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Abstract: CoSb3-based skutterudite is a promising mid-temperature thermoelectric material. How-
ever, the high lattice thermal conductivity limits its further application. Filling is one of the most 
effective methods to reduce the lattice thermal conductivity. In this study, we investigate the Ce 
filling limit and its influence on thermoelectric properties of p-type Fe3CoSb12-based skutterudites 
grown by a temperature gradient zone melting (TGZM) method. Crystal structure and composition 
characterization suggests that a maximum filling fraction of Ce reaches 0.73 in a composition of 
Ce0.73Fe2.73Co1.18Sb12 prepared by the TGZM method. The Ce filling reduces the carrier concentration 
to 1.03 × 1020 cm−3 in the Ce1.25Fe3CoSb12, leading to an increased Seebeck coefficient. Density func-
tional theory (DFT) calculation indicates that the Ce-filling introduces an impurity level near the 
Fermi level. Moreover, the rattling effect of the Ce fillers strengthens the short-wavelength phonon 
scattering and reduces the lattice thermal conductivity to 0.91 W m−1 K−1. These effects induce a 
maximum Seebeck coefficient of 168 μV K−1 and a lowest κ of 1.52 W m−1 K−1 at 693 K in the 
Ce1.25Fe3CoSb12, leading to a peak zT value of 0.65, which is 9 times higher than that of the unfilled 
Fe3CoSb12. 
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1. Introduction 
With the consumption of traditional fossil fuels and the aggravation of environment 

pollution, exploring new and effective energy utilization techniques has experienced in-
creasing significance [1–3]. Thermoelectric technology, enabling the direct energy conver-
sion between heat and electricity, has provided a promising and eco-friendly energy so-
lution [4–6]. The thermoelectric performance is fundamentally characterized by the mate-
rial dimensionless figure-of-merit (zT), defined as zT = S2σT/κ, where S, σ, κ and T are the 
Seebeck coefficient, electrical conductivity, thermal conductivity (comprised of electronic 
contribution κe and lattice contribution κl) and temperature in Kelvin, respectively [7–9]. 
High power factor (S2σ) and low κ are necessary for high zT [8,9]. S, σ, and κe are related 
to each other as a function of other fundamental parameters, such as carrier concentration 
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(n) [10–12]. These fundamental parameters need to be optimized. Typically, the n of ther-
moelectric materials can be optimized by valence electron counts engineering [13,14], 
modulation doping [15], and band gap engineering [16]. Other than the interrelated pa-
rameters, reducing κl can achieve a low κ and high zT [17]. The reduced κl can be achieved 
by introducing additional structure defects, such as point defects [18], dense grain bound-
aries [19], and nanoprecipitates [20,21] for strengthening phonon scattering. 

Among thermoelectric materials, skutterudites, especially CoSb3-based 
skutterudites, are promising application prospect in the field of mid-temperature power 
generation [22–24]. Binary CoSb3 is an intermetallic compound formed by a peritectic re-
action [25]. CoSb3 is a body-centered cubic cage-like crystal structure (Im-3 space group) 
with two void positions at the 2a sites (0, 0, 0) and (1/2, 1/2, 1/2) in the unit cell [26,27]. 
Intrinsic CoSb3 is a p-type semiconductor with high S and high carrier mobility (µ) [28]. 
However, the strong Co-Sb covalent bonding induces high κl (~7.5 W m−1 K−1 at room tem-
perature) of intrinsic CoSb3, limiting its thermoelectric performance [29,30]. 

