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Coupled online sequential extreme 
learning machine model with ant 
colony optimization algorithm 
for wheat yield prediction
Mumtaz Ali1, Ravinesh C. Deo2, Yong Xiang1, Ramendra Prasad3, Jianxin Li1, 
Aitazaz Farooque4,5 & Zaher Mundher Yaseen6,7,8*

Inadequate agricultural planning compounded by inaccurate predictions results in an inflated local 
market rate and prompts higher importation of wheat. To tackle this problem, this research has 
designed two-phase universal machine learning (ML) model to predict wheat yield  (Wpred), utilizing 
27 agricultural counties’ data within the Agro-ecological zone. The universal model, online sequential 
extreme learning machines coupled with ant colony optimization (ACO-OSELM) is developed, by 
incorporating the significant annual yield data lagged at (t − 1) as the model’s predictor to generate 
future yield at 6 test stations. In the first phase, ACO is adopted to search for suitable, statistically 
relevant data stations for model training, and the corresponding test station by virtue of a feature 
selection strategy. An annual wheat yield time-series input dataset is constructed utilizing data 
from each selected training station (1981–2013) and applied against 6 test stations (with each case 
modelled with 26 station data as the input) to evaluate the hybrid ACO-OSELM model. The partial 
autocorrelation function is implemented to deduce statistically significant lagged data, and OSELM is 
applied to generate  Wpred. The two-phase hybrid ACO-OSELM model is tested within the 6 agricultural 
districts (represented as stations) of Punjab province, Pakistan and the results are benchmarked with 
extreme learning machine (ELM) and random forest (RF) integrated with ACO (i.e., hybrid ACO-ELM 
and hybrid ACO-RF models, respectively). The performance of the ACO-OSELM model was proven to 
be good in comparison to ACO-ELM and ACO-RF models. The hybrid ACO-OSELM model revealed its 
potential to be implemented as a decision-making system for crop yield prediction in areas where a 
significant association with the historical agricultural crop is well-established.

Adoption of new knowledge about the best approaches to farming and strategic crop management systems, whilst 
learning the best practices from neighbourhood cropping zones, are considered as useful  tools1–3. Agronomists 
use this technique to formulate precise and suitable evidence on future crop yield and bring benefits to the 
 farmers4–6. In Pakistan, wheat is one of the most commonly grown  crops7. Wheat contributes to up to 2.6% of 
Pakistan’s gross domestic product (GDP) while considering agronomy division its contribution is 12.5% of the 
 GDP8. According to the United Nations, Pakistan was ranked in the top eight global wheat producers between 
2016 and  20199,10. Wheat is produced during the winter period, largely in the province of  Punjab11.
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The current wheat yield prediction and forecasting methods adopted by the Pakistan Government have been 
reported to be highly  inaccurate12. In 2005, poor wheat yield predictions of Pakistan where the actual produc-
tion was relatively small equated to the estimated yield, resulted in an inflated local market rate and prompted 
higher importation of  wheat13,14. Similarly, in 2012–2013, Pakistan experienced severe challenges in wheat sup-
ply, which happened due to the lower production of wheat yield in  Punjab15. A plausible reason for this deficit 
was attributed to poor agricultural planning and inaccurate predictions to satisfy the national grain needs. 
Sajjad reported about the looming wheat scarcities for an agriculturally rich country,  Pakistan16. Due to these 
concerns that have a direct detrimental impact on income and food security for the already staggering economy 
of developing Pakistan, the government representatives work towards enhancing the forecast to account for the 
surplus and shortfalls in advance.

The modelling of wheat yield utilizing ancient procedures and irrelevant information from past yields is 
bound to deter the outcomes  drastically17,18. To calculate the future productions, establishing novel systems 
for improving current and future agricultural productions, and supporting future food security issues in both 
developing and first-world nations are necessary. This validates the essential role of wheat yield modelling via 
novel artificial intelligence (AI) modelling or data-intelligent approaches that encapsulate relevant historical 
patterns. Data-intelligent techniques have enormous flexibility in crop management due to their ease of employ-
ment, viable accuracy, and feature detection  capabilities19–22. These models are also bound to empower officials 
in attaining efficient ways to predict future crop  productions23. There are several examples of data intelligent 
algorithms in agronomy. Dempewolf et al. implemented vegetation index to predict wheat yield in  Punjab24, 
whereas Hamid examined the wheat frugality and future  forecasts25. On the other hand, Muhammad investigated 
the historic context of the wheat improvements for  Balochistan26. Furthermore, Iqbal et al. designed an auto-
regressive integrated moving average model (ARIMA) to predict future wheat and yields up to the year 2022 
in  Pakistan27. Sher and Ahmad integrated the Cobb–Douglas function with ARIMA to predict wheat  yield28. 
However, the works have constructed simplistic regression models (e.g., ARIMA) that are often discredited due 
to their assumptions of linearity in the  data29.

Based on previous approaches for wheat yield prediction, Rahman et al. developed a data-driven approach 
to predict rice yield for  Bangladesh30, whereas monitoring of rice crop was implemented via a neural network 
 model31. Similarly, an artificial neural network (ANN) was developed for soybean and corn predictions in 
 Malaysia32. In addition, all the forgoing works were on a provincial level, or a country-wide, which lacks the 
significance to a small locality such as the district level forecasting used in this study for better accuracy and 
applicability. Yield prediction is a challenging job as various interconnected climatic drivers affect the  yield5. 
Thus, agronomic experts can possibly use the preceding yields to predict future production. Despite this, none 
of the previous work has utilized wheat yield of several locations for training purposes to predict the yield of 
other stations.

Information from several other locations for training purposes to predict the yield at the main region is 
essentially beneficial in decision support systems since it can allow the modellers to accept analogous features 
prevailing to be analysed to evaluate the main region  data33. This framework can be adopted in agricultural 
practices by associating station-specific crop production and creating suitable deductions relevant to the exist-
ence of favourable (or unfavourable) eco-friendly or soil fertility circumstances to produce maximum  yield34. 
Considering the need for accurate future wheat yield prediction, the modelling of crop yield using several sta-
tions yield data for model development can offer a reasonable system to determine the most cost-effective and 
useful agricultural monitoring practices.

The proposed two-phase AI system called (i.e., ACO-OSELM) model was adopted in the current research to 
predict wheat yield. Two benchmark models including random forest (RF) and extreme learning machine (ELM) 
and their hybrid versions were designed for verification of the ACO-OSELM model. ELM and RF models were 
selected as a benchmark due to their remarkable predictive potentials as appear in the  literature35–39. The selec-
tion of the OSELM was owing to the main merit of the ELM  model40. ELM model is a single layer feed-forward 
neural network (SLFN) where the input weights are randomly assigned while the output weights are analytically 
 determined41. Unlike conventional neural network models, the ELM is able to avoid issues such as tuning of 
learning rates, learning epochs, stopping criteria and local optima making it computationally  efficient42. In addi-
tion, ELM efficiently handles large-scale data with a better generalization capability and is more suited to large-
scale wheat yield  predictions43,44. On the other hand, the RF models are ensemble regression tree models that 
use the bootstrap aggregation (i.e., bagging) approach to generate  forecasts45–47. The RF model ameliorates the 
overfitting issue, which is a key drawback of conventional solitary regression tree-based  models48. Consequently, 
these models have been applied in this study. The two-phase hybrid ACO-OSELM is validated for wheat yield 
prediction in agronomic regions: Rahimyar Khan, Dera Ghazi Khan (denoted as D. G. Khan), Kasur, Sialkot, 
Rawalpindi, and Jhang located in Punjab province, Pakistan where 26 stations from 26 districts were used to 
develop the model. The selected study stations are spread throughout the Punjab province and are the major 
wheat producers. These stations are chosen randomly from the agriculturally rich Punjab province. To verify 
the applicability of the proposed ACO-OSELM model, this study aims to fulfill three objectives: (i) To develop 
a bio-inspired ACO algorithm to select the best possible neighbouring stations located in Punjab province, 
Pakistan for training purposes using feature selection strategy; (ii) To incorporate the statistically important one 
step antecedent data (i.e., t − 1 where t represents the current data) of the selected training stations in the OSELM 
model to develop a two-phase hybrid ACO-OSELM model to predict the current and future wheat yield; and (iii) 
To assess the predictive accuracy of the two-phase ACO-OSELM model for wheat yield prediction universally 
in the whole province of Punjab in Pakistan.
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Theoretical overview
The architecture involved in the establishing of a two-phase hybrid ACO-OSELM model for wheat yield predic-
tion is discussed here.

Ant colony optimization (ACO) algorithm. Dorigo and Di  Caro49 presented the ACO feature selection 
procedure, which has been widely used in different  applications50–53. This study utilized the ACO technique to 
determine the least possible distance between wheat yield (W) of the training stations, and the testing stations, a 
strategy that can be adopted to choose the respective training stations for yield prediction at the testing station. 
A parameter named pheromone in the ACO process is allotted to predictor stations, which categorizes these 
predictors alongside the target/test stations at the start. The trial pheromone value is used to compute the prob-
ability of the chosen station to train against the test station while the magnitude pheromone alters by navigating 
the training stations, and subsequently, the probability is improved for the next coming ants to pick the optimum 
station. Readers can survey the following literature for more details on the ACO procedure  experiment54,55.

Extreme learning machine (ELM). Huang et al.42 designed a fast machine learning model consisting of 
Single Layer Feedforward Neural Network (SLFN) called the ELM that is computationally far more  efficient56. In 
mathematical terms, the ELM can be expressed as:

where ρ = [ρ1, ρ2, . . . , ρM ]T is the output weight vector between the hidden layer of M nodes to the m ≥ 1 output 
nodes, and f (x) =

[

f1(x), f2(x), . . . , fN (x)
]T is ELM nonlinear feature mapping and Wfor(x) is the final output/

prediction. The function Wfor(x) denotes the predicted wheat yield (W) at the ith hidden node. Various output 
functions may be applied in different hidden neurons. For instance:

The term G(a, b, x) is representing a nonlinear piecewise continuous function satisfying ELM universal 
approximation capability  theorems57, (a, b) are the hidden node parameters and R is the set of real numbers 
whereas Rd is the d-dimensional set of real numbers and x is the input data. The activation functions are Sigmoid, 
Hyperbolic tangent, Gaussian, Hard limit, Cosine and Fourier basis functions.

