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ABSTRACT 

The floodplain ecosystems are the most ecologically and economically significant areas 

increasingly becoming vulnerable and facing severe challenges due to climate change. 

Understanding how floodplain vegetation responds to changes in climate is essential for effective 

conservation and management strategies. This study was conducted in an Australian floodplain, 

with the following objectives: 1) to assess the relationship between surface water interannual 

variability and responses of different vegetation types in floodplain areas; 2) to evaluate the 

spatiotemporal impacts of groundwater dynamics on floodplain vegetation; and 3) to model 

floodplain vegetation responses under different climate change scenarios. To address the first 

objective, a hydrological model was set up in the Burrinjuck sub-catchment area and calibrated 

against daily rainfall and streamflow data to simulate catchment runoff. Model performance was 

evaluated against the Nash Sutcliffe Coefficient of efficiency (NSE) value of 0.95, indicating 

very good performance. The modelling results show high positive relationships (r=0.85, 0.82, 

and 0.81) between the observed and predicted NDVI values of grass-type vegetation (distant 

from the stream) against the rainfall, runoff, and streamflow, respectively, during the dry season. 

However, these relationships were reduced by 26.8% (r=0.60) and 33.33% (r=0.54) against 

runoff and streamflow during the wet season. For the second objective, different floodplain 

vegetation types in the study area were analysed against groundwater dynamics at the catchment 

level using ArcSWAT. The SWAT model was calibrated and validated in SWAT-CUP software 

using ten years (2001–2010) of monthly streamflow data. The modelling results show high 

positive relationships (r = 0.76, 0.73, and 0.81) between the measured and predicted NDVI 

values of all vegetation in the sub-basin against the groundwater flow (GW), soil water content 

(SWC), and combination of these two variables, respectively, during the dry season. For the third 

objective, the SWAT model was simulated against future time series of climate data projections 

under RCP4.5 and RCP8.5 climate scenarios. The modelling results reveal that vegetation 

greenness (LAI) decreased by 147.8% during winter and increased by 5.3% in the summer. The 

MODIS satellite imagery has been proven effective in studying floodplain vegetation at the 

catchment level, as evidenced by this study. Additionally, the study emphasises how climate 

change will affect future floodplain vegetation sustainability. The strategic information gathered 

from this study regarding current and future floodplain vegetation in Australia will be valuable 

for long-term planning and management of floodplain vegetation in the country. 
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CHAPTER 1: INTRODUCTION 

 

1.1. Overview 

Vegetation is crucial in ecosystems, influencing soil composition, atmospheric 

conditions, moisture levels, and other natural elements (Xue et al., 2021). In any ecosystem, 

vegetation is pivotal in facilitating energy transfers, regulating the water cycle, and influencing 

biogeochemical processes on the Earth's surface. It plays a vital role in facilitating the exchange 

of matter and energy among the pedosphere, hydrosphere, and atmosphere (Song et al., 2018). 

Thus, the interconnection of climate and vegetation is undeniable, with climate exerting a direct 

influence on vegetation growth (Tang et al., 2021). Over the years, there has been significant 

interest in studying floodplain vegetation and its dynamic changes (Klein et al., 2017; Li et al., 

2020). Hence, the investigation of floodplain vegetation change has gained prominence. 

Floodplain is described as ‘areas of low-lying land subject to inundation by lateral 

overflow water from rivers or lakes with which they are associated’ (Junk, 1989). According 

to this definition, a floodplain may be available along with rivers, lakes, deltas, and estuaries.  

Floodplain vegetation is essential in regulating river flow conditions and providing natural 

habitats for aquatic and terrestrial animals (Kingsford, 2000). Floodplain vegetation 

communities provide many environmental benefits, such as reducing catchment runoff, flood 

protection, erosion control, etc. These floodplain vegetation communities depend on surface 

and groundwater for their growth, survival, and other biological processes (Tockner & 

Stanford, 2002).  This is in contrast with vegetation communities in the arid regions, where the 

scarcity of annual precipitation necessitates a dependence on groundwater. In fact, over 30% 

of global vegetation in dryland areas derives its water primarily from subsurface sources (Fan 

et al., 2013). 

Precipitation is a major factor in floodplain ecosystem functions, as it can have intense 

impacts on stream flows, shallow subsurface flows, and deep groundwater flows in a 

hydrological cycle (Finlayson, 2005; Parsons & Thoms, 2013). Precipitation and temperature, 

which exhibit temporal and spatial variability, are pivotal climate parameters (Wedajo et al., 

2019). Precipitation patterns have been changing globally and regionally impacting the growth 

of floodplain vegetation (Parsons & Thoms, 2013). In Australia, floodplain vegetation 

communities, such as those dominated by Eucalyptus camaldulensis, Eucalyptus largiflorens, 
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and Acacia stenophylla, are also becoming endangered due to water scarcity (Doody et al., 

2014). Therefore, understanding the floodplain vegetation response to the catchment hydrology 

is important for better floodplain management. 

Conventional methods for monitoring vegetation, demand significant human and 

material resources, resulting in extended data acquisition cycles and limited coverage areas, 

posing challenges in acquiring extensive datasets (Xue et al., 2021). In the past, hydrological 

studies relied on ground-based observation data for modelling purposes. Data anomalies were 

one of the limitations in this modelling process at large scale, which was eliminated by using 

higher spatial resolution data to evaluate hydrological processes more accurately (Wanders et 

al., 2014). Remote sensing technology addressed this issue in hydrological studies as satellites 

consistently monitor a specified area in regional and global scales (Long et al., 2014). At 

present, many organisations provide remote sensing data with minimum or no cost, which 

allow scientists to use spatial datasets for better hydrological modelling (Long et al., 2014). 

Researchers  (Mancini & Corbari, 2014) found that applying remote sensing technology in 

calculating surface temperature, Leaf Area Index (LAI), soil moisture content, and vegetation 

cover area helps to improve hydrological modelling.  Hence, it is crucial to utilise remote 

sensing information for precise calculation of groundwater recharge and detection of floodplain 

vegetation changes in response to climate variations at different locations. This is essential for 

improving the assessment of water usage efficiency and enhancing water resource management 

in floodplain areas. 

Considering the interconnections between floodplain vegetation and hydrology, as well 

as the relationship between hydrology and climate, it is valid to hypothesise that climate change 

is expected to impact on floodplain vegetation. Thus, climate change impacts on floodplain 

vegetation require a quantitative assessment rather than speculations. 

The aim of this study was to model catchment hydrology under climate change, 

including surface runoff and groundwater recharge, at a spatio-temporal scale and complexity 

appropriate for understanding its effects on floodplain vegetation mapped using remotely 

sensed data. This study helped to better understand the relative contribution of ecohydrological 

parameters in governing groundwater and surface water distribution and their impacts on 

floodplain vegetation. 
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1.2. Background 

Climate is defined by the long-term patterns average of at least 30 years in various 

weather variables, encompassing temperature, precipitation, atmospheric pressure, humidity, 

and wind (Noor et al., 2020). At any given time, climate is a function not only of the atmosphere 

but is rather the response to linkages and couplings between the atmosphere, the hydrosphere, 

the biosphere, and the geosphere (Hartmann, 2016). In the pre-industrialisation era, the climate 

system has exhibited variations over decades to millennia, influenced by both internal 

dynamics and external radiative forcings, leading to the emergence of distinct and prolonged 

weather patterns (Mann et al., 2021). These external factors encompass fluctuations in solar 

radiation, alterations in Earth's orbital parameters, intrinsic fluctuations within the climate 

system, movements of tectonic plates, and modifications caused by volcanic aerosols as well 

as human-induced changes in atmospheric composition (Zachos et al., 2001; Le Treut et al., 

2007; Houghton et al., 2015).  

In the past, the Earth has experienced recurring periods of warming and cooling due to 

disruptions of energy in the climate system (Houghton et al., 2015; Hartmann, 2016). This 

energy is mainly sourced from solar radiation. The amount of energy reaching the atmosphere 

each second on a solar facing surface area of one square meter during daytime as sunlight is 

approximately 1,370 watts (Le Treut et al., 2007). Some 30% of the sunlight reaching the top 

of the Earth's atmosphere is redirected back into space (Eddy, 2009). Remaining sunlight is 

reflected via snow, ice, and deserts like areas of the Earth’s surface and the small amount of 

sunlight which is not reflected to space, absorbed by the Earth’s surface and atmosphere (Le 

Treut et al., 2007). Most of this redirection occurs due to clouds and small particles known as 

‘aerosols’ in the atmosphere (Madronich & Flocke, 1999). To maintain equilibrium in energy 

absorption, Earth must radiate, on average, emit an equivalent amount of energy back into 

space (Eddy, 2009). The Earth itself, as well as everything on Earth, emit longwave radiation 

constantly (Schmidt et al., 2010). However, to emit the absorbed energy, the Earth's surface 

temperature is supposed to be cooler than the mean global surface temperature (Akitt, 2018). 

The presence of greenhouse gases helps Earth's surface warmer by acting as blanket which is 

known as natural greenhouse gas effect (Schmidt et al., 2010). Human activities and some 

natural causes (i.e., bush fire, volcanic eruption etc.) intensify the blanketing effect through the 

release of greenhouse gases. Compared to pre-industrial era, approximately 35% of carbon 

dioxide has increased in the atmosphere, which is known due to human activities through fossil 

fuels combustion and deforestations (Andres et al., 2012). Thus, human activities have been 
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significantly modifying the chemical compositions of the global atmosphere leading to 

significant consequences for climate. 

In recent history, the atmosphere has experienced extensive and varied effects due to 

global change, with human-induced climate change posing a significant threat to numerous 

species, communities, and ecosystems worldwide (Boukal et al., 2019). Among human 

activities, greenhouse gas emission is considered one of the main reasons that shifts climate 

conditions dreadfully (Schmidt et al., 2010). The International Panel on Climate Change gives 

compelling data indicating that over the past thirty years, the average global temperatures of 

both land and ocean surfaces have consistently surpassed than previous decade since the first 

record in 1850 (Short et al., 2016). According to IPCC (2007) the global surface temperature 

has increased by 0.74°C in the last century with an intense increasing rate after World War II. 

If the greenhouse gas emissions continue increasing, the projection indicates temperature may 

increase up to 1.5°C by the year 2050 (Allen et al., 2018). This temperature increase is highly 

correlated to precipitation, which is one of the main sources of fresh water in many arid and 

semi-arid countries (Xue et al., 2021). Ongoing climate change has been continuously shifting 

the primary climatic variables such as temperature and precipitation, that directly affect the 

regional water resources by altering the surface waterflow and groundwater recharge (Jiang & 

Grafton, 2012).  

The low flow period is also important for some species such as waterbirds (e.g. Ardea 

ibis, Pelecanus conspicillatus), insects (e.g. Papilio fuscus, Odonata zygopteran), and 

microscopic organisms such as zooplankton (Copepod candacia) (Kingsford, 2000). The 

floodplain dominated trees (Figure 1.1), such as river red gum (Eucalyptus camaldulensis), 

black box (Eucalyptus largiflorens), coolibah (Eucalyptus coolabah) and river cooba (Acacia 

stenophylla), are flood and drought tolerant. These woodlands can survive during the long, dry 

period but require a wet period for seed germination and seedling management (Patil et al., 

2020). 
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Figure 1.1: A few floodplain vegetation types growing in the study area (Roberts & 

Marston, 2011). 

 

Climate variability and climate change have a significant influence on the global 

vegetation response within ecosystems (Xue et al., 2021). The response of vegetation dynamics 

to climate change varies significantly with various geographical patterns and sensitivity effects 

to climate factors due to the spatial variability of ecosystems (Zhong et al., 2010). This 

demonstrates a feedback mechanism in vegetation-climate interactions. The relationship 

between changes in air temperature and precipitation may influence plant dispersion and 

vegetation vigour, limiting the length of the growing season (Huang et al., 2016). A warming 

environment can considerably increase the process of respiration in plants, evapotranspiration, 

and increase the soil moisture deficit, all of which can influence vegetation development (Foley 

et al., 2000; Huang et al., 2016). 

Moreover, variation in atmospheric temperature significantly influences in the inter-

annual variability of vegetation dynamics by indirectly changing the sunlight, solar radiation, 

and precipitation (Huang et al., 2016). On the other hand, the precipitation change in the 

Southern Hemisphere most likely contributes drying trends and the resultant vegetation 

activities in the semi-arid regions e.g., southern part of Chile, Africa, and south-eastern part of 

Australia (Parsons & Thoms, 2013; Li et al., 2020). Due to the impact of global climate change, 

specific structural traits of various vegetation types undergo alterations, influencing their 

associated functions within the Earth-atmospheric system (Huang et al., 2016). Generally, there 

has been a notable shift in global vegetation cover, which has an impact on species dynamics 

and grassland conditions (Arora, 2002; Boukal et al., 2019). In reaction to environmental 
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variables, the world's vegetation types, including native vegetation such as forests, grasslands, 

and shrublands, are negatively impacted by land, topography, and soil (changing land cover 

influencing drainage and erosion and decreased cohesion of residual plant) (Foley et al., 2000). 

Understanding these elements and their effects on vegetation dynamics allows for the 

implementation of targeted effective mitigation strategies to ensure biodiversity sustainability, 

including vegetation protection. 

  

1.3. Statement of the problem 

Floodplain degradation is widespread and threatens ecosystems in both regional and 

global scales. Studies have been conducted over time to examine the degradation of 

floodplains, which is associated with habitat loss and altered ecological processes, with a 

specific emphasis on changes in land use (Entwistle et al., 2019). However, another crucial 

aspect that has been overlooked in the previous studies is the climate change impact on 

floodplain degradation (Mosner et al., 2015). Lewin (2013) documented this degradation, 

which has been occurring for approximately the last 400 years, including how the 

geomorphological processes disconnecting rivers from their floodplains. Climate change-

induced rainfall reduction makes billabongs dryer, as well as other land features connected to 

the floodplain (Finlayson, 2005). These billabongs and waterholes provide natural habitats for 

aquatic species such as frogs, fish, etc. (Reid et al., 2012; Hillman & Shiel, 2017). However, 

despite a variety of their economic, cultural, and environmental services, floodplain and their 

related ecosystems have become endangered. Although these concerns lack thorough 

explanation (Blöschl et al., 2019), they notably highlight the importance of delving into 

quantifying climate changes' impact on surface and sub-surface water flow, as well as the 

responses of floodplain vegetation. 

Previous study on Australia’s largest wetlands, the Lowbidgee floodplain (located 

downstream of the Murrumbidgee River which covers approximately 217,000 hectares), has 

focused on reduced river flow to assess floodplain’s significant  size reduction (Kandasamy et 

al., 2014). The sub-surface water flow, soil water content, groundwater recharge and runoff 

were not studied simultaneously. However, flow reduction directly impacts photosynthesis 

processes by altering environmentally available water in a floodplain system. Water 

consumption by vegetation depends on various factors including their physiological properties 

(such as leaf area, depth of root, etc.) and environmental factors, i.e. catchment runoff, 
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infiltration, groundwater recharge, atmospheric temperature, humidity, and greenhouse gas 

concentration (Politti et al., 2014; Qaderi et al., 2019). The river regulation is another reason 

that affects the available amount of water in the environment. River flows are the key to recover 

floodplain from dying state, with growing interest in managing flows for floodplain. 

Environment-friendly water allocation methodologies have been developed in few countries, 

such as North America, South Africa, as a response to higher water demand on the water 

resource for the survival of flora and fauna, especially in arid and semi-arid areas (Hughes & 

Rood, 2003). However, based on literature review, no study has claimed that comprehensively 

examined the concurrent impacts of climate change on both surface and groundwater within 

the catchment area, alongside changes in the Leaf Area Index (LAI) of floodplain vegetation, 

under both current and projected future climate scenarios. The insights derived from such 

investigations are crucial for accurately estimating seasonal and annual vegetation growth 

under the changing climate conditions (Eccles et al., 2021). 

 The biophysical effects of vegetation on climate systems have been considered in 

several studies concerning deforestation and anthropogenic land cover change (Gao et al., 

2001; Arora, 2002). Vegetation actively participates in the evapotranspiration process that 

affects surface energy and water balance in a more effective way than bare soil, as the plant 

can draw moisture from the soil more quickly (Bruijnzeel, 2004). Previous studies found in bi-

directional relation between climate change and vegetation, coupling General Climate Models 

(GCMs) with Dynamic Global Vegetation Models (DGVMs) (Foley et al., 2000; Arora, 2002). 

However, previous studies could not provide adequate answers to how vegetation dynamics, 

i.e., growth and reproduction, respond to extreme climatic variable changes such as intense 

precipitation or intense atmospheric temperature. This study focused on estimating the impacts 

of climate change on catchment runoff, groundwater recharge, and vegetation growth by 

implementing two different hydrological modelling frameworks at a sub-catchment level.  

1.4. Significance of this study 

Climate change has been intensifying the hydrological cycle since the last century, 

which may lead to shifting global drylands (Chen et al., 2017). Compared to other vegetation 

communities, the floodplain vegetation community is highly sensitive to the river flow for their 

nutrient supply. Most of Australia's dryland rivers have the most variable flow regimes in the 

world for their long period of low or no flow, followed by extreme floods (Leigh et al., 2010). 

These variable and unpredictable flow creates floodplain inundation variability and influencing 
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floodplain vegetation distribution and productivity (Thapa et al., 2016). Therefore, 

understanding the pattern of streamflow changes is critically important to understand 

floodplain vegetation growth in response to surface water availability. 

Quantifying the climate change-induced hydrological effects on floodplain vegetation 

is important to investigate to develop floodplain management policies for both regional and 

global communities (Mosner et al., 2015). This research offered potential benefits for state and 

local government agencies, environmental stakeholders, research groups, and any other entities 

that deal with developing policies for sustainable floodplain vegetation management. This 

study will generate knowledge for better understanding of climate change’s impacts to 

floodplain vegetation. 

The river flow variability influences floodplain ecosystems in various ways. A longer 

period of the dry condition can lead to a decline in tree conditions, such as leaf mortality and 

branch dieback to mitigate transpiration demand in response to groundwater depletion, as tree 

growth significantly improves with a shorter period of inundation (Davies et al., 2012). 

However, climate change can impact the dry and wet conditions of catchment hydrology, 

leading to negative responses in floodplain ecosystems (Paillex et al., 2013). 

Significantly, groundwater is also important in maintaining floodplain wetlands health 

(Fu et al., 2020). Shallow aquifers that are connected to the river flow contribute water to the 

floodplain by storing water during floods (Fu et al., 2020; Wu et al., 2022). Studies suggest 

that regional groundwater flow may also control floodplain hydrological process when the 

wetland is in the groundwater discharge zones (Cartwright et al., 2019). Thus, regional 

groundwater flows influence floodplain nutrients condition and vegetation distribution (House 

et al., 2016; Cartwright et al., 2019; Fu et al., 2020). However, assessing groundwater flow and 

floodplain vegetation interactions at sub-catchment level is critical for a river-fed floodplain 

system. This thesis provides significant insights to understand the underlying relationship 

between groundwater recharge and floodplain vegetation responses at a sub-catchment level.  

This study is one of the comprehensive works on floodplain vegetation responses to 

future climate change using a set of methods that applied station gauged and remote sensing 

data and GIS techniques in hydrological modelling to simulate vegetation LAI, as well as 

investigating the relationships between soil water content, surface runoff, groundwater 

recharge and floodplain vegetation greenness. Researchers can acquire valuable insights into 

the intricate dynamics of these ecosystems. Such understanding plays a pivotal role in 

forecasting and alleviating the effects of climate change on biodiversity, ecosystem services, 
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and human communities. The methodologies applied in this study can be replicated in a similar 

floodplain context in different parts of Australia and globally. 

 

1.5. Research questions, aims, and objectives 

This study focused on the main research question: “What is the potential response of 

different floodplain vegetation communities to the current and future climate-induced 

hydrological change at a catchment level?” Using the high-resolution Normalised Difference 

Vegetation Index (NDVI) imagery and Leaf Area Index (LAI) data derived from MODIS 

imagery as representation of vegetation greenness, this research specifically has addressed the 

following research questions, namely: 

1. What is the relationship between floodplain vegetation response (measured by remote 

sensing) and surface water availability in the dry and wet seasons under historical and 

current climate conditions? 

2. How does groundwater dynamics affect floodplain vegetation (measured by remote 

sensing) during dry and wet conditions using historical and present climate data? 

3. What are the projected impacts of future climate change on floodplain vegetation 

dynamics? 

 

Addressing each of the three research questions in this thesis can significantly contribute to 

accomplishing the primary goal by providing comprehensive insights, evidence, and analysis. 

The first research question sets the relationships between surface water availability and 

floodplain vegetation responses by exploring fundamental concepts, theories, or background 

information related to the catchment hydrology. Addressing this question allows for a thorough 

understanding of the catchment and modelling framework surrounding the research area. By 

addressing this question, the thesis demonstrates a comprehensive understanding of the 

seasonal surface water availability under climatic conditions.  

The second question involves spatial data obtaining and analysis to setup a hydrological 

model for understanding groundwater dynamics. By addressing this question, the thesis 

provides empirical evidence to support its hypotheses. This empirical evidence strengthens the 

validity and reliability of the thesis findings, enhancing its overall credibility. Additionally, 

addressing this question allows for a deeper understanding of the groundwater floodplain 

vegetation relationships that contribute to the broader understanding of the research topic.  
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The third question focuses on future climate projections and their implications to 

simulate Leaf Area Indices (LAI). Addressing this question allows the thesis to discuss the 

potential impact of climate change on floodplain vegetation growth. By considering this 

research question, the thesis moves beyond mere description or analysis to provide meaningful 

insights that can improve policy-making or further research in this field. This contributes to the 

broader impact and relevance of the thesis, demonstrating its significance beyond academic 

discourse.  

Ultimately, addressing each of these research questions contributes to accomplishing 

the main goal of the thesis by providing a comprehensive, evidence-based exploration of the 

research topic. It establishes a strong theoretical foundation, presents empirical evidence to 

support hypotheses, and discusses the greater implications of the findings. Together, these 

components contribute to advancing knowledge in the field and achieving the overall 

objectives of the thesis. 

This study aimed to assess the potential hydrological and climate change impacts on 

floodplain vegetation communities at the catchment level using remote sensing data and 

hydrological modelling. In this study, two different hydrological models were used for 

catchment runoff simulation and groundwater recharge estimation. A series of computational 

experiments applied using historical runoff and climate data covering both extreme climatic 

events such as floods and prolonged droughts. A deterministic catchment hydrological model 

was set up to simulate Leaf Area Index (LAI). The model performance was assessed using LAI 

data obtained from MODIS satellite imagery to project future floodplain vegetation response. 

The research was guided by the following specific objectives:  

1. to assess the relationship between surface water interannual variability and responses 

of different vegetation types in floodplain areas using multi-temporal satellite imagery 

and time series data 

2. to evaluate the spatio-temporal impacts of groundwater dynamics on floodplain 

vegetation through groundwater modelling using remote sensing data and time series 

data; and 

3. to model floodplain vegetation responses under different climate change scenarios 

using model simulated LAI and GCMs predicted future climate data. 
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1.6. Scope of the study 

The scope of this study included the assessment of hydrological analysis of the catchment 

to understand water availability for vegetation use under future climate change scenarios in 

relation to surface water and groundwater changes. A simplified version of Hydrolog known as 

SIMHYD hydrological model was employed at the upstream sub-catchment of the 

Murrumbidgee River catchment in the south-eastern part of Australia. This model was able to 

mimic the catchment runoff which was then correlated to NDVI using machine learning tool, 

WEKA. The Soil Water and Assessment Tool (SWAT) was applied at catchment level to 

calculate groundwater recharge, which then correlated to the SWAT simulated LAI as vegetation 

greenness which was then analysed under future climate scenarios to understand the vegetation 

climate change relationships. Global Circulation Models projected future climate data for a 

future period from 2030 to 2100 were applied in this study. The proposed methodologies applied 

in this study, in combination with remote sensing and GIS, to estimate groundwater recharge is 

a pilot application in the Murrumbidgee River floodplain area. Moreover, this research included 

different types of vegetation e.g., trees, shrubs, and grasses. In addition, this study focused on 

understanding how changes in the ecohydrology of the area, specifically groundwater and 

surface water distribution (introduced by climate variability and change), have impacted 

floodplain vegetation. 

The specific outputs and contributions of this study are the following: 

a. The hydrological modelling applied for both surface water and groundwater at 

a catchment level, with output modelling result, can be applied for water 

resource management. 

b. The groundwater recharge estimation applied at a sub-catchment area 

considering future time series data, can be utilised for water resource allocation 

policies. 

c. This study produced qualitative and quantitative analysis of vegetation response 

to future projected climate change, which would be useful for better floodplain 

vegetation management. 

d. The research methodologies applied for vegetation modelling can be applied to 

identify future bushfire prone area. 
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1.7. Conceptual framework 

Global climate change is an ongoing phenomenon that can bring negative impacts on 

floodplain vegetation, such as reducing vegetation growth, changes in growth patterns, and 

inter-annual variability (Fu et al., 2020). The temperature increase and precipitation change, 

for instance droughts and excessive rainfall, can adversely affect vegetation growth in Australia 

(Jiang & Grafton, 2012). This study used hydrological modelling techniques and remote 

sensing methods to address the potential impacts of climate change in floodplain vegetation 

dynamics. Firstly, catchment hydrology was analysed using conceptual and deterministic 

hydrological models to determine surface runoff and groundwater recharge. Secondly, remote 

sensing methods applied to identify vegetation greenness in the form of NDVI and LAI for 

different types of vegetation in relation to spatial variations. Finally, under different climate 

scenarios, the future climate data was applied in the SWAT model to simulate LAI and other 

variables to determine the vegetation response to future climate change. The conceptual 

framework of this study is presented in Figure 1.2. 
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Figure 1.2: A conceptual framework of the study. 

 

1.8. Organisation of the dissertation 

This thesis is organised into seven chapters. Chapter 1 (Introduction) outlines the 

overview and background of the study, identifies the research gaps, provides the significance 

of the study, enumerates the research questions, aim and specific objectives of the present work, 

defines the scope and limitations, and describes the conceptual framework of the study.  

Chapter 2 (Review of Literature) provides a review of the current knowledge and gaps 

relevant to the study. These include the explanations of changing vegetation dynamics due to 

global climate change, use of remote sensing technology in vegetation mapping, the incidence 

of climate change and its impacts, the GIS-based techniques in hydrological modelling, and 

the use of MODIS LAI data in modelling the future response of vegetation in relation to climate 

change incidence. Chapter 3 delves into the Research Methods employed in this study, 

providing insights into the study area, the overarching study design, and the essential elements 

of data, including acquisition, pre-processing, and data analysis. 

Chapter 4 and Chapter 5 discuss the floodplain vegetation response to the 

environmental water availability at the catchment level. Chapter 4 addresses the first objective 

of this study. It presents the use of MODIS NDVI imagery in mapping the floodplain vegetation 

in the Burrinjuck sub-catchment, NSW, Australia, and the surface runoff simulation using 



 

14 

 

hydrological model and time-series climate data to model the relationship. Chapter 5 addresses 

the second objective of the study. It explains the projection of groundwater variability and 

modelling floodplain vegetation response using the ArcSWAT model, MODIS NDVI data, and 

Machine Learning. 

Chapter 6 addresses the third objective of the study. This chapter discusses the 

projection of future climate data and simulation of leaf area index (LAI) and other SWAT 

variables under climate change scenarios using the ArcSWAT model. In addition, an analysis 

of model performances against LAI and streamflow is also presented in this chapter.  

Lastly, Chapter 7, presents the overall conclusions, implications, explains the overall 

summary, findings, research contributions of the study, and finally enumerates the 

recommendations for future studies. 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

The preceding chapter introduced the comprehensive framework of the study. This 

framework highlighted the imperative of examining catchment hydrology, forecasting 

floodplain vegetation distribution, and projecting future climate impacts. These analyses aim 

to furnish crucial insights for strategic planning, effective floodplain management, and 

informed policymaking, particularly addressing the challenges posed by climate change. In this 

second chapter, a literature review was conducted on floodplain vegetation responses to water 

availability, the importance of floodplain vegetation, the application of remote sensing 

technology in hydrological modelling, the impact of climate change on floodplain vegetation, 

and the floodplain vegetation response under future climate scenarios. The specific and detailed 

literature reviews for each objective are presented in Chapters 4 to Chapter 6. 

 

2.2. Climate change impacts floodplain vegetation dynamics  

Floodplains are environmentally sensitive and ecologically viable areas important for 

catchment hydrology that provide many natural functions and services. (Dudgeon et al., 2006; 

Acreman & Ferguson, 2010). Despite significant contributions to biodiversity and ecosystem 

functions, their global endangerment is attributed to human activities, including hydrological 

alterations and land use changes (Tockner & Stanford, 2002; Mosner et al., 2015). Besides 

these anthropogenic influences on the floodplains, the ongoing changing climate conditions 

additionally affect the floodplain ecosystem negatively by changing hydrological conditions 

(Chen et al., 2017). Table 2.1 shows the largest floodplain areas around the world, including 

the main river system and major impacts of the floodplains.  
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Table 2.1 Global extent of floodplain areas that remain predominantly undisturbed in their 

functionality.  

Source: Tockner and Stanford (2002) 

 

Previous studies applied different approaches to estimate climate change and 

hydrological influences on vegetation dynamics in various floodplains, including arid, semi-

arid, and Mediterranean regions (Rivaes et al., 2013; Kopeć et al., 2014; Leauthaud et al., 

2018). Cienciala and Pasternack (2017) used remote sensing data for vegetation productivity 

assessment and later correlated floodplain inundation with hydroclimatic conditions, flow 

regulations, and floodplain vegetation productivity. Other studies  (Adamson et al., 2009; Kirby 

et al., 2013; Qureshi & Whitten, 2014; Zhu et al., 2015) have done modelling to estimate the 

impact of hydrological and climate change at different catchments within the Murray Darling 

Basin (MDB). Similar hydrological modelling studies have also been completed in the 

Murrumbidgee River catchment to find climate change effects and adaptation options (Dyer et 

al., 2014; Qureshi & Whitten, 2014; Reinfelds et al., 2014; Ren & Kingsford, 2014). 

Understanding hydrological changes accurately is crucial for modeling their impact on 

floodplain vegetation. 

In this research, Coupled Model Intercomparison Project (CMIP) Phase 5 and climate 

models data applied for vegetation modelling, which is different from previous studies, 

presented in Chapter 6. CMIP5 is a set of coordinated climate model experiments to produce a 

state-of-the-art multi-model dataset designed to advance our knowledge of climate variability 

and climate change (Taylor et al., 2012). In recent years, the assessment of LAI has been 

considered as one of the useful ways in vegetation modelling, which is important for the 

photosynthesis process and plant growth (Clough et al., 2000; Gu et al., 2017). These indices 

help to correlate terrestrial ecosystem structures, their functions, and their interactions with the 

environment (Fang et al., 2019). Understanding the LAI dynamics is significant to the 

Region Large River system Floodplain area 

(km2) 

% of the global 

total 

Major impacts 

Africa Congo Basin, Nile, 

Niger 

310, 000 13.85 Hydrological change 

Europe Danube and Volga 

deltas 

40, 000 1.78 Embankment 

North America 

(USA) 

Mississippi 240, 000 10.7 Hydrological change 

South America Amazonian Basin 1, 100, 000 49.11 Deforestation 

Asia Mekong, Irrawaddy 400, 000 17.86 Hydrological change 

Australasia Fly River, Paroo River, 

and Cooper Creek 

150, 000 6.7 Hydrological change 
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enhancement of ecosystem service under the context of global climate change (McLaughlin & 

Cohen, 2013). Australia has many ecosystems and wetlands which require better water 

management for their floodplain vegetation. Table 2.2 shows a few Australian Ramsar wetland 

areas, including their featured flora and fauna. 

 

Table 2.2: A few Australian Ramsar wetland areas including featured flora and fauna. 

Name Area in 

hectares 

Vegetation Fauna 

Apsley Marshes 880 Swamp Paperbark White-bellied Sea eagle, Australian 

Bittern 

Currawinya Lakes 151,300 Gidgee, Yapunyah, 

Mulga 

Pelicans, Gulls, Terns, Swans 

Fivebough and 

Tuckerbil Swamps 

620 Grasses and salt-tolerant 

succulents 

Australian Bittern, Brolga, Painted 

Snipe, Glossy Ibis 

Gwydir Wetlands 102,120 Coolibah Black-necked Stork, Jacana, 

Australian Bittern 

Kakadu National 

Park 

1,979,766 Grasses, Paperbark 

swamps 

Freshwater and saltwater 

crocodiles, pig-nosed turtle, 

whistling-duck, Radjah shelduck 

Kerang Wetlands 9,419 Black Box, River Red 

Gum, tangled lignum 

White ibis, straw-necked ibis 

Lake Warden 

System 

1,999 Melaleuca trees, Acacia, 

Banksia 

Australian Shelducks, Black 

Swans, Grey Teals 

Riverland 30,640 River Red Gum, Black 

Box 

Regent Parrot, Southern Bell Frog, 

Freckled Duck 

 

 The structure and function of floodplain ecosystems are predominantly reliant on 

surface water hydrology, and modifications to the hydrologic system are often indicative of 

disturbed and endangered floodplain ecosystems (Figure 2.1) (Vörösmarty et al., 2010; Capon 

& Reid, 2016). Climate change is anticipated to worsen current challenges and produce various 

immediate impacts on floodplain biodiversity and ecological systems (Capon et al., 2013; 

Capon et al., 2016). Specifically, many areas around the world, particularly in arid and semi-

arid climatic zones, are expected to experience more frequent, prolonged, and intense droughts 

(Nielsen & Ball, 2015). Therefore, it is widely anticipated that alterations to floodplain 

vegetation composition, disappearance of native species, and notably, the proliferation of 

exotic invasions will occur in response (Catford et al., 2014).  
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Figure 2.1: Conceptual diagram of a river floodplain area adopted from Craft (2022).  

 

Floodplains offer a dynamic array of plant habitats, which change in response to 

intricate topographical gradients ranging from river channels to floodplain edges (Capon & 

Reid, 2016). These habitats may encompass diverse wetland depressions and other geological 

characteristics, flood tolerant species occupying wetter areas and drought tolerant or perennial 

plants dominating drier areas (Brock et al., 2003). The variability in survival and regeneration 

mechanisms among floodplain plant species enables the vegetation in these dynamic 

environments to adapt flexibly to a wide range of hydrological conditions. Arid floodplain 

vegetation is likely to exhibit remarkable resilience to climate change, including mega-

droughts, owing to its adaptation to substantial hydrologic variability, which has encompassed 

previous extended drought periods (Capon & Reid, 2016).  

Water resources and the hydrological cycle are linked with climate, and any changes in 

climate variables directly influenced water availability and quality (Yang et al., 2021). Global 

climate change and its impact on hydrological cycle causes the redistribution of water resources 

in time and space (Nan et al., 2011). This redistribution and changes of water resources at 

geographical location will cause the ecosystem to change greatly (Yang et al., 2021). Previous 

studies documented that ecosystems are highly sensitive to global warming, and as climate 

change is continuing, the ecosystems are facing degradation in size, reducing their services 

(Boukal et al., 2019; Entwistle et al., 2019; Fu et al., 2020).Furthermore, integrating vegetation 

dynamics responses to soil water content, groundwater recharge, and surface water flow into 

climate change studies is imperative for enhancing ecosystem management. This research gap 

has been addressed in Chapter 6 of the Thesis. 
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2.2.1. Climate change impacts catchment hydrology 

The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

identifies that climate has changed in the last 50 years, and most regions have noticed an 

increase in air temperatures by 0.85 °C between 1880 and 2012 (IPCC, 2014). Anthropogenic 

greenhouse gas emissions have been the primary driver of climate change since the pre-

industrial era (Figure 2.2). Global warming potentially influences the catchment hydrological 

cycle, resulting in changes in the spatial and temporal distributions of regional water resources 

(Boer et al., 2000; Nijssen et al., 2001; Labat et al., 2004; Ramanathan et al., 2005). Likewise, 

Australia is no exception to a changing climate, which was proven by significant heatwave 

experienced in the south-east of Australia at the beginning of 2020. Over the past 150 years, 

human activity has exacerbated geological, hydrological, and ecological processes driven by 

highly variable climates through time and across the Murray Darling Basin (MDB) (Goss, 

2003; Williams, 2017). These extreme climatic conditions characterise the MDB of the recent 

past, and these conditions are expected to be an increasing part of future climate change (Pall 

et al., 2011; Ummenhofer & Meehl, 2017). Hence, the assessment of climatic influence on 

water resources and their corresponding ecosystem would provide better modelling opportunity 

under future climate scenarios. 

