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A B S T R A C T   

This study aims to address the need for reliable diagnosis of coronary artery disease (CAD) using 
artificial intelligence (AI) models. Despite the progress made in mitigating opacity with 
explainable AI (XAI) and uncertainty quantification (UQ), understanding the real-world predic-
tive reliability of AI methods remains a challenge. In this study, we propose a novel indicator 
called the Spatial Uncertainty Estimator (SUE) to assess the prediction reliability of classification 
networks in practical Electrocardiography (ECG) scenarios. SUE quantifies the spatial overlap of 
critical Grad-CAM (Gradient-weighted Class Activation Mapping) features, offering a confidence 
score for predictions. 

To validate SUE, we designed a deep learning network that integrates Convolutional Neural 
Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) mechanisms for precise 
ECG signal classification of CAD. This network achieved high accuracy, sensitivity, and specificity 
rates of 99.6%, 99.8%, and 98.2%, respectively. During test time, SUE accurately distinguishes 
between correctly classified and misclassified ECG segments, demonstrating the superiority of the 
proposed network over existing methods. 

The study highlights the potential of combining XAI and UQ techniques to enhance ECG 
analysis. The evaluation of spatial overlap among discriminative features provides quantitative 
insights into the network’s robustness, encompassing both current prediction accuracy and the 
repeatability of predictions.   

1. Introduction 

Coronary artery disease (CAD) is a major cardiovascular disorder affecting millions globally [1]. CAD primarily originates from 
atherosclerosis, where fibrous plaques develop in artery walls [2]. These plaques largely comprise fats and fibrous tissue [3]. CAD 
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manifestations range from asymptomatic to life-threatening myocardial infarction (MI). Severe cases involve plaque rupture triggering 
acute ischemic heart disease or MI [4]. Precise CAD diagnosis remains challenging due to varied presentations, necessitating advanced 
diagnostic tools. Electrocardiography (ECG) is the primary tool for its non-invasiveness and cost-effectiveness. Specific ECG signal 
changes are associated with ischemia, infarction, and arrhythmias [4]. ECG monitoring provides critical insights like ST-segment 
elevation indicating myocardial ischemia. However, nearly 70 % of CAD patients lack significant ECG changes [5], requiring 
exhaustive visual examination prone to fatigue-induced errors. Automated systems to address manual ECG limitations are essential 
[6]. 

Over the past decades, numerous signal processing algorithms and machine learning (ML) models have been developed and 
proposed for the automated detection of cardiac arrhythmias and abnormalities in ECG signals, such as those associated with CAD or 
MI [7,8,9,10]. Additionally, nonlinear signal processing techniques have also emerged as valuable tools for decoding ECG signals, 
including nonlinear dynamical systems, chaos theory, fractal analysis, and entropy-based methods [11,12]. Nevertheless, while 
demonstrating varying degrees of performance, conventional ML models reliant on handcrafted features have well-known inherent 
limitations stemming from their dependence on the quality, quantity, and representation of the training data. 

In recent years however, there has been a notable increase in interest surrounding the novel utilization of deep learning (DL) 
models, such as convolutional and recurrent neural networks, for enhanced CAD detection directly from raw or minimally processed 
ECG signal data [13–17]. In contrast to conventional ML approaches, end-to-end DL models present a significant advancement in 
automating feature engineering and capturing intricate discriminative patterns within ECG morphological data. The rapid progress in 
technology, particularly in the processing capabilities of extensive ECG datasets, coupled with the increased accessibility of digitized 
ECG data, has led to the widespread adoption of DL techniques. This adoption is further driven by the profound clinical importance of 
improving CAD diagnosis. The application of DL methods in developing automated CAD detection systems holds promise for facili-
tating more precise, efficient, and scalable diagnostic procedures, thereby addressing certain challenges encountered by earlier 
methodologies. 

Although AI models have achieved human-level performance, their application remains limited, primarily due to the lack of 
transparency in the models’ prediction processes and the associated uncertainty. Ongoing research efforts are focused on increasing 
the interpretability of DL models and expanding their clinical utility. To address this challenge, researchers have turned to explainable 
artificial intelligence (XAI) techniques and uncertainty quantification (UQ) methods. The evolution in AI research follows a trajectory 
from optimizing model performance to addressing uncertainty [18–21]. Concurrently, there arose a need to make models more 
interpretable and explainable, leading to the development of XAI approaches. 

XAI techniques refer to a set of methods used to enhance the transparency and interpretability of AI systems. These techniques aim 
to provide insights into how AI models make predictions or decisions, enabling humans to understand and trust the reasoning behind 
those outcomes. Using XAI methods like Gradient-weighted Class Activation Mapping (Grad-CAM) [22,23], it is possible to assess the 
confidence of the current prediction by generating qualitative heatmaps that highlight the most influential features contributing to the 
classification. Nevertheless, they fail to provide a comprehensive understanding of the complex relationships within these highlighted 
regions. To address this limitation, UQ techniques have been developed to estimate the model reliability by quantifying the uncertainty 
in the model’s predictions [24]. These models offer a deeper understanding of the decision-making process, aiding clinicians in making 
informed decisions and improving communication with patients. However, UQ methods often require computationally intensive 
simulations or sampling techniques to quantify uncertainty. As a result, analyzing complex systems or large-scale models can be time- 
consuming and resource-intensive, limiting their practicality in real-time or high-dimensional scenarios. 

