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An objective measure of quality for time-scale modification
of audio

Timothy Robertsa) and Kuldip K. Paliwalb)

Signal Processing Laboratory, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia

ABSTRACT:
Objective evaluation of audio processed with time-scale modification (TSM) remains an open problem. Recently, a

dataset of time-scaled audio with subjective quality labels was published and used to create an initial objective mea-

sure of quality (OMOQ). In this paper, an improved OMOQ for time-scaled audio is proposed. The measure uses

handcrafted features and a fully connected network to predict subjective mean opinion scores (SMOS). Basic and

advanced perceptual evaluation of audio quality features are used in addition to nine features specific to TSM arte-

facts. Six methods of alignment are explored with interpolation of the reference magnitude spectrum to the length of

the test magnitude spectrum giving the best performance. The proposed measure achieves a mean root mean square

error of 0.490 and a mean Pearson correlation of 0.864 to SMOS, equivalent to the 97th and 82nd percentiles of the

subjective sessions, respectively. The proposed measure is used to evaluate TSM algorithms, finding that Elastique

gives the highest objective quality for solo instrument and voice signals, whereas the identity phase-locking phase

vocoder gives the highest objective quality for music signals and the best overall quality. The objective measure is

available online at https://www.github.com/zygurt/TSM. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Time-scale modification (TSM) is the process of modi-

fying the duration of a signal without modifying the pitch of

the signal. To justify the quality of the processing, subjec-

tive testing must be attempted. But, it is expensive and time

consuming. Objective methods are available for evaluation

of audio quality; however, these methods require reference

and test signals of identical duration. Consequently, most

published objective measures cannot be applied to this con-

text. Two objective measures, the signal to error ratio (SER)

by Verhelst and Roelands (1993) and DM by Laroche and

Dolson (1999), have been proposed. Nonetheless, they are

shown to be only high level indicators of “phasiness” or

quality (Laroche and Dolson, 1999). In this work, we pro-

pose the first objective measure of quality (OMOQ) for

time-scale modified audio. It uses handcrafted features with

deep-learning methods and is trained using a recently pub-

lished dataset (Roberts, 2020). The contributions of this

paper are an OMOQ for time-scaled audio, novel quality

features specific to TSM and comparison of TSM methods

using the objective measure.

Objective measures of quality seek to predict the worth

of a test signal and can be broadly classified into two clas-

ses, traditional and machine learning. Traditional measures,

such as the perceptual evaluation of speech quality of ITU-T

(2001b), STOI of Gomez et al. (2011), and the TSM specific

measures of SER and DM, are purely analytical in nature.

Machine learning methods use neural networks to develop a

relationship between subjective evaluations of the test signal

and handcrafted or data-driven features extracted from refer-

ence and test signals as in the perceptual evaluation of audio

quality (PEAQ; ITU-T, 2001a). Deep learning allows for

objective measures that do not require a reference file as in

Avila et al. (2019) for speech quality; however, these meth-

ods have not yet been applied to TSM or general sound

sources.

Training of deep-learning methods requires a large

amount of labelled signals. Recently, a dataset of time-scaled

audio with subjective labels was published for this purpose

(Roberts and Paliwal, 2020). Reference files were drawn from

a large variety of sources, including speech, singing, solo har-

monic, and percussive instruments, as well as a variety of

musical genres. The training subset, containing 5280 processed

files, was generated using 6 methods to time scale 88 reference

files at 10 ratios. The methods used were the phase vocoder

(PV) of Portnoff (1976), the identity phase-lockingp vocoder

(IPL) of Laroche and Dolson (1999), waveform similarity

overlap-add (WSOLA) of Verhelst and Roelands (1993), fuzzy

epoch synchronous overlap-add (FESOLA) of Roberts and

Paliwal (2019), harmonic percussive separation time-scale

modification (HPTSM) of Driedger et al. (2014), and mel-

scale sub-band modelling (uTVS) of Sharma et al. (2017).

Playback speeds of 0.3838, 0.4427, 0.5383, 0.6524, 0.7821,

0.8258, 0.9961, 1.381, 1.667, and 1.924 were used as time-

scale ratios (b) for the training subset. The testing subset, con-

taining 240 files, was created using 3 additional methods to

a)Electronic mail: timothy.roberts@griffithuni.edu.au, ORCID: 0000-0002-

8937-0643.
b)ORCID: 0000-0002-3553-3662.
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time scale 20 reference files at a random b in each band

of 0:25 < b < 0:5; 0:5 < b < 0:8; 0:8 < b < 1, and 1 < b
< 2. Elastique by Zplane Development (2019), the phase

vocoder using fuzzy classification of bins (FuzzyPV) of

Damsk€agg and V€alim€aki (2017), and non-negative matrix fac-

torisation time-scale modification (NMFTSM) of Roma et al.
(2019) were used to generate the testing subset. Different TSM