To reduce the κl of intrinsic CoSb3, filling the void position at the 2a site with small 
atom can tune CoSb3 into filled-CoSb3 (RxCo4Sb12, R is the filling elements and x is the 
filling fraction), which possesses a feature of phonon glass and electron crystal (PGEC) 
[31]. The fillers are loosely bounded and rattle near the equilibrium positions and signifi-
cantly scatter the low-frequency phonons, leading to decreased κl and improved zT 
[32,33]. The fillers can be rare-earth atoms [18,34], alkaline-earth atoms [35], alkaline met-
als atoms [36]. Pei et al. [36] found that n-type Na0.48Co4Sb12 had a reduced room-temper-
ature κl of 3.5 W m−1 K−1 in accordance with a peak zT of 1.25. Alkaline-earth Ba can be 
filled into the void position at the 2a site of CoSb3 to form n-type filled-CoSb3 and approach 
a decreased κl of 0.73 W m−1 K−1 and a peak zT of ~1.0 in Ba0.51CO4Sb12 [35]. Yb is another 
utilized rare-earth filler since the relatively high atomic mass and small ionic radius 
[18,37], which can lead to a low κl of 0.62 W m−1 K−1 in n-type Yb0.47Co4Sb12 [38]. However, 
rare-earth Ce has a low filling fraction in CoSb3 comparing with Yb. Morelli et al. [39] 
prepared n-type Ce-filled CoSb3 by arc melting and found a low filling fraction of ~0.1. 
Even though with a low Ce filling fraction, the κl was strongly depressed and a low κl of 
~4 W m−1 K−1 was obtained, which is only half of the unfilled CoSb3. To improve the Ce 
filling fraction in undoped CoSb3, Tang et al. [40] used phase diagram method to increase 
this value up to 0.2. Due to the increased filling fraction, a further reduced κl of ~2 W m−1 
K−1 and a zT value of 1.3 at 850 K were obtained in n-type Ce0.14Co4Sb12 prepared by melt-
ing-quenching-annealed-sintering. Besides, the thin film CoSb3 sample prepared by dep-
osition experienced increased Ce-filling fraction. Smalley et al. [41] reported a high Ce-
filling fraction of ~0.55 in deposited CoSb3 film. 

Although heavy filling in the void position remarkably reduces the κl of CoSb3-based 
thermoelectric materials, heavily filled CoSb3-based materials are generally n-type semi-
conductors because the fillers function as electron donors [20,34,41]. In term of the assem-
bly of thermoelectric devices, both p-type and n-type materials are required. Hence, p-
type CoSb3-based thermoelectric materials are necessary. To achieve low κl of p-type 
CoSb3-based thermoelectric materials, Fe has been partially used to substitute Co [6,18,40], 
behaving as the electron acceptor to tune into p-type. Particularly, after Fe substitution at 
the Co site, CaFe3.5Co0.5Sb12 has a high S2σ of 33 μW cm−1 K−2 with a positive S of 170 μV 
K−1 and a low κl of ~0.9 W m−1 K−1 at 773 K [42]. Furthermore, charge-compensational dop-
ing by the substitution at Co or Sb sites has been widely applied to increase the filling 
faction of Ce in bulk CoSb3-based skutterudites, which can simultaneously tune n-type 
CoSb3 skutterudites into p-type ones [43,44]. Tanahashi et al. [45] found a Ce filling frac-
tion of ~0.9 in p-type CoSb3-based skutterudites with the nominal composition of 
CeFe3CoSb12, which is prepared by gas-phase atomization and sintering and approached 
a zT of 0.63 at 700 K. Chen et al. [46] reported a p-type Ce0.95Fe3CoSb12.1 grown by scanning 
laser melting method combined with spark plasma sintering and achieved the Ce filling 
fraction of 0.85 and the zT of ~0.79 at 750 K. 
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As suggested in Figure 1a–f, crystal structures of the unfilled and Ce-filled Fe3CoSb12 

and corresponding density functional theory (DFT)-calculated band structures and den-
sity of states (DOS) were firstly investigated. As can be seen, Ce-filling introduces an im-
purity level near the Fermi energy (EF), which is mainly contributed by the f orbital of Ce 
atom. Besides, Ce-filling also increases the slope of DOS near EF and correspondingly con-
tributes to increased S [47,48]. Additionally, filled CoSb3-based thermoelectric materials 
can be fabricated by various methods, such as traditional melting-quenching-annealing-
sintering [49], melt-spinning combined with spark plasma sintering technique (MS-SPS) 
[50], high-energy ball-milling combined with hot pressing (BM-HP) technique [51], and 
temperature gradient zone melting (TGZM) method [52,53]. Among them, TGZM is a 
novel material preparation method, which can synthesize CoSb3-based skutterudites with 
faster speed and higher purity by avoiding the complex peritectic solidification process. 
Effects of Ce fillers and its filling fraction in TGZM-prepared Fe3CoSb12 might be different 
from that prepared by other methods. In this study, we employed the novel TGZM 
method to investigate the influence and filling fraction of Ce in Fe3CoSb12. A series of Ce-
filled p-type CexFe3CoSb12 (x = 0 to 1.5) samples were prepared. We found that the maxi-
mum filling level of Ce is 0.73 in the TGZM-prepared Ce1.25Fe3CoSb12 with a measured 
composition of Ce0.73Fe2.73Co1.18Sb12. The synergistic effect on Fe substitution at the Co and 
Ce-filling result in reduced nH to 1.03 × 1020 cm−3 in Ce1.25Fe3CoSb12. A low κl of 0.91 W m−1 
K−1 at 693 K can be obtained in the Ce1.25Fe3CoSb12, significantly contributing to an in-
creased zT of 0.65 at 693 K. 
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Figure 1. Band structures and density of states (DOS) of the unfilled and Ce-filled Fe3CoSb12-based 
skutterudites: The conventional unit cell of unfilled (a) and Ce-filled (b) Fe3CoSb12-based 
skutterudites. Calculated band structures of unfilled (c) and Ce-filled (d) Fe3CoSb12-based 
skutterudites and Calculated DOS of unfilled (e) and Ce-filled (f) Fe3CoSb12-based skutterudites. 

