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Abstract: The synergistic greenhouse gas (GHG) emission reduction of the crop production (CP) and
livestock farming (LF) sectors is of great significance for food security and low-carbon development,
especially for China, the world leader in agricultural production. In this paper, the GHG emissions
from the CP and LF sectors are accounted for and compared, and the spatial econometric model is
adopted for comparative study based on the panel data from 1997 to 2021. The results show that:
(1) The total amount and intensity of GHG emissions from both sectors showed obvious spatial
heterogeneity and spatial dependence, and the spatial distribution pattern was relatively stable.
(2) The influence of each factor on the GHG intensity and spatial characteristics of CP and LF varies
widely. For the CP sector, economic development (local effect −0.29, adjacent effect +1.13), increased
urbanization rate (−0.24, +0.16), agricultural structure (−0.29, +0.05), and urban-rural disparity
(−0.03, +0.17) all reduce the GHG intensity of local region, while increasing the GHG intensity of
its adjacent areas, signifying leakage. The economic structure (+0.06, +0.16), agricultural finance
support (+0.02, +0.26), mechanization level (+0.05, +0.03), and land occupancy rate (+0.54, +0.44)
all play a role in increasing the GHG intensity of CP in the local region and its adjacent areas. The
disaster degree (−0.03, −0.03) also reduced the GHG intensity of CP. For the LF sector, economic
structure (+0.08, +0.11), urban-rural disparity (+0.11, +0.21), agricultural development level (+0.03,
+0.50), and increased land occupancy rate (+0.05, +0.01) can improve the GHG intensity of the one
region and adjacent areas. Economic development (+0.03, −0.15), urbanization rate (+0.04, −0.30),
agricultural structure (+0.09,−0.03), and disaster degree (+0.02,−0.06) can increase the GHG intensity
of the local region while reducing the GHG intensity of adjacent areas. Based on the results, under
the background of carbon peaking and carbon neutralization(dual-carbon) goals, this study first
puts forward collaborative emission reduction measures for CP and LF, respectively, then further
rises to sector synergy and regional synergy, and constructs the countermeasure system framework
of collaborative emission reduction from three levels, to provide guidance and reference for the
realization of dual goals of agricultural GHG reduction and food security.

Keywords: crop production GHG emission; livestock farming GHG emission; spatial dependence;
influencing factors; spatial Durbin model; synergetic measures

1. Introduction

The rapid development of agriculture is inevitably accompanied by the deterioration
of the environment and the emergence of a series of ecological problems, especially green-
house gas (GHG) emissions. This issue has been widely concerning due to the increasing
climate change [1]. Agriculture has become one of the major emitters of GHG, producing
about 14% of global GHG emissions and 58% of global non-carbon (CH4, N2O) GHG emis-
sions [2,3]. Moreover, if effective measures are not taken as soon as possible, the agricultural
GHG is expected to increase by 30% by 2050 [4], making it hard to realize the emissions
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reduction target of the Paris Agreement. As a world leader in agriculture production,
China feeds 20% of the world’s population with only 8% of global cropland [5,6]. Since
the launch of the reform and opening up policy, China has made remarkable and rapid
achievements in agriculture; the output of grain, meat, and aquatic products in 2017 has
reached 1/5, 1/4, and 1/3 of world supplies after a 2-fold, 10-fold, and 14-fold increase
since 1978, respectively [7]. However, great achievements in agriculture have come at the
cost of large amounts of GHG emissions. China’s agricultural GHG have accounted for
17% of the national emissions [8], of which agricultural CH4 and N2O emissions are much
higher than other industries; agricultural CH4 emissions accounted for 50.15% of the total
emissions, and N2O accounted for 92.43% of total emissions [9,10].

Unlike other sectors, agriculture is more dependent on region-specific factors, such as
topography, soil, and climate [11], as well as on socioeconomic factors, including mecha-
nization, irrigation, and the supply-demand situation of agricultural products. Therefore,
the differences among region-specific factors have led to heterogeneity in agriculture,
which may have caused spatial variations in agricultural GHG emissions. China has a
vast territory and a wide distribution of agriculture. Due to significant differences in
agricultural production conditions and resource endowments among provinces, there are
large disparities in the agricultural development level and its structure. Extensive research
has been conducted on these regional disparities using various indicators, such as total
agricultural GHG emissions [12–14], agricultural GHG intensity [15,16], net agricultural
GHG [17], and agricultural GHG efficiency(productivity) [16,18,19]. These indicators all
show obvious regional heterogeneity in agricultural GHG emissions. However, most of the
related studies used the concept of “agriculture” to account for GHG emissions, treating
crop production (CP) and livestock farming (LF) as one whole subject. A small number of
studies separately examine GHG emissions from LF and find significant spatial significance
in both the total amount and intensity of GHG emissions. When it comes to the factors
influencing GHG, researchers have found that the level of economic development [20,21],
urbanization [20], technological development [22], agricultural economic level [23], agri-
cultural structure [20,24], level of agricultural mechanization [22], agricultural human
resources [25], and agricultural disaster severity [20] are the main factors influencing agri-
cultural GHG emissions and their spatial heterogeneity. Additionally, there is a certain
degree of spatial spillover effect, meaning that the agricultural GHG emissions of one
province are not independent but are influenced by its surrounding provinces [23,26,27].