With this knowledge, this work aims to develop a cost-effective computational framework leveraging AI that integrates elements of 
XAI with principles of UQ to compute the Spatial Uncertainty Estimator (SUE), a new indicator for assessing the repeatability of model 
predictions by quantifying the spatial congruence of the most influential features. The main contributions of this paper are:  

1) We introduce a new reliability metric, called SUE, which quantifies the spatial congruence of influential features identified by the 
Grad-CAM during testing. This metric provides a measure of prediction accuracy. To the best of our knowledge, we are the first 
group to propose SUE for CAD ECG signals.  

2) The SUE metric serves as a cost-effective and time-efficient quantitative link between the realms of XAI and UQ, offering a 
quantitative assessment of network reliability on a scale from 0 to 1.  

3) We extensively validate the SUE by varying the noise overlaid on the ECG signal. The indicator consistently identifies the network 
that performs best under different noise levels.  

4) The SUE exhibits a strong correlation with prediction accuracy, with higher values indicating correct classifications and lower 
values indicating misclassifications.  

5) We validate the SUE in the task of classifying CAD in ECG signals. Additionally, we propose a classification network that integrates 
a CNN and Bidirectional Long Short-Term Memory (BiLSTM) mechanisms for accurate and reliable ECG signal classification, 
demonstrating superior performance compared to state-of-the-art methods and achieving excellent accuracy in CAD detection. 

The rest of this paper is organized as follows: Section 2 presents an overview of the current approach of XAI/UQ for CAD; Section 3 
provides an exhaustive description of the proposed indicator; Sections 4 and 5 report and discuss the experimental results. 

2. Related works 

In the research field of cardiac arrhythmia classification, XAI and UQ have played a crucial role, leading to notable contributions in 

S. Seoni et al.                                                                                                                                                                                                           



Information Sciences 665 (2024) 120383

3

the literature. Table 1 reports the most influential and recent studies that have employed XAI or UQ techniques in ECG classification. 
To address the need for more robust interpretability tools, Yoo et al. [25], Hughes et al. [26], and Maweu et al. [27] introduced 

distinct methods to interpret CNN models in arrhythmia detection. These methods include the Attention Branch Network (ABN) [25], 
Linear Interpretable Model-Agnostic Explanations (LIME) [30], and feature-extraction-based interpretability [27]. These interpret-
ability approaches aim to make sense of predictions made by DL and CNN models in the context of ECG classification. Additionally, 
Rutger R. van de Leur [28] proposed Shapley Additive Explanations, focusing on enhancing interpretability in extreme gradient 
boosting decision tree (XGBoost) models. Incorporating the Grad-CAM technique, Varandas et al. [29] presented a DL model for 
cardiac arrhythmia classification, aiming to enhance model interpretability. Nevertheless, the heat maps generated by Grad-CAM 
methods frequently display variability, posing a challenge in extracting information about the model’s reliability, especially during 
testing. Although these heatmaps facilitate a qualitative inspection of the signal features influencing predictions, they lack the pro-
vision of a quantitative measure for prediction reliability. Consequently, researchers have turned to UQ models, which quantify 
prediction uncertainty to facilitate reliability estimation. These models not only enhance decision-making for clinicians but also 
improve patient communication. 

Park et al. [30] introduced a novel approach that combines a self-attention-based LSTM-FCN deep learning architecture with an 
ensemble model to enhance the accuracy of classifying six distinct arrhythmia types. In a contemporary study, Elul et al. [31] presented 
the Monte Carlo Dropout (MCD) method to quantify uncertainty in cardiac arrhythmia classification, providing insights into prediction 
reliability. Barandas et al. [32], Vranken et al. [33], and Asseri et al. [33]conducted a comparative study for UQ techniques (MCD and 
Ensemble model) in cardiac arrhythmias detection. Notably, Barandas et al. [32] highlighted the robustness of ensemble methods in 
managing UQ and calibration amid dataset shifts. Their study revealed that ensemble-based methods outperformed single-network or 
stochastic methods in performance. The incorporation of uncertainty estimates into the classification process significantly improved 
the model’s ability to adapt to shifts in data distribution. The study also emphasized the importance of external validation in multi- 
label ECG classification, an aspect that is often overlooked. 

Jahmunah et al. [14] presented a Dirichlet DenseNet model for the MI classification in ECG signals. They employed predictive 
entropy as a reliable measure of uncertainty, enabling the detection of misclassifications between normal and MI ECG signals. Belen 
et al. [40] implemented test-time augmentation for UQ, adopting a unique approach. Lastly, Zangh et al. [34] introduced a Bayesian 
network with MCD for arrhythmia detection, emphasizing the importance of total uncertainty computation through data and model 
uncertainty decomposition. Their exploration of different uncertainty thresholds served to enhance classification performance by 
identifying and rejecting high-uncertainty samples. 

It is important to acknowledge that XAI and UQ techniques in ECG analysis have limitations. XAI techniques often struggle to 
generalize qualitative information extracted, hindering comparisons across different conditions. The accuracy of UQ depends on 
factors such as model choice, data quality, and UQ methods. Despite advancements in XAI and UQ methods to address deep learning 

Table 1 
List of works done on XAI and UQ using ECG signals.  

