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ABSTRACT 

 

Shear behaviour of rock joints subjected to cyclic loading was previously studied 

mostly under Constant Normal Load (CNL) conditions which does not accurately 

simulate the actual deformation behaviour of field rock joints. Natural joints are often 

filled with materials such as sand, clay or silt. The shear behaviour of rock joints is 

affected considerably by the presence of the infill within joints. This poses significant 

concern for excavations which are constructed in close proximity of jointed rock mass. 

None of the previous research investigated the shear behaviour of infilled rock joints 

under cyclic loading. This thesis studies the shear behaviour of rock joints under cyclic 

loading and Constant Normal Stiffness (CNS) conditions. 

Triangular joints asperities with initial angles of 9.5° (Type I), 18.5° (Type II) and 26.5° 

(Type III) to the shear movement, and replicas of a field rock joint surface cast using 

high strength Plaster of Paris were tested. Experiments were performed using the CNS 

cyclic direct shear apparatus updated for this study. The samples were sheared under 

initial normal stress levels ranging from 0.16 MPa to 2.5 MPa, representing the in-situ 

stress conditions as experienced in the field. Laboratory test results indicate that, the 

shear strength and the dilation component decrease with increase in the loading cycles. 

The asperity damage appeared to be a function of the external energy exerted on 

asperities during shearing. Thus, the asperity damage was higher for greater initial 

asperity angles and normal stresses. Furthermore, the effects of shear rate on shear 

behaviour of rock joints under cyclic loading were investigated. The strength decreased 

with increase in the shear rate.     
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The shear behaviour of rock joints infilled with mixture of Clay and Sand at initial 

moisture content of 12.5% was studied under cyclic loading and various normal stresses 

ranging from 0.56 MPa to 2.4 MPa while a constant shear rate of 0.5 mm/min and a 

constant normal stiffness of 8 kN/mm were applied. Types I and II asperity surfaces 

were selected to prepare infilled joints with infill thickness to asperity height ratio of 

0.3, 0.6 and 1. The shear strength of infilled joints was observed to decrease with 

increase in the number of shear cycles due to asperity damage and deformation of infill 

material. The variation of normal displacement with shear displacement was dominated 

by dilation and contraction, depending on the infill thickness to asperity height ratio and 

initial normal stress. 

An analytical model based on the energy balance theory was developed to predict the 

shear behaviour of clean (non-filled) rock joints under cyclic loading and CNS 

conditions. An empirical relationship was also proposed to account for the effect of 

shear rate on cyclic loading shear strength. The concept of Normalised Cyclic Strength 

Reduction of infilled joints (NCSRi) was introduced and incorporated in a mathematical 

model to replicate the reduction in the shear strength of infilled rock joints with increase 

in the number of shear cycles. Model coefficients were calibrated using laboratory 

results. In general, the modelled results were in good agreement with the experimental 

data. 

The capabilities of the two built-in constitutive models, simulating the shear behaviour 

of rock joints under cyclic loading and CNS conditions that are available in Universal 

Distinct Element Code (UDEC), were investigated. The Coulomb slip model replicates 

different shear behaviour in forward and backward shearing when the asperity damage 



 

VII 
 

is not significant. For the asperity breakage mechanism, the continuously yielding 

model describes the effects of asperity damage on shear strength and dilation angle.   
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Chapter I 

1. INTRODUCTION 

 

1.1. General introduction 

Rock mechanics deals with the mechanical properties of rocks and techniques required 

for the design of rock structures. In numerous rock engineering projects involving 

slopes and underground excavations, it is important to consider the effects of 

discontinuities on the rock mass behaviour. This is of particular relevance where 

stability of infrastructure is influenced by the shear behaviour of a single joint or 

multiple discontinuities in the surrounding rocks. 

1.2.  Importance of the study 

According to Gens et al., (1990), an adequate representation of discontinuities and 

interfaces is essential to properly model rock masses, interacting with a structure. 

Oliveira (2010) in his research on shear behaviour of rock joints mentioned two major 

catastrophic rock failures caused by sliding and failure of discontinuities. Due to this 

significant impact on overall stability of the rock structure, a considerable volume of 

study has been carried out in the past by different researchers to understand the 

mechanical behaviour of rock joints under monotonic loading. Following these studies, 

a number of different model types have been proposed in the literature to deal with the 

monotonic loading shear behaviour of rock joints (Patton 1966; Ladanyi and 

Archambault 1969; Barton 1973; 1976; Seidel and Haberfield 1995a; Indrarata and 

Haque 2000). 
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Hutson and Dowding (1990) and Yang and Chiang (2000) stated the need to evaluate 

dynamic stability of rock structures due to an increased concern for earthquakes and 

explosion safety of critical military and civilian facilities such as nuclear power plants 

and waste repositories.  

When a seismic event for example earthquake or explosion occurs, energy is transferred 

to the surrounding rocks. Initially, the pressure of the seismic wave is higher than the 

compressive strength of the rocks adjacent to the source of shaking and the rocks are 

crushed. As the wave travels away from the source, its energy is being attenuated and 

becomes less than the limit required to destroy the rocks. After this stage, the wave 

travels through the rocks without breaking them.  

The waves generated during a seismic event exert cyclic loading to the rock structures 

in the proximity of active seismic zones. Although underground excavations may be 

more resilient to seismic movements when compared with the ground surface structures, 

they are still subject to damage and potential failure (Ma and Brady 1999). When a joint 

set is loaded or unloaded during a seismic event, it may undergo a sequence of cyclic 

loading shearing. During strong earthquakes, the sequence of cyclic loading is 

accompanied by relatively large shear displacements that degrade asperities along the 

joint surface (Jafari et al., 2004). Due to the asperity damage, the mechanical 

parameters of rock joints including the effective normal stress, friction angle and 

dilation angle, are affected resulting in different shear behaviour to that observed under 

monotonic loading. This emphasises the need for a better understanding of shear 

behaviour of rock joints under cyclic loading to design safe rock structures close to the 

active seismic zones. 
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1.3. Background to the study 

In the study of shear behaviour of rock joints, loading conditions are divided into two 

main categories: monotonic and cyclic. Models developed for monotonic loading 

conditions can be used only to conduct static stability analysis of geo-structures, since 

they do not take into account the effects of cyclic shear displacement on the asperity 

surface. When dynamic stability analysis is desired, models describing shear behaviour 

under cyclic loading must be used. These models consider the reduction in shear 

strength and decay of the asperity surface during shear displacement. 

By representing joint shearing as an interaction between two media, Plesha (1987) 

introduced a softening cyclic loading model by assuming sliding mechanism along an 

inclined asperity angle degraded exponentially due to a portion of the plastic shear 

work. The analytical model of Plesha (1987) was further verified by Hutson and 

Dowding (1990) under constant normal load (CNL) conditions in which the normal load 

remains constant during shearing. The original model of Plesha (1987) was later revised 

to represent sinusoidal asperities and to include the second order asperity effects (Qiu 

and Plesha 1991; Lee et al., 2001). In another study, Jafari et al., (2003) performed a 

series of cyclic loading shear tests on undulated joints under CNL conditions for 

different applied normal stresses and suggested an empirical relationship for the 

variation of peak shear strength against the number of loading cycles. Other studies on 

shear behaviour of rock joints under cyclic loading and CNL conditions were carried 

out by Aubry et al., (1990), Huang et al., (1993), Souley et al., (1995), Dong and Pan 

(1996), Fox et al., (1998), Stupkiewicz and Mróz (2001) and Puntel et al., (2006). All 

these studies were performed under the conventional CNL conditions and not under 
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Constant Normal Stiffness (CNS) conditions to imitate the stiffness of the surrounding 

media. 

The importance of CNS conditions to simulate the actual shear behaviour in the field 

under monotonic loading has been described by Johnston and Lam (1989), Skinas et al., 

(1990) and Indraratna et al., (1998). For a joint with a rough surface, dilation is 

observed during shearing as one asperity rides over another. If the stiffness of the 

surrounding rock mass restricts the dilation, the normal stress acting on the joint surface 

will inevitably increase. This affects the external energy exerted on asperities and as a 

result increases the asperity damage which is an important factor in the cyclic loading 

shearing of rock joints. Therefore, the CNS conditions should be incorporated in 

circumstances where the normal stress in the field changes considerably during shearing 

such as in the case of underground excavations.  

Following investigation in the literature, it was revealed that only limited systematic 

studies are available for the effects of normal stiffness on the shear behaviour of rock 

joints under cyclic loading. For instance, Belem et al., (2007, 2009) proposed empirical 

degradation equations for undulated joints under CNS conditions. Therefore, the shear 

behaviour of rock joints under cyclic loading and CNS conditions has not been well 

understood. 

Crawford and Curran (1981) carried out a series of experiments on artificial rock joints 

with various shear rates and normal stresses under CNL conditions. Based on the 

measured data, they concluded that the shear rate may influence shear strength of hard 

and soft rock joints differently. In another study on shear rate, Jafari et al., (2004) 

verified the results of Crawford and Curran (1981) for shear rates between 0.05 mm/min 

and 0.4 mm/min under monotonic loading. In active seismic zones, the rate of joint 
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shearing might vary depending on the source of load and type of rocks around the 

excavation that influences the shear strength of rock joints under cyclic loading. 

Therefore, the effects of shear rate should be taken into account for stability analysis of 

underground structures subjected to seismic events.  

The monotonic loading shear behaviour of infilled rock joints under both CNL and CNS 

conditions have been discussed by Ladanyi and Archambault (1977), Papaliangas et al., 

(1990,1993), Phien-wej et al., (1991), de Toledo and de Freitas (1993), Indraratna et al., 

(1999), Oliveira (2009) and Oliveira and Indraratna (2010). According to Oliveira 

(2009), a very thin infill material may reduce the monotonic loading shear strength up to 

50% compared to the strength of an equivalent clean (non-filled) joint. If the 

discontinuity walls are separated by infill material, the rock to rock contact will 

decrease and, therefore, the shear strength will decrease depending on the type and 

thickness of the infill. During shearing of infilled rock joints, the rock to rock contact 

may occur after squeezing the infill material. The degradation of asperities in the first 

cycle increases the ratio of infill thickness to asperity height for further shearing. 

Therefore, different shear behaviour under cyclic loading is expected for infilled rock 

joints rather than that under monotonic loading.   

Despite the frequent occurrence of infilled rock joints, studies conducted on shear 

behaviour of rock joints under cyclic loading only focused on clean interfaces. As far as 

can be determined, no experimental data has been published in the literature on the 

influence of infill material on the shear strength of rock joints under cyclic loading and 

CNS conditions. 

Accordingly, the research study reported in this thesis is intended to investigate the 

complex problem of shear behaviour of rock joints under cyclic loading. In particular, 



Chapter I                                                                                           Introduction 
______________________________________________________________________ 

6 
 

an appropriate incremental constitutive model to predict the shear behaviour of clean 

rock joints under cyclic loading and CNS conditions along with an experimental 

relationship to account for the effects of shear rate are proposed. In addition, a 

mathematical model to represent the reduction in the shear strength of infilled rock 

joints with increase in the number of loading cycles is developed. The model captures 

measureable parameters such as the initial asperity angle, basic friction angle of the 

joint surface, friction angle of the infill material, ratio of infill thickness to asperity 

height and the number of loading cycles.  

1.4. Key objectives 

The main objective of this thesis is to explore the effects of cyclic loading on shear 

behaviour of rock joints under CNS conditions. This study also explains the effects of 

shear rate and infill material on shear behaviour of rock joints under cyclic loading. The 

key objectives of this thesis include: 

• Critical literature reviews of the past research work on the area of shear 

behaviour of rock joints under CNL and CNS conditions. It includes the shear 

behaviour of rock joints under both monotonic and cyclic loading. 

• Laboratory investigation of the shear behaviour of clean rock joints under cyclic 

loading and CNS conditions. Both triangular asperities and replicas of a field 

rock surface were tested.  

• Limited laboratory study of the shear rate effects on shear behaviour of 

triangular joints under cyclic loading and CNS conditions. 

• Laboratory investigation of shear behaviour of mixture of clay and sand infilled 

triangular joints under cyclic loading and CNS conditions. 
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• Development of an incremental constitutive model to predict the shear 

behaviour of clean rock joints under cyclic loading and CNS conditions. An 

experimental relationship is also proposed to consider the effects of shear rate on 

shear strength of clean rock joints under cyclic loading. 

• Development of a mathematical model to predict the shear strength of infilled 

rock joints under cyclic loading and CNS conditions. 

• Numerical modelling of shear behaviour of rock joints under cyclic loading and 

CNS conditions using Universal Distinct Element Code (UDEC). Moreover, 

stability analysis of an underground structure for clean and infilled joints 

subjected to seismic loading is conducted in UDEC. 

1.5. Outline of the thesis 

The thesis consists of eight chapters followed by a list of reference and appendices. The 

thesis is organized as follows: 

This chapter presents a general introduction to the present research, background to the 

study and key objectives of the research. Chapter II contains a comprehensive literature 

review on the shear behaviour of clean rock joints under CNL and CNS conditions. It 

includes the past experimental work and models developed for the shear behaviour of 

clean rock joints under monotonic and cyclic loading. 

Chapter III reviews the past research work on shear behaviour of infilled rock joints 

under CNL and CNS conditions. It contains the results of laboratory work and models 

available for describing the shear behaviour of infilled rock joints under monotonic 

loading. 
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Chapter IV presents the results of laboratory testing conducted on shear behaviour of 

clean rock joints under cyclic loading and CNS conditions. It discusses the details of 

large scale cyclic direct shear apparatus, sample preparation and experimental plan for 

studying the effects of cyclic loading on shear behaviour of clean rock joints. The shear 

behaviour of artificial triangular joints asperities inclined at 9.5° (Type I), 18.5° (Type 

II) and 26.5° (Type III) to the direction of shearing as well as replicas of a field asperity 

surface cast using high strength Plaster of Paris are investigated under cyclic loading 

and CNS conditions with initial normal stress levels ranging from 0.16 MPa to 2.5 MPa. 

In addition, the experimental results of cyclic loading direct shear tests for 100 

consecutive loading cycles carried out on Type I asperity surface with shear rates of 5 

mm/s and 20 mm/s are discussed. This investigates the effects of shear rate on shear 

behaviour of clean rock joints under cyclic loading and CNS conditions. 

Chapter V is devoted to examining experimentally the shear behaviour of infilled rock 

joints under cyclic loading and CNS conditions. It contains the details of infill material, 

procedure of sample preparation and experimental plan applied in the study. The 

interpretation of experimental results including shear stress - shear displacement, 

normal stress – shear displacement and normal displacement - shear displacement are 

provided. 

Chapter VI proposes an incremental elasto-plastic constitutive model for shear 

behaviour of clean rock joints under cyclic loading and CNS conditions. The model is 

developed by capturing the contribution of asperity damage in the shear strength of the 

first forward shear cycle where degradation is maximum followed by a sliding 

mechanism for further shearing. Moreover, an empirical relationship is proposed to 

account for the effects of shear rate on shear behaviour of clean rock joints under cyclic 
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loading. The concept of Normalised Cyclic Strength Reduction of infilled joints 

(NCSRi) is introduced to simulate the reduction in the shear strength of infilled rock 

joints with increase in the number of loading cycles.  

Chapter VII presents the numerical simulation of shear behaviour of clean rock joints 

under cyclic loading and CNS conditions using current constitutive models available in 

UDEC. In addition, stability analysis of an underground structure subjected to seismic 

events is carried out for clean and infilled rock joints. 

Chapter VIII provides a summary of the findings and conclusions of this research as 

well as recommendations for further studies.  
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Chapter II 

2. LITERATURE REVIEW OF THE SHEAR BEHAVIOUR OF 

CLEAN ROCK JOINTS 

 

2.1. Introduction 

Rock masses are heterogeneous and often consist of joints and discontinuities, 

separating them into different blocks. When a rock mass is excavated, sliding along the 

joints may be experienced. The magnitude and direction of these movements is 

controlled by the shear behaviour of joints present within the rock mass. 

Depending on the origin of joints and mineralogy of the rock, joints may have planar or 

rough surfaces. For planar (smooth) joints, the shear strength is equal to the frictional 

resistance only as there are no asperities. In the case of rough joints, an additional shear 

resistance is generated by the roughness of the joint surface. Moreover, in circumstances 

where the dilation is confined by the surrounding rocks, the increase in the normal stress 

due to overriding of asperities increases the joint shear strength. 

2.2. Basic studies 

One of the early researches on the monotonic loading shear behaviour of rough rock 

joints was carried out by Newland and Alley (1957) in which the joint shear strength (τ) 

is related to the normal stress (σn) as: 

)tan( 0ibn += ϕστ                       (2.1) 
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where, φb is the basic friction angle determined by tilt test on planar interface and i0 is 

the mean slope of the asperities. 

During earthquakes and blasting, cyclic loading shearing degrades the joint roughness. 

The asperity degradation also decreases the dilation magnitude and eventually reduces 

the normal stress acting on the joint surface. Thus, applying the monotonic loading 

models for shear strength of joints such as the one proposed by Newland and Alley 

(1957) in the stability analysis of underground structures (e.g. mining or civil 

excavations) subjected to seismic events, will overestimate the stability. 

In order to consider degradation of asperities during shearing in cyclic loading, Plesha 

(1987) introduced a degradation equation as a function of the sliding plastic shear work 

as: 

)exp(0 pdWCii −=                     (2.2a) 

∫=
pu

o

pp duW τ                      (2.2b) 

where, i is the dilation angle, Cd is the damage coefficient determined by fitting the 

exponential equation to the plot of normalised secant dilation angle (normalised to the 

initial asperity angle) versus sliding plastic shear work and up is the plastic shear 

displacement. 

This chapter covers the important factors that control the shear behaviour of rock joints 

and models developed for describing shear behaviour of clean joints (non-filled joints) 

under monotonic and cyclic loading and Constant Normal Load (CNL) and Constant 

Normal Stiffness (CNS) conditions. 
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2.3. Factors controlling the shear behaviour of rock joints 

Determining the shear strength of discontinuities is a crucial task of rock mechanics as 

only a small variation in the angle of friction of a discontinuity may considerably affect 

the stability of a rock structure. 

According to the previous studies, some important factors that can influence the shear 

behaviour of joints can be classified as: 

• Joint roughness 

• Scale effects 

• Boundary conditions 

• Shear rate 

• Pore water pressure 

• Pre-loading (over closure) 

2.3.1. Joint roughness 

The friction angle (φ) and the shear strength (τ) depend on the surface roughness. To 

clarify this issue, a triangular joint that is inclined at an angle io from the direction of 

shearing subjected to shear (S) and normal (N) forces is considered as shown in Figure 

2-1. If the joint degradation during shearing is neglected, the orientation of the resultant 

force (R) on the joint surface is inclined at an angle (90 - φb) from the shearing 

direction. Since the asperities are inclined at an angle io, the joint friction angle is (φb + 

io). 
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The real joints encountered in the field possess arbitrarily distributed roughness in three 

directions. Therefore, attempts have been made by researchers to properly quantify the 

joint roughness. 

 

Figure 2-1 Triangular joint under shear and normal forces 

2.3.1.1. Joint roughness coefficient 

Barton (1973) proposed the concept of Joint Roughness Coefficient (JRC), the value of 

which is estimated by comparing visually the appearance of a discontinuity surface with 

the standard profiles, ranging from 0 to 20. Typical roughness profiles and 

corresponding JRC was presented by Barton and Choubey (1977) and is shown in 

Figure 2-2. An alternative method for estimating JRC by measuring the surface 
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roughness amplitude from a straight edge was later proposed by Barton and Bandis 

(1982), and is shown in Figure 2-3. 

 

Figure 2-2 Roughness profiles and corresponding JRC values (after Barton 

and Choubey 1977) 

The value of JRC can also be obtained by back calculation using the experimental data 

from the tilt tests on rough joints and saw cut rough surfaces, and the Schmidt Hammer 

Index test as: 



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where, JRCn is the JRC number, α0 is the tilt angle, φr is the residual friction angle, JCSn 

is the joint compressive strength (MPa) from Schmidt Hammer scaled for joint lengths 

> 10 cm, σn is in MPa, r is the Schmidt Hammer rebound on a wet joint surface and R is 

Schmidt Hammer rebound on a dry non-weathered sawn surface. 

 

Figure 2-3 Estimating JRC from measurement of surface roughness 

amplitude from straight line (after Barton and Bandis 1982) 

Tse and Cruden (1979) performed statistical studies and stated that the most correlated 

variables for description of surface roughness are the root mean square (RMS) of the 

first derivative of the profile Z2 and the structure function SF given by: 
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where, m is the number of measured points, Z is roughness amplitude about the centre 

line, ∆x is the interval between amplitude reading, f(x) is the roughness amplitude at a 

distance x  along a profile of length L. 

They proposed two equations for JRC according to Z2 and SF as: 

2
10log98326932 Z..JRC +=                    (2.5a) 

SFJRC 10log58.1628.37 +=                    (2.5b) 

A simplified method to relate the JRC to the corresponding value of triangular asperity 

angle was proposed by Macksimovic (1996). Based on this method, the JRC value is 

equal to half of the initial asperity angle (i0/2). 

Graselli and Egger (2003) based on the extensive number of direct shear tests carried 

out on joint samples suggested the following relationship for estimating the value of 

JRC as: 

[ ][ ]{ }
)/(

10

)/)(9/(cos18.1*
max

1

log

1)/(tantan 0
*
max

nc

tn

b
CA

b eC
JRC σσ

σσθα ϕθϕ −++
=

−−

                (2.6) 

where, θ*
max is the maximum apparent dip angle of the surface with respect to the shear 

direction, C is the roughness parameter, α is the angle between schistosity plane and the 
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normal to the joint, A0 is the maximum potential contact area for the specified shear 

direction, σt is the tensile strength and σc is the uniaxial compressive strength. 

2.3.1.2. Fractal method 

Seidel and Haberfield (1995b) applied the fractal method to characterize the joint 

surface. According to this theory, the mean angle statistic (θ ) is related to the standard 

deviation of angle (Sϴ) by the relationship ( θπ
θ 2

=S ), if the asperity angle follows a 

Gaussian distribution. The fractal dimension, standard deviation of angle and height of a 

joint profile of unit direct length can be defined as (Figure 2-4): 

 

Figure 2-4 [left] Single chord geometry, [right] Definition of standard 

deviation of chord length (after Seidel and Haberfield 1995b) 
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where, Sϴ is the standard deviation to angle, Sh is the standard deviation to height, D is 

the fractal dimension and N is the number of segments. 
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Seidel and Haberfield (1995b) proposed the standard deviation of height for kth 

bisections applying the mid-point displacement method as (N=2k): 

kD

KD

dh,k -N≈LS 2
)

1
(2

2
+

−
                     (2.8) 

The standard deviation of angle is obtained as: 

)(k≈SK=S D

-D
-

θ,θ,k

1
1

1 2cos                      (2.9) 

Xie and Pariseau (1992) also applied the fractal method to define JRC value for saw 

tooth profiles as: 

57012785 .)(D-.JRC=                   (2.10a) 

))]
L

h
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- 2
tancos12log

4log

1

                (2.10b) 

where, h is the average height of asperity and L is the average base length of asperities. 

2.3.1.3. Spectral method 

Durham and Bonner (1995) introduced a spectral method to characterize surface 

roughness of rock joints. According to this method, initially, the rock surface is 

digitized using profilometer by measuring coordinates (x,y,z) at any given points. 

Subsequently, an averaged value is taken for the Power Spectral Density (PSD) of each 

x,z profile digitized, to represent the entire joint surface by a single estimate. The PSD 

for each profile is calculated as: 

2
2

)()( fZ
L

h
fG ii =                     (2.11) 
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where, h is the sampling interval, L is length of the profile and Zi(f) is the fast Fourier 

transformation (FFT) of the discretely sampled profile.  

2.3.1.4. Fourier transform method 

The Fourier series is a mathematical technique, incorporated to solve a large variety of 

engineering problems, mainly adopting the principle of superposition for rigid body 

deformations. Applying the principle of superposition, a linear combination of 

sinusoidal solutions can be obtained, enabling Fourier functions to represent the 

roughness of a joint surface as:  
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where, h is the measured asperity height corresponding to X coordinate for (x,z) profile, 

an and bn are Fourier coefficients, T is the asperity length, n is the number of harmonics 

and a and b are boundary limits.  

The applications of Fourier series in characterizing joint roughness and describing the 

dilation of rock joints in relation to shear displacement have been discussed by Qiu and 

Plesha (1991) and Indraratna and Haque (2000). 
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2.3.1.5.  Digital coordinate measuring machine 

The digital Coordinate Measurement Machine (CMM) can be used to assess the 

roughness of joint profiles. The CMM consists of a set of probes and a microprocessor 

with the resolution of one micron. 

The granite table is considered as the datum plane and the sample is placed on top of it. 

The surface profile of the joint is examined with respect to the datum plane. A digital 

coordinate measuring machine (CMM) and granite datum surface are shown in Figure 

2-5. 

 

Figure 2-5 [up] Digital Coordinate Measuring Machine (CMM), [down] 

Datum surface of CMM (after Islam 1990) 
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2.3.2. Scale effects 

The shear behaviour of dilatant joints is influenced noticeably with the change in scale 

of the sample. Barton et al., (1985) studied the scale effects on the joint shear behaviour 

by performing direct shear tests, on replicas of different size, cast from various natural 

joint surfaces. They divided the larger samples into smaller sections to investigate the 

scale effect. It was observed:  

• A gradual increase in the peak shear displacement with increase in the block size 

or joints length. 

• Scale effects are more prominent in rough and undulating joints types. 

• JRC and JCS reduce with increasing sample scale. 

According to the experimental data, the following relationships were proposed to 

account for the scale effects on JRC and JCS: 
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where, JRCn is the scaled JRC, JRC0 is the JRC at laboratory scale, Ln is the length of 

the sample, L0 is the laboratory sample length, JCSn is the scaled joint compressive 

strength and JCS0 is the JCS at laboratory scale.  

In another study on the scale effects, Ohnishi and Yoshinaka (1992) reported that the 

scale effect is strongly related to regularity and irregularity of the joint surface. They 

concluded that joints consisting of different numbers of repeated pattern of size B mm 
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(Figure 2-6), are expected to show the same shear behaviour. However, if the specimen 

of size B is divided into smaller parts and tested, the scale effect will be observed. 

 

Figure 2-6 Repeated joint pattern of size B mm (after Ohnishi and Yoshinaka 

1992) 

Other studies on the scale effects have been carried out by Swan and Zongqi (1985) and 

Yoshinaka et al., (1991). 

2.3.3. Boundary conditions 

If the joint surface is smooth enough and provides negligible dilation, then, the shear 

test under CNL conditions where the normal load acting on the joint surface is constant, 

is adequate to represent the shear behaviour. However, for rough discontinuities, the 

dilation is observed as asperities ride over each other. In this situation, if the 

surrounding rock mass cannot deform sufficiently, the normal load applied on the joint 

surface increases during shearing and the CNL can no longer simulate properly the 

boundary conditions. The mode of shear test in which the normal load changes due to 
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stiffness of the surrounding media is defined as the shearing under CNS conditions. The 

comparison between the asperity shearing under CNL and CNS conditions is shown 

schematically in Figure 2-7. 

 

Figure 2-7 Comparison between asperity shearing under CNL and CNS 

conditions: [left] CNL conditions, [right] CNS conditions 

In the above Figure, k and v are the boundary normal stiffness and normal displacement 

respectively. 

Several authors have published experimental results of direct shear tests of joints under 

CNS conditions (Obert et al., 1976; Goodman 1976; Leichnitz 1985; Benmokrane and 

Ballivy 1989; Van Sint Jan 1990; Ohnishi and Dharmaratne 1990; Benjelloun et al., 

1990). In particular, Johnston and Lam (1989), Skinas et al., (1990) and Indraratna and 

Haque (2000) have described the importance of CNS conditions to replicate the actual 

shear behaviour in the field. 