Initially, ELM randomly modifies the hidden layer to project the inputs into a feature space using some piece-
wise continuous nonlinear  functions58. The parameters (a, b) are generated randomly that are not dependent on 
the training set. In the second phase of ELM learning, then, the weights (ρ) linking the hidden and the output 
layer are solved by minimizing the prediction error in the squared error sense: i.e.

where M is denoting the hidden layer output matrix and T is the training data matrix which can be simplified 
as  follows57. The ∥ · ∥ indicates the Frobenius norm.

The ideal solution to (3) is provided by:

In Eq. (6) M+ is indicates the Moore–Penrose generalized inverse of M. The SLFNs with randomly chosen 
input weights successfully learn various training patterns with the least error. In this way, SLFNs can be consid-
ered as a linear system. The output weights which attach the hidden layer to the output layer in the linear system 
can now be analytically solved by generalized inverse operation of the hidden layer output matrices. Thus, the 
ELM model is faster than the conventional feedforward learning  algorithms59,60.

Online-sequential extreme learning machine (OSELM). In OSELM the data is channelled in a 
chunk-by-chunk manner for better understanding and accuracy, whereas in ELM a total of N training data 
points are used for training purposes, which becomes computationally time exhaustive further affecting the 
learning  procedure61. Therefore, the OSELM, which is an advanced form of ELM, operates in two learning stages 
utilizing the chunk-by-chunk approach i.e., initialization followed by the sequential learning stage. In the ini-
tialization phase, the H matrix is packed like ELM, for later usage. The randomized weights together with the 
biases are allocated to respective chunks of primary wheat yield (W) data to determine the output matrix of the 

(1)
N
∑

i=1
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OSELM hidden layers. Then the sequential learning stage is launched either in a one-by-one manner or a lump-
by-lump fashion where the one-time data utilization is not permissible. More specific information on OSELM 
can be found in the following (e.g.,62–64). For a given training set �k−1 in the initialization phase:

The term �k−1 indicates the training dataset whereas xj is the input data and tj is the jth parameter. The first 
output weight is provided by the following equation:

The term ρk−1 is showing the initial output weight, ∅k−1 =
(

Mt
k−1Mk−1

)−1 is indicating the Moore–Penrose 
generalized inverse of the matrix, Mk−1 =

[

mt
1, . . . ,m

t
k−1

]t is denoting the hidden layer output matrix, and 
tk−1 = [t1, . . . , tk−1]

t is the training data matrix. The biases and random weights are allocated in a small chunk 
in the initialization stage to calculate the hidden layer output matrix in the initial wheat yield (W) training data.

The sequential learning phase is then commenced where RLS algorithm is utilized to modify the output 
weights in a recursive  way61. The output weights in OSELM are recursively updated based on the intermediate 
results in the last iteration and the newly arrived data, which is deleted immediately once the features have been 
learnt, and therefore, the calculation overhead and the memory requirement of the algorithm are significantly 
decreased.

Random forest (RF). The RF model is a regression tree-based learning approach whereby the bootstrap-
ping and bagging are the underpinning modeling techniques on which the RF ensemble modeling approach 
is constructed  upon65,66. Using a random bagging technique, the RF model develops ensembles in which each 
node is linked randomly by choosing the relevant inputs for better efficiency while avoiding  overfitting67. The 
subsequent stages provide a brief account of the RF model designing:

 i. Perform bootstrapping on the input predictors to create n-bootstrapped based trees (i.e., ntrees).
 ii. Determine the largest no. of split variables (mtry) by means of random sampling with a non-prune regres-

sion tree.
 iii. Aggregate the simulated ntrees to predict wheat yield (W).

The RF algorithm has been used in many applications including water  quality46, soil  moisture68,  ecological69, 
 hydrological70 and solar  radiation71,72 forecasting applications.

Case study description and data
Study region and wheat yield data. Pakistan’s Federal Bureau of Statistics and the Agriculture Mar-
keting Information Services, Directorate of Agriculture provided the wheat yield data (Economics & Market-
ing)73,74. The study stations included are of high agricultural significance for the Punjab province, Pakistan. In 
this paper, each district is represented as a station. Agricultural sectors in Punjab province play an important 
part with economic contributions of 56.1–61.5%75. Further, a widespread irrigation network enables this prov-
ince’s rich agricultural zone. Considering Punjab as a key agronomic belt, the adoption of AI techniques to 
predict wheat yield is an interesting research endeavour. To establish the time series wheat yield dataset, the 
district-level wheat production was assimilated. To construct this dataset, the areal (district level) productions of 
wheat were acquired through the provincial Crop Reporting Services which had been compiled by the Economic 
Wing of the devolved Ministry of Food and Agriculture, and later by the Pakistan Federal Bureau of Statistics. 
The acquired data had some missing wheat yield values for 2009. To overcome this issue, the average of all other 
data for the period 1981–2013 is used to recover the missing data of the predictor and the corresponding target 
stations.

Figure 1a,b show the provinces in Pakistan and the map of all districts in Punjab province (current study 
region). The figure illustrates the study stations (i.e., the major districts) of wheat farming. Figure 2a–f present 
the total of 6 maps which represents the testing stations (yellow colour), training stations (red colour), and the 
stations where wheat yield data is not available (green colour) and the stations that are not selected by ACO 
algorithm (blue colour). Figures 1 and 2 were generated using the GIS  software76. A total of 27 stations were 
considered with data from 1981 to 2013. To obtain the wheat yield time series, out of 27 stations, 26 stations 
were used for the selection of the best stations for training to develop the model in relation to the remaining (1) 
testing station. Each time, 26 stations were used to select the best stations for training subsets against the 6 test 
stations. Table 1 presents basic statistics (i.e., latitude, longitude, and elevations), maximum, minimum, standard 
deviation, skewness, and kurtosis) of the present study stations.

Design of two-phase hybrid ACO-OSELM model. The two-phase hybrid ACO-OSELM model was 
developed on MATLAB R2016b platform, (The Math Works Inc. USA) with Pentium 4 dual-core Central Pro-
cessing Unit (CPU). To develop the proposed two-phase universal ACO-OSELM model, historical wheat yield 
data series were used. In this paper, W represents the wheat yield, Wobs denotes the rvobserved wheat yield while 
Wpred represents the predicted wheat yield. The original wheat yield data that had statistically significant lagged 
values at (t − 1) were employed as the input predictors in the first phase of the developmental stages. The develop-
ment of the two-phase hybrid ACO-OSELM model involved the following phases:

(7)�k−1 =
{(

xj , tj
)

: j = 1, 2, . . . k − 1
}

(8)ρk−1 = ∅k−1M
t
k−1Tk−1
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Figure 1.  Map of the study region. (a) Provinces of Pakistan. (b) Districts of Punjab where the present study 
was undertaken.
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Phase 1. In the foremost phase, the selected stations for model training were determined using the robust ACO 
feature selection strategy. Then, the user-defined parameters were defined with the ant numbers as 10 having 20 
iterations and the initial pheromone factor was 1. For every station, the number of predictor stations (features) 
was defined prior to running the model. For Rahimyar Khan, the number of selected feature stations was 22, D. 
G. Khan (20), Kasur (19), Sialkot (17), Rawalpindi (12) and Jhang (14). The selected training stations with their 
correlation r against testing stations are described in Table 2.

Figure 2.  The selected training stations in red and the corresponding test stations in yellow are (a), (b), (c), (d), 
(e), and (f) respectively. Note that the stations shown in green have ‘no available wheat yield data’ and those in 
blue were not selected by the ant colony optimisation algorithm.
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The proposed two-phase hybrid ACO-OSELM model was trained and tested on a longer time series as well as 
at a shorter time series to assess the accuracy and universal performance of the model. This is to ensure that the 
model could be applied to other locations in Pakistan. In addition, a different number of surrounding predictor 
stations (features) were defined for every other testing station. Essentially, the Rahimyar Khan testing station 
had the largest number of surrounding training stations (i.e., 22) having the longest time series with 726 data 
points in the time series. On the other hand, Rawalpindi testing station has 12 training stations being selected 
with 396 data points being the shortest time-series used in the study. Table 3 shows the training data lengths 
for respective stations. In addition, the pheromone exponential weights and heuristic exponential weights were 
kept as 1. Figure 3 plots the RMSE errors that occurred in optimizing the cost and objective function of the ACO 
algorithm for identifying the best feature stations.

Since the data consisted of annual values from 1981 to 2013, which resulted in a total of 33 data records. ML 
models sometimes perform poorly on shorter time series. To handle this issue, we adopted the approach of selec-
tion of stations by ACO algorithm for training purposes and test the proposed model on the whole time-series 
data for respective testing stations. This technique of utilizing yield data from surrounding study stations to 
predict the yield of test stations are practically useful since it can enable the modellers to extract similar features 
and patterns prevalent at a predictor station to be analysed to estimate the yield at a testing station. This model-
ling approach does not required the splitting of the data in the traditional manner.

