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1  |  INTRODUC TION

Crop phenology, that is knowledge of crop developmental phases, 
is essential for precision farming and crop management. It is a key 
component of crop models that use cultivar- specific parameters to 
simulate growth, development and yield of a crop. There has been an 
increased application of process- based crop models to address the 
interactive impact of genotype × environment × management inter-
actions (G × E × M) on crop yield and development under a changing 
climate (e.g. Ababaei & Najeeb, 2020; Hunt et al., 2019; Liu et al., 
2019, 2020; Lobell et al., 2015; Stöckle et al., 2018; Webber et al., 
2018; Zheng et al., 2012). Crop models have also been extensively 
adopted in climate change impact and adaptation studies across 
Australia (Ababaei & Najeeb, 2020; Hunt et al., 2019; Liu et al., 
2020; Luo et al., 2018; Yang et al., 2014) and worldwide (Ababaei & 

Ramezani Etedali, 2017; Asseng et al., 2015; Challinor et al., 2009; 
Liu et al., 2019; Pörtner et al., 2014; Rosenzweig et al., 2014; Stöckle 
et al., 2018). However, due to the complex nature of biophysical 
factors associated with crop production processes, many uncertain-
ties originate, while simulating the impact of the future climate on 
crops. Sources of uncertainty include projection of greenhouse gas 
emissions, projection of global warming, projection of local climate 
change, estimation of crop model parameters and crop model struc-
ture (Challinor et al., 2013; Wallach & Thorburn, 2017; White et al., 
2011; Zhang et al., 2019).

Previous studies have quantified the effect of these uncertain-
ties on estimates of climate change impact on crop production. For 
example, Luo et al. (2005) and Tao et al. (2008) used the Monte Carlo 
technique to quantify and manage uncertainties from climate change 
projections. Studies by Iizumi et al. (2009) and Zhang et al. (2019) 
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Abstract
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used the Markov Chain Monte Carlo (MCMC) technique for exam-
ining the probability distribution of biophysical parameters. Asseng 
et al. (2013), Araya et al. (2015) and Wang et al. (2017) reported a 
greater contribution of crop model structure to the total uncertainty 
than general circulation models (GCMs). In contrast, greater uncer-
tainties in crop yield projections from GCMs than those from crop 
model structure were reported by Tao et al. (2009), Kassie et al. 
(2015) and Zhang et al. (2019). These conflicting findings show the 
necessity of assessing each source of uncertainty with the target 
model(s), within the target study area and for the target crop(s).

Among these sources, crop model parameter estimation (the so- 
called crop model calibration or inverse modelling) can be an import-
ant source of uncertainty. Calibration is a critical step in developing 
and applying a simulation model. In calibration observational data 
are used to estimate unknown model parameters for a better fit of 
model outputs (Seidel et al., 2018). Common goodness- of- fit crite-
ria for determining crop parameters include visual assessment and 
statistical /optimisation approaches such as maximum likelihood, 
ordinary least square, D- statistics (Willmott, 1982) and Bayesian 
analysis. Some calibration algorithms also generate useful statisti-
cal information such as parameter sensitivities for supporting cal-
ibration. Compared with direct measurement of parameters in the 
field, which is time and cost consuming, inverse modelling generates 
inferences from common measured phenological and production 
components. Recently, there has been an increased interest in the 
application of inverse modelling for calibrating crop models (e.g. 
Ababaei et al., 2014; Andarzian et al., 2015; Gao et al., 2020; Hussain 
et al., 2018; Yuan et al., 2017; Zhang et al., 2019). However, most of 
the previous studies explored the impact of uncertainties in model 
parameters on the target outputs by assigning arbitrary ranges of 
variations to a number of parameters (e.g. Bert et al., 2007; DeJonge 
et al., 2012; Zhao et al., 2014), usually based on literature or pre-
vious experiences. This approach could lead to unrealistically large 
impacts on selected outputs as it does not account for the uncer-
tainty in observations and the interaction between the parameter 
uncertainty and model structure uncertainty under local conditions.

Soil and crop models have a large array of biophysical and physi-
ological parameters. For such complex models, a sensitivity analysis 
helps to identify the importance of each parameter to the response 
of target output variables (Richter et al., 2010). Sensitivity analysis 
has so far been applied to different cropping systems and climate 
scenarios to evaluate the importance of input parameters for tar-
get outputs using agro- hydrological models (Asseng et al., 2004; 

DeJonge et al., 2012; Kumar et al., 2014; Zhao et al., 2014). Asseng 
et al. (2004) showed complex interactions between phenological 
and physiological traits in high and low yielding environments for 
wheat yield. The model outputs could be sensitive to both individ-
ual parameters and their combinations (Pogson et al., 2012) and the 
sensitivities of parameters depend on model complexity, the num-
ber of crop parameters included in the analysis and the environment 
(Richter et al., 2010).

Hence, the objectives of present study were to (1) calibrate phe-
nology module of the widely used Agricultural Production Systems 
sIMulator (APSIM)- wheat model with a modified version of the 
SUFI- 2 (Sequential Uncertainty Fitting, ver. 2; Abbaspour et al., 
2004) calibration and uncertainty analysis algorithm, (2) examine 
sensitivities of the selected phenological parameters under current 
and future climate scenarios, (3) assess the impact of parameter un-
certainty on the simulated phenology and grain yield and also on the 
quantification of the impact of climate change on these traits and (4) 
evaluate the impact of climate change on wheat crops in northeast 
Australia.