Skinas et al., (1990) showed that an increase in the normal stiffness leads to an increase 

in the normal stress and a reduction in dilation. In addition, the peak shear strength was 

increased with increase in the normal stiffness.  
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Indraratna and Haque (2000) carried out experimental studies on idealised soft rock 

joints cast using low strength Plaster of Paris and tension joints. Samples were sheared 

under both CNL and CNS conditions with the constant normal stiffness value of 8.5 

kN/mm. The comparison between the shear and dilation behaviours of soft triangular 

rock joints with 9.5º of asperity angle and tension joints under CNL and CNS conditions 

is shown in Figure 2-8.   

 

Figure 2-8 Shear behaviour of saw tooth and tension joints under CNL and 

CNS conditions (after Indraratna and Haque 2000) 
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According to the experimental studies, it was concluded: 

• The CNL conditions underestimates the shear strength of the joints compared 

to those under CNS conditions. 

• The values of dilation are higher under CNL conditions than those under 

CNS conditions. 

• The shear displacement at peak shear strength is larger under CNS conditions 

than under CNL conditions. 

• The peak friction angle obtained under CNS conditions is always lower than 

under CNL conditions. 

• The CNS peak shear strength envelope appears linear unlike the shear 

strength envelope under CNL conditions which can be described by a bi-

linear relationship. For higher roughness, the CNS strength envelope appears 

to deviate from the linearity. 

Similar conclusions discussed here have been reported by Goodman (1976), Leichnitz 

(1985), Ohnishi and Dharmaratne (1990) and Van Sint Jan (1990). 

2.3.4. Shear rate 

Crawford and Curran (1981) investigated the effect of shear rate on shear behaviour of 

soft and hard rock joints by performing direct shear tests with shear rates of 0.05-50 

mm/s under CNL conditions. They conducted the tests on the samples with normal 

stress ranging from 0.62 MPa to 2.78 MPa. The results indicated that the shear rate may 

influence the shear strength of hard and soft rock joints differently. In general, the shear 

strength of hard rock joints decreased with increase in the shear rate. In contrast, the 

frictional resistance increases up to a critical shear displacement for softer rock joints 
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with increase in the shear rate, but remains unaffected thereafter. In another study on 

shear rate, Jafari et al., (2004) verified the results of Crawford and Curran (1981) for 

shear rates between 0.05 mm/min and 0.4 mm/min for harder joints. 

Indraratna and Haque (2000) studied the shear behaviour of triangular soft rock joints 

with various shear rates ranging from 0.35 mm/min to 1.67 mm/min under CNS 

conditions. Tests were performed with 0.56 MPa of initial normal stress and 18.5º of 

asperity angle. The value of normal stiffness was set to 8.5 kN/mm. It was observed that 

the peak shear strength increases with increase in the shear rate. 

2.3.5. Pore water pressure 

The water pressure in a joint directly counteracts the effective normal stress acting on 

the joint. During shearing and in an undrained conditions, water pressure may either 

increase or decrease depending on the joint deformation. The water pressure in a joint 

will drop if the joint aperture increases due to asperity overriding. In contrast, if aperture 

decreases due to contraction behaviour of joint undergone shearing, the water pressure 

will increase.  

According to Goodman and Ohnishi (1973), the safety of rock structures in jointed rock 

mass such as various dams, powerhouse excavations and underground reservoirs is 

influenced by the change in the pore water pressure of the joints. Goodman and Ohnishi 

(1973) studied the effect of pore water pressure on the mechanical behaviour of joints 

and stated: 

• The shear strength of joint decreases as pore pressure increases in accordance 

with the effective stress principle. 
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• At a low confining pressure, the induced pressure becomes negative at peak 

load for rough joints, but remains positive at high confining pressure. 

• For rough joints, the water pressure drops after slip initiation as aperture 

increases. 

Archambault et al., (1998, 1999) investigated experimentally the pore pressure in an 

undrained triaxial shearing of intact and jointed rock samples. They reported that during 

the friction mobilisation phase, the application of deviator stress increases the pore 

water pressure. Subsequently, the pore water pressure starts to decrease progressively as 

roughness is mobilised. Moreover, the increase or decrease in excess pore water 

pressure depends on the roughness morphology.  

2.3.6. Pre-loading (over-closure) 

Barton (1973) accidentally preloaded a joint sample to the maximum load capacity of a 

testing machine and observed that the sample could not even be sheared at a reduced 

normal load. In jointed rocks when the rock matrix is mostly deformed elastically, the 

non-planar discontinuities may become over-closed. When field rock joints are taken to 

be tested in shear, there might be a sample disturbance that destroys the over-closure 

effect. In order to recover the over-closure, the sample should be preloaded to the 

maximum normal load experienced in the field, before shear testing. 

Barton (1973) investigated the effect of over-closure on shear behaviour of rock joints 

with over-closure ratios (preloaded normal stress to loaded normal stress) of 1, 4 and 8. 

It was observed that the friction angle was increased by approximately 5º and 10º when 

the over-closure ratio increased from 1 to 4 and from 1 to 8, respectively. Larger 
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dilation angles for peak shear strength were also measured for higher over-closure 

ratios. 

Babanouri et al., (2011) performed direct shear tests on replicas of real rock joints cast 

using Plaster of Paris for different over-closure ratios. They observed that the shear 

strength within a large range of roughness, joint wall strength and normal stress values, 

significantly increases with increasing over-closure ratios. An experimental relationship 

was also proposed to consider the over-closure effect on JRC as: 
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)log(
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JOC
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σ

+=                    (2.14) 

where, JRCoc and JOC are modified joint roughness coefficient and joint over-closure 

ratio respectively.  

2.4. Models developed for shear behaviour of rock joints 

A number of different model types have been proposed in the literature to deal with the 

shear behaviour of rock joints under monotonic loading and CNL and CNS conditions 

which are described below. 

2.4.1. Mechanistically based models 

Patton (1966) was among the first to study the shear behaviour of rock joints by 

conducting a series of experiments on regular tooth shape asperities under CNL 

conditions and proposed a bilinear shear strength criterion: 
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For asperity sliding: 

)tan( 0ibnp += ϕστ                   (2.15a) 

For asperity breakage: 

0)tan( cbnp += ϕστ                   (2.15b) 

where, τp is the peak shear strength and c0 is the cohesion. 

Jaeger (1971) replaced the bilinear relationship of Patton (1966) with a non-linear 

equation and introduced a new failure criterion as: 
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where, σ* is a transition stress that illustrates two mechanisms captured by Patton 

(19666) ’s model. 

Barton (1973) incorporated the concept of JRC and introduced a non-linear failure 

criterion based on the extensive direct shear tests conducted on real rock joints under 

CNL conditions as: 
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For non-weathered joints, the JCS value is equal to the uniaxial compressive strength of 

rock. The relevant value of JCS for weathered rocks can be measured by Schmidt’s 

hammer applied directly to the exposed joint walls. The JRC value also represents 

roughness of the joint surface ranging from 0 to 20 determined as discussed in section 
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2.2.2.1. The comparison between the above mentioned three criteria is shown in Figure 

2-9. 

 

Figure 2-9 Comparison between shear strength criteria of rock joints 

Barton (1976) presented a comprehensive model for the shear behaviour of rock joints 

under CNL conditions using the concept of Mobilised Joint Roughness Coefficient 

(JRCm) to capture the effect of asperity degradation as a function of the normalised 

shear displacement. According to this model, the friction angle increases from the basic 

friction angle till peak value at peak shear strength and then diminishes along the post 

peak due to the asperity damage. Barton suggested that JRCm should be equal to zero 

when the shear displacement is higher than 100 times of the peak shear displacement. 

The concept of JRCm is shown schematically in Figure 2-10. 
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Figure 2-10 Dimensionless model for shear stress-shear displacement 

modelling (after Barton 1976) 

In the Figure 2-10, us is the shear displacement and upeak is the shear displacement at 

peak shear strength. 

The magnitude of JRCm also can be calculated from a measured shear stress - shear 

displacement curve as: 
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                  (2.18) 

By reviewing a large number of shear tests data available in the literature Barton (1976) 

suggested the following relationship for the peak shear displacement as a function of the 

asperity length (L): 
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6.0004.0 Lupeak =−                     (2.19) 

Bandis et al., (1981) related the peak shear displacement to the JRC based on the 

analysis of the measured data as: 

33.0)(
500

1

L

JRC

L

upeak =                     (2.20) 

where, L is in metre. 

The peak secant dilation angle (ds,peak) and the peak dilation angle (dt,peak) are defined as: 
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where, vpeak is the normal displacement at peak shear strength. 

Barton and Choubey (1977) suggested the following relationships to estimate the peak 

tangent and secant dilation angles as: 
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where, M is the damage coefficient that takes value of 1 or 2 for shearing under low or 

high normal stresses respectively, or can be obtained from the following relationship: 
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In addition, the dilation starts at the onset of plastic deformation and dilation angle as a 

function of JRCm can be calculated by: 
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Asadollahi and Tonon (2010) investigated Barton (1976)’s model and reported the 

following limitations in estimating the peak shear displacement, post-peak shear 

strength, dilation and surface degradation as:  

• The peak shear displacement is independent of normal stress which is not 

consistent with experimental observations. 

• The JRC value is suggested to be zero when shear displacement is greater than 

100 times the peak shear displacement. This is only an approximation for the 

end of the shear stress - shear displacement curve.  

• There is an inconsistency in term of roughness mobilisation for planar joints. 

• The negative dilation up to one third of peak shear displacement is disregarded 

while many experimental studies showed that there is a contraction at small 

shear displacements. 

Skinas et al., (1990) incorporated the mobilised dilation concept of the JRC-JCS model 

of Barton (1976) and presented a joint model based on CNS conditions. The change in 

dilation with the change in shear displacement is defined by: 

mobnduv ,tan∆=∆                      (2.25) 
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where, dn,mob is described by Equation (2.24). 

The dilation and corresponding normal stress of any point (e.g. point Q in Figure 2-11) 

with increment of shear displacement can be obtained as: 

)tan()( 11
/

1 +++ −+= niiiii duuvv                 (2.26a) 

)( 11 iinini vvK −+= ++ σσ                  (2.26b) 

where, ui is shear displacement.  

 

Figure 2-11 Calculation procedure for modelling dilation behaviour under 

CNS condition (after Skinas et al., 1990) 

Applying the mobilised dilation concept, the above dilation equation can be rearranged 

as: 
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By having the σni+1 and JRCui
m, the shear stress against shear displacement under CNS 

conditions is obtained as: 
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2.4.2. Mathematical models 

Goodman (1976) proposed a model for the shear stress - shear displacement of rock 

joints under CNL conditions. In this model, the shear stiffness (ks) and the slope of the 

post peak region were assumed to be independent of the normal stress applied on the 

joint surface. The relationships for shear strength are defined as: 
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where, up is the peak shear displacement, τr is the residual shear strength and ur is the 

residual shear displacement. 

Heuze and Barbour (1982) proposed a three parameters model to describe the effect of 

joint dilation on the shear behaviour of rock joints. The model was introduced to predict 

the strength envelope below the uniaxial compressive strength beyond which no dilation 

was observed. In this model, the following relationships applied: 

32
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where, φp is the peak friction angle, φr is the residual friction angle, Cp is the cohesion at 

peak shear strength. 

The instantaneous dilation angle is determined as: 
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When σn > σc then the peak shear strength is obtained by: 

prnp C+= )tan(ϕστ                   (2.32a) 

The residual shear strength also is given by: 

)tan( rnr ϕστ =                   (2.32b) 

As the normal stress incorporated in the above equations needs to be indicated before 

evaluating the shear strength of dilatant joints, a conceptual incremental equation 

described in Figure 2-12 was presented as: 

u
KNEFFKN

KNEFFKN
n ∆

+
=∆ .

)tan(δσ                   (2.33) 



Chapter II                         Literature review of the shear behaviour of clean rock joints 
______________________________________________________________________ 

37 
 

where, KN is the normal stiffness of the joint itself and KNEFF is the stiffness of the 

adjacent structure. 

 

Figure 2-12 Conceptual model of a dilatant joint undergoing shear (after 

Heuze and Barbour 1982) 

Gens et al., (1990) developed a three dimensional elasto plastic constitutive model for 

rock joints under CNL conditions by considering a hyperbolic yield function as: 

)2(tan 222
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2
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where, F is the yield function, tan (φ) and a are hardening parameters and subscripts 1 

and 2 denote direction of shearing. 

The variation of hardening parameters produces the corresponding family of yield 

surfaces. The hardening and softening of the model is controlled by a single internal 

variable (ξ) given by: 
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where, dv1
p and dv2

p are the plastic tangential relative displacements. 
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A second degree parabola in the pre-peak range and a third degree polynomial after the 

peak were adopted to model the variations of hardening parameters with ξ as shown in 

Figure 2-13. 

 

Figure 2-13 Hardening and softening law for parameter a (after Gens et al., 

1990) 

In Figure 2-13, subscripts p and r denote peak and residual conditions respectively and 

superscript 0 shows the onset of plastic deformation. 

The dilation angle was assumed to follow the same trend as the hardening parameter 

with ξ whereby the tangent of peak dilation angle (ip) as a function of the normal stress 

is given by: 
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where, ip
0 is the peak dilatancy angle for zero applied compression and qu is the 

unconfined compression strength of the rock. 
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Indraratna et al., (1998) proposed a mathematical model to predict the shear strength of 

soft rock joints under CNS conditions as: 
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where, σn0 is the initial normal stress, dv is the dilation at peak shear strength, a is the 

initial asperity height and c1, c2, and c3 are model coefficients determined 

experimentally. 

Grasselli and Egger (2003) formulated a model to simulate the shear strength provided 

by the joint under CNL conditions at each state of displacement as: 
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where, um is the shear displacement necessary to mate the joint. 

A visco-plastic multi laminate model for the shear behaviour of rock joints under CNL 

conditions was introduced by Roosta et al., (2006). This model is based on the Mohr-

Coulomb failure criterion with changing friction angle, cohesion and dilation angle as a 
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function of the plastic shear displacement or joint degradation. Yield functions in shear 

and tension at joint are defined as: 

shearincF mmn −−= )tan(ϕστ                 (2.39a) 

tensioninF t
n σσ −=                  (2.39b) 

where, φm is the mobilised friction angle, cm is the mobilised cohesion and σt is the 

tensile strength of rock joints. 

Increasing or decreasing the mobilised cohesion or mobilised friction angle with plastic 

shear displacement leads to the hardening and softening phenomena. In order to model 

hardening behaviour the following relationship was proposed for the mobilised friction 

angle: 
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2
00 ϕϕϕϕ              (2.40a) 

where, up is the plastic shear displacement, up
p is the plastic shear displacement at peak 

shear strength, φp is the friction angle at peak shear strength and φ0 is the friction angle 

at onset of plastic deformation. 

In softening part, a linear relationship was proposed to define the mobilised friction 

angle from the peak friction angle to the residual value. 

Mobilised cohesion and tangent of mobilised dilation angle (ψm) as a function of the 

plastic shear displacement are given by: 

)exp(0
p

m ucc λ−=                   (2.41a) 
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βαψ += p
m u)tan(                   (2.41b) 

where, c0 is the value of cohesion at onset of plastic deformation, λ presents the rate of 

reduction in cohesion and α and β are parameters depending on the normal stress and 

joint roughness. 

2.4.3.  Graphical model 

Saeb and Amadi (1990, 1992) emphasised that constant or variable boundary conditions 

are more likely to exist rather than CNL conditions and presented a graphical model to 

predict the shear behaviour of rock joints under any boundary conditions. This model 

relates the normal load - deformation response of a joint to its shear load - deformation 

and associated dilation behaviour. It is based on the response curves shown in Figure 2-

14. The following remarks can be made about Figure 2-14: 

• The curve u = u0 which represents the joint under mated condition is identical 

to the joint closure against normal stress curve (Figure 2-14 a). 

• Each curve u = ui represents the behaviour of the joint under normal loading 

after being mismatched by a shear displacement ui. 

• There is no further dilation for values of u larger than u4 (Figure 2-14 c). 

Therefore, the joint response is admissible if it is contained in the domain 

limited by the curves u = u0 and u = u4.  

• Since joint dilation decreases as normal stress increases, all curves u = ui (i = 

1, 4) become closer to the curve u = u0. 
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Figure 2-14 Joint response curve for normal stress ranging between 0 to 

20A (after Saeb and Amadi 1990) 

Figures 2-14 and 2-15 can be used to estimate the shear strength of rock joints for any 

load path. For instance, four distinct load paths are shown in Figure 2-14. These paths 

initiate from point A assuming that a normal stress of 4A was first applied without any 

shearing. Depending on the boundary conditions, the joint follows path AFGHI for a 

constant applied normal stiffness k and ABCDE for CNL conditions. It follows path 



Chapter II                         Literature review of the shear behaviour of clean rock joints 
______________________________________________________________________ 

43 
 

AJKLM when no change in joint normal displacement is allowed. Finally, path ANPQR 

corresponds to a joint in a rock mass with an increasing applied normal stiffness. By 

recording in Figure 2-15 the values of normal stress and u at the point of intersection of 

each path with curves ui and using Figures 2-14 b-c, the shear stress against shear 

displacement for normal stress equal to 4A can be obtained. These curves are plotted 

as dashed lines in Figures 2-14 b, c and as solid lines in Figure 2-14 d, respectively. 

 

Figure 2-15 Normal stress against normal displacement curves at different 

shear displacement levels (after Saeb and Amadi 1990) 

This model can be used to evaluate the shear strength of rock joints under CNS 

conditions by knowing its shear strength under CNL conditions. 

2.4.4. Energy based models 

Ladanyi and Archambault (1969) applied the energy balance theory to develop a general 

failure model for rock joints. According to these authors, in shearing of an indented 

surface if there is only sliding along asperities, the total shearing force (S) can be 

considered as a sum of three components: 
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321 SSSS ++=                     (2.42) 

where, S1 is the component due to external work done in dilating against the external 

force N, S2 is the component due to additional internal work in friction due to dilation, 

and S3 is the component due to work done in internal friction if sample did not change 

volume in shear. 

The values of the three components from work equation and statical consideration can 

be defined as: 

NiS =1                    (2.43a) 

)tan()tan(2 biSS ϕ=                   (2.43b) 

bNS ϕtan3 =                    (2.43c) 

Another component (S4) may be obtained as in the bilinear model of Patton (1966), if all 

the teeth are sheared off at the base as (i.e. asperity breakage): 

04 tan AcNS rock += ϕ                    (2.44) 

where, φrock is the intact rock friction angle. 

In shearing along irregular joint surfaces, both sliding and breakage mechanisms occur 

simultaneously, each covering its own portion of the total area, thus: 

)()1)(( 4321 ss aSaSSSS +−++=                 (2.45a) 

A

A
a s

s =                    (2.45b) 
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where, As is the area of joint subjected to shearing. 

Substituting in Equation (2.45a) for S1 to S4 according to Equation (2.44) and dividing 

all the forces to A, the shear strength criterion is obtained as: 

)tan()tan()1(1

)tan()tan)(tan1( 0

bs
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ϕ
ϕσϕστ

−−
+++−

=                 (2.46) 

Johnston and Lam (1989) formulated an analytical method for the shear resistance of 

concrete/rock interface under CNS conditions. They considered the mobilised cohesion 

(Cm) for the penetration of the micro-asperities of concrete into the rock surface when 

the contact normal stress exceeds the uniaxial compressive strength as: 
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where, Csi is the cohesion of rock asperity sliding and qu is the uniaxial compressive 

strength. 

Applying the energy balance theory in a way similar to Ladanyi and Archambault 

(1969) and by modifying the additional work done in friction due to dilation to 

incorporate the mobilised cohesion, the following relationship was proposed to predict 

the average shear stress for sliding: 
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where, φp
sl is the peak friction angle in sliding and η is the interlocking factor. 
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The average shear stress at shearing to initiate a plane of weakness through asperities is 

obtained by: 

)tan()tan(1)(tan(tancos

tan
)tan()(

111
210 p

sh

shp
shn

p
sh

i
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ϕθθθ
ηϕθσστ

−+
++∆+=              (2.49) 

where, θ1 is the inclination of shear plane, φp
sh is the peak friction angle in shear, Csh is 

the cohesion for shearing. 

Once the shear plane is extended and displacement continues along the shear plane, the 

cohesion in the above equation is assigned to zero. The average shear strength 

relationship for subsequent extension of shear plane at different inclinations was also 

developed by Johnston and Lam (1989).  

Haberfield and Johnston (1994) adopted the shear strength model described by Johnston 

and Lam (1989) and proposed a model for shear strength of irregular profiles. They 

defined the following roughness parameters obtained statistically as: 

• im = mean chord inclination from the horizon. 

• isd = standard deviation of chord inclination. 

• hm = mean chord height above a horizontal datum. 

• hsd = standard deviation of chord heights. 

The distribution of normal force on the individual asperities is given by the following 

equation as: 

jjj
r
jj isinN sincos −=                    (2.50) 

where, Nj is the estimated normal force on asperity j, nr
j is the rebound normal force for 

asperity j, sj is the shear resistance on asperity j and i j is the asperity angle of asperity j. 
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The value of sj is obtained using the following equation as: 

j
r
j
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Lc
s ϕtan
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+=                    (2.51) 

where, cj and φj are the cohesion and friction angle for sliding on asperity j. 

The normal force Nj carried out by the j th asperity is calculated considering the relative 

magnitude of deformation from one asperity to another one, using the following 

averaging process as: 

N
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∑
=                     (2.52) 

where, N is the actual total applied normal force on the joint. 

If any asperity is sheared, then the normal force carried out by the asperity will be 

different from the above and is determined as: 

N
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where, 
s
jN  is the normal force carried out by the j th sheared asperities. 

For the intact asperities, the normal force distribution is calculated as: 

∑
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N                    (2.54) 

where, ∑
s
jN is the total force carried out by the sheared asperities. 
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In this model, the displacements for irregular rock interfaces are estimated based on the 

method suggested by Milovic et al., (1970) for the determination of vertical and 

horizontal displacements of a rigid infinite strip on a finite layer. 

Seidel and Haberfield (1995a) showed that the Ladanyi and Archambault (1969) model 

would only hold true for elastic asperities, but for plastic shearing it underestimated the 

joint shear strength. By assuming the energy dissipated due to asperity damage to be 

equal with the inelastic work done due to dilation against the normal force (Figure 2-

16), the energy balance theory as described by Ladanyi and Archambault (1969) was 

extended as: 

 

Figure 2-16 Deformation due to inelasticity (after Seidel and Haberfield 

1995a) 

01 tan
)(

iN
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bNS ϕtan3 =                    (2.55c) 
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where, Ndp is the additional work required to increase the internal strain energy of the 

asperities. 

Combining all these three components of work done, the following equation was 

introduced to relate the shear stress to normal stress as: 
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)tan(tan 0
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=                    (2.56) 

Indraratna and Haque (2000) incorporated the Fourier series concept to describe the 

relationship between normal and shear displacement of undulated joints under CNS 

conditions, extending the energy based model proposed by Seidel and Haberfield 

(1995a) as: 
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where, an and bn are coefficients found by performing conventional harmonic analysis 

of the Fourier series. 

Oliveira and Indraratna (2010) revised the above model and presented a semi-empirical 

relationship for the shear strength of rock joints to describe better post peak behaviour 

as: 
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where, us is the accumulated shear displacement, upeak is the peak shear displacement 

and c is the empirical constant determined by curve fitting. 

2.5. Shear behaviour of rock joints under cyclic loading 

Asperities are damaged and therefore degraded during shearing. In cyclic loading, 

asperities are further crushed and this may reduce the dilation angle and would likely 

decrease the shear strength.  

The variation of shear displacement in a complete shear loading cycle against time of 

loading is depicted in Figure 2-17. 

 

Figure 2-17 Variation of shear displacement in a complete loading cycle 

As shown in Figure 2-17, in a cyclic test the lower specimen moves from its initial fully 

mated position to a positive maximum shear displacement (Phase 1), followed by a 
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shearing direction reversal in which the specimen reaches a negative maximum shear 

displacement in the opposite direction (Phase 2). The lower specimen returns to the 

fully mated condition in a complete cycle. The values of maximum and minimum shear 

displacements are the same in phases 1 and 2. In forward shearing, asperities override 

each other while in loading reversal asperities move toward the fully mated condition. 

2.5.1. Experimental studies 

Hutson and Dowding (1990) performed direct shear tests on sinusoidal joints under 

cyclic loading and CNL conditions. They reported when sliding occurs toward the 

asperity tips, the apparent coefficient of friction decreased visibly with each cycle due to 

asperity damage. In the downward sliding, however, the opposite was true. Higher 

asperity damage and eventually more suppression in the dilation component were 

observed for greater (σn/σc) ratios.  

Huang et al., (1993) carried out shear tests on artificial saw tooth shaped asperities 

moulded of hydro-stone and natural joints for various initial normal stresses under 

cyclic loading and CNL conditions. It was concluded that: 

• For low values of initial normal stress, the normal displacement versus shear 

displacement responses indicated no apparent surface damage. In this 

condition, the shear strength gradually increased from a minimum value during 

the first cycle of shear displacement to a higher and more uniform value as 

cycling continued. 

• For moderate compressive stress, the normal displacement versus shear 

displacement responses showed a substantial amount of surface damage in 

which the asperity slope significantly decreased. The shear stress against shear 
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displacement responses showed softening behaviour because of the reduced 

asperity orientation. 

•  At slightly higher compressive stress, after a limited number of loading cycles, 

the asperity surfaces were almost completely destroyed and the shear stress 

versus shear displacement responses were rather close to that of two apparently 

smooth surfaces. 

• As expected, at high compressive stress, the surface damage was more 

aggressive and rapid. 

• The asperity debris appeared to migrate from one side of an asperity through to 

the other depending on the shear direction. 

• The shear behaviour of natural rock joints under cyclic loading was found to be 

similar to that of saw tooth shaped joints. However, the peak shear strength for 

natural rock joints in the first cycle was larger than those during the remainder 

of the shearing process and the stress softening behaviour was more 

pronounced. The shear strength during dilatant deformation increased from 

cycle to cycle rather than showing a reduction trend.  

Jafari et al., (2003) investigated experimentally the effects of small and large shear 

displacements on artificial saw toothed shape asperities and replicas of a rock surface 

under cyclic loading and CNL conditions. They related small and large shear 

displacements to small and strong earthquakes and expressed the following main 

conclusions: 

• During cyclic loading, degradation of both first and second order asperities 

occurs, depending on the applied normal stress. In small earthquake and 

low amplitude cyclic loading, second order asperities are mainly affected, 
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but in strong earthquakes and high amplitude dynamic loading, both first 

and second order asperities may be damaged. 

• The number of loading cycles and stress amplitudes are two main factors, 

controlling the shear behaviour of rock joints under cyclic loading. 

• During large cyclic shear displacement, the shear strength of rock joints is 

affected by dilation angle, degradation of asperities and wearing. 

• The shear strength of rock joints during sliding is in direct relationship with 

normal stress and may change from sliding to breakage during cyclic 

displacement.  

Wibowo et al., (1992) conducted a series of 5-cycle direct shear tests on replicas of a 

real asperity surface at size 15.24 cm ×7.62 cm ×7.62 cm cast gypsum cement (σc = 

27.58 MPa) under CNL and CNS conditions. The initial normal stress of 2.26 MPa was 

applied during the test under CNL conditions. In CNS test, the stiffness of 25.86 

kN/mm was considered to restrict the dilation. The comparison between shear 

behaviour of rock joints under CNL and CNS conditions is shown in Figure 2-18. The 

dilation was suppressed and shear strength increased as a result of the application of 

normal stiffness. The increase in shear strength was related to the increase in normal 

stress acting on the joint surface during the dilation stage. In reverse shearing, the shear 

behaviour under CNS conditions was close to that under CNL conditions as dilation was 

small, especially for later cycles. 
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Figure 2-18 Comparison between shear behaviour of rock joints under CNL 

and CNS conditions: [left] Under CNL conditions, [right] Under CNS 

conditions (after Wibowo et al., 1992) 

Different shear behaviour to those given by Hutson and Dowding (1990), Huang et al., 

(1993) and Jafari et al., (2003) was observed by Homand-Etienne et al., (1999) for 

undulated artificial joints under cyclic loading and CNL and CNS conditions. The shear 

stress - shear displacement curves showed an increase of shear stress as a function of 

loading cycles while dilation decreased. The increase in the contact area due to asperity 

damage was suggested as the reason for the increase in shear strength with increase in 

loading cycles. 
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2.5.2. Models developed for shear behaviour of rock joints under cyclic loading 

Models available in literature for the cyclic loading shear behaviour of rock joints can 

be categorised in two main groups: mechanistically based and mathematical models.  