After carefully selecting the training stations for respective testing stations using the ACO algorithm, their 
correlation r (of selected training stations) against testing stations were calculated to confirm the linear relation-
ship among them. For the study station Rahimyar Khan, the training station Khanewal registered the highest 
value of r ≈ 0.855, followed by Bahawal Nagar (r ≈ 0.854). Similarly, Muzaffar Garh (r ≈ 0.881) and Rajanpur 
(r ≈ 0.861) have the largest values of correlation with station D. G. Khan. For the study station, Kasur, Gujran-
wala, and Shekhupura attained the highest values of (r ≈ 0.950, 0.947). Table 2 summarizes all the correlation 
coefficients for respective stations. On the other hand, Station Kasur has the smallest cost to objective function 
RMSE followed by Jhang station (Fig. 3). Table 3 presents the number of datum points for training and testing 
purposes in each station with a ratio of selected stations against testing stations, with training and testing data 
distribution parameters. To prevent the differences in skewness in training and testing affecting the outcomes, 
data normalization was carried out using the following equation:

Table 1.  Geographic properties and wheat yield statistics of the study stations for Punjab, Pakistan.

Stations

Geographic characteristics Wheat yield statistics (kg  ha−1)

Latitude (N) Longitude (E) Elevation (m) Mean Std. Min. Max. Skewness Kurtosis

Shekhupura 31.71° 73.98° 207 2297.46 519.54 1087.89 3062.99 − 0.29 − 0.65

Okara 30.81° 73.45° 105 2901.89 528.93 1888.08 3588.10 − 0.26 − 1.16

Sahiwal 30.66° 71.11° 152 2751.87 411.29 1955.17 3792.40 0.12 − 0.10

Vehari 30.04° 72.34° 140 2568.94 456.80 1846.00 3462.03 0.09 − 0.87

Multan 30.15° 71.52° 122 2307.97 377.77 1713.03 2952.97 0.16 − 1.17

Muzaffar Garh 30.07° 71.18° 122 2151.16 470.69 1157.47 2890.72 − 0.21 − 0.99

Dera Ghazi Khan 30.03° 70.38° 129 2234.18 457.67 1050.86 2914.07 − 0.66 0.32

Bakar 45.30° 14.53° 82 2049.52 601.05 1222.01 3440.61 0.79 0.18

Layyah 30.96° 70.94° 143 2025.44 485.42 1160.59 2900.23 0.21 − 0.88

Khushab 32.32° 71.90° 195 1455.08 345.98 822.00 2103.04 0.09 − 0.88

Sargodha 32.08° 72.66° 189 2253.13 308.08 1637.40 2742.39 0.02 − 1.06

Faisalabad 31.45° 73.13° 184 2487.44 511.38 1565.83 3257.58 − 0.07 − 1.35

Toba Tek Singh 30.97° 72.48° 149 2757.25 715.26 1814.86 3310.60 2.20 5.95

Gujrat 32.57° 74.07° 233 1632.04 267.08 996.51 1985.37 − 0.77 − 0.03

Rawalpindi 33.56° 73.01° 508 1374.83 372.15 624.01 1993.06 − 0.26 − 0.68

Jhelum 32.74° 73.72° 234 1418.49 365.23 752.09 2110.03 − 0.01 − 0.64

Mianwali 32.58° 71.53° 210 1618.80 332.99 1037.09 2510.39 0.63 0.28

Lahore 31.52° 74.35° 217 2485.52 431.22 1385.93 3209.78 − 0.97 1.08

Khanewal 30.28° 71.93° 128 2613.95 436.54 1850.94 3600.46 0.24 − 0.67

Rajanpur 29.10° 70.32° 97 2138.37 512.46 1009.88 3012.48 − 0.70 − 0.10

Bahawal Nagar 30.00° 73.24° 163 2298.80 544.52 1401.50 3773.33 0.57 0.08

Attock 33.76° 72.36° 358 1271.96 326.45 685.73 2029.07 0.28 − 0.36

Gujranwala 32.15° 74.18° 229 2437.28 604.31 1055.69 3484.13 − 0.29 − 0.56

Jhang 31.30° 72.32° 158 2353.19 431.16 1637.83 3089.02 0.03 − 1.06

Kasur 31.11° 74.44° 218 2495.00 407.78 1688.95 3099.40 − 0.07 − 0.93

Rahimyar Khan 28.42° 70.29° 80 2308.74 522.80 1312.27 3369.46 0.29 − 0.49

Sialkot 32.49° 74.52° 256 2051.86 612.39 598.89 3018.60 − 0.44 − 0.47
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Table 2.  Selected training stations using ant colony optimization (ACO) algorithm with the correlation 
coefficient (r) for each training station against the testing station.

Test stations
ACO selected 
training stations Correlation (r) Test stations

ACO selected 
training stations Correlation (r) Test stations

ACO selected 
training stations Correlation (r)

Station 1—Rahim-
yar Khan

Khanewal 0.855

Station 2—D. G. 
Khan

Rahimyar khan 0.781

Station 3—Kasur

Sialkot 0.926

Faisalabad 0.723 Attock 0.310 Gujranwala 0.950

Bahawal Nagar 0.854 Sialkot 0.779 Jhelum 0.592

Multan 0.432 Sargodha 0.810 Layyah 0.817

Gujranwala 0.817 Rajanpur 0.861 Rajanpur 0.664

D. G. Khan 0.708 Jhang 0.764 Bakkar 0.837

Khushab 0.638 Layyah 0.816 Bahawal Nagar 0.911

Okara 0.644 Khushab 0.720 Vehari 0.942

Vehari 0.659 Mianwali 0.643 Jhang 0.930

Toba Tek Singh 0.556 Lahore 0.644 Lahore 0.406

Rawalpindi 0.595 Toba Tek Singh 0.685 khanewal 0.805

Sialkot 0.782 Shekhupura 0.791 Muzaffar Garh 0.858

Sahiwal 0.602 Kasur 0.780 Okara 0.890

Layyah 0.568 Bahawal Nagar 0.727 D. G. Khan 0.780

Muzaffar Garh 0.778 Faisalabad 0.812 Multan 0.905

Attock 0.628 Khanewal 0.704 Shekhupura 0.947

Jhang 0.848 Bakkar 0.828 Gujrat 0.649

Bakkar 0.841 Rawalpindi 0.333 Rawalpindi 0.443

Rajanpur 0.360 Gujrat 0.509

Khushab 0.819
Mianwali 0.341

Muzaffar Garh 0.881Gujrat 0.480

Jhelum 0.185

Stations 4—Sialkot

Faisalabad 0.420

Station 5—Raw-
alpindi

Muzaffar Garh 0.560

Station 6—Jhang

Rawalpindi 0.537

D. G. Khan 0.425 Toba Tek Singh 0.801 D. G. Khan 0.764

Sargodha 0.468 Mianwali 0.758 Multan 0.901

Gujrat 0.183 Attock 0.876 Gujrat 0.722

Khushab 0.382 Gujranwala 0.873 Jhelum 0.657

Jhang 0.522 Multan 0.589 Khushab 0.873

Vehari 0.479 Jhelum 0.944 Rahimyar khan 0.919

Lahore 0.310 Sargodha 0.945 Attock 0.571

Sahiwal 0.346 Khushab 0.907 Sargodha 0.906

Gujranwala 0.530 Gujrat 0.781 Bakkar 0.842

Jhelum 0.649 Kasur 0.898 Muzaffar Garh 0.855

khanewal 0.489

Rahimyar khan 0.899

Mianwali 0.485

Bakkar 0.370 Faisalabad 0.818

Rawalpindi 0.181

Shekhupura 0.939
Toba Tek Singh 0.571

Khanewal 0.782

Kasur 0.463

Table 3.  Training data points (in terms of selected training stations) and testing data points for each testing 
station using the ACO algorithm. The ratio of selected stations against testing stations, skewness, and kurtosis 
of training and testing data.

Testing 
stations

No. of 
selected 
stations

The ratio 
of selected 
station

No. of data 
points in 
each station

No. of 
training 
data

No. of 
testing data

Skewness Kurtosis Standard deviation Mean

Training Testing Training Testing Training Testing Training Testing

Rahimyar 
Khan 22 0.846 33 22 × 33 = 726 33 0.026 0.290 − 0.660 − 0.491 640.03 522.80 2126.59 2308.74

D. G. Khan 20 0.769 33 20 × 33 = 660 33 − 0.023 − 0.661 − 0.639 0.322 604.39 457.67 2100.48 2234.18

Kasur 19 0.731 33 19 × 33 = 627 33 0.134 − 0.072 − 0.532 − 0.934 623.22 407.78 2101.54 2495.00

Sialkot 17 0.654 33 17 × 33 = 561 33 − 0.124 − 0.440 − 0.647 − 0.472 620.67 612.39 2193.14 2051.86

Rawalpindi 12 0.461 33 12 × 33 = 396 33 0.638 − 0.264 1.593 − 0.680 646.02 372.15 2008.08 1374.83

Jhang 14 0.538 33 14 × 33 = 462 33 0.233 0.033 − 0.537 − 1.061 588.81 431.16 1918.63 2353.19
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In Eq. (9) W indicates input/output of the wheat yield data, Wmin is the smallest value, Wmax is the largest value 
of wheat yield in the dataset, and Wnorm is the desired normalized value. The normalization process overcomes 
data fluctuations caused by inherent data features/patterns77. It essentially is invertible and in no way affects 
the  results77. Figure 4 presents the time series of the tested study stations constructed from the selected features 
using the ACO algorithm.

(9)Wnorm =
(W −Wmin)

(Wminmax)

Figure 3.  Bar graphs of the root mean squared error (RMSE) encountered by the ant colony optimisation 
algorithm in the selection of training study stations for each testing study station: Station 1: Rahimyar Khan, 
Station 2: D. G. Khan, Station 3: Kasur, Station 4: Sialkot, Station 5: Rawalpindi, and Station 6: Jhang.

Figure 4.  Time series of the annual wheat yield data for the training stations selected by the ant colony 
optimisation algorithm for each testing study station: Station 1: Rahimyar Khan, Station 2: D. G. Khan, Station 
3: Kasur, Station 4: Sialkot, Station 5: Rawalpindi, and Station 6: Jhang.
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Phase 2. The partial autocorrelation function (PACF) was employed to calculate and determine the statistically 
significant lags of historical wheat yield data series as in Fig. 5. Moreover, the cross-validation or any data ran-
domized approach cannot be adopted as time-series data by definition occur in a temporal order/sequence and 
this order or sequence must be preserved in order to keep the structure of the series  intact78.

