
 

 

 

 

 

STABILITY ANALYSIS OF TUNNELS AND 

UNDERGROUND OPENINGS 

 

 

 

 

A Thesis submitted by 

Fadhil Kurdi Mohammed Al-Asadi 

 

 

For the award of 

Doctor of Philosophy 

 

 

 

 

Year 2020 

 



i 

 

ABSTRACT 

 

This thesis investigates both undrained and drained stability of three various 

configurations of underground openings related to tunnelling (i.e. tunnel heading, 

single circular tunnel and twin circular tunnels) in both two‐dimensional (2D) and 

three-dimensional (3D) spaces. Finite element limit analysis (FELA) is used to 

determine lower and upper bound stability limits for a range of various geometrical 

and material scenarios. The thesis is divided into two parts. 

Part A focuses on the undrained stability analysis using Broms and Bennermarks’ 

original stability number (N). For the 2D undrained analysis, the factor of safety values 

was calculated using the shear strength reduction method (SSRM) in FELA, while for 

the 3D undrained analysis, the critical supporting pressure values were calculated 

using the load multiplier method (LMM) in FELA. The relationships between the factor 

of safety and the stability number (N), which includes design soil and geometry 

parameters, were investigated for active (collapse) and passive (blowout) failures. 

Several design charts, tables and equations were produced to better assist in 

understanding these relationships. 

Part B focuses on drained analysis using tunnel stability factors (Fc, Fs and Fγ). This 

approach is convenient for stability analysis of underground openings with a wide 

range of angle of internal friction (ϕ = 0 - 40˚) and depth ratios (C/D = 1 - 10). The 

critical support pressure required to maintain stability can then be determined by 

substituting the corresponding factors in a conventional equation that is analogous to 

Terzaghi’s bearing capacity equation. 

Although the FELA technique can define the actual failure load from below (lower 

bound solution) and from above (upper bound solution), the obtained results were 

compared with available solutions (theoretical, experimental and numerical) in the 

published literature. Also, the finite difference method (FDM), via the software FLAC 

2D has been used over the same parametric range to validate the 2D (FELA) results 

for tunnel heading, single circular tunnel and twin circular tunnels under undrained 

condition. 
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This thesis contributes significantly to practising engineers as comprehensive design 

tables, figures and equations have been produced for the design of tunnel stability 

using the rigorous upper and lower bound solutions in both 2D and 3D spaces.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

The steady increase in population growth in the world’s cities led to increasing demand 

for traffic systems (roads, railroads, metros) and community services (sewers, water 

pipelines). Due to the scarcity of available areas and surface congestion, tunnels and 

ground structures are used to accommodate the required infrastructures. 

Construction of tunnels or underground openings in soft ground inevitably induces 

ground movement and may affect the nearby surface and subsurface facilities. 

Ensuring stability is directly related to the safety of the adjacent structures and 

successful construction of the tunnel or the underground opening. Therefore, stability 

analysis for tunnels has been carried out using various methods, and many publications 

have been produced (Davis et al. 1980; Atkinson & Mair 1981; Leca & Dormieux 

1990; Assadi & Sloan 1991; Anagnostou & Kovári 1996; Lyamin & Sloan 2000; 

Vermeer et al. 2002; Wilson et al. 2011; Mollon et al. 2013; Sloan 2013; Yamamoto 

et al. 2013; Krabbenhoft & Lyamin 2015; Yang et al. 2015; Zhang et al. 2015; 

Ukritchon, Yingchaloenkitkhajorn, et al. 2017; Shiau & Al-Asadi 2018) 

The rapid development of computers and simulation software coupled with advances 

of tunnelling techniques and machinery means that tunnels are now safer, cheaper, and 

more time-efficient than ever concerning operation and construction. Some 

infrastructure, such as the crossing of a subway line under the historical buildings, can 

only be implemented by using tunnelling machines for their unique controls in 

minimising disturbances caused by excavation (Guglielmetti et al. 2008). As stated by 

Pelizza (1996) "going underground is not only to free the ground surface but also to 

improve the quality of life". 

As no universally recognised tunnel analysis method is available for the stability 

problems, it still is a subject where some improvement could be made to aid tunnel 

designers. Thus, the goal of this study is to equip design engineers with simple design 

tools to determine the stability of underground openings. 
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1.2 Research Objectives and Scope of Work 

The primary objective of this thesis is to develop numerical models that accurately 

simulate the internal pressure of a boring machine during tunnel construction. The 

research problems being studied are the undrained and drained stability of three 

various configurations of underground openings related to tunnelling (i.e. tunnel 

heading, single circular tunnel and twin circular tunnels) in two‐ and three-dimensional 

spaces. Both two- and three- dimensional finite element limit analyses are conducted 

using the shear strength reduction method (for 2D analysis) and the limit analysis (for 

3D analysis) with homogenous undrained and drained soil models. Parametric 

investigations are implemented using dimensionless ratios for tunnel geometry and 

soil parameters and stability. 

For the stability problem in a cohesive soil, the solution is defined using the Broms 

and Bennermark approach. This approach has been adopted in this research with the 

aim of producing systematic solutions which can be used to estimate the collapse and 

blowout conditions based on respective stability number. This method is particularly 

useful to relate factors of safety to a wide range of loading scenarios, tunnels 

configurations and soil parameters. Also, the associated failure extent of the ground 

surface has been determined in the event of the tunnel collapse, which is useful for the 

analytical upper bound that requires a priori assumption in relation to the general form 

of the failure mechanism. 

The empirical method remains as the most widely used for drained tunnel stability 

analysis in cohesive-frictional soil. It is the aim of this study to develop novel tunnel 

stability factors (Fc, Fs and Fγ) for calculating the critical internal pressure required to 

maintain stability at collapse for various soil and geometry parameters in 2D and 3D 

spaces. This approach is not unfamiliar to engineers, as these comprehensive tunnel 

stability factors are analogous to the bearing capacity factors (Nc, Ns and Nγ) used in 

Terzaghi’s bearing capacity equation. The produced solutions would contribute 

significantly to the tunnel engineers in their daily practices. 
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1.3 Organisation of the Thesis 

Chapter 2 - Literature Review 

This chapter presents the literature review related to the stability of tunnels and 

underground openings in a wide range of soils (cohesive, cohesive-frictional and 

cohesionless) under undrained and drained conditions. Also, the methods for tunnel 

and underground openings stability analysis in 2D and 3D are reviewed. These include 

analytical, experimental and numerical.   

Chapter 3: Numerical Modelling Review 

This chapter presents the two types of computer modelling techniques that are used in 

this study. Review the development of the finite element limit analysis and the 

modelling techniques in both of the finite element limit analysis and the finite 

difference method (FLAC). This followed by a discussion of the methods implemented 

in these programs, the shear strength reduction method and the pressure relaxation 

method.  

Part A: Undrained Analysis 

This part of the thesis presents the stability of three various configurations of 

underground opening related to tunnelling (tunnel heading, single circular tunnel and 

twin circular tunnels) in a homogeneous cohesive soil under undrained conditions. In 

such soil where no volume loss during plastic shearing, stability results are 

independent of loading directions, and the combination of surcharge, self-weight and 

internal supporting pressures can produce failure either in collapse or blowout. 

Therefore, the stability of tunnels and underground openings (in collapse or blowout) 

can be described by Broms and Bennermark’s stability number (N), which combine 

soil and geometry parameters with all stresses into a single dimensionless number 

Chapter 4: Undrained Analysis of 2D Tunnel Heading 

This chapter investigates the two-dimensional stability of an idealised plane strain 

tunnel heading in a cohesive soil under undrained conditions. The shear strength 

reduction method in FELA is used to obtain rigorous upper bound and lower bound 

factors of safety for the models under different combinations of pressures. The factor 

of safety results, which are functions of the stability number and depth ratio, are 
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compared and validated by using the finite difference method as well as other existing 

solutions available in the literature. The dimensionless ratios employed in this study 

make the design charts suitable to cover a broad range of tunnel geometries and soil 

parameters. The charts can also be used to provide an estimation of internal tunnelling 

pressures, making them useful for designers and practising engineers.  

Chapter 5: Undrained Analysis of 2D Single Circular Tunnel 

This chapter investigates the two-dimensional stability of an idealised plane strain 

single circular tunnel in a cohesive soil under undrained conditions by using the two-

dimensional finite element limit analysis (FELA) program and the shear strength 

reduction method (SSRM). The variations of the factor of safety and the critical 

stability number are presented for a series of tunnel cover-to-diameter ratios (C/D) in 

both collapse and blowout scenarios. The obtained results are compared and validated 

by using the finite difference method as well as other existing solutions available in 

the literature. The dimensionless ratios employed in this study make the design charts 

suitable to cover a broad range of tunnel geometries and soil parameters.  