2.5.2.1. Mechanistically based models  

An effective mechanical model for cyclic loading shear behaviour of rock joints was 

introduced by Plesha (1987). In this model, firstly, an interface with no undulating 

asperity (i.e. perfectly smooth) was considered. It was furthermore assumed that this 

smooth interface has Coulomb friction with no hardening or softening behaviour. In 

such an interface, the shear stress must satisfy the inequality: 

nb σϕτ )tan(−≤                     (2.59) 

Corresponding to the above equation is the yield function: 

nbF σϕτ )tan(+=                     (2.60) 

The potential function, whose gradient gives the direction of the slip, is given by: 

τ=G                       (2.61) 

If the Coulomb function on the asperity surface is assumed, then Equations (2.60) and 

(2.61) for the yield function and plastic potential are applicable with τ and σn replaced 

by σ1 and σ2, respectively, where subscripts 1 and 2 denote the shear and normal 

directions to the active asperity surface as: 
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[ ]ii
A

A
n cossin

/2 στσ +−=                  (2.62b) 

where, A/A/ is the ratio of the macroscopic contact area to the microscopic contact area 

which is shown in Figure 2-19. 

 

Figure 2-19 Stress diagram used for transformation between stresses (after 

Plesha 1987) 

Combining Equations (2.62a) and (2.62b) with Equations (2.60) and (2.61) and dividing 

by the positive factor A/A/: 

[ ]iiiiF nbn sincos)tan(cossin τσϕτσ −++=               (2.63a) 

iiG n cossin τσ +=                   (2.63b) 

A simple tribological model for asperity degradation was also proposed by assuming 

that degradation is a function of the sliding plastic tangential work (Wp) as: 

)exp(0 ∫−=
pu

o

pd duCii τ                    (2.64) 

In the above equation, the asperity behaviour is characterized as: 
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• Under high compressive stresses, high tangential stresses are required to produce 

slip and rapid asperity degradation. 

• Under low compressive stresses, low tangential stresses will produce slip, yet if 

the amount of slip is large, then asperity degradation can occur from surface 

damage. 

Therefore, if a particular degree of degradation is attained by a high amount of stress 

and low displacement, the same degree of degradation can be obtained at a lower stress 

level and a sufficiently large displacement. 

Hutson and Dowding (1990) later performed shear tests on artificial sinusoidal joints 

under cyclic loading and CNL conditions and reported an empirical relationship for the 

damage coefficient introduced by Plesha (1987) as: 

c

n
d iC

σ
σ

0141.0−=                     (2.65) 

Qiu and Plesha (1991) revised Plesha (1987)’s degradation model by representing 

surface roughness by sinusoidal asperities. The model considers the volume of damaged 

material produced during sliding and includes the possibilities of debris reattachment to 

the contact surface. The degradation equation based on the Fourier series was proposed 

as: 

)exp(11 pdlll WCaa −=                   (2.66a) 

[ ])exp(11100 pdlll WCaaa −−+= λ                 (2.66b) 

where, al1 is the second order Fourier coefficient, a0l is the first order Fourier 

coefficient, 1la  is the initial value of the second order Fourier coefficient, 10a  is the 
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initial value of first order Fourier coefficient, λ is a parameter depends on the histories 

of σn and shear displacement and subscript l denotes lower block. 

In the above equations, it was assumed that the asperity surface is characterized only by 

the first and second orders Fourier coefficients. Moreover, similar equations to those for 

lower block were proposed for the wear of upper block. 

Jing et al., (1993) investigated shear behaviour of rock joints under cyclic loading and 

CNL conditions and proposed a conceptual model based on Plesha (1987)’s damage law 

and empirical hardening and softening relationships. In another study, Jing et al., (1994) 

extended the roughness degradation model of Plesha to a 3D form as: 

( )







−








−= ϕθ

σ
σαα cosexp0

11 p
c

n WD                (2.67a) 

( )







−








−= ϕθ

σ
σαα cosexp0

22 p
c

n WD                (2.67b) 

where, α1 and α2 are the principal values of the asperity angle which also forms the 

major and minor semi-axes of the asperity ellipse, α
0
1 and α0

2 are the initial values of α1 

and α2, D is a material parameter, θ is the current shear direction, φ is the angle between 

the major axis and the local coordinate direction along the strike of the joints. 

Dong and Pan (1996) presented a model that considers the contact structure within the 

rock joint as a multi-level hierarchical system as shown in Figure 2-20. 
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Figure 2-20 Hierarchical structure of joint profile (after Dong and Pan 1996) 

The asperity of a rock joint was represented as multi-level asperities in a saw tooth 

shape. Asperity saw teeth may have random orientations in any level. In addition, 

Plesha (1987)’s degradation law was further extended to account for the residual 

asperity angle as: 
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where, ir is the residual contact inclined angle after the degradation process is complete. 

Lee et al., (2001) introduced the concept of equivalent asperity angle as the 

representative of numerous asperities shown in Figure 2-21. 
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Figure 2-21 Concept of equivalent asperity angle (after Lee et al., 2001) 

In Figure 2-21, subscripts F and B denote forward and backward shearing. Also, 1 and 2 

represent the first and second order asperity angles, respectively. 

Applying the concept of equivalent asperity angle and dividing asperity shearing into 

forward and backward directions, the following equations for asperity degradation was 

proposed as: 

)exp()exp( 2211 PdFpdFF WCiWCii −+−=                (2.69a) 

)exp()exp( 2211 PdBpdBB WCiWCii −+−=                (2.69b) 

Another type of sliding model for cyclic loading was suggested by Stupkiewicz and 

Mróz (2001) in which the dilation angle follows a hyperbolic equation. In order to 

model the asperity damage, the initial asperity height was assumed to degrade due to a 

portion of the sliding plastic shear work as: 
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where, ur is the relative shear displacement and g0 and gf are model parameters related 

to the wear effects. 

The difference between the previous model and Plesha (1987)’s damage law is the 

consideration of relative shear displacement in dilation behaviour. 

Following the formulations of Stupkiewicz and Mróz (2001), a Gaussian asperity curve 

relationship also was presented by Puntel et al., (2006). 

2.5.2.2. Mathematical models 

Lotfi et al., (1994) proposed a three parameters hyperbolic criterion for interfaces under 

cyclic loading that provides a smooth transition between the Mohr-Coulomb and tension 

cut off as: 

0)(2)( 222 =−+−−= tncns rF σσσσµτ                (2.71a) 

ctsCr σσµ 2/)( 222 −=                  (2.71b) 

where, µs is the slope of the asymptotes of the hyperbola. 

In this model, it is assumed that plastic loading in the tension-shear region decreases the 

tensile strength, while the shear strength generated by µs and r, which is termed 

frictional strength here, remains constant. Moreover, plastic loading in the compression-

shear region decreases both the tensile and frictional strength. For frictional-strength 
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degradation, only the portion of the plastic work associated with the shear stress is taken 

into account. 

Fox et al., (1998) presented the interlock-friction model for shear behaviour of joints 

under dynamic loading and CNL conditions as:  

[ ])tanh()tan()( uusign smn ηγµστ +=                  (2.72) 

where, µm is the mean shear stress of forward and reverse motion to initial normal 

stress, )tan(γ is the average offset shear stress magnitude per initial normal stress and ηs 

is related to the slope of the offset function near zero displacement. 

The normal displacement was considered symmetric and is given by: 

)tan(0iuv =                      (2.73) 

In the later model, the effect of asperity damage in shear stress and dilation is neglected. 

Therefore, the shear strength and dilation of the first cycle are similar to subsequent 

cycles. 

A general roughness degradation (DW) model for undulated joint surfaces was proposed 

by Homand-Etienne et al., (1999) based on the experimental data as: 
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               (2.74) 

where, θs is the surface mean angle, ka is the apparent anisotropy coefficient, T is the 

undulation period, Ls is the sample length along the shear direction, Lcy is the total 

displacement for one shear cycle, Wt is the accumulated total displacement, σni is the 

initial normal stress and Kn is the normal stiffness. 



Chapter II                         Literature review of the shear behaviour of clean rock joints 
______________________________________________________________________ 

63 
 

In another study, Homand et al., (2001) presented a roughness degradation model for 

CNL conditions based on roughness parameters as: 
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where, ka is the apparent anisotropy coefficient and DR0
r is the degree of joint relative 

roughness prior to shearing. 

Belem et al., (2007) reported two empirical joint surface asperity degradation models 

(models 1 and 2) for CNL and CNS, monotonic shearing and cyclic shearing conditions. 

Model 1 was formulated based on the evolution of surface secondary roughness and 

Model 2 was developed based on the concept of average asperity probable contact as: 

Model 1: 
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where, θs is the surface asperity average angle, α0 is a constant, ka is the apparent 

anisotropy coefficient, DRr is the degree of joint surface relative roughness, a0 is the 

roughness amplitude (equivalent to parameter Rt, the peak-to-valley height, kn is the 

normal stiffness, us0 is the relative shear displacement and us-tot is the total accumulated 

shear displacement. 

2.6. Summary 

A brief description of the studies on clean rock joints under monotonic and cyclic 

loading has been given. Environments such as underground excavations, namely, 

mining and tunnelling are closely represented by CNS conditions. The importance of 

considering stiffness on joint shear behaviour was well emphasised under the monotonic 

loading in these studies (Johnston and Lam 1989; Skinas et al., 1990; Indraratna and 

Haque 2000). 

It was revealed from the literature review that a majority of the experimental studies 

carried out on shear behaviour of rock joints was under monotonic loading. 

Furthermore, a limited number of experimental studies were reported in the literature 

investigating the effects of cyclic loading on shear behaviour of rock joints under CNS 

conditions. 

 It was concluded from the literature reviewed above that the models based on energy 

balance principals (Ladanyi and Archambault 1969; Johnston and Lam 1989; Seidel and 
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Haberfield 1995a) and methods based on shearing modes realistically quantify shear 

behaviour of rock joints under monotonic loading. In addition, the analytical methods 

available in the literature for describing shear behaviour of rock joints under cyclic 

loading are mostly based on the sliding mechanism.  

It is noted that Jafari et al., (2003) studied experimentally the shear behaviour of 

artificial clean rock joints cast using cement based mortar under cyclic loading and CNL 

conditions where the normal load remains constant during shearing. In contrast, this 

thesis investigates the shear behaviour of clean and infilled rock joints cast using high 

strength Plaster of Paris for various initial normal stresses, asperity types and infill 

thickness to asperity height ratios under cyclic loading and CNS conditions where the 

normal load changes due to stiffness of surrounding rock mass.  These rock joint 

conditions were designed to simulate the actual joint deformation encountered in the 

field. Furthermore, the experimental studies are accompanied by mathematical and 

numerical models to describe the effects of cyclic loading on shear strength of clean and 

infilled rock joints. 

The following chapter reviews the research work on infilled joints and models 

developed to predict their strength. 
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Chapter III 

3. LITERATURE REVIEW OF THE SHEAR BEHAVIOUR OF 

INFILLED ROCK JOINTS 

 

3.1. Introduction 

As discussed in chapter II, the shear and deformability behaviour of a rock mass are 

influenced significantly by the existence of joints. Jointed rocks are often infilled with 

material between the joint planes which considerably affect their strength. As these 

infilled joints are likely to have less shear strength than other elements of a rock mass, it 

is essential to apply appropriate shear strength parameters in the design of underground 

excavations and when considering slope stability. 

It is obvious that joint infill reduces the rock to rock contact, which decreases the shear 

strength of the joints. However, some infilled joints will be cemented by the infill 

material and in these situations; the joints shear strength may approach the strength of 

the intact rock.  

3.2. Infill material 

Brekke and Howard (1972) reported the following seven groups of joints based on infill 

materials according to their strength and behaviour:  

• Healed or “welded” discontinuities. 

• Clean discontinuities, i.e., closed but without filling or coatings. 

• Calcite fillings. 
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• Coatings or fillings of chlorite, talc and graphite. 

• Inactive clay material. 

• Swelling clay. 

• Material that has been altered to a more cohesionless (sand-like) material. 

In spite of the high complexity seen in the natural joints and their fillings, Ladanyi and 

Archambault (1977) divided infill material types found in joints into four groups: 

• Clean, i.e. non-filled or without coating. 

• Coated. 

• Clay-like infilling. 

• Sand-like infilling. 

According to Lama (1978), the filling material that exists within interfaces can be 

categorised into the following groups, based on the material origin and the method of 

transport: 

• Loose material brought from the surface such as sand, clay. 

• Deposition by ground water flow containing products of leaching of calcareous 

or ferruginous rocks. 

• Loose material from tectonically crushed rock. 

• Products of decomposition and weathering of joints. 

Barton (1974) explained the role of infill in shear behaviour of rock joints by 

considering four groups of thickness: 

• For low infill thickness, the rock to rock contact occurs almost immediately 

when the normal stress that is applied on the contact points is high enough to 
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scatter the clay in these critical regions. The dilation component of the peak 

strength reduces slightly which may be more than compensated for by 

“adhesive” action of the clay infill in these critical regions. There is not a 

significant difference in the shear strength from non-filled joints because the 

rock to rock contact area at peak strength is always small. If there is a fast 

shearing rate, negative pore pressure is developed within the filling due to 

dilation (i.e. rock to rock contact). 

• In order to develop the same amount of rock to rock contact for slightly higher 

thicknesses, larger shear displacement will be required. The dilation component 

at peak strength is greatly reduced since the new position of the asperities at 

peak stress is similar to the asperity arrangement of an non-filled joint at its 

residual strength. Due to the reduced dilation, no negative pore pressure is 

developed. 

• When the adjacent rock asperities come close together, no rock to rock contact is 

expected, but stress will increase within the filling. There will be an increased 

pore pressure in the highly stressed zones with a high shear rate which will 

cause lower shear strength, but if the shear rate is lower, consolidation will take 

place and the pore pressure will dissipate to low stress pockets on both sides of 

the consolidated zones. The net results will be a marked increase in shear 

strength, similar to the fast shear rate. 

• The influence of the rock walls will disappear, when the infill thickness is 

several times the asperity amplitude. Provided that the filling is uniformly 

graded and predominately clay or silt, the shear strength is dominated by 

straightforward soil mechanics principles. 
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Past studies have evaluated the laboratory shear strength parameters of both natural and 

artificial infilled rock joints under monotonic loading and proposed models to quantify 

them (e.g. Goodman 1970; Kanji 1974; Ladanyi and Archambault 1977; Lama 1978; 

Barla et al., 1985; Bertacchi et al., 1986; Pereira 1990; Phien-wej et al., 1991; de 

Toledo and de Freitas 1993; Indraratna et al., 1999 and 2005; Oliveira and Indraratna, 

2010). This chapter summarises the previous work on shear behaviour of infilled rock 

joints and the models available for evaluating the shear strength under monotonic 

loading. 

3.3. Factors controlling shear strength of infilled rock joints 

There are many parameters identified influencing the shear behaviour of infilled rock 

joints. These important parameters include: 

• Joint surface roughness 

• Type and thickness of the infill 

• Development of pore water pressure and drainage conditions 

• Degree of over consolidation ratio 

• Boundary conditions 

3.3.1. Joint surface roughness 

The conditions of the infill interface, as defined by the roughness of the rock wall, may 

affect the shear strength of infilled joints. The effect of the soil-rock interface was 

investigated by Kanji (1974). Flat saw-cut and polished surfaces of limestone and basalt 

were filled with different soils and tested in a shear box. Table 3.1 shows the results of 

the joint shear strength to the soil strength that makes the infill. Kanji (1974) found that; 

in some cases an infilled joint can be weaker than the infill material alone and the 
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reduction in shear strength is a function of surface roughness and the clay mineral 

present. The shear strength of soil-rock contact surface decreases sharply and at lower 

shear displacement than the soil alone. For smooth surfaces, a lower shear displacement 

is required to reach the residual shear strength of the contact surface. This may be 

explained by the presence of the flat surfaces influencing the orientation of clay 

particles along the failure plane. 

Table 3-1 Influence of boundary conditions on the strength of infilled joints 

(after Kanji 1974)  

Rock Surface  soil 
τjoint/τsoil 

Limestone Saw-cut Sandy kaolin clay 0.95 

Limestone Saw-cut Pure kaolin 0.96 

Limestone Polished Sandy kaolin clay 0.92 

Limestone Polished Pure kaolin 0.88 

Limestone Polished Illite 0.91 

Limestone Polished Montmorillonite clay 0.76 

Basalt Polished Montmorillonite clay 0.61 

NB: τjoint and τsoil are joint shear strength and soil shear strength respectively. 
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Kutter and Rautenberg (1979) performed shear tests on clay filled planar to rough 

sandstone joints under CNL conditions and found that the strength is higher for rougher 

joints.  

de Toledo and de Freitas (1993), based on the sand filling between two flat granite 

blocks, pointed out that the strength of a joint is affected by boundaries in two ways. In 

clay fills, sliding occurs along the contact area, due to the particle alignment, while the 

rolling of grains seems to be the major factor to reduce the strength in sands. For an 

interface filled with sand, the influence of rock boundary may be observed when its 

surface is smoother than the roughness of the sand surface (defined by particle size 

distribution) and when the dilation is reduced. Figure 3-1 illustrates two joints with 

different roughness that are filled with the identical sand. The rougher joint (Figure 3-1 

up) impedes the movement of the sand-rock contact, and for failure to take place; the 

sand friction needs to be overcome. Conversely, the joint shown in Figure 3-1 [down] is 

smooth and grain rotation can occur on the boundary surface and only rolling friction 

may be observed. 

 

Figure 3-1 Rock joint-sand fill contact: [up] Rough surface with no 

influence on the joint strength, [down] Smooth surface with grain rotation 

occurring on the boundary, weakening the joint (after de Toledo and de 

Freitas 1993) 
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Jayanathan (2007) later verified Kanji (1974)’s results by performing a few triaxial tests 

with various infill thicknesses on planar joints. It was shown that the infill thickness of 

planar joints does not affect its shear strength and pore-pressure development. 

3.3.2. Type and thickness of infill 

Type and thickness of the infill in rock joints are the most important factors, influencing 

the strength parameters of a joint. Several studies on shear strength of infilled joints 

clearly indicated that the thicker the infill layer in the joint the lower the joint strength 

(Goodman 1970; Kanji 1974; Lama 1978; Phien-wej et al., 1990; Papaliangas et al., 

1993; de Toledo and de Freitas 1993; Indraratna and Haque 2000). 

Goodman’s (1970) research work on saw-tooth shaped joints, filled with crushed mica, 

revealed that, the shear strength of the joint was greater than the infill for a thickness to 

asperity height (t/a) ratio of 1.25 (Figure 3-2). Similar results were reported by Ladanyi 

and Archambault (1977), from direct shear tests using kaolin clay infill (Figure 3-3). 

They also stated that the value of the shear strength increased with decreasing t/a ratio, 

and with increasing asperity angle. 
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Figure 3-2 Shear strength of mica infilled joints (after Goodman 1970) 

Tulinov and Molokov (1971) in their research on sand and clay infilled joints in 

limestone, sandstone and marl found that, a thin layer of sand did not have a significant 

influence on the frictional behaviour of hard rocks. The opposite results were shown for 

tests on soft rocks. Lama (1978) presented a series of laboratory tests performed on 

replicas of tension joints filled with kaolin, in which high strength gypsum was used to 

cast the rock. He concluded that the strength of infilled joints approached the strength of 

infill material when the t/a ratio exceeded the critical value of unity.  
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Figure 3-3 Shear strength of kaolin infilled joints (after Ladanyi and 

Archambault 1977) 

Kutter and Rautenberg (1979) found that the shear strength of clay infilled joints 

increased slightly with increasing surface roughness, whereas for sand filled joints, a 

considerable increase in shear strength was observed. Generally, the shear strength of 

the joints decreased with the increase in infill thickness. Wanhe et al., (1981) reported 

that the shear displacement at peak shear strength increased as the infill thickness 

increased to a critical value. Under this condition, the shear strength was dominated by 

the infill when infill thickness was further increased. 

Phien-wej et al., (1991) conducted direct shear tests on saw tooth shaped gypsum 

samples filled with oven dried bentonite and concluded that, the strength of joints 

becomes equal to that of infill material when the t/a ratio approached two (Figure 3-4). 
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Figure 3-4 Variation of shear strength with asperity angle of 30° against t/a 

ratio (after Phien-wej et al., 1991) 

Papalingas et al., (1993) carried out detailed shear tests on plaster-cement joints filled 

with three different infill materials, kaolin, marble dust and pulverised fuel ash. The 

results indicate that the shear strength of the joints containing kaolin becomes constant 

at a t/a ratio of approximately 0.6, while the shear strength of joints with either marble 

dust or fuel becomes constant at t/a ratios between 1.25 and 1.5. A reducing trend in 

shear strength was observed with the addition of a thin layer of infill material. It is 

inferred from Figure 3-5 that any further increase in t/a values of more than 1.5, would 

not result in any tangible peak shear strength change which is evident by the asymptote 

of peak shear strength to the t/a axis. 
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Figure 3-5 Effect of t/a ratio on shear strength of infilled joints (after 

Papalingas et al., 1993) 

de Toledo and de Freitas (1993) performed ring shear tests on toothed Penrith sandstone 

and Gault clay. The test results indicate two peaks, namely the soil peak and the rock 

peak (Figure 3-6). It was found: 

• The soil peak shear strength decreased toward a t/a ratio of unity and became 

constant beyond. 

• The rock peak shear strength or the ultimate strength of the joint remains 

unchanged regardless of the consolidation stress of the infill. At the t/a ratio of 

unity, it was higher than the strength of the soil infill. 

• It was difficult to distinguish between the two peaks when the strength 

difference between the infill and the rock was small. 

•  If the t/a ratio is greater than unity, the joint strength may sometimes be 

considered equal to that of the soil infill but not greater. 
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• When the shear displacement is high enough for rock to rock contact to take 

place during the test, the strength of the joint will be dominated by the rock 

asperities. 

 

Figure 3-6 Strength of clay infilled sandstone joint tested under CNL in a 

ring shear device for σn = 1 MPa (after de Toledo and de Freitas 1993) 

Indraratna et al., (1999) carried out CNS direct shear tests on tooth shaped joints with 

9.5° and 18.5° of asperity angle, infilled with soft clay. The samples were sheared with 

different values of initial normal stress ranging from 0.3 MPa to 1.1 MPa and under a 

constant normal stiffness of 8.5 kN/mm. It was found that both the shear strength and 

friction angle were reduced significantly by the presence of infill (Figure 3-7). It was 

also observed that joint roughness plays an important role on the shear strength up to the 

t/a ratio of 1.4. Beyond the stated critical ratio, the shear behaviour is controlled only by 

the infill material. 
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Figure 3-7 Effect of infill on strength envelope: [up] i0 = 9.5°, [down] i0 = 

18.5° (after Indraratna et al., 1999) 

Jayanathan (2007) examined the effect of infill thickness on the shear strength envelope. 

It was found that the angle of friction resistance decreased considerably with addition of 
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a thin layer of infill in comparison with a clean joint. As expected, the shear strength 

envelope of joints with thicker infill approached that of infill material.  

3.3.3. Development of pore water pressure and drainage conditions 

Development of pore water pressure and drainage conditions is another important 

parameter that affects the shear behaviour of infilled rock joints. The undrained shear 

strength is always lower than the drained shear strength. The rate of shear displacement 

determines the drained or undrained status of the tested samples. de Toledo and de 

Freitas (1993) carried out shear tests on infilled joints at different shear rates. They 

stated that the shear strength decreases with increase in the shear rate. In addition, it was 

concluded that even reasonably low shear rate cannot guarantee the full drainage of the 

infill material. 

Jayanathan (2007) conducted undrained triaxial tests on artificial saw tooth shaped 

joints with normally consolidated silty clay as the infill material. He found that: 

• Pore pressure increased during loading. As the joint dilated, pore water 

pressure decreased to a negative range (suction).   

• It was often difficult to interpret the resulting pore water pressure of the 

mixed infill (mixed with the asperity debris). 

• The negative pore pressure was more prominent for axial strain exceeding 

1% and when the infill thickness was relatively thin (e.g. t/a = 0.5). 

• At t/a > 1, the pore water pressure increased continuously to a peak value and 

then remained almost constant when the deviatoric stress attained a plateau at 

axial strains exceeding approximately 1.5-2%. 



Chapter III                     Literature review of the shear behaviour of infilled rock joints 
______________________________________________________________________ 

80 
 

• At t/a < 1, the asperity contact was observed (rock to rock contact), 

particularly after an axial strain of 1-2%. 

• For the pronounced asperity interface, the axial strain decreased significantly 

with increasing confining pressure. 

• For a particular t/a ratio at a reduced axial strain, there was a considerable 

increase in the peak deviatoric stress for higher confining pressures. 

• When confining pressure increases, the suction generated in the joint with 

relatively thin infill (e.g. t/a = 0.5) decreases significantly, which can be 

attributed to the confined dilation or shearing of asperities. 

• At t/a =1, the shearing of asperities is less pronounced and the confining 

pressure does not affect the development of suction significantly. 

• For t/a >1, under high confining pressure, the excess pore water pressure 

increases with increase in the peak deviatoric stress and the axial strain 

required to reach a constant pore water pressure decreases. 

3.3.4. Degree of over consolidation ratio 

According to fundamental soil mechanics, a discontinuity infill is considered normally 

consolidated if the existing effective in situ normal stress (σn0) equals or exceeds the 

maximum effective pre-consolidation pressure (Pc). The infill is over consolidated, if 

σn0 is less than the effective pre-consolidation pressure (Pc).  

Barton (1974) reported that almost all discontinuities are probably over consolidated. 

The only infilled joints likely to be normally consolidated are those from surface 

weathering. Barton (1974) also stated that in general, clays show a significant difference 

between peak and residual strength as clay particles are re-oriented within narrow bands 

close to the shear surfaces. 
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de Toledo and de Freitas (1993) carried out limited ring shear tests on clay infilled 

toothed joints for varying t/a ratios and two levels of consolidation under drained 

conditions. They concluded that the value of the soil peak strength increased with 

increased level of consolidation while the rock peak strength was unaffected. For thick 

infilled joints (no rock to rock contact) the peak shear strength increased with rising 

levels of consolidation.   

Jayanathan (2007) investigated the effect of over consolidation on the development of 

shear strength and pore pressure based on a series of triaxial tests of infilled (clay) rock 

joints. The tests were conducted on filled planar, sand stone and saw toothed joints. The 

peak value of the deviatoric stress was increased for planar joints, when the Over 

Consolidation Ratio (OCR) [OCR is the ratio of the pre-consolidation pressure to 

testing confining pressure] increased from 1 to 4 but it remained relatively constant for 

higher values of OCR. At lower values of axial strain, a shift in the peak deviatoric 

stress was observed. The pore pressure showed a gradual reduction trend with 

increasing OCR and a reverse shift of its peak value in comparison to the deviatoric 

stress. For over consolidated clays, the deviatoric stress and pore pressure did not 

decrease after reaching peak stress.  

The test results on infilled sand stone joints revealed that with the low thickness of infill 

material, the effect of OCR is observed mainly in the soil peak shear strength (similar to 

de Toledo and de Freitas 1993). As OCR increased, the development of positive pore 

water pressure decreased until it becomes a negative range (suction) in smaller strains. 

For high infill thickness and with OCR of 4 and 8, there was a drop in pore water 

pressure after attaining the peak shear strength due to dilation within the infill. Similar 
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reaction was reported for artificial saw toothed joints with the same clay infill as shown 

in Figure 3-8. 