Although there have been studies on the spatial heterogeneity of agricultural or
livestock GHG emissions, the majority of these studies included LF GHG emissions in
agriculture. However, the distribution of the CP and LF sectors varies across provinces
in China, resulting in spatial distribution heterogeneity for CP and LF GHG emissions.
Treating them as a whole in research would hide or weaken the spatial heterogeneity at a
more micro level. It would also mask the specific mechanisms of certain influencing factors,
leading to a significant discount in the targeted formulation of GHG reduction policies.
Moreover, the CP and LF sectors have strong complementarity, as CP provides feed for LF,
and LF provides organic fertilizers for CP sector. The synergetic action between the two
can theoretically achieve win-win benefits and GHG emissions reduction. Furthermore,
there is currently limited literature on the spatial spillover effects of agricultural GHG
emissions, and the existing studies mainly focus on the existence of spillover effects, paying
less attention to the magnitude and direction of these effects.

Therefore, this research aims to fill the gap by following aspects. First of all, the paper
innovatively divides agriculture into CP and LF, investigates the spatial distribution of
GHG emissions for each sector, respectively, and explores the mechanisms of their respec-
tive interactions with relevant factors. Then, the spatial heterogeneity and influencing
mechanisms of certain factors can be presented more specifically at a more micro level.
Secondly, the research further examines spatial spillover mechanisms of both sectors. The
spillover effect of agricultural GHG among provinces is widespread [23,26,27], while lim-
ited studies have explored it in depth. Last but not least, a strategic system for coordinated
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emission reduction in both sectors is designed based on the empirical results, which is a
breakthrough in the research of agricultural GHGs. In the context of China’s dual-carbon
goals, this study has both theoretical value and practical significance.

The rest of this paper is organized as follows (Figure 1). In Section 2, we present the
accounting process of GHG emissions from CP and LF and the theoretical aspects of the
spatial Durbin model (SDM). In Section 3, the spatial variation of GHG emissions from
CP and LF is firstly demonstrated from the scale and intensity, followed by the results
and discussion of SDM results. Synergic measures were put forward in Section 4, and we
concluded in Section 5.
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2. Materials and Methods
2.1. GHG Accounting

The agricultural GHG accounting system based on the life cycle assessment (LCA)
method has been well-developed. The current system mainly includes the CO2, N2O,
and CH4 emissions generated throughout the entire production process, including soil
emissions, energy input, and material input [28–30] (Table 1). Specifically, the agricultural
GHG encompasses four main parts: (a) N2O emissions from crop production. This mainly
refers to N2O emissions during soil tillage, and the emission coefficients (Table A1) per
unit area of different crops vary [20]. (b) Indirect emissions from agricultural inputs:
This mainly includes the indirect GHG generated by the use of pesticides, plastic films,
electricity, fertilizers, diesel, and other agricultural inputs during the production process
(Table A2). (c) CH4 emissions from paddy fields. This refers to the direct CH4 emissions
generated by paddy fields. The emission coefficients (Table A3) per unit area vary due
to the hydrological, climatic, and soil conditions of different provinces, as well as the
rice planting season (early-, middle-, or late-season rice) [1]. (d) GHG emissions from
livestock. This includes the CH4 and N2O emissions generated by manure management
and ruminant activities of herbivorous animals (Table A4). The sum of emissions from
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a, b, and c represents the GHG emissions from crop cultivation, while d represents the
emissions from livestock breeding. The accounted N2O and CH4 emissions are converted
into CO2 equivalents using the conversion factors for greenhouse gases provided by the
IPCC. The CO2 equivalent values are divided by the output value of crop cultivation and
livestock breeding, respectively, to obtain the GHG intensities of crop cultivation and
livestock breeding for each province in different years.

Table 1. GHG accounting process and data sources.

GHG Types GHG Sources Accounting Process and Data Sources

GHG from crop production

a. N2O from crop cultivation

The planting area of different crops such as rice, wheat
(spring and winter wheat), soybean, maize, vegetables,
sorghum, millet, potato, and peanut are multiplied by their
respective N2O emission coefficients and then converted
into the CO2 equivalent. The planting area of various crops
comes from the China Statistical Yearbook and the China
Agricultural Yearbook.

b. Indirect emissions from
agricultural inputs

The quantity of different inputs such as chemical fertilizer,
diesel, pesticide, agricultural film, machinery power, and
irrigation area is multiplied by the emission coefficients to
obtain the quantity of CO2 emission. The data on various
types of agricultural inputs come from the China
Agricultural Yearbook and New China Agriculture 60
Years Statistics.

c. CH4 emissions from paddies

CH4 emissions from early, late, and mid-season rice
(single-cropping late rice, winter paddy field, and wheat
stubble rice) in different provinces were obtained by
multiplying the planting areas with respective emission
coefficients and then converted into CO2 equivalent. The
area data of various types of paddy fields come from the
China Agricultural Yearbook.

GHG from livestock farming d. CH4 and NO2 from ruminant
activities and manure management

After converting the sales quantity and stock quantity of
pigs, cattle, sheep, horses, donkeys, and mules into the
annual average feeding quantity, the CH4 and N2O
emissions obtained by multiplying the annual average
feeding quantity of different animals with the emission
coefficients are converted into CO2 equivalent. Data on the
number of animals sold out and the number of animals in
stock are from the China Agricultural Yearbook.