2  |  MATERIAL S AND METHODS

2.1  |  Field experiments

Eight field experiments were conducted with the combinations of 
two times of sowing (TOS) over 2 years (2018– 2019) at three lo-
cations across southern Queensland, Australia (Table 1). The plots 
were 2 m by 8 m in 2018 and 1 m by 4 m in 2019. In each experi-
ment, the randomised block design was applied with 4 replicated 
blocks and 10 randomly arranged genotypes within each TOS block. 
Zadoks growth stages (Zadoks et al., 1974) were recorded from 
stem elongation (Z31) up to flowering (Z65) for all the tested geno-
types. Phenology data were recorded bi- weekly and presented as 
an average of the whole plot (i.e. at least 50% of culms in the plot). 
Wheat crops were planted late in the cropping season, to ensure 
they would receive high temperatures during different develop-
mental phases. For example, the crop was planted on 3rd and 9th of 
July (conventional sowing) and 31st of August and 3rd of September 
(late sowing) at the University of Queensland Research Farm, 
Gatton (27°34′50″S 152°19′28″E). The experiments were also con-
ducted at the Hermitage Research Station, Warwick (28°12′40″S, 
152°06′06″E) and Tosari Crop Research Centre, Tummaville 

TA B L E  1  Field experiments used for calibrating the phenological parameters

Location

Coordinates

Previous crop Sowing dates Year IrrigationS E

University of Queensland Research Farm, 
Gatton

27° 34′ 50″ 152° 19′ 28″ Fallow 03- Jul 31- Aug 2018 Full

09- Jul 03- Sep 2019 Full

Hermitage Research Station, Warwick 28° 12′ 40″ 152° 06′ 06″ Fallow 16- Jul 12- Sep 2018 Supplementary

Tosari Crop Research Centre, Tummaville 27° 54′ 60″ 151° 30′ 0″ Cotton 16- Jul 06- Sep 2019 Supplementary
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    |  227COLLINS et aL.

(27°54′60″S, 151°30′0″E) with sowing on 16th of July (conventional 
sowing), and 12th and 6th of September (late sowing) in 2018 and 
2019, respectively. All the experiments were machine planted with 
a target population of 130 plants m−2 and a row- spacing of 250 mm. 
All the plots were harvested using a small machine harvester at ma-
turity when grain moisture was approximately 11%. The crops were 
irrigated at sowing and cultivated under non- limiting fertiliser condi-
tions. Standard crop management practices including weed, disease 
and pest control were adopted.

Ten commercial Australian bread wheat (Triticum aestivum L.) 
cultivars with contrasting phenology and adaptation were used in 
this study (Table 2). These include three high- performing spring cul-
tivars with a wider adaptation to Australian environments, that is 
Suntop (mid- season maturity), Mace (early to mid- season maturity) 
and Scout (mid- season maturity).

2.2  |  Calibration and uncertainty analysis algorithm

In this study, SUFI- 2 calibration and uncertainty analysis algorithm 
were adopted for calibration of APSIM- wheat crop model (ver-
sion 7.10). To the best of our knowledge, the present study is the 
first to use this algorithm for calibrating a crop model. The original 
SUFI- 2 has been implemented in SWAT Calibration and Uncertainty 
Programs (SWAT- CUP; Abbaspour, 2015; Abbaspour et al., 2007), 
which is designed for calibration of Soil and Water Assessment Tool 
(SWAT). SUFI- 2 accounts for the uncertainties in observations while 
estimating parameter values and performs uncertainty analysis at 
the same time as parameter estimation. A modified version of SUFI- 2 
(hereafter, ‘SUFI- 2 M’) was implemented in a customised package in 
the R programming environment (R Core Team, 2017).

A step- by- step description of SUFI- 2 has been presented by 
Abbaspour, Yang, et al. (2007). All steps and related equations are 
presented in the Supplementary Material. Briefly, initial uncertainty 

ranges are allocated to the selected parameters for the first round of 
sampling. These ranges are subjective and are selected based on lit-
erature or previous experience. Then, a Latin Hypercube (LH; McKay 
et al., 1979) sampling is carried out leading to LHn (here, 200) pa-
rameter combinations, which should be relatively large. The model is 
then run LHn times, and the target traits are stored. A goal function 
(here, root mean square error, RMSE) is calculated, and the sensi-
tivity matrix is created. Next, an equivalent of a Hessian matrix is 
calculated (Abbaspour, Yang, et al., 2007). Then, an estimate of the 
lower bound of the parameter covariance matrix (C) is made (Press 
et al., 1992) using variance of the objective function values resulting 
from the LHn runs. The estimated standard deviation and 95% con-
fidence interval of each parameter are calculated from the diagonal 
elements of the covariance matrix. As all parameters can change, the 
correlation between any two parameters is quite small and can be 
evaluated with the diagonal and off- diagonal terms of C.

SUFI- 2 calculates the 95% prediction uncertainties (95PPU) for 
all the variables in the objective function (i.e. values of target traits). 
It is calculated by the 2.5th and 97.5th quantiles of the cumulative 
distribution of simulated points. The aim was to encapsulate as many 
measured data as possible within the 95PPU band (P- factor: per-
centage of observed data that fall within the 95PPU) and to reduce 
average distance between the upper and the lower 95PPU (d- Factor: 
the degree of uncertainty). The ‘ideal’ outcome is that 100% of the 
measurements fall within the 95PPU range and d- Factor is close to 
zero (Abbaspour, Yang, et al., 2007). This ideal situation is generally 
not achievable. We seek to see most of the observations fall within 
the 95PPU range. At the same time, we prefer to have a small 95PPU 
range (i.e. uncertainty range). No specific recommendation exists for 
these two factors, like any other goodness- of- fit measure. However, 
a value of >70% can be suggested for P- factor while having R- factor 
of around 1 is acceptable (Abbaspour, Yang, et al., 2007).

Parameter ranges are updated at the end of each iteration. This 
approach ensures that the updated parameter ranges are always 

TA B L E  2  List of the cultivars with varying maturity type and adaptation

Cultivar Maturity type Adaptation Reference

Suntop Mid maturing Widely adapted to Australian 
environments

Graham et al., 2015

Mace Mid to slow maturing Widely adapted to Australian 
environments

Graham et al., 2015

Scout Mid maturing Widely adapted to Australian 
environments

Graham et al., 2015

EGA Gregory Mid to slow maturing Nematode resistance Graham et al., 2015

EGA Wylie Mid to slow maturing Fusarium crown rot resistance Zheng et al., 2014

Seri- 82 Mid to slow maturing Drought tolerance Christopher et al., 2008

Drysdale Mid to slow maturing Drought tolerance Condon et al., 2012; Tausz- Posch et al., 
2012

Spitfire Fast to mid maturing High grain protein Graham et al., 2015; Brill et al., 2013

Hartog Fast to mid maturing Drought susceptible Brennan et al., 1991; Christopher et al., 
2008

Janz Fast to mid maturing Straw strength and standability Brennan et al., 1991
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centred around the best estimates. It is recommended that of the 
highly correlated parameters, those with smaller sensitivities should 
be fixed to their best estimates and removed from additional sam-
pling rounds (Abbaspour, Yang, et al., 2007). For the present study, 
the number of iterations was set to 100.