Chapter 6: Undrained Analysis of 3D Analysis of Single Circular Tunnel 

This chapter investigates the three-dimensional stability of a single circular tunnel in 

a cohesive soil under undrained conditions using three-dimensional upper and lower 

bound finite element limit analysis. Dimensionless ratios are used in this study to cover 

practical soil parameters and tunnel depths for collapse and blowout analyses. 

Numerical results of critical stability numbers are compared with two-dimensional and 

three-dimensional solutions available in the literature. Stability design charts and 

tables produced in this paper can be used to estimate safety factors for various design 

parameters.  

Chapter 7: Undrained Analysis of 2D Analysis of Twin Circular Tunnel 

This chapter investigates the stability of twin circular tunnels horizontally aligned in 

cohesive undrained soil under plane strain conditions. The shear strength reduction 

method (SSRM) in the two-dimensional finite element limit analysis (FELA) program 

is used to obtain rigorous upper and lower bounds of the factor of safety for various 

depth ratios (C/D) and centre to centre spacing ratios (S/D) between the tunnels. The 

variations of the factor of safety have been presented for different combinations of 
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stability numbers (N) and geometries (C/D and S/D). The factor of safety and the 

stability number results are compared and validated by using the finite difference 

method as well as other existing solutions available in the literature. 

Chapter 8: Undrained Analysis of 3D Analysis of Twin Circular Tunnel 

This chapter investigates the three-dimensional (3D) heading stability of twin circular 

tunnels horizontally aligned in cohesive undrained clayey soil. A recently developed 

3D finite element limit analysis technique is used to obtain rigorous upper bound and 

lower bound critical stability numbers at collapse and blowout. The interaction effects 

of the distance between the tunnels on the stability are determined for a series of tunnel 

cover-to-diameter ratios. As an additional verification of the rigorous bounding 

solutions, the obtained stability results are compared with other published solutions 

available in the literature. 

Part B: Drained Analysis 

This part focuses on the use of tunnel stability factors to estimate critical supporting 

pressures. The primary method adopted is a conventional equation based on the soil 

property and tunnel stability factors, analogous to the bearing capacity factors (Nc, Ns 

and Nγ) of strip footings. The chapters in this part investigate the 2D and the 3D 

stability of tunnels and underground openings in a general soil (ϕ = 0˚ – 40˚) under 

drained conditions, based on tunnel stability factors (Fc, Fs and Fγ). 

Chapter 9: Drained Analysis of 2D Analysis of Tunnel Heading 

This chapter investigates the two-dimensional stability of an idealised plane strain 

tunnel heading in a general soil (ϕ = 0˚ – 40˚) under drained conditions. The finite 

element limit analysis (FELA) is employed to determine rigorous upper bound (UB) 

and lower bound (LB) solutions of stability factors (Fc, Fs and Fγ), which are functions 

of the depth ratio (C/D) and soil internal friction angle (ϕ). The obtained results are 

compared and validated by using the finite-difference method as well as other available 

published results in the literature. 

Chapter 10: Drained Analysis of 2D Analysis of Single Circular Tunnel 

This chapter investigates the two-dimensional stability of an idealised plane strain 

single circular tunnel in a general soil (ϕ = 0˚ – 40˚) under drained conditions. The 
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finite element limit analysis (FELA) is employed to determine rigorous upper bound 

(UB) and lower bound (LB) solutions of stability factors (Fc, Fs and Fγ), which are 

functions of the depth ratio (C/D) and soil internal friction angle (ϕ). These factors can 

be used to determine the radial pressure acting on the exposed periphery of the tunnel 

to maintain stability at collapse. The obtained results are compared and validated by 

using the finite-difference method as well as other available published results in the 

literature. 

Chapter 11: Drained Analysis of 3D Analysis of Single Circular Tunnel 

This chapter investigates the three-dimensional stability of a single circular tunnel in 

a general soil (ϕ = 0˚ – 40˚) under drained conditions. Numerical simulations are 

performed to study the face stability of a circular tunnel for various soil properties and 

tunnel cover-to-diameter ratios. Three-dimensional finite element limit analysis 

(FELA) is employed to determine rigorous upper and lower bounds solutions of tunnel 

stability factors (Fc, Fs and Fγ), which are functions of the depth ratio and soil internal 

friction angle. These stability factors are used to estimate the critical heading pressures 

at collapse. The obtained results are compared with existing published solutions in the 

literature. 

Chapter 12: Drained Analysis of 2D Analysis of Twin Circular Tunnel 

This chapter investigates the two-dimensional stability of an idealised plane strain twin 

circular tunnels in a general soil (ϕ = 0˚ – 40˚) under drained conditions. The finite 

element limit analysis (FELA) is employed to determine rigorous upper bound (UB) 

and lower bound (LB) solutions of stability factors (Fc, Fs and Fγ), which are functions 

of the depth ratio (C/D), soil internal friction angle (ϕ) and centre to centre spacing 

ratios (S/D) between the tunnels. These factors can be used to determine the radial 

pressure acting on the exposed periphery of the tunnel to maintain stability at collapse. 

The obtained results are compared and validated by using the available published 

results in the literature. 

Chapter 13: Drained Analysis of 3D Analysis of Twin Circular Tunnel 

This chapter investigates the three-dimensional stability of twin circular tunnels in a 

general soil (ϕ = 0˚ – 40˚) under drained conditions. Numerical simulations are 

performed to study the face stability of circular tunnels in various soil properties and 
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tunnel diameter-to-depth ratios. Three-Dimensional finite element limit analysis 

(FELA) is employed to determine rigorous upper and lower bounds solutions of tunnel 

stability factors (Fc, Fs and Fγ), which are functions of the depth ratio, soil internal 

friction angle and centre to centre spacing ratios between the tunnels. These stability 

factors are used to estimate the critical radial pressure acting on the exposed periphery 

of the tunnel at collapse. The obtained results are compared with existing published 

solutions in the literature. 

Chapter 14: Conclusion  

This chapter concludes the thesis by summarising the work and highlighting the major 

findings.  Recommendations are also made regarding future research related to the 

topic of stability problems based on the findings of this thesis. Figure 1.1 outlines the 

thesis structure and the relationship between the chapters. 
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Figure 1.1. Outlines of the thesis structure and the relationship between the chapters. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Introduction 

In most of the world's congested cities, and due to the depletion of surface areas, 

tunnels are built to accommodate highways (Streets, subways, railroad) and public 

services (water duct and sewer lines). 

Peck (1969) proposed three design criteria to be considered in tunnel design and 

construction that are stability analysis, structural design of the lining and settlement in 

the short and long term. This thesis focuses on the first criterion (stability analysis) 

because the second criterion is mostly a structural problem, while the third criterion is 

the consequences of the instability. The investigation of the stability of the tunnels and 

the underground openings are conducted either under undrained condition or under 

drained condition depending on the permeability and the type of soil. The permeability 

of the soil can be used as a measure to determine the conditions of the stability analysis. 

Anagnostou and Kovári (1996) proposed that the drained conditions tend to apply 

when the ground permeability is higher than 10-7 to 10-6 m/s such as in sandy soil. In 

the other hand, because the collapse of the tunnel is usually a sudden incident, hence 

for a clayey, low-permeability soil, it is convenient to use the undrained shear strength 

for the stability analysis (Davis et al. 1980).  

The following literature reviews are directly linked to the stability problems of tunnels 

and underground openings in both cohesive undrained soil and cohesive and/or 

frictional soils. 
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2.2 Stability Analysis in Cohesive Soils 

The stability of tunnels and underground openings is most often described by the 

stability number (N) in Broms and Bennermark (1967). The stability number (N) is 

defined in equation (2.1).  

s t

u

H
N

S

   
                                                                                             (2.1) 

Where σs is the surcharge on the ground surface and σt is the internal tunnel pressure. 

H is the depth of the opening axis that is equal to  / 2 ,C D  C is the tunnel cover 

and D is the diameter of the opening. Su and γ represent the undrained shear strength 

and the unit weight of the soil, respectively (Figure 2.1).  

 

Figure 2.1. Vertical wall stability model of Broms and Bennermark (1967). 

Following the bottom heave study of strutted excavations by Bjerrum and Eide (1956), 

it was concluded that failure occurs when the difference between the overburden 

pressure and the supporting pressure ( )   s tH  exceeds the undrained shear 

strength (Su) by six to eight times. The value of “six to eight” is Broms and 

Bennermark’s critical stability number (Nc) and it is dependent on the shape of the 

opening and the roughness of the vertical retaining wall. There was no mention of the 

depth ratio (C/D) effect on the critical stability number (Nc) in their study. Also, they 

stated that a general failure occurs when the centre of the opening is located at a depth 
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less than four diameters of the openings; otherwise, the failure will be local and 

extends one diameter above the opening (Figure 2.2). 