Authors, year Dataset XAI/ 
UQ 

XAI/UQ technique Aim 

Barandas et al. [32], 
2023 

CRBBB in G12EC and PTB-XL 
dataset 

UQ MCD and Laplace approximation, 
ensemble methods 

Cardiac arrhythmias detection 

Jahmunah et al.[14], 
2023 

PTB-XL UQ Predictive entropy for model 
uncertainty 

MI classification 

Park et al. [30], 2023 MIT-BIH and INCART UQ Deep ensemble approach Six arrhythmia classification 
Rutger R. van de Leur  

[28], 2022 
Private dataset XAI FactorECG (interpretable statistic 

model) 
Detection of variation in ECG signals 

Varandas et al.[29], 
2022 

MIT-BIH arrhythmia database XAI Grad-CAM Arrhythmia classification 

Zhang et al, [34], 2022 CPSC 2018 UQ Bayesian neural network with MCD Arrhythmia classification 
Asseri et al. [33], 2021 MIT-BIH and INCART UQ MCD and deep ensemble method Cardiac arrhythmias classification 
Elul et al. [31], 2021 MIT-BIH UQ MCD Heterogeneous mix of known and unknown 

arrhythmia detection 
Hughes et al. [26], 

2021 
365 009 patients XAI LIME 38 arrhythmia ECG diagnoses 

Maweu et al. [27], 
2021 

MIT-BIH XAI Explainability based on the features 
extraction 

abnormal ECG classification 

Vranken et al. [33], 
2021 

UMCU-Triage UMCU-Diagnose 
CPSC2018 

UQ MCD, variational inference, and 
ensemble 

ECG Classification 

Yong-Yeon Jo et al.  
[25], 2021 

PTB-XL ECG; Georgia ECG 
challenge; CPSC ECG 

XAI Attribution maps Arrhythmia detection 

Yoo et al. [25], 2021 CPSC 2018 dataset XAI ABN Arrhythmia classification 
Belen et al. [35], 2020 MIT-BIH Atrial Fibrillation 

database 
UQ UQ estimation using test-time 

augmentation 
Atrial fibrillation classification 

*MCD: Monte Carlo dropout, LIME: Linear Interpretable Model-Agnostic Explanations, ABN: Attention Branch Network, MIT-BIH: Massachusetts 
Institute of Technology - Beth Israel Hospital dataset, CPSC: China Physiological Signal Challenge, UMCU-Triage and UMCU-Diagnose: two datasets 
acquired from University Medical Center Utrecht, PTB-XL: A Large Benchmark Dataset for PhysioNet/Computing in Cardiology Challenge 2020; 
INCART: 12-Lead Arrhythmia Database. 
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model opacity, there is still a noticeable gap in understanding their predictive reliability during real-world testing. 

3. Materials and methods 

In our study, we introduced a novel AI framework for quantifying the reliability of a network’s prediction of CAD from ECG signals. 
CAD detection was performed by a CNN model integrated with BiLSTM layers. During testing, the ECG signals are corrupted by 
different types of noise at increasing power levels. For each pair of original and corrupted signals, the spatial overlap of features 
extracted by GRAD-CAM is computed, referred to as the SUE. The SUE provides quantitative information about where the network 
extracts the most relevant features to classify a corrupted signal compared to its baseline (original signal). Fig. 1 illustrates the pro-
posed framework for assessing the reliability of a network’s CAD classification of ECG signals. 

3.1. Dataset 

In this study, we sourced healthy ECG signals from the Physionet databases, specifically the Fantasia dataset [36]. These signals had 
a recording duration of 120 min in Lead II, with a sampling frequency of 250 Hz. For the CAD ECG signals, we used 75 signals extracted 
from 32 Holter monitor recordings from the St.-Petersburg Institute of Cardiology Technics 12-lead arrhythmia dataset [36]. The CAD 
signals were recorded at a sampling frequency of 257 Hz, with each signal lasting 20 min. To confirm the presence of CAD, 
comprehensive enzymatic assays, coronary angiography, electrophysiological studies, and vigilant blood pressure monitoring were 
conducted. 

In total, our study included healthy ECG signals from 40 individuals without cardiac irregularities (50 % females) and ECG signals 
from 7 individuals diagnosed with CAD (1 male and 6 females). To ensure compatibility with the CAD signals, we downsampled the 
healthy ECG signals to 257 Hz. Additionally, we applied a discrete wavelet transform (DWT) using the Daubechies 6 (6 db) wavelet to 
mitigate noise artifacts and rectify baseline aberrations [37]. Subsequently, the pre-processed signals were segmented into 2-second 
epochs, resulting in a total of 514 samples for each epoch. The final dataset consisted of a total of 95,300 ECG segments, categorized 
into 80,000 healthy ECG segments and 15,300 pathological CAD ECG segments. 

For the model training process, the dataset was divided at the patient level in training, validation and test set, as follows: 60,039 
segments (n = 29) were allocated for training, 25,731 (n = 13) for validation, and 9530 (n = 5) for testing purposes. Table 2 presents 
the dimensions of the dataset, including both classes, across the training, testing, and validation sets. 

3.2. CNN + BiLSTM network 

The proposed model architecture is designed with a sequence of three 1D convolutional (1D Conv) layers, followed by two BiLSTM 
layers [38], and three subsequent Dense layers. BiLSTM models are an extension of Recurrent Neural Networks (RNNs) and offer an 
effective solution to the vanishing gradient problem [39]. Deep-bidirectional LSTMs [38] further enhance the capabilities of LSTM 
models by applying two LSTMs to the input data. The utilization of BiLSTM enables the model to capture long-term dependencies and 
enhances overall accuracy [40]. 