A few modifications were introduced to the original SUFI- 2 rou-
tine. First, updating parameter ranges in SUFI- 2 M is performed at 
the beginning of each iteration instead of the end. This way, we as-
sure that the finally selected ‘best’ parameter set has been chosen 
from a range for which the corresponding 95PPU range brackets a 
pre- defined percentage of observations (here, 70%). If the updating 
is performed at the end of each iteration, final parameter ranges may 
or may not satisfy this criterion. In the modified version, parameter 
ranges are not updated if no improvement in the goal function has 
been achieved. Moreover, only the best parameter set is used to up-
date the parameter ranges, instead of using the average of the top 
p (a user- defined number) best parameter sets, which is the case in 
the original version.

Another modification was the introduction of a ‘boosting’ option. 
With this option, LHn is reduced at the beginning of each iteration 
(see Supplementary Material for the equations). This option reduces 
LHn proportionally to changes in parameter ranges and makes the 
optimisation procedure significantly faster.

2.3  |  Calibration setup

Four phenological parameters were selected for calibration based 
on previous experiences on model performance: (1) vernalisation 
sensitivity (vern_sens), (2) photoperiod sensitivity (photop_sens), 
(3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_
of_juvenile) and (4) thermal time from ‘floral initiation’ to ‘flower-
ing’ (tt_floral_initiation). To evaluate the capability of SUFI- 2 M for 
crop model calibration, the selected phenological parameters were 
calibrated for 10 selected spring wheat cultivars. Following a com-
mon and widely accepted approach (e.g. Ababaei et al., 2019; An- Vo 
et al., 2018; Chenu et al., 2011; Hammer et al., 2014; Lobell et al., 
2015; Zheng et al., 2016), most crop parameters were assumed to 
be similar across cultivars and therefore equal to the default values 
for the base cultivar (i.e. Hartog). Observed phenology data from 
Gatton 2018 (second sowing) and Gatton 2019 (first sowing) experi-
ments were used for validation (i.e. ~35% of the observations) each 
representative of a few trials in terms of heat- shock and drought pat-
terns. The rest of the data were used for calibration. To consider the 
uncertainty in observations and account for its impact on parameter 
estimation, all replications were used for calibration as independent 
measurements.

2.4  |  Simulation setup

The APSIM- wheat model (Holzworth et al., 2014; Keating et al., 
2003), which has been widely tested and used in Australia (e.g. 

Ababaei & Chenu, 2019, 2020; Ababaei & Najeeb, 2020; Asseng 
et al., 2001; Chenu et al., 2011; Christopher et al., 2016; Hochman 
et al., 2009; Lilley & Kirkegaard, 2007; Wang et al., 2018), was 
adopted (version 7.10) to simulate wheat crop growth and devel-
opment under current and future climate scenarios. Heat- shock 
and frost impacts were estimated using methods described by 
Lobell et al. (2015), Ababaei and Chenu (2020) and Zheng et al. 
(2015).

Out of ten calibrated spring wheat cultivars, three cultivars 
(Hartog, Scout and Gregory) of contrasting maturity habits and 
different ranges of parameter uncertainties were chosen for sim-
ulations with sowing dates between 1 April 31 and July at 7- day 
intervals. At each location, soil characteristics, initial soil nitrogen, 
fertilisation levels and planting density were set to represent local 
soils and farming practices. (see Table 1 in Chenu et al., 2013). Soil 
initial conditions were reset on 1 January each year to the median 
level based on long- term simulations (Chenu et al., 2013). A small 
amount of irrigation was applied at sowing, if needed, to raise soil 
moisture of the top layer to the lower limit of plant- extractable soil 
water, so that seeds could germinate the day after sowing.

2.5  |  Climate data

Historical daily weather data, including maximum and minimum 
temperature, solar radiation and rainfall, were obtained from the 
SILO patched point dataset (http://apsru net.apsim.info/cgi- bin/
silo; Jeffrey et al., 2001) for the period 1976– 2019 at 17 selected 
sites across northeast Australia (Figure 1; Ababaei & Chenu, 2020). 
Locations were selected to represent the wheat- producing re-
gions of Queensland and New South Wales (Chenu et al., 2013). 
Monthly projections of precipitation and minimum and maximum 
temperatures from 33 GCMs for future period centred on 2050 
were obtained from the Coupled Model Intercomparison Project 5 
(CIMIP5; Taylor et al., 2012). Future climate scenarios were con-
structed for 2036– 2065 (hereafter, the ‘2050’ climate) by downs-
caling to a daily time step. Downscaling was performed by applying 
projected changes in local monthly means to the daily temperature 
and rainfall data for the period of 1976– 2005 (Lobell et al., 2015). 
The 30- year period of 1990– 2019 (hereafter, the ‘2005’ climate) 
was simulated as the benchmark scenario to quantify the impact of 
climate change.

Atmospheric [CO2] was set at 541 ppm for the 2050 climate, 
as projected by the representative concentration pathway (RCP) 
8.5, which assumes ‘business as usual’ CO2 emission. For the 
2005 climate, atmospheric [CO2] data were obtained from Ziehn 
et al. (2016). In APSIM- wheat, elevated [CO2] linearly increases 
transpiration efficiency from a cultivar- specific reference value 
at 350 ppm by 37% when [CO2] reaches 700 ppm (Reyenga et al., 
1999). It is also related to the radiation use efficiency (RUE) which 
is adjusted with a temperature response function. In APSIM- wheat, 
RUE at 20°C increases by 14% when [CO2] increases to 541 ppm 
(Lobell et al., 2015).
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2.6  |  Optimum sowing dates

The ‘best’ sowing date in each season, that is leading to the highest 
grain yield, was used to quantify the target traits (flowering date and 
grain yield) under each climate scenario. This was done to minimise 
the effect of suboptimal management and give a more realistic eval-
uation of the ‘net’ impact of climate change on wheat crops when 
cultivated on the best sowing date in each season.