 

Figure 2.2. (a) General shear failure, (b) Local shear failure (Broms and Bennermark, 

1967). 

Following this important research, many laboratory experiments and centrifuge model 

tests were carried out. During the 1970s at Cambridge University, numerous studies 

were completed on centrifuge models by Atkinson and Cairncross (1973), they 

investigated the stability of unlined circular tunnels in overconsolidated kaolin clay 

and proposed a limit equilibrium mechanism which appears to give good predictions 

of the drained collapse load, at least for small values of C/D. 

Mair (1979) investigated the experimental and theoretical undrained collapse of two-

dimensional circular tunnel sections and three-dimensional cylindrical tunnel headings 

in normally consolidated kaolin clay under different geometry and gravity regimes. 

Using centrifuge tests for shallow tunnels (C/D = 1 – 3.5), Kimura and Mair (1981) 

investigated the effect of the heading ratio P/D on the stability of an unsupported three-

dimensional cylindrical heading. They concluded that the critical stability number (N) 

value depends on the geometry of the unlined tunnel heading ratio (P/D) and depth 

ratio (C/D), as shown in Figure 2.3. 
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Figure 2.3. Nc vs C/D for various heading ratio (P/D) by Kimura and Mair (1981). 

Their experiments showed that a significant drop in the stability occurred as P/D 

increased from 0 to 1, with the collapse mechanism becoming essentially two-

dimensional once this ratio exceeded 3. Davis et al. (1980) followed Broms and 

Bennermarks’ stability number (N) and derived analytical upper and lower bound 

undrained stability solutions for shallow underground openings. The problem was 

defined as to calculate the critical values of pressure ratio ((σs – σt)/Su) that is a function 

of independent parameters such as the depth ratio (C/D) and the strength ratio (γD/Su), 

as indicated in Equation 2.2. 
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It is well known that the undrained stability solution is independent of loading 

directions in the homogeneous soils owing to 0,u   Davis’s pressure ratio approach 

did not appear to reduce the complexity of presenting the results. Indeed, the strength 

ratio (γD/Su) has been considered in Broms and Bennermarks’ stability number 

equation, which is more effective and efficient in this aspect (Shiau & Al-Asadi 2018).  

Interestingly, (γD/Su) has little effect on the final critical stability number (Nc) solutions 

unless it is very large, meaning that either the tunnel diameter D is very large (C/D 

very small) or Su is very small, it was a noticeable effect on the stability results. In this 

case, the soil pressure distribution is highly nonlinear. Numerically speaking, it is an 

unstable case, and one may not get a solution for such an extreme case. If we do get a 

solution, it may become inaccurate due to numerical non-convergence. This is also 

self-evidenced from the linear relationship between the pressure ratio ((σs – σt)/Su) and 
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the strength ratio (γD/Su) in the published literature (Augarde et al. 2003; Wilson et al. 

2011; Ukritchon & Keawsawasvong 2017; Zhang et al. 2018). 

Since the introduction of the rigid block mechanism by Davis et al. (1980) to the 

stability analysis in cohesive soils, many kinematic approaches have been proposed. 

Osman et al. (2006) have developed upper bounds solutions for obtaining the stability 

of a circular tunnel in clay, based on an assumed collapse mechanism, that is, within 

the boundary of the deformation mechanism, the soil was assumed to deform 

compatibly following a Gaussian distribution, and outside this mechanism, the soil 

was assumed to be rigid. Klar et al. (2007) suggested a new kinematic approach in 

limit analysis theory for two-dimensional (2D) and three-dimensional (3D) stability 

analyses of circular tunnels in a purely cohesive soil based on an admissible continuous 

velocity field. Osman (2010) investigated the undrained stability number of twin 

tunnels using upper-bound calculations. A new methodology for calculating an upper 

bound for twin tunnels based on the superposition of the plastic deformation 

mechanisms of each tunnel was proposed.  

(Mollon et al. 2009, 2010; Mollon et al. 2011) improved the rigid block failure 

mechanisms, to produce appropriate solutions in a good agreement with the results of 

centrifuge tests in cohesive and frictional soils. They argue that the analytical approach 

based on rigid blocks failure mechanisms yields misleading results for purely cohesive 

soils when compared with centrifuge tests results. The reason for that, in a cohesive 

soil, the collapse of the tunnel does not appear to be rigid blocks motion as in frictional 

soil, but a smooth movement of the soil particles "flowing" towards the tunnel 

(Schofield 1980).  

Therfore, Mollon et al. (2013) developed two continuous velocity fields for the 

collapse and blowout of a pressurised tunnel face in purely cohesive soil. Those 

continuous velocity fields were based on the normality condition, which states that any 

plastic deformation in a purely cohesive soil develops without any volume change. 

The continuous velocity field results have shown significant improvements compared 

with the other approaches.  

Zhang et al. (2018) presented a kinematic approach of limit analysis to the face 

stability of circular tunnels in undrained clay, adopting a continuous velocity field to 

determine the critical collapse and blow-out pressures. They show that the strength 
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ratio (γD/Su) has little influence on the Broms and Bennermarks’ original stability 

number (N). Huang et al. (2019) developed a new failure mechanism based on a 

velocity field for the stability of a plane strain circular tunnel in undrained soil. They 

compared the obtained mechanism with some analytical and numerical failure 

mechanisms. 

However, the application of the limit analysis, with an assumption of the collapse 

mechanism, becomes limited to solve only simple problems. Moreover, the accuracy 

of the results depends on the assumptions involved in defining the failure mechanism. 

To overcome these limitations, more robust numerical formulations were developed 

by using finite elements and mathematical programming while implementing the limit 

analysis. For various underground openings and tunnels geometries, the rigorous upper 

and lower bounds solutions were obtained by many researchers.  

Applying the early versions of FELA methods (finite element and linear 

programming), Assadi and Sloan (1991) investigate the stability of shallow square 

tunnel in undrained condition, followed by  Sloan and Assadi (1991) published on a 

similar topic but with the soil cohesion increasing with depth. This approach was then 

extended to account for 2D circular tunnels in Sloan and Assadi (1992) and plane strain 

headings in Sloan and Assadi (1994). The two-dimensional heading problem was 

revisited by Augarde et al. (2003) using an improved version of non-linear 

programming (Lyamin & Sloan 2002b, 2002a).  

The most recent papers are based on this nonlinear programming approach, and further 

developments have been produced on the stability of circular tunnels in non-

homogeneous clayey soil (Wilson et al. 2011). Square and rectangular tunnels have 

also been considered in Wilson et al. (2013) and Abbo et al. (2013), respectively. As 

well as this, twin tunnel configurations of both circular and square tunnels stability in 

undrained condition have also analysed in (Wilson et al. 2014, 2015), respectively.  

The upper and lower bounds of the finite element limit analysis are used in several 

studies to validate the results and improve the proposed failure mechanisms. (Bottero 

et al. 1980; Sloan 1989; Sloan & Kleeman 1995; Ukritchon et al. 2003). The advantage 

of using a numerical formulation for the bound theorems is that it can handle complex 

loading, complicated geometries and a variety of material failure conditions. Further, 

there is no need to assume any collapse mechanism in such a numerical technique. 
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More recently, Ukritchon and Keawsawasvong (2017) studied the collapse of an 

opening in an underground wall in anisotropic and non-homogeneous clayey soils. 

Unlike these researchers, Shiau & Al-Asadi 2018 and Shiau & Al-Asadi (2020d) 

revisited the problem by adopting Broms and Bennermarks’ original stability number 

N using a shear strength reduction technique and 2D and 3D finite element method.  

Comprehensive design tables and charts were produced with examples illustrated 

(Shiau et al. 2017; Shiau et al. 2018). Using finite element software (Plaxis), 

Ukritchon, Yingchaloenkitkhajorn, et al. (2017) investigated the three-dimensional 

(3D) undrained stability of tunnel face in heterogeneous clayey soil (the cohesion of 

the soil increases with depth). 

The numerical simulations are important methods for investigating the stability of twin 

tunnels. Xie et al. (2004) investigated the undrained stability of parallel circular tunnels 

with differing diameters. The tunnels were modelled under plane strain conditions 

using displacement finite element software and analytical limit analysis. In an attempt 

to understand the results provided by their finite element software, the concept of a 

‘stability analysis line’ was introduced where the stability at various stages of 

construction was considered. The effect of the depth ratio and the spacing between the 

two tunnels were investigated, and it was found that, for a very narrow spacing 

between the tunnels, the stability may increase as the spacing is decreased further. 