methods were used to ensure that the training and testing sets

were independent. Finally, an evaluation subset was generated

by processing the testing subset reference files with all previ-

ously mentioned methods in addition to the scaled phase-

locking phase vocoder (SPL) of Laroche and Dolson (1999),

IPL and SPL variants of PhaVoRIT (IPL and SPL) of Karrer

et al. (2006), and epoch synchronous overlap-add (ESOLA) of

Rudresh et al. (2018). In the interval of 0:22 < b < 2:2, 20

time-scale ratios were used, resulting in 5200 files with 400

files per method. During subjective testing, 42 529 ratings were

collected from 263 participants in 633 sessions, resulting in a

minimum of 7 ratings per file. Subjective median opinion

scores (MedianOS) and subjective mean opinion scores

(SMOS) before and after normalization were provided as

labels. The dataset was published under the Creative

Commons Attribution 4.0 International (CC BY 4.0, Mountain

View, CA) license and is available online1 (Roberts, 2020).

The International Telecommunications Union (ITU)

Recommendation BS.1387, more commonly known as the

PEAQ (Thiede et al., 2000), is an OMOQ developed primar-

ily for evaluation of audio codecs. It combines research

from multiple groups and was released as an ITU standard

in 2001. The PEAQ has two modes of operation, basic and

advanced. The basic version (PEAQB) consists of a fast

Fourier transform (FFT)-based peripheral ear model, prepro-

cessing, calculation of 11 model output variables (MOVs),

and a small neural network. The advanced version

(PEAQA) follows the same framework but with a filter-

bank-based ear model and five MOVs.

The FFT-based ear model aims to process the input sig-

nals in a way that is similar to the ear. The model contains a

FFT, rectification, scaling of the input signal, outer and mid-

dle ear weighting, auditory filter bands, internal noise,

frequency-domain spreading, and time-domain spreading.

The filter-bank model is identical in aim and contains scaling

of the input signals, direct current (DC) rejection, auditory fil-

ter band decomposition, outer and middle ear weighting,

frequency-domain spreading, rectification, time-domain

spreading, adding of internal noise, and additional time-

domain spreading. Preprocessing of the resulting excitation

patterns for both ear models creates patterns used in the cal-

culation of the MOVs, the details of which can be found in

ITU-T (2001a), Thiede et al. (2000), and Kabal et al. (2002).

The basic MOVs can be categorised into six groups.

Modulation difference MOVs, WinModDiff1B,

AvgModDiff1B, and AvgModDiff2B, are the windowed

and linear averages of the modulation differences. Noise

loudness MOVs, of which RmsNoiseLoudB is the only one

used in the basic method, are the squared averages of the

noise loudness and takes masking into account. Bandwidth

MOVs, BandwidthRefB and BandwidthTestB, estimate the

mean bandwidths of the reference and test signals, consider-

ing only frames with a bandwidth greater than 8 kHz. The

psuedocode for the calculation is given in ITU-T (2001a).

When considering auditory masking, Total NMRB, is the

linear mean of the noise-to-mask ratio, whereas relative dis-

turbed frames basic, RelDistFramesB, is the number of

frames with a noise-to-mask ratio above 1.5 dB as a ratio of

the number of frames for the signal. For detection probabil-

ity, the maximum filtered probability of detection (MFPDB)

models the smaller impact of distortions at the beginning of

the file on quality assessment. The average distorted block

(ADBB) uses the number of frames with a distortion detec-

tion probably above 0.5 and is calculated according to Sec.

4.7.2 in ITU-T (2001a). Finally, the harmonic structure of

error (EHSB) MOV measures the harmonic structure of the

error signal as strong harmonic structure may be transferred

to the error signal. The advanced model uses EHSB and four

additional MOVs. RmsModDiffA, RmsNoiseLoudAsymA,

and AvgLinDistA are all calculated from the filterbank ear

model excitation patterns while SegmentalNMRB is calcu-

lated from the FFT model. For full details, see ITU-T

(2001a) and Kabal et al. (2002).

The PEAQ makes use of a neural network to map the

MOVs to a single distortion index (DI) value. The network

used with the basic model is a fully connected network with

a single hidden layer of three nodes and sigmoid activation.

Each feature is independently normalized to between zero

and one before input to the network using

^MOV ¼ MOV�minðMOVÞ
maxðMOVÞ �minðMOVÞ : (1)

Finally, the DI is mapped to the final objective difference

grade (ODG), minimizing the root mean square error

(RMSE). The initial PEAQ standard (ITU-T, 2001a) was

found to contain errors and to omit vital information

required for a proper implementation of the standard. Kabal

et al. (2002) clarified errors and omissions and provided a

MATLAB implementation of the PEAQ-B portion of the

standard.

Two quality measures for TSM have been proposed.