2.7  |  Quantifying the impact of parameter 
uncertainty on simulated traits

Any uncertainty in estimated values of crop parameters may lead 
to substantial deviations in the simulated values of target traits 
from the values simulated by the ‘best’ calibrated parameter sets. 
Therefore, after calibration was performed and the final parameter 
ranges were determined for each cultivar, a set of parameter values 
(hereafter, ‘uncertain’ parameter sets) was created for each cultivar 
to analyse the impact of parameter uncertainties on the simulated 
values of the target traits (flowering day and grain yield). To that end, 

the lower and upper bounds and the mid- point of each parameter 
range were chosen. Each combination of these three values and the 
four selected parameters (34 = 81 parameter sets) was considered 
as an individual ‘virtual’ cultivar. For each parameter, the ‘uncertain’ 
parameter sets represent the range of uncertainty around the ‘best’ 
parameter value and allow quantification of the impact of uncertain-
ties on the simulated traits.

We evaluated the contributions of model parameters and climate 
models to the total uncertainty of target traits using an analysis of 
variance (ANOVA; Tao et al., 2018; Zhang et al., 2019). Variance 
components were estimated as the corresponding contribution (in 
percentage) of each factor to the total sum of squares. ‘Cultivar un-
certainty’ was estimated as the variation of target traits across the 
‘virtual’ cultivars, while the simulated target traits were averaged 
across the GCMs. ‘GCM uncertainty’ was estimated as the variation 
of target traits across the 33 GCMs, while averaged across the ‘vir-
tual’ cultivars.

2.8  |  Sensitivity analysis of APSIM- wheat 
phenological parameters

APSIM- wheat sensitivities to uncertainties in wheat phenologi-
cal parameters were evaluated with a global sensitivity analysis 
(GSA) approach (Abbaspour, 2015; Abbaspour, Yang, et al., 2007; 
Faramarzi et al., 2010). GSA overcomes the drawbacks of local op-
tima (or one- at- a- time) approaches by exploring the entire multi- 
dimensional parameter space simultaneously, leading to a better 
quantification of the influence of each parameter and the interac-
tions between parameters (Saltelli et al., 2008). A multiple linear 
regression system, which relates the parameters generated by the 
Latin Hypercube sampling to the objective function values (i.e. 
the values of target traits) in all simulated seasons, was separately 
constructed for each season as well as for all simulated seasons 
together. A t test was used to identify the significance of each 
estimated parameter value. The sensitivity indices (SI) calculated 
by this method are estimates of the average changes in the tar-
get traits (here, flowering day and grain yield) stemming from un-
certainties in each parameter while all other parameters are also 
changing. That is, the SIs are based on linear approximations and 
only provide partial information about the sensitivity of the objec-
tive function to model parameters.

Sensitivity analysis was independently performed under the 
2005 and 2050 climates. To quantify the contribution of climate 
models to the total uncertainty in parameter sensitivities, sensitivity 
analysis was performed for each GCM separately and for all GCMs 
collectively under the 2050 climate. As the range of selected param-
eters was different, each parameter was scaled (by subtracting the 
average and dividing by the standard deviation) before fitting the 
multiple linear regressions. To obtain a better understanding of the 
magnitude of sensitivities, we further compared the contributions 
of location, climate models and inter- annual variability to the total 
variance of target traits using ANOVA.

F I G U R E  1  Seventeen selected sites representative of the major 
wheat- producing regions in northeast Australia (depicted with red 
shading)

QLD

NSW

(1)

(2)

(3)(4)

(5)

(6)

(7)
(8)

(9) (10)

(11) (12)
(13)

(14)
(15) (16)

(17)

Num

(1)

Site

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Emerald

Roma

Dalby

Meandarra

Goondiwindi

Moree

Walgett

Narrabri

Coonamble

Gunnedah

Nyngan

Gilgandra

Dubbo

Wellington

Condobolin

Parkes

Merriwagga
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3  |  RESULTS

3.1  |  Parameter calibration

Calibration was performed with the aim of encapsulating at least 
70% of the observed phenology data within the uncertainty range 
of model simulations (95PPU). Figure 2 shows the observed vs 
simulated phenology for the 10 wheat cultivars calibrated with 
SUFI- 2 M along with the simulation uncertainty ranges. The overall 
root mean square error (RMSE) of the calibration/validation phase 
was 5.6/5.5 days (Figure 2). Calibration significantly improved 
the model performance compared with when the APSIM default 
parameters were adopted (Figure S1). Considering all the individ-
ual replications, the lowest and highest errors were related to cv 
Hartog (RMSE = 3.9 days; Figure 3a), and cv Seri- 82 and Drysdale 
(RMSE = 7.1 days), respectively. Figure 3b presents the ‘best’ cali-
brated value for phenological parameters along with the uncer-
tainty ranges of the parameters.

3.2  |  Crop model sensitivity changes over time and 
in space

Sensitivity of APSIM- wheat to uncertainties in crop phenological 
parameters varied over time (Figure 4; Figures S2- S3) and in space 

(Figure S4). For example, for cv Hartog, approximately >92% of the 
total variance in the sensitivities of simulated flowering day and 
grain yield to changes in vernalisation sensitivity (vern_sens) was ex-
plained by residuals (i.e. inter- annual variations), which implies a high 
temporal variability in the SIs (Figure 5). These variance components 
were estimated to be larger in 2050 than in 2005 and for flowering 
day than for grain yield. Other parameters were more variable across 
the sites though the variance components were generally smaller 
in 2050 than in 2005 and larger for grain yield than for flowering 
day. Contribution of climate models to the total variance of the SIs 
was markedly smaller (<1%) than other sources of variance. On the 
contrary, 9%– 33% of the total variance in the sensitivity of flow-
ering day to uncertainties in phenological parameters in 2050 was 
explained by location, while this component was generally smaller 
for grain yield.