Using 3D numerical analysis, Ng et al. (2004) have investigated the load-transfer 

mechanism and the influence of the lagging distance between the tunnels excavated 

faces for large parallel hypothetical twin tunnels constructed in stiff clay by employing 

three-dimensional coupled finite element analysis. Chehade and Shahrour (2008) used 

Plaxis software to simulate the construction procedure of twin tunnels with various 

distances between their centres, and then considered its influence on tunnels stability.  

By using three-dimensional numerical techniques (FLAC3D), Chakeri et al. (2011) 

studied the changes in stress distribution, deformations and surface settlements 

resulting from the construction of twin tunnels in Tehran, Iran. Mirhabibi and Soroush 

(2012) used ABAQUS to estimate the influence of construction load on the movement 

of soil surrounding two tunnels.  

The laboratory experiments and centrifuge model tests have proved invaluable for 

suggesting likely modes of collapse in theoretical studies. By conducting small scale 
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model tests for closely spaced tunnels in clay, Kim et al. (1998) examined the effect 

of shield tunnel construction on the structural liners of existing nearby tunnels.  

Wu and Lee (2003) carried out a series of centrifuge model tests for single and parallel 

plane strain tunnels in clays to study ground movements and the associated collapse 

mechanisms. The centrifuge tests were compared with the stability results from a 

weightless, rigid block upper bound plasticity analysis and to a series of field 

measurements from actual tunnels. The velocity fields from the two methods were 

found to give similar results. Their findings show that the stability is not always the 

most critical when the spacing between the tunnels is the narrowest.  

Lee et al. (2006) expanded upon the findings of  Wu and Lee (2003) using similar 

centrifuge tests with a numerical finite-difference program (FLAC) to investigate the 

surface settlement, excess pore water pressure generation, tunnel stability and arching 

effects that develop around single and dual circular tunnels in soft clayey soil. Their 

focus was on arching effects, and they used the concept of an arching ratio to describe 

the evolution of arching effects in the soil surrounding the tunnels. The centrifuge tests 

were complemented by displacement finite element analyses, which gave results 

consistent with those from the centrifuge.  

Because the soil is not only in cohesive undrained condition but mostly in drained 

cohesive-frictional condition, the next section reviews the published literature on the 

stability of tunnels and underground openings in cohesive and/or frictional drained 

soil. 

2.3 Stability Analysis in Cohesive and/or Frictional Soils 

In cohesive-frictional soils, analytical approaches are mainly based on limit 

equilibrium methods or limit analysis methods. Horn (1961) was one of the first to 

introduce a model for assessing the limit support pressure of the tunnel face under 

drained conditions. He considered the limit equilibrium of a 3D sliding wedge at the 

tunnel face loaded by a soil silo. Anagnostou and Kovári (1996) applied the wedge 

model to calculate the limit support pressure in the homogeneous stratum. Broere 

(2001) extended the wedge model to a layered stratum. He subdivided the failure 

wedge in front of the tunnel face into smaller blocks based on the thickness of the soil 

layers. For the limit analysis methods, Atkinson and Potts (1977) investigated 
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theoretically and experimentally the 2D stability of unlined cross-section of shallow 

circular tunnels in cohesionless soil. Based on the lower bound theorem of plasticity, 

Mühlhaus (1985) produced analytical stability solutions for circular tunnels in two and 

three dimensions under drained and undrained conditions. Several kinematic 

approaches based on continuous velocity fields in limit analysis theory have been 

proposed. The rigid block mechanism was first introduced by Leca and Dormieux 

(1990) who obtained upper bound solutions for the limit support pressure based on the 

movement of rigid blocks with conical shapes in frictional material. Following this 

research, many enhancements were provided. (Soubra 2000, 2002; Subrin & Wong 

2002) derived the upper-bound limits for the limit support pressure in a dry Mohr-

Coulomb material. Mollon et al. (2009) introduced new multi-block translational 

failure mechanisms (five truncated rigid conical blocks) to improve the existing lower-

bound solutions by Leca and Dormieux for the collapse pressure of a shallow shield 

circular tunnel, as shown in Figure 2.4.  

 

Figure 2.4. (a) Leca-Dormieux (1990) mechanism, (b) Mollon et al. (2009) multiblock 

mechanism. 

For frictional soil and by using a spatial discretisation technique, Mollon et al. (2010) 

developed a new failure mechanism to cover the whole circular face of the tunnel 

instead of an inscribed vertical ellipse as in the mechanisms of Leca and Dormieux. 

Based on the rotational rigid-block movement observed in the experimental tests for a 

circular tunnel in frictional soil, Mollon et al. (2011) generated three-dimensional 

failure surface point by point to study the stability in collapse and blowout. They 

showed that the rotational mechanisms provide a significant improvement in contrast 

with the translational mechanisms. The improvements of (Mollon et al. 2009, 2010; 
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Mollon et al. 2011) led to relevant solutions consistent with the results of real projects 

in the case of frictional soils. However, for purely cohesive soils, likely, a failure 

mechanism by the motion of one or multi-rigid blocks is not convenient. Therefore, 

the numerical methods are probably optimal for tunnels stability analysis. 

Most of the previous studies of tunnel stability have been based on upper bound 

techniques involving various failure mechanisms. However, for deeper tunnels, the 

rigid block method obtains less accurate solutions, while this could be improved 

further with more complex mechanisms, upper bound solutions inherently give unsafe 

estimates on the true collapse loads. Furthermore, it is more difficult to propose an 

efficient rigid-block mechanism for purely cohesive soils than for cohesive-frictional 

materials (Mollon et al. 2013).  

In practice, upper bounds are more valuable when they are accompanied by lower 

bounds so that the exact solution can be bracketed from above and below. The 

application of computational limit analysis to the stability of shallow tunnels in 

cohesive-frictional soils, Lyamin and Sloan (2000) and Lyamin et al. (2001) 

considered the stability of plane-strain circular and square tunnels in cohesive-

frictional soils. The drained stability of the tunnel was described by the load parameters 

σt/c, where σt is the internal tunnel pressure and c is the cohesion under drained loading 

conditions. But it appears that no generally accepted solutions to be available in the 

literature for tunnels made in high frictional soils where c equal to zero.  

Using two methods of upper bound solutions (rigid blocks failure mechanism and 

finite-element upper bound solution with linear programing), Yang and Yang (2010) 

investigated the required support pressure for shallow rectangular tunnel stability in 

cohesive-frictional soil.  

Experimental tests can be used to study tunnel face stability problems and the failure 

modes of the surrounding soil. Chambon and Corte (1994) conducted a series of 

centrifuge model tests to determine the tunnel face stability in dry sandy soil. Their 

results indicated that the relative depths of the tunnels and the density of sand had little 

influence on the limit support pressure. Also, their results indicated that the failure 

zone in front of the tunnel face was bulb-shaped, and the relationship between the 

limiting support pressure and the tunnel diameter was found to be linear, as shown in 

Figure 2.5. 
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Figure 2.5. The failure mechanism of a shallow tunnel in experimental tests for dry 

sandy soil (Chambon and Corte, 1994).  

Takano et al. (2006) performed 1g experimental tests in which an X-ray computed 

tomography scanner was used to visualise the 3D shape of the failure mechanism. 

Kirsch (2010) achieved small-scale model tests under normal gravity (1g) to 

investigate the face stability of shallow tunnels and to show that the necessary support 

pressure is independent of the overburden and the initial soil density. By using 3D 

large-scale model tests, Chen et al. (2013) investigated the stability and the ground 

settlement of shallow tunnel (C/D = 0.5 - 2, where D = 1m) in cohesionless soil. They 

suggested that the face support pressure is independent of the depth of the tunnel once 

the depth ratio is larger than or equal to one. 

All the studies mentioned previously only considered the stability of single tunnels. 

For the stability of a pair of circular tunnels, a number of investigations have been 

reported by several researchers.  
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The earliest numerical study of twin tunnels was performed by Ghaboussi and Ranken 

(1977). They investigated the effects of the interaction on the construction of parallel 

tunnels using two-dimensional (2D) finite element analyses with linearly elastic 

models. They found that as the spacing between the two tunnels decreased, there was 

a gradual increase in the vertical stresses between the tunnels and a corresponding 

increase in the horizontal stresses. Their results indicated that for a distance width of 

about twice the tunnel diameter or greater, the displacements of each of the two parallel 

tunnels were essentially identical to those of corresponding single tunnel construction. 

(Yamamoto et al. 2013, 2014) used FELA to consider the undrained stability of dual 

square and circular tunnels and found the tunnel stability reaches a minimum value 

when the tunnels are one to two tunnel widths apart.; they concentrated on the bearing 

capacity problem over the tunnels. 