 

Figure 3-8 Shear behaviour of infilled idealised joints with different OCR 

values under undrained condition at σ
/
3 = 500 kPa (after Jayanathan 2007) 

3.3.5. Boundary conditions 

Most of the test results on infilled joints reported previously was performed under CNL 

conditions where no stiffness was applied (Lama 1978; Phien-wej et al., 1991; 

Papaliangas et al., 1993; de Toledo and de Freitas 1993). Based on these studies, it was 

concluded that the shear strength increases with increase in the normal stress. In 
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contrast, dilation diminishes due to asperity damage or compaction as normal stress 

increases. 

Normal stiffness restricts dilation and causes an increase in normal stress over the shear 

plane. Therefore, the shear strength substantially increases. Considering the relevance 

and importance of normal stiffness in simulating the actual conditions in an 

underground environment, some researchers performed shear tests on infilled joints 

with different levels of initial normal stress under CNS conditions (Cheng et al., 1996; 

Indraratna et al., 1999, 2005). They reported that the effect of stiffness decreases with 

increase in the infill thickness due to reduction in the rock to rock contact. 

3.4. Shear strength models developed for infilled rock joints 

Most of the models proposed for the prediction of shear behaviour of infilled joints are 

empirical or semi-analytical. These models consider different sets of parameters in their 

formulations, which pose some limitations. As there is a wide range of parameters 

influencing the shear behaviour of infilled joints, the models cannot cover all the 

problems encountered in the field. 

Ladanyi and Archambault (1977) incorporated two approaches to extend a mathematical 

model for estimating the shear strength of infilled cohesive joints (clay filled joints). 

One model represents the domain in which irregularities remain intact during shearing 

and the other describes the breakage of irregularities. 

For no breakage of irregularities, the shear strength (τ) in relation to normal stress (σn) is 

obtained by: 
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where, Cu is the undrained shear strength parameter of the clay infill, φb is the basic 

friction angle of the joint surface, tan(i) = m×tan(i0) and the reduction factor m is given 

by: 
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where, m varies between 0 and 1, i0 is the initial asperity angle, t is the infill thickness 

and a is the asperity height. 

For breakage of irregularities during shearing, the relationship is given by: 
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where, C0 is the uniaxial compressive strength. 

The shear strength of infill (C) is obtained by: 

unuCC ϕσ tan+=                       (3.5) 

where, φu is the undrained friction angle of the clay infill. 

They also found that the second part was valid only for the following limits: 

5.01.04530
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When there is no breakage of asperities, the factor m is used to reduce the peak dilation 

angle of the joint due to the presence of infill. For the second domain, it was used to 

reduce the subtraction of the clean joint shear strength and the infill material. 

Lama (1978) introduced a logarithmic relationship to predict the shear strength of a clay 

infilled joint from regression analysis of the experimental data. The model is given by 

the following equation: 

745.0)ln(3.046.045.7 nnp t σστ −+=                      (3.7) 

where, τp is the peak shear strength (kPa), σn is the normal stress (kPa) and t is the 

thickness of the infill (mm). 

The application of the above equation is only limited to the specific roughness of the 

joint tested. 

Phien-wej et al., (1991) presented an empirical relation for the prediction of shear 

strength of infilled joints. The model is based on laboratory data from saw tooth shaped 

joints and dry bentonite as the infill. They reported that the shear strength envelope 

changes from a linear to a bilinear relationship as the asperity angle increases. The joint 

shear strength is controlled by the infill alone when t/a reached 2. The proposed 

exponential function is given by: 

)]/(exp[)/( 2
10 atkat

k

nnn

p

σσ
τ

σ
τ

−=                     (3.8) 

where, τp is the peak shear strength (kPa), τ0 is the peak shear strength of the clean joint 

at the same normal stress (kPa), σn is the normal stress (kPa) and k1 and k2 are empirical 

constants that vary with the surface roughness and applied normal stress. 
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Papaliangas et al., (1993) incorporated a similar approach to that proposed by Ladanyi 

and Archambault (1977) and introduced a model to estimate the shear strength of 

infilled rock joints. They stated that the shear strength of an infilled joint falls between 

two limits, τmax the maximum shear strength of the non-filled joint and τmin, the potential 

minimum shear strength of the system for a critical thickness of infill. The potential 

minimum shear strength is a function of the thickness and type of infill, the roughness 

of the rock wall and the normal stress. For rough joints, it is postulated that τmin equals 

the shear strength of the infill. In the case of planar or smooth slightly undulated joints 

τmin would be equal to the strength along the interface, which can be lower than the 

shear strength of the infill. The peak shear strength as a percentage of stress ratios is 

expressed by: 

n)( minmaxmin µµµµ −+=                      (3.9) 

where, 
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where, t is the mean thickness of filling material and a is the mean roughness amplitude 

of the discontinuity. 

The constant c is defined as the t/a ratio at which the minimum shear strength is attained 

and this depends on properties of the filling, the normal stress and the roughness of the 

discontinuity surface. The constants c and m are experimentally evaluated and for the 

series of tests conducted by the Papaliangas et al., (1993) were considered as 1.5 and 1 

for peak shear strength, respectively. Similar values were also reported by Ladanyi and 

Archambault (1997).  For t/a = 0 and µ equals to µmax, the shear strength is equal to the 

clean joint. For t/a > c, µ should be assigned to µmin which gives the minimum shear 

strength between the filling material and interface. The proposed concept is shown in 

Figure 3-9. 

This model requires an evaluation of the constant for various t/a ratios in advance. In 

addition, the effect of basic friction angle, the soil friction angle and dilation angle are 

not explicitly clarified. 

A general model for the prediction of shear strength of infilled joints for various infill 

thicknesses based on the experimental observations was proposed by de Toledo and de 

Freitas (1993) and is shown in Figure 3-10. They described the infill rock joints 

interaction as interlocking, interfering and non-interfering. Interlocking refers to the 

conditions in which the rock surfaces come in contact. Interfering takes place when 

there is no rock contact but the strength of the joint is greater than the infill alone. The 

non-interfering represents the joint behaviour controlled by the infill alone. The critical 

thickness (tcrit) is defined by the limit between the interfering and non-interfering 

regions beyond which the joint shear behaviour is generally controlled by the infill 

material. 



Chapter III                     Literature review of the shear behaviour of infilled rock joints 
______________________________________________________________________ 

88 
 

 

Figure 3-9 Empirical model for the peak shear strength of infilled joints 

(after Papaliangas et al., 1993) 

This critical thickness is a function of the infill material grain size, asperity angle and 

height. Therefore, materials showing granular behaviour, for instance sandy soil, present 

a critical t/a ratio greater than unity. On the other hand, clays have a critical t/a ratio of 

unity or less. 

The key aspects of this model can be highlighted as: 

• It is similar to that proposed by Papaliangas et al., (1993), and describes the 

shear behaviour of infilled rock joints as a combination of a fraction of the 

strength of the rock (clean joint) and the infill material. 

• Unlike the previous models, it was argued that the intercept between the rock 

peak strength envelope of an infilled joint for a thickness approaching zero is 

lower than the strength of the clean joint for a given normal stress. 

•  The intercept of the soil peak shear strength in this model is affected by the 

initial asperity angle. 
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Figure 3-10 Strength model for infilled joints (after de Toledo and de Freitas 

1993) 

A similar approach to Phien-wej et al., (1991) based on a series of direct shear tests on 

infilled joints was presented by Indraratna et al., (1999) for the evaluation of the shear 

strength of infilled joints under CNS conditions. This model is based on the concept of 

Normalised Shear Drop (NSD). NSD is defined as the reduction in the peak shear stress 

due to the presence of infill material divided by the initial normal stress. The authors 

also stated that the variation of NSD with t/a ratio can be described using a hyperbolic 

relationship. The peak shear strength is then given by: 

βα
σττ

+
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)()( 0inf at
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where, σn0 is the initial normal stress and α and β are model coefficients. 

The (τp)non-filled can be expressed by Equation (2.57), thus: 
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where, k is the boundary normal stiffness, A is the joint surface area, a0 and a1 are the 

Fourier coefficients, hτp is the horizontal displacement corresponding to peak shear 

strength, T is the asperity length, iτp is the dilation angle corresponding to peak shear 

strength. 

Indraratna et al., (1999) also suggested a reduction factor for NSD that varies from 0.8 

to 0.9. Beyond this cut off, the infill controls the shear behaviour. 

The advantage of this model is that it considers the shear strength of clean joints in 

terms of measured physical parameters, using the peak dilation angle described by 

Fourier series. 

In an attempt to calibrate the later model for the other infill materials, Indraratna et al., 

(2005) carried out another experimental study on the same type of joints, but with 

graphite and sandy clay as the infill. They stated that the constants of the previous 

model were often found to be sensitive to the type of infill material and not always 

accurate, for instance, in the case of granite infill. 

For predicting the shear strength of a variety of infilled joints, Indraratna et al., (2005) 

introduced a model based on two algebraic functions A and B, adopting a similar 

approach to Papaliangas et al., (1993). In this model, the shear strength of infilled joints 

is described in terms of fractions of the shear strength of the rock interface and the soil 

infill. As shown in Figure 3-11, function A is introduced to replicate the decrease in the 

influence of the tan(φb+i)  term, with increasing t/a ratio. Function B also is considered 
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to model the increasing effect of the term tan(φfill ) in the region of t/a<(t/a)cr. Function 

A becomes zero and function B equals to tan(φfill ) at (t/a)cr.   

 

Figure 3-11 Shear strength model for infilled joints showing the role of φb 

and φfill  (after Indraratna et al., 2005) 

Hence, in the region of asperity interference, for t/a<(t/a)cr: 
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+−+=+= fillb
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s iBA                (3.14) 

where, τs is the peak shear strength of infilled joints, α and β are empirical constants 

defining the geometric locus of the functions A and B, and κ is given by: 

crat

at
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In the case of non-interference, t/a≥(t/a)cr, the normalised shear strength becomes: 
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In this model, any cohesion of the joint has been ignored. The cohesion of a natural 

joint may have to be considered, for instance, if there is joint cementation or there is a 

clay infill, particularly if this is wet. Under such circumstances, the term Cinfill /σn must 

be considered in both Equations (3.14) and (3.16). 

This later model has been successfully verified for joints with different infill material 

such as graphite, bentonite and mixture of clay and sand. 

The previous model was extended by Indraratna et al., (2008) to describe the effect of 

over consolidation in the shear strength of infilled rock joints. According to the 

experimental study on idealised saw tooth shaped infilled joints, the critical t/a ratio 

decreases with increase in the OCR of the infill (Figure 3-12). It was initially assumed 

that the critical t/a ratio for an over consolidated infill can be described in terms of the 

OCR and the critical t/a ratio of the same joint with normally consolidated infill. 
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Figure 3-12 Conceptual normalised shear strength variation with t/a ratio 

(after Indraratna et al., 2008) 

To make the graphical expression of Figure (3-12) convenient for modelling, a ratio κoc,n 

was introduced as: 

ncr
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noc at

at

,

,
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=κ                     (3.17) 

where, (t/a)cr,n is the critical t/a ratio of an infilled joint with an OCR of n and (t/a)oc,n is 

the t/a ratio of a given infilled joint with an OCR of n. 

Using the above ratio, the interfering zone is the same independently of OCR as shown 

in Figure 3-13. 
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Figure 3-13 Shear strength model for over consolidated infilled idealised 

joints (after Indraratna et al., 2008) 

In order to consider the effects of over consolidation on the normalised shear strength 

model, Indraratna et al., (2008) proposed that the soil infill term can be normalised 

using the SHANSHEP method (Ladd and Foott 1974) as: 

)log()/log()/log( 1,, OCRocnsnocns αστστ +=               (3.18a) 

αστστ OCRocnsnocns ×= 1,, )/()/(                 (3.18b) 

Resulting in: 

αϕστ OCRfillnp ×= )tan()/(                    (3.19) 

The modified model gives the following relationship for the non-interfering zone 

(t/a<t/acr or κoc,n<1): 
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where, an and bn are empirical constants defining the geometric loci of the functions An 

and Bn and φ/
fill  is the effective friction angle of normally consolidated infill. 

For non-interfering zone (κoc,n > 1), the normalised shear strength is only controlled by 

function Bn. 

Oliveira et al., (2009) stated that the shear strength model proposed by Indraratna et al., 

(2005) overestimates the shear strength of clean joints. Therefore, they proposed a 

revised function (A) to keep the energy balance as described by Seidel and Haberfield 

(1995a): 
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The dilation angle at peak shear stress for clean joints (ip)clean with a particular profile 

can be found using the relationship proposed by Indraratna et al., (1998) as: 
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where, c is an empirical constant. 

Indraratna et al., (2010) proposed a semi-empirical shear-displacement criterion that 

includes the effect of infill. This model is based on a homogenised Coulomb type slip 

model in which the effect of infill squeezing during shearing is considered as shown in 

Figure 3-14. 
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Figure 3-14 Mechanism of infill failure for small thickness (after Indraratna 

et al., 2010) 

In model development, the initial assumption was that the shear strength of an infilled 

rock joints is the sum of the two basic terms: 

)( BAn += στ                     (3.23) 

where, A and B are functions related to the joint surface component and infill material 

respectively. 

The mathematical functions that describe both strength terms (A and B) are dependent 

on the shearing mechanism. If the sliding is considered, where the infill material has to 

be squeezed out between the advancing asperities, then the following relationship can 

be established based on the work done in sliding: 

ηϕ )tan( rb iA +=                   (3.24a) 

)1)(tan( ηϕ −+= fillfill iB                  (3.24b) 

where, i r is the asperity angle at the tip, ifill  is the slope angle of the sliding surface 

within the infill and η is the parameter which describes the ratio of the sliding surface in 

contact with the rock asperity to the total length of the sliding surface, i.e. Lr/(Lr+L fill ) at 
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a given displacement. The parameter η also represents squeezing of infill material 

during shearing, and, thereby, the change in thickness. 

Figure 3-15 shows the assumed bi-linear sliding surface, where, Lr is the length of the 

sliding surface in contact with the asperity and Lfill  is the length of the sliding surface 

within the infill material. 

 

Figure 3-15 Volume of infill to be squeezed out during shearing at a given 

shear displacement (after Indraratna et al., 2010) 

This relationship was extended to describe the entire shear displacement behaviour, 

allowing the squeezing factor to vary with displacement as: 
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where, us is the shear displacement, u0, is the shear displacement beyond which asperity 

interference is noted and c1 and c2 are empirical constants that define the geometric loci 

of the function. The displacement u0 establishes the limits of the first peak shear stress 

plateau and is found experimentally. If no pronounced infill peak shear strength is 

verified, u0 vanishes. 
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In order to capture the energy balance as described by Seidel and Haberfield (1995a), 

the term representing the rock interface strength was expanded and the dilation angle in 

the numerator modified as follows: 
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The later failure criterion can now be rewritten as: 
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In the later model, the squeezing mechanism described by the factor η depends on the 

initial t/a ratio. With decreasing the t/a ratio, the factor η approaches unity and the 

model will convert to the clean joint model as proposed by Indraratna et al., (1999). In 

addition, for t/a≥(t/a)cr the model is simplified to a typical Coulomb slip model. 

In order to better represent the post-peak behaviour, Indraratna et al., (2010) proposed a 

modification to the soil-infilled joint model, incorporating the semi-empirical model of 

Equation (2.58). The modified failure criterion was proposed as: 
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where, c1 is an empirical constant which controls the rate of infill squeezing and id is 

given by Equation (2.58b). 
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3.5. Summary 

Stability of rock mass is influenced significantly by infilled rock joints. The shear 

behaviour of infilled rock joints is controlled by several parameters such as joint surface 

roughness, type and thickness of infill, development of pore water pressure and 

drainage conditions, degree of over consolidation and boundary conditions. 

In the past, experimental studies were carried out on model and natural joints with a 

variety of infill materials under monotonic loading (Goodman 1970; Kanji 1974; 

Ladanyi and Archambault 1977; Lama 1978; Phien-wej et al., 1991; Papaliangas et al., 

1990, 1993; Indraratna et al., 1999, 2005, 2007, 2010). The test results showed that the 

roughness affects the shear behaviour of infilled joints up to a critical infill thickness to 

asperity height (t/a)cr. Beyond this critical value, the shear strength is controlled by the 

infill alone. The models used for predicting the strength of infilled joints are mostly 

empirical and are valid for monotonic loading. No study has been reported in the 

literature on shear behaviour of infilled rock joints under cyclic loading. Accordingly, in 

this research study, the effects of cyclic loading on the shear behaviour of infilled rock 

joints under CNS conditions is investigated (Chapter V). A mathematical model also 

will be proposed in Chapter VI to describe the shear strength in cyclic loading 

conditions. 
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Chapter IV 

4. SHEAR BEHAVIOUR OF CLEAN ROCK JOINTS UNDER 

CYCLIC LOADING 

 

4.1. Introduction 

Laboratory studies are essential to design safe underground structures. The main 

objective of this research study is to investigate the shear behaviour of rock joints under 

cyclic loading and CNS conditions. Thus, a laboratory investigation was conducted 

based on a comprehensive experimental program using saw tooth shaped asperities and 

replicas of real rock surface cast in high strength Plaster of Paris for variety of initial 

normal stresses. The modified CNS cyclic testing machine was applied for this purpose.  

4.2. Laboratory investigation 

Selection of model material, sample preparation, CNS cyclic direct shear apparatus and 

plans for the study of cyclic loading effects on the shear behaviour of clean rock joints 

and shear rate effects on cyclic loading shear behaviour of rock joints under CNS 

conditions are described. 

4.2.1. Selection of model material 

High strength Plaster of Paris (CaSo4.H2O hemihydrates) with a mixing ratio of 3.5:1 by 

weight of plaster to water was used to prepare the samples. Plaster of Paris which is a 

non-toxic material can be moulded into any shape when mixed with water and its long-

term strength is independent of time once the chemical hydration is complete and dried 
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properly. The initial setting time for the gypsum used in this study was around 20 

minutes. The mechanical properties of plaster after curing in an oven for 14 days at a 

constant temperature of 40° C were determined by performing several tests on 

cylindrical samples with a diameter of 50 mm and height of 110 mm. The tested 

average uniaxial compressive strength (σc) and Young’s modulus (E) of the cured 

samples were approximately 60 MPa and 16 GPa respectively. 

4.2.2.  Sample preparation 

Two types of joint surface were prepared for shear tests: saw tooth and replicas of a real 

rock surface (JRC = 6) collected from Kangaroo Valley NSW, Australia. Three 

different initial asperity angles 9.5° (Type I), 18.5 ° (Type II) and 26.5° (Type III) as 

representative of low, intermediate and high levels of roughness were selected to 

prepare triangular asperity moulds. The equivalent JRC values of 4.2, 9 and 13.8 have 

been calculated for Types I, II and III asperity surfaces using the method suggested by 

Xie and Pariseau (1992). The real rock joint surface was also physically imprinted on 

special resin to prepare the mould of the real rock surface. A close view of the mould of 

Type II asperity surface and joint sample collected from the field is shown in Figure 4-

1. For each mould, a number of fully mated joints of high strength Plaster of Paris 

(CaSo4.H2O hemihydrates) were cast using a mixing ratio of 3.5:1 by weight of plaster 

to water. The bottom block was prepared inside the bottom mould containing the 

required surface profile and left for two hours to cure. The matching specimen was then 

cast on the top of the bottom specimen to ensure the fully mated conditions and the 

whole assembly was left for two additional hours to satisfy the initial setting time. 
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Figure 4-1 [left] Mould of Type II asperity surface, [right] Field sample 

During sample preparation, mild vibration was applied to the mould externally to 

eliminate any entrapped air within the samples. The samples were then allowed to cure 

in an oven for 14 days at a constant temperature of 40°C. Prior to the cyclic shearing, 

the prepared samples were then acclimatised room temperature. A close view of typical 

prepared samples of the Type I (upper sample) and Type III (lower sample) asperity 

surfaces are shown in Figure 4-2. The joint surface area of each sample was 187.5 cm2 

(250 × 75 mm) with a total of eight asperities in the direction of shearing for triangular 

joints. 

 

Figure 4-2 [left] Type I asperity surface (upper sample), [right] Type III 

asperity surface (lower sample) 
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Tilt test performed on planar interfaces of high strength Plaster of Paris indicated an 

average basic friction angle (φb) of 35°. 

4.2.3. CNS cyclic direct shear apparatus 

Experiments were carried out at the Rock Mechanics Laboratory, University of 

Wollongong, NSW, Australia, using the large scale cyclic direct shear apparatus 

updated for this study. The instrument consisted of two main parts, controller unit and 

mechanical section as shown in Figure 4-3.  

 

Figure 4-3(a) Controller unit, (b) Schematic diagram of the cyclic CNS 

direct shear apparatus, (c) General view of the cyclic CNS direct shear 

apparatus 

(a) 

(b) 

(c) 
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The digital controller was able to assign the cyclic displacement of the sample. The 

mechanical part had two steel shearing boxes, 250 mm in length, 75 mm in width, and 

150 mm and 100 mm in height of the top and bottom boxes respectively. A hydraulic 

jack located on top of the instrument was used to apply the initial normal load. A set of 

springs with stiffness of 8 kN/mm was incorporated to confine the joint dilation 

simulating the effect of surrounding rock mass. The lower box was only displaced 

laterally via a hydraulic actuator driven by the digital controller unit. The upper box 

moves only in a vertical direction on ball bearings such that any relative rotation of the 

joint surfaces is avoided. The shear and normal loads were measured by strain meters 

mounted on the load cells and the normal displacement was recorded using Linear 

Variable Differential Transformer (LVDT). 

4.2.4. Experimental plan 

The shear behaviour of rock joints under cyclic loading and CNS conditions was 

investigated in the laboratory by performing a test program on prepared saw tooth shape 

and replicas of rock surface samples. The experiments were conducted in two steps. 

Firstly, more than 15 cyclic direct shear tests (given in Table 4.1) were carried out on 

the joint specimens. Some of the tests were performed twice to ensure repeatability of 

the measured data. The applied initial normal stresses of the artificial triangular asperity 

joints were in the range of 0.16 MPa to 2.4 MPa, representing typical variations of 

normal stresses encountered in both civil and mining excavations. The replicas of the 

real rock surface were subjected to three different initial normal stresses 0.5 MPa, 1.5 

MPa and 2.5 MPa. All samples were sheared for four consecutive cycles (each cycle 

sheared 60 mm) with shear rate of 0.5 mm/min.  
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Table 4-1 Experimental program for the study of cyclic loading effects on 

shear behaviour of rock joints 

Test number Asperity Type Applied normal stress (MPa) 

1, 2, 3, 4 Type I 0.16, 0.56, 1.64, 2.4 

5, 6, 7, 8 Type II 0.16, 0.56, 1.64, 2.4 

9, 10, 11, 12 Type III 0.16, 0.56, 1.64, 2.4 

13, 14, 15 Replicas 0.5, 1.5, 2.5 

The purpose of the first series of tests was to study the effects of cyclic loading on shear 

behaviour of rock joints under CNS conditions. Subsequently, another series of cyclic 

shear tests with two different shear rates were carried out on specimens made based on 

Type I asperity surface as listed in Table 4.2.  

Table 4-2 Experimental program for the study of shear rate effects on cyclic 

loading shear behaviour of rock joints under CNS conditions  

Test number Shear rate (mm/s) Applied normal stress (MPa) 

16,17,18 5 0.56, 1.64, 2.4 

19,20,21 20 0.56, 1.64, 2.4 

More than six cyclic direct shear tests with shear rates of 5 mm/s and 20 mm/s and 

initial normal stresses of 0.56 MPa, 1.64 MPa and 2.4 MPa were conducted on the 

samples. The tests were continued for 100 consecutive loading cycles. The maximum 

tangential displacement was half of the asperity length (15 mm). The second series of 
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tests was intended to investigate the effects of shear rate on cyclic loading shear 

behaviour of rock joints under CNS conditions. A constant normal stiffness of 8 kN/mm 

was applied via an assembly of four springs for all the cyclic loading tests. The values 

of shear load, normal load and normal displacement against shear displacements were 

constantly monitored during each cyclic shear test. The prescribed shear displacement in 

cyclic loading conditions was described in section 2.4. 

4.3. Experimental results of the first tests series 

Figures 4-4 to 4-11 show the results of cyclic loading shear tests performed on the 

samples for different conditions of initial roughness and normal stress.   

4.3.1. Shear strength 

For σn0 = 0.16 MPa and 0.56 MPa, the shear strength is higher in the forward shearing 

represented by the upper right quadrant of shear stress - shear displacement curve rather 

than the reverse loading (Figures. 4-4, 4-6 and 4-8). In forward shearing, the shear 

strength decreases with each cycle as the dilation component diminishes due to 

asperities damage. However, for reverse shearing, the friction angle increases as 

asperities degrade. This behaviour can be explained using Patton (1966)’s basic formula 

for the shear resistance [ )tan( ibn += ϕστ ], where, τ is the shear stress, σn is the normal 

stress, φb is the basic friction angle and i is the dilation angle. In forward shearing, the [

i ] component is positive, and therefore the friction angle will be [ib +ϕ ]. For reverse 

shearing, the dilation component is negative which gives [ib −ϕ ] as the friction angle.  
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Figure 4-4 Cyclic loading shear behaviour of rock joints with Type I 

asperity surface: [left] σn0 = 0.16 MPa, [right] σn0 = 0.56 MPa 
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Figure 4-5 Cyclic loading shear behaviour of rock joints with Type I 

asperity surface: [left] σn0 = 1.64 MPa, [right] σn0 = 2.4 MPa 
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Figure 4-6 Cyclic loading shear behaviour of rock joints with Type II 

asperity surface: [left] σn0 = 0.16 MPa, [right] σn0 = 0.56 MPa 
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Figure 4-7 Cyclic loading shear behaviour of rock joints with Type II 

asperity surface: [left] σn0 = 1.64 MPa, [right] σn0 = 2.4 MPa 
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Figure 4-8 Cyclic loading shear behaviour of rock joints with Type III 

asperity surface: [left] σn0 = 0.16 MPa, [right] σn0 = 0.56 MPa 
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Figure 4-9 Cyclic loading shear behaviour of rock joints with Type III 

asperity surface: [left] σn0 = 1.64 MPa, [right] σn0 = 2.4 MPa 

Test 11 Test 12 
First cycle 

Last cycle 

Last cycle 

First cycle First cycle 

Last cycle 

Last cycle 

First cycle 



Chapter IV                              Shear behaviour of clean rock joints under cyclic loading 
______________________________________________________________________ 

113 
 

-1

0

1

-2

-1

0

1

2

0.5

1.0

1.5

1.2

1.4

1.6

1.8

2.0

-20 -15 -10 -5 0 5 10 15 20

0

1

2

-20 -15 -10 -5 0 5 10 15 20

-0.5

0.0

0.5

1.0

S
he

ar
 s

tr
es

s 
(M

P
a)

N
or

m
al

 s
tr

es
s 

(M
P

a)
N

or
m

al
 d

is
pl

ac
em

en
t (

m
m

)

Shear displacement (mm) Shear displacement (mm)

 

Figure 4-10 Cyclic loading shear behaviour of replicas of real asperity 

surface: [left] σn0 = 0.5 MPa, [right] σn0 = 1.5 MPa 
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Figure 4-11 Cyclic loading shear behaviour of replicas of real asperity 

surface with σn0 = 2.5 MPa 
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As cyclic loading is exerted on the asperities, the [i ] component decreases which results 

in the less friction angle for the forward shearing of later cycles than initial cycles. In 

reverse loading, the opposite is true and [ ib −ϕ ] becomes larger as [i ] decreases. The 

difference between the shear stress profiles shown in Figure 4-4 was insignificant for 

cyclic loading shearing of Type I asperity surface. This difference gradually increased 

with increasing initial asperity angles for Types II and III asperity surfaces (Figures 4-6 

and 4-8). In the case of Type I asperity surface, the relative movement between the 

asperities surfaces caused an intangible damage of joints surfaces. Thus, keeping the 

friction angle roughly unchanged. For each additional cycle of shearing, the shear 

strength was marginally decreased. As the initial asperity angle was increased (Types II 

and III joints surfaces), the shearing of the asperities surfaces also increased, and the 

difference in shear stress profiles for various cycles of loading became significant. In 

the tests where the initial normal stress was increased to 1.64 MPa and 2.4 MPa 

(Figures 4-5, 4-7 and 4-9), the difference between forward and backward shearing after 

the first shear cycle became less pronounced, indicating the asperity breakage 

mechanism. The data reveals that as the asperity angle increases from Type I to Type 

III, the asperity breakage mechanism is more pronounced due to higher interlocking 

between asperities. For instance in Type III joint profile shown in Figure 4-9 [right], no 

further substantial decrease in the shear stress profile was noted after the first forward 

loading cycle. Beyond this stage, any negligible reduction in shear strength under cyclic 

loading is related to the change in the effective normal stress. 