3.3  |  Crop parameter sensitivities are expected to 
change in the future

For the four phenological parameters, we calculated the SIs 
related to wheat flowering day and grain yield under both cli-
mate scenarios (Figure 4). Among the calibrated parameters, 
uncertainties in photoperiod sensitivity (‘photop_sens’) was 
the most influential source of uncertainty on the simulated 

F I G U R E  2  APSIM- wheat calibration results with the SUFI- 2 M algorithm across three locations in northeast Australia (south- eastern 
Queensland): (a) calibration for the 10 selected spring wheat cultivars; (b) uncertainty ranges in the simulated phenology along with the 
observed phenology for all the individual replications. Data were averaged across replications in panel (a). RMSE is the root mean square 
error, MAE is the mean absolute error and N is the number of data points. Observations included Zadoks growth stages from stem 
elongation (Z31) up to flowering (Z65). ‘Inside’ and ‘outside’ refer to the 95% prediction uncertainties (95PPU) range and whether the 
observed values fell within this range or not. APSIM, Agricultural Production Systems sIMulator; SUFI- 2, Sequential Uncertainty Fitting, 
ver. 2

Calibration : y = 0.82x+11.7, r2 = 0.83, MAE = 4.7, RMSE = 5.6, N = 126
Validation : y = 0.80x+9.3, r2 = 0.94, MAE = 4.4, RMSE = 5.5, N = 58

Calibration : y = 0.82x+11.7, r2 = 0.83, MAE = 4.7, RMSE = 5.6, N = 126
Validation : y = 0.80x+9.3, r2 = 0.94, MAE = 4.4, RMSE = 5.5, N = 58
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flowering day (Figure 4a), while vernalisation sensitivity (‘vern_
sens’) was the least influential. Gregory, a slow- maturing spring 
cultivar, was most sensitive to uncertainties in ‘photop_sens’, 

‘tt_end_of_juvenile’ and ‘tt_floral_initiation’ among the studied 
cultivars. These sensitivities are expected to slightly increase 
under future climate scenario, especially for ‘photop_sens’.

F I G U R E  3  Root mean square error (RMSE) for the 10 selected spring wheat cultivars after calibration, considering all the individual 
replications (a), and the ‘best’ calibrated values (red points) and uncertainty ranges (error bars) of each phenological parameter along with 
the default values of APSIM cultivar- specific parameters (blue points) (b). Parameters included: (1) vernalisation sensitivity (vern_sens), (2) 
photoperiod sensitivity (photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_of_juvenile), and (4) thermal time 
from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation). APSIM, Agricultural Production Systems sIMulator

7.1

5.7

3.9

6.0

4.4

5.0

7.1

4.7

6.2
6.3

0

2

4

6

Gregory Wylie Seri−82 Suntop Scout Janz Drysdale Mace Spitfire Hartog
Cultivars (from slowest to fastest maturing)

R
M

SE
 (d

ay
s)

(a)

vern_sens
photop_sens

tt_end_of_juvenile
tt_floral_initiation

Gregory Wylie Seri−82 Suntop Scout Janz Drysdale Mace Spitfire Hartog

1

2

2.5

3.0

3.5

4.0

300

350

400

350

400

450

500

550

Cultivars (from slowest to fastest maturing)

Pa
ra

m
et

er
 v

al
ue

Calibrated
Default

(b)

F I G U R E  4  Sensitivity indices (SIs, 
averaged across 30 seasons) of the 
selected four phenological parameters 
for flowering day (a) and grain yield 
(b) under the 2005 (current) and 2050 
(future) climates for three selected spring 
wheat cultivars across 17 sites in eastern 
Australia. Box plots show 10th, 25th, 
50th, 75th and 90th quantiles along with 
the means (black points). Parameters 
included (1) vernalisation sensitivity 
(vern_sens), (2) photoperiod sensitivity 
(photop_sens), (3) thermal time from ‘end 
of juvenile’ to ‘floral initiation’ (tt_end_
of_juvenile) and (4) thermal time from 
‘floral initiation’ to ‘flowering’ (tt_floral_
initiation)
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The order of most sensitive parameters for grain yield was the 
same as for phenology (Figure 4b) for Hartog; however, the SIs 
were less variable across the selected sites for Scout and Gregory, 
except for ‘vern_sens’. Unlike for flowering day, it is expected that 
the sensitivity of yield parameters decreases in 2050 relative to 
2005, though the shifts were generally insignificant for Hartog and 
Scout.

The only non- significant (p > .05; i.e. p value of the t test) SIs 
were related to ‘vern_sens’ for flowering day and across a few of the 
sites (Roma, Dalby, Meandarra and Walgett) for grain yield (Figure 
S4). Sensitivity of flowering day to uncertainties in all the four pa-
rameters, except for ‘vern_sens’, generally increased from north to 
south (in the southern hemisphere), and the trend was strongest for 
‘photop_sens’ under both climate scenarios. A similar but relatively 
weaker trend was observed for grain yield, though the spatial pat-
terns were more heterogeneous.

3.4  |  Parameter uncertainties affect trait 
quantifications

Larger uncertainties in phenological parameters of cv Scout and 
Gregory, as compared with Hartog, led to larger deviations of simu-
lated flowering day with uncertain parameter sets from the values 
simulated with the ‘best’ parameter sets (Figure 6a), suggesting 
larger sensitivities. The mean absolute errors (MAE) were estimated 
to be <1 day for Hartog under both climates and 3.9 and 4 days for 
Gregory under the 2005 and 2050 climates, respectively. However, 
these deviations were not directly reflected in the simulated grain 
yields (Figure 6b). While the uncertainty ranges for phenological 
parameters were larger for Scout than for Hartog, the simulations 
with uncertain parameter sets (representative of parameter uncer-
tainties) resulted in smaller deviations from the simulations with the 
‘best’ parameter set (a normalised MAE of 11% for Scout vs. 15% 

F I G U R E  5  Variance components of the sensitivity of the target traits (flowering day and grain yield) to the four phenological parameters 
under the 2005 (current) and 2050 (future) climates for three selected spring wheat cultivars. Parameters included (1) vernalisation 
sensitivity (vern_sens), (2) photoperiod sensitivity (photop_sens), (3) thermal time from ‘end of juvenile’ to ‘floral initiation’ (tt_end_of_
juvenile) and (4) thermal time from ‘floral initiation’ to ‘flowering’ (tt_floral_initiation)
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for Hartog in 2005). This suggests that the simulated grain yield 
is more sensitive to other environmental and management factors 
than flowering day.