The idea of considering drained stability based on a single equation was first suggested 

by Atkinson and Mair (1981). They proposed a formula for shield tunnels in dry 

cohesionless soil to calculate the minimum support pressure (σt) at collapse; this is 

shown in Equation (2.3). 

t s sF DF                                                                                                                                        (2.3) 

Where σs is the possible surcharge loading on the ground surface, Fs is the surcharge 

stability factor, γ is the soil unit weight, D is the diameter of the tunnel and Fγ is the 

soil weight stability factor. Equation (2.2) was extended by Anagnostou and Kovári 

(1996) to cover cohesive-frictional soils, as shown in equation (2.4).  

t c s scF F DF                                                                                                           (2.4) 

Where c is the effective cohesion and Fc is the cohesion stability factor.  

The first comprehensive numerical study on the face stability of shield tunnels using a 

conventional equation and the tunnel stability factors was carried out by Vermeer et 

al. (2002) who performed 3D finite element analyses for tunnel face stability analyses 

in the sand. They concluded that the stability factor Fγ is independent of the depth of 

the tunnel for friction angles larger than twenty degrees, and the limit support pressure 

decreases as the friction angle of the soil increases.  

For practical calculation of the critical support pressure, Mollon et al. (2010) produce 

the critical stability factors (Nγ, Nc and Ns) for a shallow tunnel (C/D = 0.4, 0.6, 0.8, 1, 
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1.3, 1.6 and 2) in frictional soil (ϕ ≥ 15˚) and then, the critical pressure can be computed 

using the superposition method.  

Using the Kinematical Element Method (q), Qarmout et al. (2019) proposed a new 

failure mechanism consists of two blocks to produce tunnel stability factors (similar to 

bearing capacity factors) for shallow circular tunnels (C/D = 0.5, 1, 1.5, 2 and 2.5) in 

frictional soil (ϕ ≥ 15˚). These factors can be used in a traditional equation to calculate 

the upper bound support pressure at the collapse. Their approach underestimates the 

required internal pressure, in comparison with other studies. This is probably due to 

the limited number of rigid blocks used in this analysis, and the upper bound kinematic 

approach results are inherently unsafe. 

As no generally accepted design or analysis methods are available for the stability 

problems in cohesive-frictional soil, this thesis proposes to study the problem using a 

so-called stability factor approach, aiming to produce comprehensive tunnel stability 

factors (Fc, Fs and Fγ) to estimate the critical internal pressure required to maintain 

stability at collapse. Three various configurations of underground tunnelling (i.e. 

tunnel heading, single circular tunnel and twin circular tunnels) in two‐ and three-

dimensional spaces are studied using rigorous upper and lower bound finite element 

limit analysis techniques. It is expected that the solutions produced would contribute 

significantly to the current tunnel practices.  
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CHAPTER 3: NUMERICAL MODELLING 

REVIEW 

 

3.1 Introduction 

Stability analysis is used to predict the collapsing load a structure can support without 

inducing failure. There are four main methods used to determine stability analysis; 

limit equilibrium, limit analysis, slip-line methods and the displacement finite element 

method. OptumCE packages (OptumG2 and OptumG3) are finite element software for 

analysing strength and deformation of geotechnical problems. The programs have 

common features to many other finite element geotechnical programs, however, 

differs on a few points. Rigorous calculations on upper and lower bounds to determine 

an exact solution can be computed directly, rather than the traditional step by step 

elastoplastic process. Maximum loads and bearing capacities can be computed with a 

set of fixed soil and structural parameters. Conversely, a set of load values can be 

fixed, and commutation of the upper and lower bounds can be determined (OptumCE 

2017, 2018). 

3.2 Finite Element Limit Analysis (FELA) 

In this study, the numerical stability solutions are based on the finite element 

formulation of the plastic limit theorems (i.e. lower and upper bounds). The lower 

bound theorem employs the notion of a statically admissible stress field, which is 

simply a stress field that satisfies equilibrium, the stress boundary conditions and the 

yield criterion. For a perfectly plastic material model with an associated flow rule, it 

can be shown that the load carried by any statically admissible stress field is a lower 

bound on the true limit load.  

The upper bound theorem employs the notion of a kinematically admissible velocity 

field, which is simply a velocity field that satisfies the velocity boundary conditions 

and the plastic flow rule. For such a field, it can be shown that an upper bound on the 
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collapse load is obtained by equating the power expended by the external loads to the 

power dissipated internally by plastic deformation. 

The following discussions are based on the work of  (Sloan 1988b, 1989; Sloan & 

Kleeman 1995; Lyamin & Sloan 2002a, 2002b; Krabbenhøft et al. 2005; Krabbenhøft 

et al. 2007; Krabbenhøft et al. 2008; Sloan 2013) 

3.2.1 Development of finite element lower bound  

Lysmer (1970) was an early pioneer in applying finite elements and optimisation 

theory to compute rigorous lower bounds for plane-strain geotechnical problems. He 

linearised the yield surface using an internal polyhedral approximation that replaced 

each non-linear yield inequality constraint by a series of linear inequalities. Although 

Lysmer’s finite-element approach for computing lower bounds was a pivotal 

conceptual advance, it has significant limitations that prevented it from being used 

widely in practice. 

Following Lysmer’s seminal work, Anderheggen and Knöpfel (1972), Pastor (1978) 

and Bottero et al. (1980) proposed various discrete methods for two-dimensional 

lower-bound limit analysis that were all based on linear triangles and linear 

programming. Soon after, Pastor and Turgeman (1982) proposed a lower-bound 

technique for modelling the important case of axisymmetric loading. Although 

potentially powerful, these early methods were limited by the computational 

performance of the linear programming codes at the time and could solve only 

relatively small problems. 

In an effort to address this issue, (Sloan 1988a, 1988b) proposed a fast linear 

programming formulation that can solve small to medium scale two-dimensional 

problems on a standard desktop machine. This procedure is based on a novel active set 

algorithm, which employs a steepest-edge search in the optimisation iterations, and 

fully exploits the highly sparse nature of the lower-bound constraint matrix. 

Although lower-bound methods based on linear programming are capable of providing 

useful solutions for two- dimensional problems of moderate size, they are poorly suited 

to three-dimensional analysis, as huge numbers of inequalities arise when the yield 

criterion is linearised. Moreover, it is not always clear how to linearise a three- 

dimensional yield surface optimally. Both of these issues can be avoided by leaving 

the yield constraints in their native form and adopting non-linear programming 
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algorithms to solve the resulting optimisation problem. Indeed, with this approach, 

three-dimensional formulations present no special difficulties, other than adding 

geometrical complexity and increasing the number of unknowns.  

An early discrete lower-bound formulation based on non-linear programming was 

described in Belytschko and Hodge (1970). This procedure used piecewise-quadratic 

equilibrium stress fields, and maximised the collapse load, subject to the non- linear 

yield constraints, using a sequential unconstrained minimisation technique. Although 

it furnishes rigorous lower bounds, the method proved to be slow for large- scale 

problems.  

In a subsequent modification of Lysmer’s formulation, Basudhar et al. (1979) 

incorporated the nonlinear yield constraints directly, converted the constrained 

optimisation problem to an unconstrained one using the extended penalty method of 

Kavlie and Moe (1971). 

Following this work, Arai and Tagyo (1985) used constant-stress elements, and the 

sequential unconstrained minimisation technique with the conjugate gradient 

algorithm of Fletcher and Reeves (1964), to obtain a statically admissible stress field 

for geotechnical problems. 

Lyamin (1999) and Lyamin and Sloan (2002b) dramatically improved the practical 

utility of the discrete lower-bound method by employing linear stress elements, 

imposing the non-linear yield conditions in their native form, and solving the resulting 

non-linear optimisation problem using a variant of an algorithm developed for mixed 

limit analysis formulations (Zouain et al. 1993). 

The solution method used by Lyamin and Sloan (2002b) is an interior point, two-stage, 

quasi-Newton scheme that exploits the underlying structure of the lower-bound 

optimisation problem. Since its iteration count is largely independent of the grid 

refinement for a given problem, the method can handle large-scale two-dimensional 

meshes with several thousand elements in a few seconds and is many times faster than 

traditional linear programming formulations. Further advantages include the ability to 

model three-dimensional problems, where the number of unknowns can be huge, as 

well as any convex yield criterion. 



 

26 

 

Following the work of Lyamin and Sloan (2002b), Krabbenhoft and Damkilde (2003) 

proposed another efficient lower-bound method, aimed primarily at solving structural 

engineering problems, based on non-linear programming. 