These significant lagged inputs at (t − 1) were incorporated as the input predictor in the OSELM model to 
forecast the yield W. Different activation functions (sigmoid, sine, hardlim, radial basis) were tested to determine 
the best activation function and the radial basis (rbf) and sigmoid (sig) functions were found to be the optimal 
ones. Consequently, different combinations of hidden neuron ranging from 7 to 35 were trialed with block 
size being fixed at 100. The second significant lag (t − 2) was also utilized in the proposed two-phase hybrid 
ACO-OSELM model to check whether model performance increases or not. But upon utilizing the lag (t − 2), 
the accuracy of the proposed two-phase hybrid ACO-OSELM model decreased, so it was not considered in 
this paper. Similarly, the benchmark models ELM and RF models were developed resulting in ACO-ELM and 
ACO-RF models respectively. Figure 6 displays the model schematics. Then model training performances of the 
proposed hybrid two-phase ACO-OSELM were assessed via correlation coefficient (r) and root-mean-squared-
error (RMSE) as shown in Table 4.

The r and RMSE values attained during the training period by the two-phase hybrid ACO-OSELM models 
for wheat yield prediction at Rahimyar Khan and D. G. Khan were seen to be: (r = 0.812, 0.790, RMSE = 374.82, 
381.57 kg  ha−1). Equivalent metrics for Kasur and Sialkot were found to be: (r = 0.804, 0.798, RMSE = 370.49, 
386.18 kg  ha−1) and finally for Rawalpindi and Jhang were: (r = 0.832, 0.799, RMSE = 356.80, 353.55 kg  ha−1). In 
addition, the training performances of comparative ACO-ELM and ACO-RF models were also studied (Table 4). 
The performance of the proposed two-phase hybrid ACO-OSELM model was relatively high during the training 
phase, and it is conjectured that the ACO-OSELM model accuracy in the testing phase for wheat yield prediction 
at these tested stations would be higher as well.

Setting and tuning parameter optimization. To attain optimum precision, one of the most crucial 
tasks in designing the prediction model is to adjust the tuning and pruning of parameters associated with the 
models. Various approaches are adopted to fine-tune the parameters to acquire the desired optimum model. The 
trial and error strategy was utilized to get the optimum parameters during the constructing phase of the ACO-
OSELM, ACO-ELM, and ACO-RF model to predict the wheat  yield79. Table 5 presents the details of parameter 
settings during the prediction of annual wheat yield (W). The parameters utilized to design the ACO-OSELM 
model are the no. of hidden neurons, activation functions, and no. of blocks. The ACO-ELM model utilizes no. 
of hidden neurons and activation functions only, while ACO-RF requires two parameters: no. of trees and no. of 
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Figure 5.  Partial autocorrelation function correlation coefficient (PACF) of the historical annual wheat yield 
time series for each testing study station: Station 1: Rahimyar Khan, Station 2: D. G. Khan, Station 3: Kasur, 
Station 4: Sialkot, Station 5: Rawalpindi, and Station 6: Jhang.
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split predictors. The details on fine-tuning of these parameters are provided in Table 5 for optimally performing 
ACO-OSELM, ACO-ELM, and ACO-RF model for all selected study stations.

Figure 6.  Flow chart of the proposed hybrid two-phase Ant Colony Optimization algorithm integrated with the 
Online Sequential Extreme Learning Machine (OSELM) model.
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Model performance evaluation. Performance evaluations of the proposed hybrid two-phase ACO-
OSELM versus ACO-ELM and the ACO-RF models applied for yield, W, forecasting was carried out via statisti-
cal standardized metrics and diagnostic  plots80. These assessment metrics are formulated below as  per81–86:

 i. Correlation coefficient (r):

 ii. Willmott’s index (WI):

 iii. Nash–Sutcliffe coefficient (NSE):

 iv. Root mean square error (RMSE, kg  ha−1):

(10)r =
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Table 4.  Training performance of two-phase hybrid ant colony optimization algorithm coupled online 
sequential extreme learning machines (ACO-OSELM) versus ACO-ELM and ACO-RF models with 
correlation coefficient (r) and root mean squared error (RMSE, kg  ha−1).

Testing stations Lags

ACO-OSELM ACO-ELM ACO-RF

Training period Training period Training period

RMSE (kg/ha) r RMSE (kg/ha) r RMSE (kg/ha) r

Rahimyar Khan Wt−1 374.82 0.812 375.99 0.810 205.88 0.949

D. G. Khan Wt−1 381.57 0.790 382.11 0.790 212.60 0.942

Kasur Wt−1 370.49 0.804 366.78 0.808 201.27 0.948

Sialkot Wt−1 386.18 0.798 386.57 0.797 215.79 0.944

Rawalpindi Wt−1 356.80 0.832 357.93 0.831 213.64 0.946

Jhang Wt−1 353.55 0.799 352.46 0.799 214.46 0.933

Table 5.  Tuning parameters of the ACO-OSELM, ACO-ELM and ACO-RF models to predict wheat yield.

Test stations Models Tuning parameter models

Rahimyar Khan

OSELM-ACO Wt+1 No. of hidden neuron = 35, activation function = rbf, no. of blocks = 100

ELM-ACO Wt+1 Neuron = 15,  activation no. of hidden function = sig

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2

D. G. Khan

OSELM-ACO Wt+1 No. of hidden neuron = 11, activation function = rbf, no. of blocks = 100

ELM-ACO Wt+1 No. of hidden neuron = 15, activation function = sig

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2

Kasur

OSELM-ACO Wt+1 No. of hidden neuron = 7, activation function = rbf, no. of blocks = 100

ELM-ACO Wt+1 No. of hidden neuron = 17, activation function = rbf

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2

Sialkot

OSELM-ACO Wt+1 No. of hidden neuron = 15, activation function = rbf, no. of blocks = 100

ELM-ACO Wt+1 No. of hidden neuron = 9, activation function = rbf

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2

Rawalpindi

OSELM-ACO Wt+1 No. of hidden neuron = 35, activation function = rbf, no. of blocks = 100

ELM-ACO Wt+1 No. of hidden neuron = 17, activation function = rbf

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2

Jhang

OSELM-ACO Wt+1 No. of hidden neuron = 10, activation function = sig, no. of blocks = 100

ELM-ACO Wt+1 No. of hidden neuron = 15, activation function = sin

RF-ACO Wt+1 No. of trees = 10,000, no. of split predictors = 2



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5488  | https://doi.org/10.1038/s41598-022-09482-5

www.nature.com/scientificreports/

 v. Mean absolute error (MAE, kg  ha−1):

 vi. Legates–McCabe’s (LM) index:

 vii. Relative root mean square error (RRMSE, %):

 viii. Relative mean absolute percentage error (RMAE; %):

where Wobs,i and Wpred,i are ith observed and predicted values of the wheat yield W; 
_

Wobs,i and 
_

Wpred,i represents 
respective observed and predicted averages of W while N is the number of data points in the testing phase. The 
value of correlation coefficient (r) can be in the range of − 1 and + 1, which demonstrates the associations in terms 
of the proportion of variance in between the observed and predicted W from the machine learning  models82. 
A value of + 1 shows that the observed and forecasted values are highly correlated with the least variances. The 
second metric Willmott’s Index (WI) ranges between 0 and 1. The WI overcomes the insensitivity issues as the 
differences between the observed and forecasted values are not squared and the ratio of the mean squared error 
in place of the differences are considered in  computations87,88. The next metric, i.e., Nash–Sutcliffe Efficiency 
(NSE) has the ideal value of 1 and spans till negative infinity that essentially compares the variance of predicted 
with the observed  values89. In addition, the computation of error measures RMSE and MAE are based on the 
aggregation of residuals of observed and predicted W  values90. The higher W values are largely captured by the 
RMSE whereas the MAE equally assesses all variations regardless of the sign, yet both range from 0 (ideal value) 
to positive infinity. On the other hand, the Legates–McCabe’s (LM) index is a more robust tool developed to 
address the limitations of both the W and NSE and the value is bound between 0 and 1 (the ideal value)91.

However, these metrics should not essentially be used to compare model performance at geographically 
diverse  stations92, as these metrics are in their absolute terms. As such the relative values of root mean square 
error (RRMSE) and mean absolute error (RMAE) were utilized for this  purpose93. The relative values are in 
percentages and for a model to be rated as outstanding, the (RRMSE, RMAPE) < 10%. For models rated as good 
the range is 10% < (RRMSE, RMAE) < 20%, while the model is fair if 20% < (RRMSE, RMAE) < 30% and if the 
(RRMSE, RMAE) > 30% the model is considered to have poor prediction  performance94,95.

Modelling results and analysis
The proposed two-phase hybrid ACO-OSELM is evaluated with ACO-ELM and ACO-RF models, based on 
evaluation metrics (“Setting and tuning parameter optimization” section), diagnostic plots together with error 
distributions. Figure 7 displays a scatterplot with the respective coefficients of determination (r2) depicting the 
level of associations between the predicted and observed wheat yield (W) overlayed with the goodness-of-fit line 
and the linear equation. Essentially, the closer the linear equation is to the y = mx representation and the closer 
the r2 is to unity, the better the model performance is. The proposed two-phase hybrid ACO-OSELM model has 
better predictive potential than ACO-ELM and ACO-RF models in terms of r2 (ACO-OSELM ≈ 0.995, ACO-
ELM ≈ 0.996, ACO-RF ≈ 0.862) for Kasur. Again, the proposed two-phase hybrid ACO-OSELM model is more 
accurate for Sialkot, r2 (ACO-OSELM ≈ 0.974, ACO-ELM ≈ 0.936, ACO-RF ≈ 0.892), and Rawalpindi stations 
in terms of the achieved r2 (ACO-OSELM ≈ 0.945, ACO-ELM ≈ 0.924, ACO-RF ≈ 0.814). The proposed two-
phase hybrid ACO-OSELM model for other stations Rahimyar Khan, D. G. Khan, and Jhang is reasonably good 
compared to ACO-ELM and ACO-RF models (Fig. 7). The better accuracy of the proposed two-phase hybrid 
ACO-OSELM model against the comparison models for all the study regions is confirmed by the linear regres-
sion equation and the goodness-of-fit in addition to attaining larger r2 values.