2.2. Model Setting

Given the spatial correlation and spatial heterogeneity of GHG emission intensities
in CP and LF, this study adopts a spatial econometric model to explore the spatial hetero-
geneity effects and its influencing factors. To validate the rational selection of the model,
the spatial autocorrelation of GHG intensities in both sectors needs to be tested before
entering the spatial econometric model. Spatial autocorrelation can be divided into global
autocorrelation and local autocorrelation [31], which respectively investigate whether there
is a spatial correlation among all spatial units as a whole and the specific form of correla-
tion between individual spatial units and their surrounding units. In this study, only the
global spatial autocorrelation of CP and LF GHG intensity is verified to demonstrate the
scientific and rational application of the spatial econometric model. The commonly used
indicator for testing global autocorrelation is Moran’s I, and the formula for calculation is as
follows [21,32]:

Moran’s I =
n∑n

i=1 ∑n
j 6=1 Wij(xi − x)

(
xj − x

)
∑n

i=1(xi − x)∑n
i=1 ∑n

j=1 Wij
(1)
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where n represents each province, xi represents the GHG intensity of province i, x represents
the average GHG intensity of all provinces and Wij represents the spatial matrix between
provinces i and j. Considering the model test results and the province-level agricultural
situation, after systematic comparison and reference to similar literature, this study uses a
simple and classical binary adjacency matrix, where two regions with a common boundary
are considered adjacent [31,33]. The values on the main diagonal are set to 0, and Wij for
adjacent provinces is set to 1; otherwise, it is set to 0 (Hainan is considered adjacent to
Guangdong). Moran’s I ranges between −1 and 1, where a value greater than 0 indicates
positive spatial correlation and clustering of GHG intensity among provinces, a value less
than 0 indicates discrete distribution, and Moran’s I = 0 indicates random distribution. The
larger the absolute value of Moran’s I, the greater the spatial correlation of GHG intensity
among provinces.

Spatial econometric models effectively address the limitations of traditional regression
models that assume spatial homogeneity, making them more reliable when applied to
research subjects involving spatial autocorrelation [31]. Spatial econometric models can be
divided into the spatial error model (SEM), spatial lag model (SLM), and SDM [33]. Among
them, the SEM focuses on analyzing the differences in the form of interactions between
different regions, and the SLM is commonly used to study the spillover effects of variables
on regions outside the focal region. The SDM can be seen as a synthesis of the SLM and
the SEM, which can be simplified to a SEM or a SLM under certain conditions [33]. The
theoretical form of the SDM is as follows:

Yt = δ ∗W ∗Yt + β1 ∗ Xt + β2 ∗W ∗ Xt + vt (2)

In the Equation (2), Yt represents a 31× 1 vector of GHG intensity in each province at time
t (number of provinces), Xt represents a 31 × K matrix of exogenous explanatory variables,
where K is the number of selected explanatory variables, W represents a 31 × 31 spatial weight
matrix, which is also based on geographical adjacency, W ∗ Xt represents the interaction term
between the spatial weight matrix and the exogenous explanatory variables, and δ, β represents
the corresponding coefficients to be estimated. If β2 is zero, the SDM can be simplified to a SLM,
and if β2 + δ ∗ β1 = 0, the SDM can be simplified to a SEM. The theoretical form of the SDM,
further simplified by removing the subscript t, is as follows:

Y = (I − δW)−1 ∗ (β1W + β2WX) + (I − δW)−1 (3)

Taking the partial derivative of Y with respect to the k-th explanatory variable of the
i-th province yields:

[
∂Y

∂x1k
· · · ∂Y

∂xNk

]
=


∂y1
∂x1k

· · · ∂y1
∂xNk

...
. . .

...
∂yN
∂x1k

· · · ∂yN
∂xNk

 = (IN − δW)−1


β1k w12β2k · · · w1N β2k

w21β2k β1k · · · w2N β2k
...

...
. . .

...
wN1β2k wN2β2k · · · β1k


= (I − δW)−1(β1k IN + β2kW)

(4)

The direct effects of the SDM represent the average change in the dependent variable
(GHG emission intensity) in a province caused by the explanatory variable of that province,
which is the average of the diagonal elements of Equation (4) (d denotes the average of the
diagonal elements of the matrix):

direct effects =
[
(IN − δW)−1(β1k IN + β2kW)

]d
(5)

The indirect effects of the SDM refer to the average change in the dependent variable
(GHG emission intensity) in neighboring provinces caused by the explanatory variable of a



Land 2023, 12, 1787 6 of 18

province, which is the average of the off-diagonal elements of Equation (4) (rsum denotes
the average of the off-diagonal elements of the matrix):

indirect effects =
[
(IN − δW)−1(β1k IN + β2kW)

]rsum
(6)

The total effect is the sum of the direct effects and indirect effects [33]. As for whether
the SDM in this study can be simplified to a SEM or a SLM, as well as the choice of fixed
effects or random effects models, they can be determined through the Wald test, LR test,
and Hausman test to select the most suitable model form. The model testing and empirical
analysis in this study were conducted using the Stata 15.0.

2.3. Variable Definition

In this study, the dependent variables are the GHG intensity of the CP and LF sectors.
When selecting the independent variables, we try to choose variables that could potentially
affect both the CP and LF sectors in order to compare the different mechanisms of the same
variable on the GHG intensity of both sectors. Based on relevant studies on the factors influ-
encing agricultural production and GHG emissions [34–40], two categories of 10 indicators are
chosen as explanatory variables (Table 2). The first category represents the macro development
of each province, including economic development level, economic structure, urbanization
rate, and urban-rural disparity, totaling four indicators. The second category represents the
agricultural development situation of each province, including agricultural structure, agri-
cultural financial support, disaster degree, agricultural development level, mechanization
level, and arable land occupancy rate, totaling six specific indicators. It is worth noting that in
the process of calculating these indicators, data such as output value and value-added have
been adjusted to constant prices in 1997. For some provinces and years, rural population data
were missing, and the annual changes were minimal. Therefore, the moving average method
was used to fill in the missing data. Before entering the empirical model, all indicators were
standardized. Furthermore, before the regression analysis, we first tested the multicollinearity.
The variance inflation factor (VIF) index of all the selected variables was less than 10, indicat-
ing that there was no significant collinearity between them. The meanings and descriptive
statistics of each indicator are shown in Table 2.