4.3.2. Normal displacement and asperity damage 

The initial negative dilation may be ascribed to the sample compaction, closure of holes 

and the initial settlement of fine irregularities along the joint surface. Generally, the 
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dilation during overriding of asperities is recovered in loading reversal. Due to the 

damage of asperities, dilation and the dilation angle reduced with increase in the shear 

cycles. The asperity damage and reduction in dilation is higher in the forward shearing 

rather than the reverse one. In the same way, asperities undergo less degradation with 

increase in the loading cycles. This can be described by the external energy exerted on 

asperities during shearing as higher energy generates more damage. The total external 

energy subjected to asperities during shearing to the asperity area is defined as: 

][∫ + dudvn τσ , where, dv and du are the increments of normal and shear displacement. 

Thus, any increase in the normal stress or initial asperity angle, increases the external 

energy subjected to asperities, resulting in higher asperity degradation. The values of 

Asperity Damage (AD), defined as the reduction in the asperity height to the initial 

asperity height for different asperity types, initial normal stresses and number of loading 

cycles are given in Table 4.3. It is evident that the asperity damage is greater for higher 

initial normal stresses, asperity angles and loading cycles where higher shear and 

normal energies are generated. In addition, the values of asperity damage for all cases 

after four consecutive cycles of shearing under CNS conditions are higher than 50% and 

increases to 100% for greater initial normal stresses and asperity angles. As the normal 

stress increased to 2.4 MPa, the asperities were sheared off close to the asperity tips 

giving dome shaped dilation curves (Figures 4-7 and 4-9). Following the initial rapid 

degradation during the first shear cycle due to the high level of initial normal stress (σn0 

= 2.4 MPa), contraction rather than dilation may be observed in subsequent shearing 

(Figures 4-5, 4-7 and 4-9). This might be related to the loss of the gouge at the sample 

edge of the shear box during cyclic shearing when asperities are broken up from the 

base. This behaviour may not happen along the field joints where the gouge is confined 

by the surrounding media. 
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Table 4-3 Asperity damage (AD) for various initial normal stresses and 

asperity angle 

Asperity 

Type 

Applied normal stress 

(MPa) 

AD 1th 

cycle 

AD 2nd 

cycle 

AD 3rd 

cycle 

AD 4th 

cycle 

Type I 

0.16 45% 50% 53% 54% 

0.56 53% 57% 61% 66% 

1.64 58% 70% 76% 83% 

2.4 81% 100% 100% 100% 

Type II 

0.16 45% 54% 65% 69% 

0.56 49% 64% 77% 84% 

1.64 74% 100% 100% 100% 

2.4 90% 100% 100% 100% 

Type III 

0.16 64% 74% 78% 81% 

0.56 68% 78% 84% 88% 

1.64 87% 100% 100% 100% 

2.4 100% 100% 100% 100% 

4.3.3. Normal stress 

The main difference between the CNS and CNL conditions is the change in normal 

stress with shear displacement. In the similar way to normal displacement, the normal 

stress increases during asperity overriding and decreases toward its initial value in 

loading reversal. This will result in higher asperity damage particularly in the first cycle 

and around the asperity tips rather than the subsequent cycles and around the asperity 
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valleys. In the case of contraction in the normal displacement after the initial rapid 

degradation of asperities (Figures 4-5, 4-7 and 4-9), the normal stress may fall below 

the value of initial normal stress. As discussed in section 4.3.2, this phenomenon is 

limited only to the laboratory conditions where the gouge might escape the shearing box 

under cyclic loading. The normal stress variation with shear deformation contributes to 

the shear strength whereby higher shear strength is observed during the dilation stage. 

The change in the profile of normal stress decreases with increasing asperity damage 

which is a function of the initial normal stress and number of loading cycles for a 

particular asperity angle and normal stiffness. The maximum values of normal stress for 

Type I asperity surface recorded in the first shear cycle were 0.79 MPa and 2.94 MPa 

corresponding to the initial normal stress levels of 0.16 MPa and 2.4 MPa respectively. 

The values for Type III asperity surface were 1.72 MPa and 2.95 MPa. 

4.3.4. Replicas of a real rock surface 

Figures 4-10 and 4-11 show the results of cyclic shear tests conducted on replicas of a 

real rock surface with 0.5 MPa, 1.5 MPa and 2.5 MPa of applied initial normal stresses. 

The main differences between the shear behaviour of real rock surface replicas and 

triangular asperities are attributed to the influence of the second order asperities and 

spatial distribution of roughness. The effect of second order asperities is depicted in 

Figure 4-10 for cyclic loading shearing with 0.5 MPa of initial normal stress where 

higher shear strength is attained in the first cycle in comparison to the subsequent 

cycles. Nevertheless, the second order asperities are mostly damaged in the first cycle 

and afterward the shear behaviour is dominated by the first order asperities. In the case 

of shearing with initial normal stress of 2.5 MPa (Figure 4-11), the behaviour of real 

rock joint imprint is similar to triangular asperities as both the first and second order 
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asperities are sheared off in the first cycle and the friction angle approaches the value of 

the residual friction angle during further shearing. In addition, due to spatial distribution 

of roughness, different shear behaviour including shear stress against shear 

displacement and associated dilation are observed for the left and right sides of cyclic 

shearing. The damage trend of real joint replicas is identical to triangular joints which is 

proportional to the external applied shear and normal energies. 

4.3.5. Strength envelope 

The strength envelopes representing the relationship between the peak shear stress and 

normal stress for different conditions of initial normal stress, asperity types and number 

of cycles are plotted in Figure 4-12. For Type I asperity surface, it is evident that the 

strength envelopes do not change considerably with increase in the number of shear 

cycles. In this condition, the strength envelopes are close to that of planar asperities 

indicated by the dashed line in Figure 4-12(a). As the initial asperity angle increases 

(Type II and III asperity surfaces), the gap between cyclic loading strength envelopes 

also increases, getting close to the minimum boundary after four loading cycles (i.e. 

planar joints). This is related to the asperity damage with increase in the number of 

shear cycles that diminishes the joint roughness. Moreover, it can be noted that in the 

case of the Type III asperity surface, there is a sharp difference between the strength 

envelopes of the first and second loading cycles due to high initial asperity interlocking 

(Figure 4-12c). In general, the current test results reveal that the variation of the strength 

envelopes under cyclic loading with increase in the number of shear cycles is 

proportional to the asperity damage. When considerable asperity damage takes place, 

the strength envelopes show significant differences and approach that of planar joints as 
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cyclic loading continues. Conversely, strength envelopes will not be significantly 

affected in the case of low asperity damage during cyclic loading. 
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Figure 4-12 Strength envelope for cyclic loading shear strength of rock 

joints: (a) Type I asperity surface, (b) Type II asperity surface, (c) Type III 

asperity surface 

4.3.6. Profile of damaged joints 

At the end of the test, the shear boxes were dismantled and the final joint profile was 

mapped where possible. In Figure 4-13 [up], Type I asperity surface after application of 

cyclic shear loading with 0.56 MPa of initial normal stress has been shown. It appears 

(a) (b) 

(c) 
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that asperities were damaged mostly around the tips where the true joint area that resists 

against the shearing, is less than the partially and fully mated conditions. The asperities 

shapes have deformed from the triangular shape at the beginning of shearing to the 

sinusoidal shape after completion of four consecutive shear cycles. It is inferred from 

Figure 4-13 [down] (Type I and σn0 = 1.64 MPa) that the asperity valleys have been 

somehow filled up with firmly compacted damaged materials (gouge) during shearing. 

 

Figure 4-13 Type I asperity surface after completion of cyclic loading: [up] 

σn0 = 0.56 MPa, [down] σn0 = 1.64 MPa 

The reattached gouge may again be chipped off and moves depending on the direction 

of shearing that might affect the shear behaviour under cyclic loading. As expected for 

Type III asperity surface and 2.4 MPa of initial normal stress (Figure 4-14), asperities 

have been sheared off from the base. The close view of the asperity profile shows a non-
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uniform breakage trend through the joint surface. Some of the asperities have been 

almost destroyed while the others exhibit residual roughness. The reattachment of the 

gouge is also observed in this specimen particularly around the asperities subjected to 

higher damage.  

 

Figure 4-14 Type III asperity surface after application of cyclic loading with 

σn0 = 2.4 MPa 

4.4. Experimental results of the second tests series 

The results of cyclic shear tests for various initial normal stresses conducted on Type I 

asperity surface with 5 mm/s and 20 mm/s of shear rates are plotted in Figures 4-15 to 

4-17. For the comprehensive investigation of the shear rate effects on cyclic loading 

shear behaviour of rock joints under CNS conditions, the previous data sets collected 

with shear rate of 0.5 mm/min for Type I asperity surface are also recalled (Figures 4-4 

and 4-5). The results indicate that the shear rate significantly affects the shear strength 

of hard rock joints under cyclic loading and CNS conditions. In general, the cyclic 

loading shear strength under CNS conditions is observed to decrease as the shear rate is 

increased. The peak shear strength recorded for the first and fourth cycles of shearing 

with shear rate of 0.5 mm/min and 20 mm/s and under initial normal stress of 0.56 MPa 

were 1.06 MPa, 0.9 MPa, 0.64 MPa and 0.62 MPa respectively.  
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Figure 4-15 Cyclic loading shear behaviour of rock joints with Type I 

asperity surface and σn0 = 0.56 MPa: [left] 5 mm/s of shear rate, [right] 20 

mm/s of shear rate 
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Figure 4-16 Cyclic loading shear behaviour of rock joints with Type I 

asperity surface and σn0 = 1.64 MPa: [left] 5 mm/s of shear rate, [right] 20 

mm/s of shear rate 
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Figure 4-17 Cyclic loading shear behaviour of rock joints with Type I 

asperity surface and σn0 = 2.4 MPa: [left] 5 mm/s of shear rate, [right] 20 

mm/s of shear rate 
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The shear strength decreased at least 4% when the shear rate increased from 5 mm/s to 

20 mm/s during the first four loading cycles for asperity shearing with 2.4 MPa of initial 

normal stress (Figure 4-17). 

4.4.1. Shear strength and dilation angle  

In Figure 4-18, the normalised shear strength (normalised to the initial normal stress) 

and normalised secant dilation angle (normalised to the initial asperity angle) were 

plotted against the shear rate for the first four loading cycles and different initial normal 

stresses. The experimental data indicates that the effect of shear rate on shear strength 

decreases with increase in the number of shear cycles as roughness degradation occurs. 

Because there are no asperities, it is expected that the variation of shear rate does not 

affect the cyclic loading shear behaviour of planar joints. In addition, as the initial 

normal stress increases, the effects of shear rate are less pronounced due to asperity 

breakage mechanism. The data reveals that the normalised secant dilation angle varies 

non-monotonically with the change in the shear rate. There might be different 

mechanisms involved such as sliding under low normal stress, asperity breakage and 

production and dilation of gauge under medium and large normal stresses. The variation 

of normalised shear strength (normalised to the initial normal stress) against number of 

loading cycles (100 loading cycles) under 5 mm/s and 20 mm/s of shear rates at 

different initial normal stresses is plotted in Figure 4-19. The effects of increase in the 

shear rate and loading cycles in reducing the shear strength are evident for asperity 

shearing under CNS conditions. 
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Figure 4-18 Variations of normalised shear strength and normalised secant 

dilation angle against shear rate: (a) σn0 = 0.56 MPa, (b) σn0 = 1.64 MPa, (c) 

σn0 = 2.4 MPa 
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Figure 4-19 Variation of normalised shear strength against number of shear 

cycles: [left] Shear rate of 5 mm/s, [right] Shear rate of 20 mm/s 

4.4.2. Profile of damaged joints 

The surfaces of asperities sheared for 100 loading cycles with 5 mm/s of shear rate and 

under 0.56 MPa and 2.4 MPa of initial normal stresses are shown in Figure 4-20. The 

effects of a high number of loading cycles (100 loading cycles) on asperities surfaces 

can be noted by comparing Figures 4-13, 4-14 and 4-20. In Figure 4-13 [up], the 

damage is only limited to the tips, while asperities were more extensively degraded as 

shown in Figure 4-20 [up] after application of 100 loading cycles.  

This can be due to the asperity fatigue in repeated loading conditions which decreases 

the joint strength. Furthermore, the asperities shapes are closer to the trapezoid rather 

than the sinusoidal profile of the four loading shear cycles. Although both of the 

asperities surfaces shown in Figures 4-14 and 4-20 [down] have been sheared off under 

the normal stress of 2.4 MPa, in the case of 4 loading cycles, residual friction angle was 
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still observed. Nevertheless, the asperities surface subjected to 100 loading shear cycles, 

has been completely damaged and is almost similar to the planar joints. 

 

Figure 4-20 Asperities surfaces after 100 shear cycles with 5 mm/s of shear 

rate: [up] σn0 = 0.56 MPa, [down] σn0 = 2.4 MPa 

4.5. Summary 

Two series of cyclic loading direct shear tests were carried out using the CNS apparatus 

for rock joints at initial normal stress ranging from 0.5 MPa to 2.5 MPa. The first series 

of tests studied the effects of cyclic loading on shear behaviour of rock joints under 

CNS conditions. In the second series of tests, the effects of shear rate on cyclic loading 
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shear behaviour of rock joints were investigated. Both artificial saw tooth shaped 

asperities and a replicas of real rock surface were sheared under cyclic loading. 

Generally, the shear strength decreased with increase in the number of loading cycles 

due to asperity damage. The laboratory tests indicate that for low levels of initial normal 

stress, the shear strength was higher in the forward shearing rather than the loading 

reversal. However, as the amount of initial normal stress increased the dependency of 

shear strength on the loading direction became less apparent. Asperity degradation was 

shown to be a function of the shear and normal energies subjected to them such that less 

asperity damage was observed in the backward shearing and subsequent cycles in 

comparison to the forward shearing and initial cycle. As shearing was conducted under 

CNS conditions, the normal stress and dilation showed similar trends that affected the 

cyclic loading shear strength and asperity damage. For replicas of a real rock surface 

sheared with initial normal stress of 0.5 MPa, the shear strength of the first cycle was 

affected by the presence of the second order asperities. Second order asperities were 

mostly damaged in the first cycle and the shear behaviour was dominated by first order 

asperities in further shearing. 

Furthermore, the cyclic loading shear strength decreases with increase in the shear rate. 

As the normal stress increased, the effect of shear rate on shear strength became less 

pronounced. With increase in the number of loading cycles, the shear strength for higher 

shear rates become closer to those of lower shear rates. The normalised secant dilation 

angle varies non-monotonically with increase in the shear rate. 

The cyclic loading shear tests described here showed the importance of cyclic loading 

on shear behaviour of rock joints under CNS conditions. The joint surfaces that sheared 

cyclically were fully mated and no infill material was introduced between them. In the 



Chapter IV                              Shear behaviour of clean rock joints under cyclic loading 
______________________________________________________________________ 

131 
 

field, joints may be filled up with sand, clay and/or silt that considerably affects the 

overall cyclic loading shear behaviour of the joints. The following chapter discusses the 

shear behaviour of infilled rock joints under cyclic loading and CNS conditions. 
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Chapter V 

5. SHEAR BEAHVIOUR OF INFILLED ROCK JOINTS UNDER 

CYCLIC LOADING 

 

5.1. Introduction 

The knowledge of properties as well as shear behaviour of rock joints is essential for the 

design of various underground engineering structures. To determine such properties of 

rock joints, the laboratory tests are usually carried out. Rock masses containing infilled 

joints may be subjected to repeated cycles of shearing. To investigate the cyclic loading 

shear behaviour of infilled rock joints, triangular asperities inclined at angles of 9.5º 

(Type I) and 18.5º (Type II) to the shear movement were cast using high strength Plaster 

of Paris and infilled with mixture of clay and sand. These joints were sheared cyclically 

in a CNS testing machine in a similar manner to the testing of clean joints.  

5.2. Laboratory investigation 

Selection of infill material, sample preparation and an experimental plan for the study of 

cyclic loading effects on shear behaviour of infilled rock joints under CNS conditions is 

described. 

5.2.1. Selection of infill material 

Mixture of clay and sand has been widely incorporated in the past for laboratory 

investigations since mixture of clay and sand infilled joints often contribute to the 

instability of jointed rock structures (Oliveira 2010). Mixture of clay and sand (75% 



Chapter V                             Shear behaviour of infilled rock joints under cyclic loading 
______________________________________________________________________ 

133 
 

fine sand and 25% Kaolinite) at initial moisture content of 12.5% was selected as infill 

material. After preparation of the infill material, it was kept inside a sealed container to 

ensure retention of the percentage of moisture. Direct shear tests performed on the 

mixture of clay and sand for various normal stresses indicated a friction angle (φfill ) of 

28° and cohesion (Cfill ) of 46 kPa (Figure 5-1). Consolidation tests were carried out on 

the infill material under loading and unloading conditions with different loads. The infill 

showed compression index (Cc) and swelling index (Cs) of 0.16 and 0.07, respectively. 
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Figure 5-1 Shear strength envelope for mixture of clay and sand infill in 

direct shear  

5.2.2. Sample preparation 

The procedure for sample casting was the same as that for clean joints described in 

section 4.2.2. Type I and II asperity surfaces with initial asperity angles (i0) of 9.5° and 

18.5° to the shear movement were considered for cyclic loading shear testing of infilled 

joints. In order to prepare the infill surface, the cured bottom block was positioned 

inside the bottom shearing box in a way that allowed the surface profile to stay slightly 
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above the edge of the bottom box. A closure over the specimen from the joint plane was 

provided by attaching an adjustable collar with the same shape as the surface profile on 

the top of the specimen. The collar was set to create the required infill thickness by 

precisely measuring the closure at four corner points. The infill material was then placed 

inside the collar and extended over the surface area using a spatula. Once, the collar was 

filled, the infill material was trimmed and compacted with a steel plate having the same 

triangular shape as the asperities. The collar was then removed and the bottom part of 

the sample was placed in the shear apparatus. The top shear box containing the upper 

sample was then mounted on top of the lower sample, thus sandwiching the infill layer 

between the two matching plaster surfaces. The smooth lateral confinement, on both 

sides of the sample, made from stainless steel was assembled to prevent loss of the infill 

material during cyclic shearing. The sample preparation procedure is illustrated in 

Figure 5-2. 

5.2.3. Experimental plan 

More than 18 cyclic loading direct shear tests as listed in Table 5.1 were carried out on 

the samples. Some of the tests were repeated to ensure the accuracy and precision of the 

measured data. The applied initial normal stresses were 0.56 MPa, 1.64 MPa and 2.4 

MPa. Three different ratios 0.3, 0.6 and 1 of infill thickness (t) to asperity height (a) 

were tested. Illustrations of the Type I joint with t/a ratio of 1 and Type II joint with t/a 

ratio of 0.6 are shown in Figure 5-3. Infill joints were subjected to predetermined initial 

normal stress (σn0) for an hour before shearing. All samples were sheared for four 

consecutive cycles with total accumulated displacement of 240 mm and a shear rate of 

0.5 mm/min to ensure a uniform drained condition of infilled joints. As in clean joints 
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testing, a constant normal stiffness of 8 kN/mm was applied to restrict the dilation. The 

maximum shear displacement was set to 15 mm. 

 

Figure 5-2 Sample preparation procedure: Type I and t/a = 1, (a) Lower 

sample, (b) Lower sample with collar, (c) Lower sample with infill material, 

(d) Whole sample with the upper and lower blocks and infill material 

Shear and normal loads and shear and normal displacements were measured at the same 

time and almost continuously during the whole length of each test. The tests were 

carried out using the CNS testing apparatus described in section 4.2.3. 

5.3. Experimental results 

The results of the cyclic loading shear tests for infilled rock joints with various infill 

thicknesses to asperity height, initial normal stresses and asperity types are plotted in 

Figures 5-4 to 5-12. 
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Table 5-1 Experimental program for the study of cyclic loading effects on 

shear behaviour of infilled rock joints 

Test 

number 

Asperity 

Type  

Applied  normal stress 

(MPa) 

Infill thickness per asperity 

height 

1 to 9 Type I 0.56, 1.64,2.4 0.3, 0.6, 1 

10 to 18 Type II 0.56, 1.64,2.4 0.3, 0.6, 1 

 

Figure 5-3 Illustrations of infilled rock joints: [left] Type I with t/a = 1, 

[right] Type II with t/a = 0.6  

5.3.1. Shear strength 

For t/a = 0.3 and σn0 = 0.56 MPa, the shear strength in Figure 5-4 was higher in the 

forward shearing than the reverse shearing represented by the second quadrant as the 

negative component. The effect of asperity degradation on reduction of friction angle 

and, therefore, the shear strength with increase in the shear cycles is evident since t/a = 

0.3 and the rock to rock contact occurs readily after squeezing the infill material. 
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Figure 5-4 Cyclic loading shear behaviour with t/a = 0.3 and σn0 = 0.56 

MPa: [left] Type I, [right] Type II 

Test 1 Test 2 
First cycle 
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Figure 5-5 Cyclic loading shear behaviour with t/a = 0.6 and σn0 = 0.56 

MPa: [left] Type I, [right] Type II 

Test 3 Test 4 
First cycle 

Last cycle 
Last cycle 

First cycle 

First cycle 

Last cycle 

First cycle 

Last cycle 



Chapter V                             Shear behaviour of infilled rock joints under cyclic loading 
______________________________________________________________________ 

139 
 

-0.4

-0.2

0.0

0.2

0.4

-0.4

-0.2

0.0

0.2

0.4

0.6

0.3

0.4

0.5

0.6

0.2

0.4

0.6

-20 -15 -10 -5 0 5 10 15 20
-0.8

-0.6

-0.4

-0.2

0.0

0.2

-20 -15 -10 -5 0 5 10 15 20

-1.0

-0.5

0.0

S
he

ar
 s

tr
es

s 
(M

P
a)

N
or

m
al

 s
tr

es
s 

(M
P

a)
N

or
m

al
 d

is
pl

ac
em

en
t (

m
m

)

Shear displacement (mm) Shear displacement (mm)

 

Figure 5-6 Cyclic loading shear behaviour with t/a = 1 and σn0 = 0.56 MPa: 

[left] Type I, [right] Type II 
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Figure 5-7 Cyclic loading shear behaviour with t/a = 0.3 and σn0 = 1.64 

MPa: [left] Type I, [right] Type II  
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Figure 5-8 Cyclic loading Shear behaviour with t/a = 0.6 and σn0 = 1.64 

MPa: [left] Type I, [right] Type II  
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Figure 5-9 Cyclic loading shear behaviour with t/a = 1 and σn0 = 1.64 MPa: 

[left] Type I, [right] Type II  
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Figure 5-10 Cyclic loading shear behaviour with t/a = 0.3 and σn0 = 2.4 

MPa: [left] Type I, [right] Type II  
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Figure 5-11 Cyclic loading Shear behaviour with t/a = 0.6 and σn0 = 2.4 

MPa: [left] Type I, [right] Type II  
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Figure 5-12 Cyclic loading shear behaviour with t/a = 1 and σn0 = 2.4 MPa: 

[left] Type I, [right] Type II 
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The peak shear strength for Type I asperity surface corresponding to t/a = 0.3 and σn0 = 

0.56 MPa decreased from 0.76 MPa to 0.55 MPa during four loading cycles (Figure 5-4 

left). The gap between shear stress profiles gradually becomes marginal with increase in 

the number of shear cycles. In the tests shown in Figures 5-6, 5-9 and 5-12 where t/a = 

1, the friction angle is mostly dominated by the infill material and reduction in the shear 

strength is related to the change in the effective normal stress (i.e. effect of asperities is 

reduced). The cyclic loading shear strength is affected by the value of initial normal 

stress such that the difference between the shear stress profiles increases with increase 

in the initial normal stress for the same ratio of infill thickness to asperity height and 

asperity type. When t/a = 0.3 and σn0 = 2.4 MPa, the effect of asperity degradation in the 

first cycle decreases the asperities contact in further shearing due to a higher infill 

thickness (Figure 5-6). The recorded cyclic loading shear strength (peak value) for Type 

II asperity surface with t/a = 1 and σn0 = 1.64 MPa during four loading cycles, were 1.3 

MPa, 1.01 MPa, 0.94 MPa and 0.85 MPa. This shows less reduction in the shear 

strength with increase in the loading cycles rather than the test results of Type II 

asperity surface with the same initial normal stress but t/a = 0.3 (comparison between 

Figures 5-7 and 5-9). For the same ratio of infill thickness to asperity height and initial 

normal stress, the reduction in the shear strength under cyclic loading was higher for 

greater asperity angles where contraction of infill material and asperity damage were 

more pronounced (comparison between left and right parts of Figures 5-4 to 5-12). 

5.3.2. Normal displacement 

The normal displacement behaviour of infilled rock joints during cyclic loading is 

affected by the joint roughness and the deformability of the infill material. When t/a = 

0.3, the governing mechanism is dilation with reduction in dilation angle upon asperity 
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damage after squeezing the infill material (Figures 5-4, 5-7 and 5-10). Nevertheless, as 

t/a increases from 0.3 to 1, the variation of normal displacement against shear 

displacement is dominated by contraction behaviour due to compaction of infill material 

(Figures 5-6, 5-9 and 5-12). Generally, the increase in the normal stress is associated 

with higher suppression of dilation factor for t/a = 0.3 and greater compaction of infill 

material when t/a = 1. The maximum dilation in the first shear cycle for Type I asperity 

surface ranged between 1.02 mm (corresponding to t/a = 0.3 and σn0 = 0.56 MPa) and 

0.03 mm (corresponding to t/a = 1 and σn0 = 2.4 MPa), depending on the initial normal 

stress and infill thickness. These values for Type II asperity surface were 2.02 mm and 

0.05 mm respectively. The gap between dilation curves decreased with increase in the 

loading cycles. For t/a = 0.3 and 0.6 and σn0 = 0.56 MPa and 1.64 MPa, the reduction in 

dilation was higher in the forward shearing than reverse loading. The maximum values 

of compaction measured for Type I asperity surface with t/a=1 and various initial 

normal stresses were lower in comparison to Type II asperity surface. 

5.3.3. Normal stress 

As shearing is conducted under CNS conditions to simulate the effects of surrounding 

rock mass, the normal stress follows similar trends to the normal displacement. Thus, 

the variation of normal stress shows different behaviours depending on the infill 

thickness. For t/a = 0.3, the normal stress increases during dilation followed by a 

reducing trend toward its initial value in reverse loading (Figures 5-4, 5-7 and 5-10). 

However, as t/a increases from 0.3 to 1, the normal stress decreases upon compaction of 

infill material that affects the shear strength under cyclic loading (Figures 5-6, 5-9 and 

5-12). The data reveals that the increase in normal stress is greater at lower infill 

thickness to asperity height ratios and initial normal stresses. The values of maximum 
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normal stress measured for Type II asperity surfaces during first and last loading cycles 

with σn0 = 1.64 MPa and 2.4 MPa were 2.24 MPa, 1.64 MPa and 2.85 MPa and 2.19 

MPa respectively when t/a = 0.3. Also, the gap between normal stress profiles 

decreased with increase in the number of loading cycles. 