Moreover, comparative boxplots of the proposed two-phase hybrid ACO-OSELM model with ACO-ELM and 
ACO-RF models for each station were established. Figure 8 displays these boxplots of absolute values of predic-
tion error |PE| during the testing data together with respective upper quartiles, medians, and lower quartiles. The 
‘+’ on the figure denotes the extreme values of the |PE| distributions. Subsequently, much smaller quartile values 
registered by the proposed two-phase hybrid ACO-OSELM model for Rahimyar Khan and D. G. Khan followed 
by the ACO-ELM and ACO-RF models confirmed better predictive performances. The proposed two-phase 
hybrid ACO-OSELM model achieved improved accuracies for Rawalpindi and Jhang stations in relation to the 
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benchmark models. Similarly, the proposed two-phase hybrid ACO-OSELM model performed well for Sialkot 
and Kasur stations in predicting wheat yield followed by the ACO-ELM and ACO-RF models. The boxplot in 
Fig. 8 clearly shows that the proposed two-phase hybrid ACO-OSELM model at all six stations outperformed 
the comparative models.

The preciseness of the proposed two-phase hybrid ACO-OSELM is further evaluated with compara-
tive ACO-ELM and ACO-RF models based on r, RMSE, and MAE (Table  6). The proposed two-phase 
hybrid ACO-OSELM model at Kasur station registered the largest r with least RMSE and MAE (r ≈ 0.999, 
RMSE ≈ 85.42 kg   ha−1, MAE ≈ 66.54 kg   ha−1). In comparison, the ACO-ELM attained the following val-
ues (r ≈ 0.987, RMSE ≈ 111.59 kg  ha−1, MAE ≈ 78.15 kg  ha−1) while the ACO-RF model recorded; r ≈ 0.926, 
RMSE ≈ 154.36 kg  ha−1, MAE ≈ 135.24 kg  ha−1. Similarly, for Sialkot station, these metrics were ACO-OSELM 
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Figure 7.  Scatterplots of the predicted  (Wpred) and observed wheat yield  (Wobs) (kg  ha−1) in the testing phase of 
the ACO-OSELM versus ACO-ELM and ACO-RF models including the coefficient of determination (r2) and 
a linear fit inserted in each panel for the tested study zones. Note: Each point represents each year’s data in the 
testing period.
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(r ≈ 0.984, RMSE ≈ 155.86 kg  ha−1, MAE ≈ 76.95 kg  ha−1), followed ACO-ELM (r ≈ 0.967, RMSE ≈ 197.10 kg  ha−1, 
MAE ≈ 83.21 kg  ha−1) and ACO-RF (r ≈ 0.942, RMSE ≈ 209.89 kg  ha−1, MAE ≈ 155.35 kg  ha−1). Likewise, the per-
formance of the proposed two-phase hybrid ACO-OSELM model was better for Rawalpindi, Jhang, Rahimyar 
Khan, and D. G. Khan in terms of registering the largest values of r and smallest RMSE and MAE values. This 
gives a clear indication of better performance of the proposed two-phase hybrid ACO-OSELM model, which 
can be considered a better data-intelligent tool for wheat yield prediction in contrast to the ACO-ELM and 
ACO-RF models.

A vector field evaluation (VFE) diagram (Fig. 9) presents a more concise statistical summary of the associa-
tions of predicted and observed wheat yield matched based upon the respective WI values. A VFE diagram is 
a generalization of the Taylor diagram that provides an evaluation of model performances in terms of vector 
 fields96. For Rahimyar Khan, the WI of the proposed two-phase hybrid ACO-OSELM model with observations 
was ~ 0.98, followed by ACO-ELM ≈ 0.97 and ACO-RF ≈ 0.87. The WI ~ 0.99 of the ACO-OSELM model was 
closest to the observed wheat yield as compared to ACO-ELM and ACO-RF for D. G. Khan stations. Similarly, 
the proposed two-phase hybrid ACO-OSELM models were found to be the best performing models for Kasur 
station (WI ≈ 0.98) that were within close proximity of the observed wheat yield followed by ACO-ELM (≈ 0.97) 
and ACO-RF (≈ 0.92) models. For other stations Sialkot and Jhang, the proposed two-phase hybrid ACO-OSELM 
model is closer to the observed W as compared to the ACO-ELM and ACO-RF models. For the Rawalpindi 
station, the ACO-RF model was marginally better than ACO-OSELM and ACO-ELM models. Overall, the WI 
of the proposed two-phase ACO-OSELM model was closely distributed to the observed baseline compared to 
the other models.
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Figure 8.  Boxplots of the prediction error |PE| (kg  ha−1) of ACO-OSELM versus ACO-ELM and ACO-RF 
models between the predicted and observed wheat yield for Station 1: Rahimyar Khan, Station 2: D. G. Khan, 
Station 3: Kasur, Station 4: Sialkot, Station 5: Rawalpindi, and Station 6: Jhang.

Table 6.  Testing performance of ACO-OSELM versus ACO-ELM and ACO-RF models measured by root 
mean square error (RMSE), mean absolute error (MAE), coefficient of determination (r).

Testing stations Lags

ACO-OSELM ACO-ELM ACO-RF

RMSE (kg  ha−1) MAE (kg  ha−1) r RMSE (kg  ha−1) MAE (kg  ha−1) r RMSE (kg  ha−1) MAE (kg  ha−1) r

Rahimyar Khan Wt−1 94.96 56.16 0.996 99.06 63.26 0.997 212.32 175.25 0.929

D. G. Khan Wt−1 67.12 42.37 0.997 68.98 44.35 0.998 189.44 141.92 0.912

Kasur Wt−1 85.42 66.54 0.999 111.59 78.15 0.987 154.36 135.24 0.926

Sialkot Wt−1 155.86 76.95 0.984 197.10 83.21 0.967 209.89 155.35 0.942

Rawalpindi Wt−1 191.89 129.86 0.967 204.59 134.39 0.955 203.53 165.47 0.898

Jhang Wt−1 96.24 61.41 0.992 114.33 80.81 0.992 181.10 134.10 0.909
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Figure 9.  Vector field evaluation (VFE) diagram showing Willmott’s agreement between the observed and 
predicted wheat yield and standard deviation (SD) of ACO-OSELM versus ACO-ELM and ACO-RF models for 
all tested stations.



17

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5488  | https://doi.org/10.1038/s41598-022-09482-5

www.nature.com/scientificreports/

After that, the ACO-ELM and ACO-RF models were evaluated in terms of WI, NSE, and LM for all candidate 
stations. The preciseness of the proposed two-phase hybrid ACO-OSELM model is presented in Table 7. The 
largest magnitudes of WI ≈ 0.980, NSE ≈ 0.966, and LM ≈ 0.865 were recorded by the proposed two-phase hybrid 
ACO-OSELM model at Rahimyar Khan station followed by ACO-ELM (WI ≈ 0.978, NSE ≈ 0.963 and LM ≈ 0.848) 
and the ACO-RF (WI ≈ 0.876, NSE ≈ 0.830 and LM ≈ 0.579) models. For D. G. Khan and Kasur stations, again the 
proposed two-phase hybrid ACO-OSELM appeared to be the best model (WI ≈ 0.989, 0.977, NSE ≈ 0.978, 0.955, 
and LM ≈ 0.884, 0.805), followed by ACO-ELM (WI ≈ 0.988, 0.962, NSE ≈ 0.977, 0.923 and LM ≈ 0.879, 0.766) 
and ACO-RF models (WI ≈ 0.903, 0.920, NSE ≈ 0.823, 0.852 and LM ≈ 0.612, 0.595). For other stations Sialkot, 
Rawalpindi, and Jhang, the proposed two-phase hybrid ACO-OSELM model appeared to be the best (Table 7) 
in comparison to the counterpart models revealing the better performances of the proposed two-phase hybrid 
ACO-OSELM models.

Furthermore, the empirical cumulative distribution function (ECDF, Fig. 10) at all stations depicts that the 
proposed two-phase hybrid ACO-OSELM method was reasonably better and superior to both the ACO-ELM 
and ACO-RF models. Based on the error (0 to ± 400 kg  ha−1) for the Rahimyar Khan, D. G. Khan, and Kasur 
station, (0 to ± 600 kg  ha−1) for Rawalpindi and Jhang station while (0 to ± 1000 kg  ha−1) for Sialkot station, 
Fig. 10 clearly proves that the proposed two-phase hybrid ACO-OSELM method was the most precise model 
in predicting wheat yield.

Table 7.  The performance of ACO-OSELM versus ACO-ELM and ACO-RF models using Willmott’s index 
(WI), Nash–Sutcliffe (NSE) and Legates–McCabe’s (LM) agreement, for Station 1: Rahimyar Khan, Station 2: 
D. G. Khan, Station 3: Kasur, Station 4: Sialkot, Station 5: Rawalpindi and Station 6: Jhang. Note that the best 
model is boldfaced (underline).