 

Figure 2.2: Total annual anthropogenic GHG emissions by gases 1970-2010 (IPCC, 2014). 

 

The potential effects of climate change on the river basin hydrological cycles have been 

extensively analysed in various regions around the world, based on different emission scenarios 

and climate models (Wang et al., 2008; Raje et al., 2014; Kim et al., 2016; Mengistu et al., 

2023; Probst & Mauser, 2023). The changing climate variability such as increasing 

temperatures can lead to high evaporation and transpiration rates, and changes in precipitation 
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patterns, could potentially reduce the amount of water available for surface runoff and the 

groundwater recharge. Given the significance of this data for floodplain ecosystem water 

resources management, it is imperative to assess the degree to which alterations in climate 

variability influence hydrological conditions. 

To evaluate the climate change impact on hydrology, various approaches have been 

developed over time, which can categorise into three distinct groups. These are paired 

catchments approach, time series analysis or statistical method, and hydrological modelling, 

among which hydrological models provide comprehensive analysis from limited data (Li et al., 

2009). A dependable method for assessing the impact of climate change on catchment 

hydrology involves simulating basin hydrology using multiple hydrological models across 

various scenarios. Several studies have been conducted to evaluate the impact of climate 

change on catchment water availability (Lauri et al., 2012; Kim et al., 2013; Khoi & Hang, 

2015; Shrestha et al., 2018). These studies suggest an almost certain temperature increase in 

the future, however the direction of change in precipitation and streamflow remains uncertain 

and depends entirely on the climate models and the downscaling methods. It is important to 

include both temperature and precipitation in the catchment hydrology modelling, so that 

vegetation response to catchment hydrology analysis provide a better understanding for 

ecosystems management.  

 

2.2.2. Surface hydrology and climate change  

Hydrological modelling results depend on model selection considering the catchment 

type, which means climate change impact analyses should be included in the modelling. 

Precipitation and snowmelt constitute the principal sources of water flow within a catchment 

area, while changes in precipitation patterns and temperature serve as the primary catalysts for 

variations in water availability for both surface and groundwater resources (Hamlet & 

Lettenmaier, 1999). Cuo et al. (2013) explained that any changes in observed streamflow were 

due to the combined effects of changes in precipitation, evapotranspiration, rainfall runoff, and 

baseflow, and were caused primarily by climate change. Over the past few decades, notable 

advancements have been made in the advancement of hydrologic models incorporating 

integrated features. These models effectively parameterise runoff generation processes and 

employ soil-vegetation-atmosphere transfer schemes to proficiently regulate water and energy 

balances at the land surface (Raje et al., 2014). Most of the hydrological model simulations 

rely on the model calibration with historical stream flow and climate data. Therefore, creating 
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an adaptive hydrological model that can account for future climate and catchment conditions 

not currently observable is a challenging task (Kim et al., 2016).  

Rainfall-runoff model refers to hydrological models that replicate the flow of water in 

a catchment outlet by utilising input time series data of rainfall. Figure 2.3 outlined the water 

transformation cycle between atmosphere, lithosphere, and hydrosphere in a catchment 

hydrological cycle. In a balanced rainfall-runoff hydrological model, the volume of water 

available as surface water and ground water resources are the excess of precipitation over 

evapotranspiration (Beare & Heaney, 2002). This evapotranspiration fluctuates by the potential 

impact of climatic factors such as temperature, solar radiation, wind, and humidity. The other 

factors that influence evapotranspiration are catchment vegetation, vegetation type and 

vegetated area with the catchment (Zhang et al., 1999). However, the relationship between 

vegetation cover and transpiration becomes more significant as precipitation levels rise, 

thereby mitigating the immediate effects of climate change (Zhang et al., 1999; Zhang et al., 

2022). As vegetation growth increase, so does their impact on atmospheric carbon dioxide, 

leading to higher levels of carbon dioxide. This increase in carbon dioxide, in turn, enhances 

water use efficiency, resulting in reduced transpiration. Alternatively, climate factors like 

elevated temperatures, alterations in rainfall distribution, and variations in soil moisture levels 

may either amplify or counteract the advantages conferred by increased carbon dioxide levels 

on plant physiology (Zhang et al., 2022).  Hence, gaining insights into the correlation between 

plant physiology and water availability at the catchment level would be an advantage in 

devising effective floodplain water management strategies. Chapter 4 describes the relationship 

between floodplain vegetation and surface water availability at catchment level. 
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Figure 2.3: A diagram of hydrologic cycle showing the water transfer cycle between surface, 

ocean, and atmosphere adopted from Singh and Singh (2021). 

 

2.2.3. Climate change impacts groundwater recharge 

Global warming also impacts groundwater dynamics, such as the rate and timing of 

groundwater recharge, and seasonal mean and annual groundwater depth variations by the 

distribution of precipitation (Panwar, 2013). These impacted changes in groundwater recharge 

may be larger than changes in precipitation (Mackay, 2008). Precipitation is one of the main 

sources of groundwater recharge through infiltration, depending on soil particles and land cover 

(i.e. vegetated land has a higher infiltration rate than bare soil) (Adhikari et al., 2020). This 

infiltration rate is also being influenced by several factors like the gradient of the land and size 

and textures of the soil particles. Infiltration rate is less on stiff land where runoff is high 

compared to flat land; and sand dominated soil has higher infiltration capacity than clay soil 

(Ziadat & Taimeh, 2013). Many studies showed that infiltration rate relates to climate change 

that eventually changes groundwater table. Ducci and Tranfaglia (2008) applied remotely 

sensed data for hydrological modelling and showed an average of 30% decrease in infiltration 

rate under the current climate change scenario. Ali et al. (2012), by applying Global Climate 

Model’s (GCMs) projections, found that groundwater recharge increases by 50% in wet 

conditions (summer), 10-25% in semi-wet (autumn), and decreases in dry condition (winter) 

by 2050, compared to present values. 

Regional reduction of groundwater resources or lowering the groundwater table is now 

recognised as a global scale problem (Konikow & Kendy, 2005). This reduction directly 
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impacts groundwater-dependent vegetation communities as well as environmental water 

availability. The future climate change prediction for less precipitation exacerbates this 

groundwater lowering issue by influencing groundwater recharge (Gurdak et al., 2012). Thus, 

for better floodplain management, the natural fluctuations in groundwater levels caused by 

climate variability must be considered (Dey & Mishra, 2017); Chen et al., 2004). This study 

aimed to evaluate the alterations in groundwater flow and subsurface water flow under 

projected future climate scenarios, which is discussed in Chapter 5 and Chapter 6 of the thesis. 

 

2.3. Surface water availability impacts floodplain vegetation 

Surface water plays an important role in floodplain vegetation dynamics by naturally 

changing flooding pattern in the dry and wet season. Flooding is considered important in 

structuring river floodplain vegetation as it enhances the sediment and nutrient transport to the 

vegetation (Harvey et al., 2009). Redistribution of sediment and other nutrients is the key 

process for productive floodplain vegetation, including adjacent channels productivity (Kretz 

et al., 2021). Climate-induced hydrological alteration influences the rate and timing of surface 

water flow (subsequently impacting river-floodplain systems), making it one of the key 

environmental problems for many river basins around the world (Rosenberg et al., 2000; 

Grafton & Horne, 2014; Dang et al., 2016). Climate change mitigation policies require better 

water management to protect floodplain ecosystems for their environmental and socio-

economic services (Doody et al., 2015). There are no sufficient studies found on streamflow 

and floodplain vegetation correlation (e.g. flow intensity and floodplain vegetation resistance) 

which gives a better understanding of sediment  transport in shallow floodplain ecosystem 

(Alsdorf et al., 2007; Harvey et al., 2009).  

 

2.3.1. Surface runoff modelling at catchment level 

Surface water flow is very much influenced by catchment runoff, driven by 

precipitation and evapotranspiration. In a rainfall dominated hydrological system, climate 

change is critical because of its direct influence on precipitation and evaporation. Potter and 

Zhang (2009) demonstrated the severity of climate change using rainfall-runoff model in the 

Murray-Darling Basin. There were significant reductions in rainfall and runoff observed during 

the dry period in the catchment. McMahon et al. (2007) compared this high variability with 
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similar river system around the world. Further, a rainfall-runoff hydrological model named 

Simplified Hydrolog (SIMHYD) was successfully used with statistically downscaled data and 

gridded catchment rainfall time series data for surface water modelling (Fu et al., 2013). In this 

study, SIMHYD rainfall-runoff hydrological model was employed at the study catchment to 

assess the surface runoff (in Chapter 4 of the Thesis). 

 

2.3.2. Vegetation growth responses to surface water availability 

Understanding floodplain vegetation response to water resource availability at various 

spatial and temporal scales encourages the rebuilding of floodplain management strategies (Yin 

et al., 2015). In arid and semi-arid areas, river flows proportionately fluctuate with precipitation 

intensity and timing. According to Bureau of Meteorology (BOM, 2021a), the annual stream 

flow is highly variable in the Murrumbidgee River (Figure 2.4). Scientists (Broich et al., 2018) 

discovered that precipitation and flooding are key drivers of vegetation distribution in dryland 

area floodplain. According to Sims and Colloff (2012) study of the Paroo River wetlands, 

vegetation greenness expanded after enormous floods. However, coupled hydrological climate 

change factors applying at catchment level shows that vegetation greenness mostly depends on 

precipitation than streamflow (Wen et al., 2013). Additionally, flooding causes bigger 

vegetation greenness than precipitation; likewise, flooding is essential in keeping up 

heterogeneous spatial-temporal pattern of floodplain vegetation (Parsons & Thoms, 2013; 

Broich et al., 2018). Vegetation types, distribution, and their water reliance inside floodplain 

channel inundation are mostly controlled by seasonal flooding (Fu & Burgher, 2015; Broich et 

al., 2018). 

 

Figure 2.4: Annual streamflow in the Murrumbidgee River (BOM, 2021b). 
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Many of the papers that have been published primarily focused on the hydraulic 

connectivity between rivers and wetlands, with a specific emphasis on how rivers respond to 

flood pulses and their significant impact on both water dynamics within floodplain wetlands 

(Kingsford, 2000; Harvey et al., 2009; Kim et al., 2016). Alterations in the hydrological cycle 

could potentially lead to significant ecological consequences within freshwater ecosystems, 

primarily influenced by variations in water flow patterns, particularly regarding seasonality and 

extreme events (Andersen et al., 2006). Exploring the relationships among river flow and 

vegetation in floodplain wetlands can be challenging, primarily due to the intricate nature of 

hydrological processes, making reliance through field observations often difficult (Fu et al., 

2020). As a result, instead of conducting comprehensive wetland studies, numerical 

simulations which involve modelling hydrological processes have been applied to effectively 

examining hydrological patterns in wetlands (Thompson et al., 2009; House et al., 2016). 

Nonetheless, studies that solely depended on models have a limited ability to connect model 

outcomes to diverse wetland patterns. Consequently, studies have introduced remote sensing 

data as a means to analyse the hydrological patterns within floodplains, as they provide a direct 

depiction of alterations in wetlands (Wu et al., 2017).Thus, applying remote sensing data in the 

hydrological model would provide better model performances. 

 

2.4. Groundwater dependent vegetation 

Groundwater dependent ecosystems (GDEs) use groundwater to fulfil their water 

requirements permanently or temporarily to support their flora, fauna and processes 

(Richardson & Pysek, 2012). Hydrological condition changes may directly affect floodplain 

ecosystem. Groundwater is known as water available under the surface, which provides an 

alternative source of freshwater, facing extreme pressures for excessive water demand. 

Lowering the groundwater table and flow rate change can be caused by human water 

consumption, and this groundwater reduction directly impacts groundwater-dependent 

floodplain vegetation (Cui et al., 2020). In recent years, increasing awareness of the 

groundwater-dependent ecosystem's importance encourages to understand groundwater-

dependent vegetation response under hydrological and climatic change condition (Kløve et al., 

2014). River-fed groundwater hydrological characteristics are crucial for groundwater-

dependent vegetation (GDV) and to manage groundwater resources efficiently, including 

aquifers, rivers, and floodplains (Huang et al., 2019). 
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2.4.1. Groundwater modelling at catchment level 

Groundwater recharge is the water infiltration, mostly from precipitation, through the 

surface to reach the groundwater storage. It is not possible to accurately and directly measure 

the rate of groundwater recharge due to complex infiltration process and hydrogeological 

settings (Gemitzi et al., 2017). The reliable indirect method is hydrological modelling for 

groundwater recharge estimation, in addition to the climate change impact assessment on 

recharge (van Dijk et al., 2013; Gemitzi et al., 2017). Researchers (Crosbie et al., 2012) found 

that groundwater recharge dynamics greatly fluctuates with uncertainties during dry and wet 

conditions from GCM-predicted climate scenarios. In general, groundwater studies report a 

decrease of potential groundwater recharge globally, including most of Australia (except the 

northern part) (Gemitzi et al., 2017). According to Taylor et al. (2012), groundwater recharge 

is highly related to the spatio-temporal distribution of precipitation, although higher 

precipitation with increased temperature, which accelerates evapotranspiration, may also cause 

a reduction. 

There are several approaches available to estimate groundwater recharge which are 

categorised into physical, chemical and numerical modelling approach (Adhikari et al., 2020).   

Soil and Water Assessment Tool (SWAT) is a semi-distributed hydrological model which is 

used for analysing flow dynamics, plant growth, sediment and nutrients move with 

groundwater recharge rate (Awan & Ismaeel, 2014; Vigiak et al., 2015; Adhikari et al., 2020). 

Hydrological modelling calibration over a long period requires continuous data which involves 

the use of remotely sensed data for hydrologic and climate variables (Mohanty et al., 2013; 

Fang & Lakshmi, 2014). However, the use of other spatial data, such as digital elevation model 

(DEM), land use, soil map and temporal data for runoff, air temperature, precipitation, solar 

radiation, relative humidity and wind speed, provides better modelling results (Hallouz et al., 

2019). This study employed a distributed hydrological model using ArcGIS tool applying 

spatial and temporal data to model catchment hydrology including groundwater recharge, 

which later applied for groundwater vegetation response modelling. 

 

2.4.2. Vegetation growth responses to groundwater  

In wetland ecosystems, groundwater-dependent vegetation mostly takes water from 

both soil moisture and groundwater system (Naumburg et al., 2005). The groundwater depth 

decreases with hydrological factors may cause the extinction of groundwater dependent 
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vegetation communities in the drylands (Braatne et al., 2008). Groundwater reduction can also 

limit water flow in the downstream facing water shortage. This water shortage caused 

degradation of groundwater-dependent vegetation as nearly 30% of all global vegetation 

communities in arid and semi-arid areas (Fan et al., 2013). According to the Bureau of 

Meteorology (BOM, 2021b), the groundwater status is mostly average to below average in the 

upper, middle, and lower aquifer groups across Australia (Figure 2.5). Studies around the 

world, including Australia, concluded that changes in groundwater depth affect dependent 

vegetation communities by inducing changes in vegetation dynamics (Huang et al., 2019). 

 

Figure 2.5: Australian groundwater level status (BOM, 2021b). 

 

The significant groundwater depletion is one of the rising global concerns due to 

increasing demand, human consumption, irrigation, and groundwater-dependent ecosystems, 

especially during droughts. The global-scale nature of the depletion of regional groundwater 

resources is widely acknowledged (Konikow & Kendy, 2005). Numerous groundwater sources 

exhibit limited to non-renewability over significant time spans, impacting both human society 

and dependent ecosystems. Anticipated climate change is expected to exacerbate these 

concerns in various regions globally, as it will lead to decreased precipitation and heightened 

evapotranspiration. Both of these factors are likely to reduce groundwater recharge and 

potentially elevate groundwater withdrawal rates (Green et al., 2011). Thus, the growing 

recognition of the significance of wetlands and other groundwater-dependent ecosystems 
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(GDEs) has prompted more attention on gaining a better understanding of groundwater-

ecosystems interactions in the face of a shifting climate (Kløve et al., 2014).  

 

2.5. Remote sensing technology  

Remote sensing technologies such as satellite imaging provide a wide range of 

information that can be applied to hydrological studies. Knowledge of remote sensing 

technology has improved over the last decades, which can provide spatial information on 

maximum surface fluxes. In recent years, satellite remote sensing techniques have attracted 

researchers because of data availability and easiest retrieval process in a spatially contiguous 

manner (Liou & Kar, 2014). This technology helps researchers to develop various algorithms 

to utilise remotely sensed data, in conjunction with additional ground-based observations, to 

estimate hydrological parameters. 

Landsat 8 images provide relatively higher spatial resolution and wider coverage data 

covering historical and current observations of natural resources in assessing long-term wetland 

changes (Jia et al., 2018). In the last few decades, remote sensing technology was applied in 

many wetlands related research, such as carbon cycle and climate warming in floodplain 

environments, land use and land cover changes, and hydrological processes in wetlands 

(Schmidt & Skidmore, 2003; Yuan et al., 2005; Gu et al., 2017). Besides Landsat, floodplain 

studies include the use of Shuttle Radar Topography Mission (SRTM), Moderate Resolution 

Imaging Spectroradiometer (MODIS) and Advanced Very High-Resolution Radiometer 

(AVHRR) data. The Aqua and Terra satellites provide daily, nearly repeated coverage of the 

Earth’s surface with different spectral bands (Gu et al., 2017). Among them, seven bands work 

for land remote sensing with a spatial resolution of 250m for band 1 and band 2, while 500m 

for band 3 to band 7 (Pflugmacher et al., 2012). Satellite images provide an efficient tool for 

monitoring water areas and flood inundation extent on a large coverage (Gu et al., 2017). Most 

of the remotely sensed data providers included additional features in their data portals. For 

example, U.S. Geological Survey (USGS) data portal included Application for Extracting and 

Exploring Analysis Ready Samples (AppEEARS) data pre-processing tool.  

Researchers have used MODIS data to monitor spatio-temporal variations of surface 

water and flood area in a small and large area (Chen et al., 2017). Huang et al. (2014) generated 

a flood inundation map, including spatial and temporal patterns of inundation, in the MDB 

using MODIS data. Applying the same technique, a flood inundation model was developed to 
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assess for overbank losses on the Murrumbidgee River Floodplain (Dutta et al., 2013). AVHRR 

time series and NDVI data also used to analyse the length of growing period including seasonal 

changes of wetland in previous study (Vrieling et al., 2013). Therefore, applying high 

resolution remote sensing data in mapping floodplain vegetation dynamics at the catchment 

level offers a promising approach, which is addressed in Chapter 4 and Chapter 5 of the thesis. 

 

2.5.1. Remote sensing for vegetation index analysis  

Remote sensing of vegetation primarily involves acquiring electromagnetic wave 

reflectance data from canopies using passive sensors. The spectral reflectance or emission 

characteristics of vegetation, which pertain to how vegetation interacts with the 

electromagnetic spectrum, are influenced by the chemical and morphological characteristics of 

the surface of organs or leaves (Xue & Su, 2017). The primary uses of remote sensing for 

vegetation primarily rely on the following light spectra: (i) the ultraviolet region (UV), between 

10 to 380 nm; (ii) the visible spectra, which are composed of the blue (450–495 nm), green 

(495−570 nm), and red (620–750 nm)wavelength regions; and (iii) the near and mid infrared 

band (850–1700 nm) (Rahim et al., 2016; Xue & Su, 2017). The indices derived from this light 

spectrum range can be associated with various characteristics beyond just measuring plant 

growth and vigour (Foley et al., 1998). These vegetation characteristics include water content, 

pigments, sugar and carbohydrate levels, protein content, aromatics, and more. On the other 

hand, the reflectivity of plants in the thermal infrared spectral range (8–14μm) conforms to the 

principles of the blackbody radiation law, enabling us to interpret plant emissions as a direct 

reflection of their temperature (Karwa, 2020). Therefore, indices derived from this spectral 

range can serve as a surrogate to evaluate the dynamics of stomata regulation, which can be 

used as a proxy to assess plant health. 

The assessment of changes in the health of forest cover over time typically relies on 

ecological indicators, including total leaf area, respiration, canopy cover, biomass, and 

photosynthesis (Makumbura & Rathnayake, 2022). Further, the Leaf Area Index (LAI) exhibits 

a robust correlation with the interchange of water, energy, and CO2 within forests and the 

environment (Rajib et al., 2020). Vegetation information from remotely sensed images 

primarily relies on analysing variations and alterations in the green foliage of plants and the 

spectral attributes of the canopy. The primary validation method typically involves establishing 

direct or indirect correlations between acquired Vegetation Indices (VIs) and the corresponding 
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in-situ measurements of vegetation attributes, including but not limited to vegetation cover, 

LAI, biomass, growth, and vigour assessment (Xue & Su, 2017). 

Remote sensing technology helps to analyse vegetation dynamics from satellite images 

(Fu & Burgher, 2015). Normalised Difference Vegetation Index (NDVI) is one of the most 

reliable sources to characterise vegetation growth and their distribution on the ground along 

the catchment scale (Groeneveld, 2008; Sims & Colloff, 2012). According to Gao et al. (2001), 

NDVI utilises the contrast of strong reflectance in the near-infrared region and the strongly 

absorbed reflectance in the red wavelength region. Mathematically, NDVI is calculated from 

the difference between the red and near-infrared bands and normalising it over the sum of red 

and near-infrared bands. The NDVI analysis can be applied to reflect the density and greenness 

of the vegetation distributions in a selected area, which also helps to identify the relationship 

between vegetation and groundwater depth at catchment scale (Zhu et al., 2015). Xiaomei et 

al. (2007) derived suitable groundwater depth for vegetation growth from NDVI using 

groundwater depth histogram and pixels of NDVI. They also analysed NDVI frequency 

distribution for different types of vegetation with different groundwater depth. This vegetation 

index was also used to draw a linear relationship between vegetation growth and antecedent 

precipitation in arid and semi-arid regions (Fu & Burgher, 2015; Han et al., 2018). However, 

it is essential to apply remotely sensed vegetation data in vegetation-water relationship 

modelling under future climate scenarios. This study addressed this research gap in Chapter 6. 

 

2.6. Climate change impact 

According to IPCC (2014), the global mean surface temperature change for the end of 

the 21st century (2081–2100) in relation to 1850-1900 is projected to likely exceed 1.5°C for 

RCP4.5, RCP6.0 and RCP8.50 (Figure 2.6).  However, according to RCP8.5 scenario 

precipitation increases in high latitude regions and decreases in mid-latitude to sub-tropical dry 

regions, while many mid-latitude wet regions are characterised by high levels of precipitation 

are projected under same climate scenario (Figure 2.6) (IPCC, 2014). Anthropogenic 

greenhouse gas emissions have been the primary driver of climate change since the pre-

industrial era. 
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Figure 2.6: The climate variable changes: (a) Change in average surface temperature and (b) 

change in average precipitation, based on multi-model mean projections for 2081–2100 

relative to 1986–2005 under the scenarios RCP2.6 (left) and RCP8.5 (right) (IPCC, 2014). 

 

Evidence shows that future climate variable change related incidence is apparent. 

Climate change leads to shifts in average temperatures, fluctuations in climate patterns, and an 

increase in extreme weather events, such as droughts, exceptionally high or low temperatures, 

heavy rainfall, and floods (Mengistu et al., 2023). Since regional climate has a significant effect 

on catchment hydrology, floodplain ecosystem will become a susceptible area (Li et al., 2016). 

Any alteration in temperature and precipitation patterns will have a ripple effect on land and 

water systems, ultimately impacting vegetation communities (Fu et al., 2020). Additionally, 

the agricultural sector confronts a range of other challenges, including but not limited to pests 

and diseases, water supply issues, waterlogging, salinity, soil degradation, heat stress, drought, 

and the unsuitability of current planting areas (Arndt & Tarp, 2017). The impact of climate 

change on the geographic distribution and growth of plant species will vary based on factors 

such as the vegetation type (annual or perennial) and their growth patterns (Anderegg, 2015). 

Australia's climate has remarkable variability, primarily attributed to the influences of 

several major atmospheric phenomena, including El Nino – Southern Oscillation (ENSO), the 

Indian Ocean Dipole (IOD), the Madden-Jullian Oscillation (MJO), and the Southern Annular 

Mode (SAM) (King et al., 2014; Chung & Power, 2017). Due to extreme climate variability, 

floodplain ecosystems in Australia are sensitive to long term climatic conditions (Howden et 
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al., 2010). The temperature increases due to climate change in Australia higher than other 

countries and the pattern and intensity of precipitation are changing (Garnaut, 2011). 

Considering climate change impact on catchment hydrology, the negative impact of climate 

change in Australia could lower the floodplain vegetation growth in the future. These gaps are 

addressed in Chapter 5 and Chapter 6 of the Thesis. 

 

2.7. Climate models and climate scenarios 

Understanding the nature of future climate and its variability is important for policy 

making to improve environmental resource management, mitigating the impact of future 

climate scenarios. One of the best tools that can simulate the entire Earth's climate, is known 

as Global Climate Model. These climate models are developed by using mathematical 

representations of climate systems that adhere to the fundamental principles of physics, and 

extensively corroborated with historical observations (IPCC, 2014). These models exhibit 

relatively low spatial resolutions, with grid spacings of up to 300 kilometres, equivalent to a 

single theoretical value per grid cell measuring 300 kilometres by 300 kilometres. They 

encompass a spectrum of complexity, ranging from basic one-dimensional models to intricate 

three-dimensional models, commonly referred to as General Circulation Models (GCMs). 

GCMs can be additionally classified into oceanic GCMs (OGCM) and atmospheric GCMs 

(AGCM), which can be integrated to dynamically simulate interactions between the oceans, 

atmosphere, and land surface, collectively referred to as Atmospheric-Ocean General 

Circulation Models (AOGCMs) (Abiodun & Adedoyin, 2016). 

General Circulation Models (GCMs) are one of the primary tools for understanding 

forthcoming climate projections. As of now, the Coupled Model Intercomparison Project 

(CMIP) has entered Phase 6 (CMIP6). CMIP6 represents a greater expansion over Phase 5 

(CMIP5) and provides higher spatial resolution and improved physical parameters, which can 

support a larger number of simulations. The primary distinction between CMIP5 and CMIP6 

lies in their future scenarios. While CMIP5 relied on the Representative Concentration 

Pathways (RCPs), CMIP6 employs a fresh set of emission scenarios known as the Shared 

Socioeconomic Pathways (SSPs). These SSPs encompass a range of anticipated economic and 

social shifts based on various socioeconomic premises. Several analyses have indicated that 

CMIP6 models exhibit superior performance in simulating future climate compared to CMIP5 

models. For instance, Hamed et al. (2022) conducted a comparison between two scenarios from 
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CMIP5 (RCP4.5 and RCP8.5) and their counterparts in CMIP6 (SSP2-4.5 and SSP5-8.5) 

specifically in Egypt. Their findings revealed that CMIP6 demonstrated reduced uncertainty in 

modeling seasonal air temperatures and rainfall changes compared to CMIP5. Similarly, Wu 

et al. (2019) evaluated the performance of CMIP5 and CMIP6 models across various metrics 

such as daily precipitation patterns on both global and regional scales, tropospheric air 

temperatures in East Asia, and long-term trends in surface air temperatures in the Pacific 

Ocean. Their analysis indicated significant enhancements in CMIP6 compared to CMIP5. 

However, it is worth noting that certain studies have also pointed out instances where CMIP6 

models exhibited poorer performance than CMIP5 models. For example, Zhu and Yang (2020) 

observed inferior simulation results in CMIP6 models concerning air temperature and 

precipitation in the humid regions of the Tibetan Plateau when compared to CMIP5 models. 

Similarly, Song et al. (2021) simulated future changes in precipitation and air temperature in 

South Korea using scenarios from both CMIP5 (RCP4.5 & RCP8.5) and CMIP6 (SSP2-4.5 & 

SSP5-8.5). Their findings highlighted higher uncertainty in precipitation simulations under 

SSP projections, whereas RCP projections displayed greater uncertainty in predicting air 

temperature. 

In these experiments four different representative concentration pathways (RCP) were 

performed using various coupled GCMs developed by several international climate modelling 

groups from around the world (Sharmila et al., 2015). In contrast to CMIP3, CMIP5 models 

exhibit improvements in terms of representing model physics, vertical resolution, and the 

incorporation of atmospheric aerosols (Taylor et al., 2012; Sperber et al., 2013) 

Numerous studies have already investigated the overall future climate changes in global 

monsoonal precipitation using multi-model ensemble and selected CMIP5 models under 

different range of RCP scenarios (Table 2.3) (Lee & Wang, 2012; Kitoh et al., 2013; Wang et 

al., 2014), that suggest notable increase in global monsoonal precipitation during 21st century 

due to temperature increase. However, considering the future projections between RCP 4.5 

(intermediate) and RCP 8.5 (extreme) scenarios, it becomes evident that significant differences 

in climate outcomes are anticipated based on the chosen emission pathways . Kitoh et al. (2013) 

suggested that the global monsoon response to atmospheric warming is larger and more robust 

in a warmer world (RCP 8.5) among the models. Moreover, GCMs have been used predicting 

future climate variable changes until end of the 21st century developed by various specialised 

institutions in climate research. 
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Table 2.3: Different types of radiative forcing pathways from greenhouse gas emissions from 

human   activities, with radiative forcing of 2.6, 4.5, 6.0 and 8.5 W/m² by 2100. 

 

RCP Radiative forcing Atmospheric CO2 

equivalent 

(parts per million) 

Pathway shape 

8.5 >8.5 W/m2 in 2100 >1370 (in 2100) Rising 

6 ~6 W/m2 at stabilisation 

after 2100 

~850 (at stabilisation after 

2100) 

Stabilisation 

without overshoot 

4.5 ~4.5 W/m2 at stabilisation 

after 2100 

~650 (at stabilisation after 

2100) 

Stabilisation 

without overshoot 

2.6 peak at ~2.6 before 2100 

and then decline 

peak at ~490 (before 2100 and 

then decline) 

Peak and decline 

Source: (IPCC, 2014) 
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2.8. Summary and knowledge gaps 

Reviewing the literature prompts a fundamental need for remote sensing-based 

approach to climate change studies in mapping different floodplain vegetation areas and in 

projecting vegetation responses to the future climate variable changes presented in this thesis. 

The key findings of this review are summarised as follows: 

1.  Essential research remains necessary to evaluate how floodplain vegetation will 

respond to future climate conditions, particularly given the ongoing and escalating 

occurrence of extreme weather events that pose threats to floodplain ecosystems 

and associated environments (Mosner et al., 2015; Eccles et al., 2021). 

2. Hydrological modelling-based approaches are grounded in theory of ecosystem 

management to face the climate change effects on water resources, which have 

become more complex and comprehensive. Therefore, estimating surface and 

groundwater availability using different hydrological models at catchment level that 

directly influence vegetation growth (Moxham et al., 2019). This hydrological 

assessment would be appropriate to identify vegetation-water correlations by 

examining the changes in vegetation indices. 

3. MODIS satellite imagery data provides opportunity to identify vegetation 

conditions by gathering different types of vegetation over the year. These time 

series data have been successfully applied in previous studies (Cao et al., 2015). 

Therefore, using a pre-processing tool in generating time series vegetation indices 

data could provide a better understanding the seasonal variability in the floodplain 

vegetation response to climate scenarios. 

4. Studying the reactions of floodplain vegetation to changes in water availability 

caused by climate change can aid in the management of floodplain ecosystems by 

predicting the effects of climate change in the future (Mosner et al., 2015; Moomaw 

et al., 2018). 

5. Given the impact of climate change in Australia, floodplain ecosystems are placed 

in a vulnerable position due to their enhanced sensitivity to extreme climatic events. 

Therefore, it is important to study climate change impact on floodplain vegetation 

in Australia (Xu et al., 2023). 
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6. Floodplain vegetation is dependent on catchment hydrology, thus any changes in 

water availability can put floodplain vegetation at risk depending on the types of 

vegetation and its distribution. The greenness of floodplain vegetation may be 

influenced by climatic variability, as climate change is the sole factor driving 

changes in catchment hydrology (Burandt et al., 2024). Nevertheless, there is a lack 

of research examining the various vegetation types and their proximity to the 

stream. It is imperative to address this research gap in order to comprehend the 

potential for crop management. 

7. Floodplain vegetation is vulnerable to climatic stresses such as drought and floods. 

According to climate projections, Australia is expected to encounter climatic 

pressures due to rising temperatures, alterations in precipitation patterns, and a 

reduction in precipitation in the forthcoming period. There is a knowledge gap 

regarding vegetation response to soil water content including extreme events in 

future time spans. 

8. Understanding the vegetation responses to future extreme climatic conditions based 

on vegetation types and distance from the water outlet will provide an opportunity 

to develop crop productions with efficient irrigation systems. This can be addressed 

through vegetation response modelling with remote sensing data, especially in the 

under-sampled drylands of the world where irrigation is difficult due to water 

scarcity. 

This thesis aims to address the research gaps identified by the literature review and outlined in 

detail in Chapter 1. 
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CHAPTER 3: RESEARCH METHODS 

 

3.1. Introduction 

The previous two chapters provided an overview of the key problems of the ongoing 

issues in floodplain ecosystems, specifically in overcoming the challenges of climate change. 

In addition, those chapters presented the works that have been done so far to understand the 

climate change impact on floodplain vegetation. Chapter 1 also discussed the overall 

framework of the study and identified the current research gaps on topics that need to be 

addressed. These knowledge gaps were considered the basis for developing the objectives of 

this research study. The present chapter elaborates on the methodologies of the study adopted 

to achieve the objectives enumerated in Chapter 1. It should be noted, however, that specific 

methods are discussed in the ensuing chapters corresponding to the specific objectives of this 

study in Chapters 4, 5, and 6. This present chapter describes the following subsections: i) 

Description of the Study Area, ii) Research Design, iii) Data acquisition, processing, and 

analysis, and iv) Summary. More specific discussion of the methods can be found in Chapters 

4 to 7, corresponding to the four specific objectives of this Thesis. 

 

3.2. The study area 

The study area, the Burrinjuck sub-catchment, is located in New South Wales (NSW), 

the southeast part of Australia, within the upper catchments of the Murrumbidgee River basin 

in the mountains of the Great Dividing Range. It is geographically situated between latitude 

34.53°S to 35.14°S and longitude 148.31°E to 148.55°E (Figure 3.1). The area of interest, the 

Burrinjuck sub-catchment, is approximately 115 kilometres north-west of Canberra, Australia's 

capital. The name Burrinjuck comes from the Aboriginal words “booren yiack”, meaning 

precipitous mountain. The primary character of the Burrinjuck Dam and its environs is rural, 

featuring a township in Yass and smaller communities in Binalong, Bookham, Bowning, 

Gundaroo, Murrumbateman, Sutton, and Wee Jasper. 
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The topography of the Burrinjuck sub-catchment area consists of gentle and moderate 

slopes, and the elevation varies from 373 to 934 m (Saha et al., 2013). The climate of the study 

area is characterised as temperate, as classified by the Köppen-Geiger climate classification 

system, with a predominantly warm summer and an absence of a long dry season, featuring an 

average temperature of 22°C during the hottest months (Peel et al., 2007). The average annual 

rainfall of the catchment is 675mm, but the average monthly rainfall has high year-to-year 

variation. The mean annual rainfall in the Murrumbidgee region varies significantly due to its 

diverse climate, with an average rainfall of 1700mm in the Snowy Mountains area and less 

than 600mm in the Wagga Wagga. 

Figure 3.1: The location map of the study site Burrinjuck sub-catchment. Inset: Australia 

map showing Murray Darling Basin (green) and Murrumbidgee River Basin (olive). 
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The annual rainfall of the Burrinjuck sub-catchment area is 926.6mm (average from 

1908 to 2023) (BOM, 2023). The highest rainfall was observed in the month of July (100.1mm) 

and the lowest in February (56.1mm) as the driest month (Figure 3.2). In the winter months of 

June to August, rainfall varies from 96mm to 100mm, and summer rainfall from December to 

February varies from 56.1mm to 63.1mm (BOM, 2023). The mean temperatures throughout 

the year in this region exhibit variations, with the annual maximum and minimum temperatures 

at 20.7 and 9.2, respectively. Specifically, the highest maximum mean temperature occurs in 

January and February, fluctuating between 29.8°C and 29.0°C (BOM, 2023). In contrast, the 

lowest mean temperatures of the year, ranging from 12.5°C to 11.7°C, are experienced in June 

and July.  