3.5  |  Climate change is expected to 
enhance phenology and improve grain yield 
in northeast Australia

Wheat crops under the warmer and drier climate of 2050 were pro-
jected to reach flowering significantly earlier as compared with 2005 
(Figure 7a). Using the best (|uncertain) parameter sets for three se-
lected cultivars and at a regional scale, it was shown that Hartog, 
Scout and Gregory would reach flowering day 9.9 (|10.2), 9.5 (|9.1) 

and 11.6 (|11.1) days earlier in 2050 than in 2005. While this impact 
may reduce the time available for biomass assimilation, the wheat 
grain yield could still benefit from the elevated atmospheric [CO2] 
levels, leading to grain yield increases by 22.8 (|30.1)%, 20.4 (|24.3)% 
and 25.1 (|32.5)% for the studied cultivars planted on the optimum 
sowing dates (Figure 7b, Figure S5). The results showed that the in-
clusion of parameter uncertainties led to statistically significant de-
viations from the trait values simulated with the ‘best’ parameter 
sets (p < .05) for all the tested cultivars.

With the best sowing time adopted in each season under each 
climate scenario, it is anticipated that all the studied cultivars would 
experience a significant improvement in grain yield level in 2050 
relative to 2005 (Figure S5), except in Emerald. Across all other lo-
cations, it would be expected that Hartog, Scout and Gregory have 

F I G U R E  6  Flowering day (a) and grain yield (b), averaged across 30 seasons, simulated with the best (x- axis) and uncertain (y- axis) 
parameter sets (averaged across 81 parameter combinations) for three selected spring wheat cultivars under the 2005 (current) and 2050 
(future) climate scenarios. A larger deviation of y- axis values from x- axis values suggests a larger sensitivity
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higher grain yields by 9.7%– 63.1%, 5.4%– 53% and 9.9%– 67.5%, re-
spectively, than in 2005. Emerald was the only site that is expected 
to experience a reduction in average grain yield in 2050, at which 
Hartog, Scout and Gregory were expected to have lower simulated 
grain yields by 1.4%, 2.8% and 2.5%, respectively.

Considering all the site × GCM combinations (Figure S6), 99.6%, 
99.4% and 99.9% of combinations showed a negative shift in flow-
ering day in 2050 for Hartog, Scout and Gregory, respectively. For 
grain yield, in 95.5%, 93.3% and 94.6% of the combinations, a posi-
tive impact of climate change was simulated for the three cultivars.

F I G U R E  7  Impact of climate change 
(CC) on flowering day (a) and grain yield 
(b) at regional scale (i.e. averaged across 
30 seasons and 17 sites) simulated with 
the best and uncertain parameter sets 
for three selected spring wheat cultivars. 
Error bars show standard deviation of the 
simulations across 33 GCMs (grey, green 
and red bars) and 81 uncertain parameter 
sets (blue and red bars)
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F I G U R E  8  Variance components of 
the simulated values of the target traits 
(flowering day and grain yield) under the 
2050 climate (a- b) and of the simulated 
impact of climate change on each trait (c- 
d) for the three selected cultivars. Values 
were averaged across the 17 selected 
sites in northeast Australia
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3.6  |  Contribution of crop parameters and climate 
models to simulation uncertainties

Both crop parameters and climate models (GCMs) contribute to 
the uncertainties in the target traits. Regarding absolute values 
of the target traits under the 2050 climate, the contribution of 
crop parameters to uncertainties was larger than climate models 
(upper panels in Figure 8; Figure 9) while residuals (i.e. inter- annual 
variability) were the largest variance component. The contribu-
tion of crop parameters to the total uncertainties in the simulated 
flowering day was larger for Gregory and Scout than for Hartog, 
while this component was the smallest for grain yield of Scout. The 
contribution of phenological parameters (|climate models) to the 
total uncertainties was estimated to be 26 (|9)%, 38 (|7)% and 55 
(|5)% for the simulated flowering day and 15 (|8)%, 10 (|8)% and 16 
(|7)% for the simulated grain yield for Hartog, Scout and Gregory, 
respectively.

On the contrary, the contribution of climate models to the total 
uncertainties in the simulated impact of climate change (i.e. change 
in target traits in 2050 relative to 2005) on flowering day and grain 
yield was significantly larger than crop parameters, especially for 
flowering day (lower panels in Figure 8; Figure 9). Gregory (with 
the widest parameter uncertainty ranges) and Hartog (with the 
narrowest parameter uncertainty ranges) had the highest and low-
est contributions of phenological parameter to the total variances, 
respectively.

3.7  |  Spatial pattern of sensitivity indices 
in northeast Australia

Contributions of the two major sources of uncertainty to the total 
uncertainty in simulated flowering day and grain yield and the im-
pact of climate change on target traits were significantly correlated 
with latitude (Figure 9). Considering all three cultivars, the correla-
tion coefficient was estimated to be −0.21 and 0.24 for flowering 
day, −0.41 and 0.51 for grain yield, −0.24 and 0.27 for the impact of 
climate change on flowering day and −0.45 and −0.51 for the impact 
on grain yield, respectively.

Figure 10 shows the impact of climate change on flowering day 
and grain yield simulated using the ‘best’ parameter sets against 
the averages of the simulations with the uncertain parameter sets. 
Considering all the uncertainties in the selected parameters, the im-
pact of climate change on flowering day was simulated with a MAE 
of 0.2, 0.5 and 0.6 days for Hartog, Scout and Gregory, respectively. 
These deviations were smaller than the deviations estimated for 
the absolute values of the target traits under each climate scenario 
(Figure 6). The same was the case for grain yield, with MAE values 
estimated to be 7%, 4.3% and 7.6%. This implies that APSIM- wheat 
is more sensitive to uncertainties in phenological parameters than 
uncertainties in climate models when the aim was to quantify the 
absolute values of target traits under a future climate scenario. On 

the contrary, the model is more sensitive to uncertainties in climate 
models when the target is to ‘compare’ the target traits under cur-
rent and future climate scenarios.