5.3.4. Strength envelope 

Figure 5-13 shows variations of the strength envelopes for infilled rock joints subjected 

to cyclic loading for different conditions of infill thickness to asperity height and initial 

asperity angles. At low infill thickness (t/a = 0.3) and Type I asperity surface, there is a 

slight difference in strength envelopes between the first and second shear cycles (Figure 

5-13/left a). As the infill thickness to asperity height was increased to 1, the difference 

between the strength envelopes of consecutive shear cycles became marginal, verifying 

the earlier finding that, at high infill thickness to asperity height ratios, the shear 

behaviour is dominated by the infill material (Figure 5-13/left c). For t/a = 0.3 and Type 

II asperity surface, the strength envelope of the first cycle lies significantly above the 

later cycles (Figure 5-13/right a). As the number of loading cycles was increased, the 

strength envelopes under cyclic loading tended to become close to each other and 

approached that of infill material. It is deduced from strength envelopes of Type I and II 

asperity surfaces that the gap between the cyclic loading strength envelopes increases 

with increase in the asperity angle for the same infill thickness to asperity height ratio. 

5.3.5. Profile of shear plane 

Figure 5-14 shows the profiles of shear planes for selected infilled joints at different 

initial normal stresses under cyclic loading. The cyclic loading shear planes were 
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estimated from the measured normal displacement against the shear displacement data, 

and they are shown by dashed lines in Figure 5-14.  
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Figure 5-13 Strength envelope under Cyclic loading: [left] Type I asperity 

surface, [right] Type II asperity surface, (a) t/a =0.3, (b) t/a=0.6, (c) t/a=1 

(a) (a) 

(b) (b) 

(c) (c) 



Chapter V                             Shear behaviour of infilled rock joints under cyclic loading 
______________________________________________________________________ 

150 
 

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Jo
in

t e
la

va
tio

n 
(m

m
)

Jo
in

t e
la

va
tio

n 
(m

m
)

Jo
in

t e
la

va
tio

n 
(m

m
)

Asperity base length (mm) Asperity base length (mm)

 

Figure 5-14 Relative location of shear plane through infilled joints under 

cyclic loading, (dashed lines = shear planes): [left] Type I asperity surface, 

[right] Type II asperity surface, (a) t/a = 0.3 and σn0 = 0.56 MPa, (b) t/a = 

0.6 and σn0 = 1.64 MPa, (c) t/a = 1 and σn0 = 2.4 MPa  
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For t/a=0.3 and 0.6, the shear planes pass through both infill and asperities (Figures 5-

14 a and b). For t/a equals to unity, the shear planes for the first cycle pass slightly 

below the tips of asperities (Figure 5-14 c). As the number of loading cycles increases, 

for all the cases the shear planes pass always along a lower elevation as compared to the 

previous cycles, indicating either asperity damage or deformation of infill material. The 

portion of the asperity surface that contributes to the shear planes, increases with the 

number of shear cycles. The difference between the elevations of shear planes decreases 

during cyclic loading. The reduction in the elevations of shear planes for the same 

values of infill thickness to asperity height and initial normal stress is greater for Type II 

asperity surfaces in comparison to Type I asperity surfaces. The gap between the shear 

planes of the first and last cycles of the joints with the same asperity type is higher for 

greater infill thickness to asperity height ratios and initial normal stresses. 

5.3.6. Comparison between the shear strength of clean and infilled joints 

Figure 5-15 shows the comparison between the peak shear strength of clean and infilled 

joints under cyclic loading and CNS conditions for the various levels of infill thickness 

to asperity height, asperity type and initial normal stress. It is inferred from the Figure 

5-15 that the cyclic loading shear strength of clean joints is always higher than infilled 

joints. For Type II asperity surface, the shear strength of clean joints becomes closer to 

that of infilled joints with increase in the loading cycles (Figure 5-15/right). The same 

behaviour is observed for the infilled joints of Type I asperity surface with t/a=0.3 that 

gets closer to the results of t/a=0.6 and t/a=1 as the number of loading cycles increases 

(Figure 5-15/left). However, the difference between the cyclic loading shear strength of 

clean and infilled joints of Type I asperity surface, rises as the number of loading cycles 

exerted on asperities increases.  



Chapter V                             Shear behaviour of infilled rock joints under cyclic loading 
______________________________________________________________________ 

152 
 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

1 2 3 4
1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

1 2 3 4
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

S
he

ar
 s

tr
en

gt
h 

(M
P

a)

 Clean
 t/a = 0.3
 t/a = 0.6
 t/a = 1

S
he

ar
 s

tr
en

gt
h 

(M
P

a)
S

he
ar

 s
tr

en
gt

h 
(M

P
a)

Number of shear cycles Number of shear cycles

 

Figure 5-15 Comparison between the cyclic loading shear behaviour of 

clean and infilled rock joints: [left] Type I asperity surface, [right] Type II 

asperity surface, (a) σn0 = 0.56 MPa, (b) σn0 = 1.64 MPa, (c) σn0 = 1.64 MPa 
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For instance, the drop in the shear strength of Type I asperity surface with 2.4 MPa of 

initial normal stress with the introduction of 0.75 mm of infill (t/a=0.3) in the first cycle 

is 19%. This value for the last cycle is 31% which shows a 12 % increase in the 

difference between the shear strength of clean and infilled joints due to the application 

of cyclic loading (Figure 5-15/left c). 

5.4. Summary 

The results of the systematic experimental study conducted on artificial triangular joints 

infilled with mixture of clay and sand with various initial normal stresses and infill 

thickness to asperity height ratios were presented and critically analysed. The tests were 

intended at investigating the effects of cyclic loading on shear behaviour of infilled 

joints under CNS conditions. The main findings can be summarised as: 

• Due to asperity damage and deformation of infill material, the shear strength 

decreased with increase in the number of shear cycles.  

• For t/a = 0.3 and σn0 = 0.56 MPa, the shear strength was higher during forward 

shearing rather than during reverse loading. 

• For t/a = 0.3 and σn0 = 2.4 MPa, the effect of asperity breakage in the first 

loading cycle reduced the rock to rock contact in further shearing. 

• The behaviour of normal displacement under cyclic loading was shown to be 

governed by dilation and contraction mechanisms. This was dependent on the 

infill thickness to asperity height and the applied initial normal stress. 
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• The normal stress showed similar trends to normal displacement. This affected 

the shear strength, asperity damage and compaction of infill material under 

cyclic loading. 

• There is a slight difference in strength envelopes between the first and second 

shear cycles at low infill thickness (t/a = 0.3) and Type I asperity surface. 

• For t/a = 0.3 and Type II asperity surface, the strength envelope of the first cycle 

lies considerably above the later cycles. 

• The difference between the strength envelopes of consecutive shear cycles 

became less pronounced as the infill thickness to asperity height was increased 

to 1. 

• The shear planes always pass along a lower elevation as compared to the 

previous cycles, implying either asperity damage or deformation of infill 

material. 

• The shear strength of clean joints under cyclic loading is always higher than 

infilled joints. The shear strength of clean joints became closer to that of infilled 

joints with increase in the loading cycles for Type II asperity surface. 

In the next chapter, models will be proposed to simulate the cyclic loading shear 

behaviour of rock joints under CNS conditions. 
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Chapter VI 

6. MODELLING OF THE SHEAR BEAHVIOUR OF ROCK 

JOINTS UNDER CYCLIC LOADING 

 

6.1. Introduction 

One of the most crucial and challenging tasks when designing rock mass structures such 

as underground caverns, power plants and dam foundations is to describe correctly the 

mechanical behaviour. This difficulty is mainly related to the discontinuities that divide 

the intact rock into the discrete blocks. There are two main approaches to quantify the 

mechanical properties of rock joints, namely, theoretical and empirical. The theoretical 

approach mostly incorporates elasto-plastic and energy balance theories while the 

empirical approach relays on the analysis of experimental data.   

6.2. Requirements of new mathematical models 

Various models for predicting the shear strength of rock joints under monotonic and 

cyclic loading were reviewed in Chapters II and III. 

Most of the models that were proposed for clean joints under cyclic loading are based 

on the sliding mechanism. These models may not necessarily estimate the shear strength 

accurately under CNS conditions when applied to non-planar joints as they do not take 

into account the additional shear resistance generated by the asperity damage. 

Accordingly, the formulation of an elasto-plastic constitutive model based on the energy 

balance theory is described to simulate the cyclic loading shear behaviour of clean rock 
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joints under CNS conditions. In addition, an empirical relationship is proposed to 

consider the effects of shear rate on the shear strength of rock joints under cyclic 

loading and CNS conditions. 

From the literature review in chapter III, it was concluded that no studies have been 

conducted on the shear behaviour of infilled joints under cyclic loading and CNS 

conditions. As far as can be determined, all the available relationships for predicting the 

shear strength of rock joints were proposed only for clean joints or monotonic loading 

shear behaviour of infilled rock joints. In the light of this shortcoming, a cyclic loading 

failure criterion for infilled rock joints was introduced here to replicate the reduction in 

the shear strength with increase in the number of loading cycles. 

6.3. Elasto-plastic constitutive model for shear behaviour of clean 

rock joints under cyclic loading 

In this section, a brief description of the incremental elasto-plastic relationship is given 

followed by yield and plastic potential functions that were extended to model the shear 

behaviour of clean rock joints under cyclic loading and CNS conditions. The model was 

then calibrated for different initial normal stresses, asperity types, and replicas of a field 

joint. 

6.3.1. Brief description of the incremental elasto-plastic relationship 

The displacement increments at asperities contact can be divided into elastic and plastic 

parts as: 

pe dududu +=                                (6.1a) 
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pe dvdvdv +=                                (6.1b) 

where, du and dv are increments of shear and normal displacements and subscripts e and 

p denote elastic and plastic states respectively. 

The elastic deformation at asperities contact generates stresses that are related via the 

asperities contact stiffness (Ee) as: 
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where, dτ and dσ are increments of shear and normal stresses and subscripts s and n 

denote shear and normal directions. 

The plastic component can be determined by defining a plastic potential function (Q) 

whereby the plastic displacement increment is related to stress as: 
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where, dλ is a proportional scalar factor and F is a scalar function (yield function). 

F<0 corresponds to the elastic state while plastic deformation occurs when the yield 

function is equal to zero and condition where F>0 is impossible. When F and Q are 

different, the shear behaviour is non-associated which is the usual case for the 

discontinuities media. 

By applying the plastic flow rule and consistency relationship, the total stress - 

displacement relationship is obtained as: 
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The above set of equations is able to provide a relationship between stress and 

displacement either in elastic or plastic states once the specific forms of yield and 

potential functions are determined according to the shear behaviour of joints. 

6.3.2. Yield and plastic potential functions 

The constitutive model developed in this section, is an extension of the monotonic 

loading model introduced by Seidel and Haberfield (1995a) to cyclic loading, applying 

the sliding degradation concept proposed by Plesha (1987). 

For determination of the specific form of yield function, the energy balance theory is 

applied for asperity shearing shown in Figure 6-1 under shear (S) and normal (N) forces 

where the dilation angle (i) is positive for forward shearing.  

 

Figure 6-1 Asperity shearing under shear and normal forces 
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The energy balance theory incorporates the first law of thermodynamics in which the 

energy is neither created nor destroyed but only changing in its form. Applying the 

energy balance theory for the arrangement shown in Figure 6-1 by considering the 

energy dissipated due to asperity damage for the first forward shear cycle, then: 

• E1 = Sdu (work done by the shear force) 

• E2 = -Ndv (work done against dilation due to normal force) 

• E3 = µ[Ndu] (work done against friction by the normal force) 

• E4 = µ[S(tani)du] (work done against friction by the shear force) 

• E5 = -Ed (work done in the process of asperity damage) 

where, µ is the surface friction coefficient which is equal to the tangent of basic friction 

angle (φb). 

The energy balance theory requires the sum of all the energy terms stated above to be 

zero, therefore: 

0
5

1

==∑
=i

iEF                        (6.5) 

Introducing energy terms in Equation (6.5) and dividing by the increment of shear 

displacement and simplifying yields: 

[ ] [ ] 0/tantan =−+−−= duEiSNiNSF dµ                   (6.6) 

Similarly to work done by Seidel and Haberfield (1995a), the energy dissipated due to 

asperity damage (Ed) is assumed to be equal to the inelastic work done due to dilation 

against the normal force, thus: 
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[ ] [ ] 0tantan 0 =+−−= iSNiNSF µ                    (6.7) 

where, i0 is the initial asperity angle. 

Dividing F to a unit of shearing area gives: 

[ ] [ ] 0tantan 0 =+−−= iiF nn τσµστ                  (6.8a) 

The value of initial asperity angle in the above equation can be estimated by scanning 

and quantifying the joint surface. Alternatively, i0 can be related to the value of JRC 

using the method suggested by Xie and Pariseau (1992). 

After the first forward shear cycle at the accumulated shear displacement equals to the 

half of the asperity length, it is assumed that the sliding mechanism (i.e. Ed=0) governs 

the shear behaviour at the asperities contact, thus: 

[ ] [ ] 0tantan =+−−= iiF nn τσµστ                             (6.8b) 

To consider the dilatation behaviour of the joint, the plastic potential function is 

extended as: 

[ ] 0sincos =−= iiQ nστ                                 (6.9) 

As shown in the above equation and Figure 6-2, a different function is adopted for the 

plastic potential to allow for the different dilation behaviour. Therefore, the flow rule is 

non-associated and no dilation will be predicted at failure. 

The dilation curve (Figure 6-3) typically describes the change of normal displacement 

during shearing. In order to obtain the dilation curve at the first forward shear cycle, 

asperities are considered to dilate on the secant dilation angle (isec) as: 
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)/2(tan *1
sec Tvi −=                   (6.10a) 

where, v* is the normal displacement at half of the asperity length and T is the asperity 

length. 

 

Figure 6-2 Plastic potential and yield functions 

 

Figure 6-3 A typical dilation curve against shear displacement 
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During the sliding mechanism, the secant dilation angle is assumed to degrade 

exponentially due to a portion of the generated sliding shear energy as (see Plesha 

1987): 

∫−=
/

2

sec )exp(
u

T

s ducii τ                              (6.10b) 

where, cs is the sliding damage coefficient that varies between 0 and 1 and u/ is the 

accumulated shear displacement. 

The value of coefficient cs can be found by best-fitting the above equation to the plot of 

secant dilation angle versus sliding shear work. Low values of the coefficient cs (close 

to zero) are usually associated with strong rock joint and low asperity degradation, 

while high values are associated with weak joints where asperity degradation is 

significant. 

Once the dilation of the joints under cyclic loading is calculated for a particular shear 

displacement, the effective normal stress on the joint plane can be calculated using the 

following equation: 

kvnn += 0σσ                      (6.11) 

where, σn0 and k are initial normal stress and boundary normal stiffness respectively. 

For the current tests data, the secant dilation angle and sliding damage coefficient were 

calculated for Types I, II, III and replicas of the real rock surfaces under different initial 

normal stresses, as listed in Table 6.1 for T = 30 (mm). 
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Table 6-1 Model parameters for various asperity types and initial normal 

stresses 

Asperity type Initial normal stress (MPa) isec° cs(MPa-1.mm-1) 

Type I 

0.16 5.8 0.004 

0.56 5.24 0.005 

1.64 4.52 0.004 

2.4 4.55 0.013 

Type II 

0.16 12.66 0.008 

0.56 11.68 0.009 

1.64 8.69 0.015 

2.4 6.36 0.027 

Type III 

0.16 12.28 0.008 

0.56 11.76 0.011 

1.64 6.94 0.018 

2.4 2.83 0.08 

Replicas 

0.5 6.21 0.007 

1.5 3.97 0.007 

2.4 3.26 0.038 

6.3.3. Computer program for simulating the shear behaviour of rock joints under cyclic 

loading 

For faster and accurate processing, a computer program was extended in MATLAB, to 

calculate the shear stress, normal stress and normal displacement against shear 
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displacement using the proposed constitutive model. The computer code for this 

program is given in Appendix I. The input data for the program includes model 

parameters, initial normal stress, initial asperity angle, basic friction angle, boundary 

normal stiffnesses and the number of loading cycles. Using the program, the complete 

shear stress, normal stress and normal displacement profiles can be plotted and 

compared with the laboratory results. 

6.3.4. Model verification 

Using the above mentioned computer program, the shear behaviour of rock joints under 

cyclic loading and CNS conditions at different initial normal stresses and asperity types 

were simulated and plotted in Figures 6-4 to 6-11. The experimental results of the cyclic 

loading shear behaviour of rock joints were discussed and shown in section 4.3 which 

are used here for model verification. As can be seen in Figures 6-4, 6-6 and 6-8, for low 

values of initial normal stress (σn0=0.16 MPa and 0.56 MPa), lower shear strength in 

backward shearing and later cycles rather than forward shearing and earlier cycles is 

well replicated by the proposed model. The effect of higher external energy on 

asperities resulting in greater damage in initial cycles and forward shearing is evident in 

comparison to later cycles and backward shearing. This is represented by the proposed 

model in predicted dilation and normal stress curves. It can be noted from Figures 6-5, 

6-7, 6-9 and 6-11 that the proposed model is able to predict the additional shear strength 

generated by the asperity breakage, subject to the high level of initial normal stress 

(σn0=1.64 MPa, 2.4 MPa, 2.5 MPa) in the first forward shear cycle. For subsequent 

cycles, both the proposed model and the experimental data approach the residual 

friction angle when asperities were almost degraded.  
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Figure 6-4 Model simulations of Type I asperity surface: [left] 0.16 MPa of 

initial normal stress, [right] 0.56 MPa of initial normal stress 
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Figure 6-5 Model simulations of Type I asperity surface: [left] 1.64 MPa of 

initial normal stress, [right] 2.4 MPa of initial normal stress 
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Figure 6-6 Model simulations of Type II asperity surface: [left] 0.16 MPa of 

initial normal stress, [right] 0.56 MPa of initial normal stress 
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Figure 6-7 Model simulations of Type II asperity surface: [left] 1.64 MPa of 

initial normal stress, [right] 2.4 MPa of initial normal stress 
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Figure 6-8 Model simulations for Type III asperity surface: [left] 0.16 MPa 

of initial normal stress, [right] 0.56 MPa of initial normal stress 
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Figure 6-9 Model simulations of Type III asperity surface: [left] 1.64 MPa 

of initial normal stress, [right] 2.4 MPa of initial normal stress 
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Figure 6-10 Model simulations of replicas of real asperity surface: [left] 0.5 

MPa of initial normal stress, [right] 1.5 MPa of initial normal stress 
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Figure 6-11 Model simulations of replicas of real asperity surface with 2.5 

MPa of initial normal stress 
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Nevertheless, some discrepancies were observed between the predicted results of 

normal displacement, normal stress with shear displacement and the measured data after 

the first forward shear cycle. The differences (i.e. contraction after the rapid degradation 

in the first forward shear cycle) related to the loss of the damaged material at the sample 

edge of the shear box during cyclic shearing, when debris from the broken asperities fell 

out from the test apparatus. This behaviour would not occur along the field joints where 

the surrounding media prevent the damaged material from escaping. Figure 6-10 [left] 

shows that the computed results for replicas of the real rock surface with spatial 

roughness are in agreement with the measured data, particularly for the first shear cycle 

that second order asperities were damaged (σn0=0.5 MPa). 

6.3.5. Correction for the shear rate 

The constitutive model presented in the previous section was calibrated with the shear 

rate of 0.5 mm/min. In order to estimate the cyclic loading shear strength of rock joints 

at desired shear rate, the following equation that fits well with the experimental data of 

four consecutive loading cycles (Figure 6-12) is proposed as: 

( )[ ]1-c-exp-1 s
21 c

s

c
l

c
h Nc=
τ

τ
               (6.12) 

where, �c
h is the cyclic loading shear strength of high shear rate, �c

l is the cyclic loading 

shear strength of low shear rate (0.5 mm/min), cs
1 and cs

2 are model coefficients 

calibrated for different conditions as listed in Table 6.2 and Nc is the number of shear 

cycles. 
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Figure 6-12 Comparison between measured data and model predicted 

results: [left] Shear rate of 5 mm/s, [right] Shear rate of 20 mm/s (symbols = 

measured data and lines = model results) 

Table 6-2 Model coefficients for different shear rates and initial normal 

stresses 

Shear rate (mm/s) Initial normal stress (MPa) cs
1 cs

2 

5  

0.56 0.309 0.06 

1.64 0.249 0.08 

2.4 0.187 0.103 

20 

0.56 0.379 0.072 

1.64 0.286 0.092 

2.4 0.243 0.111 
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Model coefficients given in Table 6.2 are zero for shear rate of 0.5 mm/min. In Figure 

6-12, the shear strength is normalised to the values of shear strength obtained based on 

0.5 mm/min of shear rate. 

It is noted that according to Equation (6.12), the shear strength of higher shear rates 

becomes closer to those of lower shear rates with increase in the asperity damage. These 

values will be the same as the number of loading cycles approaches infinity when joints 

are theoretically planar.  

6.4. Modelling of shear strength of infilled rock joints under cyclic 

loading 

The shear strength model for infilled rock joints under cyclic loading is developed by 

considering the monotonic loading shear strength and reduction in strength due to cyclic 

loading. Accordingly, in the first step, the shear strength of infilled rock joints under 

monotonic loading is obtained by applying Equation (3.14) and then the reduction in the 

shear strength due to cyclic loading is calculated based on a hyperbolic model. Finally, 

the shear strength of infilled joints under cyclic loading is determined by deducting the 

reduction in the shear strength due to cyclic loading from the monotonic loading shear 

strength. Thus, the failure criterion for infilled rock joints under cyclic loading is 

proposed as: 

imi
p

ci
p τττ ∆−=                     (6.13) 

where, τci
p is the peak shear strength of infilled rock joints under cyclic loading, τ

mi
p is 

the peak shear strength of infilled rock joints under monotonic loading and ∆τ
i is the 

reduction in shear strength with increase in the number of loading cycles. 
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In the above equation, the peak shear strength refers to the maximum shear strength in a 

complete loading cycle.  

A Normalised Cyclic Strength Reduction of infilled rock joints (NCSRi) is proposed 

here. This is defined as the ratio of reduction in peak shear strength with increase in the 

number of shear cycles, divided by the initial normal stress (Figure 6-13). Based on the 

experimental observation of this study, the impact of cyclic loading on NCSRi can be 

fitted using a hyperbolic function: 

βα +−
−

=
)1(

1

c

ci

N

N
NCSR                    (6.14) 

where, α and β are model coefficients taking into account the effect of asperity damage 

and compaction of infill material. 
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Figure 6-13 Variation of NCSRi with number of shear cycles 
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In order to easily determine the hyperbolic coefficients, Equation (6.14) is rearranged to 

give the following linear relationship for Nc >1: 

βα +−=
−

)1(
1

ci

c N
NCSR

N
                    (6.15) 

The values of α and β can now be readily determined by plotting the relationship 

between (Nc-1) and NCSRi as illustrated in Figure 6-14. 
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Figure 6-14 Determination of hyperbolic relationship coefficients 

Once the NCSRi is calculated, the peak shear strength of infilled rock joints under cyclic 

loading can be obtained by extending the peak shear strength of infilled rock joints 

under monotonic loading as per Equation 3.4: 

i
nfill

c
fill

c
bn

ci
p NCSRC)

/κ+
)((φ+-κ)(+i(φ=σ 00

21

11

2
tan)1tan στ −+






                       (6.16a) 

β 
(Nc-1)/NCSRi=α (Nc-1) +β 

α  

1 
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crat

at

)/(

)/(
=κ                               (6.16b) 

3

1

8.1
0

c

nn 


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

+
=

κ
σσ

                             (6.16c) 

where, φfill  is the infill material friction angle, Cfill  is the cohesion of the infill material, t 

is the infill thickness, a is the asperity height, (t/a)cr is the critical value of infill 

thickness to asperity height and c1, c2, c3, α and β are model coefficients. 

In Equation (6.16), φb is determined by the tilt test on the planar interface of the joint 

surface, i0 is related to the value of joint roughness coefficient using the method 

suggested by Xie and Pariseau (1992), c1 and c2 are constants defining the contribution 

of joint friction and infill material to the monotonic loading shear strength and are 

determined by multi-regression, φfill and Cfill  are determined by direct shear tests on 

infill material, α and β are determined as illustrated in Figure 6-14, a is equal to the 

average asperity height, (t/a)cr is determined by direct shear tests on infilled rock joints 

under monotonic loading and c3 is a constant determined by curve fitting. 

6.4.1. Determination of model coefficients 

The relevant model coefficients including c1, c2, c3, (t/a)cr, α and β are determined 

according to the experimental data for different asperity types, initial normal stresses, 

and infill thickness to asperity height ratios as listed in Table 6.3. Additional monotonic 

loading tests with various infill thicknesses to asperity height were conducted to 

determine (t/a)cr. 
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Table 6-3 Model coefficients for various infill thicknesses to asperity height, 

initial normal stresses and asperity types 

Asperity 

type 
(t/a)cr c1 c2 

Initial normal 

stress (MPa) 
c3 

Infill thickness to 

asperity height 
α β 

Type I 1.5 1.05 2.7 

0.56 1.3 

0.3 1.51 3.26 

0.6 2.21 4.69 

1 3.01 6.58 

1.64 0.5 

0.3 1.93 4.34 

0.6 2.98 5.37 

1 4.66 7.01 

2.4 0.22 

0.3 2.77 5.23 

0.6 4.23 6.58 

1 5.68 9.65 

Type II 1.6 1 4.1 

0.56 2.2 

0.3 0.7 0.32 

0.6 0.86 1.51 

1 1.42 2.31 

1.64 1 

0.3 1.2 0.95 

0.6 1.56 1.61 

1 2.64 3.33 

2.4 0.17 

0.3 1.34 1.14 

0.6 1.79 1.76 

1 2.76 3.79 

Equation (6.15) represents a straight line with the horizontal axis as (Nc-1) and the 

vertical axis as (Nc-1)/ NCSRi respectively. The model predicted results of NCSRi along 
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with the laboratory experiments against the number of shear cycles is shown in Figure 

6-15. Correlation coefficients with the minimum and maximum of 0.96 and 0.99 were 

found for these straight lines, thus indicating that the variation of NCSRi against the 

number of shear cycles can be predicted with reasonable accuracy using Equation 

(6.14). It is noted that the hyperbolic coefficients are higher for greater initial normal 

stresses and infill thickness to asperity height ratios and smaller asperity angles. 

The piecewise linear method can be applied to estimate the model coefficients at the 

desired values of asperity angle, initial normal stress and infill thickness to asperity 

height ratio. Figure 6-16 shows the shear strength predicted using the model (as per 

Equation 6.16) and those obtained from the laboratory tests. As can be seen from Figure 

6-16, the effects of cyclic loading on shear strength reduction due to asperity damage 

and deformation of infill material is reasonably represented by the proposed model 

under different conditions of initial asperity angle, initial normal stress and infill 

thickness to asperity height ratio.  

Figure 6-15 shows that as the number of loading cycles increases, decrease in NCSRi 

becomes less pronounced. However, the hyperbolic relationship gives 1/α as the 

asymptote when the number of loading cycles approaches infinity. Therefore, it is 

anticipated that the maximum reduction in shear strength under cyclic loading is 

reached before it becomes asymptote to 1/α. As the model coefficients are evaluated 

based on the four shear cycles, the shear strength of the fourth cycle is considered to be 

the residual shear strength. By careful investigation of the measured data for different 

conditions, 75% and 55% of the monotonic loading shear strength (τmi
p) are assigned to 

the residual shear strength of Types I and II asperity surfaces. 
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Figure 6-15 Comparison between measured and model predicted results of 

NCSRi against number of shear cycles, (line = model predictions and 

symbols = measured data): [left] Type I asperity surface, [right] Type II 

asperity surface, (a) σn0 =0.56 MPa, (b) σn0 =1.64 MPa, (c) σn0 =2.4 MPa  
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Figure 6-16 Comparison between measured and model predicted results of 

shear strength against number of shear cycles, (line = model predictions and 

symbols = measured data): [left] Type I asperity surface, [right] Type II 

asperity surface, (a) σn0 =0.56 MPa, (b) σn0 =1.64 MPa, (c) σn0 =2.4 MPa 
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6.5. Summary 

An elasto-plastic constitutive model in an incremental framework was introduced for 

asperity shearing under cyclic loading and CNS conditions. The model can predict 

specific characteristics of rock joints shearing subject to cyclic loading such as 

dependency of shear strength on friction angle and loading direction, dependency of 

friction and dilation angles on asperity damage and dependency of asperity damage on 

external energy. The model was calibrated using the measured data for three different 

initial asperity angles as well as replicas of a real rock surface at various initial normal 

stresses. Generally, the results of simulations using the constitutive model are in good 

agreement with the measured laboratory data observed for the shear and normal stresses 

versus shear displacement responses and the associated dilation behaviour. Furthermore, 

an empirical relationship was presented and calibrated for different initial normal 

stresses to consider the effects of shear rate on cyclic loading shear strength of rock 

joints.  