 

 

  

Figure 3.2: The annual mean rainfall and temperature at Burrinjuck sub-catchment (Station 

ID 073007), NSW, Australia. Source: BOM (2023). 

 

The climate of the Murrumbidgee River catchment is more diverse in the New South 

Wales (NSW) than in the Australian Capital Territory (ACT) section, with cooler upstream 

located in the high alpine to the dry and hot plain in the downstream (Wen et al., 2013). The 

evapotranspiration also varies from upstream to downstream.  

The Burrinjuck sub-catchment covers approximately 12,950km2, which is sub-

catchment of the Murrumbidgee River catchment. The Murrumbidgee River catchment covers 

an area of 84,000km2 (about 8% of MDB), having 6,749km length of streams (Norris et al., 

2001). The Murrumbidgee River is an important water source for many wetlands, among them 

sixteen wetlands listed as nationally significant (MDBA, 2023). For instance, Fivebough and 

Tuckerbill swamps are important waterbird habitats listed under the Ramsar convention. The 
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Lowbidgee floodplain is the largest wetland in the Murrumbidgee region. It includes the 

second-largest red gum forest in Australia, with significant black box, lignum, and reed-bed 

communities (Rogers et al., 2013).  

The southeastern region of Australia is distinguished by the higher runoff generation in 

the catchment of the Murrumbidgee River (Vaze et al., 2011). In September 2009, the lowest 

flow observed was 30 ML/Day, while in November 2016, the highest flow reached at 31,224 

ML/Day, as reported by the Bureau of Meteorology (Simpson, 2022). The annual surface water 

availability in the Murrumbidgee River catchment is about 4,000 GL (Gonzalez et al., 2020). 

This flow rate is low in the alpine region at Tharwa and higher in the downstream of the 

Murrumbidgee River area at Balranald (western part of the catchment). The annual runoff 

coefficient (i.e. the amount of runoff to the amount of precipitation received) in the downstream 

area is less than 2% (Khan et al., 2005). This climate variability changes the river dynamics 

through the river network and periodically inundates the wetland and floodplain areas.  

The Wiradjuri people constitute the largest Aboriginal nation residing in the slopes and 

plains of the Murrumbidgee catchment. Their nation stretches from the River Murray to areas 

beyond Dubbo in the northern region, and extends westward to Balranald. Alongside the 

Wiradjuri, there exist several smaller nations situated at the western extremity of the catchment, 

namely the Barapa Barapa, Muthi Muthi, Nari Nari, Nyeri Nyeri, Wadi Wadi, Wamba Wamba, 

Weki Weki, and Wolgalu. Conversely, the Ngunawal and Ngarigo nations claim the 

mountainous territories located at the eastern end of the Murrumbidgee catchment (MDBA, 

2023).  

The arrival of Europeans in the 1820s marked the initiation of a transformative process 

on the landscape, impacting the vegetation, soils, and rivers (Starr, 1999; Olley & Wasson, 

2003). This process continues to resonate to this day. By 1825, the catchment area had already 

witnessed the introduction of sheep and cattle, which began grazing activities. Whilst grazing 

has historically been the predominant agricultural activity, the initial settlers also cultivated 

small portions of land for the purpose of growing cereals, vegetables, and orchards. As a result 

of the burgeoning livestock industry, stock numbers rapidly increased, with some properties 

experiencing a thirty-fold multiplication within the first decade of settlement (Olley & Wasson, 

2003). During the pastoral period, small towns emerged to support the grazing industry. 

Presently, Canberra stands as the most prominent urban hub within the catchment area, 

boasting a population of nearly 470,000. Since 1954, the city has experienced rapid growth. 

The catchment area now accommodates extensive grazing lands for sheep and cattle, alongside 

limited sections dedicated to commercial softwood plantations. Currently dryland grazing and 
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cereal crop production comprise approximately 75% of the land use in this region. Rice and 

grape cultivation thrive in this area, contributing to 50% of Australia's rice production and 42% 

of New South Wales’s grape production. Commercial forestry occupies a mere 3% of the 

catchment in the eastern part of the region (MDBA, 2023). 

 

3.3. Data acquisition, processing, and analysis 

A depiction of the data inputs, processes, and study outputs can be observed in Figure 

3.3. The data capture and acquisition details and methods for each technical chapter are 

discussed in the subsequent sections of this Thesis. This section only describes the general 

overview of the data acquisition, processing, and analysis in Figure 3.3, as these processes are 

different for each technical chapter. 

 

 

 

Figure 3.3: The Input-process-output model of the study. 

 

3.3.1. Vegetation response to surface water (Objective 1) 

The datasets used to achieve vegetation and surface water modelling consist of remotely 

sensed NDVI datasets, Climate data, and Google Earth data. A screenshot of the Google Earth 

interface is presented in Figure 3.4. A list of datasets, their descriptions, and the acquisition 
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period is listed in Table 3.1. The NDVI data was pre-processed using the AppEEARS tool 

which is accessible via the EarthData web portal (Figure 3.5). The simulated and predicted 

results were modelled using the WEKA machine learning tool. A screenshot of the WEKA tool 

interface is presented in Figure 3.6. 

 

 

Figure 3.4: A glimpse of the Google Earth web interface. 

 

 

Table 3.1: List of datasets acquired in the fulfilment of Objective 1. 

Dataset Description Acquisition year/period 

MODIS imagery Application-ready NDVI with 

spatial resolution of 250 m. 

August, 2021 

Precipitation Station-gauged daily data March, 2021 

Temperature Station-gauged daily data March, 2021 

Evapotranspiration Satellite-derived, 0.05 degree 

(approximately 5 x 5 km) 

March, 2021 

Runoff Satellite-derived, 0.05 degree 

(approximately 5 x 5 km) 

April, 2021 

Streamflow 

(discharge) 

Station gauged, temporal April, 2021 
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Figure 3.5: Remote sensing data processing tool, AppEEARS interface captured from 

EarthData web portal. 

 

 

Figure 3.6: The Waikato Environment for Knowledge Analysis (WEKA) tool interface. 

 

3.3.2. Vegetation response to groundwater (Objective 2) 

This objective required hydrological analysis to understand the catchment’s 

groundwater properties, which achieved by SWAT model setup using remotely sensed Digital 

elevation Model (DEM), soil map, and land use and land cover map. These datasets were 

processed in ArcGIS tool (Figure 3.7). The processed DEM and soil map are presented in 

Figures 3.8 and 3.9, respectively. 

 



 

44 

 

 

Figure 3.7: An overview of ArcGIS interface, a data processing tool based on GIS 

technology. 

 

 

 

 

Figure 3.8: The Digital Elevation Model (DEM) prepared for the study catchment using 

ArcGIS tool. 
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Figure 3.9: A soil map prepared to apply for the study catchment delineation using 

ArcSWAT. 

 

3.3.3. Vegetation response to future climate projections (Objective 3)  

The datasets used to achieve vegetation response to catchment water availability under 

future climate change consist of remotely sensed vegetation index, DEM, soil map, LCLU map 

datasets, and Climate data. A list of datasets, their descriptions, and the acquisition period is 

listed in Table 3.2.  

Table 3.2: List of datasets acquired in the fulfilment of objective 3. 

Data Frequency Description Acquisition year/period  

Precipitation Daily Station gauged, temporal January, 2022 

Temperature Daily Station gauged, temporal January, 2022 

Relative Humidity Daily Station gauged, temporal January, 2022 

Wind speed 
Daily at 9 

am 
Station gauged, temporal 

January, 2022 

Solar radiation 
Daily 

average 
Spatial  

January, 2022 

Streamflow 

(discharge) 
Daily Station gauged, temporal February, 2022 

MODIS NDVI 16-Day 250 m spatial resolution February, 2022 

DEM - 30 m spatial resolution February, 2022 

Soil Map - 250 m spatial resolution February, 2022 

LCLU map - 50 m spatial resolution February, 2022 

 

 



 

46 

 

3.4. Brief description of data processing and analysing 

Briefly, the data acquisition for Objective 1 (i.e., vegetation and surface water 

modelling) consists of satellite imagery datasets, namely time-series MOD13Q1 (version 

V006) imagery, and Google Earth data. A short field survey (Figure 3.10) was conducted to 

determine the vegetation types available in the area of interest (AOI) with the guidance of 

higher resolution Google Earth. This process helped to build confidence about the satellite data 

interpretation, as well as to be more familiar with vegetation and other landscape attributes. A 

total of 480 MOD13Q1 NDVI images were computed for each vegetation plot category over 

the 21-year period. The MODIS NDVI time-series data was pre-processed in AppEEARS tool, 

was then analysed to prepare these data applicable to the WEKA machine learning tool.  

Missing data or data gap is one of the common occurrences in time series climate data 

in the research field (Afrifa-Yamoah et al., 2020; López et al., 2021; Fagandini et al., 2023). 

Thus, the analysis of any time series data that contains missing data, may not be statistically 

robust compared to the complete series of data. However, in practice, it is not possible for 

different reasons such as, error in the sensors, malfunctions, absent of the staff for manual 

observations. Many studies described and implemented gap filling homogenisation techniques 

to deal with this problem, which require the use of neighbouring station data (Jeffrey et al., 

2001; Hofstra et al., 2008; Mekis & Vincent, 2011; Vincent et al., 2012). Few studies 

mentioned about the general specified threshold or 'rule of thumb', for example, the missing 

data must be less than 5% of daily values in a month (Zubieta et al., 2017). In this study, about 

0.28% missing data identified in the climate time series data, which have been filled using the 

K-nearest neighbour technique (Lu & Qin, 2014). 

For Research Objective 2 (Remote sensing-based vegetation groundwater relationship 

modelling), Shuttle Radar Topography Mission (SRTM) imagery data collected using 

Interferometry Synthetic Aperture Radar (inSAR) from the Space Shuttle Endeavour, were 

evaluated for the topography of the study catchment. This 30m resolution Digital Elevation 

Model (DEM) imagery files were processed in ArcGIS with Burrinjuck sub-catchment area 

shapefiles. The catchment parameters such as gradient and length of the slope, the stream 

network characteristics including slope, width, and length of the channel information have been 

derived from the SRTM DEM data. Additional catchment data, such as Land Use and Land 

Cover (LULC) from the NSW Office of Environment and Heritage, was acquired alongside a 

soil map sourced from the Digital Atlas of Australian Soil. 
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Figure 3.10: The floodplain vegetation and land area of the Burrinjuck sub-catchment of the 

Murrumbidgee River catchment – a) shrubs near the stream flow, b) grasses near the stream 

flow, c) sparse shrubs in the floodplain, d) sparse grasses, e) trees near the streamflow, f) 

grasses situated far from the stream flow.  
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The MODIS NDVI data were obtained for each sub-basin delineated from ArcSWAT 

hydrological analysis, similarly, derived in Objective 1 to predict and map vegetation 

conditions in the study area. The regression analysis was accomplished using the traditional 

linear regression and machine learning algorithms. The model prediction accuracy was 

assessed using the root mean square error (RMSE) and correlation coefficient (r) of predicted 

and observed values using a 10-fold cross-validation, which is a leave-one-out approach from 

leave-one-out cross-validation method. The pre-processing of MODIS imagery, as well as the 

derivation of vegetation indices, were executed within USGS data portal using AppEEARS 

data pre-processing tool. The vegetation response modelling/regression analysis and model 

assessment were done in WEKA Machine Learning Software (Hall et al., 2009).  

In Objective 3 (vegetation responses to future climate change), the same study area for 

hydrological alteration under future climate change was evaluated in context to both surface 

water and groundwater. The relationship of vegetation responses with modelled data was also 

determined using correlation analysis. The hydrological analysis was computed under two 

climate change scenarios RCP4.5 and RCP8.5 according to CMIP5. The trend analysis was 

completed using the non-parametric Mann-Kendall trend test and Sen’s slope to identify the 

trends and quantify the change for historical and GCMs projected future rainfall at the study 

site. A similar trend analysis was achieved for remotely sensed LAI and SWAT simulated LAI 

under GCMs projected climate data. The accuracy of SWAT model performance was also 

analysed using model simulated data calibrated with observed stream flow and MODIS LAI 

data. The accuracy was determined by Nash-Sutcliffe Efficiency (NSE) and coefficient of 

determination, known as R² (R-squared) values. Statistical tests (correlation) were attained 

using the IBM SPSS tool, determining the vegetation responses to surface water flow (SURQ), 

soil water content (SW), and groundwater flow (GW). The detail of the process was explained 

in Chapter 6 of the Thesis. 

 

3.5. Summary 

As the detailed methods are discussed in the subsequent technical chapters (i.e., 

Chapters 4, 5, and 6), a brief overview of the methods applied is presented herein. In summary, 

the floodplain vegetation response to catchment water was determined by using time-series 

MODIS 250 m NDVI imagery in two different analytical approaches: regression analysis using 

ML algorithms; and the trend analysis of the time-series datasets. The projected future 
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floodplain vegetation responses to climate change in Australia was carried out by using 

catchment hydrological modelling and MODIS vegetation indices data under different 

emission-based climate scenarios. The responses were determined by modelling using linear 

regression and machine learning algorithms, and GIS-based implementation. 

The following technical chapters include the thorough descriptions of methodologies 

in determining floodplain vegetation responses to climate change:  

Chapter 4 presents the first technical chapter of the thesis and discusses the floodplain 

vegetation response to available surface water at catchment level. It also includes the results 

on the potential different types of vegetation responses with regard to their distance from the 

streamflow. 

Chapter 5 uses field observations and remotely sensed data to analyse catchment 

hydrological units. This chapter encompasses an analysis of the distribution of vegetation 

across various locations on the slope, as well as their respective responses to the surface water 

and ground water recharge.  

Chapter 6 applies station gauged climate data, remotely sensed data, and projected 

future climate data to consider regional variation in the responses between floodplain 

vegetation sensitivity in a semi-arid floodplain ecosystem in Australia.  
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CHAPTER 4: MODELLING FLOODPLAIN VEGETATION 

RESPONSE TO SURFACE WATER VARIABILITY 

 

4.1. Introduction 

Chapter 2 highlighted the knowledge gaps in the comprehension of floodplain 

vegetation responses to surface water modelling at the catchment level using remotely sensed 

data and machine learning algorithms. The gap in the relationship of vegetation response with 

the plant biophysical variables, such as the Normalised Difference Vegetation Index (NDVI), 

was also emphasised. This information provides essential foundations for diverse applications, 

including the mapping of vegetation types, the estimation of surface water availability, and 

the estimation of NDVI for different vegetation types. Within this chapter, briefly discussed 

on the grass vegetation, shrub vegetation, and tree vegetation of the floodplain ecosystem, as 

well as their proximity to the streamflow (both near and distant from the stream). 

 This chapter is structured into five distinct sections. The first section, Background, 

presents and deliberates on the information pertaining to previous works conducted on the 

topic, as well as the knowledge gaps surrounding vegetation responses to surface water 

availability. These knowledge gaps were utilised as a foundation to establish the objectives of 

the study. The subsequent section, Methods, outlines the approaches and methodologies 

employed to attain the objectives. The Results, as well as the Discussion sections, ensue. 

Finally, the chapter ends with the Conclusion, highlighting the novel knowledge and insights 

derived from this study on vegetation growth. 

This Chapter presents the first objective of the study, which encompass the following 

aspects: a) an analysis of all floodplain vegetation types and their respective distances from 

the streamflow, which have only been partially examined in previous studies; b) the 

characterisation of catchment hydrological variables and their associations with vegetation; 

and c) the application of diverse machine learning algorithms to model the vegetation 

responses to seasonal variability. Additionally, this Chapter provides the inaugural report on 

the vegetation responses of the floodplain ecosystem in south-east Australia. 
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4.2. The background of floodplain vegetation response modelling to surface 

water  

Climate change that relates to global warming is affecting socio-economic and 

ecological systems around the world (Hein et al., 2009; van der Velde et al., 2012; Herrera-

Pantoja & Hiscock, 2015). This changing climate has been directly impacting water resources 

due to the direct relationship between the climate system and the hydrological cycle of the 

region, especially in arid and semi-arid regions across the world, by altering rainfall patterns, 

increasing potential evapotranspiration and surface runoff (Prosser et al., 2021). Research 

predicts that future climate change will lead to extreme temperatures and precipitation in 

frequency and severity (Fischer & Knutti, 2015; Liu et al., 2021). These temperatures and 

precipitation change directly impact vegetation greenness in arid and semi-arid regions where 

precipitation is the key factor in promoting vegetation growth (Thomey et al., 2011; Zhang et 

al., 2016). Therefore, understanding the vegetation and surface water relationship is important 

for vegetation-water resource management in arid and semi-arid regions (Wu et al., 2022). 

According to the current climate change projections, finer resolution modelling shows 

the average temperature in Australia could rise between 0.5°C and 2.5°C in the next 50 years 

(IPCC, 2021). The temperature change directly affects solar radiation and humidity, indirectly 

influencing evapotranspiration and precipitation. In Australia, approximately 90% of the 

precipitation returns to the atmosphere via the evapotranspiration process (by which 

ecosystems return water from Earth’s surface, including soil and plant surfaces in the form of 

water vapor to the atmosphere), with the remainder amount contributing to groundwater 

recharge and stream flows through runoff (Li et al., 2007; Glenn et al., 2011). On the other 

hand, the average annual 45mm runoff in Australia is the lowest among all continents: one-

fourth of Africa, one-seventh of Asia, Europe and North America, and one-fourteenth of South 

America (Saha et al., 2013). Australia is generally an arid continent, and a large portion of its 

natural vegetation depends on rainfall. Therefore, any changes in the annual amount of 

precipitation may amplify two to three times larger variations in the annual runoff (Shi et al., 

2007). For example, a 20% reduction in rainfall may typically lead to a 40% to 60% reduction 

in runoff (Chiew et al., 2018). However, an understanding of floodplain vegetation responses 

to the runoff change is vital for an efficient floodplain vegetation and water management 

system (Merritt et al., 2010). Therefore, it is necessary to model the relationship between 

vegetation response and surface water variables on a small catchment scale for sustainable 
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land management and in developing policies that could ensure efficient water use in arid 

region. 

Likewise, floodplain ecosystems in arid regions are highly influenced by climate 

changes (Zhang et al., 2016). Floodplain comprises low-lying land areas subject to inundation 

by lateral overflow water from rivers or lakes with which they are associated (Junk, 1989). 

According to this definition, a floodplain is usually visible along rivers, lakes, deltas, and 

estuaries worldwide. Floodplain vegetation plays an essential role in regulating river flow 

conditions and for providing natural habitats for aquatic and terrestrial animals (Kingsford, 

2000). In addition, these vegetation communities offer many environmental benefits, such as 

reducing catchment runoff, flood protection and erosion control (Peters et al., 2016). However, 

the floodplain vegetation depends on surface and groundwater for their growth, survival and 

other biological processes (Tockner & Stanford, 2002).  

The rapidly changing climate globally makes these vegetation communities vulnerable 

by altering hydrogeological cycles, causing a significant reduction in surface and sub-surface 

water flows, and resulting in drastic changes in the size, morphology, and ecology of many 

floodplains around the globe (Aguiar et al., 2016). This floodplain degradation is widespread 

and it is linked with biodiversity loss and loss of ecosystems function and structure (Entwistle 

et al., 2019). Lewin (2013) documented the geomorphological process that has been occurring 

for the last 400 years, and how this process disconnects rivers from their floodplains. In 

addition, climate change-induced rainfall reduction makes ‘billabongs’ (oxbow lakes) dryer, 

as well as affecting other land features connected to the floodplains (Finlayson, 2005). These 

billabongs and waterholes provide natural habitats for aquatic species such as frogs and fish 

(Reid et al., 2012; Hillman & Shiel, 2017). However, as explained above, floodplains and their 

related ecosystems have been endangered regionally and globally despite their valuable 

economic and environmental services.  

In the past, hydrological studies relied on ground-based observation data for modelling 

purposes. Data anomalies are one of the limitations for the modelling process, although these 

can be eliminated by using higher spatial resolution data to evaluate hydrological processes 

more accurately for restoration purposes (Wanders et al., 2014). Remote sensing technology 

could also address data anomaly issues as satellites consistently monitor a specified area on 

regional and global scales (Long et al., 2014). At present, many organisations provide remote 

sensing data with minimum or no cost, which allows scientists to use spatial datasets for better 

hydrological modelling (Dutta et al., 2015). Researchers (e.g., (Mancini & Corbari, 2014; 

Sutanudjaja et al., 2014)) have found that applying remote sensing data in hydrology such as 
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Normalised Difference Vegetation Index (NDVI), Leaf Area Index (LAI), soil moisture 

content, and vegetation cover map can help to improve surface water modelling results. 

Therefore, using remote sensing data to model the relationship between surface water 

variables and floodplain vegetation responses at a sub-catchment level is essential for effective 

floodplain vegetation and water resource management. Several researchers have examined the 

relationships between vegetation response and rainfall under climate change at regional and 

global scales (Pei et al., 2019; Chi et al., 2020). Researchers also have applied machine 

learning algorithms or artificial neural network to understand vegetation and soil water 

relationships (Okujeni et al., 2015; Yuan et al., 2019; Virnodkar et al., 2020; Chen et al., 2021; 

Habibie et al., 2022; Lees et al., 2022; Li et al., 2022; Zhou et al., 2022). However, none of 

the previous studies focused on modelling the relationships between floodplain vegetation 

responses and seasonal surface water variability under changing climate conditions. Based on 

the literature review, there was a knowledge gap identified for regression modelling between 

floodplain vegetation and available surface water variables. According to this desktop 

research, none of the previous studies has considered assessing the response of different 

vegetation types to hydrological model simulated runoff (surface and sub-surface runoff).  

This study aims to analyse and build regression models for the relationships between 

seasonal surface water variability and floodplain vegetation responses using Moderate 

Resolution Imaging Spectroradiometer (MODIS) derived NDVI data and machine learning 

algorithms. The specific objectives of this study are: i) to understand different types of 

vegetation responses against surface water availability at the catchment level; and ii) to build 

regression models for the relationship between different vegetation response (as measured by 

NDVI) and seasonal surface water availability. For these purposes, a simplified version of the 

Hydrolog (SIMHYD) known as rainfall-runoff hydrological model, has been employed to 

infer catchment runoff followed by regression models to correlate the vegetation response and 

seasonal surface water availability. The novelty of this paper lies in the assessment of different 

types of floodplain vegetation responses (of different types and proximity to stream) using 

satellite imagery at different seasons (dry season and wet season) and locations (distance from 

the stream flow) for a period of more than 20 years.  
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4.3. Materials and methods 

4.3.1. Overview of research methodology 

An overview of research methods implemented in this study is presented in Figure 4.1. 

The required data have been obtained from various data portals, such as the Australian Bureau 

of Meteorology (BOM) and the U.S. Geological Survey (USGS) web portals. The rainfall, 

temperature and streamflow data were processed in Microsoft Excel (Microsoft Corporation, 

2018) and converted files into CDT format to apply to the SIMHYD hydrological model 

(Chiew et al., 2002). Similarly, satellite-derived evapotranspiration, runoff, and MODIS data 

were processed using ArcGIS (ESRI, 2019) and AppEEARS tools. After data preparation, the 

SIMHYD model was calibrated with daily rainfall, evapotranspiration, and streamflow data. 

The same calibration parameters were used for model simulation and the simulated results 

validated against remotely sensed runoff data. The SIMHYD simulated runoff data along with 

NDVI, temperature, and rainfall data, were applied to the WEKA machine learning tool for 

regression analysis to understand the relationships. 

 

 

Figure 4.1: An overview of the research methodology for modelling different types of 

floodplain vegetation responses and seasonal surface water variability using machine 

learning tool and remote sensing data. 
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4.3.2. Study area 

The study area covers the Burrinjuck sub-catchment area, which is situated within the 

upper catchment of the Murrumbidgee River basin in the Great Dividing Range (Figure 4.2). 

It is about 55 kilometres south-west of Yass in New South Wales (NSW), Australia, and 

roughly 330 kilometres south-west of Sydney, with latitude and longitude of 34.53°S-35.14°S 

and 148.31°E-148.55°E. The Burrinjuck Dam was built to develop the Murrumbidgee 

irrigation project after the devastating drought in 1901-1902. It is the main water storage for 

the 660,000-hectare irrigation area in Riverina, NSW, and with its capacity of 1,026 gigalitres 

is double that of the Sydney harbour. The Burrinjuck sub-catchment and surrounding area is 

predominantly rural, with a township at Yass and villages at Binalong, Bookham, Bowning, 

Gundaroo, Murrumbateman, Sutton, and Wee Jasper. The total population in this area is 

17,321 (ABS, 2019). This rural land is largely used for agriculture, especially sheep grazing. 

Also important for tourism and viticulture. The area’s elevation varies from 373 to 934m, 

while the average annual rainfall is 675mm. The Murrumbidgee River catchment has the most 

diverse climate in the upper and lower Murrumbidgee, with an annual average rainfall of 

1,500mm in the alpine area to less than 400mm in the Riverina plains. In the Burrinjuck Dam 

and surrounding area, 24% of rainfall appears as runoff, contributing to the maximum river 

flow (Chiew et al., 2002). As part of the upper Murrumbidgee catchment with higher elevation 

and relatively higher rainfall, this part of the river contributes significant water flow into Lake 

Burrinjuck. 

The catchment’s land gradient decreases downstream of the Burrinjuck Dam, and the 

floodplain width increases between 5 and 20 km. The Murrumbidgee River catchment 

accounts for 22% of the Murray Darling Basin’s (MDB) surface water diverted for irrigation 

and urban use. It contributes 25% of fruit and vegetable production, 42% of grapes in New 

South Wales, and half of Australia’s rice production. Agricultural production within the MDB 

has a value of over AUD23.6 billion annually, or 40.2% of Australia’s gross value of 

agricultural production (ABS, 2021). The Murrumbidgee River normally recharges from the 

annual rain in the upper catchment regions. However, several studies have shown that there is 

a notable change compared to historical data in climate variables such as rainfall and 

evapotranspiration in this region, which impact recharge and water flows (Adamson et al., 

2009; Connor et al., 2009; Goesch et al., 2009). 
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Figure 4.2: The study area, Burrinjuck sub-catchment on the right which is located within 

the Upper Murrumbidgee River catchment. The top left section shows the vegetated area of 

the Murray Darling Basin (MDB), highlighting the location of the Murrumbidgee River 

catchment. Bottom left describes the vegetated area in the Murrumbidgee River Catchment. 

4.3.3. Study period 

The study period (2000-2020) was selected to include both a long-term drought (2001-

2006) and flooding (2009-2011) phases. Both dry and wet phases were included in the study 

to ensure that any long-term change in the vegetation condition was captured by NDVI data. 

The annual data were divided into two seasons: i) dry season and ii) wet season, which were 

categorised based on rainfall and temperature anomalies (Table 4.1). The average monthly dry 

season rainfall is 35.73mm and 163.77mm in the drought and flooding periods, respectively 

and average wet season rainfall is 73.32mm in the study area. 

 

Table 4.1: Annual dry and wet season of the study period 

Dry season Sep Oct Nov Dec Jan Feb 

Wet season Mar Apr May Jun Jul Aug 
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4.3.4. Vegetation in the study area 

The Burrinjuck floodplain study area resides within the Burrinjuck natural reserve, 

possesses a diversity of vegetation types which can be categorised into six distinct forest 

ecosystems. These ecosystems are i) Apple box – Norton’s box moist grass forest, ii) Wee 

Jasper Norton’s box – Poa grass forest, iii) Brittle Gum – Broad-Leaved Peppermint Poa grass 

forest, iv) Dwyer’s Gum heathy low open woodland, v) Long Leaved Box (Black Cypress 

Pine) heath shrub forest, and vi) Blue Gum – Broad-Leaved Peppermint dry grass shrub forest. 

Some of the dominant tree, shrub, and grass types of vegetation in the study area are 

Eucalyptus nortonii (Norton’s box), Eucalyptus mannifera (Brittle gum), Eucalyptus albens 

(White box), Acacia dealbata (Silver wattle), Platylobium formosum (Pea bush), Geranium 

solanderi (Native geranium), Joycea pallida (Silver top wallaby grass) etc. 

The vegetation types used for the analysis in this study were selected from these 

ecosystems. The grass type vegetation near the stream (FV1) and distant from the stream 

(FV4) are member of Apple box – Norton’s box moist grass forest, Wee Jasper Norton’s box 

– Poa grass forest, and Blue Gum – Broad-Leaved Peppermint dry grass shrub forest 

ecosystems. The shrub-type vegetation found near the stream (FV2) and at a distance from the 

stream (FV5) consists of ecosystems characterised by Long-Leaved Box (Black Cypress Pine) 

heath shrub forest and Blue Gum – Broad-Leaved Peppermint dry grass shrub forest. The tree 

type vegetation near the stream (FV3) and distant from the stream (FV6) are members of the 

Apple box – Norton’s box moist grass forest, Wee Jasper Norton’s box – Poa grass forest, 

Brittle Gum – Broad-Leaved Peppermint Poa grass forest, Long Leaved Box (Black Cypress 

Pine) heath shrub forest, and Dwyer’s Gum heathy low open woodland ecosystems.  

 

4.3.5. Data description 

The climate, hydrological and remote sensing datasets applied in this study, were 

sourced from Australia’s Bureau of Meteorology (BoM), New South Wales (NSW) Office of 

Water and the U.S. Geological Survey (USGS) (Table 4.2). A combination of station gauged, 

and satellite derived data were used as input parameters in the hydrological model for 

catchment runoff simulation. During the catchment hydrological modelling, 22 missing data 

identified out of 7,665 daily rainfall data. These missing data have been filled using the K-

nearest neighbour technique (Lu & Qin, 2014).  
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Table 4.2: Key datasets used, their descriptions, and sources 

Data Frequency Description Source 

Precipitation  Daily Station gauged, temporal Bureau of Meteorology  

Temperature Daily Station gauged, temporal Bureau of Meteorology 

Evapotranspiration Daily Satellite-derived, 0.05 degree 

(approximately 5 x 5 km)  

Bureau of Meteorology 

Runoff Daily Satellite-derived, 0.05 degree 

(approximately 5 x 5 km) 

Bureau of Meteorology 

Streamflow 

(discharge) 

Daily Station gauged, temporal NSW Office of Water 

MODIS NDVI 16-Day 250 m spatial resolution U.S. Geological Survey 

 

Meteorological data 

The daily precipitation and temperature data were downloaded for the period 2000 to 

2020 from the Australian Bureau of Meteorology (BOM, 2021a, 2021b) to analyse seasonal 

intensity and identify prolonged drought and flood events. The potential evapotranspiration 

and runoff data were obtained from the Australian Water Resources Assessment Landscape 

model available from the BOM website and later processed using ArcGIS. This historical 

runoff data was applied for hydrological model calibration. 

 

Remotely sensed data 

In this study, the MODIS (Terra) 16-Day Global 25m composite product of 

MOD13Q1 (version V006) was used to identify vegetation conditions. The NDVI values were 

selected from the available vegetation indices in the MOD13Q1 product from 2000 to 2020. 

There were 480 images of MOD13Q1 NDVI for the 21 years that have been calculated for 

each type of vegetation plot. The average annual and seasonal NDVI data for the study period 

were calculated from this 21-year dataset which minimised the cloud cover correlation for the 

vegetation response. In the plot selection, supervised classification technique was applied to 

select eighteen plots for six different vegetation types (such as grass, shrub, and tree) from the 

study area (Table 4.3). The plots were selected by vegetation survey and using Google Earth 

tool to identify the density of each vegetation type in the plotted area. These selected plots 

have been converted into polygons in the Google Earth Pro and then saved as KML files which 

were later processed into shapefile in ArcGIS (ESRI, 2019). A pre-processing tool named 
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Application for Extracting and Exploring Analysis Ready Samples (AppEEARS) has been 

selected to obtain pre-processed NDVI time-series data for those shapefiles prepared earlier. 

The average NDVI data from three plots were used for each vegetation response. 

 

Table 4.3: Different types of floodplain vegetation used in this objective 1 

Series Floodplain vegetation 

type (FVT) description 

Distance from 

the stream (m) 

      Short name 

1 Grasses near the stream 0 – 913 FVT1 

2 Shrubs near the stream 0 – 638 FVT2 

3 Trees near the stream 0 – 904 FVT3 

4 Grasses far from the stream 3303 -7079 FVT4 

5 Shrubs far from the stream 2506 – 5011 FVT5 

6 Trees far from the stream 5040 -10456 FVT6 

4.3.6. Normalised Difference Vegetation Index (NDVI)  

The healthy vegetation mostly absorbs light from the red spectrum and reflects light 

from the near-infrared (NIR) spectrum. NDVI utilises the contrast of strong reflectance in the 

near-infrared region and the strongly absorbed reflectance in the red wavelength region. NDVI 

calculation was performed by applying the difference between the red and near-infrared bands 

and normalising it over the sum of red and near-infrared bands (Equation 1). 

NDVI = 
(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡)

(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑+𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡 )
                                                                               (1) 

Satellite sensors captured about 20% red and 60% near-infrared reflected light from the 

chlorophyll pigments (Martiny et al., 2007). The difference between the contrast of the two 

bands allowed for quantifying the energy received by vegetation through leaves identifying 

the vegetation conditions (Tucker, 1979). These vegetation conditions also depend on climate 

variability and catchment hydrology. 

 

4.3.7. Rainfall-runoff hydrological modelling 

The SIMHYD hydrological model is the simplified version of the Hydrolog rainfall-

runoff model, previously used in the Murray Darling Basin (MDB) area for hydrological 

modelling (Chiew & McMahon, 2002; Chiew et al., 2002). The SIMHYD model requires only 

three types of daily time series input data such as rainfall, evapotranspiration, and streamflow 



 

60 

 

data for calibration. After successful calibration, the model was run to simulate daily 

catchment runoff from the daily precipitation and potential evapotranspiration data.  

The catchment hydrology is highly influenced by rainfall that drains in 

evapotranspiration and runoff (Saha et al., 2013). Like other catchments, SIMHYD simulates 

little to no infiltration excess runoff. Therefore, the optimisation of maximum infiltration loss 

(default value is 200) and infiltration loss exponent (default value is 1.5) were not used in this 

study as the Burrinjuck sub-catchment is not considered to be a tropical catchment. 

In the SIMHYD model, daily rainfall first fills the interception storage, which is 

emptied each day by evaporation. The excess rain is then subjected to an infiltration function 

that determines the infiltration capacity. The excess rainfall that exceeds the infiltration 

capacity becomes infiltration excess runoff. Finally, infiltrating moisture is subjected to a soil 

moisture function that diverts the water to the stream (interflow), groundwater storage 

(recharge) and soil moisture storage. Interflow is first estimated as a linear function of the soil 

wetness (soil moisture level divided by soil moisture capacity) (Beven, 2012). The default 

values applied for the SIMHYD model are listed in Table 4.4. 

 

Table 4.4: SIMHYD model parameters and their boundary values 

Parameter Default 

value 

Minimum Maximum 

Baseflow Coefficient 0.3 0.0 1.0 

Impervious Threshold 1 0 5 

Infiltration Coefficient 200 0 400 

Infiltration Shape 3 0 10 

Interflow Coefficient 0.1 0.0 1.0 

Pervious faction 0.9 0.0 1.0 

Rainfall Interception Store 

Capacity 

1.5 0.0 5.0 

Recharge Coefficient 0.2 0.0 1.0 

Soil Moisture Store Capacity 320 1 500 

 

 

4.3.8. SIMHYD model calibration and validation 

Selecting a calibration period is critical to cover both extremely dry and wet periods, 

and average annual streamflow must be similar for the whole period of record. The calibration 

period was selected for 2001 to 2009, which covers both extremely dry and wet conditions. 
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A period of nine years (2001-2009), including one year of warmup, was selected as a 

calibration period, while eight years (2009-2016) was chosen for model validation. The 

modelling was performed for 0.05° x 0.05° grid cells to allow a better representation of the 

spatial patterns and gradient in rainfall. The same set of parameter values were used for all 

0.05° x 0.05° grid cells for the Burrinjuck area. Once the model was trained, applied parameter 

settings to simulate runoff for the period from 2000 to 2020.  