2. Materials and Methods 
2.1. Samples Preparation 

Initial ingots of (Fe3Co)-95 at. % Sb filled with x at. % Ce (x = 0, 0.25, 0.5, 0.75, 1, 1.25, 
1.5) were prepared by induction melting at 1473 K for 30 min in a vacuum induction fur-
nace (Xi’an, China) (~10−3Pa) followed by a furnace cooling. Elements Fe (99.95 at. %), Co 
(99.95 at. %), Sb (99.995 at. %), and Ce (99.9%), purchased from CNBM (Chengdu, China) 
Optoelectronic Materials Com., Ltd., were properly weighed as raw materials according 
to the nominal compositions. Extra Sb was added to obtain the samples of nominal com-
position CexFe3CoSb12 after the TGZM process. Besides, extra Ce was introduced to com-
pensate the Ce loss during TGZM process. The as-cast ingots were cut into cylinder sam-
ples with a diameter of 12.8 mm, and the oxide layer on the surface was cleaned before 
being put into a high-purity alumina tube with an inner diameter of 13 mm to execute the 
TGZM process, which was described in detail in previous reports [54,55]. The TGZM pro-
cess was then conducted in a homemade directional solidification furnace of a thermal 
stabilization time of 48 h with an estimated temperature gradient of 40 K/mm. The TGZM-
grown samples were obtained from the mushy zone formed during the TGZM process. 
The obtained samples were cleaned, polished, and carried out microstructure characteri-
zation and performance tests. Samples throughout the manuscript are described as their 
nominal compositions after the TGZM process. 

2.2. Microstructure Characterization 
The crystal structures of as-fabricated samples were determined by powder X-ray 

diffraction (XRD-7000, Shimadzu, Japan) with Cu-Kα radiation. The lattice parameters 
were obtained by Rietveld analysis. Scanning electron microscopy (SEM, Verios G4, FEI, 
equipped with EDS, Hillsboro, Oregon, USA) was used to acquire the morphologies of 
the sample’s surface and a Double Cs Corrector Transmission Electron Microscope (Cs-
TEM, Themis Z, FEI, Hillsboro, Oregon, USA) was used to characterize their microstruc-
ture and chemical features. The actual chemical content was obtained by taking the aver-
age of fifteen different positions of each sample. Electron backscattered diffraction (EBSD, 
Thermo QuasOr type, Waltham, MA, USA) attached to FEI Helios G4 CX type SEM (Hills-
boro, Oregon, USA)was used to determine the crystal orientation relationship. 

2.3. Properties Measurements 
The samples with 12.7 mm in diameter and 1.5 mm in thickness were used to measure 

their thermoelectric properties from 303 K to 813 K. In our measurements, σ and S were 
measured simultaneously using the LSR-3 system (Linseis, Zelb, Bavaria, Germany) un-
der the helium atmosphere. κ was calculated by κ = D·CP·ρ, where D is the thermal diffu-
sivity measured by LFA-1000 (Linseis, Zelb, Bavaria, Germany), CP the specific heat ob-
tained by DSC (STA-449C, Netzsch, Germany), and ρ the density obtained by the Archi-
medes method. The Hall coefficient (RH), measured on the PPMS system (CFMS-14T, Lon-
don, UK) with a magnetic field of ±2T, was used to calculate the room-temperature Hall 
carrier concentration (nH), determined by the formula [18]: nH = 1/eRH, where e represents 
the electron charge. 