4  |  DISCUSSION

4.1  |  Calibration

We successfully calibrated the APSIM- wheat crop model in north-
east Australia (south- eastern Queensland) using SUFI- 2 M algo-
rithm. SUFI- 2 M resulted in a robust calibration of the model with 
an overall RMSE of 5.5 days (3.9– 7.1 days) despite considerable 
variations in the observed phenology of the 10 selected wheat cul-
tivars. While more detailed data on wheat growth stages were used 
in this study than just data on heading, flowering or maturity days, 
these deviations are considerably lower or at least comparable to 
the reported deviations by other similar studies, for example, the 
reported RMSE for cv Janz was 6.2 days for days to heading (Zheng 
et al., 2012), 6.2 days for flowering day (Flohr et al., 2017), 7– 8 days 
for flowering and maturity days of spring wheat cultivars (Liu et al., 
2018), 1.4– 7.2 days for days to heading in barley (Liu et al., 2020) and 
9.4– 35.3 days for days to flowering in rice (Gao et al., 2020).

In previous studies, other parameter estimation routines have 
been used for calibrating hydrological and crop models. For ex-
ample, Gao et al. (2020) applied three commonly used calibration 
methods to the CSM- CERES- Rice phenology model of the Decision 
Support System for Agrotechnology Transfer (DSSAT), including 
ordinary least square (OLS), MCMC and generalized likelihood un-
certainty estimation (GLUE). They reported that selection of the 
calibration routine had implications for parameter estimates and 
uncertainty quantifications and found MCMC more reliable than 
GLUE in quantifying model uncertainty. Iizumi et al. (2009) and 
Tao et al. (2009) applied the MCMC technique to crop models for 
paddy rice and spring maize to optimise a set of regional- specific 
parameters and quantified the uncertainty of yield estimation as-
sociated with model parameters. They found that MCMC is a pow-
erful technique to optimise multiple parameters, to quantify their 
uncertainties and to investigate the impacts of climate variability on 
crop productivity. As each of these techniques has been used with 
different crop or hydrological models, in different locations and for 
different purposes/crops, it is not practically possible to make a 
thorough comparison. Therefore, a choice should be made based 
on availability of statistical knowledge, computation power and the 
objectives of the study.

4.2  |  Sensitivity analysis

Our findings showed that flowering day was mainly sensi-
tive to uncertainties (i.e. changes) in photoperiod sensitivity 
(photop_sens) and thermal time from ‘end of juvenile’ to ‘floral 
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236  |    COLLINS et aL.

initiation’ (tt_end_of_juvenile) for all the three studied spring cul-
tivars (Figure 4). The sensitivity of these parameters did not only 
depend on the maturity habit of a cultivar, but on the location (i.e. 
latitude) and time (i.e. sowing year; Figures S2- S3). For grain yield, the 

ranking of parameter sensitivities was the same as for flowering day 
for cv Hartog. However, ‘tt_end_of_juvenile’ and thermal time from 
‘floral initiation’ to ‘flowering’ (tt_floral_initiation) were the most in-
fluential parameters for Gregory. For all the three selected cultivars, 

F I G U R E  9  Variance components of the simulated values of the target traits (flowering day and grain yield) under the 2050 climate (a- b) 
and of the simulated impact of climate change on each trait (c- d) for the three selected spring wheat cultivars across 17 selected sites in 
northeast Australia
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vernalisation sensitivity (vern_sens) was the least sensitive parameter 
for the simulated flowering day and grain yield. Our finding stands in 
contrast to the findings of Zhao et al. (2014) who reported ‘vern_sens’ 
being the most sensitive parameter among the parameters affecting 
grain yield of wheat crops across two sites in eastern Australia. This 
can be explained by the initial ranges of parameter values that were 
used in that study (0– 5 for ‘vern_sens’ and ‘photop_sens’). They chose 
the ranges based on the range of values for existing cultivars in the 
APSIM cultivar- specific parameter sets, while the ranges (~0– 2 for 
‘vern_sens’ and ~2.5– 4 for ‘photop_sens’) used in the present study 
were chosen based on a local calibration with the detailed phenology 
data and accounting for uncertainties in field observations.

In APSIM- wheat, the length of growing season, especially the 
vegetative and reproductive phases, determines the amount of 

biomass accumulation and biomass allocation to grains. Leaf area 
index (LAI) and dry matter biomass build up quickly until flowering. 
The length of vegetative phases is highly sensitive to photoperiod 
and vernalisation. The thermal time from emergence to end of juve-
nile is affected by photoperiod, vernalisation sensitivity factors and 
the number of vernalisation days (Zheng et al., 2015). This implies 
the importance of sowing time and maturity habit in the quantifica-
tion of the sensitivity of these parameters.

Grain yield is a more complex trait than flowering day, and it is 
sensitive to numerous parameters (e.g. Zhao et al., 2014). Richter 
et al. (2010) ranked relatively higher sensitivity of grain yield to 
phenological development and leaf area dynamics than the physi-
ological parameters. They also showed that parameter sensitivities 
changed in different environments (i.e. sowing time × location). In 

F I G U R E  1 0  Impact of climate change on flowering day (a) and grain yield (b) of three selected spring wheat cultivars. Values are averaged 
across 30 seasons, simulated with the best (x- axis) and uncertain (y- axis) parameter sets (averaged across 81 parameter combinations). A 
larger deviation suggests a larger sensitivity
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the present study, we focused on four phenological parameters and 
the impact of uncertainties in those parameters on grain yield with-
out changing other potentially influential parameters. Therefore, the 
estimated sensitivity may change in other studies if additional phys-
iological and morphological parameters are included using different 
environments/cultivars.

4.3  |  Climate change impact on wheat 
phenology and grain yield

The present study found that wheat flowering will advance by 
9– 12 days by 2050 across the 17 selected sites in northeast Australia 
(Figure 7a). This is in line with findings by previous studies such as 
Luo (2016) who simulated 5– 11 days advancement in the key phe-
nological events of wheat crops by 2050. Similarly, Liu et al. (2018) 
suggested 7– 8 days shortening of sowing- anthesis phase per degree 
of warming. Wang et al. (2018), Luo et al. (2018), Zheng et al. (2012) 
and Yang et al. (2014) also reported a substantial boost in wheat phe-
nology under future warmer environments.