Owing to the presence of singularities in their yield surfaces, where the gradients with 

respect to the stresses become undefined, the Tresca and Mohr-Coulomb criteria pose 

special difficulties in the finite-element limit analysis. Lyamin and Sloan (2002b) 

overcame this difficulty by local smoothing of the yield surface vertices, with an 

accompanying modification to the search direction to preserve feasibility during the 

optimisation iterations. An attractive alternative method for solving lower-bound limit 

analysis problems, which does not require differentiability of the yield surface in the 

optimisation process, is to use second-order cone programming (Ciria 2004; 

Makrodimopoulos & Martin 2006). This solution method can be applied to a variety 

of yield criteria in two dimensions, including the Tresca and Mohr-Coulomb models, 

and has proved to be robust and efficient for large-scale geotechnical problems 

(Krabbenhøft et al. 2007). In three-dimensional cases, second-order cone 

programming can be used for Von Mises and Drucker–Prager yields criteria, but not 

for Tresca or Mohr-Coulomb models. For the latter, which are of particular interest in 

geotechnical applications, it is possible to use a different cone-based solution 

algorithm that is known as semi-definite programming (Krabbenhøft et al. 2008). Like 

the second-order cone programming method, this approach does not require smoothing 

of any yield surface vertices,  and it has proved to be both robust and efficient for 

large- scale applications Krabbenhøft et al. (2007). 

In summary, the second-order cone programming and semi-definite programming 

methods are, respectively, the solution methods of choice for the Tresca/Mohr-

Coulomb models under two- and three- dimensional conditions. For yield criteria that 

are curved in the meridional plane, however, such as the Hoek-Brown model for rock, 

these procedures are inapplicable,  and the more general interior point solution 

algorithm proposed by Lyamin and Sloan (2002b) is appropriate. The following 

section outlines the finite element lower bound formulation proposed in Lyamin and 

Sloan (2002b). 
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3.2.2 Finite element lower bound formulation 

The finite element lower bound formulation proposed by (Lyamin & Sloan 2002b) has 

proved very successful in large-scale practical applications. The linear elements used 

to compute the statically admissible stress field are shown in Figure 3.1. 

 

Figure 3.1. Linear elements for lower bound limit analysis. 

The lower bound procedure is formulated as a nonlinear optimisation problem, where 

the nodal stresses and/or element body forces are the unknowns and the objective 

function to be maximised corresponds to the collapse load. The unknowns are subject 

to equilibrium equality constraints for each continuum element, equilibrium equality 

constraints for each discontinuity, stress boundary conditions, and a yield condition 

inequality constraint for each node. Each of these aspects is now briefly described for 

the two-dimensional case (similar relations can be developed for three dimensions). 

Objective Function 

The objective function corresponds to a force (the collapse load) which is to be 

maximised. The common case of optimising the normal and shear load along a 

boundary segment in two-dimensions is shown in Figure 3.2. 

 

Figure 3.2. Optimising the load along a boundary. 

Since the stresses vary linearly, the normal and shear loads on an element edge of 

length L are given by 
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where the local surface stresses qn and qs can be expressed in terms of the Cartesian 

stresses at node k using the standard transformation equations 

 

When summed over each loaded boundary edge, the contributions Qn and Qs give the 

total force which is to be maximised for the whole structure. In the case of body force 

loading, which is most often due to unit weight, the objective function contribution for 

each element is merely the body force component times the element volume. 

Continuum Equilibrium 

Over each two-dimensional element, the stresses vary according to the relations 

3

1

k k

k

N 


                                                                                                                               (3.2) 

where Nk is the shape functions at some node k. After substituting these into the 

standard equilibrium equations for a solid  
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we obtain two equality constraints for each element. When summed over all elements 

in the mesh, these define the global equilibrium constraints for the mesh. 

Discontinuity Equilibrium 

To improve the accuracy of the computed collapse load, stress discontinuities are 

permitted at all edges that are shared by adjacent elements. Figure 3.3 illustrates such 

a stress discontinuity positioned between the edges of two adjacent triangles. To satisfy 

equilibrium, and therefore be statically admissible, the normal and shear stresses must 

be the same on both sides of the discontinuity according to the relations 

(3.1) 

(3.3) 
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                                                                                                     (3.4) 

where for some node k 

 

Figure 3.3. Statically admissible stress discontinuity. 

Thus each pair of nodes on a stress discontinuity imposes two equilibrium equality 

constraints on the associated nodal stresses. Summing over all nodal pairs on the 

discontinuities gives the global set of discontinuity equilibrium constraints. Recently, 

Krabbenhøft et al. (2005) proposed a simple and elegant technique for modelling 

discontinuities in the upper bound method which is also applicable to the lower bound 

method (Lyamin et al. 2005). The basic idea, illustrated for the two-dimensional case 

in Figure 3.4, is to model each stress discontinuity by a patch of standard continuum 

elements and collapse certain nodal pairs to the same coordinates. 

 

Figure 3.4. Patch-based stress discontinuity. 

(Lyamin et al. 2005) show that using Equations (3.2) and (3.3) to impose the standard 

equilibrium conditions over triangles  T1 and  T2, and setting  (x1, y1) (x2, y2) and   (x3, 

y3) (x4, y4), leads to the equilibrium relations (6). Thus, the normal and shear stresses 

are continuous across the discontinuity, but the tangential stress ss can jump. This 

type of formulation permits discontinuities to be modelled using standard continuum 

elements and is very simple to implement. 

(3.5) 
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Stress Boundary Conditions 

To satisfy equilibrium, the transformed stresses for any boundary node must match the 

prescribed surface stresses t. 

 

Figure 3.5. Stress boundary conditions. 

With reference to Figure 3.5, this requirement may be expressed by the equations 
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Where  ,k k

nn ns  for node k are again given by Equation (3.5). These constraints are 

applied to all edges where surface stresses are prescribed. 

Yield Conditions 

Provided the stresses vary linearly over an element and the yield function f(σ) is 

convex, the yield condition is satisfied at every point in the domain if the inequality 

constraint f (σk) 0 is imposed at each node k. In the twodimensional case, this implies 

that the nodal stresses for each triangle are subject to three non-linear inequality 

constraints, as shown in Figure 3.6. 

 

Figure 3.6. Yield conditions. 
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Lower Bound Nonlinear Optimisation Problem 

Summing the objective function coefficients and constraints for a given mesh leads to 

a nonlinear optimisation problem where the unknowns are stresses and body loads. Let 

c1 and c2 denote global vectors of objective function coefficients, σ denote a global 

vector of unknown nodal stresses, h denotes a global vector or element body forces 

(unit weights), 1 2T T
c c h  denote the collapse load, A denote matrices of equality 

constraint coefficients, b denote vectors of coefficients, and fk (σ ) denotes the yield 

function at node k. The optimisation problem for the finite element lower bound then 

takes the form 

Objective function 

Maximum collapse load                                1 2max T Tc c h   

Subject to 

Continuum equilibrium                                   11 12 1A A h b                                 (3.6) 

Discontinuity equilibrium                                         2 2A b   

Stress boundary conditions                                       3 3A b   

Yield condition for each nod k                               0k

kf    

The solution to the nonlinear programming problem (8), which constitutes a statically 

admissible stress field, can be found efficiently by solving the system of nonlinear 

equations that define its Kuhn Tucker optimality conditions. The two-stage quasi-

Newton solver designed by Lyamin (1999) and Lyamin and Sloan (2002b) for this 

purpose usually requires less than about 50 iterations, regardless of the problem size. 

Because it does not require the yield surface to be linearised, this type of lower bound 

formulation can be extended to three dimensions and used with a wide range of yield 

criteria.   

3.2.3 Development of finite element upper bound  

Early discrete formulations of the upper-bound theorem, based on finite elements and 

linear programming, were proposed by Anderheggen and Knöpfel (1972) and Maier 

et al. (1972). Although quite general, these methods were concerned primarily with 

structural applications. The subsequent plane-strain procedures of Pastor and 

Turgeman (1976) and Bottero et al. (1980), which focused on geotechnical 
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applications with Tresca and Mohr-Coulomb yield criteria, permit a limited number of 

velocity discontinuities to occur between elements, but require the direction of 

shearing to be specified a priori. 

Following these early procedures that focused on plane problems, Pastor and 

Turgeman (1982) extended the upper- bound formulation of Bottero et al. (1980) to 

handle axisymmetric geometries, but only for Von Mises and Tresca materials. 

While the above upper-bound methods inherit all the key advantages of the finite-

element technique and hence can model complex problems in two dimensions, they 

were not widely applied in practice because of the CPU time required to solve their 

associated linear programming problems. In an effort to rectify this handicap, (Sloan 

1989) proposed an upper-bound method based on the steepest-edge active set solution 

scheme (Sloan 1988b), which had proved successful for lower-bound limit analysis,  

Owing to the nature of the algorithm used to solve the associated linear optimisation 

problem, however, the procedure proved to be inefficient for large-scale examples 

involving thousands of elements. The need to specify both the location and the 

direction of shearing for each discontinuity in an upper-bound analysis is a significant 

drawback since it requires a good guess of the likely collapse mechanism in advance. 