Table 2. Model variables.

Variable
Type Variable Name Description Max Min. Mean SD

Independent
variable

CP GHG intensity GHG emissions/crop production value 0.3827 0.0172 0.0966 0.453
LF GHG intensity GHG emissions/livestock production value 1.9294 0.0080 0.2045 2.952

Explanatory
variable

Economic development level Per capita GDP 33.04 2.21 8.26 0.546
Economic structure Proportion of added value of primary industry 37.840 0.360 13.426 7.448
Urbanization rate Urban population/total population 0.896 0.149 0.481 0.163

Urban-rural disparity Urban/rural consumption level 8.900 1.500 3.036 0.829

Agricultural structure Output value of crop production/output value of
livestock farming 5.224 0.803 2.124 0.775

Agricultural financial support The proportion of financial support for
agriculture in total financial expenditure 0.190 0.021 0.092 0.033

Disaster degree Disaster-affected area/crop planting area 0.936 0.000 0.257 0.163
Agriculture development level Agricultural added value/rural population 1.354 0.133 0.510 0.268

Mechanization level Agricultural machinery power/rural population 10.845 0.026 1.196 0.810
Land occupancy rate Arable land area/rural population 10.301 0.634 2.228 1.678

3. Results
3.1. Spatial Distribution of GHG Emissions for CP and LF Sectors

In terms of the national total, the agricultural GHG emissions in 1997, 2009, and 2021
reached 256.24 million tons, 282.74 million tons, and 293.19 million tons, respectively (Figure 2).
The total agricultural carbon emissions show an increasing trend at the beginning, but the
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growth rate has slowed down sharply and is even showing signs of a peak point. Actually,
some studies have shown a peak in China’s agricultural GHG emissions in recent years [21,41].
Comparing the GHG emissions from the CP and LF sectors of each province (Figure 2), it can
be seen that provinces with a strong tradition of agriculture have higher total GHG emissions,
and in most provinces, GHG emissions from the CP sector are higher than those from the LF
sector. Provinces in the northwest such as Qinghai, Tibet, Ningxia, and Inner Mongolia, which
are mainly focused on the LF sector, have relatively low total GHG emissions, but the GHG
emissions from the LF sector are significantly higher than those from the CP sector. Yunnan,
Sichuan, and other provinces also have slightly higher GHG emissions from the LF sector
compared to the CP sector. The comparison of the CP and LF GHG emissions reflects the spatial
pattern of CP and LF production in each province. Furthermore, the total agricultural GHG
emissions and the proportion of GHG emissions from the CP and LF sectors have remained
relatively stable over the years, indicating that the structure of the CP and LF industries in each
province is relatively stable.
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Figure 2. The comparison of total GHG emissions from the CP and LF sectors in each province in
(a) 1997, (b) 2009, and (c) 2021.

Individually, looking at the GHG intensity of the CP sector (Figure 3), traditional
grain-producing provinces such as Hubei, Hunan, Jiangxi, and Guangxi generally have
higher GHG intensity. Among the above provinces, southern ones have higher GHG
intensity than those in the northern part. This is mainly because of the higher proportion
of rice in the crop structure of southern provinces. The GHG footprint of rice in China is
3.3 times that of maize and 2.1 times that of wheat [20]. In terms of GHG intensity in the
LF sector, provinces such as Tibet, Qinghai, Inner Mongolia, and Xinjiang are significantly
higher than other provinces, and they also have higher GHG emissions from livestock
compared to provinces with high livestock GHG emissions, such as Henan and Sichuan.
This is because these provinces have a higher proportion of ruminant animals, such as
cattle and sheep, in their LF sector, and these animals have much higher GHG intensity
due to the CH4 emissions from rumination.
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Comparing the carbon intensity of the CP and LF sectors, it can be seen that the GHG
intensity in the LF sector is much higher than that in the CP sector in all provinces, further
confirming the viewpoint that the GHG footprint of livestock is higher than that of crop
production [42]. Looking at the trends over the years (Figure 3), the GHG intensity of
CP and LF sectors in each province has decreased significantly, owing to the substantial
improvement in agricultural production efficiency in China in recent years [5]. However,
the distribution pattern of GHG intensity in the CP and LF sectors remains relatively stable.
The LF GHG intensity is still high in provinces such as Qinghai, Tibet, Ningxia, and Inner
Mongolia, which focus on LF, while the CP GHG intensity in provinces such as Hunan and
Jiangxi has also been consistently higher than that in other provinces.

3.2. Spatial Autocorrelation Test

A spatial autocorrelation test on the GHG emission intensity of the CP and LF sectors
is conducted to explore whether provinces with similar GHG emission intensity show
spatial clustering and some degree of spatial heterogeneity.