2.4. Density Functional Theory (DFT) Calculations 
The physical properties of Fe3CoSb12, CeFe3CoSb12 were calculated using the Cam-

bridge Serial Total Energy Package (CASTEP) [56]. The exchange-correlation interactions 
were described using the generalized gradient approximation (GGA) with the Perdew-



Materials 2021, 14, 6810 5 of 14 
 

 

Burke-Ernzerhof (PBE) type [57]. The plane wave cutoff energy was 450 eV for geometry 
optimization, band structures, and density of states calculations. The Monkhorst-Pack 
grid parameters were set to 8 × 8 × 8 (34 Irreducible k-points) for calculations. The Con-
vergence tolerances were set to 1.0 × 10−5 eV/atom, 0.03 eV/Å, 0.05 GPa and 0.001 Å for 
energy, maximum force, maximum stress and maximum displacement, respectively. 

3. Results and Discussion 
3.1. Microstructure and Phase Composition 

To understand crystal structures of the as-prepared CexFe3CoSb12 (x = 0 to 1.5), we 
firstly investigated powder X-ray diffraction (XRD) patterns and the results are shown in 
Figure 2a. Main diffraction peaks of samples can be identified as the body-centered cubic 
CoSb3 with a lattice parameter a of 9.034 Å and a space group of Im-3 (JCPDS 19-0336). 
Due to the characteristic of eutectic reaction, a small number of Sb impurities are observed. 
Figure 2b plots the corresponding a of the as-prepared CexFe3CoSb12 (x = 0 to 1.5). The 
calculated a increases with increasing the Ce-filling content and stabilizes at the x of 1.25. 
The increased a should be attributed to Ce-filling induced lattice expansion. TEM investi-
gations were carried out to further understand the crystal structure of the as-fabricated 
CexFe3CoSb12. Figure 2c is an atomic-resolution TEM high-angle annular dark-field 
(HAADF) image of CeFe3CoSb12. The inset of Figure 2c is superimposed a 2 × 2 × 2 supper 
cell model for the CeFe3CoSb12 along the [100] direction, well-matched with the observed 
lattice. Figure 2d is a selected area electron diffraction (SAED) pattern and can be indexed 
along the [100] zone-axis. Figure 2e presents the corresponding inverse Fast Fourier trans-
form (IFFT) image along with the (011) planes. The observed d spacing between (011) 
planes is ~6.64 Å, which is larger than that of CoSb3 (~6.39 Å). Besides, no obvious lattice 
distortion can be observed from Figure 2e, indicating that the as-fabricated samples have 
a high crystallinity. Figure 2f–h show the EBSD inverse pole figure (IPF) maps of the 
Ce1.25Fe3CoSb12. As can be seen, no obvious texture information can be observed, indicat-
ing the isotropic thermoelectric performance of the as-fabricated CexFe3CoSb12. 
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Figure 2. (a) XRD diffraction patterns and (b) Lattice parameter a of the as-prepared CexFe3CoSb12 (x = 0 to 1.5). (c) HAADF 
image with an inserted 2 × 2 × 2 supper cell model, (d) SAED pattern in (c) and (e) Inverse pole figure (IPF) maps in 
CeFe3CoSb12. The EBSD IPF maps in (f) normal direction, (g) rolling direction and (h) transverse direction of the 
Ce1.25Fe3CoSb12. 

To understand the composition of the as-fabricated CexFe3CoSb12, we conducted SEM 
image and the corresponding EDS maps of the Ce1.25Fe3CoSb12 and the results are shown 
in Figure 3a–e. As can be seen, Fe, Co, Sb, and Ce are evenly distributed in the as-fabri-
cated Ce1.25Fe3CoSb12. A typical high-resolution TEM (HRTEM) HAADF image of the 
CeFe3CoSb12 is shown in Figure 3f. Figure 3g–i are the corresponding elemental maps in 
atomic scale. Figure 3j is a magnified overlap of elemental maps where the dark green 
balls represent Ce fillers. As can be seen, Ce filler sits at the 2a sites in the cage among the 
Sb-icosahedron (pink ball). 
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Figure 3. SEM image (a), the corresponding elemental maps of Fe (b), Co (c), Sb (d), Ce (e) of the Ce1.25Fe3CoSb12 sample. 
The HRTEM HAADF image (f) of the CeFe3CoSb12 and the corresponding atomic scale elemental map of Sb (g), overlay 
elemental map of Fe, Co and Sb (h), overlay elemental map of Sb and Ce (i), the magnified overlap of elemental maps 
superimposed with the crystal structure (j), where the dark green ball, the pink ball and dull-red ball represent Ce, Sb, 
and Fe/Co. 