This shortcoming was addressed by Sloan and Kleeman (1995), who generalised the 

upper-bound formulation of Sloan (1989) to include velocity discontinuities at all 

edges shared by adjacent triangles. 

The plate formulation described by Hodge and Belytschko (1968) was one of the first 

attempts to develop a finite- element upper-bound method based on non-linear 

programming. Their analysis used classical theory to specify the deformation field 

solely by the velocity normal to the original middle surface of the plate. 

Following this initial work, various other non-linear programming formulations were 

proposed for computing upper bounds on the load capacity of plates, shells and 

structures (Biron & Charleux 1972; Nguyen et al. 1978). Huh and Yang (1991) 

developed a general upper-bound procedure for plane stress problems using triangular 

elements with a linear velocity field. 

In a further development, Capsoni and Corradi (1997) proposed another discrete 

upper-bound approach where the straining modes are modelled independently of rigid-

body motions. 
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In a different non-linear approach, Jiang (1994) proposed an upper-bound formulation, 

based on a regularised model of limit analysis (Friaaˆ, 1979), which assumes the 

material is visco-plastic and uses two parameters to characterise its creep behaviour. 

To solve the resulting non-linear optimisation problem, Jiang (1994) employed the 

augmented Lagrangian method in conjunction with the algorithm of Uzawa (Fortin & 

Glowinski 1983). In a later paper, Jiang (1995) established that the same non- linear 

programming scheme could be applied to perform upper-bound limit analysis directly. 

Jiang’s formulations perform well for a variety of two-dimensional examples but have 

not been extended to deal with discontinuities in the velocity field or three-dimensional 

geometries. Parallel to this development, Liu et al. (1995) proposed a direct iterative 

method for performing three-dimensional upper-bound limit analysis. This scheme 

treats the rigid zones separately from the plastic zones during each iteration and neatly 

avoids the numerical difficulties that stem from a non- differentiable objective function 

in the former. 

Following in the footsteps of their successful lower-bound formulation, Lyamin and 

Sloan (2002a) developed an upper-bound finite-element method that was also based 

on non-linear programming. This procedure assumes that the velocities vary linearly 

over each element and that each element is associated with a constant-stress field and 

a single plastic multiplier rate. Using the approach developed in Sloan and Kleeman 

(1995),  the formulation of Lyamin and Sloan (2002a) allows velocity discontinuities 

along shared element edges, with the velocity jumps across each discontinuity being 

defined by additional non-negative unknowns (plastic multipliers). Krabbenhøft et al. 

(2005) modified the upper-bound formulation of Lyamin and Sloan (2002a) by 

proposing a new stress-based method that uses patches of continuum elements to 

incorporate velocity discontinuities in two and three dimensions. 

The following section outlines the finite element upper bound formulation proposed 

by Lyamin and Sloan (2002a), with a new patch-based method for modelling velocity 

discontinuities (Krabbenhøft et al. 2005; Krabbenhøft et al. 2007). 

3.2.4 Finite element upper bound formulation 

The procedure of Lyamin and Sloan (2002a) and Krabbenhøft et al. (2005), which is 

the first to incorporate velocity discontinuities in three dimensions with general types 

of yield criteria, is applicable to largescale problems and is also being commercialised. 
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The elements used to compute the kinematically admissible velocity field, shown in 

Figure 3.7, use a linear variation of the velocities and constant stresses. 

 

Figure 3.7. Linear elements for upper bound limit analysis. 

The upper bound procedure is formulated as a nonlinear optimisation problem, where 

nodal velocities and element stresses are the unknowns and the objective function to 

be minimised is the internal power dissipation. To satisfy the requirements of the upper 

bound theorem, the unknowns are subject to constraints arising from the flow rule, the 

velocity boundary conditions, and the yield condition. Each of these aspects is now 

briefly described for the twodimensional case (similar relations can be developed for 

three dimensions). 

Objective Function 

In the finite element upper bound formulation, the objective function corresponds to 

the internal dissipated power. This quantity is minimised and equated to the work 

expended by the external loads to give the limit load. Noting that the stresses and 

plastic strain rates are constant over each element, and summing over all the elements, 

the internal power dissipation may be written as 

 
For each element, there exists a matrix Βe

 that relates the (constant) plastic strain rates 

to the nodal velocities according to  

. 1 e e

e

p
B u

V
                                                                                                                           (3.8) 

Βe
 is the strain-displacement matrix from conventional finite element analysis, 

multiplied by the element volume. Inserting Equation 3.8 into Equation (3.7) gives the 

total internal dissipated power for the mesh, in terms of the unknowns stresses and 

velocities, as 

(3.7) 
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int TP Bu  

where σ is a global vector of element stresses, u is a global vector of nodal velocities 

and e

e

B B   

 

Where 
.
  is the plastic multiplier Combining Equations (3.8) and (3.9), the flow rule 

constraints for each element may be expressed as 

  

Where 
.. eV  . Thus, for the two-dimensional case, the flow rule generates four 

equality constraints and one inequality constraint on the velocity field per element. 

Since the yield function is not linearised, all the equality constraints are generally 

nonlinear. 

Discontinuity Flow Rule 

Velocity discontinuities can be incorporated using the patch-based formulation of 

Krabbenhøft et al. (2005). The concept behind this procedure is identical to that 

discussed previously for the lower bound method, with each discontinuity being 

modelled by a collapsed patch of standard continuum elements. For the two-

dimensional case, shown in Figure 3.8, each discontinuity comprises two triangles and 

has six unknown stresses. 

 

 

Figure 3.8. Patch-based velocity discontinuity. 

 (3.9) 

(3.10) 
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If we let the discontinuity width 0, it may be shown Krabbenhøft et al. (2005) that 

the local strains in each triangle approach the following values 

 

Where (un us) are finite velocity jumps in the normal and tangential directions which 

are related to the Cartesian velocity jumps by 
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From Equation (3.11) we see that the strains become infinite as 0, but the strains 

time the element volume remain finite according to 

 

where h is the out-of-plane element thickness. The above relations confirm that 

discontinuous velocity jumps can be modelled by merely imposing the flow rule 

constraints (12) over each triangle and setting (x1, y1) (x2, y2) and (x3, y3) (x4, y4). 

This allows discontinuity elements to be treated in the same way as continuum 

elements and is simple to implement. Moreover, it is extendable to three dimensions 

and permits general types of yield criteria to be modelled. 

Velocity Boundary Conditions 

As shown in Figure 3.9, the transformed velocities must match the prescribed 

velocities for any boundary node. 

 

Figure 3.9. Velocity boundary conditions. 

In two dimensions, this requirement may be expressed by four equality constraints 

(3.11) 

(3.12) 
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where, for some node k, the transformed nodal velocities are given by standard 

relations 
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These constraints must be applied to all boundary nodes that have prescribed 

velocities. 

Yield Conditions 

The yield condition f (σ) can be satisfied at every point in the mesh if we impose the 

inequality constraint f (σe) 0 for each element e. In two-dimensions, this implies that 

the stresses for each triangular element are subject to one nonlinear inequality 

constraint. 

Upper Bound Nonlinear Optimisation Problem 

After assembling the objective function coefficients and constraints for a mesh, the 

upper bound nonlinear optimisation problem can be expressed as 

Objective function 

Minimum dissipated power                                min T Bu  

Subject to 

Flowrule                                                  
. e

e

eBu f                                (3.13) 

                                                                                  0
. e
        

                                                                          0
. ee

f    

Velocity boundary condition                                    Au b            

Yield condition for each element e                        0ef    

where σ is a global vector of unknown element stresses, u is a global vector of 

unknown nodal velocities, B is a global compatibility matrix, σT
 B u is the dissipated 

power, A is a matrix of equality constraint coefficients, b is a known vector of 

coefficients, 
. e
 is the plastic multiplier times the volume for element e, and f (σe

 ) is 
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the yield function for element e. The solution to Equation (3.13) constitutes a 

kinematically admissible velocity field and can be found efficiently by treating the 

system of nonlinear equations that define the Kuhn Tucker optimality conditions. 

Interestingly, these optimality conditions do not involve 
. e
 , so these quantities do 

not need to be included as unknowns. The two-stage quasi-Newton solver proposed by 

Lyamin (1999) and  Lyamin and Sloan (2002a) usually requires less than about 50 

iterations, regardless of the problem size, and results in a very efficient formulation. 