The first two Dense layers employ the Rectified Linear Unit (ReLU) activation function, while the final layer utilizes the Softmax 
activation function to generate predicted probabilities for the two distinct classes. The input of the model was the ECG segments, while 

Fig. 1. The proposed AI framework assesses the reliability of a network’s prediction during test time. During the test time, the ECG signals were 
corrupted using different types of noise, and a new indicator SUE is computed to assess the robustness of the current prediction. 
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the output was CAD predictions. The proposed architecture is illustrated in Fig. 2, and a comprehensive overview of its design is 
provided in Table 3. During the training process, we employed the Adam optimization method and used the Binary Cross-Entropy loss 
function. Building upon insights from previous studies [41], the proposed model was trained for 20 epochs with a batch size of 10. 

3.3. Dataset corruption 

In real scenarios, ECG signals are susceptible to contamination from various noise sources, including motion artifacts, muscle noise, 
and baseline wander, each exhibiting unique characteristics and properties [42]. With this knowledge, we incorporate three distinct 
types of noise to corrupt the original ECG dataset during the testing phase. To quantify the level of signal corruption, we measure the 
power of the noise, which directly affects the signal-to-noise ratio (SNR) [43]. We employ four different noise sources: synthetic 
Gaussian white noise, synthetic power line noise, and two real noise records from the PhysioNet noise stress database [44]. 

Firstly, we synthesize corrupted ECG signals by incorporating Gaussian white noise samples with varying power levels ranging from 
0.001 to 0.005. Next, we synthesized signals with a real-world type of ECG noise: power line interference. The ECG data was corrupted 
by the synthesized noise, with the noise power spanning a range from 0.001 to 0.01. Additionally, we use two distinct real noise types 
extracted from ECG signals (Leads I and II) acquired from subjects’ limbs [44]: em and ma. The em records exhibit noise accompanied 
by substantial baseline wander, while the ma records primarily contain muscle noise. The corruption process involves introducing 
noise with variable power, spanning a range from 0.0001 to 0.0005. Fig. 3 shows an example of healthy and CAD signals along with 
their corresponding corruptive signals from the test set. In total, we constructed 20 different corrupted datasets:  

1) 5 datasets with Gaussian noise-corrupted ECG data (ECGGAUSS), with noise power ranging from 0.001 to 0.005.  
2) 5 datasets with power line noise-corrupted ECG data (ECGLINE), with noise power ranging from 0.001 to 0.01.  
3) 5 datasets with ‘em’ noise-corrupted ECG data (ECGEM), with noise power ranging from 0.0001 to 0.0005.  
4) 5 datasets with ‘ma’ noise-corrupted ECG data (ECGMA), with noise power ranging from 0.0001 to 0.0005. 

The original ECG data, without any noise corruption, will be referred to as ECGORIG. 

3.4. Spatial uncertainty estimation (SUE) 

The introduction of a novel metric called SUE can facilitate the evaluation of AI model reliability in real-world testing scenarios. 
SUE is specifically designed to assess the repeatability of model predictions by quantifying the degree of overlap among the most 
influential features identified through Grad-CAM-generated heatmaps. Fig. 4a presents the proposed framework for evaluating 

Table 2 
Dimension of the training, validation, and test set.   

Healthy CAD Total 

Training set (n = 29) 50,407 9632 60,039 
Validation set (n = 13) 21,544 4187 25,731 
Test set (n = 5) 8049 1481 9530  

Fig. 2. Overview of the proposed architecture: CNN + BiLSTM. The architecture comprises three 1D convolutional layers (Conv 1D), followed by 
two Bidirectional Long Short-Term Memory (BiLSTM) layers, and three subsequent Dense layers. The input consists of ECG signals (512 samples), 
and the output is the prediction of ‘CAD‘ or ‘no CAD’. 
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prediction reliability during the test phase, which involves three distinct stages: (1) heatmap estimation, (2) heatmap discretization, 
and (3) SUE computation. 

Initially, the ECGORIG dataset is used to test the CNN-BiLSTM model, and the Grad-CAM technique is employed to estimate the heat 
maps. The Grad-CAM is applied to the final BiLSTM layer. The heatmaps exhibit considerable variability, posing challenges in assessing 
reliability predominantly through qualitative means. To enable more effective comparisons, in this study, the heatmaps are discretized 
into a binary representation using percentile values as criteria. Specifically, the heatmaps are categorized into four distinct classes 
based on their values at the 25th, 50th, and 75 h percentiles:  

- Very low influence features: values below the 25th percentile.  
- Low influence features: values within the range [25th, 50th percentile].  
- Moderate influence features: values within the range [50th, 75th percentile].  
- High relevant features: values above the 75th percentile. 

To focus exclusively on the most relevant portions of the heatmap, a further discretization step is implemented to create a binary 
classification task:  

1) Class High (representing high-relevant features): values above the 75th percentile.  
2) Class Low (representing low-influence features): values below the 75th percentile. 