During the entire study period, the p-values and z-values of Moran’s I for LF GHG
intensity passed the test, and Moran’s I for every year were greater than 0, indicating
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significant spatial autocorrelation and strong spatial clustering of LF GHG intensity. For CP
GHG intensity, most years also showed spatial autocorrelation, but a few years (2012–2017)
did not pass the test (Figure 4). Nevertheless, this still suggests the presence of spatial
autocorrelation and spatial clustering in the CP GHG intensity. The main reason is that the
calculated Moran’s I is based on a simple binary geographic adjacency matrix, which as-
sumes that if spatial units are not adjacent, they do not influence each other, and even if they
are adjacent, it assumes equal influence, which cannot fully explain the spatial clustering of
GHG intensity. For example, in 2017, Sichuan Province had a crop-to-livestock output ratio
of 2.4, while the ratios of Chongqing and Guizhou in the eastern neighborhood were 1.9
and 3.2, respectively, and the ratios of Qinghai and Tibet in the western neighborhood are
only 1.1 and 1.6.
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The spatial autocorrelation is relatively stable in the historical trends, especially for
Moran’s I of LF GHG emission intensity. The Moran’s I of LF GHG intensity shows a
downward trend over time (Figure 4), which indicates that in the context of significantly
improved overall agricultural production efficiency in China [5], the provinces that orig-
inally had high GHG emission intensity experienced a gradual decrease in production
efficiency improvement. The gap between them and provinces with low emission intensity
is gradually narrowing. It should be noted that Moran’s I aims to prove the existence of
spatial spillover effect and is only the first step to verifying the rationality of SDM [43–45].
The following steps, such as the Hausmann test, LM test, and LR test, will be conducted to
show the existence of spatial effect and prove the suitability of spatial econometric models.
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3.3. Model Test

A Lagrange multiplier (LM) test was conducted to further examine the suitability of
the spatial econometric models. According to the criteria proposed by Anselin (1991) and
the LM test results (Table 3), it is found that the CP GHG intensity is better suited for a
SEM, while the LF GHG intensity is better suited for a SDM. Subsequently, the Hausman
test results (Table 4) indicate that the CP GHG intensity should use a fixed effects model,
while the LF sector is better suited for a random effects model. It can be seen from the
likelihood ratio (LR) test that both the time fixed effects and individual fixed effects are
significant. Therefore, the appropriate model for the CP sector is the time-individual fixed
effects model. The Wald test and LR test results (Table 5) reject the hypothesis that the SDM
can degenerate into the SEM and the spatial autoregressive model at a 1% significance.
To summarize, the CP GHG emission intensity is best analyzed using an individual-time
fixed effects spatial Durbin model, while the LF sector is more suitable for a random effects
spatial Durbin model.

Table 3. LM test statistics and significance.

LM Test CP Sector LF Sector

Spatial error model Lagrange multiplier 213.494 *** 257.791 ***
Robust Lagrange

multiplier 128.813 *** 14.577 ***

Spatial lag model Lagrange multiplier 85.530 *** 321.804 ***
Robust Lagrange

multiplier 0.849 78.590 ***

Note: *** p < 0.01.

Table 4. Hausmann test results.

Variable Classification Statistic p-Value

CP GHG intensity 10.59 0.5646
LF GHG intensity 486.05 0.0000

Table 5. Results of Wald test and LR test.

Test Types Variables Can SDM Be
Simplified to SAR?

Can SDM Be
Simplified to SEM?

LR test
CP GHG intensity 41.70 *** 40.07 ***
LF GHG intensity 86.61 *** 157.55 ***

Wald test
CP GHG intensity 33.26 *** 40.88 ***
LF GHG intensity 87.90 *** 150.10 ***

Note: *** p < 0.01.

3.4. Results of SDM

The regression results of the SDM (Table 6) show that the autoregressive coefficients of the
CP and LF emission intensity pass the test at the 10% and 1% confidence levels, respectively.

From the regression coefficients and their significance, it can be observed that for the
CP sector, factors such as economic development level, urbanization level, agricultural
structure, and agricultural development level can locally reduce GHG intensity. In particu-
lar, the inhibitory effect of agricultural development level is the most significant. On the
other hand, the mechanization level and land occupancy rate increase CP GHG emission
intensity, with the latter having a larger impact. In terms of spatial effects, factors such
as economic development level, rural-urban disparity, agricultural financial support, and
land occupancy rate can increase the GHG intensity of neighboring areas, with economic
development level having the most significant influence.
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Table 6. SDM estimation results.

Explanatory Variables
CP GHG Intensity LF GHG Intensity

Main Effects (Main) Spatial Effects (Wx) Main Effects (Main) Spatial Effects (Wx)

Economic development level −0.315 ***
(0.113)

1.053 ***
(0.304)

0.0422
(0.0504)

−0.101
(0.107)

Economic structure 0.0638
(0.0544)

0.117
(0.135)

0.0767 ***
(0.0242)

0.0285
(0.0361)

Urbanization rate −0.244 ***
(0.0552)

0.169
(0.124)

0.0545 **
(0.0264)

−0.202 ***
(0.0560)

Urban-rural disparity −0.0360 **
(0.0297)

0.158 **
(0.0685)

0.0915 ***
(0.0137)

0.0808 ***
(0.0230)

Agricultural structure −0.296 ***
(0.0436)

0.0719
(0.0871)

0.0859 ***
(0.0196)

−0.0516
(0.0323)

Agricultural financial support 0.0141
(0.0400)

0.234 ***
(0.0898)

−0.0728 ***
(0.0182)

−0.158 ***
(0.0272)

Disaster degree −0.0255 **
(0.0189)

−0.0260 **
(0.0382)

0.0214 **
(0.00939)

−0.0426 **
(0.0179)

Agriculture development level −0.636 ***
(0.0643)

−0.148 **
(0.141)

−0.00245
(0.0294)

0.294 ***
(0.0519)

Mechanization level 0.0464 **
(0.0235)

0.0210
(0.0504)

−0.0346 ***
(0.0114)

−0.0148
(0.0216)

Land occupancy rate 0.533 ***
(0.0814)

0.345 *
(0.181)

0.0530 **
(0.0360)

−0.0165
(0.0678)

Constant 0.00997
(0.146)

ρ
0.113 *

(0.0594)
0.440 ***
(0.0458)

R2 0.6158 0.6578
Log-likelihood −927.1855 −927.1855

Note: *** p < 0.01, ** p < 0.05, * p < 0.1; Values in parentheses are the standard deviations.