Roucos and Wilgus (1985) used the SER, which is calcu-

lated by

SER ¼ 10 log10

XU�1

u¼0

XN=2

k¼0

jXT j2

XU�1

u¼0

XN=2

k¼0

jXRj � jXT jð Þ2
; (2)

where X is shorthand for X(u,k), u is the frame number, k is

the frequency bin, U is the total number of frames, N is the

FFT size, XR is the short time Fourier transform (STFT) of

the reference signal, and XT is the STFT of the test signal. It

is a measure of the difference between the magnitude spec-

tra of the reference and test signals. Laroche and Dolson
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(1999) proposed an objective phasiness measure (DM) by

determining the a posteriori consistency of the STFT syn-

thesis reconstruction, and it is a measure of the horizontal

and vertical phase coherences of the scaled signal. It is cal-

culated by

DM ¼

XU�1

u¼0

XN=2

k¼0

jXT j � jXRjð Þ2

XU�1

u¼0

XN=2

k¼0

jXRj2
: (3)

Neither of these measures have seen continued use and each

measure was noted to be only a high level indicator of the

signal phasiness (Laroche and Dolson, 1999); however, they

are beneficial to the performance of the proposed objective

measure.

The paper is organized as follows. Section II presents

the proposed OMOQ method. Section III presents feature

and network results as well as a comparison of TSM algo-

rithms. Availability, future research, and conclusions are

presented in Secs. IV, V, and VI, respectively.

II. METHOD

In this section, the proposed TSM objective measure is

described. It uses a neural network to infer the SMOS score

from handcrafted features computed from audio processed

by TSM. A system block diagram can be seen in Fig. 1.

Modifications to the PEAQ features are described in Sec.

II A, additional features specific to TSM artefacts are

described in Sec. II B, and the neural network is described in

Sec. II C.

A. Changes to the PEAQ

The PEAQ was chosen as the starting point for feature

generation due to the high level of detail and specificity in

the documentation for the measure. Changes were, however,

made to allow for the use of signals of differing lengths,

assuming a constant time-scale ratio was applied while proc-

essing the signal. Implementation of the PEAQ-B and

PEAQ-A MOVs followed ITU-T (2001a) and referred to

Kabal et al. (2002) in cases of ambiguity.

Signal preparation begins by summing all input chan-

nels before DC removal and normalization to the maximum

absolute value. The proposed method uses a full scale as 61

rather than the 16-bit integers of the PEAQ. A single chan-

nel is used in the proposed method as multichannel TSM is

rarely considered (Roberts and Paliwal, 2018).

Consequently, a single channel used for detection probabil-

ity calculations in ITU-T (2001a) Sec. 4.7. Test and refer-

ence files are truncated to between the first and last time that

the sum of the absolute of four consecutive samples exceeds

0.0061 as per ITU-T (2001a). This removes frames with low

energy at the beginning and end of the signals during aver-

aging calculations and synchronises the time-scaling starting

point.

The PEAQ assumes an input sample rate of 48 kHz,

however, the dataset used in this research has a sample rate

of 44.1 kHz. Instead of resampling every file, the proposed

method uses the bin frequency values of ITU-T (2001a). In

FIG. 1. (Color online) The OMOQ system block diagram. Features are colored by group with detail shown for novel features.
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the calculation of BandwidthRefB and BandwidthTestB, the

noise floor is calculated above 21 kHz with 8 kHz used as

the bandwidth cutoff for bin inclusion during averaging.

This increases the generality of the bandwidth feature gener-

ation across sample rates. The PEAQ and proposed method

both assume that the frequency bandwidth will be reduced

as a result of processing.

The reference signals before and after spectral adapta-

tion are used as input for the AvgLinDistA calculation.

However, the ITU specification is unclear as to which filter

envelope modulation {Mod½k; n� in Eq. (57)} to use in Eq.

(67). The proposed implementation uses the reference mod-

ulation in the calculations of sref and stest for Eq. (66) of

ITU-T (2001a).

The final change to the ITU standard in the proposed

method is the interpretation of “related to” in the calculation

of RelDistFramesB. The proposed method uses the interpre-

tation of Kabal et al. (2002) as meaning that the fraction of

frames exceeds 1.5 dB.

Six methods of alignment were investigated during

development, time-instant framing anchored to the reference

or test signal and four methods of interpolating the magni-

tude spectrum frequency bins along the time-axis. Time-

instant framing extracts frames from the reference and test

signals at identical time-instants by scaling the frame loca-

tions by b such that SR ¼ ubST where u is the frame number,

SR is the reference signal shift in samples, and ST is the test

signal shift in samples. In cases where b is not known, the

ratio between the lengths of the truncated input signals is

used.

Although the alignment through time-domain resam-

pling is not suitable because of the resulting changes in

pitch, it is possible to resample the magnitude spectrum.