Subsequently, the same procedure is applied to the corrupted ECG datasets (ECGGAUSS ECGEM ECGMA). Considering an epoch of 
ECGORIG and ECGGAUSS, the SUE is computed as the intersection over the union of the original and corrupted heatmap for Class High, as 
described in Equation (1): 

SUE =
heatmap[High]

original ∩ heatmap[High]
corrupted

heatmap[High]
original ∪ heatmap[High]

corrupted

(1)  

A SUE value close to 1 demonstrates a high level of reliability in the prediction, indicating a nearly perfect spatial overlap between the 
relevant features in the original signal and their corresponding features in the corrupted signal. Conversely, a lack of prediction 
reliability is indicated by a SUE tending towards 0, suggesting that the spatial concurrence of the relevant features cannot be 
discernible. In summary, a SUE value of 1 implies a close resemblance between the relevant features identified in the original heatmap 
and those in the corrupted heatmap, while a dissimilarity in the high-relevant regions of the heatmaps in the two scenarios leads to a 
SUE value approaching zero. 

Furthermore, extensive validation of the SUE is conducted by introducing varying levels of noise to the ECG signal. This allows for 
the assessment of prediction repeatability under different conditions, such as an increased noise power level in the corrupted signal. 
Fig. 4b illustrates the computation of SUE between the original epoch and corrupted epochs with different noise power levels, and the 
quantitative trend of prediction reliability. 

3.5. Performance metrics 

During testing, we first evaluate the performance of our proposed model (CNN-BiLSTM) compared to widely used popular networks 
(CNN and DenseNet) in terms of accuracy, sensitivity, and specificity. The first model (CNN) was specifically developed for CAD signal 
classification and exhibited outstanding performance using the same dataset employed in our study [41]. The architecture of the CNN 
model consists of four Conv1D layers, interspersed with a max-pooling layer and three final Dense layers. The second model (Den-
seNet) was designed for the classification of myocardial infarction (MI) in ECG signals and integrated with the UQ [14]. The DenseNet 
model comprises 5 layers with 1D, followed by 1D average pooling, 9 layers with 1D followed by 1D average pooling, global average 
pooling, and a fully connected layer. 

Table 3 
The proposed architecture: layers, output and kernel dimension, and stride.  

Layer Output dimension Kernel dimension Stride 

Conv 1D 514x3 27 1 
Max Pooling 257x3 2 2 
Conv 1D 257x5 15 1 
Max Pooling 129x5 2 2 
Conv 1D 129x5 4 1 
Max Pooling 65x5 2 2 
BiLSTM 65x20 – – 
BiLSTM 65x10 – – 
Fully connected 20 – – 
Fully connected 10 – – 
Fully connected 2 – –  
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To estimate the SUE, for both CNN and DenseNet models, Grad-CAM is applied to the final convolutional layer. Following the 
validation of these networks, we proceed to conduct an extensive evaluation of the SUE metrics. This evaluation serves a dual purpose: 
firstly, to identify the best-performing network during testing, and secondly, to assess the reliability of predictions. SUE not only 
identifies the most accurate model but also offers valuable uncertainty measurements, making it a useful tool for assessing the reli-
ability of predictions. 

We first compare prediction repeatability with SUE values derived from the three models under various levels of ECG signal 
corruption. This facilitates a direct comparison of prediction and feature repeatability, optimizing the quantification of prediction 
robustness. 

Furthermore, we investigate the relationship between SUE values and prediction accuracy by separately estimating SUE for 
correctly and incorrectly classified instances. This evaluates whether SUE correlates with model accuracy. This comparative evaluation 
is performed for each noise power level applied to corrupt ECG signals. 

Finally, we compared the SUE to other established uncertainty estimation methods in the literature: Deep Ensemble and Monte 
Carlo Dropout (MCD) [45]. To evaluate Deep Ensemble, we developed a model using the three trained networks - CNN, DenseNet, and 
CNN-BiLSTM. We then measured the uncertainty of predictions on the test set using Deep Ensemble. This allowed us to compare SUE to 

Fig. 3. Example of healthy (left) and CAD-affected (right) ECG signals, along with their respective corrupted signals from the test set. The top row 
displays the original signals. Subsequent rows show signals corrupted by Gaussian noise, power line interference, motion artifacts, and electrode 
motion artifacts, respectively. 

Fig. 4. The proposed AI framework for reliability assessment using the SUE parameter. (a) First, heatmaps are estimated from the original and 
corrupted signals. Then, after heatmap discretization, the most relevant features are retained. Finally, the spatial overlap is computed. (b) An 
example of extended SUE validation, achieved by varying the noise overlaid on the ECG signal. 

Table 4 
Model performance on the train, validation, and test set: CNN, DenseNet and the proposed model (CNN-BiLSTM).  

Network Subset Accuracy Sensitivity Specificity 

CNN [41] train  0.991  0.994  0.977 
validation  0.988  0.993  0.963 
test  0.988  0.993  0.963 

DenseNet [14] train  0.989  0.992  0.967 
validation  0.985  0.991  0.957 
test  0.986  0.991  0.959 

CNN-BiLSTM (proposed) train  0.999  0.999  0.992 
validation  0.997  0.998  0.988 
test  0.996  0.998  0.982  
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other common uncertainty quantification techniques. 

4. Results 

4.1. Classification performance 

The validation parameters for the proposed model, as well as the CNN and DenseNet models, are presented in Table 4. Throughout 
both the validation and testing phases, the CNN-BiLSTM model consistently demonstrates superior classification performance. It 
demonstrated superior accuracy, sensitivity, and specificity in correctly identifying and classifying cardiac arrhythmias. In the test set, 
its accuracy reaches 0.996, while the DenseNet and CNN achieve 0.986 and 0.988, respectively. However, it is important to note that 
the CNN and DenseNet models also displayed excellent performance, indicating their effectiveness in ECG signal classification. Fig. 5 
shows the training curves for all the tested models, displaying loss and accuracy. 