Figure 4a shows typical EDS spectra of the CexFe3CoSb12. All samples are composed 
of Ce, Fe, Co, and Sb without other impurity elements. Figure 4b shows the average atomic 
ratios of Fe, Co, Sb, and Ce elements in each sample based on the statistic EDS results. As 
can be seen, the Ce-filling level in the samples increases at first and then tends to be stabi-
lized at the x of 1.25, which is consistent with the peak shift from XRD. Figure 4c compares 
the Ce-filling fraction of Fe-doped CoSb3 prepared by different methods. The Ce filling 
fraction varies with the preparation method and Fe/Co ratio. The Fe/Co ratio in the actual 
composition of the samples shown in the red dotted box in Figure 4c is close to ~2.5. Under 
the similar Fe/Co ratio, a relative high filling fraction of 0.73 is achieved in a composition 
of Ce0.73Fe2.73Co1.18Sb12 prepared by the TGZM method in this study. Figure 4d shows the 
TEM-EDS spectrum and maps of the CeFe3CoSb12. As can be seen, Fe, Co, Sb, and Ce ele-
ments are homogeneously distributed on a micro-scale, indicating successful Fe substitu-
tion at the Co site and Ce-filling. 
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Figure 4. Detailed component information acquired by EDS: (a) EDS spectra and corresponding (b) average atomic ratios 
of Fe, Co, Sb, Ce elements in CexFe3CoSb12 (x = 0 to 1.5) samples. (c) comparison of the Ce filling fraction in Fe-doped CoSb3 
prepared by different methods, including traditional melting (TM) for Ce0.2Fe0.1Co3.9Sb12, [58] arc melting (AM) for 
CeFe2Co2Sb12 [59] and CeFe0.75Co3.25Sb12 [39], gas-atomized powder sintering (GS) for CeFe3CoSb12, [45] scanning laser melt-
ing and spark plasma sintering (SS) for Ce0.95Fe3CoSb12.1 [46] and temperature gradient zone melting (TGZM) for this study. 
(d) Typical TEM-EDS spectrum of the CeFe3CoSb12. The insert of (d) is the HAADF image, corresponding elemental maps 
and component analysis. 

3.2. Thermoelectric Transport Properties 
To understand the thermoelectric properties of the as-fabricated CexFe3CoSb12 (x = 0 

to 1.5), σ, S, S2σ, and κ were measured at the temperature range between 303 and 813 K. 
Figure 5a depicts temperature-dependent σ of the CexFe3CoSb12. The Fe3CoSb12 has a 
higher σ (1302 S cm−1) comparing with the Ce-filled samples in the entire measured tem-
perature. With increasing the Ce-filling level, the σ of the CexFe3CoSb12 decreases from 
1302 S cm−1 of the Fe3CoSb12 to 638 S cm−1 of the Ce1.25Fe3CoSb12 at 303 K. The slight increase 
of σ from x = 1.25 to 1.5 might be attributed to the slightly increased Sb content (as evi-
denced by the XRD peak intensity in Figure 2a). Besides, the nearly linear decrease of σ 
with increasing the temperature indicates that the as-fabricated CexFe3CoSb12 is a degen-
erated semiconductor. With increasing the Ce content, S increases from 62 μV K−1 of the 
Fe3CoSb12 to 117 μV K−1 of the Ce1.25Fe3CoSb12 at 303 K (Figure 5b). The maximum S value 
of 168 μV K−1 at 693 K can be obtained in the Ce1.25Fe3CoSb12. The positive S indicates that 
the CexFe3CoSb12 is p-type, which is consistent with the calculation of the band structures. 
A classic single parabolic band (SPB) model was used to evaluate the effective mass m* as 
described by Equations (1)–(4) [18,60]: 
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where e is the electron charge, η the reduced Fermi energy, η = EF/kBT, Fn(η) the Fermi 
integral and rH the Hall factor. Figure 5c shows the Pisarenko plot of Fe3CoSb12 with the 
measured room-temperature nH and corresponding S of Ce-filled Fe3CoSb12 samples. With 
increasing Ce-filling level, the experimental S values corresponding to the nH deviates 
from the Pisarenko plot to a higher level, indicating that Ce-filling led to an increase of the 
m*. This should be attributed to the increased DOS near the edge of the band structure 
(Figure 1e,f) induced by Ce-filling. The maximum S2σ (Figure 5d) significantly increases 
from 6.7 μW cm−1 K−2 of the Fe3CoSb12 to 14.4 μW cm−1 K−2 of the Ce1.25Fe3CoSb12 at 693 K. 
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Figure 5. Thermoelectric properties of CexFe3CoSb12 (x = 0 to 1.5). Temperature-dependent (a) σ; (b) S. (c) The experimental 
S values corresponding to the nH, where the red line represents the Pisarenko plot for Fe3CoSb12. Temperature-dependent 
(d) S2σ; (e) κ; (f) κe; (g) κl; (h) zT. (i) Comparison of the room-temperature κ for nominal Ce1.25Fe3CoSb12 with the reported 
values for CeFe2Co2Sb12 prepared by AM, [59] CeFe4Sb12 [61] and Ce0.6Fe3CoSb12 [62] prepared by TM, CeFe3CoSb12 pre-
pared by GS, [45] Ce0.95Fe3CoSb12.1 prepared by SS, [46] and Ce0.86Fe3CoSb12.09 prepared by melt spinning and spark plasma 
sintering (MS) [63]. 