 

4.3.9. SIMHYD model performance criteria 

The value of the objective function for the calibration of parameters can be used as the 

model performance statistics. Nash-Sutcliffe efficiency (NSE) was used as the objective 

function (Nash & Sutcliffe, 1970), which can be described as equation 2: 

                     𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑠𝑖𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠,𝑖−𝑄𝑜𝑏𝑠)
2𝑛

𝑖=1

                                                                          (2) 

where n is the number of time steps, Qobs, i is the observed flow at time step i (daily here), Qobs 

is the mean of the observed flow, and Qsim, i is the simulated flow. The range of NSE is [-∞,1], 

where 1 represents a perfect match between the observed and simulated flow. 

The SIMHYD model was run on daily time series data, and model performance was 

measured by the Nash Sutcliffe Coefficient of efficiency (NSE). The NSE value with a range 

of 0 to 1 ('0' means no similarity and '1' means similar) describes the agreement between the 

calibrated and observed daily runoffs. NSE values greater than 0.6 suggest a reasonable 

modelling of runoff, while NSE values greater than 0.8 means good modelling of runoff for 

the catchment (Peel et al., 2000).  

 

4.3.10.Machine learning algorithms for data processing 

A machine learning (ML) algorithm is a set of computational codes that can process a 

large amount of data in a complex way (Sarker, 2021). The algorithms read and process data 

to learn the maximum possible patterns about the data (Cracknell & Reading, 2014). In this 

study, two ML tools (i.e., RF and SVM) were selected for creating regression and 

classification models, as they are widely used supervised learning techniques in remote 

sensing and vegetation studies (López-Serrano et al., 2016; Stas et al., 2016; Chen et al., 2021; 

Li et al., 2021). The impact of a collection of explanatory variables (Xs), including rainfall, 
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temperature, runoff, and streamflow, on a target variable (Y) was modelled, i.e., NDVI, which 

is in the context of supervised learning (SL). 

 

4.3.11.Waikato Environment for Knowledge Analysis (WEKA) tool 

In modelling the relationships between surface water and NDVI, the Waikato 

Environment for Knowledge Analysis (WEKA) tool developed by the University of Waikato, 

New Zealand (Hall et al., 2009; Eibe et al., 2016). The WEKA tool is free software licensed 

under the General Public License (GNU) and able to run the selected classifier compared to 

other open-source data mining tools (Sharma et al., 2015). WEKA is user-friendly well-known 

machine learning (ML) suits that supports typical data mining activities such as data pre-

processing, clustering, classification, regression, visualisation, and feature selection (Marin et 

al., 2021). In this study WEKA is employed for machine learning (ML) applications which 

has been considered in previous studies (Sharma et al., 2015; Abdurahman, 2017; Kitessa et 

al., 2021; Kushwaha et al., 2021; Marin et al., 2021). 

 

4.3.12.Modelling the relationships between surface water and NDVI 

Firstly, the WEKA tool was setup to run a random forest model using 36 different 

datasets. These datasets included the combination of rainfall, runoff, streamflow, and different 

types of vegetation responses (NDVI values). Each dataset was initially set for linear 

regression to find the collinear and non-collinear variables. Secondly, the machine learning 

tool was prepared to run a support vector machine (SVM) model using the same datasets. 

The performance of all models has been assessed in two ways: a) using a 10-fold cross-

validation, which is a leave-one-out approach, and b) using the 80 and 20 per cent split 

method. These two approaches were performed to compute the Root Mean Square Error 

(RMSE) and correlation coefficient (r) between the observed and predicted vegetation 

response (NDVI value) of each model. Among them the models with higher correlation 

coefficient (r) values and smaller RMSEs were selected to analyse the relationship against 

rainfall, runoff, and streamflow. A lag time factor was applied between NDVI and rainfall, 

runoff, and streamflow to test if there are differences in response considering vegetation 

growth time. Table 4.5 shows how the dataset was prepared with no lag in the time series of 

NDVI data, and 1-month, 2-month, 3-month lagged NDVI time series data against rainfall 

(e.g., rainfall in May corresponds with NDVI value in June for a 1-month lagged).  
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Table 4.5: Datasets prepared to apply in the WEKA model with and without lagged NDVI 

time-series data 

No lag 1-month lagged NDVI 2-month lagged NDVI 3-month lagged NDVI 

Rain NDVI   Rain NDVI  Rain NDVI Rain NDVI 

Sep-00 4.53 0.64 Sep-00 4.53 Oct-00 0.55 Sep-00 4.53 Nov-00 0.55 Sep-00 4.53 Dec-00 0.48 

Oct-00 4.16 0.55 Oct-00 4.16 Nov-00 0.55 Oct-00 4.16 Dec-00 0.48 Oct-00 4.16 Jan-01 0.34 

Nov-00 3.88 0.55 Nov-00 3.88 Dec-00 0.48 Nov-00 3.88 Jan-01 0.34 Nov-00 3.88 Feb-01 0.35 

Dec-00 0.89 0.48 Dec-00 0.89 Jan-01 0.34 Dec-00 0.89 Feb-01 0.35 Dec-00 0.89 Mar-01 0.38 

Jan-01 1.15 0.34 Jan-01 1.15 Feb-01 0.35 Jan-01 1.15 Mar-01 0.38 Jan-01 1.15 Apr-01 0.39 

Feb-01 3.10 0.35 Feb-01 3.10 Mar-01 0.38 Feb-01 3.10 Apr-01 0.39 Feb-01 3.10 May-01 0.38 

Mar-01 2.23 0.38 Mar-01 2.23 Apr-01 0.39 Mar-01 2.23 May-01 0.38 Mar-01 2.23 Jun-01 0.45 

Apr-01 1.79 0.39 Apr-01 1.79 May-01 0.38 Apr-01 1.79 Jun-01 0.45 Apr-01 1.79 Jul-01 0.51 

May-01 0.38 0.38 May-01 0.38 Jun-01 0.45 May-01 0.38 Jul-01 0.51 May-01 0.38 Aug-01 0.56 

 

4.4. Results 

4.4.1. Hydrological model simulated catchment runoff 

The result shows that the SIMHYD model has simulated catchment runoff with an 

acceptable NSE value of 0.95, indicating good modelling outcomes for the catchment. The 

default parameters used in the calibration where infiltration coefficient 348.95, recharge 

coefficient 0.28 and soil moisture store capacity value was 486.78. 

Two optimisation options, i.e., the generic algorithm and the pattern search multi-start, 

were applied for the SIMHYD calibration. Among these two calibration methods, the pattern 

search multi-start option has produced better results with higher NSE value (NSE=0.95 and 

0.83, respectively). Figure 4.3 describes the comparison between observed, calibrated, and 

simulated daily runoff at Burrinjuck sub-catchment study area.  
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Figure 4.3: The SIMHYD model calibrated and simulated runoff data plotted against the 

observed data (daily timestep results displayed). The data presented in daily time series from 

2001 to 2010. 

 

The rainfall is the main dominating factor in changing the simulated runoff. The 

SIMHYD model has been calibrated with 10% increased rainfall as well as 10% decreased 

rainfall (increased and decreased observed rainfall data by 10%). Figure 4.4 shows that 

simulated runoff was not equally sensitive to changing rainfall intensity. The result shows the 

average simulation runoff has increased by 54% when rainfall data was increased, and average 

runoff decreased by 87% when model was calibrated with decreased rainfall data. The 

analysed results show that runoff is more sensitive with reduced rainfall than that of increment. 

 

 

Figure 4.4: The SIMHYD model simulated runoff (mm) data (no change) plotted (colour in 

green) against simulated runoff with 10% increased rainfall (colour in blue), and simulated 

runoff with 10% decreased rainfall data (colour in red). 
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4.4.2. Vegetation response to surface water during the dry season 

The vegetation response (NDVI values) modelling results from both random forest 

(RF) and support vector machine (SVM) algorithms during the dry season are presented in 

Table 4.6 and Figure 4.5. The overall RMSE varies between 0.03 and 0.12 (3% to 12%) for 

the dry season, indicating high model performances. The modelling results show that grass 

vegetation type distant from the stream (FVT4) was highly responsive to rainfall, runoff, and 

streamflow (r=0.85, 0.82, and 0.81, respectively) during the dry season when applied 1-month 

lagged NDVI time series data (Table 4.6). The modelling results also explained that grass 

vegetation type near the stream (FVT1) had high positive relationships with rainfall and runoff 

(r=0.75, and 0.71 respectively) when applied 1-month lagged NDVI time series data (Table 

4.6). Furthermore, the results show that shrub and tree vegetation types both near (FVT2 and 

FVT3) and distant (FVT5 and FVT6) from the stream were highly responsive to catchment 

runoff (r=0.77, 0.71, 0.75, and 0.76 respectively) during the dry season (Table 4.6). In the 

modelling result, over 83% of the calculated area had RMSE <10%. The RMSE values were 

different for RF (RMSE= 0.08, 0.09, and 0.08 respectively) and SVM (RMSE=0.07, 0.08, and 

0.087 respectively) while the model was run against rainfall, runoff, and streamflow. 

 

Table 4.6: Regression modelling results produced using RF and SVM machine learning 

algorithms without lagged time and with 1-month lagged time during the dry season. 

 

Type Random forest SVM 
 

  Rainfall Runoff Streamflow Rainfall Runoff Streamflow  

  r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE  

FVT1 0.71 0.09 0.67 0.09 0.66 0.09 0.68 0.09 0.63 0.09 0.66 0.09  

FVT2 0.66 0.05 0.77 0.04 0.66 0.05 0.70 0.05 0.70 0.05 0.70 0.05  

FVT3 0.64 0.05 0.71 0.05 0.64 0.05 0.65 0.05 0.65 0.05 0.55 0.06  

FVT4 0.67 0.13 0.77 0.11 0.70 0.13 0.65 0.13 0.68 0.13 0.69 0.13  

FVT5 0.67 0.09 0.75 0.08 0.69 0.08 0.65 0.09 0.60 0.04 0.62 0.09  

FVT6 0.58 0.05 0.76 0.04 0.56 0.05 0.51 0.05 0.55 0.05 0.58 0.05  

  1-Month lagged time  

FVT1 0.75 0.09 0.71 0.09 0.68 0.09 0.79 0.07 0.72 0.08 0.73 0.08  

FVT2 0.52 0.06 0.63 0.05 0.46 0.06 0.56 0.05 0.53 0.06 0.49 0.06  

FVT3 0.53 0.05 0.64 0.05 0.39 0.06 0.50 0.06 0.49 0.06 0.45 0.06  

FVT4 0.85 0.09 0.82 0.10 0.81 0.10 0.84 0.09 0.81 0.10 0.81 0.10  

FVT5 0.79 0.08 0.75 0.08 0.74 0.08 0.81 0.07 0.73 0.08 0.75 0.08  

FVT6 0.49 0.05 0.72 0.05 0.45 0.06 0.31 0.06 0.35 0.07 0.19 0.06  

 

From the results, it was also found that responses of grass vegetation type near the 

stream (FVT1) were increased by 5.1%, 7.5%, and 4.6% (r=0.75, 0.71, and 0.68 respectively) 

when 1-month lagged NDVI datasets applied against rainfall, runoff, and streamflow 
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compared to no-lag data (Table 4.6). On the other hand, the responses of shrub and tree 

vegetation types near the stream (FVT2 and FVT3) were decreased by 18% and 8.5% (r=0.77, 

0.71, 0.63, and 0.64 respectively) when model was run against runoff without lag time and 1-

month lagged NDVI datasets. However, the modelled results were slightly different for RF 

and SVM (r=0.77 0.71, and 0.70, 0.65, respectively) when runoff was used as a relative factor 

(Table 4.6). 

 

 

Figure 4.5: Graphical representation of different types of vegetation responses (NDVI 

values without lagged time) against rainfall, runoff, and streamflow using random forest 

and support vector machine classifiers in WEKA model. 

 

The Figure 4.6 shows the graphical distributions of different types of observed floodplain 

vegetation (NDVI) responses against the average mean monthly rainfall, runoff, and 

streamflow.  
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Figure 4.6: NDVI from different floodplain vegetation types plotted against catchment 

rainfall, runoff, and streamflow during the dry season. 

 

Moreover, the modelling results show that FVT1 (r=0.71) was highly sensitive to climatic 

factors such as rainfall and temperature compared to FVT2 (r=0.50) and FVT3 (r=0.54) during 

dry season. 

 

4.4.3. Vegetation response towards surface water during the wet season 

Different vegetation responses were also analysed during the wet season. Figure 4.7 

graphically represents the NDVI values of selected six different vegetation types against the 

average mean monthly rainfall, runoff, and streamflow between March and September from 

2000 to 2020. 

 

 



 

68 

 

 

Figure 4.7: NDVI from different floodplain vegetation types plotted against catchment 

rainfall, runoff, and streamflow during the wet season. 

 

The modelling result shows that all three vegetation types near the stream (FVT1, 

FVT2, and FVT3) and two vegetation types far from the stream (FVT4 and FVT5) were highly 

responsive to runoff (r=0.75, 0.79, 0.70, 0.71, and 0.75 respectively) during the wet season 

(Table 4.7). The models predicted grass and tree vegetation types far from the stream (FVT4 

and FVT6) were highly responsive to rainfall (r=0.85) and runoff (r=0.71) when applied 1-

month lagged NDVI time series dataset during the wet season (Table 4.7).  
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Table 4.7: Regression modelling results produced using RF and SVM machine learning 

algorithms without lagged time and 1-month lagged time during the wet season. 

 
Type              Random forest SVM 

Rainfall Runoff Streamflow Rainfall Runoff Streamflow 

 r RMSE r RMSE r RMSE r RMSE r RMSE r      RMSE 

FVT1 0.4591 0.1029 0.7508 0.0747 0.4669 0.0991 0.4393 0.098 0.5116 0.0947 0.6272 0.0892 

FVT2 0.5966 0.0448 0.7972 0.0339 0.4775 0.048 0.5774 0.0431 0.6058 0.0445 0.6975 0.0422 

FVT3 0.4279 0.0558 0.7036 0.0436 0.438 0.0564 0.4709 0.0477 0.5489 0.0451 0.6107 0.0503 

FVT4 0.6712 0.127 0.715 0.1079 0.5101 0.1288 0.6515 0.1277 0.4953 0.1316 0.5184 0.1238 

FVT5 0.4679 0.0932 0.7551 0.0681 0.4955 0.0874 0.4319 0.0939 0.4893 0.087 0.5691 0.0874 

FVT6 0.5835 0.0514 0.5002 0.0517 0.5455 0.0498 0.5817 0.0521 0.4908 0.0487 0.5852 0.0492 

1-Month lagged time 

FVT1 0.618 0.088 0.5239 0.0959 0.5122 0.0993 0.5832 0.0878 0.5763 0.0896 0.5413 0.091 

FVT2 0.3912 0.0479 0.4572 0.0438 0.3204 0.0484 0.4298 0.0476 0.4714 0.0465 0.3748 0.0491 

FVT3 0.36 0.0502 0.4592 0.0455 0.3977 0.0481 0.3281 0.051 0.3972 0.0496 0.3052 0.0514 

FVT4 0.8512 0.0901 0.6014 0.1246 0.5425 0.1279 0.8438 0.0895 0.6306 0.117 0.6161 0.1186 

FVT5 0.5759 0.0808 0.511 0.0847 0.4085 0.0922 0.5509 0.0822 0.5725 0.0808 0.4844 0.0861 

FVT6 0.4872 0.0526 0.7137 0.0584 0.3683 0.0689 0.3344 0.0559 0.1668 0.0903 0.1883 0.0737 

 

The WEKA machine learning tool was able to model available surface water variables 

and vegetation responses for 21 years despite the drought years (2002 and 2006) and extreme 

wet years (2010 and 2016). Likewise, the correlation coefficient of catchment runoff and 

NDVI values of FVT2 and FVT3 were highly positive (r=0.79 and 0.70, respectively) when 

temperature was used as a relative factor (Table 4.7). The r-value of the FVT2 response against 

runoff was 3.7% higher in the wet season than dry season. However, the r-values were reduced 

by 10.6% and 27.7% when the model was run against rainfall and streamflow. Furthermore, 

the reductions in r-values were higher by 33.3% and 31.7%, respectively, when a 1-month 

lagged datasets were applied between NDVI-rainfall and NDVI-streamflow correlation 

analysis (Table 4.7). 

 

4.4.4. Vegetation response based on distance from stream 

The machine learning (ML) modelling results show that vegetation types, based on 

proximity to the stream, responded differently to surface water availability. Overall, their 

responses were better during the dry season compared to the wet season. FVT4 (grass 

vegetation far from the stream), FVT5 (shrub vegetation far from the stream), and FVT6 (tree 

vegetation far from the stream) showed variations in their responses from moderate to a highly 

positive manner against all three types of surface water resources. However, the values of r 

increased for FVT4 and FVT5 by 26.81% and 16.8%, respectively, and decreased by 7.4% 

for FVT6 when models were run with a 1-month lagged NDVI-rainfall datasets (Table 4.6).  
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During the wet season, the degree of responses became smaller between FVT5-rainfall 

and FVT5-streamflow correlations compared to dry season. Results also show that the 

correlation coefficient value (r) was 0.51, which indicated 27% lower than dry season when 

ML tool was applied between the NDVI (FVT4) and streamflow during wet season. There 

was a significant change noticed in the modelling results between FVT6 and runoff, which 

decreased by 33.3% compared to the r value (0.75) during the dry season. However, 

correlation coefficient (r) values between modelled and actual NDVI for FVT5 against rainfall 

and streamflow have decreased by 26.9% and 46%, respectively, when applied 1-month 

lagged NDVI datasets (Table 4.7). 

4.5. Discussion 

4.5.1. Hydrological modelling 

Hydrological modelling is important for better understanding of catchment water 

availability and its movement. The selection of model is the key factor of the hydrological 

modelling which depends on available catchment data, spatial representation, operational 

technique, robustness, and climate condition (Pechlivanidis et al., 2011). The SIMHYD model 

requires fewer parameters to run compared to other rainfall-runoff hydrological models such 

as HBV and GR4J. In hydrological modelling, calibration is an integral part of the process, 

though practically, it is impossible to mimic and measure all hydrological properties of a 

catchment. The SIMHYD was calibrated against daily rainfall, streamflow, and potential 

evapotranspiration which generated 0.95 NSE value. This result explained that the calibration 

techniques applied in this study have improved the modelling results (Zhang et al., 2009).  

The SIMHYD model calibration with reduced and increased rainfall conditions were 

considered in this study, ranging from -10% to +10%. Figure 4.4 shows that runoff was not 

equally sensitive to change in rainfall intensity. For example, runoff was more sensitive to the 

rainfall reduction than increased rainfall. This result outcome supports the previous findings 

that runoff patterns are not equally varied with change in rainfall patterns (Potter et al., 2010). 

However, the magnitude of the runoff increased by 37% to 82% with increased rainfall and 

reduced by 77% to 94% with decreasing rainfall. According to Chiew (2006),  the runoff 

elasticity of rainfall is approximately 2-3 times but the study results show that runoff was 4-6 

times more sensitive to the change. The different outcome in the results could be due to other 

conditions of the study area such as soil moisture content, land use, land cover, and elevation. 

Further results show that calibrated runoff decreased by a minimum of 15% to a maximum of 
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62% in the wet season, and 8% to a maximum of 29% in the dry season. These results support 

the previous finding that runoff reduction is more severe in the southern Murray Darling Basin 

area than the reduction in annual rainfall (Potter et al., 2010). Moreover, this study analysed 

the long-term (from 2000 to 2020) seasonal rainfall variability in the study area using high 

quality datasets from Australian BoM. The main variations of rainfall in this south-eastern 

part of Australia were clearly season-dependent. For example, occasional high volume rainfall 

events occur in winter (Montazerolghaem et al., 2016). These occasional high volume rainfall 

events can also contribute to increasing catchment's surface and subsurface runoff (Saha & 

Zeleke, 2014).  

Previous studies have reported that the change in catchment vegetation condition may 

greatly affect the rate of actual evapotranspiration and runoff (Sun et al., 2017). Furthermore, 

runoff coefficients also vary with water availability; for example, it may increase in the flood 

season and decrease in the non-flood season (Liang et al., 2015). The evapotranspiration rate 

is lower in the winter season due to lower temperature, and shedding of leaves of tree species 

results in increased streamflow (Sun et al., 2017). However, hydrological modelling helps to 

understand the relationship between catchment water balance and the vegetation. This 

knowledge would help to explain the interactions between vegetation dynamics and the water 

cycle (Yang et al., 2009). In hydrological modelling, high flows are easy to predict during 

model calibration. However, for better understanding, low flow also requires consideration in 

the model calibration. The model used in this study, SIMHYD, has the ability to observe low 

flow characteristics (Chiew et al., 2018). The results of this study had important environmental 

implications for arid sub-catchments elsewhere with similar environmental conditions. 

 

4.5.2. Vegetation response and surface water relations 

The relationship modelling results show that the correlation coefficient (r) values are 

highly positive (0.75, 0.79, 0.70, 0.71, and 0.75 etc.) for grass and shrub type vegetation 

(FVT1, FVT2, FVT4 and FVT5) while model was run against runoff during the wet season. 

Furthermore, only grass vegetation type far from the stream (FVT4) had a high positive 

correlation coefficient (r) with rainfall (r=0.85) than other vegetation types during the wet 

season. However, the correlation coefficient (r) values were lower by 36.6%, 10.6%, and 

26.9% for all three types of vegetation (FVT1, FVT2, and FVT3) near the stream, while the 

model was run against rainfall compared to the dry season. These seasonal variations may be 

related to the inter-seasonal temperature difference. 
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However, grass vegetation type is highly responsive to catchment runoff than rainfall 

during the wet season. Therefore, the average NDVI value of grass near the stream (FVT1) is 

11.53% higher in wet season than in dry season. Furthermore, the rainfall pattern is influenced 

by El Nino and La Nina in the study region, which leads to irregular patterns of floods and 

droughts. Thus, considering the climate scenario of the study region should give more accurate 

results for vegetation response and surface water relationship.  

The analysis of the results revealed that shrub and tree vegetation types near the stream 

(FVT2 and FVT3) in the study area have greater relationships with catchment runoff than 

rainfall. The r values predicted by RF algorithm for FVT2-rainfall and FVT3-rainfall 

relationships were lower as 0.59 and 0.42 (compared to 0.66 and 0.63, respectively during dry 

season). Interestingly, the value of r significantly decreased for all three vegetation types 

(FVT1, FVT2, and FVT3) when applied lagged NDVI-runoff datasets. Moreover, most of the 

trees in the floodplain are phreatophytes, that is, their long root absorbs water from the 

groundwater or the capillary fringe just above the groundwater table (Naumburg et al., 2005). 

Additionally, in some floodplain areas, the groundwater tables are expected to be close to the 

surface (Martinetti et al., 2021). Thus, including groundwater assessment in future studies can 

be a good option. In this study, the modelling relationships between vegetation response and 

surface water availability using the machine learning tools were simulated correlations. These 

correlations could be further improved in future studies by introducing other factors in 

relationships modelling, such as soil moisture content, soil water holding capacity, and land 

gradient. 

 

4.5.3. Vegetation response based on distance from the stream 

Overall, significant changes in correlation coefficient (r) were observed for grass and 

shrub vegetation distant from the stream (FVT4 and FVT5) during the study period when 1-

month lagged NDVI datasets applied in the relationship analysis. The correlation coefficient 

(r) values were increased by 26.8% and 16.8% against rainfall, 6.1% and 1% against runoff, 

and 15.6% and 8% against streamflow, compared to the model run without lagged time in the 

NDVI datasets during the dry season. In contrast, for trees far from the stream (FVT6), the 

correlation coefficient (r) between NDVI and runoff was highly positive (r=0.75) during the 

dry season without lag time in the dataset. Thus, the correlation was decreased by 5.5% when 

model was run with 1-month lagged NDVI datasets. This result reflects that tree type 

vegetation far from the stream grow well when runoff increases in the dry season. 
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Furthermore, this type of vegetation does not respond well to the runoff during the wet season. 

Similar analysis showed that grass vegetation (FVT4) responses better than shrub vegetation 

(FVT5) during the wet season, and relationships were positively increased by 26.8% and 23%, 

respectively, when 1-month lagged NDVI datasets applied in the analysis. Thus, in this study 

the modelled results support the previous finding on higher sensitivity of grass vegetation 

towards surface water availability (Kath et al., 2019). 

4.6. Conclusion 

This study showed contrasting vegetation responses to seasonal surface water 

variability. The result section revealed that grass vegetation type, either near the stream or 

distant from the stream, is more sensitive to rainfall than runoff and streamflow. This study 

suggests that the grass vegetation type is highly dependent on summer rainfall and winter 

runoff for their growth, and any instability or long-term drought can negatively affect these 

floodplain vegetation communities. The vegetation and surface water variability relationships 

describe that responses vary on vegetation types and their locations. Floodplain ecosystem 

management authorities need to review the current basin water management policies in the 

semi-arid region to include flexible water use strategies to allow for adjustment under seasonal 

requirements. 

The relationship between floodplain vegetation and catchment hydrology is two-way, 

and any change in the environment can directly influence the vegetation response to surface 

water. For example, suitable growing temperature and available water can increase the 

potential evapotranspiration rate and land cover, with grass vegetation type reducing the 

catchment runoff. The hydrological modelling results suggested that rainfall dominates the 

catchment’s water balance, in which streamflow increases in the wetting period between May 

and August when the evapotranspiration rate is lower. Any changes in the streamflow directly 

impact the condition of floodplain vegetation during the wet season. These potential changes 

in the condition of vegetation are required to be included in hydrological modelling. A coupled 

hydrological modelling option can be considered in future studies, for instance the use of LAI 

values in the modelling tool. Furthermore, in a rainfall dominated catchment hydrology, any 

prediction of future change in the rainfall pattern should also be considered carefully for better 

floodplain management. 
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In the next chapter, Chapter 5, the vegetation responses to groundwater resources in 

the floodplain area using ArcSWAT hydrological model, MODIS imagery for vegetation 

mapping, and machine learning algorithms are presented. 
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CHAPTER 5: MODELLING FLOODPLAIN VEGETATION 

RESPONSE TO GROUNDWATER VARIABILITY 

5.1. Introduction 

Chapter 4 analysed the floodplain vegetation responses to surface water availability at 

the catchment level using remotely sensed vegetation data and machine learning algorithms. 

Correlation analysis in Chapter 4 also unveiled the connection between the response of 

vegetation and surface water. As stated in Chapter 2, utilising satellite imagery data in 

catchment hydrological modelling would enhance the model's ability to replicate catchment 

hydrology with greater precision on broader geographical scales. The recent development in 

satellite technology provides an opportunity to access a vast amount of new-generation imagery 

data in the present and coming years. While literature is growing on the use of remotely sensed 

imagery data, remote sensing applications for vegetation response modelling with catchment 

hydrology in a floodplain in temperate zones are still not reported in the literature. 

The correlation between the vegetation response and the water present beneath the soil 

surface is analysed in this research using Terra’s Moderate Resolution Imaging 

Spectroradiometer (MODIS), Normalised Difference Vegetation Index (NDVI) and soil water 

content (SWC) data. The Soil & Water Assessment Tool (SWAT) interface known as 

ArcSWAT was used in ArcGIS for the groundwater analysis. The specific objectives of this 

study are the following: a) to understand the relationship between different types of vegetation 

responses (NDVI) and groundwater variables as simulated by SWAT model at the basin level; 

b) to assess the correlation between the vegetation response (as measured by NDVI) and SWAT 

simulated variables at different positions (top and bottom) within the sub-basin; and c) to model 

seasonal vegetation responses to groundwater variables at the basin level using the WEKA 

machine learning tool. The Digital Elevation Model derived from the SRTM imagery and 

vegetation indices (e.g., NDVI) derived from MODIS Terra and Aqua sensors were developed 

and evaluated. This study attempted to contribute to developing sustainable water resource 

management for the dry and wet seasons in an efficient way. The modelling results may be 

used to improve domestic agricultural production by selecting appropriate crops and plants that 

can grow commercially in similar regions. 

This Chapter is structured into six sections. Section 1 outlines the objectives of the 

Chapter, while Section 2 examines the background literature and previous research on utilising 
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satellite data to study vegetation groundwater relationships in floodplain areas. Section 3 

outlines the Methods employed to accomplish the objectives of the Chapter. Section 4 

showcases the outcomes of the correlation and regression analyses conducted on SWAT-

simulated groundwater variables and MODIS NDVI data. Additionally, it models the 

associations between simulated and predicted NDVI, which were generated using the machine 

learning algorithms employed in this study. Section 5 examines and analyses the findings in 

light of the identified objectives and research gaps outlined in Section 2. The Chapter 

culminates in Section 6 by presenting the implications of the results and providing 

recommendations for future studies. 

This study presents the utilisation of MODIS imagery data in the modelling of the 

relationship between vegetation and groundwater in a floodplain, employing machine learning 

algorithms. 

 

5.2. Floodplain vegetation responses to groundwater variability 

Floodplain vegetation plays an important role in catchment hydrology and energy flow. 

Floodplain vegetation distribution is directly influenced by several factors, including rainfall, 

temperature, and groundwater (Ponting et al., 2021). Rainfall, temperature, and groundwater 

are highly variable in arid and semi-arid regions (Mohammed et al., 2020). The annual rainfall 

in arid regions is much less than the annual potential evapotranspiration and surface water 

flows (i.e., surface runoff), which provides a limited water supply for vegetation systems 

(Condon et al., 2020). Therefore, groundwater becomes the only water source in arid regions, 

affecting the spatial and temporal distribution of soil water content (SWC), which, in turn, 

affects the growth of vegetation (Huang et al., 2019). An accurate understanding of the 

distribution of SWC in arid regions is important since water deficit is gradually becoming one 

of the major factors limiting agricultural productivity and ecological development (Cheng et 

al., 2020). As one of the driest continents in the world, Australia has been facing severe 

droughts over the last 50 years, noticeably in the south-eastern part of the country (Ma et al., 

2015). This area will become drier in the coming decades due to increasing annual average 

temperatures and decreasing rainfall (Dai, 2011). Therefore, understanding the vegetation 

response to SWC is critical for sustainable ecosystem improvements in arid regions (Wang et 

al., 2011). 
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SWC can be estimated using both direct and indirect methods. The direct method, such 

as the oven drying technique, is widely used because of its reliability and simplicity (Schmugge 

et al., 1980); however, the direct method is labour-intensive, time-consuming, and costly for 

continuous application in large catchments. On the other hand, hydrological simulation and 

remote sensing techniques can be used for the same purpose at a catchment or global scale 

(Uniyal et al., 2017). SWC can also be estimated for previous years using remote sensing 

techniques, which is not possible to obtain from experimental measurements (Uniyal et al., 

2017). Therefore, model-simulated results can fulfil temporal and spatial data requirements and 

improve SWC and vegetation response relationship studies. 

The SWC also influences vegetation productivity and water stress (Porporato et al., 

2004; Tian et al., 2019). The amount of soil water availability in drought regions for vegetation 

intake affects the length of the growing period (Leenaars et al., 2018). However, groundwater 

is the main source of water for vegetation growth in arid regions (Zhu et al., 2004). Any changes 

in the groundwater tables decrease the accessibility of the dependent vegetation and may create 

water stress (Naumburg et al., 2005). Moreover, water stress can trigger a longer growing 

period and photosynthesis reduction, thereby resulting in reduced productivity and increased 

vegetation mortality (Tian et al., 2019). The reduction in accessible soil water availability under 

a changing climate may exaggerate ecological droughts during the plantation season 

(Schlaepfer et al., 2017). Researchers have identified that the change in groundwater depth 

affects the vegetation physiology and dynamics (Tomlinson & Boulton, 2010; Zhu et al., 2016). 

Another study also focused on individual vegetation responses by examining the leaf, tree, 

canopy, and population (Eamus et al., 2015). However, according to current knowledge, 

accessible water in soil and vegetation response modelling is still lacking. This research focuses 

on SWC that is accessible to floodplain vegetation and understanding their relationship in a 

seasonal context. 

The Soil and Water Assessment Tool (SWAT) is a physically based and semi-

distributed hydrological model widely used for quantitative hydrological modelling (Arnold et 

al., 2012; Adhikari et al., 2020). Many researchers have used SWAT for evaluating soil water 

at the catchment scale (Pisinaras et al., 2010; Francesconi et al., 2016; Cuceloglu et al., 2017). 

Previous studies have shown that changes in the water balance components, specifically soil 

water storage, evapotranspiration, land use/land cover dynamics, and water yield, are more 

sensitive under wet climate and heterogeneous soils (Silva Jr et al., 2021; Yonaba et al., 2021). 

The SWAT model has also been successfully applied in the U.S. to estimate SWC for drought 

monitoring and predicting crop production (Narasimhan & Srinivasan, 2005). However, the 
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SWAT application in the Australian region is limited (Saha & Zeleke, 2014). In this study, a 

SWAT model was used to estimate SWC for the Burrinjuck sub-catchment within the 

Murrumbidgee River catchment. The suitability of the model simulation for long-term SWC 

datasets was assessed using a combination of physically measured and remotely sensed data. 

This type of simulation helps to correlate with long-term historical vegetation data. 

The Normalised Difference Vegetation Index (NDVI), which can be derived from 

remote sensing, is frequently applied for studies on vegetation dynamics over large scales (Park 

et al., 2014; Fu & Burgher, 2015; Nouri et al., 2017; Mallick et al., 2021). Researchers used 

NDVI to understand the relationships between terrestrial vegetation and climate (Nouri et al., 

2017). Several studies found a linear relationship between NDVI and climate variables in arid 

regions (Groeneveld et al., 2007; Wen et al., 2013; Nanzad et al., 2019). Relationships also 

were investigated for NDVI and groundwater levels and groundwater flow discharge (Aguilar 

et al., 2012; Seeyan et al., 2014; Bhanja et al., 2019). However, none of these previous studies 

analysed the relationship between NDVI and hydrological model simulated SWC in an arid 

region. 

This study aims to analyse and model the relationships between seasonal SWC 

variability and floodplain vegetation responses using MODIS-derived NDVI data and machine 

learning algorithms for 20 years (2001–2020). In this study WEKA machine learning tool was 

applied in selection of various machine learning algorithms, developed by the University of 

Waikato, New Zealand (Hall et al., 2009; Eibe et al., 2016). The WEKA tool is a collection of 

machine learning algorithms for data mining activities that supports data pre-processing, 

clustering, classification, regression, and visualisation (Marin et al., 2021). This software can 

be run under the General Public License (GNU) with a selected classifier compared to other 

data mining tools (Sharma et al., 2015). 

The results of this study provide qualitative information on catchment hydrology and 

water resources on temporal and spatial dimensions at the sub-catchment level. A calibrated 

model at this scale can be used for various analyses such as sedimentation, water pollution, and 

future stream flow prediction. This study also contributes to developing sustainable water 

resource management for the dry and wet season in an efficient way. The modelling results 

may be used to improve domestic agricultural production by selecting appropriate crops and 

plants that can grow commercially in similar regions. An understanding of seasonal vegetation 

water requirements from this study can be implemented to review the floodplain water 

management policies for better water management. 
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5.3. Methods 

5.3.1. Study area 

The study area resides within the Upper Murrumbidgee catchment (Figure 5.1) in the 

south-east of the Murray Darling Basin (MDB), in south-eastern Australia. The Burrinjuck sub-

catchment area size is 12,950 km2 (approx.) which is one-seventh that of the Murrumbidgee 

River catchment (Brown et al., 2007). The latitude and longitude of the study area are 34.53° 

S–35.14° S and 148.31° E–148.55° E. The Burrinjuck sub-catchment is situated within the 

upper catchment of the Murrumbidgee River basin, which was built (1910–1927) to develop 

an irrigation project after the devastating drought in 1902. The Murrumbidgee River rises at an 

altitude of around 1500 m in Kosciuszko National Park and flows approximately 316 km before 

entering Burrinjuck Reservoir at an altitude of 370 m (approx.). The topography of the 

Burrinjuck sub-catchment area is described in Chapter 3. The upper mountainous section of 

the Murrumbidgee River flow is regulated by dams for hydroelectric power generation and 

water supply (Wallbrink et al., 1996).  