To provide a visual representation of the model’s performance, Fig. 6 presents the confusion matrices (CMs) obtained using the test 
set. Considering the CMs, the number of misclassifications is consistently higher in both the CNN and DenseNet networks compared to 
our proposed CNN-BiLSTM model. Specifically, in the CAD class, the CNN-BiLSTM model demonstrates a notable decrease in the 
misclassification of non-CAD segments as CAD (False Positives), with only 13 epochs compared to 57 and 68 epochs for the CNN and 
DenseNet models, respectively. Additionally, our proposed model exhibits a significant reduction in misclassifying CAD segments as 
non-CAD (False Negatives), with 26 segments compared to 55 and 61 segments for the CNN and DenseNet models, respectively. This 
outcome holds clinical significance as it contributes to minimizing the occurrence of False Negatives, which is crucial for accurate 
diagnosis and effective treatment. 

Fig. 5. Training curves for the three tested models, displaying loss in the first column and accuracy in the second column. Loss and accuracy are 
depicted for the CNN model on the first line, for DenseNet on the second line, and for CNN-BiLSTM on the last line. 
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4.2. SUE validation 

Typically, prediction repeatability is the conventional metric used to evaluate model reliability during testing. However, this metric 
often fails to provide meaningful insights into prediction reliability, especially when predictions exhibit systematic errors or mis-
classifications. SUE metric can be used to quantify the reliability of model predictions by assessing the spatial overlap between the most 
influential features through heatmaps generated using the Grad-CAM technique. In Fig. 7, we compare SUE with the prediction 
repeatability for the CNN-BiLSTM, CNN, and DenseNet models across the four different noise conditions: Gaussian white noise (first 
line), power line interference (second line), motion artifact noise (third line), and electrode motion artifact (fourth line). 

In the first analysis, we evaluated the reliability of predictions by introducing Gaussian noise at different power levels ranging from 
0.001 to 0.005. Overall, both the CNN and CNN-BiLSTM models performed the best. When considering the repeatability of predictions 
alone, the two models showed similar reliability. However, as we increased the power of the noise, a noticeable contrast emerged when 
examining the SUE values. The CNN-BiLSTM model proved to be more reliable, reinforcing its superior performance as also high-
lighted in Table 4. Although DenseNet exhibited commendable performance under normal conditions, it demonstrated reduced 
robustness when dealing with signals containing overlapping noise. 

In the second analysis, we assess the robustness of the three models using the corrupted ECGLINE, synthesized using the power line 
interference varying the power noise in a range from 0.001 to 0.01. The proposed CNN-BiLSTM and the CNN model demonstrate 
comparable repeatability of predictions for almost all levels of noise power. However, when evaluating the SUE value, the CNN proves 
to be more robust than the CNN-BiLSTM for high levels of noise power (greater than 0.005). 

In the third analysis, we evaluated the reliability of the three models using the ECGMA dataset while varying the muscle noise 
overlaid on the ECG signal from 0.001 to 0.005. When considering only the repeatability of predictions, there were no evident dif-
ferences between the CNN and CNN-BiLSTM models. However, when we considered SUE, a more pronounced distinction between 
these models became apparent. Furthermore, even in the presence of motion artifact noise, DenseNet showed the lowest level of 
robustness among the three models. 

In the final analysis, we assessed the reliability of predictions using synthesized signals containing electrode motion artifacts. When 
considering the repeatability of predictions, both the CNN and CNN-BiLSTM models showed comparable performance, which was 
higher than that of the DenseNet model, even at low noise levels. However, when examining the SUE metric, a clear distinction be-
tween the two networks emerged from the beginning, with the CNN-BiLSTM model proving to be the most reliable, even in comparison 
to the CNN model. 

4.3. SUE vs. Classification accuracy 

In this section, we explore the relationship between SUE values and prediction accuracy. Fig. 8 displays the SUE computed for the 
correctly classified and misclassified ECG segments of the test set. The first column of Fig. 8 illustrates the SUE values for correctly and 
incorrectly classified cases at the initial low noise power level. From the same figure, it can be observed that the SUE is consistently 
higher for the correctly classified compared to the misclassified, especially in real-world noises. 

To further investigate, we extend the analysis by calculating SUE values across increasing noise levels. The second column of Fig. 8 
displays the mean SUE values and standard error estimates for different noise intensities for the correctly classified (blue lines) and 
misclassified (orange lines). This enables an assessment of the trend in SUE for correctly classified and misclassified cases as the noise 
power varies. Consistently, SUE values remain higher for correctly classified ECG segments compared to misclassified segments as 
noise levels increase. 

These findings establish a robust positive correlation between SUE values and classification accuracy during the test phase. Higher 
SUE values correspond to more accurate classification, while lower SUE values indicate a higher number of misclassifications. 
Importantly, this relationship holds true even as noise levels intensify. 

Fig. 6. The confusion matrices of the CNN, DenseNet, and the proposed model CNN-BiLSTM, estimated using the test set.  
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4.4. SUE vs. Other UQ methods 

The SUE metric was compared to uncertainty estimation methods found in the literature, such as Deep Ensemble and MCD. Un-
certainty values were estimated using the test set, which was corrupted by Gaussian noise, line interference, movement artifact, and 
electrode motion artifact. The noise power values were set to 0.001 for synthetic noises and 0.0001 for real noises. These uncertainty 
values were then compared to the SUE value estimated under the same conditions. To facilitate comparison, the SUE is presented as 1- 
SUE, which provides information about the prediction uncertainty. 