This causes a change in the time-axis evolution of the signal

without changing the positioning of the signal on the fre-

quency axis and is similar to the filterbank TSM method

proposed by Sharma et al. (2017). In the proposed method,

interpolation for basic PEAQ features is applied prior to the

ear model using one of four targets: the longest signal, the

shortest signal, the reference signal, or the test signal. For

advanced PEAQ features, interpolation to the test or refer-

ence duration is applied after application of the ear model. If

the time scale is unknown, it is estimated by assuming a

constant time-scale ratio. Through a simple thought experi-

ment, we can observe that as we scale signals through inter-

polation, the transient components of the signal will also be

scaled, whereas the same transients will not be scaled

through time-instant framing. As such, it is necessary to

consider all and combinations of the alignment methods.

B. Additional features

When calculating the PEAQ bandwidth features, asym-

metric thresholds are used with þ10 dB used for

BandwidthRefB and þ5 dB used for BandwidthTestB. The

test bandwidth, calculated with a þ10 dB threshold

(BandwidthTestNew), has been included as an additional

feature.

The two traditional TSM OMOQs were included as fea-

tures in the proposed method. SER was bounded to a maxi-

mum of 80 to avoid possible infinite results when processing

identical files. This empirical value was the maximum finite

feature value for identical files.

One cause of phasiness is phase unwrapping errors that

occur when the time-scaling parameter (a ¼ 1=b) is not an

integer (Laroche and Dolson, 1999). In this work, we pro-

pose a method for estimating the level of phasiness by con-

sidering the phase progression of the reference and test

signals. The proposed phasiness features track phase pro-

gression through time for the reference and test tracks,

accounts for the change of the time scale, and calculates the

difference between the resulting unwrapped phase progres-

sion. Weighting is applied to the phase difference with unity

and magnitude spectrum weighting applied in separate fea-

tures within the proposed method. Weighting restricts phasi-

ness to audible portions of the signal. These features are

calculated in the following manner where / denotes the

arctan2 calculation. The phase spectra of the reference and

test signals are calculated from the STFT and adjusted to be

between 0 and 2p using

/X̂ ¼
/X; /X > 0;

/X þ 2p; otherwise;

(
(4)

forming /X̂. 2p is then successively added to each bin until

it is greater than the same frequency bin in the previous

frame using

�X ¼ minð/X̂ þ 2pPÞ > /X̂ðu� 1; kÞ; (5)

where P 2 Z. The longer �X signal is then resampled to

match the length of the shorter signal, forming ~X. The

weighted angle difference (Du) can then be calculated using

Du ¼ WðkÞð �XR � b ~XTÞ; UT � UR;

WðkÞðb ~XR � �XTÞ; otherwise;

(
(6)

where weighting is calculated with

WðkÞ ¼

jXRj
maxjXRj

; UT � UR;

jXT j
maxjXT j

; otherwise;

8>>><
>>>:

(7)

or W(k)¼ 1 for no weighting, where UR and UT are the total

number of frames in the reference and test signals, respec-

tively. The time and frequency means of the angle differ-

ences form MPhNW for no weighting and form MPhMW for

magnitude weighting. Similarly, the standard deviation of

the frequency mean of the absolute weighted difference

forms SPhNW and SPhMW. A number of additional mea-

sures were explored, including the power spectrum
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weighting, Fletcher-Munson curve weighting, and the mean

first difference along the time dimension, however, they

were found to be poor measures or contribute little toward

the network training.

Figure 2 shows the phasiness features compared to both

the SMOS and TSM ratio. Phasiness can be seen to increase

as the TSM ratio moves away from 100% and as the SMOS

decreases as expected. Animated three-dimensional plots

rotating between features as functions of the SMOS and b,

color coded to each TSM method can be found online.2.

Phasiness causes spectral coloration of the signal

(Laroche and Dolson, 1999), allowing for spectral similarity

to be used as an indicator of the phasiness. Two features

[spectral similarity mean absolute difference (SSMAD) and

spectral similarity mean difference (SSMD)] were devel-

oped using the differences in the smoothed spectrum

between the reference and test signals. Frames, aligned

using reference frame anchors, are converted to normalized

magnitude spectra using the STFT and Hann windowing.

Third-order polynomials are then fit to the spectra. The

resulting polynomials without the intercept term are applied

to a linearly spaced vector N/2 in length. Removal of the

intercept term removes any overall level difference between

the frames. The mean absolute difference and mean differ-

ence between the reference and test signals are calculated

for each frame with the means of these values forming the

FIG. 2. (Color online) Phasiness features as functions of SMOS and the TSM ratio. The means and standard deviations for no weighting and magnitude

weighting.
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two spectral similarity features. These features also give a

measure of signal coloration that is introduced by the TSM

algorithm. Figure 3 shows the spectral similarity features in

relation to the SMOS and TSM ratio. Further analysis found

groupings for individual and classes of TSM methods within

the features. Time-domain methods inherently introduce

less or no phasiness by avoiding the phase unwrapping and

vertical phase coherence problems of the frequency-domain

methods, and FESOLA and WSOLA tend to have better

spectral similarity than do the frequency-domain methods.