Testing stations Lags

ACO-OSELM ACO-ELM ACO-RF

WI NSE LM WI NSE LM WI NSE LM

Rahimyar Khan Wt−1 0.980 0.966 0.865 0.978 0.963 0.848 0.876 0.830 0.579

D. G. Khan Wt−1 0.989 0.978 0.884 0.988 0.977 0.879 0.903 0.823 0.612

Kasur Wt−1 0.977 0.955 0.805 0.962 0.923 0.766 0.920 0.852 0.595

Sialkot Wt−1 0.960 0.933 0.845 0.931 0.89 0.833 0.941 0.879 0.687

Rawalpindi Wt−1 0.712 0.726 0.570 0.647 0.688 0.555 0.772 0.692 0.453

Jhang Wt−1 0.974 0.949 0.833 0.966 0.927 0.781 0.883 0.818 0.636
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Figure 10.  Empirical cumulative distribution function (ECDF) of the prediction error, |PE| (kg  ha−1) for the 
testing stations using ACO-OSELM versus ACO-ELM and ACO-RF models.
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The magnitudes of relative root mean squared error (RRMSE) and relative mean absolute error (RMAE) for 
the different locations (Rahimyar Khan, D. G. Khan, Kasur, Sialkot, Rawalpindi, and Jhang) are presented in 
Table 8. It demonstrated that D. G. Khan is the station where the ACO-OSELM wheat yield predicting model 
performed the best with RRMSE ≈ 3.00 and RMAE ≈ 2.25%. The ACO-OSELM model was found to generate the 
least relative percentage error values (i.e., RRMSE, RMAE) at all tested stations except for the Rawalpindi station. 
However, the predicted errors generated by the proposed two-phase hybrid ACO-OSELM model were low in 
terms of their relative error values, and more importantly, the error values were within the recommended range 
of 10% threshold for an excellent model classification, except for Rawalpindi  station97.

Figure 11 presents the absolute prediction error |PE| in each year from 1981–2013 of the proposed two-phase 
hybrid ACO-OSELM versus ACO-ELM and ACO-RF models at the testing stations in the form of polar plots. 
For all stations, the prediction errors generated by the proposed two-phase hybrid ACO-OSELM were very low 
compared to the ACO-ELM and ACO-RF models. This was justified by the minimum values of relative predic-
tion errors. The |PE| errors were significantly smaller in each year for the proposed two-phase hybrid ACO-
OSELM model as compared to ACO-ELM and ACO-RF models in Rahimyar Khan, D. G. Khan, Kasur, Sialkot, 
Rawalpindi and Jhang stations. Overall, the proposed two-phase hybrid ACO-OSELM model generated better 
significant accuracy with smaller error statistics and higher WI.

Discussions
Developing strategies for accurate crop yield prediction that can address food scarcity issues, decision-making 
on national imports and exports, and setting the prices in agriculture markets, can play an important role in 
policymaking, particularly in agriculture-based nations such as Pakistan. This study was aimed at designing a 
novel two-phase hybrid ACO-OSELM model using significant lag at (t − 1) to predict future wheat yield. This 
is a practically useful approach for crop yield management in terms of using the wheat yield data from several 
nearby stations in developing better agricultural practices and efficient precision agricultural technologies. For 
example, the methodology can be used in remote areas where meteorological data is not available due to lim-
ited resources. The research framework in this study can be applied to any other study station where yield data 
(whether it is wheat or any other crop) are available from surrounding stations to provide an accurate prediction.

The proposed two-phase hybrid ACO-OSELM model with its counterpart models (ACO-ELM and ACO-
RF) was suitably evaluated, which revealed smaller relative percentage errors in terms of RRMSE and RMAE 
being generated. Respectively, reasonably large statistical correlation metric values of Legates–McCabe’s between 
predicted and observed yielded for D. G. Khan and other tested stations (Tables 7, 8). The model performances 
were high since the percentage errors achieved were less than 10%. Thus, the proposed two-phase hybrid ACO-
OSELM model can suitably be used to predict the wheat yield where the prediction of a crop commodity is likely 
to become more important due to ever-increasing demand.

The proposed two-phase hybrid OSELM model can assist the government’s national policymakers and agri-
cultural engineers in minimizing uncertainties in crop estimates reducing price hikes as well as unwarranted 
 wastages98. Since the proposed two-phase hybrid ACO-OSELM model offers better forecasting potential together 
with being fast and robust, it can possibly be explored in predicting other crop yields including Rice, Maize, 
Cotton, Sugarcane, and Oilseeds to generate similar optimal predictions in follow-up studies.

The utilization of historical wheat yield data as inputs to predict the future yield carries some limitations. 
Certainly, weather conditions are a big driver for any agricultural yield. Hence, to enhance the scope of future 
studies, predictor inputs consisting of meteorological data (i.e., precipitation, air temperatures, soil moisture, 
wind speed, solar radiation, etc.) need to be used to predict future crop yield as crop production amounts are 
largely contingent upon these parameters. Satellite-based remotely sensed data and/or data from atmospheric 
simulation models (e.g.,31,99,100) as predictor variables are also likely to add great value to the crop yield mod-
eling in remote agricultural areas with limited datasets. Incorporation of remotely sensed photosynthetically 
active radiation (PAR) that reveals crop health could also be focussed on, in an independent study. In addition, 
fertilizer/manure usage data accompanied by relevant soil characteristics (e.g., texture, pedality, hydraulics, 
porosity, bulk density, thickness, and soil organic carbon content) could also be explored in the proposed two-
phase hybrid ACO-OSELM model. Fields that use irrigation for production need to utilize irrigation statistics 
to improve crop yield predictions. Further, as process-based modeling is resource-demanding which emerging 

Table 8.  Geographic comparison of the accuracy of the ACO-OSELM versus ACO-ELM and ACO-RF 
models in terms of relative root mean squared error (RRMSE, %) and the relative mean absolute error (RMAE, 
%) computed within the test stations. Note that the best model is boldfaced (underline).

Site and model data ACO-OSELM ACO-ELM ACO-RF

Testing stations Lags RRMSE (%) RMAE (%) RRMSE (%) RMAE (%) RRMSE (%) RMAE (%)

Rahimyar Khan Wt−1 4.11 2.27 4.29 2.57 9.20 8.20

D. G. Khan Wt−1 3.00 2.25 3.09 2.39 8.48 7.33

Kasur Wt−1 3.42 2.42 4.47 2.79 6.19 5.59

Sialkot Wt−1 7.60 7.40 9.61 8.74 10.23 9.52

Rawalpindi Wt−1 13.96 13.95 14.88 14.70 14.80 14.42

Jhang Wt−1 4.09 2.26 4.86 3.06 7.70 6.09
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Figure 11.  Polar plots showing the prediction error |PE| in each year generated from the ACO-OSELM versus 
ACO-ELM and ACO-RF models in predicting wheat yield for all stations.
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agricultural nations like Pakistan unable to afford, the proposed two-phase hybrid ACO-OSELM model could 
be used as a feasible option.

An ensemble modeling approach could further improve the two-phase hybrid ACO-OSELM modeling with 
the possibility of achieving better results. Ensemble modeling would provide better confidence in predictions 
making the model more reliable in strategic decision-making, as uncertainties between several forecasted data 
would be captured and displayed in the outputs. Quantum-Behaved PSO and the Firefly Algorithms could also 
be used to identify training stations that have been tested to hybridize with the OSELM (e.g.,101,102). Future works 
could apply, empirical wavelet transform-EWT103, empirical mode decomposition-EMD104, and singular value 
decomposition-SVD105, as data pre-processing tools in modeling and predicting crop yields.

Conclusions
The current study was adopted to develop a robust two-phase hybrid ACO-OSELM model to predict wheat yield. 
Lagged wheat yields from several neighbouring stations were used for training purposes as model predictors for 
the candidate station. Wheat yield data for the period of 1981–2013 from 26 stations were pooled and the best 
training stations were selected by the ACO algorithm on the basis of feature selection corresponding to the 27th 
test station. The selected feature stations were used to construct a time series where the significant lags at (t − 1) 
were used to develop the proposed two-phase hybrid ACO-OSELM model to achieve better accuracy. Several 
evaluation criteria including diagnostic plots were adopted to judge the accuracy of the proposed two-phase 
hybrid ACO-OSELM model. The proposed hybrid ACO-OSELM outperformed the counterpart models for 
wheat yield prediction. The prediction errors metrics for the best station D. G. Khan registered by ACO-OSELM 
model were RMSE ≈ 67.12 kg  ha−1 and MAE ≈ 42.37 kg/ha. The normalized performance metrics for the D. G. 
Khan station (r ≈ 0.997, WI ≈ 0.989 and NSE ≈ 0.978. The performance assessment of the ACO-OSELM model 
in relation to ACO-ELM and the ACO-RF models via Legates–McCabe’s indices were in agreement. The LM 
values between the predicted and observed wheat yield for the D. G. Khan study station were LM ≈ 0.884 (ACO-
OSELM), 0.879 (ACO-ELM) and 0.612 (ACO-RF), respectively and the relative errors, RRMSE and RMAE were 
very small: 3.00%, 2.25% (ACO-OSELM) compared with 3.09%, 2.39% (ACO-ELM) and 8.48%, 7.33% (ACO-
RF). Since the relative percentage errors, RRMSE and RMAE showed that at D. G. Khan station the proposed 
two-phase hybrid ACO-OSELM model performed the best as compared to other stations, evidently geographic 
variability does influence the outcomes to a certain degree. This essentially is a baseline study whereby wheat 
yield data from several stations are being utilized to predict wheat yield more accurately that can potentially 
be extended to forecasting using other climatological parameters in future studies. Similarly, other agricultural 
crop yield predictions could be explored with the proposed two-phase hybrid ACO-OSELM model that will 
assist policymakers and decision-makers in the better management of crop yield and price predictions. More 
importantly, accurate wheat and other crop yield predictions can be used to alert impacted stakeholders and the 
government to avert food security issues.

Received: 5 February 2021; Accepted: 15 March 2022

References
 1. Martin, G., Martin-Clouaire, R. & Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 

33, 131–149 (2013).
 2. McElwee, G. & Bosworth, G. Exploring the strategic skills of farmers across a typology of farm diversification approaches. J. 

Farm Manag. 13, 819–838 (2010).
 3. Maghrebi, M. et al. Iran’s agriculture in the anthropocene. Earth’s Future. https:// doi. org/ 10. 1029/ 2020E F0015 47 (2020).
 4. Raorane, A. A. & Kulkarni, R. V. Data mining: An effective tool for yield estimation in the agricultural sector. Int. J. Emerg. 