It is anticipated that wheat grain yield would potentially increase 
by 20.4%– 25.1% in 2050 relative to 2005, depending on the selected 
cultivar (Figure 7b). These numbers must be considered the ‘net’ im-
pact of climate change when the optimum sowing time is chosen in 
each season. Our results confirm the findings by Ghahramani et al. 
(2015), Wang et al. (2018) and Hunt et al. (2019) who reported a 
substantial increase in wheat grain yield under future climates. For 
example, Ghahramani et al. (2015) simulated an 18% increase in 
Australia's national wheat yield by 2030 assuming optimal adapta-
tion. Similarly, Wang et al. (2018) adopted 1961– 2000 as the base-
line period and reported a 10.7% increase in wheat grain yield across 
Australia (up to 10% in eastern Australia) by 2050 under RCP 8.5, 
if autonomous adaptation strategies (i.e. adapted cultivated cultivar 
and sowing time) would be adopted. Hunt et al. (2019) reported a 
0.54 t/ha (~25%) increase in national average wheat yield with early 
sowing systems combined with slower- developing wheat genotypes.

A negative trend in water- limited yield potential (e.g. 27% be-
tween 1990 and 2015 by Hochman et al., 2017) or increased effect 
of heat shocks have been reported on wheat yield (e.g. 4.6% in each 
decade by Ababaei & Chenu, 2020). Yang et al. (2014) reported a 
generally decreasing trend in NSW wheat yield (3.4% to −14.7%) for 
the period centred on 2030 when compared to the baseline period 
of 1961– 1990 which is in contrast with our findings. The reason that 
the estimated yield improvements by 2050 in the current study are 
higher than some of the previously reported values is that we used 
1990– 2019 as the baseline scenario instead of 1961– 2000 or 1976– 
2005. That is, our estimates accounts for the already lower yield 
over the period of 1990– 2019 relative to the period of 1961– 2000 
or 1976– 2005. Furthermore, we selected the ‘best’ sowing date in 
each season, which would lead to the highest grain yield under each 
climate scenario. Changes in wheat grain yield under future climates 
depend on location and time of sowing as suggested by Luo (2016) 
and Luo et al. (2018). The difference in the magnitude of increases in 

wheat yield between the current study and Anwar et al. (2015) and 
the change sign opposite to some of previous studies (e.g. Yang et al., 
2014) could be attributed to different greenhouse gas emission sce-
narios, GCMs, locations, time periods and cultivars considered.

4.4  |  Contribution of uncertainty sources

This study investigated the uncertainties arising from the two key 
sources, that is crop model phenological parameters and climate pro-
jections. We performed analyses on the simulated values of target 
traits and on the simulated impact of climate change on those traits. 
We showed a large contribution from crop model phenological pa-
rameters to the total uncertainties in the simulated flowering day and 
grain yield. Holzkämper et al. (2015) stated that the relative impor-
tance of uncertainties in climate projections and model parameters 
depends on local conditions. We can confirm this conclusion as we 
observed a large spatial variation in the sensitivity indices across the 
study area.

On the contrary, the uncertainties in climate models are ex-
pected to play a more important role than phenological parameters 
when the aim was to quantify the impact of climate change on target 
traits (Figure 8). The latter is supported by Tao et al. (2018), who 
estimated the contribution of crop parameters and GCMs to the 
total uncertainty in the simulated grain yield to be 42% and 46% 
at Jokioinen and 24% and 59% at Lleida, Finland (averaged across 
seven crop models). Studies by Challinor et al. (2009), Kassie et al. 
(2015) and Zhang et al. (2019) also showed climate projections to 
be a larger contributor to the total uncertainty in simulations of the 
impact of climate change on target traits.

The uncertainties in crop model structure were not addressed 
in the current study, though they have been evaluated in previous 
studies (Araya et al., 2015; Asseng et al., 2013; Tao et al., 2009). 
Some studies showed that variation in crop model structures could 
contribute more to the total uncertainty than variation across GCMs 
while others reported conflicting results. A recent study by Liu et al. 
(2018) concluded that uncertainty stemming from crop model struc-
ture might be larger than crop parameter estimation and the total 
uncertainty would be larger under a warmer climate due to extra 
uncertainties from climate projections. These findings and conflicts 
suggest that the contributions of crop model structure, crop param-
eter estimation and climate models to the total uncertainty need to 
be evaluated at specific location(s) and with relevant crop model(s) 
and crop(s). Moreover, continuing improvement of GCMs and using 
more robust calculation routines for estimating crop model parame-
ters are necessary to account for uncertainties in field observations 
and parameter estimation procedure.

5  |  CONCLUSION

In this study, a slightly modified version of SUFI- 2 (SUFI- 2 M) was 
used to calibrate the APSIM- wheat model based on two years of 
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experimental data at three locations in northeast Australia (south- 
eastern Queensland). An overall RMSE of 5.5 days in simulating 
flowering day of 10 spring wheat cultivars was found in the present 
study. This suggests that SUFI- 2 M is a robust and computationally 
efficient calibration and uncertainty analysis algorithm which can be 
used for similar research activities.

Sensitivity analyses indicated that uncertainties in photoperiod 
sensitivity, thermal time from ‘end of juvenile’ to ‘floral initiation’ 
(tt_end_of_juvenile) and thermal time from ‘floral initiation’ to ‘flow-
ering’ were significantly more influential than uncertainties in ver-
nalisation sensitivity in terms of simulated flowering day and grain 
yield. We also found a substantial inter- annual variability in param-
eter sensitivities.

We estimated that climate change would advance wheat phe-
nology by 9.5– 11.6 days at a regional scale for three selected spring 
cultivars and would have a positive impact on wheat grain yield 
(20.4%– 25.1%), if the best sowing date is selected in each season. 
There is a high confidence in the direction of the impact on the target 
traits, with a probability of shortened time to flowering and positive 
impact on grain yield estimated to be 99% and 93%, respectively.

We found that variance decomposition of the simulated flow-
ering day and grain yield was significantly correlated with latitude. 
Uncertainty in the simulated flowering day and grain yield was 
strongly influenced by the selected crop model parameters than 
the GCMs, which contributed to the total uncertainty in the simu-
lated values of target traits by less than 9%. On the contrary, the 
contribution of the uncertainties from the GCMs was the largest 
component when the impact of climate change on the target traits 
was to be quantified (>90% for flowering day and 49% for grain 
yield). It was concluded that the contribution of various sources 
of uncertainty depended on the environment (i.e. location and 
sowing time), the maturity habit of the cultivated cultivar and the 
target trait.
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