Changes in the transient content of the signal are com-

mon TSM artefacts. Three features have been developed for

the proposed method, peak delta (DP), transient ratio, and

harmonic percussive separation transient ratio, with no

requirement for alignment between signals. DP is the differ-

ence in the number of onsets between the reference and test

signals per second. Onset detection is applied to both signals

using the spectral features method described by Bello et al.
(2005). A weighting function, W½k� ¼ jkj, is applied to the

power spectrum using

~E u½ � ¼
XN=2�1

k¼0

W k½ �jXj2 (8)

to suppress low frequency content and produce sharp peaks

at transients before the first backward difference of the loga-

rithmic transform is calculated using

D ~E u½ � ¼ log10
~E u½ � � log10

~E u� 1½ �: (9)

Peak picking is applied to the onset results in which we define

a peak as greater than its four surrounding values with

P u½ � ¼
1; D ~E u½ � > D ~E u� 2 : uþ 2½ �;
0; otherwise:

(
(10)

No threshold for peak detection is used as it is expected that

spurious peaks should exist in both the reference and test

signals. Finally, the difference in the number of peaks per

second, calculated using

DP ¼ fs

dimðxRÞ
X

PT u½ � �
X

PR u½ �
� �

; (11)

is used as the feature, where fs is the sampling frequency

and dimðxRÞ is the length of the reference signal in samples.

The transient ratio (TrRat) is a measure of the change in

the transient level caused by processing and makes use of

the peak locations calculated previously in Eq. (10). It is cal-

culated by selecting peaks where the onset peak level is

greater than one standard deviation above the mean onset

level (D ~E þ rD ~E ), resulting in a vector of onset peak loca-

tions (P̂). Peak values are then used to calculate the ratio of

the mean transient levels between the reference and test sig-

nals using

TrRat ¼ meanðD ~ER P̂½ �Þ
meanðD ~ET P̂½ �Þ

: (12)

The harmonic percussive separation transient ratio

(HPSTrRat) compares the root mean square (RMS) levels of

the reference and test transients. The transients are extracted

from the reference and test signals using the median filtering

method of Driedger et al. (2014). The RMS levels of the

extracted signals are calculated before the final feature is

FIG. 3. (Color online) The SSMAD and SSMD features as functions of SMOS and the TSM ratio.
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computed by the ratio of the reference to test. Figure 4 com-

pares each of the transient features to the SMOS and TSM

ratio.

Musical noise is a known artefact introduced by the

frequency-domain TSM, likely caused be periodicity intro-

duced to noise components of the signal due to the sum-of-

sines model of the STFT. This results in holes and/or peaks

in the power spectrum that are heard as musical noise

(Torcoli, 2019) and was explored as a possible feature.

Spectral kurtosis, as proposed by Torcoli (2019), was

explored using all previously discussed methods of align-

ment. Lower, middle, and upper frequency bands were used

in addition to the maximum across all bands. As all time-

alignment methods produced highly correlated results, inter-

polation to test was chosen as the alignment method.

However, inclusion of these features reduced neural network

performance and as a result, they were removed from the

features used in the final proposed network. This is likely

due to the subtlety of the musical noise in comparison to

other TSM artefacts such as phasiness and transient

smearing.

Prior to network training, features and target SMOS

scores were scaled to the interval [0,1].

C. Network structure

The estimation of the opinion scores was formulated as

a regression problem using a fully connected neural network

with 3 hidden layers of 128 output nodes as shown in Fig. 5.

Layer normalization and Rectified Linear Unit (ReLU) acti-

vation were used with residual connections around the sec-

ond and third layers, facilitated by adding the input of a

layer to its output. Sigmoid activation is applied to the final

output. The network has 36 737 trainable parameters.

FIG. 4. (Color online) Transient features as functions of SMOS and the TSM ratio.

FIG. 5. (Color online) The neural network of the proposed measure. The

numbers denote the number of layer output nodes, FC is a fully connected

layer, LN is layer normalization, ReLU denotes the activation function, �

is the element-wise summation of the layer input and output values, and r
denotes a sigmoid activation layer.
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Ten percent of the training dataset was reserved for val-

idation. The network was trained for 800 epochs using a sin-

gle batch, RMSE loss (L), AdamW optimization

(Loshchilov and Hutter, 2017), and a learning rate of 1e�4.