Trends Technol. Comput. Sci. 1, 1–4 (2012).
 5. Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression 

models for crop yield prediction. Sci. World J. 2014, 509429 (2014).
 6. Salman, S. A. et al. Changes in climatic water availability and crop water demand for Iraq region. Sustainability 12, 3437 (2020).
 7. Mahmood, N., Arshad, M., Kächele, H., Ullah, A. & Müller, K. Economic efficiency of rainfed wheat farmers under changing 

climate: Evidence from Pakistan. Environ. Sci. Pollut. Res. 27, 34453–34467 (2020).
 8. Pracha, A. S. & Volk, T. A. An edible energy return on investment (EEROI) analysis of wheat and rice in Pakistan. Sustainability 

3, 2358–2391 (2011).
 9. Canadell, J. et al. Abberton, M., Conant, R., & Batello, C. (Eds.). (2010). Grassland carbon sequestration: Management, policy and 

economics. Food and Agriculture Organization of the United Nations, Integrated Crop Management, Vol. 11–2010. Ahlstrom, 
A., Raupach, M., Schurgers. Sensit. A Semi-Arid Grassl. To Extrem. Precip. Events 127, 6 (2021).

 10. Canton, H. Food and Agriculture Organization of the United Nations—FAO. In The Europa Directory of International Organiza-
tions 2021 (ed. Canton, H.) 297–305 (Routledge, 2021).

 11. Abdullah, A. et al. Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. 
J. Clean. Prod. 287, 125047 (2020).

 12. Mughal, I. et al. Protein quantification and enzyme activity estimation of Pakistani wheat landraces. PLoS ONE 15, e0239375 
(2020).

 13. Dorosh, P. & Salam, A. Wheat markets and price stabilisation in Pakistan: An analysis of policy options. Pak. Dev. Rev. 47, 71–87 
(2008).

 14. Fowke, V. The National Policy and the Wheat Economy (University of Toronto Press, 2019).
 15. Hussain, S. et al. Study the effects of COVID-19 in Punjab, Pakistan using space-time scan statistic for policy measures in regional 

agriculture and food supply chain. Environ. Sci. Pollut. Res. Int. 20, 1–14 (2021).
 16. Sajjad, S. A. Story of Pakistan’s Elite Wheat (The Express Tribune, 2017).
 17. Durgun, Y. Ö., Gobin, A., Duveiller, G. & Tychon, B. A study on trade-offs between spatial resolution and temporal sampling 

density for wheat yield estimation using both thermal and calendar time. Int. J. Appl. Earth Obs. Geoinf. 86, 101988 (2020).
 18. Vannoppen, A. et al. Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sens. 12, 2206 (2020).
 19. Irmak, A. et al. Artificial neural network model as a data analysis tool in precision farming. Trans. ASABE 49, 2027–2037 (2006).

https://doi.org/10.1029/2020EF001547


21

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5488  | https://doi.org/10.1038/s41598-022-09482-5

www.nature.com/scientificreports/

 20. Bannerjee, G., Sarkar, U., Das, S. & Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. 
Sci. Appl. Manag. Stud. 7, 1–6 (2018).

 21. Patrício, D. I. & Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic 
review. Comput. Electron. Agric. 153, 69–81 (2018).

 22. Yaseen, Z. M. et al. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learn-
ing models. Eng. Appl. Comput. Fluid Mech. 14, 70–89 (2019).

 23. Bauer, M. E. The role of remote sensing in determining the distribution and yield of crops. In Advances in Agronomy (ed. Sparks, 
D. L.) 271–304 (Elsevier, 1975). https:// doi. org/ 10. 1016/ s0065- 2113(08) 70012-9.

 24. Dempewolf, J. et al. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. 
Remote Sens. 6, 9653–9675 (2014).

 25. Hamid, N., Pinckney, T. C., Gnaegy, S. & Valdes, A. The Wheat Economy of Pakistan: Setting and Prospects (IFPRI, 2015).
 26. Muhammad, K. Description of the Historical Background of Wheat Improvement in Baluchistan, Pakistan (Agriculture Research 

Institute (Sariab, Quetta, Baluchistan, Pakistan), 1989).
 27. Iqbal, N., Bakhsh, K., Maqbool, A. & Abid Shohab, A. Use of the ARIMA model for forecasting wheat area and production in 

Pakistan. J. Agric. Soc. Sci. 1, 120–122 (2005).
 28. Sher, F. & Ahmad, E. Forecasting wheat production in Pakistan. LAHORE J. Econ. 13, 57–85 (2008).
 29. Khan, N. et al. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab. 

J. Geosci. 14, 1–16 (2021).
 30. Rahman, M. M., Haq, N. & Rahman, R. M. Machine learning facilitated rice prediction in Bangladesh. In 2014 Annual Global 

Online Conference on Information and Computer Technology. https:// doi. org/ 10. 1109/ gocict. 2014.9 (2014).
 31. Chen, C. & Mcnairn, H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27, 1367–1393 

(2006).
 32. Kaul, M., Hill, R. L. & Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85, 1–18 (2005).
 33. Deo, R. C., Samui, P., Kisi, O. & Yaseen, Z. M. Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: 

Theory and Practice of Hazard Mitigation (Springer Nature, 2020).
 34. Sanikhani, H. et al. Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic 

information as model predictors. Comput. Electron. Agric. 152, 242–260 (2018).
 35. Hai, T. et al. Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive 

model. IEEE Access 8, 12026–12042 (2020).
 36. Ramos, A. P. M. et al. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. 

Comput. Electron. Agric. 178, 105791 (2020).
 37. Suchithra, M. S. & Pai, M. L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning 

machine parameters. Inf. Process. Agric. 7, 72–82 (2020).
 38. Feng, Z., Huang, G. & Chi, D. Classification of the complex agricultural planting structure with a semi-supervised extreme 

learning machine framework. Remote Sens. 12, 3708 (2020).
 39. Tur, R. & Yontem, S. A comparison of soft computing methods for the prediction of wave height parameters. Knowl. Based Eng. 

Sci. 2, 31–46 (2021).
 40. Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N. & Shahid, S. Forecasting standardized precipitation index using data intel-

ligence models: Regional investigation of Bangladesh. Sci. Rep. 11, 1–25 (2021).
 41. Sharafati, A., Asadollah, S. B. H. S. & Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over 

the Rafsanjan aquifer in Iran. J. Hydrol. https:// doi. org/ 10. 1016/j. jhydr ol. 2020. 125468 (2020).
 42. Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).
 43. Adnan, R. M. et al. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm 

optimization and grey wolf optimization. Knowl. Based Syst. 230, 107379 (2021).
 44. Yaseen, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. 

Hydrol. 542, 603–614 (2016).
 45. Prasad, R., Deo, R. C., Li, Y. & Maraseni, T. Ensemble committee-based data intelligent approach for generating soil moisture 

forecasts with multivariate hydro-meteorological predictors. Soil Tillage Res. https:// doi. org/ 10. 1016/j. still. 2018. 03. 021 (2018).
 46. Tiyasha, T. et al. Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Develop-

ment of hybrid tree-based artificial intelligence models. Mar. Pollut. Bull. 170, 112639 (2021).
 47. Ali, M. et al. Variational mode decomposition based random forest model for solar radiation forecasting: New emerging machine 

learning technology. Energy Rep. 7, 6700–6717 (2021).
 48. Khozani, Z. S. et al. Determination of compound channel apparent shear stress: Application of novel data mining models. J. 

Hydroinform. 21, 798–811 (2019).
 49. Dorigo, M. & Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary 

Computation, CEC 1999. https:// doi. org/ 10. 1109/ CEC. 1999. 782657 (1999).
 50. Mullen, R. J., Monekosso, D., Barman, S. & Remagnino, P. A review of ant algorithms. Expert Syst. Appl. https:// doi. org/ 10. 

1016/j. eswa. 2009. 01. 020 (2009).
 51. Sweetlin, J. D., Nehemiah, H. K. & Kannan, A. Feature selection using ant colony optimization with tandem-run recruitment to 

diagnose bronchitis from CT scan images. Comput. Methods Prog. Biomed. https:// doi. org/ 10. 1016/j. cmpb. 2017. 04. 009 (2017).
 52. Cordon, O., Herrera, F. & Stützle, T. A review on the ant colony optimization metaheuristic: Basis, models and new trends. 

Mathw. Comput. 9, 2–3 (2002).
 53. Singh, G., Kumar, N. & Kumar Verma, A. Ant colony algorithms in MANETs: A review. J. Netw. Comput. Appl. https:// doi. org/ 

10. 1016/j. jnca. 2012. 07. 018 (2012).
 54. Kumar, S., Solanki, V. K., Choudhary, S. K., Selamat, A. & González Crespo, R. Comparative study on ant colony optimization 

(ACO) and K-means clustering approaches for jobs scheduling and energy optimization model in internet of things (IoT). Int. 
J. Interact. Multimed. Artif. Intell. 6, 107 (2020).

 55. Paniri, M., Dowlatshahi, M. B. & Nezamabadi-pour, H. MLACO: A multi-label feature selection algorithm based on ant colony 
optimization. Knowl. Based Syst. 192, 105285 (2020).

 56. Yaseen, Z. M., Sulaiman, S. O., Deo, R. C. & Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: 
State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 569, 387–408 
(2019).

 57. Manju Parkavi, R., Shanthi, M. & Bhuvaneshwari, M. C. Recent trends in ELM and MLELM: A review. Adv. Sci. Technol. Eng. 
Syst. https:// doi. org/ 10. 25046/ aj020 108 (2017).

 58. Araba, A. M., Memon, Z. A., Alhawat, M., Ali, M. & Milad, A. Estimation at completion in Civil engineering projects: Review 
of regression and soft computing models. Knowl. Based Eng. Sci. 2, 1–12 (2021).