A mathematical model was introduced and applied to simulate the reduction in the shear 

strength of infilled rock joints with increase in the number of loading cycles 

incorporating the concept of NCSRi. The model includes important features of infilled 

rock joints such as infill thickness to asperity height ratio, infill friction angle, initial 

asperity angle, initial normal stress, basic friction angle of the joint surface and number 

of loading cycles. The model coefficients were determined according to the 

experimental data for different asperity angles, initial normal stresses and infill 

thicknesses to asperity height. The coefficients of NCSRi relationship were found to be 

always higher for greater initial normal stresses and infill thickness to asperity height 

ratios and smaller asperity angles. 
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Chapter VII 

7. SIMULATION OF AN UNDERGROUND EXCAVATION 

SUBJECTED TO SEISMIC EVENTS USING UDEC 

 

7.1. Introduction 

Shear behaviour of rock joints under monotonic loading has been studied in the past 

using numerical tools. The main advantage of numerical methods is that the model can 

be built and further modified to perform sensitivity studies based on laboratory tests and 

theoretical assumptions. In numerical simulation, the discontinuities are modelled as 

assemblage of discrete blocks. One of the most powerful numerical software which is 

able to represent discontinuities in the rock mass is the Universal Distinct Element Code 

(UDEC). This software is equipped with an embedded programming language (FISH) 

that offers a wide range of applications to the users. 

7.2. UDEC overview   

The shear behaviour of jointed rocks, flow through discontinuities, and slope stability 

problems have been simulated successfully using UDEC. The UDEC calculations are 

based on Newton’s second law of motion, conservation of mass, and momentum and 

energy principles. There are four built-in constitutive models available in UDEC 

program to represent the material behaviour of discontinuities as: 

• Point contact – Coulomb slip (joint model point) 

• Joint area contact – Coulomb slip (joint model area) 
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• Joint area contact – Coulomb slip with residual strength (joint model residual) 

• Continuously yielding 

The joint constitutive models are defined to be representative of the physical response 

of rock joints. The point contact model represents the discontinuity between two blocks 

in which the contact area is very small relative to the dimension of the block. The joint 

area contact model is developed for closely packed blocks with area contact. This model 

is based on the elastic stiffness, frictional, cohesive, tensile strength properties and 

dilation characteristics common to rock joints. The residual strength version of this 

model is intended to simulate displacement weakening of the joint by loss of friction, 

cohesion and/or tensile strength at the onset of shear or tensile failure. The continuously 

yielding joint model is a more complex model that replicates continuous weakening 

behaviour as a function of the accumulated plastic shear displacement. 

This chapter investigates the capabilities of Coulomb slip criterion (joint model area) 

and continuously yielding model in simulating the shear behaviour of rock joints under 

cyclic loading and CNS conditions. Furthermore, an underground excavation is 

modelled in UDEC and its stability against seismic events is investigated in different 

conditions. 

7.3. Constitutive model 

The Coulomb slip and continuously yielding models are presented here in details for 

completeness in discussion of analysis. 
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7.3.1. Coulomb slip model 

This criterion provides a linear deformation model that relates shear strength (τ0) to 

normal stress (σn) by: 

cn += )tan(0 ϕστ                       (7.1) 

where, φ and c are friction angle and cohesion of the joint. 

Once τ0 is reached, the joint deformation is assumed to be perfectly plastic. During 

elastic deformation, the shear response is governed by constant shear stiffness (ks) as: 

e
ss uk ∆=∆τ                        (7.2) 

where, ∆τ is the incremental shear stress and ∆ue
s is the elastic compound of incremental 

shear displacement. 

The Coulomb slip model in its basic form does not simulate joint wear and dilation 

behaviour, however, the dilation may be considered after onset of plastic deformation. 

The joint dilation remains constant during shearing as there is no wear of the joint. The 

dilation angle is assigned to zero after reaching a critical shear displacement. A form of 

the model is described by Itasca Consulting Group, Inc. (1996) as: 





=≥=
=<

0

0

0

0

ψττ
ψττ
thenuuandIf

thenIf

css

                   (7.3) 

where, ψ is the dilation angle, us is the joint shear displacement and ucs is the critical 

shear displacement. 
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7.3.2. Continuously yielding model 

In order to simulate the internal mechanism of progressive damage of joints under 

shearing, Cundall and Hart (1984) proposed the continuously yielding model. This 

model is more realistic than the Coulomb failure criterion as it replicates the non-linear 

behaviour observed in physical tests such as joint degradation, normal stiffness, 

dependence on normal stress and the decrease in dilation angle with plastic shear 

displacement. The continuously yielding model can be described by the following 

features: 

• The shear stress against shear displacement curve approaches a ‘target’ shear 

strength curve. 

• The target shear strength decreases continuously with the accumulated plastic 

shear displacement indicating the damage of joints under shearing. 

• The dilation angle is calculated as the difference between the apparent friction 

angle and the residual friction angle. 

In this model, the response to normal loading is expressed incrementally by: 

nnn uk ∆=∆σ                        (7.4) 

where, ∆σn is the increment of normal stress, kn is the normal stiffness which may be 

written as a function of the normal stress and ∆un is the increment of normal 

displacement. 

During shear loading, the model behaves non-linearly from the onset of shearing as 

shown in Figure 7-1. The shear stress increment is calculated as: 

ss uFk ∆=∆τ                         (7.5) 
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where, F is a factor controls the shear stiffness (ks) and ∆us is the increment of shear 

displacement. 

In Equation (7.5), the shear stiffness (ks) may also be written as a function of the normal 

stress.  

Factor F depends on the distance from the current stress curve to the target strength 

curve or bounding strength curve (τm, see Figure 7-1) and is obtained by: 

r
F m

−
−

=
1

/1 ττ
                       (7.6) 

where, � is the current shear stress, �m is the failure stress at a given plastic displacement 

and r is factor initially set to zero. The factor r is aimed to restore the elastic stiffness 

immediately after load reversal. At the onset of a load reversal r is assigned to a value of 

�/�m, thus F would become 1. The bounding stress is given by: 

 

Figure 7-1 Continuously yielding joint model (after Itasca Consulting 

Group, Inc. 1996) 

)tan( mnm ϕστ =                       (7.7) 
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where, φm is the mobilised friction angle which includes asperity sliding and shearing. 

Due to asperity damage, the mobilised friction angle continuously reduces according to 

the following relationship: 

( ) p
s

bm
m u

R
∆

−
−=∆

ϕϕϕ                       (7.8) 

where, R is the amplitude of joint roughness with a dimension of length and ∆up
s is the 

plastic displacement increment as a function of the shear displacement increment ∆us, 

defined as: 

s
p
s uFu ∆−=∆ )1(                       (7.9) 

The asperity degradation is governed by the following empirical law: 

( ) b
p
sb

i
mm Ru ϕϕϕϕ +−−= )/exp(                   (7.10) 

where, φi
m is the initial friction angle usually taken as the basic friction angle plus the 

initial asperity angle (φb+i0). The current dilation angle (i) is calculated by: 

bni ϕστ −= − /tan 1                      (7.11) 

7.4. Simulation of shear behaviour of rock joints under cyclic loading 

and CNS conditions using UDEC 

Figure 7-2 shows the conceptual model incorporated in the UDEC analysis for 

simulating the shear behaviour of rock joints under cyclic loading and CNS conditions 

as tested in the laboratory. The block size was proportional to the actual model 

dimensions used in the laboratory. The boundary conditions assigned to the model 

ensured the following laboratory conditions: 
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• The bottom shear box moves only in the X direction (i.e. displacement in the Y 

direction is zero, whereas displacement in the X direction is free). 

• The top shear box moves only in the Y direction (i.e. displacement in the X 

direction is zero, whereas displacement in the Y direction is free). 

• The spring block moves only in the Y direction. All the movements of the block 

were restricted to the lower part of the spring, which was governed by the 

upward movement of the top specimen. The upper part of the spring block was 

fixed with the rigid load cell assembly, which in turn was attached to the body of 

the CNS equipment. 

• A periodic horizontal velocity was applied to the bottom shear box to produce 

the required cyclic shear displacement with amplitude of 15 mm. 

 

Figure 7-2 Conceptual CNS model for simulating shear behaviour of rock 

joints under cyclic loading 



Chapter VII          Simulation of an underground excavation subjected to seismic events 
______________________________________________________________________ 

191 
 

As with every other UDEC model, initially, the first block was created. It was then split 

into three blocks representing bottom specimen, top specimen and the spring. Once the 

blocks were created, they were discretised into appropriate sizes using FISH functions 

in UDEC. The material properties were then assigned to blocks via appropriate FISH 

functions. Finally, the boundary conditions and normal stress were applied. The 

following material properties were used in this model: 

Spring block (material properties): 

 Bulk modulus:   21.3 MPa 

 Shear modulus:  31.95 MPa 

 Density:   2600 kg/m3 

Material properties: 

 Bulk modulus:   1.4 GPa 

 Shear modulus:  0.792 GPa 

 Density:   2600 kg/m3 

Joint material properties: 

 Joint normal stiffness:  14 GPa/m 

 Joint shear stiffness:  14 GPa/m 

 Joint frictional properties: Assigned according to the asperity type and 

constitutive model 
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The material properties of the spring block were prescribed in a way to precisely 

simulate the stiffness of the springs set (8 kN/mm). Figure 7-3 shows the output from 

UDEC for discretised joint block. Subsequently, the desired normal stress was applied 

to the joint and the model was allowed to reach equilibrium. A periodic horizontal 

velocity was applied to the bottom block to produce the required cyclic shear 

displacement. The average normal and shear stresses along the joint were calculated 

using a FISH function. The associated dilation and shear displacement were also 

determined via FISH functions. The Coulomb slip and continuously yielding models 

were applied separately to replicate the observed experimental behaviour using the 

simulated CNS direct shear test in UDEC. Appendix II shows the UDEC code used to 

model the shear behaviour of rock joints under cyclic loading and CNS conditions. 

 

Figure 7-3 Simulated direct shear test under CNS conditions (dimensions in 

m) 
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Figures 7-4 to 7-5 show the simulated shear behaviour of rock joints under CNS 

conditions for Types I and III asperity types and selected initial normal stresses (σn0 = 

0.56 MPa and 2.4 MPa). The relevant model parameters used in the analysis for 

different conditions are listed in Table 7.1. 

Table 7-1 Model parameters for Coulomb slip and continuously yielding 

models 

Model σn0 = 0.56 MPa σn0 = 2.4 MPa 

Coulomb slip Ψ = 5.2° Ψ = 4.1° 

Continuously 

yielding 

φ
i
m =  44.5° and R =0.012 

(mm)  

φ
i
m =  40.7° and R = 0.005 

(mm) 

It is observed that for σn0 = 0.56 MPa and Type I asperity surface when asperity damage 

is not significant, the Coulomb slip model simulated different frictional resistance for 

the forward and backward shearing and recovery of dilation during load reversal (Figure 

7-4/left). However, for the asperity breakage mechanism (σn0 = 2.4 MPa) when 

asperities are highly degraded in the first forward shear cycle, the Coulomb slip model 

cannot represent approaching the residual shear strength (i.e. no contribution of 

roughness in shear strength) and the effect of asperity damage on dilation. In contrast to 

the Coulomb slip model, the continuously yielding model cannot replicate different 

shear behaviour in the forward and backward shearing for σn0 = 0.56 MPa and Type I as 

shown in Figure 7.5 [left]. As can be seen from Figure 7-5 [right], for σn0 = 2.4 MPa and 

Type III asperity surface, the appearance of residual shear strength was reasonably 

captured by the continuously yielding model.  
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Figure 7-4 Coulomb slip model simulated results: [left] Type I asperity 

surface with 0.56 MPa of initial normal stress, [right] Type III asperity 

surface with 2.4 MPa of initial normal stress 
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Figure 7-5 Continuously yielding model  simulated results: [left] Type I 

asperity surface with 0.56 MPa of initial normal stress, [right] Type III 

asperity surface with 2.4 MPa of initial normal stress 
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Nevertheless, the predicted shear strength was underestimated in the first forward shear 

cycle by both models since the additional shear strength generated by the asperity 

damage is neglected. 

7.5. Stability analysis of an underground structure subjected to 

seismic events 

Stability analysis of an underground structure subjected to seismic events was carried 

out in UDEC by extending FISH subroutine program as given in Appendix III.    

The modelled underground structure is a rectangular tunnel constructed 60 m below the 

surface with dimensions of 6×9 m. Two joint sets dipping at 60° and 120° with constant 

spacing of 4 and 3 m as well as a vertical joint, were created and extended only within a 

limited region around the tunnel. The model configuration is shown in Figure 7-6. The 

vertical and horizontal in situ stresses were assigned as 2.6 MPa and 0.7 MPa 

respectively. Initially, static analysis was performed and the model reached the 

equilibrium state. Then, sinusoidal shear waves with different amplitudes, frequencies, 

and durations representing seismic events were applied to the model base and allowed 

to propagate upward. Free field and viscous boundaries were used for the sides and base 

of the model to simulate the wave propagation through the modelled strata.  

The Coulomb slip constitutive model due to its simplicity was prescribed to the joints. 

The relevant model parameters and loading characteristics are listed in Tables 7.2. The 

model parameters were evaluated based on Type I asperity surface. Joints that do not 

cross the tunnel were assigned a friction angle of 40.35° (based on laboratory data) with 

zero dilation angle. The rock mass was considered to behave elastically with bulk and 

shear modules of 1400 MPa and 792 MPa respectively. The vertical and horizontal 
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displacements and stresses at the tunnel roof (model location: 0.2m, 26m) and side 

(model location: -3.2m, 21m) were monitored during analysis. 

 

 

Figure 7-6 UDEC model configuration (dimensions in m): [up] Full UDEC 

model of rectangular tunnel region, [down] Close-up view of tunnel region 
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Table 7-2 Relevant model parameters and loading characteristics for 

analysis 

Joint Ψ°  Seismic events Amplitude (MPa) Frequency (Hz) Duration(s) 

Joint 1 4.54  1 2.4 11 2 

Joint 2 4.53  2 0.8 8 4 

Joint 3 4.61  3 0.45 10 6 

Joint 4 4.89      

Joint 5 4.52      

Joint 6 5.18      

The roof and side displacements of the tunnel subjected to seismic loading are shown in 

Figure 7-7. The side closure has increased during the first five seconds of loading. 

Subsequently, it converged to 1.46 m. The magnitude of roof closure reached 157 mm 

after application of three seismic events. In Figure 7-8, vertical and horizontal stresses 

at roof and side of the tunnel against time of loading are plotted. It is noted that the 

vertical and horizontal stresses at the roof and side levels approached 1.03 MPa and 130 

kPa at the end of the analysis. The simulated tunnel subjected to 12 seconds of seismic 

loading is shown in Figure 7-9. Two blocks from the roof and side of the tunnel have 

fallen down showing unstable behaviour. 
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Figure 7-7 Closures around the rectangular tunnel against time of loading 
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Figure 7-8 Vertical and horizontal stresses around the rectangular tunnel 

against time of loading 
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Figure 7-9 Simulated tunnel after 12 seconds of loading for clean joints 

(dimensions in m) 

7.5.1. Stability analysis of an underground structure with infilled joints subjected to 

seismic events 

To investigate the influence of infill material on the stability of an underground 

structure in seismic loading conditions, the rectangular tunnel described in the previous 

section was again analysed with the same loading characteristics and by considering 

infilled joints. Model parameters were estimated based on Type I asperity surface with 

0.3 ratio of infill thickness to asperity height. Joints were prescribed the Coulomb slip 

constitutive mode with friction angle of 38.66° and cohesion of 0.29 MPa. Similar 

characteristics of rock as used in the clean joints analysis were applied to the rock mass. 

The magnitudes of closures at the roof level (model location: 0.2m, 26m) and the side 

level (model location: -3.2m, 21m) of the tunnel were recorded during analysis. 
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Figure 7-10 illustrates the comparison between tunnel closures with clean and infilled 

joints. The presence of infill within the joints with thickness to asperity height ratio of 

0.3 has increased the roof displacement 3.85 times with respect to the tunnel with clean 

joints. This can be described by the reduction in the rock to rock contact and as a result 

the joint friction angle due to the infill material. The side closure of the tunnel with 

infilled joints (left side of the tunnel) shows similar unstable behaviour to the tunnel 

with clean joints.  
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Figure 7-10 Closures around the rectangular tunnel with clean and infilled 

joints 

The tunnel configuration after three seismic events with infilled joints is plotted in 

Figure 7-11. As expected, the tunnel stability has decreased due to the lower friction 
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angle of infilled joints when compared with the tunnel stability with the clean joints (see 

also Figure 7-9). Blocks from both sides of the tunnel as well as the roof have detached. 

 

Figure 7-11 Simulated tunnel after 12 seconds of loading for infilled joints 

(dimensions in m) 

7.5.2. Stability analysis of a deep underground structure subjected to seismic events 

The previous model of rectangular tunnel (section 7.5) was further analysed with high 

magnitudes of vertical and horizontal stresses to investigate the stability of a deep 

underground structure subjected to seismic loading. The vertical and horizontal in situ 

stresses were considered as 13 MPa and 9.5 MPa representing a deep underground 

excavation. Loading and rock mass characteristics were assigned in the same manner as 

described in section 7.5. Joints crossing the tunnel were postulated to be extremely 

damaged under high values of normal stress, thus, the dilation angle was taken as zero. 

The tunnel displacements at the same locations as described in section 7.5 were 

investigated. 
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The comparison between the magnitudes of roof and side closures for shallow and deep 

underground tunnel subjected to seismic events is depicted in Figure 7-12. 
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 Figure 7-12 Closures around the rectangular tunnel at low and high depths 

It is observed that when subjected to cyclic loading, the roof of deep rectangular tunnel 

shows stable behaviour in comparison to the shallow tunnel due to higher normal joint 

stress. Nevertheless, an increase of normal stress on the joint surface at the greater depth 

has not improved tunnel side stability. This may be described by lower friction angle 

caused by the breakage mechanism, deteriorating joint stability. The same conclusions 

can be drawn from Figure 7-13 that shows the state of deep rectangular tunnel after 12 

seconds of cyclic loading.    
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Figure 7-13 Simulation of deep tunnel after 12 seconds of loading 

(dimensions in m) 

These analyses were extended to infilled joints with the same characteristics as those 

described in section 7.5.1. Figure 7-14 shows the comparison between the closures 

around rectangular tunnel with infilled joints for low and high depths. 

It is inferred from Figure 7-14 that the tunnel in the roof level has been stabilised with 

increase in depth while the sides show unstable behaviour. 
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Figure 7-14 Closures around the rectangular tunnel with infilled joints for 

low and high depths of cover 

7.6. Summary 

The shear behaviour of rock joints was simulated in a simplified manner using two 

available constitutive models in UDEC under cyclic loading and CNS conditions. For a 

given set of data, the variations of cyclic average shear stress, average normal stress, 

and normal displacement with shear displacement were studied and simulated using 

Coulomb slip and continuously yielding models. The results indicate that the 

capabilities of Coulomb slip and continuously yielding models in simulating shear 

behaviour of rock joints under cyclic loading and CNS conditions depends on the 

governing shearing mechanism. For low levels of applied normal stress and asperity 
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angle when considerable asperity damage does not take place, the Coulomb slip model 

simulated different frictional behaviour in forward and backward shearing and recovery 

of dilation during load reversal. However, for the asperity breakage mechanism, this 

model excluded the effect of asperity damage on dilation behaviour. On the other hand, 

the continuously yielding model represented the progressive damage of asperities under 

cyclic loading conditions. 

Stability analysis of an underground structure subjected to seismic events was carried 

out in UDEC for both clean and infilled joints. The rectangular tunnel stability 

decreased due to presence of infill material within the joints compared to the tunnel with 

clean joints. Furthermore, it was concluded that the excavation becomes more stabilised 

when subjected to cyclic loading with increase in the depth. 
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Chapter VIII 

8. CONCLUSIONS AND RECOMMENDATIONS 

 

Several aspects of the shear behaviour of rock joints under cyclic loading and CNS 

conditions were studied. The laboratory testing programme included: 

• Assessing the shear behaviour of artificial tooth shaped asperities and replicas 

of real joints under cyclic loading and CNS conditions. The samples were cast 

using high strength Plaster of Paris. Experiments were conducted on clean joints 

with different initial asperity angles 9.5° (Type I), 18.5° (Type II) and 26.5° 

(Type III) under constant normal stiffness of 8 kN/mm. The initial applied 

normal stresses were in the range of 0.16 MPa to 2.5 MPa. Samples were 

sheared for four consecutive cycles with 0.5 mm/min of shear rate. 

• Assessing the shear rate effects on shear behaviour of rock joints under cyclic 

loading and CNS conditions. Triangular asperities (Type I) were sheared 

cyclically with shear rates of 5 mm/s and 20 mm/s for 100 loading cycles. 

• Assessing the shear behaviour of infilled rock joints under cyclic loading and 

CNS conditions. Triangular joints (Types I and II) were infilled with mixture of 

clay and sand at initial moisture content of 12.5% and sheared for four 

consecutive cycles. 

An incremental elasto plastic constitutive model was proposed to predict the shear 

behaviour of clean rock joints under cyclic loading and CNS conditions. This model 

was accompanied by an empirical relationship to consider the effect of shear rate on 

cyclic loading shear strength. Furthermore, a mathematical model was proposed and 
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calibrated to simulate the reduction in the shear strength of infilled joints under cyclic 

loading. The following paragraphs describe the main conclusions extracted from this 

study. 

Joint Research 

To date, most of the research is concerned with the estimation of shear strength under 

monotonic loading and CNL or CNS conditions. While some of the published research 

is intended to study the shear behaviour of rock joints under cyclic loading and CNL 

conditions, only a limited research work is reported on the influence of normal stiffness 

on the shear behaviour of rock joints under cyclic loading. The past research work on 

the effects of shear rate on shear strength of rock joints was only conducted under the 

monotonic loading. No study has been published to investigate the effects of cyclic 

loading on the shear behaviour of infilled rock joints. 

Shear Behaviour of Clean Rock Joints under Cyclic loading 

• As the number of loading cycles increased, the shear strength of rock joints 

decreased. 

• Reduction in shear strength with increase in the loading cycles was higher for 

joints with greater values of initial normal stress and asperity angle. 

•  Due to asperity damage, the dilation component was decreased with increase 

in the number of shear cycles. 

• The asperity damage is in direct relationship with the initial normal stress, 

initial asperity angle and number of loading cycles for a particular normal 

stiffness. 
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• The cyclic loading shear strength decreased with increase in the shear rate. As 

the number of loading cycles increased, the effects of shear rate became less 

significant.  

Shear Behaviour of Infilled Rock Joints under Cyclic loading 

• The cyclic loading shear strength of infilled rock joints decreased with increase 

in the loading cycles. 

• The reduction in the cyclic loading shear strength was higher for greater values 

of infill thickness to asperity height ratio and initial normal stress. 

• The increase in the number of loading cycles was associated with a lower 

reduction trend in shear strength. 

• Dilation and contraction were the two mechanisms involved in the variation of 

normal displacement with shear displacement of infilled rock joints subjected to 

cyclic loading. 

• At t/a = 0.3, dilation is the governing mechanism in the variation of normal 

displacement with shear displacement. As t/a approaching unity, the normal 

displacement shows compaction due to deformation of infill material. 

Modelling of the Shear Behaviour of Rock Joints under Cyclic Loading 

• The values of shear stress, normal stress and normal displacement versus shear 

displacement of clean rock joints predicted by the constitutive model, were in 

good agreement with the laboratory results for the initial normal stress range of 

0.16 MPa to 0.56 MPa. 
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• The additional shear resistance generated by the asperity damage in the first 

forward shear cycle was captured by the model for clean rock joints particularly 

for σn0=1.64 MPa and 2.4 MPa. 

• Reduction in the shear strength of infilled rock joints with increase in the 

number of loading cycles, as predicted by the hyperbolic equation, was in a good 

agreement with the laboratory results from several tests (regression coefficients 

greater than 0.96). 

• The Coulomb slip model available in UDEC simulated different frictional 

resistance in forward and backward shearing of rock joints subjected to cyclic 

loading. The continuously yielding model replicated the asperity damage in 

cyclic loading conditions. 

• The UDEC models underestimated the shear strength of rock joints in the first 

loading cycle when compared with the laboratory test results 

8.1. Recommendations for future research 

The study of the shear behaviour of rock joints under cyclic loading and CNS 

conditions can be extended to address the following recommendations, which have not 

been fully investigated within the scope of this research. 

• Scale effects 

The variations of properties with the size of the specimens are defined as the scale 

effects. As discussed in Chapter II, the increase in the specimen size decreases the 

strength of the joint. The effects of scale factor were not studied as all the prepared 

samples had the same joint area and asperity frequency. It is suggested that the scale 

effects on shear behaviour of clean rock joints under cyclic loading and CNS conditions 
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be studied in future research. As the model used in this research for the clean joints does 

not include the effects of specimen size, it can be revised based on the observed 

governing mechanisms. However, according to Infanti and Kanji (1978), the shear 

behaviour of infilled joints is not influenced significantly by the change in the specimen 

size. 

• Normal stiffness 

Cyclic loading shear tests were conducted under a constant normal stiffness of 0.43 

MPa/mm provided by the 8 kN/mm springs set. Although this amount is reasonable for 

sedimentary rock joints, different stiffness values may be required for softer or stiffer 

joints, therefore, cyclic loading shear tests on clean and infilled rock joints should be 

carried out for different values of normal stiffness. The models proposed in this study, 

can still be used in future studies to predict the shear strength of clean and infilled joints 

under cyclic loading and different conditions of normal stiffness. However, the models 

coefficients need to be calibrated. 

• Pore water pressure 

Joints obey the effective stress principle as discussed in Chapter II. Thus, the 

strengthening effect of normal stress acting on the joint plane may either decrease or 

increase depending on the development of positive or negative pore water pressure. This 

might influence the shear behaviour of rock joints under cyclic loading and eventually 

the stability of underground structures constructed in proximity of active seismic zones. 

In order to investigate the effects of pore water pressure development on shear 

behaviour of rock joints during cyclic shearing, the CNS apparatus used in this study 

requires further modifications. 
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• Extension in numerical modelling 

An example of stability analysis of a rectangular tunnel subjected to seismic events was 

given in Chapter VII. The analysis was carried out in UDEC using Coulomb slip 

constitutive model for joints. The built in constitutive models in UDEC cannot represent 

the actual shear behaviour of rock joints under cyclic loading (see Chapters IV and VII). 

The authors’ recommendation is to extend a series of computer FISH subroutines to 

replicate the true shear behaviour of rock joints under cyclic loading. The models 

proposed in this study for simulation of shear behaviour of rock joints under cyclic 

loading can be considered for subroutines developments. 

• Infill material 

Mixture of clay and sand (75% fine sand and 25% Kaolinite) at initial moisture content 

of 12.5% was selected as infill material. In the field, joints are often infilled with sand, 

clay and/or silt, therefore, different types of infill material collected from the field 

should be tested at varying thicknesses under cyclic loading and CNS conditions. The 

applicability of the proposed model should be reassessed and model coefficients need to 

be evaluated based on the experimental results. 