The main land use in this part is forest and pasture. However, this area also contributes 

to agricultural production by growing wheat and cereals (Verstraeten et al., 2007). Having a 

diverse climate in the upper and lower Murrumbidgee, the mean annual rainfall varies 350 mm 

in the Riverina plains and 1700 mm in the Snowy Mountains (Green et al., 2011). The 

Burrinjuck sub-catchment and surrounding area contribute to the maximum river flow by 

adding 24% of the total rainfall as runoff (Cracknell & Reading, 2014). The climate has 

enriched the Burrinjuck reserve possesses a high diversity of vegetation types and ecosystems. 

The detail climatic characteristics of the study area is described in the Chapter 3. 
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Figure 5.1: Study area of the Burrinjuck sub-catchment situated in the Murrumbidgee River 

catchment within the Murray-Darling Basin region. 

 

5.3.2. Overview of the methods 

The overall data processing described in the Chapter 3. Figure 5.2 presents an overview 

of the research methods applied in this study. The SWC and groundwater flow (GW) were 

simulated in ArcSWAT. The datasets used in this study were obtained from various local and 

international data portals, such as the Australian Bureau of Meteorology (BOM) and U.S. 

Geological Survey (USGS). This study used the ArcGIS tool (ESRI, 2019) and Microsoft Excel 

(Microsoft Corporation, 2018) for spatial and attribute data pre-processing and formatted the 

data to apply in the ArcSWAT hydrological model. A detail of data processing tools described 

in Chapter 3. Further, this study analysed the model output data using the WEKA machine 

learning tool with different vegetation responses as measured by MODIS NDVI values (Smith 

& Frank, 2016). Different machine learning algorithms have been applied to model the 

relationships between vegetation types, and their location within the sub-basin and seasonal 

groundwater variability. 
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Figure 5.2: An overview of the research methodology for vegetation responses and 

groundwater variables modelling using machine learning algorithms. 

 

5.3.3. Hydrological model setup 

An ArcSWAT interface of the SWAT2012 model was used in this study (Arnold et al., 

2012). The SWAT2012 compatible ArcGIS version 10.6 was installed on a desktop to run 

SWAT model from the user interface. The SWAT model is a continuous physically based 

distributed parameter model that operates on a daily time-step. This model is capable of 

simulating catchment hydrology, land use impact on water, sediments, plant growing, 

agricultural-chemical yields, etc., within agricultural watersheds (Neitsch et al., 2011; Arnold 

et al., 2012). SWAT divides the watershed into multiple sub-basins based on spatial 

characteristics. These sub-basins are further subdivided into hydrological response units 

(HRUs) that consist of unique land use, soils, and slope characteristics (Gassman et al., 2014). 

Each HRU is simulated for SWC, groundwater flow, nutrient cycles, sedimentation, crop 

growth, and management practices (Saha et al., 2013). The simulated results from the HRUs 

represent the sub-basin scale. SWAT (Neitsch et al., 2011) simulates the hydrological cycle 

based on the following daily water balance equation: 
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Where SWt   is the ultimate water content in (mm), SW0 is the amount of water content on the 

first soil of the day i (mm), t is time (days), Rday is the amount of rainfall on day i (mm), Qsurf 

is the amount of surface runoff on specific day i (mm), Ea is the amount of evapotranspiration 

on day i (mm), Wseep is the amount of water percolated into the vadose zone from the soil profile 

on day i (mm), and Qgw is the amount of return flow on day i (mm). 

The SWAT model was delineated from a 30m resolution digital elevation model (DEM) 

(Figure 5.3 (c)). A threshold drainage area of 1342 km2 was selected based on the DEM and 

Murrumbidgee River network to divide the watershed into 43 sub-basins, which were later 

categorised into 350 HRUs depending on land cover and land use, soil types, and slope. The 

model was run for 20 years of data, starting from 2001 and ending in 2020. The SWC data for 

Australia was obtained from the Australian Water Resource Assessment Landscape water 

balance model (AWRA-L), which was calibrated against the streamflow data. It is not best 

practice to use data from a different model simulation to run a hydrological model as it may 

not provide good modelling results. To avoid this confusion, the model was calibrated and 

validated against observed streamflow data instead of SWC. 

 

 

𝑆𝑊𝑡 = 𝑆𝑊0∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑖

𝑡

𝑖=0

                  

(1) 
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Figure 5.3: GIS data for the watershed. In the above figure, four images are captured: (a) 

Study area soil map, (b) Land use/land cover map, (c) DEM, and (d) Delineated watershed. 

 

5.3.4. Data preparation 

A combination of climatological and land properties data was required to develop a 

semi-distributed model using the ArcSWAT interface (Chapter 3). Some data such as DEM, 

soil, land use, and weather data are mandatory to run the dynamics of the watershed; however, 

streamflow, reservoir information, sediment, water quality, chemical, and pesticide data are 

non-mandatory. The data used in this study and their sources are listed in Table 5.1. 

 

Table 5.1: The datasets used in this study including their descriptions and sources. 

Data Frequency Description Source 

Precipitation Daily Station gauged, temporal Bureau of Meteorology 

Temperature Daily Station gauged, temporal Bureau of Meteorology 

Relative Humidity 

Wind speed 

Daily 

Daily at 9 am 

Station gauged, temporal 

Station gauged, temporal 

Bureau of Meteorology 

Bureau of Meteorology 

Solar radiation Daily average Spatial  Bureau of Meteorology 

Streamflow (discharge) Daily Station gauged, temporal NSW Office of Water 
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MODIS NDVI 16-Day 250 m spatial resolution U.S. Geological Survey 

DEM - 30 m spatial resolution U.S. Geological Survey 

Soil Map - 250 m spatial resolution Digital Atlas of Australian Soil 

Land cover/land use 

map 
- 50 m spatial resolution NSW Office of Environment and Heritage 

 

5.3.5. Study period 

The study period (2001–2020) was selected to include a long-term drought (2001–

2006) and flooding (2007–2010) phases. Both dry and wet phases were included in the study 

to ensure any long-term change in the vegetation condition was identified in the NDVI data. 

The annual data were divided into two seasons: (i) dry and (ii) wet, which were categorised 

based on rainfall and temperature anomalies. The average dry season (Oct–Mar) and wet 

season (Apr–Sep) rainfall are 52.4 mm, 66.45 mm and 70.74 mm, 73.91 mm in the drought 

and flooding periods, respectively. 

 

DEM 

The sub-basin parameters (gradient and length of the slope) and stream network 

characteristics (slope, width, and length of the channel) were obtained from the DEM file. For 

this study, a 30 m resolution DEM downloaded from the Shuttle Radar Topography Mission 

(SRTM) using the USGS data portal (USGS, 2021). DEM for the Burrinjuck sub-catchment 

study area was masked for the SWAT application (Figure 5.3(c)). 

Land Use/Land Cover Data 

The land use data for the study area used in the ArcSWAT HRU delineation was 

developed by the NSW Office of Environment and Heritage. These satellite imagery data were 

derived for the period of 2001 to 2005 and verified with Google Earth and a field survey of 

specific land cover types. The raster files were processed in ArcGIS to reclassify for the SWAT 

model (Figure 5.3(b)). 

 

Soil Data 

The SWAT model requires soil information of the basin area including a database table 

of soil texture, pH number, available water content, hydraulic conductivity, bulk density, and 

organic carbon content for each soil type (Setegn et al., 2009; Saha et al., 2013). The soil map 

of the study area was downloaded from the Digital Atlas of Australian Soil (ASRIS, 2014) 

(Figure 5.3(a)). A ‘usersoil’ database table was prepared for this study from the available soil 
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information and lookup tables, and then replaced the default ‘usersoil’ table in the SWAT 

database. 

 

Climate Data 

The climate data used in this study included daily rainfall, temperature (maximum and 

minimum), wind speed, solar radiation, and relative humidity. They were obtained from the 

Australian Bureau of Meteorology (BOM, 2021a). The climate data was obtained for a period 

of 21 years (from 2000 to 2020) in daily time series format. These data were processed using 

the Microsoft Excel tool to fill 0.2 of the missing data by the linear interpolation method (Fassò 

et al., 2020). 

 

5.3.6. Sensitivity analysis and hydrological model calibration 

This study applied sensitivity analysis following the guidelines explained in the 

previous studies (Andrade et al., 2019), using the SWAT Calibration and Uncertainty Programs 

(SWAT-CUP). The SWAT-CUP has five algorithm options for model calibration (SUFI-2, 

PSO, GLUE, ParaSol, and MCMC), eleven functions (mult, sum, R2, chi2, NS, br2, ssqr, 

PBIAS, KGE, RSR, MNS) and integrated features such as plot visualisation (Abbaspour et al., 

2018). The sensitivity analysis was done using SUFI-2, considering One-At-A-Time method 

of 15 parameters related to the processes of streamflow, recharge, evapotranspiration, 

percolation, infiltration from the list to identify the most sensitive ones for the model 

simulations at the Burrinjuck sub-catchment. According to previous studies (Abbaspour et al., 

2015), the Curve Number for moisture condition II (CN2) and the coefficient of water 

percolation to the deep aquifer (RCHRG_DP) were identified as the two most important 

sensitive parameters. Based on literature review, among the two sensitive parameters, CN2 was 

chosen for the model calibration of this study. However, some other parameters such as Surface 

runoff lag coefficient (SURLAG), and Manning’s roughness coefficient (CH_N2) were also 

analysed, which found not as sensitive in the previous modelling done by Saha and Zeleke 

(Saha et al., 2013). The fact is that the previous study was done in the Yass River gauging 

station, which was upstream of the Burrinjuck sub-basin, while the present study focuses on 

the whole basin. Acquiring knowledge from several previous studies that applied SWAT model 

close to the study area helps parameter selection for sensitivity analysis. Thirteen parameters 

were chosen to do sensitivity analysis (Table 5.2) based on previous SWAT model application 
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in the Kyeamba Creek basin (Saha & Zeleke, 2014) and Yass River basin (Saha et al., 2013). 

The difference in basin scale could interfere in the sensitivity analysis. Therefore, the 

parameters used for calibration in this study are not necessarily the same proposed by Saha 

(Saha et al., 2013). 

In this study, the Sequential Uncertainty Fitting algorithm (SUFI-2) and selected the 

Nash–Sutcliffe model efficiency (NSE) coefficient was used as target function for calibration 

procedures. In calibration process, SUFI-2 captures the uncertainties of the model run. The six 

parameters applied in the calibration process were selected from sensitivity analysis table based 

on their ranking (Table 5.2). A researcher (Abbaspour et al., 2015) found that the calibration 

process and uncertainties are closely related, and identifying these relationships are important. 

In the SUFI-2 interface, the input parameter uncertainty is expressed as ranges, whereas output 

parameter's uncertainties are expressed from the 95 PPU (95% probability distribution), which 

is calculated using the Latin American Hypercube Sampling from the cumulative distribution 

of an output variable at 2.5% and 97.5%. The adjustment between the simulation results and 

the observed data can be done by p-factor (the fraction of measured data bracketed by the 

95PPU band) and the R-factor (ratio of the average width of the 95PPU band and the standard 

deviation of the measured variable) known as statistical indices (Abbaspour et al., 2015). The 

p-factor value > 0.7 and R-factor value <1.5 are desirable for streamflow discharge depending 

on the situation (Abbaspour et al., 2004).  

The SWAT model was calibrated (2004-2007) and validated (2008-2010) with a warm-

up period of three year (2000-2002). The calibration and validation processes have been done 

in monthly timestep at two different points within the watershed, starting from the upstream of 

the streamflow station (Yass station) and then to the downstream station (Burrinjuck Dam 

station).  
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Table 5.2: The table shows the number of parameters applied, their definitions, and ranking in 

the SWAT-CUP simulation. 

Parameter Definition 
Value 

Range 
Unit Method Par.inputfile Ranking 

Initial SCS runoff curve number for moisture 

condition 
35–89 % r CN2 1 

Effective hydraulic conductivity in the main 

channel alluvium 
0–500 mm/h v CH_K2.rte 13 

Manning’s n value for the main channel 0–0.3 — v CH_N2.rte 12 

Base flow alpha factor 0–1 days v ALPHA_BF.gw 5 

Groundwater delay 30–500 days v GW_DELAY.gw 10 

Groundwater “revap” coefficient 0.02–0.2 — v GW_REVAP.gw 11 

Threshold depth of water in the shallow 

aquifer for return flow to occur 
0–5000 mm H2O v GWQMN.gw 3 

Threshold depth of water in the shallow 

aquifer required for “revap” to occur 
0–1 mm H2O v REVAPMN.gw 8 

Soil evaporation compensation factor 0–0.65 - v ESCO.bsn 2 

Average slope length 10–150 m r SLSUBBSN.hru 9 

Surface runoff lag coefficient 0.05–24 — v SURLAG.bsn 15 

Available water capacity of the soil layer −0.5–0.5 mm H2O/mm r SOL_AWC.sol 4 

Depth from the soil surface to layer bottom −0.5–0.5 mm r SOL_Z.sol 6 

Peak rate adjustment factor for sediment 

routing 
1–2 - r ADJ_PKR.bsn 14 

Maximum canopy storage 0–100 mm H2O v CANMX.hru 7 
*Method r=Relative and v=Replace 

**Input file rte=Route, gw=Groundwater, hru=Hydrological Response Unit, bsn=Basin, sol=Soil 

5.3.7. Hydrological model performance evaluation 

In this study, the model calibration performance was assessed using the coefficient of 

determination (R2), Nash-Sutcliffe Efficiencies (NSE), and percent bias (PBIAS) quantitative 

statistics which were used in previous studies (Moriasi et al., 2007; Setegn et al., 2009; Zhang 

et al., 2009). Moreover, fifteen parameters were applied in SWAT-CUP simulation and ranking 

them following the model performance acceptance guidelines documented by Arnold (Moriasi 

et al., 2007) which is presented in Table 5.2.  

The Nash–Sutcliffe simulation efficiency (NSE) coefficient is a dimensionless statistic, 

indicating the accuracy of simulated versus observed data against the 1:1 line (Nash & 

Sutcliffe, 1970). NSE is the most widely used statistical indicator for hydrological model 

performance, in which NSE value 1 represents observed and simulated values are the same, 

while negative NSE value means simulations are extremely poor. NSE is defined as: 

 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠, 𝑖 − 𝑄𝑠𝑖𝑚, 𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠, 𝑖 − 𝑄𝑜𝑏𝑠)
2

𝑛
𝑖=1

   (2) 
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where n is the number of time steps, 𝑄𝑜𝑏𝑠, i is the observed flow at time step i (daily here), 

𝑄𝑜𝑏𝑠 is the mean of the observed flow, and 𝑄𝑠𝑖𝑚, i is the simulated flow. The range of NSE is 

[-∞,1], where 1 represents a perfect match between the observed and simulated flow. 

A hydrological model with higher R2 is considered as a good result (Wu et al., 2022). R2 
is defined as: 

 

𝑅2 = {
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄
𝑠𝑖𝑚
)(𝑄𝑖

𝑠𝑖𝑚 − 𝑄
𝑠𝑖𝑚
)𝑛

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄

𝑜𝑏𝑠
)𝑛

𝑖=1

2

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄

𝑜𝑏𝑠
)𝑛

𝑖=1

2}
2      (3) 

 

where, 𝑄𝑖
𝑜𝑏𝑠 and 𝑄𝑖

𝑠𝑖𝑚are representing the measured and simulated data for ith observation and 

𝑄
𝑜𝑏𝑠

 and 𝑄
𝑠𝑖𝑚

are the mean of the measured and simulated data, respectively. 

The percent bias (PBIAS) determines the average tendency to be greater or smaller 

simulated values than their observed data (Moriasi et al., 2007). The maximum PBIAS value is 

zero, indicating the simulation is exactly the same as the observed data. In general, a smaller 

PBIAS value signifies accurate model simulation. PBIAS is calculated as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)𝑛

𝑖=1 ∗ 100

∑ 𝑄𝑖
𝑜𝑏𝑠𝑛

𝑖=1

       (4) 

Where 𝑄𝑖
𝑜𝑏𝑠 and 𝑄𝑖

𝑠𝑖𝑚 are representing the measured and simulated data for the ith observation, 

respectively. 

 

5.3.8. Remote sensing data 

Moderate Resolution Imaging Spectroradiometer (MODIS) data are available from the 

U.S. Geological Survey website for free of cost (USGS, 2021). This study used the MODIS 

(Terra) 16-Day Global 250 m composite product of MOD13Q1 (version V006) to identify 

vegetation condition. The NDVI values were selected from the available vegetation indices in 

the MOD13Q1 products from imagery acquired during the period 2001 to 2020. Six plots of 

different vegetation types (such as grass, shrub, and tree) were selected (average size between 

1 and 2 km2) within the Burrinjuck sub-catchment. These plots were selected randomly (i.e., 

stratified random sampling) based on specific vegetation types dominated in the selected plot 

area. Further point areas (500 m radius) were also selected at the bottom and top of each sub-

basin (Figure 5.4). The total of sixty areas (point area) were calculated for 40 sub-basins (three 

sub-basins were too small to create point). These plots have been converted into polygons in 
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the Google Earth Pro and then saved as KML files which were later processed into shapefiles 

in ArcGIS (ESRI, 2019). A pre-processing tool named Application for Extracting and 

Exploring Analysis Ready Samples (AppEEARS) was selected to obtain pre-processed NDVI 

time-series data for those shapefiles prepared earlier. 

 

 

 

Figure 5.4: The point area 

with a radius of 500m selected both from the top and bottom locations within 

sub-basins. The pink circles and red circles representing point area of the top 

location and bottom locations, respectively. 

 

5.3.9. Normalised Difference Vegetation Index (NDVI) 

The NDVI data were processed using the AppEEARS tool (EarthData, 2021). MODIS 

sensor captures a range of broad spectrum of reflected sunlight from tree leaves. The healthy 

vegetation mostly absorbs light from the red spectrum and reflects light from the near-infrared 



 

90 

 

(NIR) spectrum. NDVI utilises the contrast of strong reflectance in the near-infrared region 

and the strongly absorbed reflectance in the red wavelength region. NDVI calculation was 

performed applying the difference between the red and near-infrared bands and normalising it 

over the sum of red and near-infrared bands (Equation 5). 

NDVI = 
(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑−𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡)

(𝑁𝑒𝑎𝑟 𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑+𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑑 𝑙𝑖𝑔ℎ𝑡)
       (5) 

Three types of vegetation indices were obtained using the Google Earth map and U.S. 

Geological Survey website. Firstly, the plots were selected for forest type vegetation within the 

watershed in Google Earth Pro and saved into KML files. These KML files were then processed 

in ArcGIS to convert into shapefiles and later used to obtain 20 years (2001–2020) of NDVI 

data from USGS. These similar steps were followed to obtain NDVI data for shrub and grass 

type vegetation within the watershed. The NDVI was calculated for each of the 43 sub-basins 

for the same period (2001–2020). 

 

5.3.10.Machine learning algorithms for data analysis 

A machine learning (ML) algorithm is a set of computational codes that can process a 

large amount of data in a complex way (Sarkar, 2021). It is also known as data-driven methods 

that build models based on evidence obtained from a sample data set. The algorithms read and 

process data to learn the maximum possible patterns about the data (Cracknell & Reading, 

2014). In this study, the Waikato Environment for Knowledge Analysis (WEKA) tool was 

applied, developed by the University of Waikato, New Zealand (Hall et al., 2009; Eibe et al., 

2016). Firstly, the WEKA tool was set up to run a random forest model using 43 different 

datasets. These datasets included the combination of SWC and groundwater flow towards 

stream, and different types of vegetation responses (NDVI values). Each dataset was initially 

set for linear regression to find the collinear and non-collinear variables. Secondly, the machine 

learning tool was prepared to run a support vector machine (SVM) model using the same 

datasets. 

The performance of all models was assessed in two ways: (a) using a 10-fold cross-

validation, which is a leave-one-out approach, and (b) using the 80 and 20 per cent split-sample 

method. These two approaches were performed to compute the root mean square error (RMSE) 

and correlation coefficient (r) between the SWAT output variables (SW and GW) and predicted 

vegetation response (NDVI value) of each model. The model selection was based on higher 

correlation coefficient (r) values and smaller RMSEs to analyse the relationship against soil 
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water content (SWC) and groundwater flow (GW). This study also analysed these relationships 

based on rainfall intensity such as dry season (October to March) for less intensity and wet 

season (April to September) for high intensity. 

 

5.4. Results 

5.4.1. Hydrological model calibration and validation 

In section 5.3.10 under sensitivity analysis, Table 5.2 shows the sensitivity ranking of 

the different model parameters and their ranges applied during the calibration. The model was 

calibrated and validated at two different stations (Figure 5.5), for which the results are listed in 

Table 5.3. The results explained that manual calibration performed better than auto-calibration. 

The NSE value 0.79 for the manual calibration, as a performance parameter can be marked as 

‘very good’ for the SWAT model developed in the study area, which was able to simulate about 

79% of the variance on observed streamflow data. 

 

 

 

Figure 5.5: The model calibration and validation at two different locations based on the 

available station, (i) Burrinjuck Dam, and (ii) Yass River station 

 

Table 5.3: The modelling scenarios and results. 

 

 

 

 

Scenario NSE R2 PBIAS 

Default 0.64 0.69 30.9 

Manual calibration 0.79 0.82 26.3 

SUFI-2 0.65 0.72 29.1 
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The statistical indicators reflected a regression between observed and simulated streamflow for 

those two stations with NSE 0.76, PBIAS 18.7, R2 0.76, p-factor 0.82 and NSE 0.67, PBIAS 

31.5, R2 0.67, and p-factor 0.46, respectively. The hydrographs showed that the observed and 

simulated values have a noticeable difference in the plots. Additionally, the model slightly 

overestimated the low flow during the calibration and validation periods. 

5.4.2. Relationships of vegetation responses and groundwater 

The average monthly SWC and groundwater data were presented in Table 5.4. The 

average correlation coefficient of different vegetation types and SWAT model output variables 

over the study period in shown in Figure 5.6 The different correlation patterns of responses 

vegetation types and SWC suggested that vegetations were considerably influenced by SWC. 

The linear regression results showed that shrub vegetation NDVI was highly correlated 

(R2=0.82) to SWC than forest and grass type vegetation NDVI (R2=0.78, and R2=0.72, 

respectively). However, grass type vegetation response was higher (R2=0.59) to groundwater 

(GW) compared to forest vegetation (R2=0.24) and shrub vegetation (R2=0.25). 

 

Table 5.4: SWAT simulated variables. Soil water content (SWC) and groundwater flow (GW) 

data presented as average monthly for the study area. 

Variable January February March April May Jun July August September October November December 

SWC 86.28 98.54 93.18 96.25 112.64 130.79 131.11 129.71 122.23 106.23 100.48 78.14 

GW 6.07 3.72 5.10 4.59 4.60 9.13 21.15 29.00 28.73 24.57 15.01 10.96 
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Figure 5.6: The forest, shrub, and grass type vegetation NDVI datasets are plotted against 
model-simulated surface runoff and groundwater flow (GW) to calculate the co-efficient of 

determination (R2). 

The WEKA modelling results show that sub-basin NDVI (including all vegetation types 

within the sub-basin no 28) was highly responsive (r=0.78) compared with forest NDVI 

(r=0.61) when the ML algorithms were applied against SWC and GW (Table 5.5). Similarly, 

sub-basin NDVI (including all vegetation types within the sub-basin no 19 and 28) was highly 

responsive (r=0.76 and r=0.74 respectively) than shrub and grass type vegetation (r=0.67 and 

r=0.56 respectively) (Tables 5.6 and 5.7). 
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Table 5.5: The WEKA-generated modelling results for forest, sub-basin, top-point, and 
bottom-point NDVI against SWAT-simulated variables, SWC and GW. The r represents the 
correlation coefficient. 

Sub-Basin GW SWC SWC and GW 

# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

FOREST 
SVM 0.373 0.064 91% 0.592 0.055 79% 0.610 0.055 78% 

RF 0.219 0.076 110.42% 0.446 0.067 91% 0.540 0.060 85% 

SB_NDVI 
SVM 0.597 0.075 80% 0.710 0.066 70% 0.781 0.059 62% 

RF 0.484 0.088 94% 0.604 0.079 84% 0.736 0.064 68% 

TP_NDVI 
SVM 0.471 0.072 89% 0.624 0.063 78% 0.660 0.061 75% 

RF 0.407 0.080 98% 0.624 0.063 78% 0.631 0.064 79% 

BP_NDVI 
SVM 0.267 0.072 96% 0.513 0.064 85% 0.521 0.063 85% 

RF 0.132 0.085 113% 0.330 0.078 104% 0.434 0.070 93% 

 

Table 5.6: The WEKA machine learning produced modelling results for shrub vegetation 
NDVI from sub-basin, top point, and bottom point against the SWAT simulated SWC and GW. 
The r represents the correlation coefficient in the below results. 

Sub-Basin GW SWC SWC and GW 

# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

SHRUB 
SVM 0.533 0.059 82% 0.681 0.051 70% 0.671 0.052 72% 

RF 0.596 0.056 77.96% 0.625 0.055 74% 0.626 0.054 74% 

SB_NDVI 
SVM 0.579 0.073 82% 0.689 0.064 72% 0.759 0.058 65% 

RF 0.462 0.084 94% 0.577 0.076 85% 0.685 0.066 74% 

TP_NDVI 
SVM 0.674 0.078 74% 0.697 0.075 71% 0.812 0.061 58% 

RF 0.609 0.087 82% 0.571 0.090 86% 0.772 0.067 64% 

BP_NDVI 
SVM 0.247 0.082 97% 0.456 0.075 89% 0.451 0.075 89% 

RF 0.041 0.098 117% 0.267 0.091 108% 0.363 0.082 97% 

 

 

Table 5.7: The WEKA machine learning modelling results for grass type vegetation NDVI 
(sub-basin combined, vegetation located at the top point, and vegetation located at the bottom 
point) against SWAT variables. The correlation coefficient (r) for the random forest and 
support vector machine algorithms are listed in the below table. 

Sub-basin GW SWC SWC and GW 

# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

GRASS 
SVM 0.4642 0.1116 84.57% 0.5342 0.105 79.28% 0.5629 0.1024 76.98% 

RF 0.4876 0.1094 .83.15% 0.4607 0.112 82.75% 0.4955 0.1088 80.10% 

SB_NDVI 
SVM 0.6004 0.1071 80.63% 0.649 0.1007 75.75% 0.7431 0.0889 66.92% 

RF 0.5369 0.1171 88.10% 0.4353 0.1299 97.78% 0.6522 0.1025 77.11% 

TP_NDVI 
SVM 0.6528 0.1276 75.90% 0.6729 0.1238 73.62% 0.7883 0.1035 61.55% 

RF 0.581 0.1422 84.62% 0.4665 0.1605 95.47% 0.7031 0.121 71.97% 

BP_NDVI 
SVM −0.0069 0.1265 101.07% 0.1134 0.1242 99.19% 0.2045 0.1223 97.67% 

RF −0.0646 0.1519 121.35% 0.0884 0.1438 114.89% 0.1552 0.1312 104.79% 
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5.4.3. Vegetation responses considering their location within the watershed 

The results shown in Figure 5.7 were calculated from the average data for 40 sub-

basins. The monthly average correlation coefficient result shows that vegetation in the top-

point location in a sub-basin is more sensitive (R2=0.77) to SWC when compared with 

vegetation in the bottom point location (R2=0.72). On the other hand, vegetation in the bottom 

point location is more correlated to groundwater (R2=0.62) than vegetation in the top point 

location (R2=0.57). 

The average correlation coefficient of top-point (distant from outlet) and bottom-point 

(close to outlet) NDVI and SWC is shown in Figure 5.7 The modelling results show that 

vegetation in the top-point location of the sub-basin has moderate r values against GW and 

SWC (0.67 and 0.69 respectively) compared with vegetation in the bottom location (0.25, and 

0.46 respectively). Moreover, the result shows strong correlations for the top point vegetation 

NDVI against these two variables (r=0.81 and r=0.79, respectively) (Tables 5.6 and Table 5.7). 

The negative value of r (−0.0069) shows that vegetation in the bottom location of sub-basin 

#23 has no response to the GW (Table 5.7). 

 

 

Figure 5.7: The NDVI collected from the top-point and bottom-point areas as vegetation 
responses are plotted against the Soil Water Content (SWC) and groundwater flow (GW) to 

calculate the coefficient of determination (R2). 

5.4.4. Seasonal vegetation responses 

The results of the linear regression analysis for different vegetation types for two 

distinct seasons are shown in Figure 5.8. The correlation results show that shrub and forest 

vegetations are highly correlated (R2=0.89 and R2=0.82, respectively) to SWC during the wet 

season compared with grass type vegetation (R2=0.47). However, grass vegetation shows a 

better response during the dry season (R2=0.52) compared with the shrub and forest (R2=0.45 

and R2=0.43, respectively). 
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The vegetation responses were observed for different locations within the sub-basin 

(Figure 5.9). The regression analysis shows that vegetation in the top point and bottom point 

locations of the sub-basin are highly correlated to GW in the dry (R2=0.79 and R2=0.84, 

respectively) and wet season (R2=0.81 and R2=0.85, respectively). However, vegetation in 

these two locations is moderately correlated to SWC during the wet season (R2=0.66 and 

R2=0.71, respectively) than the dry season (R2=0.51 and R2=0.54, respectively). 

 

Figure 5.8: The vegetation responses (NDVI) against the SWC in dry and wet seasons in the 
study area are plotted to calculate the coefficient of determination (R2). 
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Figure 5.9: Seasonal vegetation responses (NDVI) from different locations (top point and 

bottom point) against soil water content (SWC) and groundwater flow are plotted to identify 

the coefficient of determination (R2). 

 

The WEKA modelling results show that shrub vegetation is moderately responsive to 

GW and SWC (r=0.62 and r=0.63, respectively) in the dry season. However, forest and grass 

type vegetation are less responsive to GW and SWC (r=0.52, r=0.48, r=0.27, and r=0.38, 

respectively) in the dry season (Table 5.8). All three types of vegetation were less responsive 

to GW and SWC in the wet season. 
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Table 5.8: The table shows the modelling results for different types of vegetation responses 

and vegetation located at different points in the sub-basin. This result shows the relationship 

during the dry season. The r value shows the correlation coefficient of the modelling results. 

Sub-Basin GW SWC SWC and GW 

# 28 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

FOREST 
SVM 0.527 0.053 0.837 0.481 0.056 0.871 0.594 0.051 0.792 

RF 0.581 0.053 0.828 0.317 0.068 1.074 0.560 0.054 0.844 

SB_NDVI 
SVM 0.730 0.058 0.674 0.570 0.071 0.815 0.782 0.054 0.625 

RF 0.702 0.062 0.716 0.434 0.084 0.974 0.750 0.058 0.666 

TP_NDVI 
SVM 0.564 0.068 0.817 0.539 0.070 0.840 0.649 0.063 0.753 

RF 0.592 0.069 0.826 0.379 0.085 1.017 0.637 0.065 0.777 

BP_NDVI 
SVM 0.362 0.061 0.921 0.368 0.061 0.917 0.403 0.060 0.901 

RF 0.420 0.063 0.944 0.254 0.073 1.099 0.403 0.062 0.935 

Sub-basin GW SWC SWC and GW 

# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

SHRUB 
SVM 0.629 0.048 0.777 0.631  0.048 0.799 0.666 0.046 0.766 

RF 0.627 0.048 .76.60% 0.604 0.050 0.784 0.633 0.048 0.771 

SB_NDVI 
SVM 0.755 0.052 0.650 0.731 0.054 0.676 0.812 0.046 0.580 

RF 0.736 0.054 0.671 0.744 0.053 0.660 0.763 0.510 0.636 

TP_NDVI 
SVM 0.780 0.060 0.594 0.697 0.075 0.713 0.729 0.066 0.687 

RF 0.777 0.060 0.623 0.789 0.059 0.605 0.789 0.059 0.605 

BP_NDVI 
SVM 0.424 0.062 0.892 0.322 0.065 0.958 0.442 0.061 0.893 

RF 0.184 0.071 1.070 0.269 0.068 1.023 0.254 0.068 1.031 

Sub-basin GW SWC SWC and GW 

# 23 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

GRASS 
SVM 0.271 0.094 0.967 0.382 0.090 0.920 0.412 0.088 0.902 

RF 0.301 0.100 1.023 0.212 0.108 1.115 0.473 0.087 0.897 

SB_NDVI 
SVM 0.696 0.088 0.728 0.571 0.098 0.811 0.756 0.078 0.648 

RF 0.572 0.101 0.837 0.442 0.116 0.956 0.730 0.083 0.682 

TP_NDVI 
SVM 0.708 0.109 0.709 0.575 0.124 0.808 0.763 0.100 0.649 

RF 0.553 0.133 0.860 0.503 0.140 0.907 0.737 0.103 0.671 

BP_NDVI 
SVM −0.128 0.116 1.025 −0.206 0.116 1.026 0.008 0.123 1.092 

RF −0.111 0.138 1.225 −0.139 0.138 1.227 −0.202 0.118 1.043 

 

In contrast to the sub-basin level, the vegetation NDVI is highly responsive to GW and 

SWC (r=0.75 and r=0.73, respectively) in the dry season. Furthermore, the sub-basin NDVI 

shows a strong relationship with SWC and GW (r=0.81) (Table 5.8) in the dry season, and 

moderate relation (r=0.62) in the wet season (Table 5.9). This result clearly indicates that the 

vegetation in the sub-basin is positively influenced by groundwater flow both in the dry and 

wet seasons. 
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Table 5.9: The table shows the modelling results during wet season for different types of 

vegetation responses and vegetation located at different points in the sub-basin. The r value 

shows the correlation coefficient of the modelling results. 

Sub-basin GW SWC SWC and GW 

# 28  r RMSE RRSE r RMSE RRSE r RMSE RRSE 

FOREST 
SVM 0.163 0.050 98% 0.372 0.047 93% 0.356 0.048 0.934 

RF 0.230 0.055 107% 0.182 0.058 114% 0.242 0.053 1.035 

SB_NDVI 
SVM 0.501 0.060 86% 0.623 0.054 78% 0.710 0.049 0.699 

RF 0.530 0.066 94% 0.458 0.067 96% 0.640 0.055 0.785 

TP_NDVI 
SVM 0.246 0.057 96% 0.371 0.054 92% 0.358 0.055 0.927 

RF 0.361 0.058 99% 0.060 0.071 121% 0.092 0.076 1.288 

BP_NDVI 
SVM 0.089 0.058 99% 0.245 0.057 97% 0.203 0.057 0.981 

RF 0.159 0.063 108% 0.028 0.071 121% 0.048 0.066 1.120 

Sub-basin GW SWC SWC and GW 

# 19 r RMSE RRSE r RMSE RRSE r RMSE RRSE 

SHRUB 
SVM 0.346 0.045 93% 0.431 0.044 90% 0.445 0.043 0.892 

RF 0.460 0.044 .90.10% 0.501 0.042 87% 0.474 0.043 0.889 

SB_NDVI 
SVM 0.478 0.062 87% 0.630 0.055 77% 0.623 0.056 0.778 

RF 0.568 0.060 84% 0.637 0.055 77% 0.629 0.055 0.779 

TP_NDVI 
SVM 0.612 0.072 79% 0.612 0.072 79% 0.749 0.060 0.658 

RF 0.640 0.072 79% 0.578 0.078 85% 0.676 0.068 0.746 

BP_NDVI 
SVM −0.037 0.076 101% 0.173 0.075 99% 0.114 0.076 1.013 

RF −0.002 0.087 116% 0.118 0.086 114% 0.142 0.079 1.052  

Sub-basin GW SWC SWC and GW 

# 23  r RMSE RRSE r RMSE RRSE r RMSE RRSE 

GRASS 
SVM 0.228 0.120 97% 0.350 0.117 94% 0.339 0.117 0.946 

RF 0.159 0.138 111% 0.071 0.145 117% 0.063 0.138 1.117 

SB_NDVI 
SVM 0.470 0.102 88% 0.519 0.099 85% 0.601 0.092 0.795 

RF 0.460 0.109 94% 0.337 0.119 102% 0.510 0.103 0.885 

TP_NDVI 
SVM 0.621 0.109 78% 0.567 0.115 82% 0.709 0.098 0.701 

RF 0.608 0.116 83% 0.353 0.142 102% 0.627 0.111 0.795 

BP_NDVI 
SVM 0.197 0.115 98% −0.281 0.117 100% 0.173 0.117 0.995 

RF −0.062 0.144 123% −0.174 0.148 126% −0.043 0.134 1.143 

 

The vegetation in the top-point location within the sub-basin is also highly responsive to 

GW and SWC (r=0.78 and r=0.70, respectively) than vegetation in the bottom-point location 

(r=0.42 and r=0.32, respectively) in the dry season. The vegetation in the top-point location 

has a higher r value (r=0.79) when correlated against GW and SWC in the dry season. However, 

vegetation in the top-point location has moderate responses to GW and SWC (r=0.64 and 

r=0.61, respectively), and highly responsive (r=0.75) against these two variables together 

(Table 5.8). 
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5.5. Discussion 

5.5.1. Relationships between vegetation responses and ArcSWAT model 

simulated variables  

This study presents a robust analysis of the relationships between groundwater 

availability and vegetation responses vigour in the floodplain zone. The hydrological model 

simulated different groundwater variables by calculating a range of meteorological variables, 

which were later analysed in relation to NDVI using different machine learning algorithms. 

