mereor RouGe | BLEu METEOR  ROUGE

Under 1D Image Features
Gate | 23.39  46.84 63.13 | 16.33  31.83 41.17
Atten | 2341  47.75 62.80 | 1695 3583 42.14
IVTA | 2295 47.14 56.32 | 15.62 3236 41.61

Under 2D Image Features
Gate 18.90  40.55 51.31 12.4 22.84 32.02
IVTA | 21.87 46.24 52.32 | 1531 3343 41.25

Multi-perspective fusion Under 1D Image Features

Gate™ | 23.79  46.96 62.92 | 16.52  32.28 42.65
Attent | 2535  48.22 63.26 | 1791  36.24 44.77
IVTA™ | 25.54  50.18 65.21 | 18.04 36.94  46.85

5.7. Experiments on different image features

To study the influence of image features with different granularity on the transla-
tion results, we also conducted experiments using two-dimensional (2D) local image
features. To obtain 2D local image features, a 7x7x512 matrix is derived from pool5
layer of pre-trained VGG16, and then this matrix is linearly transformed into a 49x512
matrix. Finally, pad its last row with zeros to make it 50x512. 2D indicates that the
model utilizes 2D local image features and 1D indicates that the model utilizes 1D im-
age features (in Section4.2). As can be seen from Table 7, the experimental results of
the three multimodal fusion models in 1D image features are better than those in 2D
image features. The Atten model performs best on 1D image features, and the exper-
imental results on 2D image features are unstable or even negligible. This situation
is not obvious in Table 6, which may be because global image features are more ben-
eficial to unsupervised translation. In Table 6, in addition to the test sets introduced
previously, we also use the MSCOCO test data [3], and the IVTA model has more

obvious advantages on it.
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By comparing the improvement of the S-txt-img model over the S-txt model in Ta-
ble 3 and the improvement of the MMT models over the text-only Transformer machine
translation (TFMT) in Table 6, it can be seen that the image in the unsupervised model
is more effective than that in the supervised model. Even the model Atten (1D), which
performs best on the BLEU of the Test2016 in Table 6, has only a 3.6% improvement
over TFMT model, which is far less than the 41% improvement between the S-text
and S-text-img trained with half Multi30k data. This is consistent with recent research
conclusions on MMT, which found that image information has a greater impact on the

MMT model in a limited textual context than in a sufficient textual context [70-72].

5.8. Case study

In Table 8, SRC and REF represent source and translation reference sentences,
while 2D and 1D™ represent the translated sentences of IVTA(2D) and IVTA™ trained
in Para2014. IVTA(2D) represents the IVTA trained under 2D image features.

5.8.1. The impact of image feature representation

In case 1 (the first image), the model IVTA™ translates “player” and “guitar” into
“artist” and “jacket” respectively. It is likely that the ensemble model is affected by
the form of the player and jacket on the image. In addition, comparing the translation
results of the model IVTA(2D), IVTA™ correctly translated “on the street”, “woman”,
etc. Although the compression operation of the 1D image features lose the accuracy of
the image representation, the text description is often the main body of the image. This
is further demonstrated by the experimental results in Table7, where the model IVTA
with 1D image features outperforms the model with 2D image features. Therefore,
compressing the image may play a role in removing roughness and refinement, making
the translation of key parts of the text more accurate. Moreover, 1D image features
contain more semantics, making it easier to align data of different modalities for Semi-

MMT.

5.8.2. Long sentence translation quality
In case 2 (second image), the experimental result of model IVTA™ is not seman-

tically smooth. However, compared with the translation results of the model IVTA
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Table 8: Case study

SRC: a female performer with a violin plays on a street
while a woman with a blue guitar looks on

REF: eine musikantin mit einer violine spielt auf der stralie
wihrend eine frau mit einer blauen gitarre zusieht

2D: eine frau spielt mit einem geige auf einer decke
wihrend ein mann mit blauen gitarre zusieht

ID': eine kiinstlerin spielt geige auf einer strale wihrend

eine frau mit blauem oberteil zusieht

SRC: two males seem to be conversing while standing in
front of a truck aposs back and behind a metal item
while four people stand around them

REF: zwei minner stehen vor dem heck eines lasters und
hinter einem metallgegenstand und unterhalten sich
anscheinend wihrend vier weitere personen um sie

herum stehen

2D: zwel menschen warten auf einen lastwagen wihrend
in der nihe eines autos und einem grill unterhalten

IDT: zwei minnliche personen die sich zu unterhalten
wihrend sie vor einem lastwagen stehen und hinter ih-

nen steht

(2D), the IVTA* model noticed that the two speakers were “men”, thus the gender in-
formation was correctly translated. In addition, it correctly translated the information
of “standing in front of the truck”. The reason is that the introduction of 1D images
can make each word correspond to the complete compressed image information, so the
relationship between different entities is more accurate. The IVTAT model also failed
to obtain the information of the other four people, which may be a defect of our model

in complex instances that lack obvious features.
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5.8.3. Translation quality in various scenarios

On the other hand, the two cases correspond to the “outdoor” and “indoor” scenar-
ios. In case 1, the IVTAT model translates the “blanket” into “street”, i.e., the model
re-recognized that the text has the attribute of “outdoor” through the supplement of
1D image features. In case 2, there is no mention of “indoor” in the source sentence,
but the 1D image features applied by the IVTAT model also supplements the text with
the semantics of “what are these two people standing behind”. It can be seen that the
complementary effect of 1D image features on semantics is reflected in the translation
of different scenes. After introducing 1D image features, the performance of the model

is improved in the scenario of entity information and relationship between entities.

6. Conclusion and future work

This paper proposes a Semi-MMT method, which includes unsupervised and super-
vised training parts. The unsupervised part is based on the training of existing unsuper-
vised MMT models, while the supervised part uses a small number of parallel corpora
to further train the model, thus improving the model performance. Moreover, by com-
paring the results on ensemble learning of models with different modality alignments,
we demonstrate the importance of selecting a reasonable modality alignment. Com-
pared with the baseline model, our model shows better performance, which verifies the
feasibility of our proposed idea.

In future research, we plan to further investigate the impact of the proportion of
parallel and non-parallel corpora in the total training data on machine translation. More
parallel corpora will be used in experiments to further reveal the relationship between
the increase of parallel data and translation quality. In addition, because visual inputs
generate better translations in limited text contexts, enhancing the impact of images in

Semi-MMT would also be a promising direction for future research.
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