Figure 5e plots temperature-dependent κ of the as-fabricated CexFe3CoSb12 (x = 0 to 
1.5). With increasing the Ce-filling level, the κ gradually decreases and approaches 1.52 
W m−1 K−1 of Ce1.25Fe3CoSb12 at 693 K. The κe can be calculated as κe = LσT (Figure 5f), where 
L is the Lorenz number calculated based on SPB model. With increasing the Ce-filling 
level, the κe significantly reduces due to reduced σ. Figure 5g presents temperature-de-
pendent κl, calculated by κ-κe. The κl of the Ce-filled Fe3CoSb12 is much lower than that of 
the unfilled Fe3CoSb12. The kl reduces with increasing the Ce-filling level and approaches 
a lowest κl of 0.91 W m−1 K−1 at 693 K in the Ce1.25Fe3CoSb12. This should be primarily at-
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tributed to the rattling effect for strengthening short-wavelength phonon scattering, in-
duced by Ce-filling [64]. Figure 5h displays temperature-dependent zT of the as-fabricated 
CexFe3CoSb12 (x = 0 to 1.5). Benefitting from the enhanced S2σ and significantly reduced k, 
a peak zT value of 0.65 can be achieved in the Ce1.25Fe3CoSb12 at 693 K, which is 9 times 
higher than that of the unfilled Fe3CoSb12. Figure 5i compares the room-temperature κ of 
nominal Ce1.25Fe3CoSb12 in this study prepared by TGZM with the reported κ of p-type 
Ce-filled and Fe-doped CoSb3 prepared by other methods. As can be seen, a relatively 
lower κ is obtained in TGZM prepared Ce1.25Fe3CoSb12, which is due to the higher Ce fill-
ing fraction with an optimized Fe/Co ratio. Besides, the maximum zT values of different 
Ce-filled and Fe-doped CoSb3 prepared by various methods are compared and shown 
in Figure S1 of the Supplementary Material, indicating a higher zT value can be ob-
tained by optimizing Ce-filling fraction and Fe/Co ratio. 

4. Conclusions 
In this study, under the guidance of the DFT calculation, where Ce-filling can intro-

duce an impurity level near the EF and increase the thermoelectric performance of the 
Fe3CoSb12, we have designed and prepared the p-type CexFe3CoSb12 (x = 0 to 1.5) by a facile 
TGZM method. The Ce-filling limit in TGZM-prepared Fe3CoSb12 was found to be 0.73 
with a measured composition of Ce0.73Fe2.73Co1.18Sb12. The filling limit is approached at the 
nominal composition of Ce1.25Fe3CoSb12. Under the synergistic effect, Fe substitution at the 
Co site and Ce-filling, an optimal nH of 1.03 × 1020 cm−3 is approached. The high S of 168 
μV K−1 at 693 K due to the increase of the Ce filling level induces a high S2σ of 14.4 μW 
cm−1 K−2 at 693 K in the Ce1.25Fe3CoSb12, which is increased by 100% comparing with that of 
the Fe3CoSb12. The rattling effect of Ce fillers strongly strengthens phonon scattering, lead-
ing to reduced κl as low as 0.91 W m−1 K−1 at 693 K in the Ce1.25Fe3CoSb12. Benefiting from 
the low κ of 1.52 W m−1 K−1 induced by both optimized nH and reduced κl, a peak zT value 
of 0.65 at 693 K can be achieved in the Ce1.25Fe3CoSb12, which is 9 times higher than the 
Fe3CoSb12. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/ma14226810/s1, Comparison of the maximum zT value of nominal Ce1.25Fe3CoSb12 in this 
study prepared by TGZM with the reported zT of p-type Ce-filled and Fe-doped CoSb3 prepared by 
other methods. 
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