For the LF sector, the mechanization level and financial support for agriculture play a
certain inhibitory role in the region, although their effects are relatively weak. On the other
hand, economic structure, urbanization rate, rural-urban disparity, agricultural structure,
and disaster degree contribute to increased LF GHG emissions. Rural-urban disparity
and agricultural development level can promote GHG intensity in neighboring provinces,
while urbanization rate, agricultural financial support, and disaster degree can inhibit GHG
intensity in adjacent areas.

After determining whether various factors have an impact on the GHG intensity of
the CP and LF sectors in the local and neighboring areas, the direct effects, indirect effects,
and total effects of these factors are discussed to distinguish the effects of each factor more
accurately (Figure 5). It can be observed that there are significant differences in the effects
of various factors on the GHG intensity of the CP and LF sectors, whether in the local
or adjacent areas. Although the regression coefficients of some factors’ direct effects or
indirect effects are not significant, the magnitude and direction of these effects on the GHG
intensity of the CP and LF sectors can still be observed to some extent.

Firstly, for the CP sector, factors such as economic development level (direct effect
−0.29; indirect effect +1.13), urbanization level (−0.24; +0.16), rural-urban disparity (−0.03;
+0.17), and agricultural structure (−0.29; +0.05) can reduce the GHG intensity in the local
area while increasing the GHG intensity in neighboring areas, with the increasing effect
of economic development level being particularly significant. Economic structure (+0.06;
+0.16), agricultural financial support (+0.02; +0.26), mechanization level (+0.05; +0.03), and
land occupancy rate (+0.54; +0.44) can increase the GHG intensity of the CP sector in both
the local and adjacent areas, while the disaster degree (−0.03; −0.03) can reduce the GHG
intensity in both areas.
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For the LF sector, factors such as economic structure (+0.08; +0.11), rural-urban dis-
parity (+0.11; +0.21), agricultural development level (+0.03; +0.50), and land occupancy
rate (+0.05; +0.01) can increase the GHG intensity in both the local and adjacent areas,
although the increasing effect of land occupancy rate is small. Economic development level
(+0.03; −0.15), urbanization level (+0.04; −0.30), agricultural structure (+0.09; −0.03), and
disaster degree (+0.02; −0.06) have an increasing effect on GHG intensity in the local area
but reduce the GHG intensity in adjacent areas, with urbanization level having the most
significant effect on reducing the LF GHG intensity in adjacent areas. Both agricultural
financial support (−0.10; −0.31) and mechanization level (−0.04; −0.05) factors can reduce
the carbon emission intensity of the livestock sector in both the local and adjacent areas,
but the regression coefficient former factor is much larger than that of mechanization level.

In summary, the mechanisms of various factors on the GHG intensity of the CP and
LF sectors are significantly different. In terms of the magnitude of their effects on both
sectors, factors such as economic development level, agricultural development level, and
land occupancy rate have a greater impact on the GHG intensity of the CP sector while
having a smaller impact on the GHG intensity of the LF sector. In terms of the direction
of their effects on both sectors, factors such as economic development level, urbanization
level, agricultural structure, agricultural financial support, agricultural development level,
and mechanization level show completely opposite effects, i.e., while increasing the GHG
intensity of the CP sector, they can reduce the GHG intensity of the LF sector, and vice
versa. It is generally believed that an increase in per capita arable land will improve
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production efficiency due to the scale effect of agricultural production, thereby reducing
agricultural GHG emissions. However, this study found that per capita arable land has a
certain increasing effect on the GHG intensity of the CP sector after separating the CP and
LF sectors. This may be because provinces with a higher per capita arable land are mainly
grain-producing areas, such as the northeast provinces, compared to other provinces
producing cash crops, which have relatively lower value-added products, resulting in
relatively higher GHG intensity (GHG emissions per unit of value-added).

4. Construction of a Synergistic GHG Reduction System

As agriculture plays a fundamental role in food supply, emission reduction measures
in the CP and LF sectors should ensure a coordinated and comprehensive approach. It
is necessary to guarantee food security while reducing GHG emissions in the production
process, contributing to the achievement of the carbon reduction goals. In the context of
dual-carbon goals, based on the differences in spatial distribution and influencing mech-
anisms of the CP and LF sectors, this study first proposes specific emission reduction
measures tailored to each sector. Then, based on the synergy of multiple measures, it
further progresses to the coordination of crop–livestock integration and regional coordina-
tion, proposing a strategic framework for coordinated emission reduction at three levels
(Figure 6). This framework aims to provide guidance and reference for achieving dual
goals of agricultural GHG reduction and food security.