Networks that were still improving after 800 epochs were

trained for an additional 800 epochs. Internal loss values

were calculated using estimates in the interval of [0,1],

whereas reported loss values were calculated using esti-

mates scaled back to the original interval of [1,5]. The

Pearson Correlation Coefficient (PCC; q) and L were used

as network performance measures. The composite measure

of Roberts and Paliwal (2020) was used when selecting the

ideal epoch after training. The optimal epoch was chosen as

the epoch with the minimum overall distance (D), calculated

by

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂2 þ L̂2

q
; (13)

where q̂ and L̂ are calculated by

q̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �qÞ2 þ Dq2

q
; (14)

L̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�L2 þ DL2

q
; (15)

where q ¼ ½qtr; qval; qte�, L ¼ ½Ltr;Lval;Lte�; ½:; :� denotes

concatenation, tr, val, and te denote training, validation, and

testing, respectively, �L is the mean of L, �q is the mean of q,

Dq ¼ maxðqÞ �minðqÞ, and DL ¼ maxðLÞ �minðLÞ.

III. RESULTS

A. Feature results

An initial larger set of features was heuristically opti-

mized based on changes in network performance and simi-

larity to other features to reduce redundant features. If the q
between features of the same type was above approximately

0.95, one of the features was removed with Fig. 6 showing

the correlation between each of the features in the proposed

measure. This process increased the performance of the

trained network. The features that were removed include the

spectral kurtosis features, alternative weightings of phasi-

ness features, and most standard deviations of time-domain

features before averaging. Due to the nonlinear nature of the

relationship between b and the SMOS, absolute q was calcu-

lated separately for b < 1 and b > 1 and then averaged. The

novel TSM features were found to have a greater correlation

to the SMOS than most of the PEAQ features. Of interest is

the lack of individual features highly correlated with the

SMOS or b while still resulting in excellent network perfor-

mance. Features were generated at approximately 400 files

per hour using 16 threads on a Xeon E5–2630 (Intel, Santa

Clara, California).

B. Network performance

A wide range of testing and network configurations

were considered during the development of the proposed

method. Network hyper-parameters were optimized through

a systematic non-exhaustive search. Each method of align-

ment was trained to the SMOS, MedianOS, raw SMOS, and

raw MedianOS targets, and raw values were calculated prior

to subjective session normalization in Roberts and Paliwal

(2020). Additionally, baseline conditions, the inclusion of

reference files within the training set, concatenation of loga-

rithmic transforms of features, and combinations of multiple

alignment methods were considered. Deterministic training

of the network was conducted using seeds from 0 to 99.

Figure 7 shows the box plot distribution of the best D for

each of the seed values used while training to the SMOS.

Lower values are better with a smaller range meaning less

reliance on the initial seed.

Across all cases, networks trained to mean, rather than

median, targets processed better L and q results.

Consequently, the results discussed below will be solely

focused on networks trained to mean targets. To increase

FIG. 6. (Color online) The feature correlation matrix for the final features.

The absolute correlation averaged across b < 1 and b > 1 due to the non-

monotonic nature of SMOS as a function of b is shown.

FIG. 7. (Color online) The box plot of the best distance measure for each

seed and training configuration ordered by median D is shown. The

PEAQB neural network (NN) uses the original PEAQ network, and all

others use the network described in Sec. II C. Lower is better, and less

spread means less reliance on the initial seed.
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readability, median overall distance ( ~D) and the best case D
with associated �L; DL; �q, and Dq values can be found in

Table I. Values were calculated as per Sec. II C.

The baseline performance for the traditional methods

was determined by correlation with the target. SER and DM

gave overall q with subjective scores of 0.3708 and 0.1574,

respectively. The machine learning baseline performance

was obtained by applying time-aligned PEAQB features to

the original PEAQB network described by ITU-T (2001a),

shown as “original PEAQB (to test).” By increasing the

complexity of the network to that in Sec. II C, �L and �q
improved, shown as “PEAQB (to test).” Performance was

further improved through the inclusion of the PEAQA fea-

tures, shown as “PEAQAB (to test).” Interpolating to the

length of the test signal was found to give the best perfor-

mance followed by, in order, interpolating up to the longer

signal, down to the shorter signal, anchoring frame locations

to the test signal, interpolating to the reference signal length,

and anchoring frame locations to the reference signal. Using

only the new TSM features gave improved performance over

the PEAQB features. Combinations of features generated

using interpolation to test and time-instant anchoring to test

(combination) alignment were also applied to the network.

This improved performance over individual alignments;

however, network performance was highly reliant on the ini-

tial seed selection. All of the unique features were also com-

bined and applied to a larger network with 512 nodes per

layer but did not improve over previously tested feature sets.

Combinations of concatenating logarithmic transforms of

the features, including reference signals, and combining dif-

ferent alignment features were applied to the network but all

resulted in reduced performance. The best overall network

aligned signals using interpolation to the length of the test

signals and included reference signals when training with the

SMOS targets set to five. The loss and correlation for each

epoch of the proposed network can be seen in Fig. 8.