 59. Tamura, S. & Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural 
Netw. 8, 251–255 (1997).

 60. Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14, 
274–281 (2003).

https://doi.org/10.1016/s0065-2113(08)70012-9
https://doi.org/10.1109/gocict.2014.9
https://doi.org/10.1016/j.jhydrol.2020.125468
https://doi.org/10.1016/j.still.2018.03.021
https://doi.org/10.1109/CEC.1999.782657
https://doi.org/10.1016/j.eswa.2009.01.020
https://doi.org/10.1016/j.eswa.2009.01.020
https://doi.org/10.1016/j.cmpb.2017.04.009
https://doi.org/10.1016/j.jnca.2012.07.018
https://doi.org/10.1016/j.jnca.2012.07.018
https://doi.org/10.25046/aj020108


22

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5488  | https://doi.org/10.1038/s41598-022-09482-5

www.nature.com/scientificreports/

 61. Ali, M., Deo, R. C., Downs, N. J. & Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated 
with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 213, 450–464 (2018).

 62. Liang, N.-Y., Huang, G.-B., Saratchandran, P. & Sundararajan, N. A fast and accurate online sequential learning algorithm for 
feedforward networks. IEEE Trans. Neural Netw. 17, 1411–1423 (2006).

 63. Lan, Y., Soh, Y. C. & Huang, G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 
(2009).

 64. Yadav, B., Ch, S., Mathur, S. & Adamowski, J. Discharge forecasting using an online sequential extreme learning machine (OS-
ELM) model: A case study in Neckar River, Germany. Measurement 92, 433–445 (2016).

 65. Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).
 66. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
 67. Al-Sulttani, A. O. et al. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE Access 

9, 108527–108541 (2021).
 68. Carranza, C., Nolet, C., Pezij, M. & Van Der Ploeg, M. Root zone soil moisture estimation with random forest. J. Hydrol. 593, 

125840 (2021).
 69. Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In 

Predictive Species and Habitat Modeling in Landscape Ecology (eds Ashton Drew, C. et al.) 139–159 (Springer, 2011).
 70. Rahmati, O., Pourghasemi, H. R. & Melesse, A. M. Application of GIS-based data driven random forest and maximum entropy 

models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA 137, 360–372 (2016).
 71. Prasad, R., Ali, M., Kwan, P. & Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant 

colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 236, 778–792 (2019).
 72. Sharafati, A. et al. The potential of novel data mining models for global solar radiation prediction. Int. J. Environ. Sci. Technol. 

https:// doi. org/ 10. 1007/ s13762- 019- 02344-0 (2019).
 73. Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http:// www. amis. pk/ Agris tatis tics/ Distr ictWi se/ 2010- 2012/ 

Wheat. html (2012).
 74. Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http:// www. amis. pk/ Agris tatis tics/ Distr ictWi se/ 2012- 2014/ 

Wheat. html (2014).
 75. Punjab, P. Population. Available at: https:// en. wikip edia. org/ wiki/ Punjab_ Pakis tan (2015).
 76. Steiniger, S. & Hunter, A. J. S. The 2012 free and open source GIS software map—A guide to facilitate research, development, 

and adoption. Comput. Environ. Urban Syst. 39, 136–150 (2013).
 77. Hsu, C.-W. et al. A practical guide to support vector classification. BJU Int. https:// doi. org/ 10. 1177/ 02632 76002 20509 97 (2008).
 78. Bergmeir, C. & Benítez, J. M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. (NY) 191, 192–213 

(2012).
 79. Xia, Y., Liu, C., Li, Y. Y. & Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit 

scoring. Expert Syst. Appl. https:// doi. org/ 10. 1016/j. eswa. 2017. 02. 017 (2017).
 80. Yen, B. C., ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management 

Committee Irrigation and Drainage Division. Discussion and closure: Criteria for evaluation of watershed models. J. Irrig. Drain. 
Eng. 121, 130–132 (1995).

 81. Yaseen, Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, 
challenges and solutions. Chemosphere 277, 130126 (2021).

 82. Dawson, C. W., Abrahart, R. J. & See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assess-
ment of hydrological forecasts. Environ. Model. Softw. 22, 1034–1052 (2007).

 83. Legates, D. R. & Mccabe, G. J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. 
Water Resour. Res. 35, 233–241 (1999).

 84. Willmott, C. J. & Willmott, C. J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. https:// doi. 
org/ 10. 1175/ 1520- 0477(1982) 063% 3c1309: SCOTEO% 3e2.0. CO;2 (1982).

 85. Willmott, C. J. On the validation of models. Phys. Geogr. https:// doi. org/ 10. 1080/ 02723 646. 1981. 10642 213 (1981).
 86. Sharafati, A., Yasa, R. & Azamathulla, H. M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour 

depth. J. Pipeline Syst. Eng. Pract. 9, 04018024 (2018).
 87. Mohammadi, K. et al. A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global 

solar radiation. Energy Convers. Manag. 92, 162–171 (2015).
 88. Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088–2094 (2012).
 89. Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 

282–290 (1970).
 90. Yaseen, Z. M. et al. Hourly river flow forecasting: Application of emotional neural network versus multiple machine learning 

paradigms. Water Resour. Manag. 34, 1075–1091 (2020).
 91. Bhagat, S. K., Tung, T. M. & Yaseen, Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay 

sedimentation, Australia. J. Hazard. Mater. 403, 123492 (2021).
 92. Hora, J. & Campos, P. A review of performance criteria to validate simulation models. Expert Syst. 32, 578–595 (2015).
 93. Nourani, V., Kisi, Ö. & Komasi, M. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 

https:// doi. org/ 10. 1016/j. jhydr ol. 2011. 03. 002 (2011).
 94. Ertekin, C. & Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy 

Convers. Manag. 41, 311–330 (2000).
 95. Li, M. F., Tang, X. P., Wu, W. & Liu, H. B. General models for estimating daily global solar radiation for different solar radiation 

zones in mainland China. Energy Convers. Manag. 70, 139–148. https:// doi. org/ 10. 1016/j. encon man. 2013. 03. 004 (2013).
 96. Xu, Z., Hou, Z., Han, Y. & Guo, W. A diagram for evaluating multiple aspects of model performance in simulating vector fields. 

Geosci. Model Dev. 9, 4365–4380 (2016).
 97. Dan Foresee, F. & Hagan, M. T. Gauss–Newton approximation to bayesian learning. In IEEE International Conference on Neural 

Networks—Conference Proceedings. https:// doi. org/ 10. 1109/ ICNN. 1997. 614194 (1997).
 98. Akhtar, I. U. H. Pakistan needs a new crop forecasting system (2012).
 99. Stathakis, D., Savina, I. & Nègrea, T. Neuro-fuzzy modeling for crop yield prediction. Int. Arch. Photogramm. Remote Sens. Spat. 

Inf. Sci. 34, 1–4 (2006).
 100. Kumar, P., Gupta, D. K., Mishra, V. N. & Prasad, R. Comparison of support vector machine, artificial neural network, and spectral 

angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36, 1604–1617 (2015).
 101. Sun, J., Xu, W. & Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In 2004 IEEE Conference 

on Cybernetics and Intelligent Systems. https:// doi. org/ 10. 1109/ iccis. 2004. 14603 96 (2004)
 102. Naganna, S. et al. Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired 

optimization algorithms. Water. https:// doi. org/ 10. 3390/ w1104 0742 (2019).
 103. Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013).
 104. Bokde, N., Feijóo, A., Al-Ansari, N., Tao, S. & Yaseen, Z. M. The hybridization of ensemble empirical mode decomposition with 

forecasting models: Application of short-term wind speed and power modeling. Energies 13, 1666 (2020).

https://doi.org/10.1007/s13762-019-02344-0
http://www.amis.pk/Agristatistics/DistrictWise/2010-2012/Wheat.html
http://www.amis.pk/Agristatistics/DistrictWise/2010-2012/Wheat.html
http://www.amis.pk/Agristatistics/DistrictWise/2012-2014/Wheat.html
http://www.amis.pk/Agristatistics/DistrictWise/2012-2014/Wheat.html
https://en.wikipedia.org/wiki/Punjab_Pakistan
https://doi.org/10.1177/02632760022050997
https://doi.org/10.1016/j.eswa.2017.02.017
https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2
https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1016/j.jhydrol.2011.03.002
https://doi.org/10.1016/j.enconman.2013.03.004
https://doi.org/10.1109/ICNN.1997.614194
https://doi.org/10.1109/iccis.2004.1460396
https://doi.org/10.3390/w11040742


23

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5488  | https://doi.org/10.1038/s41598-022-09482-5

www.nature.com/scientificreports/

 105. Chau, K. W. & Wu, C. L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinform. 
12, 458–473 (2010).

Acknowledgements
The authors are thankful to the Bureau of Statistics, Government of Pakistan for providing the wheat yield data 
for the respective stations.

Author contributions
M.A.: conceptualization, data analysis, writing up the manuscript, software. R.C.D.: conceptualization, data analy-
sis, writing up the manuscript, supervision. Y.X.: conceptualization, data analysis, writing up the manuscript, 
supervision, R.P.: conceptualization, data analysis, writing up the manuscript, supervision, J.L.: conceptualization, 
data analysis, writing up the manuscript, supervision. A.F.: discussion, analysis, revision and funding. Z.M.Y.: 
manuscript revision, writing up the manuscript, validation, visualization.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.M.Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction
	Theoretical overview
	Ant colony optimization (ACO) algorithm. 
	Extreme learning machine (ELM). 
	Online-sequential extreme learning machine (OSELM). 
	Random forest (RF). 

	Case study description and data
	Study region and wheat yield data. 
	Design of two-phase hybrid ACO-OSELM model. 
	Phase 1. 
	Phase 2. 

	Setting and tuning parameter optimization. 
	Model performance evaluation. 

	Modelling results and analysis
	Discussions
	Conclusions
	References
	Acknowledgements