Land 2023, 12, x FOR PEER REVIEW 13 of 19 
 

In summary, the mechanisms of various factors on the GHG intensity of the CP and 
LF sectors are significantly different. In terms of the magnitude of their effects on both 
sectors, factors such as economic development level, agricultural development level, and 
land occupancy rate have a greater impact on the GHG intensity of the CP sector while 
having a smaller impact on the GHG intensity of the LF sector. In terms of the direction 
of their effects on both sectors, factors such as economic development level, urbanization 
level, agricultural structure, agricultural financial support, agricultural development 
level, and mechanization level show completely opposite effects, i.e., while increasing the 
GHG intensity of the CP sector, they can reduce the GHG intensity of the LF sector, and 
vice versa. It is generally believed that an increase in per capita arable land will improve 
production efficiency due to the scale effect of agricultural production, thereby reducing 
agricultural GHG emissions. However, this study found that per capita arable land has a 
certain increasing effect on the GHG intensity of the CP sector after separating the CP and 
LF sectors. This may be because provinces with a higher per capita arable land are mainly 
grain-producing areas, such as the northeast provinces, compared to other provinces pro-
ducing cash crops, which have relatively lower value-added products, resulting in rela-
tively higher GHG intensity (GHG emissions per unit of value-added). 

4. Construction of a Synergistic GHG Reduction System 
As agriculture plays a fundamental role in food supply, emission reduction measures 

in the CP and LF sectors should ensure a coordinated and comprehensive approach. It is 
necessary to guarantee food security while reducing GHG emissions in the production 
process, contributing to the achievement of the carbon reduction goals. In the context of 
dual-carbon goals, based on the differences in spatial distribution and influencing mech-
anisms of the CP and LF sectors, this study first proposes specific emission reduction 
measures tailored to each sector. Then, based on the synergy of multiple measures, it fur-
ther progresses to the coordination of crop–livestock integration and regional coordina-
tion, proposing a strategic framework for coordinated emission reduction at three levels 
(Figure 6). This framework aims to provide guidance and reference for achieving dual 
goals of agricultural GHG reduction and food security. 

 
Figure 6. Framework for coordinated emission reduction measures at three levels. Figure 6. Framework for coordinated emission reduction measures at three levels.

4.1. Synergistic Measures

Because of the significant differences in the spatial distribution and influencing mecha-
nisms of the CP and LF sectors, specific emission reduction measures need to be formulated
for each sector. For the CP sector, while ensuring food supply, measures such as improv-
ing nitrogen fertilizer efficiency, optimizing irrigation patterns, developing nitrification
inhibitors, and exploring new nitrogen fertilizer technologies can reduce emissions of N2O
from fertilizer sources [46]. Measures such as precise fertilizer regulation, optimizing culti-
vation practices, implementing organic matter return, and optimal water management can
help reduce CH4 emissions from paddy fields. Implementing plans to reduce inputs and
increase the efficiency of agrochemicals such as fertilizers, pesticides, and agricultural films
can indirectly achieve GHG reduction by improving agricultural eco-efficiency and reduc-
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ing input quantities. In addition to emissions reduction, the carbon sequestration capacity
of soil should not be overlooked. By promoting the development of technologies related
to soil organic carbon, emission reduction, and carbon sequestration can be achieved in
coordination. For the LF sector, the main sources of GHG emissions are enteric fermentation
and manure management. Measures such as precision feeding, rapid CH4 monitoring, and
optimizing feeding structures can be implemented to reduce CH4 emissions from enteric
fermentation. Regarding manure management, measures such as manure return to fields,
biogas utilization, and inhibition of GHG synthesis can be adopted to reduce emissions.
Furthermore, promoting standardized and ecological farming practices and optimizing the
structure of LF can be effective means of reducing GHG emissions.

4.2. Crop-Livestock Integration

Continued efforts should be made to promote the transformation of agricultural pro-
duction towards a circular “resources—products—renewable resources—products” mode
and accelerate the development of integrated crop-livestock circular agriculture. This
approach will achieve overall economic, ecological, and social benefits greater than the
sum of its parts. Promoting the recycling of crop straws is an important step. Establishing
a sound system for straw collection, storage, and transportation, promoting the utilization
of straw as feed, and popularizing technologies such as straw silage, baling, ammoniza-
tion, and pellet production can serve as a linkage for driving integrated crop-livestock
systems. Additionally, the utilization of livestock manure for biogas production, through
the construction of biogas digesters, can tightly connect the livestock and crop sectors,
achieving the integrated development of crop-livestock systems and biogas industries. This
can effectively reduce agricultural GHG emissions and achieve energy substitution for
energy savings and emission reductions in other sectors.

4.3. Regional Coordination

Given the spatial heterogeneity of the CP and LF sectors and their different mecha-
nisms of factors, regional synergy in agricultural GHG reduction should be implemented
from three aspects: (a) Measures need to be tailored to local conditions. Considering
varying economic, social, and agricultural conditions, each province or region should
formulate GHG reduction policies in the CP and LF sectors that are tailored to their specific
circumstances. For example, agricultural financial support policies can increase CP GHG
emissions intensity for both local provinces and neighboring provinces, but for the LF sector,
it can significantly reduce GHG intensity in the local provinces and surrounding provinces.
Therefore, using agricultural financial support policies to achieve GHG emissions reduction
goals is only applicable to major livestock-producing provinces, while traditional major CP
provinces may need to rely on other measures. (b) Regional collaboration is crucial. Both
the CP and LF sectors have evident spatial spillover effects on GHG intensity. One single
factor that reduces local GHG intensity may also affect or even increase GHG intensity
in neighboring areas. This “domino effect” necessitates increased cooperation among
provinces when formulating relevant GHG reduction measures. Joint exploration of GHG
reduction technologies and improved agricultural resource utilization efficiency should be
pursued. (c) Top-down coordination is necessary. At the national level, a unified strategy
should be employed, considering overall grain supply and food security. This involves
coordinating and optimizing the production layout of the CP and LF sectors.