Given that the network performance in predicting the

raw SMOS outperforms the prediction of the normalized

SMOS, investigation of the objective mean opinion score

(OMOS) differences was undertaken. The mean difference

between the normalized and raw SMOS was found to be

�0.0023, whereas the mean difference was found to be 0.016

for the OMOS. Normalizing was found to slightly extend the

range of the SMOS values with higher ratings for high quality

files and lower ratings for low quality files. Given the ITU-T

(2019) recommendation of normalization, the final proposed

OMOQ was trained using the normalized SMOS.

The proposed network achieved a mean PCC of 0.864 and

a RMSE of 0.490 to the SMOS was trained to normalized

SMOS using interpolation to test for alignment and included

reference files within the training set. These results place the

proposed network at the 82nd and 97th percentiles of the sub-

jective sessions for the PCC and RMSE, respectively, resulting

in a system that effectively predicts the mean opinion scores

(MOS) for the signals with little or no consensus.

C. TSM algorithm evaluation

TSM algorithms were compared using the evaluation

subset, which is described in Sec. I. The uTVS implementa-

tion used in subjective testing (uTVS), and an IPL by

TABLE I. RMSE loss mean (�L) and range (DL), PCC mean (�q) and range (Dq), median overall distance ( ~D), and minimum overall distance [minðDÞ].
Trained to SMOS unless specified. The best results appear in bold.

Features (alignment) �L DL �q Dq ~D minðDÞ

Original PEAQB (to test) 0.668 0.054 0.719 0.075 0.762 0.731

PEAQB (to test) 0.636 0.104 0.753 0.028 0.737 0.691

TSM only (to test) 0.630 0.115 0.764 0.026 0.715 0.683

All (anchor reference) 0.540 0.205 0.834 0.086 0.707 0.607

All (to reference) 0.549 0.203 0.827 0.093 0.675 0.617

All (anchor test) 0.524 0.268 0.842 0.124 0.668 0.622

PEAQAB (to test) 0.558 0.109 0.820 0.043 0.645 0.598

All (to shorter) 0.543 0.120 0.836 0.024 0.644 0.580

All unique (all alignments) 0.524 0.117 0.844 0.036 0.623 0.560

Combination (to test and anchor test) 0.477 0.221 0.873 0.085 0.617 0.548

All (to longer) 0.534 0.109 0.834 0.030 0.616 0.571

All (to test) 0.500 0.150 0.860 0.050 0.615 0.543

All (to test including reference) 0.490 0.101 0.864 0.030 0.605 0.519

All (to test including reference; SMOS raw) 0.474 0.089 0.859 0.028 0.590 0.503

FIG. 8. The loss and correlation for training, validation, and test sets for

each epoch. the best epoch is shown as a vertical line.
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Driedger and Muller (2014; DIPL) have also been included.

Although b ¼ 1 was used in the evaluation, in practice,

time-scaling is only applied at ratios other than one.

Additionally, b ¼ 0:25 was the minimum available for

Elastique using SonicApi (GmbH & Co., Berlin, Germany).

Consequently, all results for b ¼ 1 and b < 0:25 were

excluded from averaging calculations. Table II shows the

mean OMOS for each of the TSM methods tested in addi-

tion to means for each file class ordered by the ascending

overall mean.

The analysis is split into each class of the reference files

followed by the overall average results. The poor perfor-

mance of the uTVS subjective testing implementation for b
close to one is also visible with the updated implementation

showing monotonic improvement toward b ¼ 1. The noisy

nature of the results for Elastique, FuzzyPV, and NMFTSM

in Roberts and Paliwal (2020) has been smoothed with all of

the results following those of Roberts and Paliwal (2020).

For musical files, the OMOQ effectively differentiates

between the frequency and time-domain methods where the

quality worsens faster for the time-domain methods.

WSOLA fares the best out of the time-domain methods,

diverging from the frequency-domain methods for b < 0:8
as shown in Fig. 9(a). When averaged, the OMOQ rates the

IPL highest, followed by Elastique. All other frequency-

domain methods gave similar results.

For solo files, all methods except the NMFTSM per-

form similarly with a maximum difference between methods

of 0.576 for b ¼ 0:87. The method means at each time scale

can be seen in Fig. 9(b). DIPL has the highest mean OMOS,

followed by Elastique, WSOLA, and IPL as shown in Table

II. The strong performance of WSOLA is expected due to

individual harmonic and percussive signals.

The voice file OMOS shows the greatest variance

between methods. Of interest is the exponential shape of the

curve for b < 1 compared to the logarithmic shape for

TABLE II. Mean objective mean opinion score (OMOS) for each class of file and overall result. Means are calculated without b of 0.2257 and 1. Methods

in order fromleft to right are NMFTSM, ESOLA, FESOLA, PV, FuzzyPV, Phavorit SPL, uTVS, subjective testing uTVS, Phavorit IPL, HPTSM, SPL,

WSOLA, Elastique, Driedger’s IPL, and IPL.