Among random forest (RF) and support vector machine learning (SVM) algorithms, the SVM 

represented higher r values (r=0.78, r=0.75, r=0.74 etc.) compared with RF (r=0.73, r=0.68, 

and r=0.65 etc.) when analysed by different types of vegetation NDVI. Previous studies also 

mentioned outperformance of random forest in terms of vegetation and water relationship 

modelling (Erdal & Karakurt, 2013; Muñoz et al., 2018). Before the analysis, the SWAT model 

calibration was completed and produced the 0.51 NSE value. This might reflect high volume 

of groundwater loss and disconnection of deep aquifer in SWAT (Uniyal et al., 2017). The 

analysis result found that the simulated variables (SWC and GW) and vegetation NDVI 

relationships vary with vegetation types when considered data from the same sub-basin 

(watershed). The shrub-type vegetation is highly correlated to SWC over forest and grass 

vegetation; however, grass vegetation shows a high correlation to GW compared to forest and 

shrub vegetation (Jiao et al., 2020). The first objective of this study, to understand different 

types of vegetation responses to SWC and groundwater, is thus successful. Previous studies 

have found a strong correlation between different types of vegetation and SWAT-simulated 

SWC (Park et al., 2014). However, in their studies, different types of floodplain vegetation 

such as forest, shrub, or grass vegetation responses have not been included. 

This study identified that the vegetated location within the sub-basin also impacts these 

relationships to SWC and GW. The vegetation located in the top point within the sub-basin, 

which are distant to the water outlet or stream, showed higher response to SWC (r = 0.69, 0.78 

etc.). The SWC volume rate is generally high near the water outlet, and that is why the 

vegetation located in the bottom point zone can easily access SWC for their growth. This 

saturated soil enables surface and sub-surface flows and activates connectivity between soils 

and streams (Von Freyberg et al., 2014; Van Meerveld et al., 2015). Moreover, vegetation 

located in the top point showed higher response to GW (R =0.62) than vegetation located in 

the bottom point. The modelling results also showed the correlation coefficient (r) value has 

increased by 42% against GW for vegetation located at the top point compared to the bottom 
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point. The correlation coefficient (r) was highly positive (0.81) for top-point vegetation when 

SWC and GW variables were considered together as relationship predictors. This means 

vegetation located in the top point can grow well when SWC and groundwater flow increases 

within the sub-basin. 

 

5.5.2. Seasonal variability in each vegetation type 

In the seasonal domain, the vegetation responses become stronger in the wet season 

when rainfall increases in the study area. As rainfall is the main source of water in the area of 

interest, the average SWC and GW values increased by 22% and 32.68%, respectively, during 

the wet season. Considering the inter seasonal water variability, the vegetation responses to 

SWC and groundwater flow varied over different types of vegetation. Further analysis found 

the grass vegetation response decreased by 10.6% in the wet season compared to the dry season. 

This variation may also be related to inter-seasonal temperature differences, which negatively 

impacts vegetation growth in winter months (Lin et al., 2012; He et al., 2017). However, forest 

and shrub vegetation types are highly responsive to the sub-basin’s SWC during the wet season. 

Therefore, forest and shrub responses were increased by 48.8% and 49.43%, respectively, in 

the wet season when compared to the dry season. 

Similarly, vegetation responses and groundwater relationships against SWC and 

groundwater flow were analysed during the dry season using machine learning algorithms. The 

vegetation NDVI (including all vegetation in the sub-basin) against GW and SWC produced 

highly positive correlation coefficient values (r) (0.76, and 0.73 respectively). However, when 

the model was run against GW and SWC together, the r value becomes higher (0.81). The 

overall RF model performance was 7.3% better against runoff over the SVM classifier. The 

result shows that the RF classifier performs better than the SVM algorithm in the predictions. 

This result supports the findings of other studies where RF is widely used for crop mapping, 

urban studies and particularly for land use/land cover applications (Sheykhmousa et al., 2020). 

In this study, the WEKA model produced different r values when considered a combined 

vegetation NDVI dataset at the sub-basin level. For example, the values of r between the sub-

basin NDVI and GW, SWC were 0.75, 0.73, and 0.81, respectively. This means that vegetation 

in the sub-basin within a floodplain is highly responsive to groundwater flow and SWC during 

the dry season. 

Not surprisingly, it was found that shrub and forest type vegetation are highly 

responsive to GW (r = 0.63 and 0.58, respectively) compared to grass (r = 0.30). These results 
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support that woody vegetation type is highly responsive to groundwater, while the non-woody 

vegetation type immediately responds to rainfall by seed or rhizome regeneration (Sandi et al., 

2020). However, both shrub and forest vegetation were moderately responsive to SWC and 

GW (r = 0.66 and 0.59, respectively). This means tree and shrub vegetation can grow well 

when SWC and groundwater flow increase after the rainfall in dry season. Moreover, this study 

suggests the grass vegetation type is highly dependent on groundwater during the dry and 

winter season for their growth, and any instability or long-term drought can negatively affect 

these floodplain vegetation communities. 

A comprehensive documentation of different types of vegetation and groundwater 

relationships can be prepared for efficient floodplain vegetation management based on the 

results of this study. Agricultural production in similar regions around the world can be 

increased by selecting appropriate crops based on their seasonal response to groundwater. 

Authors should discuss the results and how they can be interpreted from the perspective of 

previous studies and of the working hypotheses. The findings and their implications should be 

discussed in the broadest context possible. Future research directions may also be highlighted. 

5.6. Conclusion 

The analytical findings underscore the profound interrelationship between the 

vegetation system and groundwater hydrology, particularly emphasising the pronounced 

dependency on groundwater hydrology during the dry season., More specifically, shrub and 

grass type vegetation that are located distant from the water outlet in the HRU, highly 

responsive to groundwater availability during summer period. However, similar type 

vegetation that are located near the water outlet, become less responsive to groundwater flow. 

This suggests that small and medium-rooted vegetation, for instance, quince, feijoa, wheat, and 

oats etc., can grow well in similar floodplains globally, with possible implications for water 

management during the dry season. 

The results of the study conclude interdependence between floodplain vegetation and 

catchment hydrology is reciprocal, and alterations in the surroundings can have a direct impact 

on the vegetation's response to groundwater. For example, suitable growing temperature and 

available water can boost vegetation growth which, in turn, contributes to increasing the 

potential evapotranspiration rate. On the other hand, grass type vegetation growth helps to 

increase the infiltration. The hydrological simulation results suggested that rainfall dominates 

the study area catchment water balance, in which groundwater flow increases in the wetting 
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period between April and September. Any alterations in the groundwater condition within the 

basin region can have a direct influence on the state of vegetation, which need to be included 

in future studies applying LAI in the hydrological modelling. As rainfall dominates the 

catchment hydrology, any future changes in the rainfall pattern need to be considered carefully 

for better floodplain management. Measuring the field soil moisture data and applying that data 

for model calibration could be another option to compare model simulation to support the 

output results. 

This study contributes scientific insights into groundwater-vegetation relationship and 

outlines a methodology for modelling the relationship in contrast to seasonal groundwater 

variations. The findings of this research have the potential to aid in the development of 

sustainable floodplain vegetation systems in both temperate and semi-arid environments. The 

study analysed various vegetation types and their proximity to streamflow, while also 

evaluating their responses to groundwater variables. However, there could be other factors, 

e.g., vegetation density and depth of root can be included in the future studies. Further research 

should consider improving the modelling results applying more data for intense rainfall and 

extreme drought years. Thus, the multiple regression including a time lag, temperature, or 

rainfall frequency as well as future climate projections may give better understanding on 

ecosystem hydrology. 

The next chapter, Chapter 6, will present and discuss the vegetation response modelling 

under future changing climate at catchment level.  
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CHAPTER 6: MODELLING FLOODPLAIN VEGETATION 

RESPONSE TO CLIMATE CHANGE 

 

6.1. Introduction 

Chapter 5 discussed the floodplain vegetation responses to groundwater variability at 

the catchment level in the floodplain using SWAT hydrological modelling, remotely sensed 

leaf area index (LAI) data, and machine learning algorithms. This preceding chapter revealed 

the connections between the response of vegetation and groundwater through correlation 

analysis.  

The analysis of the hydrological cycle can be conducted with greater accuracy by 

utilising remotely sensed data, as indicated by the literature review presented in Chapter 2. The 

incorporation of satellite imagery data in catchment hydrological analysis would augment the 

model's capacity to simulate catchment hydrology on larger geographical scales accurately. 

The recent advancements in satellite technology have paved the way for a substantial 

opportunity to access a vast amount of new-generation imagery data in the present and 

upcoming years. The literature on remotely sensed imagery data is expanding, however, there 

is currently no reported use of such data for model calibration and vegetation response 

modelling within temperate floodplain ecosystems. 

The future climate projections from three GCMs were considered under two climate 

scenarios, RCP4.5 and RCP8.5 for a future period from 2031 to 2100. The correlation between 

the response of vegetation and the water present beneath the sub-surface is analysed in this 

research using Terra’s Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area 

index (LAI) and groundwater flow (GW) data. A semi-distributed hydrological model was 

employed to simulate leaf area index (LAI), as well as assessing the catchment hydrological 

variables. The Digital Elevation Model (DEM) derived from the SRTM imagery, in addition 

to remotely sensed vegetation indices data (e.g., LAI) generated from MODIS Terra and Aqua 

sensors, was developed, and evaluated using ArcGIS tool. 

The findings of this study can be used for sustainable floodplain conservation, 

restoration, land-use planning, policy-making, and to help floodplain communities better 

prepare for and respond to changing flood patterns and related challenges under changing 

climate. The modelling results reveal that rainfall pattern is fluctuating under future projections 
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in the study area, in which the warmer season is more effective for the vegetation greenness. 

Moreover, the modelling results highlighted the increase in the average projected future winter 

temperature, can be potential opportunities for cultivating vegetation during the winter season. 

This Chapter is organised into six sections. Section 1 outlines the scope of the Chapter, 

while Section 2 examines the literature on the use of satellite data for model calibration and 

correlation analysis between vegetation greenness and groundwater in floodplain regions. 

Section 3 discusses the Methods required to achieve the objectives of the Chapter. In section 

4, the results of the correlation and regression analyses were conducted on SWAT-simulated 

groundwater variables and MODIS LAI data under GCM's future climate projections. Section 

5 thoroughly evaluates and analyses the discoveries in relation to the established objectives and 

research gaps identified in Section 2. The Chapter concludes in Section 6 by elucidating the 

consequences of the outcomes and offering suggestions for forthcoming investigations. 

 

6.2. The need for modelling of floodplain vegetation response to climate 

change 

Global climate change has been a great concern to researchers due to its impact on 

human and vegetation dynamics (Biggs et al., 2017; Callaghan et al., 2020). It is now well 

documented that climate change impacts on vegetation dynamics have negatively influenced 

global ecosystems; thus, ecosystem vulnerability has become one of the highlighted topics in 

earth science and ecological studies (Reichstein et al., 2013; Zhou et al., 2014; Xu et al., 2020). 

According to IPCC (2014), the continuous human-induced greenhouse gas emissions may 

exaggerate further warming and increase the climate change. This changing climate will 

significantly impact vegetation, particularly in floodplain areas, as it alters river flow and flood 

regimes. Therefore, understanding the floodplain ecosystem vulnerability in the context of 

climate change is one of the important issues of the current climate change study. 

A floodplain is usually situated along rivers, lakes, deltas, and estuaries that harbors 

great diversification because of large spatio-temporal heterogeneity (Ward et al., 1999; Mosner 

et al., 2015). It is known as a resource-rich area in terms of soil nutrients that help to grow 

vegetation, and thousands of species make their habitat in the floodplain area worldwide. The 

floodplain vegetation provides an important role in catchment hydrology, as well as 

contributing to regulate carbon cycle (Kingsford, 2000; Adepoju et al., 2019). The 

physiological properties of the vegetation such as stomatal resistance leaf area index, rooting 
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depth, albedo, and soil moisture use influence the climate (Glenn et al., 2008). Moreover, 

floodplain vegetation protects riverbank erosion by reducing overland flow speed and 

increasing infiltration (Liu et al., 2018). On the other side, vegetation links atmosphere and 

hydrosphere by transpiration processes and its dynamics help maintaining the functions of the 

earth's ecosystems (Adepoju et al., 2019). However, floodplain systems are directly influenced 

by precipitation that causes high flows and inundates floodplains during an extensive 'wet' 

season and makes them waterless in 'dry' season (Ward et al., 2014). In addition, the ecosystem 

functions entirely depend on the duration, timing, strength, and seasonal variability of 

floodplain inundation (Junk & Wantzen, 2004). These inundation characteristics rely on 

climatic factors, and among them the most important factor is precipitation, its pattern has been 

changed globally due to climate change (Brown et al., 2017; Jiang et al., 2017). Thus, it is 

important to understand vegetation responses to climate change for sustainable floodplain 

conservation and restoration. 

In general, vegetation dynamics is directly influenced by two important factors, climate 

variability and land use change (Adepoju et al., 2019). In can be simplified that land use change 

is more likely to change the hydrological processes, whereas climate change is the main actor 

in changing phenology, evapotranspiration, and ecological balance (de Jong et al., 2011). 

Previous studies also explained that temperature increase due to climate change can prolong 

vegetation growth season and promote vegetation productivity (Qu et al., 2020). However, in 

the arid and semi-arid region, increasing temperature may cause water stresses and inversely 

affect the vegetation growth, especially in the floodplain areas (Muhury et al., 2022). 

Researchers have addressed the biophysical effects of vegetation on climate in numerous 

studies by investigating deforestation (Lawrence et al., 2022), land use and land cover change 

(Santos et al., 2023), changes in physiological vegetation characteristics (Lian et al., 2022), and 

impact on monsoonal circulations (Spracklen et al., 2018). However, several studies found that 

vegetation growth was strongly affected by global climate change in the last few decades in 

arid and semi-arid regions (Tucker et al., 2001; Xu et al., 2014). Australia is a continent where 

both arid and semi-arid characteristics can be found in its different regions. Water stress is 

prominent for over the last few decades in the south-eastern part of Australia, and future climate 

predictions show a decreasing rainfall pattern (Muhury et al., 2023). The floodplain vegetation 

response to changing climate is not linear and it is very important to quantify the influence of 

various climate-induced factors on floodplain vegetation considering the spatial and temporal 

heterogeneity of a given area. Therefore, quantifying the responses at sub-catchment level 
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helps to assist floodplain ecosystems to prepare and respond to changing flood patterns and 

related challenges. 

The global climate has changed rapidly in the last century that caused temperature 

increasing by 0.74°C, as well as changing the precipitation patterns and its intensity (Jiang et 

al., 2017). In addition, the mean precipitation is also decreasing in the arid and semi-arid areas 

leading to droughts in these regions (Jiang et al., 2017; Wu et al., 2022). Australia is mostly an 

arid region and highly sensitive to precipitation changes, and this precipitation change caused 

streamflow reduction in southeast Australia (Head et al., 2014). In recent decades, the 

precipitation in southeast Australia has declined, more precisely it is noticeably changing 

during the winter season (McKay et al., 2023). This winter precipitation decline has impacted 

agricultural production by reducing river flow in the Murrumbidgee River which is one of the 

main rivers in the Murray-Darling Basin (MDB) (Prosser et al., 2021). The summer 

precipitation trend in this area is highly variable that makes it difficult to understand the 

significance of long-term trends in the southeast Australian precipitation (Prosser et al., 2021; 

Muhury et al., 2023). Research studies suggest that rainfall patterns are likely to change across 

the MDB in the near future, with a projected rainfall decrease by 15% to 20% in the Basin area 

(Muhury et al., 2023). 

Precipitation trends rely on both climate dynamics and thermodynamics changes; thus, 

it is difficult to understand how anthropogenic force will influence southeast Australian 

precipitation (Marvel et al., 2019; Bonfils et al., 2020). However, the climate system is very 

complex, and it is reasonable why climate change studies are focused on specific climate 

components of the global climate change. Therefore, in this study climate components such as 

precipitation and temperature effects were considered in relation to vegetation leaf area index 

(LAI). 

Leaf area index (LAI) provides information about the density and spatial arrangement 

of leaves within a vegetation canopy, which is essential for understanding various ecological 

processes and estimating primary productivity (Kumar et al., 2019; Mohammadi Igder et al., 

2022). Moreover, LAI is a measurement, commonly used in ecology and remote sensing to 

describe the amount of leaf area per unit of ground area in a plant or vegetation canopy that 

represents the potential leaf surface area for photosynthesis (Fang et al., 2019). LAI has been 

used in eco-hydrological studies as this vegetation attribute correlates with plant phenological 

development (Alemayehu et al., 2017). Among few hydrological models, the Soil and Water 

Assessment Tool (SWAT) has been widely applied for plant growth study, catchment water 

balance modelling as well as other hydrological features (Mekonnen et al., 2018; Duan et al., 
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2019; Tan et al., 2020). SWAT model simulates the seasonal leaf area index (LAI) by 

employing a day length threshold and heat unit theory using a simplified version of the 

Environmental Policy Impact Climate (EPIC) growth module (Chen et al., 2023). Besides, this 

attributable EPIC module ignores spatiotemporal heterogeneity of vegetation, resulting in poor 

simulation of vegetation dynamics (Chen et al., 2023). Introducing precipitation in the SWAT 

model to track vegetation for new growing season, the simulation of vegetation dynamics in 

SWAT model has been improved (Strauch & Volk, 2013; Valencia et al., 2022). Previous 

studies have successfully applied SWAT model globally for drought monitoring and vegetation 

growth predictions (Muhury et al., 2022). However, to date, there has been no study on 

vegetation greenness modelling by SWAT hydrological model under future climate scenarios, 

based on projected minimum and maximum temperature and precipitation.  

In previous climate studies, General Circulation Models (GCMs) have been applied for 

future climate projections in the hydrological modelling (Muhury et al., 2023). There are 

several GCMs available under the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

to address the various climatic issues, which is not always feasible due to limitation of 

resources (Sa’adi et al., 2020). Therefore, the selection of GCM is necessary for a specific 

catchment to project future climate according to CMIP5 under RCP scenarios (Ouyang et al., 

2015; Sa’adi et al., 2020). There are various statistical and multicriteria decision-making 

(MCDM) techniques applied for GCMs performance assessment (Sa’adi et al., 2020; Jose & 

Dwarakish, 2022). However, it is not often easy to select suitable GCMs based on standard 

statistical Multi-Criteria Decision Making (MCDM) technique (Jose & Dwarakish, 2022). In 

this study, the selection of GCMs was based on their ability to simulate historical rainfall, their 

country of origin, and their application in the previous studies. 

By applying different GCMs projected climate data to the hydrological model in 

simulating LAI and analysing the relationship among climate factors, SWAT variables and 

LAI, this study constructed the vegetation growth in a floodplain area with moderate slope. 

Then, this study focused on analysing vegetation greenness shifting in response to long term 

climate change under various climate scenarios to identify the outcomes that can be utilised in 

similar areas around the world. 

This research seeks to assess the impacts of climate change variability on floodplain 

vegetation in the Burrinjuck sub-catchment in the south-east part of Australia. To achieve this 

goal, a hydrological modelling framework was used to simulate LAI under future climate 

variability and evaluate future vegetation growth under two different emission scenarios (RCP 

4.5 and RCP 8.5). The specific objectives of this study are the following: (1) to understand the 
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potential impacts of future climate change on the floodplain vegetation dynamics using a 

hydrological model simulated Leaf Area Index (LAI) and GCMs projections under two 

scenarios i.e., RCP 4.5 and 8.5; (2) to compare changes in vegetation dynamics monthly and 

seasonally in relation to different GCM and RCP scenarios; and (3) to assess vegetation 

responses to SWAT-simulated hydrological variables under future climate scenarios and 

assessing vegetation greenness responses towards them. 

 

6.3. Materials and methods 

6.3.1. Study area 

The Burrinjuck sub-catchment, which is part of the Upper Murrumbidgee River 

catchment in the south-east part of Australia (Figure 6.1), was selected as the study area. This 

area is located within 34.53° S and 148.31° E and -35.14° S and -148.55° E. The Burrinjuck 

Dam was built on the Murrumbidgee River in 1927 to improve the agricultural irrigation in the 

southern part of New South Wales (NSW) (Muhury et al., 2023). This Murrumbidgee River 

begins its journey from Kosciuszko National Park with an altitude of 1500m and flows around 

316km to enter the Burrinjuck Reservoir. The Burrinjuck sub-catchment was considered as the 

study area due to the plant diversity in this floodplain with moderate slopes and varying 

elevation from 373m to 934m (Muhury et al., 2022). The land use and land cover in this area 

is mostly dominated by forest and pasture, however, wheat and cereals also grow well in this 

area that contribute to the national agricultural production (Muhury et al., 2023). Moreover, 

the diverse rainfall in the lower and upper Murrumbidgee makes this floodplain suitable. The 

detailed climatic characteristics of the study area were described in the previous chapter 

(Chapter 3). Overall, the Burrinjuck sub-catchment has a diverse range of vegetation types and 

land use classes (Figure 6.1) that makes this area unique within the Murrumbidgee River 

catchment. 
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Figure 6.1: The Burrinjuck sub-catchment watershed area on the right (generated by SWAT 

model) is located within the Murrumbidgee River basin on the bottom left.  

  
 

6.3.2. Research methods 

Chapter 3 has largely explained about the methods required in the current chapter. On 

the other hand, the specific methods applied in this present study have been outlined in Figure 

6.2. The SWAT model was setup using ArcGIS (ArcMap) to mimic the Burrinjuck sub-

catchment hydrology. The model input datasets used in this study were obtained from 

governmental data portals, such as Climate Change in Australia, Bureau of Meteorology 

(BOM), and U.S. Geological Survey (USGS). For data analysis, Microsoft Excel and Tableau 

tool were used. The model simulated LAI has been calibrated and validated against the 

Moderate Resolution Imaging Spectroradiometer (MODIS) LAI data. The SWAT model was 

also calibrated and validated using the SWAT-CUP tool with station-gauged streamflow data. 
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Figure 6.2: An overview of the research methods used for modelling vegetation responses 

and future climate change. 

 

6.3.3. An overview of SWAT hydrological model 

The Soil & Water Assessment Tool  (SWAT) is a semi-distributed, physically based 

watershed model that simulates the major water balance components continuously at a daily 

time step (Arnold et al., 1998). In the SWAT model, a watershed is being delineated into 

multiple sub-basins based on spatial characteristics. These sub-basins are further subdivided 

into Hydrological Response Units (HRUs) according to individual land use, soil, and 

topography (Neitsch et al., 2011; Gassman et al., 2014). Each HRU is simulated for vegetation 

growth, soil water content, groundwater flow, nutrient cycles, sedimentation, and land 

management practices, in which the outputs are aggregated at the sub-basin scale through 

channel processes (Arnold et al., 2012; Saha et al., 2014). In this study, the primary focus is on 

vegetation growth at the level of HRUs. The water balance calculations at HRU level include 

surface runoff, infiltration, evaporation, plant uptake, lateral flow, and percolation to lower 

layers (Neitsch et al., 2011). SWAT estimates surface runoff and infiltration from daily 

precipitation using the Soil Conservation Service (SCS) and Curve Number (CN) method 

(Zhang et al., 2019). The hydrological cycle in the watershed can be mimicked by SWAT 
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simulation, where model calculation is based on the following water balance equation (Neitsch 

et al., 2011): 

 

           𝑆𝑊𝑡 = 𝑆𝑊0∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑖
𝑡
𝑖=0                                (1) 

Where SWt is the ultimate water content in (mm), SW0 is the amount of water content on the 

first soil of the day I (mm), t is time (days), Rday is the amount of rainfall on day i (mm), Qsurf 

is the amount of surface runoff on specific day i (mm), Ea is the amount of evapotranspiration 

on day i (mm), Wseep is the amount of water percolated into the vadose zone from the soil profile 

on day i (mm), and Qgw is the amount of return flow on day i (mm). 

SWAT provides three methods to estimate potential evapotranspiration (PET): i) 

Priestley–Taylor, ii) Penman–Monteith, and iii) Hargreaves method. In this study Penman–

Monteith method was applied to calculate PET (Penman, 1948; Xiang et al., 2020). The 

Penman–Monteith equation used in SWAT can be expressed as: 

 

𝜆𝐸 =
Δ (𝐻𝑛𝑒𝑡–- 𝐺)+ 𝜌𝑎𝑖𝑟∗𝐶𝑝∗[𝑒𝑧

0–- ez]/𝑟𝑎

Δ + 𝛾(1 + 
𝑟𝑐
𝑟𝑎
 )

                                              (2) 

 

where λE is the flux density of latent heat (MJm-2 d-1), E the depth rate evaporation (mmd-1), Δ 

refers to gradient of saturation vapor pressure temperature curve (kPa°C-1), H the net radiation 

(MJm-2 d-1), G the ground heat flux density (MJm-2 d-1), cp the specific heat (MJkg-1 °C-1), 𝜌𝑎𝑖𝑟 

refers to air density  (kgm-3), ez the water vapor pressure of air at elevation (kPa), 𝑒𝑧
0 the 

saturation vapor pressure of air at elevation z (kPa), rc the plant canopy resistance (sm-1), γ the 

psychrometric constant (kPa°C-1), and ra the aerodynamic resistance (sm-1). Plant growth is 

estimated in rc by dividing the minimum effective stomatal resistance for a single leaf, 𝑟𝑙  (sm-

1) by one-half of the leaf area index (LAI): 

𝑟𝑐 =
𝑟𝑙

0.5.𝐿𝐴𝐼
                                                                    (3) 

Further details regarding the water balance and ET equations can be found in the SWAT 

documentation (Neitsch et al., 2011). 

 

6.3.4. Vegetation dynamics modelling in SWAT  

SWAT model incorporates the simplified version of the Erosion Productivity Impact 

Calculator (EPIC) plant growth module to simulate the annual vegetation growth (Neitsch et 



 

113 

 

al., 2011; Ma et al., 2019). In the EPIC plant growth module, the LAI was simulated as a 

function of canopy height, which is required to calculate the canopy resistance and the 

aerodynamic resistance (Neitsch et al., 2011). At the initial stage of plant growth, canopy height 

and leaf area development are controlled by the optimal leaf area development function. The 

function of the optimal leaf area development is listed as: 

 

𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥  =
𝑓𝑟𝑃𝐻𝑈

𝑓𝑟𝑃𝐻𝑈 + exp (l1− l2 ∗ 𝑓𝑟𝑃𝐻𝑈)
                                              (4) 

 

𝑓𝑟𝑃𝐻𝑈= 
∑ 𝐻𝑈𝑑
𝑖=1

𝑃𝐻𝑈
                                                          (5) 

 

Where 𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥  is the fraction of the plan’s maximum leaf area index for the plant, l1 and l2 

are the shape coefficients, 𝑓𝑟𝑃𝐻𝑈 is the fraction of potential heat units for a certain period during 

the growing season, HU is the heat units accumulated on a given day (d) which can be only 

positive value, and PHU is the potential heat units required for each plant maturity. PHU refers 

to the number of days between budding and leaf senescence. For annuals and perennials plant 

growth, before the LAI reaches its maximum value, the leaf area added on day i is calculated 

as follow: 

 

𝛥𝐿𝐴𝐼𝑖  =  (𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,𝑖 − 𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,𝑖−1) ∗ 𝐿𝐴𝐼𝑚𝑎𝑥  ∗ { 1 − 𝑒
[5∗(𝐿𝐴𝐼𝑖−1– 𝐿𝐴𝐼𝑚𝑎𝑥)]}                    (6) 

 

which is then used to calculate total leaf area index as follows: 

 

𝐿𝐴𝐼𝑖  =  𝐿𝐴𝐼𝑖−1  +   𝛥𝐿𝐴𝐼𝑖                                                               (7) 

 

In the above equations, 𝛥𝐿𝐴𝐼𝑖 is the leaf area added on day i, 𝐿𝐴𝐼𝑖 and 𝐿𝐴𝐼𝑖−1 are the leaf area 

index on day i and leaf area index on previous day, 𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,𝑖 and 𝑓𝑟𝐿𝐴𝐼𝑚𝑎𝑥,𝑖−1 are the fraction 

of the plant’s maximum leaf area for day i and i–− 1, respectively. 𝐿𝐴𝐼𝑚𝑎𝑥 is the maximum 

leaf area index of the plant. 𝐿𝐴𝐼𝑚𝑎𝑥 for grown trees can be adjusted by considering the age of 

the trees and the time required for the plant species to reach full growth (Neitsch et al., 2011). 

However, the actual LAI calculated for each day may differ from optimal growth due to 

variation in the availability of temperature, soil water, and other factors.  
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By default, SWAT uses a fundamental feature, named dormancy, at which plants do 

not grow during the shortest days of the year. During dormancy, a portion of biomass changes 

to residue where LAI is set to minimum for related plant. Dormancy also resets a fraction of 

potential heat units to zero, thus, a new growing cycle begins when length of the day reaches 

the latitude-specific threshold. However, tropical plants do not become dormant and heat units 

and fraction of potential heat units accumulate continuously throughout the whole simulation 

period. As SWAT only simulates plant growth when the plant reaches at maturity (instead of 

dormancy), the model requires a management configuration “kill” option for stopping a 

growing season and triggering a new one. In this study, the plant growing season was 

considered to start from the beginning of the simulation for trees. This model setting forced 

SWAT to consider one growing cycle in the first year of the 8-year long simulation period. In 

the remaining seven years, the potential heat units increased continuously since there is no reset 

mechanism without dormancy. Therefore, the LAI simulations in SWAT, based on scheduled 

management operation, represent higher value in summer and lowest in winter (Strauch & 

Volk, 2013). 

 

6.3.5. Hydrological model setup at study catchment 

SWAT2012 can be run using GIS tool in Windows operating system. This study utilised 

ArcMap v10.6 (Desktop version) to execute SWAT2012 Revision 681. The watershed was 

delineated using a 30 m resolution digital elevation model (DEM). A total drainage area of 872 

km2 was selected in the Burrinjuck sub-basin with the help of DEM and the Murrumbidgee 

River network, thus, it divided the watershed into 18 Sub-basins and then categorised into 158 

HRUs depending on the unique land use, soil, and slope. After completion of the SWAT setup, 

it was initially run for 21 years including 2 years of warmup period from 2000 to 2020. The 

SWAT model was calibrated against observed streamflow data obtained from the Australian 

Bureau of Meteorology (BOM) using additional SWAT Calibration and Uncertainty Programs 

(SWAT-CUP) tool. Moreover, the SWAT model was also calibrated using remotely sensed 

LAI data processed from 500 m spatial resolution and 8-day temporal dataset of MODIS LAI 

type MOD15A2H, for each HRU by spatial aggregation. 
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6.3.6. Assessment of model performance criteria 

Hydrological model performance evaluation is crucial to assess model accuracy and 

reliability in simulating the behaviour of the hydrological system. There are different metrics 

and methods for model performance evaluation, however, the selection of evaluation criteria 

may depend on the specific objectives of the modelling and the available data. In this study, a 

few statistical metrics were considered for model evaluation, such as the coefficient of 

determination (R2), Nash-Sutcliffe efficiencies (NSE), and percent bias (PBIAS) quantitative 

statistics (Moriasi et al., 2007; Setegn et al., 2009; Zhang et al., 2009). Moreover, twenty one 

SWAT parameters were applied in the SWAT-CUP simulation and ranked them according to 

the model performance acceptance guidelines suggested by Arnold et al., (Arnold et al., 2012) 

which are presented in the latter section. 

The Nash-Sutcliffe Efficiency (NSE), also known as the Nash-Sutcliffe coefficient, is 

a widely used dimensionless statistical metric to assess the performance of hydrological models 

or other environmental models. It was proposed by Nash and Sutcliffe in 1970 (Nash & 

Sutcliffe, 1970). NSE is particularly useful for evaluating models that simulate time series data, 

such as streamflow or water level. The NSE compares the predictive performance of a model 

with the performance of a simple benchmark model, usually represented by the mean of the 

observed data. The NSE ranges from negative infinity to 1, with 1 representing a perfect match 

between the predicted and the observed data, 0 indicating that the model performs no better 

than the mean of the observed data, and negative values indicating that the model performs 

worse than the mean. NSE is defined as: 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜𝑏𝑠, 𝑖 − 𝑄𝑠𝑖𝑚, 𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜𝑏𝑠, 𝑖 − 𝑄𝑜𝑏𝑠)
2

𝑛
𝑖=1

   (8) 

In the above equation, n is the number of time steps, 𝑄𝑜𝑏𝑠, i is the observed flow at time step i 

(daily here), 𝑄𝑜𝑏𝑠 is the mean of the observed flow, and 𝑄𝑠𝑖𝑚, i is the simulated flow.  

The coefficient of determination, known as R² (R-squared), is a statistical metric used 

to assess how well a regression model fits the observed data. In the context of regression 

analysis, R² quantifies the proportion of the variance in the dependent variable that is 

predictable from the independent variable(s) in the model. It provides a statistical measure of 

the goodness-of-fit of the regression model. The R² value ranges from 0 to 1, where 0 indicates 

that the regression model explains none of the variance in the dependent variable, meaning it 



 

116 

 

does not fit the data at all. A hydrological model with higher R2 is considered as a good result 

(Wu et al., 2022). R2 is defined as: 

𝑅2 = {
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄
𝑠𝑖𝑚
)(𝑄𝑖

𝑠𝑖𝑚 − 𝑄
𝑠𝑖𝑚
)𝑛

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 −𝑄

𝑜𝑏𝑠
)𝑛

𝑖=1

2

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄

𝑜𝑏𝑠
)𝑛

𝑖=1

2}
2      (9) 

 

where, 𝑄𝑖
𝑜𝑏𝑠 and 𝑄𝑖

𝑠𝑖𝑚are representing the measured and simulated data for ith observation and 

𝑄
𝑜𝑏𝑠

 and 𝑄
𝑠𝑖𝑚

are the mean of the measured and simulated data, respectively. 

The percent bias (PBIAS) provides a measure of the systematic tendency of the model 

to greater or smaller simulated values than their observed data (Arnold et al., 2012). The 

maximum PBIAS value is zero, indicating the simulation is unbiased and similar to the 

observed data. In general, a smaller PBIAS value signifies accurate model simulation. PBIAS 

is calculated as: 

𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 −𝑄𝑖
𝑠𝑖𝑚)𝑛

𝑖=1 ∗ 100

∑ 𝑄𝑖
𝑜𝑏𝑠𝑛

𝑖=1

       (10) 

In the above equation, 𝑄𝑖
𝑜𝑏𝑠 and 𝑄𝑖

𝑠𝑖𝑚 are representing the measured and simulated data for the 

ith observation, respectively. 

6.3.7. Trend analysis of time series data 

In this study, a non-parametric statistical test known as the Mann-Kendall trend test 

was applied to examine the presence or absence of monotonic trend in time series data (Mann, 

1945; Hamed, 2009). This test is particularly useful when the traditional parametric test is less 

appropriate, or the time series data do not meet the normality assumptions. This Mann-Kendall 

test is commonly used in different research studies including earth science, hydrology, 

climatology etc. to understand whether there is a significant increasing or decreasing trend, as 

well as to quantify the strength of that trend. The following equation (11) is used to determine 

the Mann-Kendall test statistic.  