• Real rock joints 

The experimental study for infilled joints was only conducted on artificial triangular 

asperities cast using high strength Plaster of Paris (σc = 60 MPa). Real rock joints have 

spatial and arbitrarily distributed roughness with various values of uniaxial compressive 

strength. The shear strength model used for this thesis can be extended to predict the 

field shear strength of infilled joints subjected to cyclic loading once the surface 

geometry is mapped and model coefficients are determined. Surface geometry can be 
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mapped using either the Fractal method or Fourier transform. Alternatively, the concept 

of JRC can be incorporated to describe the roughness of field joints. 
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APPENDIX I 

MATLAB CODE PROGRAM FOR THE SIMULATION OF THE 

CYCLIC LOADING SHEAR BEHAVIOUR OF ROCK JOINTS 

UNDER CNS CONDITIONS 

 
clear 
clc 
  
N = input('Enter number of loading cycles ='); 
NS0 = input('Enter initial normal stress (MPa) ='); 
BF = input('Enter basic friction angle (Degree) ='); 
Cd = input('Enter damage coefficient (1/MPa.mm) ='); 
KCNS = input('Enter value of normal stiffness (MPa/mm) ='); 
L = input('Enter asperity length (mm) ='); 
Ke = input('Enter elastic stiffness (MPa/mm) ='); 
Ue = input('Enter shear displacement at onset plastic 
displacement (mm) ='); 
I 0 = input ('Enter initial asperity angle (Degree) ='); 
i sec = input ('Enter secant dilation angle (Degree) ='); 
  
NC=1; 
SS(1,6000)=0; 
NS(1,6000)=0; 
NS(1,1)=NS0; 
V(1,6000)=0; 
U(1,6000)=0; 
dils=0; 
ds=0; 
s1=0; 
s2=0; 
AN=1; 
Uac=0; 
Wp=0; 
  
while (Uac<=L/2) 
    V(1,AN)=U(1,AN)*cos(isec*pi/180); 
    NS(1,AN)=NS0+V(1,AN)*KCNS; 
    di=isec;    
    if (U(1,AN)<Ue) 
        SS(1,AN)=U(1,AN)*Ke; 
    else 
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SS(1,AN)=NS(1,AN)*(tan(I0*pi/180)+tan(BF*pi/180))/(1-
(tan(BF*pi/180))*tan(di*pi/180)); 
    end 
    Uac=Uac+0.5; 
    U(1,AN+1)=U(1,AN)+0.5; 
    AN=AN+1; 
end 
  
AN=AN-1; 
V(1,1)=0; 
NS(1,1)=NS0; 
Iave= isec*pi/180; 
di=Iave; 
Q=2; 
Uac=0; 
dia=0; 
  
while(NC<=N) 
    while (Q<=4) 
         if (Q ==1) 
             dils=1; 
             ds=1;            
         end 
         if (Q ==2) 
             dils=-1; 
             ds=-1; 
         end 
         if (Q==3) 
             dils=1; 
             ds=-1; 
         end 
         if (Q==4) 
             dils=-1; 
             ds=1; 
         end 
         U(1,AN+1)=U(1,AN)+ds*0.5; 
         V(1,AN+1)=abs(U(1,AN+1)*tan(di*pi/180)); 
         dia=abs(atan(V(1,AN+1)-V(1,AN))/(U(1,AN+1)-
U(1,AN))); 
         SS(1,AN+1)=ds*NS(1,AN)*tan(BF*pi/180+dia*dils); 
         NS(1,AN+1)=NS0+V(1,AN+1)*KCNS;          
         s2=abs(SS(1,AN)); 
         Uac=Uac+0.5; 
         AN=AN+1; 
         if (Uac<=L/2) 
             Wp=(s1+s2)*0.5*0.5+Wp; 
             di=Iave*exp(-Cd*Wp); 
             s1=s2; 
         else 
             Uac=0; 
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             Q=Q+1; 
             AN=AN-1; 
         end 
    end 
    NC=NC+1; 
    Q=1; 
end 
 
plot (U,SS) 
plot (U,NS) 
plot (U,V) 
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APPENDIX II 

FISH SUBROUTINE PROGRAM FOR THE NUMERICAL 

SIMULATION OF THE CYCLIC LOADING SHEAR BEHAVIOUR 

OF ROCK JOINTS UNDER CNS CONDITIOS 

 

Coulomb slip model: Type I asperity surface with initial normal stress of 2.4 MPa 

new 

round 0.001 

; This creates block 

bl (0,0)  (0,0.4)  (0.35,0.4)  (0.35,0)  

; This creates cracks  

crack  0.05 0.1 0.05 0.4 

crack  0.3 0.1 0.3 0.4 

crack  0 0.1  0.35 0.1 

crack -1,0.25 1,0.25 

del  range 0 0.05  0.1 0.4 

del  range 0.3 0.35   0.1 0.4 

; This generates mesh 

gen edge 0.02  range 0 0.35  0 0.1 

gen edge 0.02  range 0.05 0.3 0.1 0.25 

gen quad 0.1   range 0.05 0.3 0.25 0.4 

plot hold zone block 

; Array to peak up joint 
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def arrayjoint 

ic = contact_head 

array a1(2,5000) 

ncount1=1 

ncount2=1 

   loop while ic # 0 

        if c_y(ic) = 0.25 

           a1(1,ncount1)=ic 

        ncount1=ncount1+1 

        else 

           a1(2,ncount2)=ic 

        ncount2=ncount2+1 

        endif 

        ic = c_next(ic) 

    endloop 

end 

arrayjoint 

; This determines material properties 

prop  mat=1   d=2.6e3  bu=1400e6  s=792e6 

prop  mat=2   d=2.6e3  bu=21.3e6  s=31.95e6 

; Changing material properties 

change mat=2 range 0.048,0.32 0.245,0.41 

plot hold mat 

; Coulomb joint model 

change jcons=2 

set jcondf=2 

set add_dil on 



Appendix II                                                                                FISH subroutine program 
______________________________________________________________________ 

233 
 

prop jmat=1  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=4.55  zdil=15e-3 

prop jmat=2  jkn=1.4e10   jks=1.4e10   & 

             jfric=0   jdil=0   zdil=15e-3 

; Changing joint material propoerties 

change jmat=2 range 0.048,0.31 0.24,0.26        

plot hold mat joint 

; This provides the boundary condition 

bound  xvel=0  range   0.0499,0.051 0.099,0.401 

bound  xvel=0  range   0.299,0.301  0.099,0.401 

bound  yvel=0  range   -0.0018,0.351 -0.00156,0.00119 

bound  yvel=0  range   0.049,0.35 0.33,0.41 

; Apply normal stress 

ini syy = -2.4e6 range 0.05,0.3 0.25,0.4 

ini syy = -2.4e6 range 0.05,0.3 0.1,0.25 

ini syy = -2.4e6 range 0,0.35 0,0.1 

hist unbal 

cycle 1000 

; Functions to calculate average joint stresses and average joint displacements 

def ini_jdisp 

  njdisp0 = 0.0 

  sjdisp0 = 0.0 

  ncount3=1 

  loop while ncount3 <= ncount2 

      njdisp0 = njdisp0 + c_ndis(a1(2,ncount3)) 

      sjdisp0 = sjdisp0 + c_sdis(a1(2,ncount3)) 

      ncount3 = ncount3 + 1 
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  endloop 

end 

ini_jdisp 

def av_str 

  whilestepping 

  sstav = 0.0 

  nstav = 0.0 

  njdisp = 0.0 

  sjdisp = 0.0 

  jl   = 0.237012              ; joint length 

  ncount4=1 

  loop while ncount4 <= ncount2 

      sstav = sstav + c_sforce(a1(2,ncount4)) 

      nstav = nstav + c_nforce(a1(2,ncount4)) 

      njdisp = njdisp + c_ndis(a1(2,ncount4)) 

      sjdisp = sjdisp + c_sdis(a1(2,ncount4)) 

      ncount4 = ncount4 + 1 

  endloop 

  if ncount2 # 0 

    sstav = sstav / jl 

    nstav = nstav / jl 

    njdisp = (njdisp-njdisp0) / ncount2 

    sjdisp = (sjdisp-sjdisp0) / ncount2 

  endif 

end 

reset hist jdisp 

hist ncycle=200 unbal  nc 1 
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hist ncycle=200 sstav  nstav njdisp sjdisp 

plot hold syy fill bl 

; Boundary velocity 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

bou  xvel=8.33e-3 range -5,5 -0.001,0.001 

step 280000 

step 280000 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000  

; Boundary velocity 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

bou  xvel=8.33e-3 range -5,5 -0.001,0.001 

step 280000 

step 280000 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

; Boundary velocity 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

bou  xvel=8.33e-3 range -5,5 -0.001,0.001 

step 280000 

step 280000 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

; Boundary velocity 
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bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

bou  xvel=8.33e-3 range -5,5 -0.001,0.001 

step 280000 

step 280000 

bou  xvel=-8.33e-3 range -5,5 -0.001,0.001 

step 280000 

pl syy fil blo blu hold 

pl sxx fil blo blu hold 

plot hold hist 2 vs 5 yr 

plot hold hist 4 vs 5 

plot hold hist 3 vs 5 

return 
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APPENDIX III 

STABILITY ANALYSIS OF AN UNDERGROUND STRUCTURE 

SUBJECTED TO SEISMIC EVENTS IN UDEC 

 

new 

round = 0.008 

block -30,-50 -30,94 30,94 30,-50 

; Boundary cracks for jointed region 

crack -30,10  30,10 

crack -30,34  30,34 

crack -15,10 -15,34 

crack  15,10  15,34 

; Excavation boundary crack 

crack  0,10  0,34 

crack -3,15 -3,24 

crack -3,24  3,24 

crack  3,15  3,24 

crack -3,15  3,15 

; Jointed region 

jreg id=1 -15,10 -15,34 15,34 15,10 

jset 60,0 35,0 0,0 4,0 0,30 range jreg 1 

jset 120,0 35,0 0,0 3,0 0,30 range jreg 1 

del range area 0.1 

; Zoning 
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gen edge 3 range -15 15 10 34 

gen quad 4 

; Boundary and initial condition 

insitu stress (-7e5, 0, -2.6e6) ygrad (10000,0,20000) 

grav 0, -9.81 

bound xvel 0 range -33 -27 -55  100 

bound xvel 0 range  27  33 -55  100 

bound yvel 0 range -33  33 -55  -45 

; Rock mass 

prop  mat=1   d=2.6e3  bu=1400e6  s=792e6 

; Joint constitutive model 

change jcons=2 

set jcondf=2 

set add_dil on 

; Joint set 1 

prop jmat=1  jkn=1.4e10   jks=1.4e10   & 

             jfric=40.35  jdil=0  zdil=15e-3 

; Joint set 2 

change jmat 2 range ang 110 130 

prop jmat=2  jkn=1.4e10   jks=1.4e10   & 

             jfric=40.35  jdil=0  zdil=15e-3  

; Joint set 3 (1) 

change jmat 3 range 2.8 7.238 27.223 40.814 ang  55 65 

change jmat 3 range 0.251 4.93 23.63 28 ang  55 65 

change jmat 3 range -6.189 -1.693 12.018 17.45 ang  55 65 

change jmat 3 range -9.288 -4.913 9.546 12.842 ang  55 65 

prop jmat=3  jkn=1.4e10   jks=1.4e10   & 



Appendix III                                                                              FISH subroutine program 
______________________________________________________________________ 

239 
 

             jfric=35  jdil=4.54 zdil=15e-3  

; Joint set 4 (2) 

change jmat 4 range 7.171 11.77 26.99 40.992 ang  55 65 

change jmat 4 range 3.248 7.8 20.51 27.445 ang  55 65 

change jmat 4 range 2.099 4.357 17.67 20.95 ang  55 65 

change jmat 4 range -3.331 0.87 9.91 15.72 ang  55 65 

prop jmat=4  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=4.53 zdil=15e-3  

; Joint set 5 (3) 

change jmat 5 range -12.96 -9.354 28.67 40.94 ang  110 130 

change jmat 5 range -10.107 -6.659 24.221 29.106 ang  110 130 

change jmat 5 range -7.214 -4.202 19.92 24.905 ang  110 130 

change jmat 5 range -4.799 -2.142 16.551 19.99 ang  110 130 

change jmat 5 range -1.9 1.425 9.95 15.525 ang  110 130 

prop jmat=5  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=4.61  zdil=15e-3 

; Joint set 6 (4) 

change jmat 6 range -9.433 -5.906 28.569 34.041 ang  110 130 

change jmat 6 range -6.382 -2.934 23.146 28.667 ang  110 130 

change jmat 6 range 1.346 4.833 9.95 15.378 ang  110 130 

prop jmat=6  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=4.89  zdil=15e-3 

; Joint set 7 (5) 

change jmat 7 range -6.4 -4.4 32 34  ang  110 130 

change jmat 7 range -5.128 -2.459 27.885 34.041 ang  110 130 

change jmat 7 range -2.46 -0.16 22.8 28 ang  110 130 

change jmat 7 range  -1.64 0.5 23 26 ang  110 130 
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change jmat 7 range  2.5 5.9 13.64 18.97 ang  110 130 

change jmat 7 range  5.28 8.45 9.9 14.19 ang  110 130 

prop jmat=7  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=4.52 zdil=15e-3 

; Joint set 8 (6) 

change jmat 8 range -0.6 0.6 9.4 35 ang  89 91 

prop jmat=8  jkn=1.4e10   jks=1.4e10   & 

             jfric=35  jdil=5.18 zdil=15e-3 

; Array to peak up joints 

def arrayjoint 

ic = contact_head 

array a1(2,5000) 

array a2(3,5000) 

array a3(1,5000) 

ncount1=1 

ncount2=1 

ncount3=1 

ncount4=1 

ncount5=1 

ncount6=1 

   loop while ic # 0 

           if c_y(ic)<1.71*c_x(ic)+23.05 

             if C_y(ic)>1.72*c_x(ic)+21.429           

               a1(1,ncount1)=ic 

               ncount1=ncount1+1 

             endif 

           endif 
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           if c_y(ic)<1.7*c_x(ic)+15.4 

             if C_y(ic)>1.69*c_x(ic)+13.501           

               a1(2,ncount2)=ic 

               ncount2=ncount2+1 

             endif 

           endif 

           if c_y(ic)<-1.7045*c_x(ic)+13.29 

             if C_y(ic)>-1.68*c_x(ic)+11.72           

               a2(1,ncount3)=ic 

               ncount3=ncount3+1 

             endif 

           endif 

           if c_y(ic)<-1.69*c_x(ic)+19.22 

             if C_y(ic)>-1.69*c_x(ic)+17.23           

               a2(2,ncount4)=ic 

               ncount4=ncount4+1  

             endif 

           endif 

           if c_y(ic)<-1.7*c_x(ic)+25.574 

             if C_y(ic)>-1.69*c_x(ic)+22.983           

               a2(3,ncount5)=ic 

               ncount5=ncount5+1 

             endif 

           endif 

           if c_x(ic)=0         

               a3(1,ncount6)=ic 

               ncount6=ncount6+1 
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           endif 

           ic = c_next(ic) 

    endloop   

end 

arrayjoint 

; Average displacements and stresses 

def ini_jdisp 

  njdisp01 = 0.0 

  sjdisp01 = 0.0 

  njdisp02 = 0.0 

  sjdisp02 = 0.0 

  njdisp03 = 0.0 

  sjdisp03 = 0.0 

  njdisp04 = 0.0 

  sjdisp04 = 0.0 

  njdisp05 = 0.0 

  sjdisp05 = 0.0 

  njdisp06 = 0.0 

  sjdisp06 = 0.0 

  ncount7=1 

  ncount8=1 

  ncount9=1 

  ncount10=1 

  ncount11=1 

  ncount12=1 

  loop while ncount7 <= ncount1 

      njdisp01 = njdisp01 + c_ndis(a1(1,ncount7)) 
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      sjdisp01 = sjdisp01 + c_sdis(a1(1,ncount7)) 

      ncount7 = ncount7 + 1 

  endloop 

  loop while ncount8 <= ncount2 

      njdisp02 = njdisp02 + c_ndis(a1(2,ncount8)) 

      sjdisp02 = sjdisp02 + c_sdis(a1(2,ncount8)) 

      ncount8 = ncount8 + 1 

  endloop 

  loop while ncount9 <= ncount3 

      njdisp03 = njdisp03 + c_ndis(a2(1,ncount9)) 

      sjdisp03 = sjdisp03 + c_sdis(a2(1,ncount9)) 

      ncount9 = ncount9 + 1 

  endloop 

  loop while ncount10 <= ncount4 

      njdisp04 = njdisp04 + c_ndis(a2(2,ncount10)) 

      sjdisp04 = sjdisp04 + c_sdis(a2(2,ncount10)) 

      ncount10 = ncount10 + 1 

  endloop 

  loop while ncount11 <= ncount5 

      njdisp05 = njdisp05 + c_ndis(a2(3,ncount11)) 

      sjdisp05 = sjdisp05 + c_sdis(a2(3,ncount11)) 

      ncount11 = ncount11 + 1 

  endloop 

  loop while ncount12 <= ncount6 

      njdisp06 = njdisp06 + c_ndis(a3(1,ncount12)) 

      sjdisp06 = sjdisp06 + c_sdis(a3(1,ncount12)) 

      ncount12 = ncount12 + 1 
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  endloop 

end 

ini_jdisp 

def av_str 

  whilestepping 

  sstav1 = 0.0 

  nstav1 = 0.0 

  njdisp1 = 0.0 

  sjdisp1 = 0.0 

  jl1   = 19.23              ; joint length 

  sstav2 = 0.0 

  nstav2 = 0.0 

  njdisp2 = 0.0 

  sjdisp2 = 0.0 

  jl2   = 22.58              ; joint length 

  sstav3 = 0.0 

  nstav3 = 0.0 

  njdisp3 = 0.0 

  sjdisp3 = 0.0 

  jl3   = 24.77              ; joint length 

  sstav4 = 0.0 

  nstav4 = 0.0 

  njdisp4 = 0.0 

  sjdisp4 = 0.0 

  jl4   = 37.23              ; joint length 

  sstav5 = 0.0 

  nstav5 = 0.0 
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  njdisp5 = 0.0 

  sjdisp5 = 0.0 

  jl5   = 21.32              ; joint length 

  sstav6 = 0.0 

  nstav6 = 0.0 

  njdisp6 = 0.0 

  sjdisp6 = 0.0 

  jl6   = 14.76              ; joint length 

  ncount13=1 

  ncount14=1 

  ncount15=1 

  ncount16=1 

  ncount17=1 

  ncount18=1 

  loop while ncount13 <= ncount1     

      sstav1 = sstav1 + c_sforce(a1(1,ncount13)) 

      nstav1 = nstav1 + c_nforce(a1(1,ncount13)) 

      njdisp1 = njdisp1 + c_ndis(a1(1,ncount13)) 

      sjdisp1 = sjdisp1 + c_sdis(a1(1,ncount13)) 

      ncount13 = ncount13 + 1 

  endloop 

  if ncount13 # 0 

    sstav1 = sstav1 / jl1 

    nstav1 = nstav1 / jl1 

    njdisp1 = (njdisp1-njdisp01) / ncount13 

    sjdisp1= (sjdisp1-sjdisp01) / ncount13 

  endif 
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  loop while ncount14 <= ncount2      

      sstav2 = sstav2 + c_sforce(a1(2,ncount14)) 

      nstav2 = nstav2 + c_nforce(a1(2,ncount14)) 

      njdisp2 = njdisp2 + c_ndis(a1(2,ncount14)) 

      sjdisp2 = sjdisp2 + c_sdis(a1(2,ncount14)) 

      ncount14 = ncount14 + 1 

  endloop 

  if ncount14 # 0 

    sstav2 = sstav2 / jl2 

    nstav2 = nstav2 / jl2 

    njdisp2 = (njdisp2-njdisp02) / ncount14 

    sjdisp2= (sjdisp2-sjdisp02) / ncount14 

  endif 

  loop while ncount15 <= ncount3      

      sstav3 = sstav3 + c_sforce(a2(1,ncount15)) 

      nstav3 = nstav3 + c_nforce(a2(1,ncount15)) 

      njdisp3 = njdisp3 + c_ndis(a2(1,ncount15)) 

      sjdisp3 = sjdisp3 + c_sdis(a2(1,ncount15)) 

      ncount15 = ncount15 + 1 

  endloop 

  if ncount15 # 0 

    sstav3 = sstav3 / jl3 

    nstav3 = nstav3 / jl3 

    njdisp3 = (njdisp3-njdisp03) / ncount15 

    sjdisp3= (sjdisp3-sjdisp03) / ncount15 

  endif 

  loop while ncount16 <= ncount4      
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      sstav4 = sstav4 + c_sforce(a2(2,ncount16)) 

      nstav4 = nstav4 + c_nforce(a2(2,ncount16)) 

      njdisp4 = njdisp4 + c_ndis(a2(2,ncount16)) 

      sjdisp4 = sjdisp4 + c_sdis(a2(2,ncount16)) 

      ncount16 = ncount16 + 1 

  endloop 

  if ncount16 # 0 

    sstav4 = sstav4 / jl4 

    nstav4 = nstav4 / jl4 

    njdisp4 = (njdisp4-njdisp04) / ncount16 

    sjdisp4= (sjdisp4-sjdisp04) / ncount16 

  endif 

  loop while ncount17 <= ncount5      

      sstav5 = sstav5 + c_sforce(a2(3,ncount17)) 

      nstav5 = nstav5 + c_nforce(a2(3,ncount17)) 

      njdisp5 = njdisp5 + c_ndis(a2(3,ncount17)) 

      sjdisp5 = sjdisp5 + c_sdis(a2(3,ncount17)) 

      ncount17 = ncount17 + 1 

  endloop 

  if ncount17 # 0 

    sstav5 = sstav5 / jl5 

    nstav5 = nstav5 / jl5 

    njdisp5 = (njdisp5-njdisp05) / ncount17 

    sjdisp5= (sjdisp5-sjdisp05) / ncount17 

  endif 

  loop while ncount18 <= ncount6      

      sstav6 = sstav6 + c_sforce(a3(1,ncount18)) 
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      nstav6 = nstav6 + c_nforce(a3(1,ncount18)) 

      njdisp6 = njdisp6 + c_ndis(a3(1,ncount18)) 

      sjdisp6 = sjdisp6 + c_sdis(a3(1,ncount18)) 

      ncount18 = ncount18 + 1 

  endloop 

   if ncount18 # 0 

    sstav6 = sstav6 / jl6 

    nstav6 = nstav6 / jl6 

    njdisp6 = (njdisp6-njdisp06) / ncount18 

    sjdisp6= (sjdisp6-sjdisp06) / ncount18 

  endif 

end 

av_str  

pl bl zone yel hold 

pl syy fil blo blu hold 

pl sxx fil blo blu hold 

hist unb ydis 0 26 

damp auto 

step 3000 

pl hold hist 1 

; Excavate tunnel 

del -2.98 2.98 15.2 23.8 

pl hold bl 

; Static analysis 

reset disp jdisp hist 

reset hist time disp 

hist ncycle=50 ydis  0.2,26 
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hist ncycle=50 xdis -3.2,21 

hist ncycle=50 sstav1  nstav1 njdisp1 sjdisp1 

hist ncycle=50 sstav2  nstav2 njdisp2 sjdisp2 

hist ncycle=50 sstav3  nstav3 njdisp3 sjdisp3 

hist ncycle=50 sstav4  nstav4 njdisp4 sjdisp4 

hist ncycle=50 sstav5  nstav5 njdisp5 sjdisp5 

hist ncycle=50 sstav6  nstav6 njdisp6 sjdisp6 

hist type 1 

cycle 5500 

pl bl zone yel hold 

pl syy fil blo blu hold 

pl sxx fil blo blu hold 

pl hold hist 1 

pl hold hist 2 

pl hold hist 3 

pl hold hist 7 

pl hold hist 11 

pl hold hist 15 

pl hold hist 19 

pl hold hist 23 

; Generate free-field (55 nodes) ; both lateral bound ; fixed bottom 

ffield gen yrange (-60,100) np 55 

ffield change mat=1 cons=1 

; Initialize FF stresses (same as insitu stresses) 

ffield ini sxx -7e5 10000 

ffield ini syy -2.6e6 20000 

; Cycle with FF not attached to the model 



Appendix III                                                                              FISH subroutine program 
______________________________________________________________________ 

250 
 

; Joint properties for dynamic analysis 

; To bring FF stresses to equilibrium 

ffield base xvel 0 

ffield base yvel 0 

hist ffyd 0 1 

hist ffsxx 0 1 

step 1100 

; Histories 

reset hist time disp 

hist ncycle=400 ydis  0.2,26 

hist ncycle=400 Syy   0.2,26 

hist ncycle=400 xdis -3.2,21 

hist ncycle=400 Sxx  -3.2,21 

hist ncycle=400 sstav1 

hist ncycle=400 sstav2 

hist ncycle=400 sstav3 

hist ncycle=400 sstav4 

hist ncycle=400 sstav5 

hist ncycle=400 sstav6 

hist ncycle=400 nstav1 

hist ncycle=400 nstav2 

hist ncycle=400 nstav3 

hist ncycle=400 nstav4 

hist ncycle=400 nstav5 

hist ncycle=400 nstav6 

hist ncycle=400 njdisp1 

hist ncycle=400 njdisp2 
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hist ncycle=400 njdisp3 

hist ncycle=400 njdisp4 

hist ncycle=400 njdisp5 

hist ncycle=400 njdisp6 

hist ncycle=400 sjdisp1 

hist ncycle=400 sjdisp2 

hist ncycle=400 sjdisp3 

hist ncycle=400 sjdisp4 

hist ncycle=400 sjdisp5 

hist ncycle=400 sjdisp6 

; Apply dynamic boundary condition 

bound mat 1 

bound ff range -33,-27 -55,100  

bound ff range  27,33  -55,100 

bound xvisc range -33,33 -55,-45 

damp 0.0001 10 

mscale part 1e-5 

set ovtol 0.5 

; First seismic event 

; Amplitude of shear wave: 2.4 MPa; freq = 11 Hz, duration 2 sec. 

bound stress 0 -2.4e6 0 hist sine (11 2) range -33 33 -55 -45 

; Fix y-vel at bottom 

bound yvel=0 range -33 33 -55 -45 

; Free-field boundary condition at base 

ffield base sxy=-2.4e6 hist sine (11 2) 

ffield base yvel=0 

ffield base xvisc 
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cycle time 2 

; Second seismic event 

; Amplitude of shear wave: 0.8 MPa; freq = 8 Hz, duration 4 sec. (total=6sec) 

bound stress 0 -8e5 0 hist sine (8 4) range -33 33 -55 -45 

; Fix y-vel at bottom 

bound yvel=0 range -33 33 -55 -45 

; Free-field boundary condition at base 

ffield base sxy=-8e5 hist sine (8 4) 

ffield base yvel=0 

ffield base xvisc 

cycle time 4 

; Third seismic event 

; Amplitude of shear wave: 0.45 MPa; freq = 10 Hz, duration 6 sec. (total=12 sec) 

bound stress 0 -4.5e5 0 hist sine (10 6) range -33 33 -55 -45 

; Fix y-vel at bottom 

bound yvel=0 range -33 33 -55 -45 

; Free-field boundary condition at base 

ffield base sxy=-4.5e5 hist sine (10 6) 

ffield base yvel=0 

ffield base xvisc 

cycle time 6 

plot hold hist 1 

plot hold hist 2 

plot hold hist 3 

plot hold hist 4 

plot hold hist 5 

plot hold hist 6 
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plot hold hist 7 

plot hold hist 8 

plot hold hist 9 

plot hold hist 10 

plot hold hist 11 

plot hold hist 12 

plot hold hist 13 

plot hold hist 14 

plot hold hist 15 

plot hold hist 16 

plot hold hist 17 

plot hold hist 18 

plot hold hist 19 

plot hold hist 20 

plot hold hist 21 

plot hold hist 22 

plot hold hist 23 

plot hold hist 24 

plot hold hist 25 

plot hold hist 26 

plot hold hist 27 

plot hold hist 28 

plot hold bl dis yel 
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