NMF ES FES PV FPV SPL uTVS uTVS IPL HP SPL WS EL DIPL IPL

Music 2.931 2.782 2.987 3.572 3.663 3.678 3.591 3.615 3.715 3.597 3.672 3.538 3.721 3.771 3.835

Solo 2.932 3.635 3.652 3.463 3.399 3.586 3.628 3.630 3.663 3.673 3.646 3.792 3.796 3.850 3.773

Voice 2.987 3.302 3.412 3.052 3.160 3.201 3.320 3.317 3.212 3.415 3.457 3.507 3.660 3.596 3.621

Overall 2.948 3.194 3.314 3.383 3.433 3.507 3.521 3.530 3.548 3.565 3.600 3.605 3.725 3.742 3.752

Time-Scale Ratio ( )

O
M

O
S

(a) Music Signals

PV
IPL
WSOLA
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HPTSM
SuTVS

EL
FuzzyPV
NMFTSM

ESOLA
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DIPL

Time-Scale Ratio ( )

O
M
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(b) Solo Signals
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O
M
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(c) Voice Signals

Time-Scale Ratio ( )

O
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(d) All Signals

FIG. 9. (Color online) The mean OMOS for each TSM method as a function of b for (a) musical signals, (b) solo signals, (c) voice signals, and (d) all signals

combined. Each point is the average OMOS for a subset of files processed by one TSM method at one time-scale ratio. Higher is better.
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musical and solo classes, indicating that harsher subjective

evaluation of the voice files was learned by the network.

The method means at each time scale can be seen in Fig.

9(c). Elastique has the highest mean OMOS, followed by

IPL, DIPL, and WSOLA. ESOLA and FESOLA give

improved performances for this class relative to other

methods.

By averaging all OMOS, the IPL has the highest aver-

age rating, followed by DIPL and Elastique, separated by

only 0.03 OMOS. Only 0.098 separates WSOLA through

SPL. The overall low performance of FuzzyPV is unex-

pected given that it builds on the IPL. However, other meth-

ods that perform decomposition of the signal, such as

NMFTSM and HPTSM, also perform below the methods

they build upon, suggesting that simpler artefacts are

preferred over those introduced by multiple processing

methods. The overall means can be seen in Fig. 9(d). Two-

sample t-test analysis (a ¼ 0:05) of all of the OMOS shows

the null hypothesis of equal means to be rejected in almost

all of the cases when the absolute difference of mean

OMOS is greater than 0.098. ESOLA and FESOLA are the

only exceptions with an absolute difference of 0.1201 and

P-values of 0.069.

IV. AVAILABILITY

The proposed tool is available online.3 This includes

the MATLAB scripts for the feature generation, PyTorch code

feature evaluation, and features for all dataset files in “csv”

and “.mat” formats. A bash script is also included, which

creates a virtual environment and installs required modules.

The features are also available with the subjective dataset

online.4

V. FUTURE RESEARCH

Future research is multifaceted. First, evaluation of a

wide range of commercial and lesser known published TSM

methods should be considered in addition to comparisons of

different implementations of the same TSM method.

Second, expansion into alternative and deeper neural net-

works should also be considered. Initial testing resulted in a

qte of 0.71 for a random forest network using the hand-

crafted features, whereas using blind data-driven features

created by a convolutional neural network (CNN) used as

input to a fully connected network resulted in a qte of 0.65.

VI. CONCLUSION

An objective measure for time-scaled audio was pro-

posed with the performance superior to most subjective lis-

teners. The measure used handcrafted features and a fully

connected network to predict the SMOS. The PEAQB and

PEAQAd features were used in addition to nine novel fea-

tures specific to TSM artefacts. Six methods of alignment

were explored with interpolation of the magnitude spectrum

to the duration of the test signal giving the best performance,

achieving a mean RMSE of 0.490 and a mean PCC of

0.864. Using the proposed method to evaluate algorithms, it

was found that Elastique gave the highest objective quality for

voice signals while the IPL variants gave the highest objective

quality for music and solo instrument signals, as well as the

best overall performance. Future work includes optimization

of feature generation, exploration of other network structures,

and evaluation of additional TSM algorithms.

1See http://ieee-dataport.org/1987 the subjective dataset (Last viewed

7 March 2021).
2See https://zygurt.github.io/TSM/objective for the animated three-

dimensional plots rotating between features (Last viewed 7 March 2021).
3See https://github.com/zygurt/TSM for the scripts for the feature

generation.
4See http://ieee-dataport.org/1987 the subjective dataset (Last viewed

7 March 2021).
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