                         (11)                                                     

 

 

𝑆 = ∑∗

𝑛−1

𝑖=1

∑ 𝑠𝑖𝑔𝑛 (𝑋𝑗 – 𝑋𝑖

𝑛

𝑗=𝑖+1

) 
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Where 𝑋𝑗 and 𝑋𝑖 represent sequential data in the time series, n represents the size of the time 

series. In the above equation j > i and i=1, 2, 3 . . . . n−1, k = 2, 3, 4 . . . n. The 𝑠𝑖𝑔𝑛 (𝑋𝑗 – 𝑋𝑖) 

is calculated using following equation (12) 

 

𝑠𝑖𝑔𝑛 (𝑋𝑗 – 𝑋𝑖) = {

+1 𝑖𝑓(𝑋𝑗 – 𝑋𝑖) > 0

0 𝑖𝑓(𝑋𝑗 – 𝑋𝑖) = 0

−1 𝑖𝑓(𝑋𝑗 – 𝑋𝑖) < 0

                                              (12) 

The variance of S can be calculated from the following equation: 

               𝑉𝑎𝑟 (𝑆) =  
𝑆(𝑛−1)(2𝑛 + 5) – ∑ 𝑡𝑝 (𝑡𝑝−1)(2𝑡𝑝+5)

𝑝
𝑞

18
                               (13) 

 

Where, q is the number of tied groups in the datasets, 𝑡𝑝 is the number of data in the pth tied 

group, n is the total number of data in the time series. A positive value of S indicates that an 

increasing and negative value of S is decreasing trend of time series data. The following 

equation (4) is used to calculate the Mann-Kendall test statistics. 

𝑍𝑠 =

{
 
 

 
 

𝑆−1

√𝑣𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆+1

√𝑣𝑎𝑟(𝑆)
 𝑖𝑓 𝑆 < 0

                                                                       (14) 

The degree or rate of change can be calculated using the Thiel-Son slope method. Equation (X) 

is used to calculate the Theil–Sen slope (β). 

               𝛽 =  𝑚𝑒𝑑𝑖𝑎𝑛 (
Xj – Xi 

𝑗 – 𝑖
)                                                                  (15) 

 

Where 𝑋𝑗 and 𝑋𝑖 represent sequential data in the time series, i=1,2,3….n-1 and j >i. 

 

6.3.8. Data preparation 

SWAT requires a combination of both climate and land properties data to build a 

hydrological model. These data requirements can be categorised into essential such as DEM, 

soil map, land use map, and weather data (precipitation, temperature, windspeed, solar 

radiation, and relative humidity), and non-essential such as streamflow, reservoir information, 

sediment transfer, water quality, chemical and pesticide data. The datasets used in this study, 

including their source of availability, are listed in the Table 6.1. A detailed description about 

the SWAT input data was outlined by (Muhury et al., 2022). 
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Table 6.1: The datasets used in this chapter including the frequency, source, and description. 

Data Frequency Description Source 

DEM - 30 m spatial resolution U.S. Geological Survey 

Land cover/land use 

map 
- 50 m spatial resolution 

NSW Office of Environment and 

Heritage 

Soil Map - 250 m spatial resolution Digital Atlas of Australian Soil 

MODIS LAI 8-Day 500 m spatial resolution U.S. Geological Survey 

Temperature Daily Station gauged, temporal Bureau of Meteorology 

        Solar Radiation Daily Station gauged, temporal Bureau of Meteorology 

Precipitation Daily Station gauged, temporal Bureau of Meteorology 

Relative humidity Daily Station gauged, temporal Bureau of Meteorology 

Wind speed Daily Station gauged, temporal Bureau of Meteorology 

Streamflow (discharge) Daily Station gauged, temporal NSW Office of Water 

 

6.3.9. Leaf Area Index (LAI) 

The LAI is widely used in research studies to assess the amount of leaf area in an 

ecosystem, which is a dimensionless and time-dependent vegetation parameter (De Bock et al., 

2023). Watson (1947) defined LAI as the ratio of one-sided leaf area in the canopy per unit 

ground surface area [m2 m-2]. It is dynamic and subject to change in relation to internal and 

external factors such as plant type, orientation, seasonality, nutrition availability, diseases, etc. 

(Fang et al., 2019). LAI is considered a critical parameter in processes such as respiration, 

rainfall interception, transpiration (ET), and biophysical cycles in ecosystems. Therefore, LAI 

has been extensively used in agriculture and forestry research to estimate vegetation growth, 

yield, biomass, energy, and water balances in the ecosystems. For broad leaf plant, LAI = leaf 

area/ground area, m2/m2, has a value range from 0 to 10 depending on plant physiology and 

growth phase (Pérez et al., 2022).  

6.3.10.General Circulation Models (GCMs) 

In contrast to Phase 3 (CMIP3), CMIP5 models exhibit improvements in terms of 

representing model physics, vertical resolution, and the incorporation of atmospheric aerosols 

(Taylor et al., 2012; Sperber et al., 2013). However, on the premise of CMIP5, CMIP6 

incorporates a more complex global carbon cycle, airborne impacts, atmospheric chemistry, 

terrestrial and marine biogeochemistry, and other processes, further perfecting and improving 

the physical process of each model and improving the model's simulation ability. Moreover, it 
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is worth noting that certain studies have also pointed out instances where CMIP6 models 

exhibited poorer performance than CMIP5 models. For example, Zhou et al. (2022) observed 

inferior simulation results in CMIP6 models concerning air temperature and precipitation in 

humid regions of the Tibetan Plateau when compared to CMIP5 models. GCMs have been 

valuable tools for assessing climate change and for generating climate projections (Brown et 

al., 2017). This study applied GCMs of CMIP5 which adopted carbon cycle models and a 

dynamic vegetation model (Jia et al., 2019). Among these GCMs, eight of them have been 

identified as the best performance model by Australian Government Climate Agencies. 

However, few models are recommended for representing the “best”, “worst”, and “maximum 

consensus” scenarios for any region. In this study, two climate scenarios RCP 4.5 and RCP 8.5 

were considered for future climate projections. RCP 4.5 is a medium-low stabilisation scenario 

in which radiative forcing stabilises at 4.5 Wm2 by the year of 2100 with 650 ppm CO2 

concentration (Xu et al., 2014; Chang et al., 2023; Muhury et al., 2023). However, RCP 8.5 

represents extremely high emission scenario, indicating high radiative forcing pathway that 

leads to 8.5 Wm2 by the year 2100 with CO2 concentration. Substantial uncertainty is present 

in the analyses when using GCM data. Climate projections, for example, are dependent on 

different Greenhouse Gas (GHG) emission scenarios, which involve a range of economic and 

technological development conditions, as well as the interaction between global and local 

growth dynamics (Reshmidevi et al., 2018). The selection of a single GCM has been repeatedly 

pinpointed as the primary source of uncertainty in overall analyses, based on previous research 

(Chen et al., 2011). Given the significant uncertainty associated with GCMs, it is imperative to 

exercise caution when interpreting climate change impacts derived from the utilisation of a 

single GCM. Therefore, numerous multi-model ensemble climate simulations have been 

utilised in a variety of recent studies (Jung et al., 2013). 

After conducting a robust literature review, the outputs of three GCMs, i.e., 

ACCESS1.0, MK3.6, and MIROC5, were used to assess the future climate change impact on 

the Burrinjuck sub-basin vegetation community. ACCESS1.0, MK3.6, and MIROC5 were 

selected to project future climate variables such as temperature and precipitation that directly 

correlate to vegetation growth, for the two emission scenarios RCP 4.5, and RCP 8.5. However, 

ACCESS1.0 (known as maximum consensus scenario model), which defined as the future 

climate populated by the highest number of models, that number must be greater than one-third 

of the total number of available GCMs (Muhury et al., 2023). 
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6.3.11.Bias correction 

Biases in climate model simulation are common which can be detected through 

validation. This involves comparing the model's output with observations and conducting 

various analyses, such as calculating the mean and other complex computations. In this study, 

bias corrected application-ready data was utilised, employing the quantile mapping method. 

The utilisation of the quantile mapping approach is favored for its simplicity and 

effectiveness in correcting biases in climate models' outputs. This approach, also referred to as 

'probability mapping' and 'distribution mapping', involves establishing a statistical relationship 

between observed and model-simulated outputs (Gupta et al., 2019). This is achieved by 

substituting the simulated values with observed values at corresponding cumulative density 

function (CDF) positions within the chosen distribution, based on the climate variable being 

analysed. Precipitation values above 0 are adjusted for bias by aligning the daily precipitation 

values for each month with the Gamma distribution, which specifically considers values 

exceeding 0. The correction for precipitation bias is determined through the utilisation of the 

following equation (Ines & Hansen, 2006); 

 

𝑥̅𝑚𝑠.𝑐𝑜𝑟𝑟 = {
𝐹𝑜ℎ
−1(𝐹𝑚ℎ(𝑥𝑚𝑠)),     𝑥𝑚𝑠 ≥ 𝑥𝑡ℎ
0,     𝑥𝑚𝑠 < 𝑥𝑡ℎ

                             (16) 

Similarly, temperature values vary from negative to positive. Therefore, normal distribution 

fits best for temperature data. The equation utilised for correcting temperature data bias can be 

defined as (Li et al., 2010); 

𝑥̅𝑚𝑠.𝑐𝑜𝑟𝑟 = 𝑥𝑚𝑠 + 𝐹𝑜ℎ
−1(𝐹𝑚𝑠(𝑥𝑚𝑠)) − 𝐹𝑚ℎ

−1(𝐹𝑚𝑠(𝑥𝑚𝑠))                                                  (17)

  

where x is climatic variable, xms.corr is bias corrected model simulated data; to categories between the 

wet and the dry day threshold value xth is used (day with precipitation greater than 1 mm is assumed to 

be a wet day); F is CDF, whereas F−1 is its inverse. (o = observed, m = model, h = historical period, 

and s = simulation period). Here, the simulated period can either be historical or a future period. 

6.3.12.Climate scenarios 

GCMs future projections for two climate scenarios are considered in this study and have 

been assessed for future periods, i.e., (i) 2031–2055, (ii) 2056–2075, and (iii) 2076–2100. 

These scenarios are defined by daily time series of climate data based on historical rainfall, and 

temperature from 2031 to 2100. Scenario 1: Representative Concentration Pathway (RCP) 4.5 
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projections for 2031–2055, 2056–2075, 2076–2100. Scenario 2: Representative Concentration 

Pathway (RCP) 8.5 projections for 2031–2055, 2056–2075, 2076–2100.  

Figure 6.3(a) shows the average maximum temperatures according to ACCESS1.0 

model, which are close to the historical maximum temperature under RCP 4.5. However, the 

minimum temperatures are slightly above the average historical minimum temperature shown 

in Figure 6.2(d). According to MIROC5 and MK3.6 climate models projection, the average 

maximum temperature from January to May decrease, and from June to December the 

maximum temperature shows an increasing trend (Figure 6.3b, 6.3c). These two climate 

models predicted minimum temperature decreases for January to June and increases from July 

to December over three future time spans according to RCP 4.5 climate scenarios (Figure 6.3e 

& 6.3f). 

 
Figure 6.3: The GCMs projected maximum and minimum temperatures plotted against 

observed (2000-2020) minimum and maximum temperatures in three different time periods 

(e.g., 2031-2055, 2056-2075, 2076-2100) under climate scenario RCP 4.5. 
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In contrast to climate scenario 8.5, the ACCESS1.0 GCM predictions show that the 

average maximum and minimum temperatures will be increased compared to the historical 

averages, when considering for the future time frames (Figure 6.4a & 6.4d). Likewise, 

MIROC5 and MK3.6, both predict the average maximum temperatures from January to June 

are below the historical average maximum and July to December average temperatures are 

above the historical average (Figure 6.4b & 6.4c). However, the average minimum 

temperatures under MIROC5 for the first five months of the year are close to the historical 

average minimum, whereas the rest of the month’s average is higher than the historical average 

minimum temperature (Figure 6.4e). Considering the MK3.6, January to May temperature 

projections are below the historical average, and July to December predictions are above the 

historical average temperature (Figure 6.4f). 

 
Figure 6.4: The GCMs projected maximum and minimum temperatures (RCP8.5) are plotted 

against observed (2000-2020) minimum and maximum temperatures in three different time 

periods (e.g., 2031-2055, 2056-2075, 2076-2100) under climate scenario RCP 8.5. 
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6.4. Results 

6.4.1. Analysis of the SWAT model output and parameter sensitivity 

In this study, a SWAT model was built using the ArcGIS interface (ArcSWAT) in the 

study area based on remotely sensed data for high resolution DEM, soil map, and LULC map. 

A pre-calibration parameter selection was done according to previous SWAT model run for 

hydrological and vegetation analysis. The model was run using monthly climate data from 2000 

to 2020 which covered both drought and flood conditions in the study area. Table 6.2 listed the 

sensitivity ranking including the descriptions of the parameters. The five parameters according 

to the list were CH_N1, SOL_AWC, ESCO, GW_REVAP, REVAPMN (Table 6.2).  

Table 6.2: Performance indices of SWAT model parameters 

Parameter Name Description t-Stat P-Value Sensitivity 

Rank 

CH_N1.sub Channel Manning’s n 3.03 0.06 1 

SOL_AWC.sol Available water capacity in the soil -2.68 0.08 2 

ESCO.hru Soil evaporation compensation factor 2.02 0.14 3 

GW_REVAP.gw Ground water revap coefficient -1.89 0.16 4 

REVAPMN.gw Threshold depth of water in the shallow 

aquifer for revap to occur [mm] 

1.67 0.19 5 

CH_K2.rte Hydraulic conductivity of the channel 

[mm/hr] 

1.61 0.21 6 

CN2.mgt Curve Number -1.58 0.21 7 

SURLAG.bsn Surface runoff lag coefficient 1.45 0.24 8 

CANMX.hru Maximum canopy storage [mm] 1.39 0.26 9 

HRU_SLP.hru Average slope steepness [m/m] 1.29 0.29 10 

SOL_Z.sol Depth of the soil layer [mm] -1.12 0.34 11 

SLSUBBSN.hru Average slope length [m] -1.11 0.35 12 

SLSOIL Slope length for lateral subsurface flow -1.10 0.35 13 

ALPHA_BNK.rte Baseflow alpha factor for bank storage 

(day-1) 

1.06 0.37 14 

ALPHA_BF.gw Base flow alpha factor (day-1) 1.06 0.37 15 

EPCO.hru Plant uptake compensation factor

  

0.87   0.45   16 

RCHRG_DP.gw Deep aquifer percolation fraction 

[fraction] 

-0.83 0.47 17 
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SOL_K(..).sol Saturated hydraulic conductivity of the 

soil [mm/hr] 

-0.78 0.49 18 

GWQMN.gw Threshold depth of water in the shallow 

aquifer required for return flow to occur 

[mm] 

0.75 0.51 19 

GW_DELAY.gw Ground water delay [days] -0.23 0.83 20 

CH_N2.rte Manning’s coefficient of the channel      0.02 0.98 21 

 

6.4.2. Analysis of the SWAT model calibration and validation against 

streamflow 

The parameters according to the sensitivity ranking were applied for model validation. 

Further, the calibration and validation results were analysed to assess the model performance, 

which outlined NSE values 0.79 and 0.67 for the calibration and validation, respectively. These 

performance results can be marked as ‘good’ for the SWAT model developed in the study area. 

According to the results, the model in the study area was able to simulate about 79% of the 

variance on observed streamflow data. Moreover, ‘R’ values also confirm good correlation 

between observed and simulated streamflow during calibration and validation. The ‘R’ value 

shows very good performance (R=0.82) for calibration and satisfactory (R=0.67) for validation. 

Furthermore, the SWAT model exhibited a significant improvement in statistical indices.  

Figure 6.5 shows calibration (2002 to 2006) and validation (2007 to 2010) results using 

SUFI-2 compared to the observed and simulated streamflow. These results confirm that the 

SWAT model was able to simulate streamflow relatively close to the observed values which is 

a fundamental criterion for SWAT watershed applications (Gassman et al., 2007; Strauch & 

Volk, 2013). The hydrographs show that the observed and simulated values have a noticeable 

difference in the plots. Additionally, the model slightly overestimated the low flow during the 

calibration and validation periods. 



 

125 

 

 

Figure 6.5: Calibration and validation results from SUFI-2 comparing observed and simulated 

streamflow from 2002 to 2006 and 2007 to 2010. 

 

6.4.3. Analysis of the SWAT model calibration and validation against MODIS 

LAI 

In this study, a manual calibration was performed between SWAT simulated LAI and 

MODIS LAI. To do this, the MODIS LAI data was downscaled to match the basic calculation 

units of the SWAT model. The linear interpolation method was applied to segregate the 8-day 

MODIS LAI data into daily time series data and then aggregated to monthly data. Further the 

monthly average LAI was calculated for the entire watershed based on the downscaled and 

original MODIS LAI datasets. The two datasets had the same patterns of seasonal variations, 

where the LAI was highest in December and January and lowest in June. While for the original 

SWAT model, the LAI reaches the peak value in December. In almost every month, the original 

SWAT simulated value was noticeably higher than the remotely sensed LAI. Figure 6.6 shows 

the calibration and validation results between the SWAT LAI and MODIS LAI for ten years 

from 2001 to 2010.  
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Figure 6.6: The calibration and validation of SWAT simulated LAI using remotely sensed 

MODIS LAI data. The calibration period from 2001 to 2006 and validation period 2007 to 

2010. 

 

6.4.4. The outcomes of the trend analysis of the precipitation (historical and 

projected) 

In this study, a python script was created to calculate non-parametric Mann-Kendall 

trend test and Sen’s slope to identify the trends and quantify the changes for GCMs projected 

future rainfall at the Burrinjuck sub-catchment. The trend analysis was consolidated into 

baseline (1980-2020), near (2031-2055), mid-century (2056-2075), and distant (2076-2100) 

periods of time spans. Table 6.3 shows that, except for MIROC5, the ACCESS1.0 and MK3.6 

GCMs projected the annual rainfall with significant decrease by 1.96 to 2.51mm under RCP 

8.5. Moreover, according to MK3.6, the autumn, and winter rainfall would also decrease 

significantly by 2.45mm, and 3.76mm respectively under the same climate scenario. However, 

the MIROC5 projections showed that the rainfall would increase during autumn, winter, and 

spring under RCP 4.5 and RCP 8.5 climate scenarios. 
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Table 6.3: Trend analysis of the precipitation for historical (1980-2020) and three GCM’s 

predicted for future time span (2031-2055). 

Model Scenarios Annual Summer Autumn Winter Spring 

 p Zs β p Zs β p Zs β p Zs β p Zs      β 

Historical Baseline 0.098 -1.65 -5.94 0.451 0.75 0.35 0.645 -0.46 -0.185 0.0172 -2.381 -1.089 0.597 -0.527 -0.288 

ACCESS1.0 RCP 4.5 0.194 -1.297 -1.326 0.440 -0.770 -0.175 0.050 -1.956 -0.164 0.251 1.145 0.135 0.282 -1.074 -0.188 

ACCESS1.0 RCP 8.5 0.0491 -1.967 -1.777 0.795 -0.258 -0.0527 0.152 -1.429 -0.137 0.516 -0.648 -0.080 0.0515 -1.946 -0.255 

MIROC5 RCP 4.5 0.737 -0.334 -0.482 0.090 -1.693 -0.334 0.298 1.039 0.137 0.594 0.532 0.100 0.715 0.365 0.067 

MIROC5 RCP 8.5 0.116 1.571 2.203 0.605 0.517 0.095 0.114 1.576 0.192 0.167 1.378 0.196 0.437 0.775 0.185 

MK3 RCP 4.5 0.130 -1.510 -1.128 0.411 -0.821 -0.116 0.155 -1.419 -0.081 0.026 -2.225 -0.111 0.405 -0.831 -0.102 

MK3 RCP 8.5 0.011 -2.51 -1.350 0.863 0.172 0.016 0.014 -2.453 -0.157 0.0001 -3.761 -0.189 0.293 -1.049 -0.101 

p-value (p) is a statistical measure; Z-score (Zs) is a standardized score; β (beta) represents the slope 

coefficient. The bold numbers are accepted values in the trend analysis. 

 

6.4.5. Analytical results of LAI responses to the future precipitation changes 

Precipitation is another important climate variable that makes water available in the soil 

as soil water content for vegetation growth. To visualise the impacts of the precipitation, the 

average monthly precipitation was plotted against the SWAT simulated LAI in three different 

future time spans (Figure 6.7). The plotted results showed that winter and spring rainfall has 

positive impacts on LAI for all GCMs under both climate scenarios for future time spans. 

However, the LAI had a slight increase and lateral movement during summer and autumn 

where average rainfall was below 45 mm. Moreover, the simulated LAI for all GCMs under 

both scenarios, from February to April, was higher than the MODIS LAI in all three future 

time spans (Figure 6.8).  
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Figure 6.7: SWAT simulated LAI plotted against observed LAI (obtained from MODIS) and 

projected precipitation for the future time spans. 

 

6.4.6. Analytical results of LAI responses to future temperature changes 

To understand vegetation responses to future climate variables, the SWAT simulated 

LAI values were analysed against GCMs projected temperatures (Figure 6.8). Considering 

ACCESS1.0 GCM projections, the simulated LAI decreased along with decrease in 

temperature from January to June in the future time spans under climate scenario RCP 4.5 and 

RCP 8.5. However, LAI increased from July to December when temperature was also increased 

in the study area under the same climate scenario (Figure 6.8). Further, the simulated LAI using 

MIROC5 and MK3.6 climate data, presented a positive increase from June to October and then 

decreased until December under both climate scenarios and for all the future time spans (Figure 

6.8). 
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The SWAT simulated LAI data were analysed under two different future climate 

scenarios, RCP 4.5, and RCP 8.5, against MODIS LAI. In the analysis, the average MODIS 

LAI data from 2001 to 2020 was considered as benchmark to quantify the future LAI changes. 

The SWAT simulated LAI showed mostly a decreasing trend for all future time spans except 

January to April in 2031-2055, January to March in 2056-2075, and February to March in 

2076-2100 according to ACCESS1.0. The highest LAI was increased according to ACCESS1.0 

is 10.86% during the period of 2031-2055 (Table 6.4). 
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Figure 6.8: SWAT simulated LAI plotted against historical LAI and GCM projected average 

monthly temperature under climate scenario RCP 4.5 and RCP 8.5 for the future time spans. 
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Table 6.4: SWAT simulated LAI changes (percent of change compared to MODIS LAI data) 

listed against change of predicted temperature. The SWAT model was prepared using GCM’s 

predicted climate data input under climate scenario RCP 4.5. 

R
C

P
 

4
.5

 

ACCESS1.0 MIROC5 MK3.6 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI 

Jan -2.33 5.75 -4.24 4.28 0.65 -0.01 -7.60 -9.70 -10.60 -5.03 -11.40 -5.26 -15.18 -18.63 -5.09 -27.36 -16.83 -29.96 

Feb 1.28 10.72 1.07 10.23 5.05 8.79 -15.65 7.30 -18.46 9.02 -19.47 8.91 -26.12 -1.17 -8.39 -5.46 -29.41 -7.67 

Mar -2.03 10.86 0.39 10.56 2.79 9.74 -27.36 9.04 -28.64 10.30 -30.93 10.23 -40.43 2.35 -11.88 -1.66 -46.10 -3.25 

Apr -1.24 2.57 -0.20 -10.34 4.76 -41.26 -31.70 13.67 -32.17 14.69 -34.01 14.63 -50.34 7.38 -11.16 3.71 -48.69 2.47 

May 1.60 -47.44 3.49 -127.57 5.00 -115.24 -18.57 14.59 -17.10 15.51 -17.73 15.47 -40.71 8.40 -5.92 4.93 -33.47 3.92 

Jun 1.73 -179.24 3.73 -178.90 7.87 -178.40 5.44 -175.74 10.02 -173.46 16.53 -171.00 -12.70 -178.49 -0.10 -176.18 7.40 -175.25 

Jul 2.18 -151.22 8.66 -141.16 6.99 -145.16 34.30 -93.97 43.01 -78.61 54.53 -65.92 31.36 -123.07 5.93 -102.43 59.80 -84.43 

Aug 10.73 -112.95 11.86 -90.35 10.77 -97.87 57.91 -22.07 62.49 -14.96 71.83 -6.50 61.40 -43.48 10.07 -26.69 82.10 -18.03 

Sep 4.09 -77.03 5.15 -59.58 7.63 -61.46 44.10 -11.59 51.63 -7.21 54.02 -4.39 43.37 -20.21 10.06 -11.80 58.29 -11.41 

Oct 5.82 -41.77 6.55 -30.85 12.69 -32.69 33.91 -14.15 39.68 -12.92 45.29 -20.59 28.64 -18.15 8.01 -15.56 43.44 -17.28 

Nov 8.71 -16.91 4.08 -13.08 10.81 -13.91 21.93 -68.93 21.73 -82.67 23.51 -76.21 17.34 -18.62 6.21 -62.77 20.49 -131.88 

Dec 2.63 -0.28 0.69 -8.44 4.48 -18.89 10.24 -92.64 9.60 -71.44 9.65 -59.11 2.90 -81.69 2.22 -108.62 4.13 -109.38 

 

In contrast to RCP 8.5, the simulated LAI generated from MIROC5 and MK3.6 data 

showed a downward trend starts in June. Moreover, a significant decrease was found in June 

by 179.24%, 175.74%, and 178.85% according to all three GCMs, respectively. Likewise, a 

decrease in LAI continued until December. However, an increasing trend was found in LAI 

from February to May under MIROC5 and MK3.6 projections (Table 6.4).  
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Table 6.5: SWAT simulated LAI changes listed against change of predicted temperature. The 

SWAT model was prepared using GCM’s predicted climate data input under climate scenario 

RCP 8.5. 

 

R
C

P
 

8
.5

 

ACCESS1.0 MIROC5 MK3.6 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI TMP LAI 

Jan -2.33 5.74 2.58 4.17 4.27 -1.66 -10.41 -11.61 -10.17 -11.15 -10.27 -4.85 -15.87 -21.39 -15.12 -13.88 -13.43 -19.01 

Feb 1.28 10.72 4.92 10.19 11.92 8.22 -15.72 7.53 -14.72 8.04 -16.74 9.22 -24.51 0.26 -25.45 3.93 -24.11 2.69 

Mar -2.03 10.86 3.11 10.54 11.37 9.40 -26.83 9.74 -24.58 10.01 -26.53 10.46 -41.82 3.91 -42.13 6.78 -39.32 6.00 

Apr -1.24 2.57 5.89 -14.64 12.94 -48.29 -30.14 14.34 -29.54 14.52 -26.13 14.82 -47.69 9.02 -46.11 11.76 -41.52 11.14 

May 1.60 -55.05 10.87 -123.86 21.65 -116.21 -19.24 15.20 -16.20 15.35 -10.17 15.62 -38.84 9.98 -33.55 12.74 -24.44 12.23 

Jun 1.73 -179.24 14.60 -178.90 25.94 -178.40 7.03 -173.63 17.18 -170.02 24.93 -167.60 -12.14 -178.68 3.22 -175.93 19.64 -172.07 

Jul 2.18 -151.22 17.47 -141.15 31.44 -145.16 38.47 -87.49 49.00 -71.39 61.35 -55.10 36.93 -112.26 56.50 -88.20 74.38 -66.14 

Aug 10.73 -112.95 13.96 -90.34 28.94 -97.87 56.42 -20.58 67.21 -10.00 82.13 0.09 63.34 -35.35 80.62 -17.25 93.74 -7.42 

Sep 4.09 -77.03 12.05 -59.77 26.94 -61.56 44.39 -10.66 53.47 -5.29 60.67 -2.14 49.85 -15.57 56.13 -8.82 67.78 -6.06 

Oct 5.82 -42.05 11.12 -32.80 26.21 -34.91 33.46 -13.80 41.33 -12.54 44.87 -24.83 32.93 -16.03 40.77 -14.49 48.36 -19.93 

Nov 8.71 -17.18 8.99 -14.26 21.70 -15.38 19.93 -82.56 24.39 -109.87 27.81 -78.43 16.89 -18.61 23.94 -96.43 25.89 -123.44 

Dec 2.63 -0.38 8.45 -9.04 11.85 -19.91 8.82 -83.63 10.16 -89.50 10.17 -61.12 2.05 -102.91 7.18 -77.38 7.68 -101.76 

 

6.4.7. Trend analysis of LAI in the watershed (historical and simulated) 

The Mann-Kendall trend test and Sen's slope were conducted to discover the trends in 

the SWAT simulated LAI for the future time spans under two climate scenarios RCP 4.5 and 

RCP 8.5. In this calculation, MODIS LAI data from 2002 to 2020 was considered as baseline 

including two climate scenarios for each climate model which were outlined in Table 6.6. The 

analysis showed a decreasing trend for MODIS LAI during summer and spring by 2.86 and 

1.99, respectively. Similarly, according to MIROC5 and MK3.6 climate projections, SWAT 

simulated LAI increased in winter by 1.99 (mm), 2.59 (mm), 2.31 (mm), and 2.09 (mm) 

respectively, under both climate scenarios. However, the results also showed the LAI decreases 

during spring by 2.17 (mm) according to MIROC5 under RCP 4.5; and 3.17 (mm), and 2.29 

(mm) according to MK3.6 under RCP 4.5 and RCP 8.5, respectively. 

Table 6.6: Trend analysis of the MODIS LAI (2002-2020) and three GCM’s predicted climate 

variables induced SWAT simulated LAI for future time span (2031-2055). 

 
Model Scenarios Annual Summer Autumn Winter Spring 

 p Zs β p Zs β p Zs β p Zs β p Zs β 

MODIS Baseline 0.888 -0.139 -0.0005 0.004 -2.868 -0.009 0.833 0.209 0.008 0.420 -0.805 -0.0008 0.045 -1.995 -0.005 
ACCESS1.0 RCP 4.5 0.17 -1.35 -0.005 0.070 -1.805 -0.004 0.128 -1.518 -0.013 0.906 0.117 0.0 0.261 -1.123 -0.002 

ACCESS1.0 RCP 8.5 0.350 -0.934 -0.004 0.083 -1.728 -0.003 0.233 -1.191 -0.007 0.888 0.140 0.0002 0.981 0.023 6.666 

MIROC5 RCP 4.5 0.029 -2.175 -0.007 0.052 -1.938 -0.015 0.015 -2.416 -0.001 0.045 1.996 0.002 0.029 -2.175 -0.012 
MIROC5 RCP 8.5 0.907 0.116 0.0003 0.925 0.093 0.0007 0.522 0.638 7.291 0.009 2.593 0.004 0.797 -0.256 -0.001 

MK3 RCP 4.5 0.440 -0.770 -0.003 0.833 0.210 0.003 0.725 -0.350 -0.001 0.020 2.312 0.003 0.001 -3.177 -0.007 

MK3 RCP 8.5 0.605 0.516 0.001 0.386 0.865 0.005 0.637 0.471 0.0013 0.035 2.097 0.002 0.021 -2.297 -0.004 

p-value (p) is a statistical measure; Z-score (Zs) is a standardized score; β (beta) represents the slope coefficient. 
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6.4.8. Analysis of the floodplain vegetation responses to the SWAT variables 

In this study, the vegetation responses to SWAT simulated variables were analysed 

using LAI changes (%) in relation to soil water content (SW), surface water flow (SURQ) and 

ground water flow (GW). The LAI increases from 0.16% to 58.13% by ACCESS1.0, 0.35% to 

136.05% by MIROC5, and 0.87% to 84.92% according to MK3.6 (Table 6.7). However, SW 

data showed a decreasing trend for all the future time spans according to ACCESS1.0. The 

highest decrease for SW was identified in the month of May according to ACCESS1.0 during 

mid future time span (2056-2075). According to MIROC5, the SW shows positive values from 

January to May during 2031-2055, and 2056-2075. Among these future time spans, the highest 

SW increased by 24.84% and 42.14% under RCP 4.5 and RCP 8.5, respectively.  

 

Table 6.7: The LAI changes in response to Soil Water Content (SW) that are simulated using 

climate data predicted from three different GCMs under RCP 4.5. 

 

R
C

P
 

4
.5

 

ACCESS1.0 MIROC5 MK3.6 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month SW LAI SW LAI SW LAI SW LAI SW LAI SW LAI SW LAI SW LAI SW LAI 

Jan -3.15 -9.79 -11.77 -11.12 -10.56 -19.21 24.843 -30.903 21.48 -23.01 3.93 -23.36 -43.18 -38.79 -45.21 -38.28 -48.67 -39.70 

Feb -21.74 -8.26 -18.82 -9.72 -30.89 -17.45 11.625 -26.192 13.59 -18.84 -2.10 -19.95 -42.73 -36.41 -46.08 -35.72 -43.86 -37.10 

Mar -25.29 -7.63 -31.72 -9.24 -38.09 -16.99 10.644 -24.259 14.40 -16.94 9.04 -18.13 -35.91 -35.20 -35.77 -34.94 -37.07 -36.11 

Apr -30.72 6.27 -36.71 -6.07 -40.34 -29.58 11.429 0.351 17.26 9.92 7.20 8.21 -31.34 -15.13 -29.35 -14.76 -35.99 -16.05 

May -33.80 58.13 -43.72 1.54 -42.17 3.45 1.384 118.855 4.60 139.59 -3.38 136.05 -37.17 83.79 -34.41 84.92 -42.46 82.58 

Jun -35.26 -0.17 -41.61 -0.05 -39.82 0.16 -4.957 1.116 -3.21 1.92 -9.98 2.57 -40.29 -0.01 -39.01 0.77 -44.23 0.87 

Jul -30.19 2.11 -30.31 6.30 -30.64 4.04 -0.035 19.251 2.06 26.36 -5.61 30.15 -36.65 9.06 -37.49 15.38 -43.37 20.05 

Aug -26.02 4.88 -25.80 13.69 -27.63 9.69 -1.383 42.078 -0.06 52.87 -7.16 58.75 -38.75 24.52 -41.01 36.45 -47.69 43.36 

Sep -20.58 5.33 -22.56 15.00 -23.44 10.72 -5.687 44.928 -4.46 56.47 -11.39 58.93 -43.14 27.69 -47.38 40.40 -55.38 42.95 

Oct -18.18 3.55 -20.48 13.21 -21.58 8.72 -11.156 32.033 -15.05 40.55 -20.00 33.68 -46.43 17.21 -54.46 26.23 -61.42 26.72 

Nov -18.98 -1.77 -26.03 4.49 -27.37 1.68 -15.381 -21.487 -20.30 -23.51 -24.63 -21.40 -52.99 -2.12 -60.19 -18.92 -61.52 -38.61 

Dec -12.39 -5.80 -23.53 -9.68 -20.48 -18.90 -2.495 -43.948 -4.23 -36.20 -15.35 -31.46 -48.48 -43.74 -59.77 -46.14 -57.58 -46.47 

 

Another SWAT variable, the surface water flow (SURQ) was decreased for all the 

future time spans according to GCMs projected data driven simulations under both climate 

scenarios RCP 4.5 (Table 6.8) and RCP 8.5 (Appendix A). Despite of the SURQ decrease, the 

LAI increased from May to August and the maximum LAI increase identified by 118.85% 

according to MIROC5 projections during 2031-2055. However, for same future time span, the 

SURQ decreased by 65.5% under same projection and climate scenario.  

 

 



 

134 

 

Table 6.8: The LAI changes in response to surface water flow (SURQ) that are simulated using 

climate data predicted from three different GCMs under RCP 4.5. 

 

 

In the study site, the groundwater flow seems to show a decreasing trend in the SWAT 

simulation while running the model using GCMs projected climate variables as input data. The 

simulation results show that the maximum GW increase occurs while running model with 

MIROC5 climate data. The highest increase of GW by 143.29% that triggers an LAI increase 

by 139.59% in 2056-2075 future time span (Table 6.9). Likewise, these increasing trends are 

also identified in the months from April to June according to MIROC5 under climate scenario 

RCP 8.5. The analysis indicates that there will be a significant rise in GW, amounting to a 

staggering 184.04%, resulting in a corresponding surge of 151.95% in LAI during the period 

of 2076-2100. (Appendix B).  