5. Conclusions

Broadly defined, GHG emissions in agriculture include both the CP and LF sectors.
However, studying them as a whole may obscure or weaken the micro-level spatial charac-
teristics and specific mechanisms of factors. This study separates the CP and LF sectors
from the macro “agriculture” and conducts separate research on their GHG emissions
characteristics. Spatial econometric models are used to explore and compare the spa-
tial characteristics and mechanisms of factors of both sectors. A system of coordinated
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measures, integrated crop-livestock production, and regional collaboration for emissions
reduction is then proposed. The main conclusions and policy implications are as follows.

The spatial distribution of GHG emissions in the CP and LF sectors is consistent
with the spatial patterns in each province. Because the GHG emission intensity of LF is
much higher than that of the CP sector, and the GHG intensity of rice planting is higher
than that of other planting, the GHG emission intensity of all provinces shows obvious
spatial heterogeneity. The growth rate of total agricultural GHG has slowed down sharply
and is even showing signs of an inflection point in recent years due to the significant
drop in intensity for both sectors caused by the increase in agricultural productivity. At a
critical time when agricultural GHG is approaching the peak point and with the need for
carbon neutrality, further improvement in agricultural productivity is necessary. However,
agriculture is a prerequisite for human survival and development, and the GHG reduction
in this field must be made only if food supplies are met.

The magnitude of the impact of different factors on GHG intensity in the CP and LF
sectors also varies dramatically. Traditionally, the increase of agricultural financial support
and mechanization level are all important policy tools to boost agricultural productivity.
However, our more specific empirical research showed that the increase in agricultural
financial support and mechanization level can increase the GHG intensity of the CP sector
while decreasing the GHG intensity in the LF sector. Other factors also affect both CP
and LF sectors at different magnitudes and directions, indicating that agricultural GHG
reduction policies need to be tailored to specific sectors. The spatial spillover effects of both
sectors also have important policy implications. When formulating a certain policy tool to
reduce local GHG emissions, its increasing effect on the GHG of neighboring areas must be
considered comprehensively, which requires the coordination of higher-level authorities.
Provinces with higher CP GHG intensity are often the main food-supplying regions that
play a strategic role in the whole country or even worldwide, so when considering GHG
reduction, their contribution to food security should be emphasized.

This study has certain inadequacies, which require further research in the future.
Although a more detailed study than previous research was conducted, the classification
of the sectors still needs to be more specific. Research on specific crop species or animal
types is necessary. Furthermore, our investigation focuses on a provincial perspective. In
the future, the following research should deepen the research to a more microscopic level.
The research at the county level is of greater significance to the micro-level GHG emission
mechanism and GHG reduction policies.
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Appendix A

Table A1. Coefficients for N2O from crop cultivation.

Sources Emission Coefficients (kg·hm−2)

Rice 0.24
Spring-season wheat 0.4

Winter-season wheat 1.75
Soybean 2.29

Maize 2.532
Vegetables 4.944

Other dryland crops 0.95

Table A2. Coefficients for indirect emissions from agricultural inputs.

GHG Sources Emission Coefficients
Pesticide 4.9341 kg·kg−1

Chemical fertilizer 0.8956 kg·kg−1

Agricultural film 5.18 kg·kg−1

Agricultural irrigation 266.48 kg·hm−2

Agricultural machinery 0.18 kg·kW−1

Agricultural energy(diesel) 0.5927 kg·kg−1

Table A3. Coefficients for CH4 emissions from paddies.

Provinces Early-Season Rice Mid-Season Rice Late-Season Rice

Beijing 0 13.23 0

Tianjin 0 11.34 0

Hebei 0 15.33 0
Shanxi 0 6.62 0

Inner Mongolia 0 8.93 0

Liaoning 0 9.24 0

Jilin 0 5.57 0
Heilongjiang 0 8.31 0

Shanghai 12.41 53.87 27.5

Jiangsu 16.07 53.55 27.6

Zhejiang 14.37 57.96 34.5

Anhui 16.75 51.24 27.6
Fujian 7.74 43.47 52.6

Jiangxi 15.47 65.42 45.8

Shandong 0 21 0

Henan 0 17.85 0
Hubei 17.51 58.17 39
Hunan 14.71 56.28 34.1

Guangdong 15.05 57.02 51.6

Guangxi 12.41 47.78 49.1

Hainan 13.43 52.29 49.4
Chongqing 6.55 25.73 18.5

Sichuan 6.55 25.73 18.5
Guizhou 5.1 22.05 21
Yunnan 2.38 7.25 7.6

Tibet 0 6.83 0
Shaanxi 0 12.51 0
Gansu 0 6.83 0

Qinghai 0 0 0

Ningxia 0 7.35 0

Xinjiang 0 10.5 0
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Table A4. Coefficients for GHGs from ruminant activities and manure management.

Sources CH4 from Ruminant Activities
(kg per Year)

CH4 from Manure Management
(kg per Year)

NO2 from Manure Management
(kg per Year)

Non-dairy cattle 51.4 1.5 1.37

Dairy cattle 68 16 1

Horses 18 1.64 1.39
Donkeys 10 0.9 1.39

Mules 10 0.9 1.39
Pigs 1 3.5 0.53

Sheep 5 0.16 0.33
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