Table 5 presents the mean value and standard deviation of uncertainty estimated using Deep Ensemble, CNN-BiLSTM with MCD, 
and CNN-BiLSTM with SUE. Uncertainty values are estimated for both correctly classified (CC) and misclassified (MC) instances. As 
shown in the table, the methods capable of providing distinct values for CC and MC instances are the Deep Ensemble and SUE. A 
notable difference of around 30 % can be observed between the uncertainty values produced by the Deep Ensemble for correctly 
classified test samples and misclassified samples. Similarly, the SUE demonstrates significant differentiation between CC and MC 

Fig. 7. Comparison between prediction repeatability and SUE scores during test time. The first column illustrates the trend in prediction repeat-
ability as noise power levels are varied to corrupt ECG signals. The blue line corresponds to the proposed model (CNN-BiLSTM), the orange line 
represents the CNN, and the green line represents the DenseNet. In the second column, the mean values and standard deviations of SUE are pre-
sented for different noise power levels applied to distort the ECG signals. The blue graph represents SUE values estimated using our method (CNN- 
BiLSTM), the orange graph represents values estimated with the CNN, and the green graph represents values estimated with the DenseNet. 
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Fig. 8. SUE scores estimated for correctly classified and misclassified ECG segments. The right column displays SUE values under lower noise power 
conditions (0.001 for Gaussian noise and power line interference, while 0.0001 for real artifact noise), for the correctly classified (CC) and mis-
classified (MC). The left column presents mean values and standard errors of SUE scores estimated with various noise powers. The blue line cor-
responds to SUE values for correctly classified segments, and the orange line corresponds to those for misclassified segments. 

Table 5 
Comparison between the Uncertainty estimated in the Deep Ensemble model, CNN-BiLSTM + Monte Carlo Dropout and CNN-BiLSTM + SUE for all 
the corrupted ECG datasets.  

Techniques Gaussian artifacts Power line interference Motion artifacts Electrode artifacts 

Deep Ensemble CC 0.011 ± 0.058 0.011 ± 0.059 0.029 ± 0.095 0.029 ± 0.096 
MC 0.361 ± 0.132 0.355 ± 0.139 0.350 ± 0.149 0.339 ± 0.148 

CNN-BiLSTM + MCD CC 0.001 ± 0.003 0.001 ± 0.002 0.001 ± 0.005 0.001 ± 0.004 
MC 0.027 ± 0.041 0.032 ± 0.041 0.032 ± 0.040 0.020 ± 0.033 

CNN-BiLSTM + SUE CC 0.033 ± 0.054 0.017 ± 0.039 0.166 ± 0.107 0.153 ± 0.106 
MC 0.184 ± 0.290 0.134 ± 0.277 0.524 ± 0.294 0.537 ± 0.288 

*CC represents the correctly classified and the MC represents the misclassified segments. 
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instances. Specifically, for the two types of real noise (motion artifact and electrode artifact), the SUE exhibits a difference of 
approximately 40 %. However, MCD does not yield significant differences between correctly classified and misclassified samples in the 
test set. 

5. Discussion 

CAD is a prevalent cardiovascular disorder affecting millions of individuals. Early diagnosis is vital for improving treatment 
outcomes. Automated diagnostic systems are crucial in achieving early detection and overcoming the limitations of manual ECG 
assessments. Despite achieving human-level performance, the practical use of AI models is constrained by transparency issues and 
inherent uncertainty. Ongoing research endeavors focus on enhancing the interpretability of DL models and expanding their clinical 
applicability, prompting the integration of XAI techniques and UQ methods. Despite progress in mitigating opacity with XAI and UQ, 
understanding their real-world predictive reliability remains a challenge. Indeed, the XAI provides insights, but it struggles to 
generalize information and make comparisons between different conditions. On the other hand, UQ accuracy depends on factors such 
as model selection, data quality, and specific methodologies employed. Therefore, there is a need for a robust indicator to quantify 
prediction resilience in practical ECG scenarios. In this study, we presented an AI-based framework that computes the SUE, a novel 
indicator for assessing the prediction reliability of classification networks during testing. 

The SUE indicator is developed to overcome the limitations of traditional metrics that often struggle to quantify reliability during 
testing. While repeatability shows comparable results between the CNN and CNN-BiLSTM models, the SUE metric provides critical 
insights into model reliability under noise (Fig. 7). The analyses stated the superiority of the CNN-BiLSTM model and revealed lim-
itations in the robustness of DenseNet. 

Furthermore, we assess the relationship between the SUE score and prediction accuracy during testing. The SUE metric provides 
insights into model prediction reliability beyond just repeatability. By comparing SUE values between correctly and incorrectly 
classified cases, we can evaluate model robustness to noise and other distortions. As depicted in Fig. 8, SUE values consistently showed 
higher values for correctly classified instances compared to misclassified ones. This consistent gap in SUE between accurate and 
inaccurate predictions demonstrates the metric’s usefulness for assessing reliability. 