R
C

P
 

4
.5

 

ACCESS1.0 MIROC5 MK3.6 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI 

Jan -61.86 -9.79 -61.96 -11.12 -68.76 -19.21 -43.818 -30.903 -29.91 -23.01 -83.55 -23.36 -99.69 -38.79 -98.07 -38.28 -98.43 -39.70 

Feb -98.49 -8.26 -79.54 -9.72 -98.32 -17.45 -96.572 -26.192 -92.94 -18.84 -93.51 -19.95 -99.45 -36.41 -100.00 -35.72 -99.67 -37.10 

Mar -96.11 -7.63 -98.53 -9.24 -99.83 -16.99 -99.598 -24.259 -92.82 -16.94 -92.33 -18.13 -99.92 -35.20 -99.99 -34.94 -99.88 -36.11 

Apr -91.65 6.27 -99.49 -6.07 -98.92 -29.58 -78.923 0.351 -36.80 9.92 -53.73 8.21 -96.91 -15.13 -99.23 -14.76 -97.43 -16.05 

May -97.17 58.13 -99.82 1.54 -99.75 3.45 -65.573 118.855 -60.07 139.59 -82.86 136.05 -99.59 83.79 -98.15 84.92 -100.00 82.58 

Jun -98.85 -0.17 -97.00 -0.05 -93.39 0.16 -89.441 1.116 -93.53 1.92 -92.00 2.57 -99.53 -0.01 -99.73 0.77 -99.82 0.87 

Jul -96.13 2.11 -91.99 6.30 -87.68 4.04 -75.510 19.251 -66.38 26.36 -74.69 30.15 -99.43 9.06 -99.73 15.38 -99.72 20.05 

Aug -94.93 4.88 -90.22 13.69 -95.21 9.69 -46.746 42.078 -16.88 52.87 -46.56 58.75 -99.25 24.52 -98.98 36.45 -99.80 43.36 

Sep -91.34 5.33 -87.05 15.00 -92.50 10.72 -76.029 44.928 -64.02 56.47 -59.17 58.93 -99.87 27.69 -99.28 40.40 -99.97 42.95 

Oct -86.32 3.55 -88.73 13.21 -89.33 8.72 -39.123 32.033 -74.39 40.55 -74.01 33.68 -95.89 17.21 -99.74 26.23 -99.68 26.72 

Nov -90.78 -1.77 -94.86 4.49 -93.70 1.68 -81.702 -21.487 -85.46 -23.51 -91.84 -21.40 -98.90 -2.12 -99.07 -18.92 -99.11 -38.61 

Dec -83.27 -5.80 -90.10 -9.68 -90.20 -18.90 -83.234 -43.948 -78.58 -36.20 -92.54 -31.46 -97.69 -43.74 -100.00 -46.14 -99.45 -46.47 
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Table 6.9: The LAI changes in response to groundwater flow (GW) that are simulated using 

climate data predicted from three different GCMs under RCP 4.5. 

6.5. Discussion 

6.5.1. Future climate variables impact on vegetation LAI 

This study highlights the following insights of the floodplain vegetation and climate 

change correlations: i) the climate variables that are tested for, i.e., rainfall and temperature, 

determine the vegetation greenness LAI which is a surrogate for ecosystem health; and ii) 

available catchment water added from precipitation and suitable plant growth temperature are 

primarily responsible for the spatial heterogeneity in response measured by standard deviation 

of LAI.  

The main factor, i.e., precipitation, is limiting the vegetation growth and development 

in arid and semi-arid areas around the world. Based on the statement, it can be inferred that the 

growth and development of plants, as well as their greenness, are greatly influenced by the 

availability of water. This factor appears to have a greater impact than any other factors. 

Previous studies which outlined this vegetation behaviour is true for different ecosystems such 

as permanent or semi-permanent floodplain and terrestrial ecosystems (Wen et al., 2012).  

The other important factor in vegetation growth is atmospheric temperature, as plants 

use it for photosynthesis. The minimum and maximum daily temperatures are more important 

than annual mean temperature, due to direct effects on vegetation growth (Zhang et al., 2006).  

This study demonstrated that both rainfall and temperature were significantly related to 

vegetation greenness measured as LAI. However, variation in rainfall during winter and spring 

were likely to have closer and larger corresponding effect on vegetation growth as suggested 

R
C
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ACCESS1.0 MIROC5 MK3.6 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI 

Jan -30.13 -9.79 -72.68 -11.12 -71.04 -19.21 -52.175 -30.903 -46.75 -23.01 -70.68 -23.36 -95.34 -38.79 -99.89 -38.28 -99.63 -39.70 

Feb 0.86 -8.26 -56.24 -9.72 -50.47 -17.45 -1.657 -26.192 13.32 -18.84 -47.87 -19.95 -94.17 -36.41 -99.75 -35.72 -99.23 -37.10 

Mar -49.63 -7.63 -54.10 -9.24 -60.86 -16.99 0.301 -24.259 24.10 -16.94 -26.00 -18.13 -92.40 -35.20 -99.76 -34.94 -99.39 -36.11 

Apr -71.31 6.27 -73.99 -6.07 -83.73 -29.58 -4.696 0.351 52.63 9.92 15.20 8.21 -90.27 -15.13 -99.33 -14.76 -99.30 -16.05 

May -69.30 58.13 -86.05 1.54 -91.36 3.45 90.456 118.855 143.29 139.59 93.34 136.05 -76.39 83.79 -97.83 84.92 -98.59 82.58 

Jun -79.40 -0.17 -93.77 -0.05 -92.16 0.16 52.229 1.116 55.78 1.92 35.51 2.57 -81.84 -0.01 -95.27 0.77 -99.15 0.87 

Jul -85.39 2.11 -91.66 6.30 -86.31 4.04 -19.274 19.251 -19.82 26.36 -27.44 30.15 -91.40 9.06 -96.45 15.38 -99.48 20.05 

Aug -83.39 4.88 -83.44 13.69 -81.19 9.69 -38.299 42.078 -36.89 52.87 -37.84 58.75 -94.88 24.52 -96.46 36.45 -99.67 43.36 

Sep -77.86 5.33 -78.22 15.00 -78.94 10.72 -46.619 44.928 -45.60 56.47 -44.63 58.93 -97.18 27.69 -97.02 40.40 -99.85 42.95 

Oct -71.10 3.55 -74.52 13.21 -75.41 8.72 -54.957 32.033 -53.90 40.55 -54.73 33.68 -97.36 17.21 -98.76 26.23 -99.95 26.72 

Nov -64.45 -1.77 -70.02 4.49 -70.91 1.68 -57.690 -21.487 -61.83 -23.51 -63.43 -21.40 -96.56 -2.12 -99.88 -18.92 -99.66 -38.61 

Dec -59.98 -5.80 -70.27 -9.68 -72.24 -18.90 -60.065 -43.948 -67.54 -36.20 -74.86 -31.46 -96.45 -43.74 -99.90 -46.14 -98.13 -46.47 
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by the SWAT model (Figure 6.7), which is in accordance with results in previous studies (Li 

et al., 2018). The degree of temporal variations between LAI and precipitation suggests that 

floodplain vegetations in semi-arid regions may be very sensitive to changes in rainfall patterns 

at a regional level. Therefore, climate change, which was predicted to induce reduction in 

precipitation for most of Southeast Australia including the Burrinjuck sub-Catchment (Wen et 

al., 2012), is anticipated to yield significant consequences for the vegetation greenness of the 

ecosystem. However, the estimation of climate change impacts on the floodplain vegetation 

should not be limited solely to hydrological effects, given the direct relationship between 

vegetation greenness and climatic conditions. 

This study identified a decreasing trend in LAI during winter months such as June and 

July, despite of increasing temperature in these months. Generally, the climate models show a 

decrease in winter rainfall in the Burrinjuck sub-catchment of the Murrumbidgee River 

catchment. Likewise, the trend analysis of LAI reveals that the decreasing trend of annual LAI 

is statistically significant at Burrinjuck floodplain area during 2031–2055 and 2056–2075 

under the RCP 4.5 scenario. These results align with a previous study which concluded that 

vegetation productivity shifts under climate change (Ma et al., 2015). The first objective of this 

study to understand future climate change impacts on vegetation growth is thus successfully 

addressed. Previous studies have found a strong correlation between climate change and 

vegetation LAI (Guli·Jiapaer et al., 2015; Zheng et al., 2021). 

 

6.5.2. Seasonal variability in climate change vegetation responses 

In the seasonal domain, the vegetation greenness increases in the spring after the wet 

season in the study area. Considering precipitation is the only source of soil water in the study 

area, the average SWC, SURQ, and GW values increased by 52%, 16%, 92%, and 39%, 13%, 

148% respectively, during the winter and spring. However, the MODIS LAI analysis shows 

that the average winter LAI decreased by 10.9% and increased by 12.7% compared to summer 

LAI. The outcome suggests that the highest temperature for the initiation of vegetation growth 

occurs during the spring season, while it remains lower during the winter months. During the 

wet season, the average temperature in the Burrinjuck sub-catchment area is 21.8°C (average 

from 1980 to 2020), while the average in winter is 13.26°C, which inversely impacts vegetation 

growth in winter season (He et al., 2017; Huang et al., 2019). However, the average temperature 

reaches 21.6°C in the spring months that possibly triggers vegetation growth with the help of 

soil water and groundwater which has already increased during winter rainfall. Therefore, the 
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vegetation greenness has increased by 12.7% in the spring season when compared to the dry 

season. 

Similarly, vegetation response relationships were analysed against soil water content 

(SW), surface runoff (SURQ) and groundwater flow (GW) during the dry season for the GCMs 

climate projections. The vegetation LAI (including all vegetation in the sub-basin) decreased 

by 65% and 24% during winter and spring seasons, whereas SW and GW decreased by 32% 

and 82% in winter, and 19% and 71% in spring. The results presented herein demonstrate a 

strong correlation between soil water and groundwater levels and the responsiveness of 

vegetation Leaf Area Index (LAI).Previous studies support these findings considering different 

area of interests (Smettem et al., 2013; He et al., 2017; Huang et al., 2019). This means 

vegetation can grow well when SWC and groundwater flow has increased after the rainfall in 

spring and summer seasons. Moreover, this study suggests that vegetation is highly dependent 

on groundwater during the dry season for their greenness, and any instability or long-term 

drought can directly affect this floodplain vegetation. The future projections for the Burrinjuck 

sub-catchment of the Murrumbidgee catchment indicate a decrease in SW, SURQ, and GW 

based on the climate projections of MIROC5 and MK3.6, as well as the simulated results from 

SWAT. The future projections for the Burrinjuck sub-catchment of the Murrumbidgee 

catchment indicate a decrease in SW, SURQ, and GW based on the climate projections of 

MIROC5 and MK3.6, as well as the simulated results from SWAT. Both climate scenarios 

RCP 4.5 and RCP 8.5 induced climate change data indicated a warmer future climate with less 

precipitation for this region. A comprehensive documentation of vegetation and hydrological 

variables relationships can be prepared for floodplain vegetation management based on the 

findings in this study. 

6.5.3. Vegetation responses to SWAT simulated variables under future climate 

changes 

This study presents a robust analysis of the relationships between groundwater 

availability and vegetation responses vigour in the floodplain zone. The SWAT model 

simulated several hydrological variables in the process of catchment water modelling by 

calculating a range of basin characteristics and meteorological datasets, which were analysed 

in relation to vegetation LAI.  

Among these SWAT simulated hydrological variables, surface runoff (SURQ) shows a 

decreasing trend for all three GCMs under two climate scenarios RCP 4.5 and RCP 8.5. The 

maximum decrease of surface runoff observed were 99.83%, 99.59%, and 100% according to 
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ACCESS1.0 (2056-2075), MIROC5 (2031-2055), and MK3.6 (2076-2100) respectively, 

between the month of March and June. The result shows that this runoff reduction is inversely 

proportionate to the vegetation greenness. The LAI has increased by 58.13% in May during 

2031-2055 under ACCESS1.0 climate predictions. A previous study also mentioned that 

vegetation growth has positively responded to runoff reduction (Shi et al., 2022). Before the 

analysis, the SWAT model was calibrated and validated with the NSE value 0.79 and 0.76, 

respectively. These NSE values reflect the model performance can be evaluated as 'very good' 

for both calibration and validation. A hydrological study in the neighbouring catchment area 

also documented similar NSE values for SWAT modelling (Saha et al., 2014). 

This study found that the simulated variables (SW and GW) and vegetation LAI 

relationships vary with climate predictions when applied data from the different climate model. 

The SW decreases from January to December when ACCESS1.0 and MK3 climate predictions 

were applied for all the future time spans. These decreases vary from 3.15% to 43.72% and 

31.34% to 61.52% when considered ACCESS1.0 and MK3.6, respectively. However, SW 

increases from January to May when model was simulated using MIROC5 climate predictions. 

Likewise, GW decreased in most of the months when model was simulated using future 

climate change projections under two climate scenarios RCP 4.5 and RCP 8.5. The maximum 

decrease found from June to August for all three GCMs means that GW decreases mostly in 

the winter season. An exception, MIROC5 projected climate data simulation result shows GW 

increased between February and June in the 2056-2075 future time span. However, the LAI 

increased between July and October when simulation was completed using ACCESS1.0 and 

MK3.6. A warmer climate can be utilised for agricultural production in similar regions around 

the world by selecting appropriate crops based on their seasonal response to soil water and 

groundwater. 

6.6. Conclusion 

The study area Burrinjuck sub-catchment contributes approximately 24% of the total 

rainfall as runoff to the Murrumbidgee River flow, which is one of the main contributors in the 

Murray Darling Basin (MDB). Any changes in these rainfall-runoff relationships can cause a 

major impact on the environment as well as the economy. Understanding future vegetation 

growth under predicted climate alterations is crucial for developing effective water 

management policies and climate change mitigation strategies for floodplains and ecosystems. 
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This study demonstrated that precipitation and temperature were the two primary 

climatic drivers that impact vegetation growth in the Burrinjuck sub-catchment. Additionally, 

the analytical results show that the vegetation growth (LAI) is highly responsive to 

groundwater during the dry season in the study area. The results of this study show that climate 

change will continue to exert profound effects on vegetation. Further, the results disclosed that 

the relationship between floodplain vegetation and climate change is two-way, and any change 

in the climate can directly influence the vegetation growth. For example, the suitable 

temperature for plant growth (may vary for different plant types) and available soil water can 

boost vegetation growth which, in turn, contributes to increase in the transpiration rate. 

Moreover, the grass type vegetation growth helps to increase the infiltration and groundwater 

recharge.  

In this research, the SWAT simulation results suggested that rainfall dominates the 

Burrinjuck sub-catchment water balance, in which soil water and groundwater flow increase in 

the wetting period between April and September. The LAI values from the hydrological 

modelling suggest that changes in soil water, surface water flow, and groundwater in the basin 

area directly impact vegetation growth conditions. As rainfall dominates the catchment 

hydrology, future changes in the rainfall pattern may need to be considered for floodplain 

management. Overall, this study generates valuable contributions to the general understanding 

of the intricate relationships between climate change and its impact on floodplain vegetation 

dynamics. In contrast to simply analysing seasonal rainfall variations, this study developed a 

novel methodology for modelling this relationship. This research findings hold the potential to 

significantly bolster the development of sustainable floodplain vegetation systems in arid 

regions, where adverse climate condition is a constant concern. Furthermore, this study offers 

an impartial assessment of floodplain vegetation greenness, as measured by Leaf Area Index 

(LAI), and its responses to climate change. These findings carry substantial scientific 

significance, particularly in the context of enhancing floodplain management within the 

Burrinjuck sub-catchment. 

In addition to shedding light on these critical relationships, this research paves the way 

for further investigations into other climatic factors, such as evaporation and humidity. This 

study has integrated vegetation growth responses with variables related to soil water, surface 

water flow, and groundwater under projected future climatic conditions. It is worth noting that 

future studies can expand upon this work by incorporating additional factors, including 

different vegetation types and their respective water requirements. Moreover, this study 

encourages future research efforts to refine the SWAT modelling results by incorporating more 
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comprehensive data related to vegetation growth factors, building upon the methodological 

contributions made in this study. This multifaceted approach will contribute to a more holistic 

understanding of the intricate interactions between climate change and floodplain vegetation 

dynamics, ultimately advancing the ability to develop sustainable management strategies in 

these vulnerable ecosystems. 
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CHAPTER 7: CONCLUSION 

 

7.1. Introduction 

The primary objective of this research was to explore the efficacy of remotely sensed 

vegetation indices in predicting the impact of climate change on floodplain vegetation in a 

temperate zone. The study focused on vegetation types for which there was limited knowledge 

and aimed to answer several research questions. These questions centred on identifying plant 

types that are more responsive to changes in surface water and groundwater levels, as well as 

their proximity to water outlets within hydrological response units (HRUs). Additionally, the 

study examined the hydro-climatic relationships at both local and regional scales. The study 

was divided into three objectives, as listed in Chapter 1, each objective has been addressed in 

Chapters 4 to 6, in order to accomplish this goal. 

To accomplish these objectives, a comprehensive literature review was performed to 

ascertain the crucial global factors influencing vegetation response to climate change. 

Throughout this extensive review, the key observations were identified, the reliability and 

comprehensiveness of vegetation modelling using remotely sensed data, particularly about 

different vegetation types. These aspects formed the central focus of the subsequent sections 

of the thesis, which also incorporated catchment hydrological modelling in the southeast region 

of Australia. The investigation employed remote-sensing metrics to analyse vegetation 

response to water availability under projected climate scenarios. 

The purpose of this chapter is to summarise the key findings and conclusions that 

address the research questions of the study. The chapter outlines the outcomes produced from 

the five stages of research conducted, discusses the limitations, and makes suggestions for 

future research. Finally, the implications of this study and its broader contributions to the field 

are also examined. This study was the first to assess the floodplain vegetation and their 

proximity to the stream flow and their relationships to catchment water availability under future 

climate scenarios. It also covered, for the first time the investigation of the vegetation types 

(e.g., grass, shrub, and tree) in the floodplain, considering their location in the watershed. The 

study was also the first to apply machine learning algorithms to model the observed and 

predicted NDVI and also the premier to calibrate the SWAT model using MODIS imagery data 

for LAI in floodplain areas. 
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This Chapter presents the findings and overall conclusion of the Dissertation, along 

with suggestions for further investigations. It is divided into four parts: Section 7.2 outlines the 

findings, Section 7.3 presents the overall conclusion and significant contributions of the study, 

and Section 7.4 concludes with recommendations for future research. 

7.2. Summary of findings 

This study provided new knowledge and insights on vegetation responses to different 

climate scenarios by utilising remotely sensed vegetation indices and hydrological modelling 

through empirical study. This was accomplished using the triad approach of floodplain 

hydrological modelling techniques in conjunction with novel application of machine learning 

algorithms and GIS-based techniques, which have never been applied in previous floodplain 

vegetation studies. 

 

7.2.1. Modelling floodplain vegetation responses to surface water availability 

The surface water availability at the catchment level was quantified through 

hydrological modelling using the SIMHYD hydrological model. Machine learning algorithms 

were employed to correlate vegetation responses to surface water availability by utilising 

remotely sensed vegetation indices, as discussed in Chapter 4. Climate change can significantly 

impact precipitation patterns, leading to more intense rainfall events or prolonged droughts in 

certain regions. Floodplains, being sensitive to changes in water levels, are particularly 

vulnerable. Increased flooding can drown vegetation, while extended droughts can lead to 

desiccation and die-off of plants. This altered hydrology disrupts the delicate balance of 

floodplain ecosystems. This study successfully identified the direct and indirect climatic 

impacts, specifically the effects of extreme rainfall and drought on vegetation growth. These 

findings addressed the first objective of the research study and served as a fundamental basis 

for achieving the subsequent objectives. The key findings of the first objective are summarised 

below. 

The analytical work presented in Chapter 4 (Objective 1) revealed a subset of crucial 

factors connecting vegetation responses to surface water availability and related climatic 

changes. These factors encompassed various vegetation types and their reactions in dry and 

wet conditions, their proximity to stream flow, leaf area, and plant height (categorised by tree, 

shrub, and grass). During the wet season, grass-type vegetation located far from the stream was 
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highly correlated with rainfall, while similar vegetation types near the stream were less 

responsive to rainfall. Furthermore, deep-rooted vegetation such as trees and shrubs near the 

stream were highly correlated with surface runoff water and streamflow than rainfall. Under 

reduced precipitation, deep-rooted vegetation types such as trees and shrubs were consistent 

across floodplains. Other factors linked to climate variables, such as maximum and minimum 

temperature, relative humidity, wind speed, and solar radiation, require additional data to be 

included. However, existing studies suggest that under increased temperature, both tree and 

shrub vegetation types can survive with less rainfall. Under increased rainfall frequency or 

intensity, grass-type vegetation has growing ability with positive responses. 

7.2.2. Modelling floodplain vegetation responses to groundwater variability 

To investigate this research objective, this study employed a process-based 

ecohydrological river basin model, SWAT hydrological model at the study catchment using 

remotely sensed vegetation indices (NDVI) and climate variables data presented in Chapter 5. 

The analytical results highlight the significant correlation between the vegetation system and 

groundwater hydrology, with a particular emphasis on the substantial reliance on groundwater 

hydrology in the arid season. The second objective of the research study was effectively 

addressed by these findings, which laid a crucial foundation for accomplishing the subsequent 

objectives. Below, the summarised key findings of the second objective are presented. 

The robust analysis presented in Chapter 5 (Objective 2) identified crucial findings that 

establish a reciprocal relationship between floodplain vegetation and groundwater hydrology, 

whereby changes in the surrounding environment can directly influence the vegetation's 

reaction to groundwater. Suitable temperature and sufficient water availability can enhance the 

growth of vegetation, thereby leading to an increase in the potential evapotranspiration rate. 

Conversely, the growth of grass-type vegetation aids in the augmentation of infiltration. The 

hydrological simulation findings indicate that rainfall plays a dominant role in the water 

balance of the study area catchment, with groundwater flow intensifying during the wetting 

period from April to September. Any changes in the groundwater condition within the basin 

region can directly impact the state of vegetation. The machine learning data-driven analytics 

also revealed plant NDVI and SWAT simulated hydrological variables relationships vary with 

vegetation types. This study also found grass-type vegetation has high correlation to 

groundwater flow (GW) compared to tree and shrub vegetation. In contrast to basin elevation, 
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vegetation located in the top point (highland) has high correlation to GW (increased by 42%) 

than vegetation located in the bottom point (low land).  

7.2.3. Modelling floodplain vegetation responses to future climate change 

 Floodplain vegetation is adapted to specific hydrological conditions. As climate 

change alters these conditions, certain species may thrive while others decline or disappear. 

For example, species that are adapted to more frequent flooding may struggle in drier 

conditions, leading to shifts in species composition and loss of biodiversity. To quantify the 

vegetation response to future climate change, a hydrological model was set up and run using 

future climate data projected by different General Circulation Models (GCMs) is presented in 

Chapter 6. The results highlighted the LAI responses to future precipitation and temperature 

changes for RCP4.5 and RCP 8.5 climate scenarios for a future period from 2031 to 2100. The 

third objective of the research study was addressed effectively by critically analysing 

vegetation-climatic relationships. The key findings of the third objective are presented below. 

This study found that the available catchment water added from the precipitation and 

suitable vegetation growth temperature primarily dictate the spatial heterogeneity, which LAI 

measures. The maximum and minimum daily temperature has more influence than the annual 

mean temperature for vegetation growth in the temperate zone. This study also confirms that 

precipitation variations in winter and spring have a larger impact on vegetation growth in the 

study floodplain area. The work suggests that there will be a decreasing trend in vegetation 

growth between 2031 and 2075 according to the RCP4.5 scenario (see details in Chapter 6). 

7.2.4. Overall summary 

The thesis has shown the following summary findings. 

a) The results presented herein mark the initial attempts to delineate the connections 

between vegetation and surface water variability across different vegetation types and 

their proximity to the stream flow, in contrast to previous studies that concentrated on 

specific vegetation types (such as trees) (Sykes, 2009). The outcomes lend credence to 

the notion that there exist generalised vegetation-surface water relationships among 

vegetation types and that relationships may be able to endure or even increase in 

adaptation to current and future climate shifts. 

b) The hydrological modelling applied in this study, using a combination of station-

gauged and remotely sensed meteorological data, generated more reliable model output. 
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By applying machine learning algorithms in the correlation analysis, the complex 

relationships between vegetation and groundwater dynamics were analysed. The 

interrelationships and underlying mechanisms between these processes are likely to 

influence floodplain vegetation sustainability.  

c) The maximum reduction observed in the study catchment from March to June in south-

east Australia. This surface runoff decreasing trend is 43.72 % higher for MK3.6 than 

ACCESS1.0 climate model predictions. In contrast to groundwater (GW) the reduction 

is 61.52% more for MK3.6 climate projections than ACCESS1.0. These pointed future 

scenarios can cause drastic change within floodplain vegetation communities in the 

temperate zone. 

7.3. Conclusion 

This study identifies woody vegetation type such as forest and shrub are highly 

responsive to groundwater and non-woody vegetation such as grass type vegetation responsive 

to rainfall in temperate zone like south-eastern Australia. This confirms that tree and shrub 

vegetation can grow well after the rainfall when groundwater flow increases in the dry season. 

This study also observed vegetation located distant from the water outlet is mainly dependent 

on the groundwater resources within the catchment. The hydrological modelling applied in this 

study using combination of station gauged and remotely sensed meteorological data, generated 

more reliable model output. By applying machine learning algorithms in the correlation 

analysis, the complex relationships between vegetation and groundwater dynamics were 

analysed. The interrelationships and underneath mechanisms between these processes are 

likely to influence floodplain vegetation sustainability.  

Knowledge of vegetation types and their proximity to water sources is crucial in various 

climatic conditions and associated environmental changes. This knowledge plays a vital role 

in making informed management decisions. For example, it can assist in planning agricultural 

development with limited irrigation systems during dry seasons, enabling us to adapt to 

predicted future climate change. Additionally, it can aid in identifying species that are resilient 

or vulnerable to climatic changes, thus guiding conservation and restoration efforts. 

Furthermore, this analysis has significant implications for determining which ecosystem 

services will be more resilient to climate change, as specific aspects such as vegetation types, 

leaf area, and their transpiration processes regulate climate conditions in ecosystems (Rocca et 

al., 2014; Moor et al., 2015). However, more effort is required to bridge the knowledge gaps 



 

146 

 

identified, including a comprehensive understanding of other vegetation conditions and climate 

scenarios that future studies should focus on. Moreover, it is essential to identify the 

ecosystems and climatic zones that these studies should target. Notably, vegetation types have 

been identified as a critical knowledge gap, particularly in comprehending the responses of 

temperate climatic zones to climate change. Further, understanding floodplain vegetation 

interactions with catchment water availability under future climate scenarios and thus stability 

of the catchment water for floodplain vegetation use will become crucial as water resources 

directly face threats from hydrological alterations due to shifting climate conditions. 

This research work has made significant contributions to the field of science, which are 

as follows: 

• An understanding of floodplain vegetation response to the climate change under 

RCP4.5 and RCP 8.5 climate scenarios based on hydrological modelling. 

• Improved understanding of the catchment's surface water modelling with 

conceptual rainfall-runoff hydrological model in floodplain areas. 

• New knowledge on the potential application of MODIS imagery in mapping the 

vegetation greenness of floodplain areas. 

• New knowledge on the potential application of GIS-based hydrological 

modelling in floodplain areas. 

• A novel approach applied in this study to observe vegetation-climate 

relationships reflected by the leaf area indices (LAI) considering model 

simulated surface runoff and groundwater flow in a temperate floodplain 

ecosystem. 

• A novel approach applied a comparative model calibration analysis using 

station gauged flow data and remotely sensed LAI data. 

7.4. Recommendations 

Further research is required to fully understand the response of floodplain vegetation to 

climate change in temperate climate zones such as southeast Australia, utilising remotely 

sensed data and GIS-based hydrological modelling under future climate scenarios. This area of 
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study is still in its early stages and additional investigations could provide valuable 

contributions to the field. Based on the findings of this study, the subsequent recommendations 

for future investigations are proposed. 

• Authorities responsible for managing floodplain ecosystems in the temperate/semi-

arid region must undertake a thorough evaluation of the existing policies pertaining 

to basin water management. This review is necessary to incorporate adaptable water 

using strategies that can be adjusted in accordance with seasonal demands. 

• Management should thoroughly consider any forecasts regarding rainfall pattern 

alterations in a catchment hydrology where rainfall is the dominant factor, to 

enhance floodplain management. 

• Department of Agriculture can consider small and medium rooted vegetation 

growth in similar floodplains with possible irrigation adjustment during dry 

seasons. 

• Management authority can review their water management policies and mitigation 

strategies for climate change for future vegetation growth under predicted climate 

alterations in floodplains and ecosystems.  

The following recommendations are for future research: 

•  The utilisation of dynamic vegetation and hydrological models based on the study 

objectives, data accessibility, and computational resources is desired. Among the 

well-known choices are the Variable Infiltration Capacity (VIC) model for 

hydrology and the Community Land Model (CLM) for vegetation dynamics. It is 

essential to establish a framework that integrates the chosen hydrological and 

vegetation models. This integration should ensure a bidirectional coupling between 

the models, allowing for reciprocal influences between hydrology and vegetation 

dynamics. The potential future research question: How do fluctuations in water flow 

affect the growth and distribution of vegetation in the Burrinjuck sub-catchment 

and what are the implications for ecosystem resilience and ecosystem services 

provision under different climate change scenarios? 

• Further research on modelling floodplain vegetation response using commercial 

satellite imagery can explore the utilisation of alternative machine learning 

algorithms. Additionally, comparing the outcomes of this study with those obtained 
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from other satellite data sources, including those with higher or lower spatial 

resolution, can offer insights into the potential options for vegetation hydrology 

modelling. 

• Future studies can consider incorporating remotely sensed LAI data as an input 

parameter into hydrological models such as SWAT or VIC model. Calibrating the 

hydrological model using observed hydrological data (e.g., streamflow, runoff) and 

LAI data and validating model performance against independent datasets is 

desirable to ensure its accuracy and reliability. A research question can be formed 

to investigate how changes in groundwater levels influence vegetation dynamics, 

as captured by variations in LAI. 

• Hydrological model calibration can be improved by including measured soil 

moisture data at field level to compare model simulation to support the output 

results. 

• Future research can consider more comprehensive data related to vegetation growth 

factors to refine the SWAT modelling results including different vegetation types 

and their respective water requirements. 
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APPENDIX A 

 

The LAI changes in response to groundwater flow (GW) are simulated using climate data 

predicted from three different GCMs under RCP 8.5. 
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ACCESS1.0 MIROC5 MK3 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI SURQ LAI 

Jan -61.19 -10.76 -64.25 -11.12 -68.39 -19.21 -40.45 -29.60 8.07 -25.91 -9.81 -19.75 -89.68 -41.05 -98.25 -32.24 -85.41 -38.16 

Feb -98.37 -8.96 -78.46 -9.72 -98.25 -17.45 -89.59 -24.05 -94.75 -21.45 -87.33 -14.78 -99.20 -37.06 -98.09 -29.19 -99.08 -34.28 

Mar -96.09 -8.23 -98.39 -9.24 -99.75 -16.99 -95.65 -21.69 -98.29 -19.35 -86.19 -12.69 -99.47 -35.67 -98.31 -27.88 -97.51 -32.61 

Apr -91.60 5.89 -99.49 -6.07 -98.54 -29.58 -75.22 3.85 -72.90 6.67 -9.34 15.64 -94.60 -15.33 -98.01 -5.09 -95.73 -10.92 

May -97.12 49.05 -99.83 1.54 -99.75 3.45 -80.33 126.28 -88.21 132.30 -75.53 151.95 -98.09 83.61 -99.97 106.03 -99.98 94.08 

Jun -98.71 -0.16 -96.96 -0.05 -93.27 0.16 -91.74 1.85 -82.00 3.23 -71.71 3.85 -99.62 0.01 -100.00 0.72 -100.00 1.42 

Jul -96.11 2.13 -91.91 6.30 -87.52 4.04 -76.60 22.34 -80.47 30.55 -52.46 37.57 -99.41 11.95 -99.19 19.29 -99.70 24.30 

Aug -94.91 4.85 -90.21 13.69 -95.22 9.69 -55.04 45.30 -67.47 58.76 -46.29 69.88 -98.19 30.08 -99.77 42.05 -99.09 48.49 

Sep -91.35 4.60 -87.03 15.00 -92.49 10.72 -66.36 47.95 -74.46 60.29 -21.69 66.02 -99.83 32.96 -99.48 43.91 -98.96 45.36 

Oct -86.39 2.02 -88.81 13.21 -88.28 8.72 -61.03 34.51 -65.43 43.04 -37.82 28.09 -98.03 21.01 -97.97 28.45 -98.45 23.31 

Nov -90.78 -4.16 -94.82 4.49 -93.52 1.68 -77.92 -24.14 -80.50 -29.97 -74.03 -24.00 -98.64 -0.64 -99.18 -30.77 -99.37 -40.28 

Dec -83.38 -7.48 -90.03 -9.68 -89.03 -18.90 -79.69 -40.11 -62.28 -38.94 -76.36 -33.72 -95.55 -46.61 -99.54 -39.63 -99.97 -47.92 
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APPENDIX B 

 

The LAI changes in response to groundwater flow (GW) are simulated using climate data 

predicted from three different GCMs under RCP 8.5. 
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ACCESS1.0 MIROC5 MK3 

2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 2031-2055 2056-2075 2076-2100 

Month GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI GW LAI 

Jan -29.67 -10.76 -73.04 -11.12 -67.86 -19.21 -27.01 -29.60 -31.53 -25.91 -29.02 -19.75 -82.32 -41.05 -98.85 -32.24 -96.85 -38.16 

Feb 2.51 -8.96 -56.95 -9.72 -47.33 -17.45 14.79 -24.05 36.13 -21.45 31.33 -14.78 -66.55 -37.06 -88.12 -29.19 -86.13 -34.28 

Mar -47.52 -8.23 -53.15 -9.24 -59.94 -16.99 21.98 -21.69 14.09 -19.35 38.50 -12.69 -69.33 -35.67 -78.34 -27.88 -74.37 -32.61 

Apr -71.95 5.89 -71.12 -6.07 -83.51 -29.58 31.22 3.85 6.74 6.67 91.06 15.64 -54.18 -15.33 -54.45 -5.09 -67.28 -10.92 

May -68.90 49.05 -84.93 1.54 -90.48 3.45 100.44 126.28 85.75 132.30 184.08 151.95 -20.89 83.61 -31.69 106.03 -52.46 94.08 

Jun -78.77 -0.16 -93.58 -0.05 -91.67 0.16 36.24 1.85 24.05 3.23 58.40 3.85 -51.09 0.01 -61.76 0.72 -79.00 1.42 

Jul -85.10 2.13 -91.62 6.30 -85.73 4.04 -28.36 22.34 -28.94 30.55 -17.98 37.57 -79.94 11.95 -84.10 19.29 -93.61 24.30 

Aug -83.22 4.85 -83.26 13.69 -80.41 9.69 -42.31 45.30 -43.68 58.76 -41.68 69.88 -88.20 30.08 -91.93 42.05 -98.00 48.49 

Sep -77.71 4.60 -77.99 15.00 -78.12 10.72 -48.91 47.95 -49.92 60.29 -49.45 66.02 -93.58 32.96 -97.23 43.91 -98.74 45.36 

Oct -70.92 2.02 -74.43 13.21 -75.03 8.72 -54.19 34.51 -60.39 43.04 -54.24 28.09 -97.89 21.01 -99.34 28.45 -99.21 23.31 

Nov -64.23 -4.16 -70.23 4.49 -70.46 1.68 -55.18 -24.14 -68.20 -29.97 -58.50 -24.00 -97.49 -0.64 -98.10 -30.77 -99.31 -40.28 

Dec -59.62 -7.48 -70.36 -9.68 -70.46 -18.90 -57.24 -40.11 -63.30 -38.94 -59.95 -33.72 -94.19 -46.61 -98.34 -39.63 -98.89 -47.92 