The final analysis involved comparing the proposed SUE method with traditional uncertainty estimation methods, namely Deep 
Ensemble and MCD. The uncertainty values were evaluated for all four types of noise utilized in this study. While Deep Ensemble and 
SUE demonstrate similar performance in assessing uncertainty for correctly and misclassified samples in the test set, SUE offers several 
advantages. Deep Ensemble requires three trained models, resulting in increased computational costs in real-world scenarios. In 
contrast, SUE only requires a single model for uncertainty estimation. Furthermore, SUE exhibits excellent performance, particularly 
when dealing with ECG signals corrupted by real noise, such as motion and electrode artifacts. 

Another noteworthy aspect is that SUE serves as a bridge between XAI and UQ. SUE offers the ability to extract additional in-
formation compared to Grad-CAM. Unlike Grad-CAM, SUE goes beyond evaluating feature importance within the original signal. It 
assesses the spatial overlap of the most critical features, offering quantitative insights into the network’s robustness in terms of both 
current predictions and prediction reliability. Moreover, SUE is a highly versatile metric that can be applied to any network compatible 
with Grad-CAM, without requiring model retraining. This versatility allows for its seamless integration into existing models for 
enhanced interpretability and uncertainty assessment. In this work, we also presented the CNN-BiLSTM model, which outperformed 
both the CNN and DenseNet models. 

In summary, the proposed methodology offers several key benefits:  

1) SUE quantifies the spatial overlap of the most relevant features from Grad-CAM, providing a confidence score for the current 
prediction. We are the first group to propose SUE for CAD ECG signals.  

2) SUE values have a strong correlation with classification accuracy during test time.  
3) SUE can be easily applied during inference without the need for network retraining.  
4) SUE can identify the most suitable network by evaluating Grad-CAM repeatability using synthesized ECG signals with diverse noise 

types and intensities.  
5) SUE quantitative information on the network’s robustness, encompassing both current prediction accuracy and the repeatability of 

predictions 

It is important to recognize the limitations inherent in the proposed method. In this study, SUE is used specifically to assess the 
spatial overlap of features and the prediction’s robustness. However, exploring the applications of SUE reveals numerous possibilities 
and diverse uses. Future investigations could focus on integrating SUE into UQ models to create an indicator that evaluates multiple 
aspects of predictions, including both uncertainty and repeatability. In this contest, an area of work could be the integration of SUE 
with probabilistic uncertainty estimation techniques such as Monte Carlo dropout or ensembling to provide a more comprehensive 
evaluation of model reliability from different perspectives. Indeed, quantifying both spatial and probabilistic uncertainty could offer 
additional insights into robustness. 

Furthermore, future studies could examine the scalability of the model by applying SUE under real-world conditions. This could 
involve augmenting the dataset by integrating it with real-time ECG monitoring systems. The feasibility of implementing our proposed 
pipeline in real-time is supported by the low inference time, as the CNN-BiLSTM model demonstrates an inference time of only 0.05 s 
for a 2-second ECG segment. This aspect reaffirms the practicality of using our pipeline in real-time applications. 

Moreover, there is potential for deeper exploration in future studies regarding the interpretability of the model and SUE from a 
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clinical perspective. This exploration could shed light on how physicians can leverage these insights in the decision-making process 
and evaluate the model’s alignment with clinical criteria for CAD diagnosis. Future studies could also expand the application of this 
pipeline to various tasks, such as classifying other cardiac pathologies or different physiological signals. While this work focuses on 
validating SUE using ECG signals due to their importance in cardiac health applications, future studies could investigate applying SUE 
in the classification of neurological pathologies using electroencephalography (EEG) [51] and electromyography (EMG). Moreover, a 
promising avenue for future investigations could involve an in-depth exploration of the model’s sustained performance and its capacity 
to adapt to dynamic patterns in ECG data. Delving into the implications of periodic retraining or fine-tuning with new data may yield 
valuable insights, contributing to the ongoing refinement of the model’s long-term robustness. 

6. Conclusion 

In this study, we have introduced a novel metric called SUE, which integrates aspects of XAI with UQ principles, providing 
quantitative insights into the model’s robustness. By assessing the spatial overlap of discriminative features, the SUE quantitatively 
evaluates network reliability on a scale from 0 to 1, encompassing both current prediction accuracy and the repeatability of 
predictions. 

Initially, we proposed a CNN-BiLSTM deep learning network for accurate ECG signal classification in CAD, surpassing state-of-the- 
art methods and representing a significant advancement. To validate the SUE, we conducted a comprehensive analysis under four noise 
conditions applied to the ECG signal, involving two synthetic noises (random noise and power line interference) and two real noises 
(motion and electrode movement artifacts). The SUE not only highlights the CNN-BiLSTM model’s superior performance in noisy 
conditions but consistently identifies the top-performing network, elucidating limitations within CNN and DenseNet. Additionally, we 
observed a clear correlation between the SUE and prediction accuracy, with higher SUE values associated with correctly classified 
cases and lower values with misclassified instances. Finally, the SUE showcases comparable performance to traditional uncertainty 
estimation methods, Deep Ensemble and Monte Carlo Dropout, when evaluating uncertainty for correctly and misclassified samples 
within the test set. In summary, this research not only introduces a novel reliability metric for AI models but also underscores the 
potential of combining XAI and UQ techniques to enhance ECG analysis. The proposed method can be employed for other healthcare 
applications using physiological signals such as phonocardiogram (PCG), EEG, photoplethysmography (PPG), EMG, etc. 
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