3.3 Numerical Modelling in OptumG2 and OptumG3 

OptumG2 and OptumG3 are finite element software packages designed to solve 

boundary geotechnical problems. There are many basic features used to detail the 

tunnelling analysis, with each problem following a similar procedure. The outlines for 

both of the software background are presented in Figures 3.10 and 3.11. The design 

grid is centred in the overview, and the Stage Manager to the right, while the four tabs; 

Geometry, Materials, Features and Results are presented above the grid.  

 

Figure 3.10. OptumG2, software background view (OptumCE, 2017). 

Firstly, the geometry of the problem is outlined by using functions such as Point, Line, 

Arc, Circle and Rectangle on the 2D grid and Box, Sphere, Cone, Prism and N-Prism 

on the 3D grid. These functions are also shown in Figures 3.10 and 3.11. 
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The outline of the problem is completed by utilising the generic editing tools; copy, 

paste, move, scale, rotate, delete, undo and redo.  

 

Figure 3.11. OptumG3, software background view (OptumCE, 2018). 

Each line, point and surface are allocated an identification number and coordinate. 

Similar to any software package, zooming in and out, zoom to scale, and pan are tools 

to help the user build the model. Once the geometry of the model is complete, the 

materials are chosen. A material library is internally built in the software for the user. 

There are different material categories available in OptumG2 and OptumG3 (Figures 

3.12 and 3.13).  

 

Figure 3.12. OptumG2, material library (OptumCE, 2017). 

 

Figure 3.13. OptumG3, material library (OptumCE, 2018). 

Shown in Figures 3.14 and 3.15 are examples of the Mohr-Coulomb soil properties 

which may be altered to suit. The detailed common properties include; General, 



 

40 

 

Material, Stiffness, Strength, Flow Rule, Tension Cut-Off, Unit weights and Initial 

Conditions. 

 

Figure 3.14. OptumG2, simple basic geometry functions and material properties for 

Mohr-Coulomb soil (OptumCE, 2017).  

 

Figure 3.15. OptumG3, simple basic geometry functions and material properties for 

Mohr-Coulomb soil (OptumCE, 2018).  
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For the model boundary constraint, various supports may be required. The three main 

support features in OptumG2 and OptumG3 are the Full, Normal and Tangential 

supports. Application is achieved to lines and surfaces by selecting and assigning the 

support mechanism. Full support prevents displacements in all directions, while the 

Normal and Tangential supports restrain movement in the perpendicular and parallel 

directions of the lines or surfaces, respectively (Figure 3.16).  

 

Figure 3.16. OptumG2, standard fixities for the domain boundary (OptumCE, 2017). 

There are a number of other features within OptumG2 that may be used for a wide 

range of problems. The features include; Connector, Fixed End Anchor, Plate, 

Geogrid, Shear Joint, Mesh Size and Mesh Fan. In OptumG3 the available features are 

the shell and shear joint. These features are mostly used for specialised analyses of 

geotechnical and structural problems.  

Different loading conditions may be chosen for the modelling of problems. The load 

features can be divided into two groups; Fixed Loads and Multiplier Loads, denoted 

by green and red, respectively. The Multiplier Loads have initially placed a value of 1 

kN/m2. The loads can be either Concentrated, Distributed or Body Loaded which apply 

to nodes, lines, surfaces and solids, as shown in Figures 3.17 and 3.18.  

 

Figure 3.17. OptumG2, load features (OptumCE 2017). 
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 Figure 3.18. OptumG3, load features (OptumCE 2018). 

The choice of fixed or multiplier loading will be generally controlled by the type of 

analysis required. For example, if the minimum support pressure required to maintain 

the stability at the collapse for a tunnel heading, the uniform distributed Multiplier 

Load should be applied on the face of the tunnel as illustrated in Figures 3.14 and 3.15.  

The Stage Manager is the tab to the bottom right-hand corner used to select the type 

of analysis. The initial conditions and respective analysis type are both tabbed for each 

model structure. The Analysis tab in OptmG2 consists of Mesh, Seepage, Initial Stress, 

Elastic, Limit Analysis, Strength Reduction, Elastoplastic, Multiplier Elastoplastic and 

Consolidation, while in OptumG3 the Analysis tab comprises of Mesh, Initial Stress, 

Elastic, Limit Analysis, Elastoplastic and Feasibility. 

The analysis chosen will depend on the settings selected. For example, if the Strength 

Reduction Analysis (OptumG2) is elected, the reduced in strength properties of the 

soil until a failing limit. For Tresca material, the strength reduction factor can be 

viewed as a factor of safety (FoS) value shown in Equation 3.14. 

/u cFoS S S                                                                                                                         (3.14) 

Where Su is the available undrained shear strength of the soil and Sc is the critical 

strength necessary to maintain limiting equilibrium. In Limit Analysis, the fixed loads 

are kept constant while the multiplier loads are amplified until a state of incipient 

collapse is attained. The factor by which the multiplier loads need to be amplified to 

cause collapse is also referred to as the collapse multiplier. In addition to determining 

the collapse multiplier for a set of external loads, it is also possible to compute the 

factor by which gravity should be amplified in order to achieve a state of collapse. This 

feature is useful, for example, in connection with slope stability. 

In OptumG2, The Element Type can be either Lower, Upper, 6-node Gauss, 15-node 

Gauss or Others. In OputmG3, there are three types of elements; Lower, Mixed and 

Upper. Mixed is a new type of element that combines the features of lower and upper 

elements, which result in an accurate solution. This study selected the upper and lower 

bounds for load multiplier and strength reduction techniques in both analyses 3D and 

2D.  The No. of Elements tab includes the total number of elements used across the 

model geometry and consequently affects the accuracy. The Mesh Adaptivity is used 
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to refine the failure mechanism. The Start Elements includes the number of elements 

in the initial mesh, while the Adaptivity Control tab is the control variable adopted. 

For both analyses (2D and 3D), it was recommended to adopt three or four iterations. 

The full outlines of the Stage Manager are presented in Figures 3.19. 

 

Figure 3.19. Stage manager overview for limit analysis, (a) OptumG2, (b) OptumG3. 

Figures 3.20 and 3. 21 show the 2D and 3D tunnel head stability problem, respectively. 

The models are analysed using Limit Analysis with the load Multiplier and presented 

with an animation of shear dissipation contour with Mesh Overlay.  
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Figure 3.20. OptumG2, shear dissipation with a mesh overlay (OptumCE 2017). 

The shear dissipation is the key quantity to indicate the plasticity, and it is equal to the 

shear stress times the shear strain at failure. Therefore, the contour animations clearly 

show the failure mechanism of the tunnel head and specify the usefulness. 

 

Figure 3.21. OptumG3, shear dissipation with a mesh overlay (OptumCE 2018). 
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3.4 Finite Difference Method (FDM)  

This method discretises the domain similar to the FEM; elements and nodes are used. 

The main difference is the approach used to solve the unknown parameters. This 

method uses an explicit approach that works on the principle that a disturbance in the 

mesh will only be felt at adjacent nodes if a small enough time step is used. This 

approach is mainly used for dynamic problems but can be used as a quasi-static method 

if dampening is applied to the dynamic problem. This approach allows the analysis of 

the solution procedure with time, which allows observation of movement after each 

step, a significant advantage over FEM. No matrices are generated, which means that 

much less computer memory is required, and also that required computer power isn’t 

linked with the size of displacements. This method is also associated and can be used 

to simulate stability and settlement problems together. Details of method description 

may be found in Narasimhan and Witherspoon (1976). 

3.4.1 Fast lagrangian analysis of continua (FLAC) 

FLAC is a two‐and three‐dimensional explicit finite difference program associated with 

geotechnical and geomechanical engineering. FLAC utilises Lagrangian analysis, 

dynamic equation of motion and numbers of built-in constitutive models to solve the 

problem.  

In FLAC, due to small-time steps in the problem‐solving process, the information 

would not physically transfer from one element to the other. Each element acts as a 

base on the linear or nonlinear stress/strain regulation to respond to the exerted force 

and boundary condition (Wang et al. 2011). 

3.4.2 Numerical modelling in FLAC 

FLAC recommends the following steps to be undertaken to execute a successful two 

and three‐dimensional numerical analysis: 

a) Defining the objective of the work: Defining the objective of the work will reduce 

the complication of the work that may impact on the accuracy of the results. 

b) Creating a conventional vision of the model: This will allow the user to 

approximate the model and results. The conceptual model also helps decide on the 

best tool and model structure. 
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c) Build and run an idealised model: Running the simple idealised model will help 

detect issues that might not be possible when dealing with complicated models. It 

also helps to understand the system and the structure of the physical model. 

d) Determine problem-specific data: The accuracy of the numerical model depends 

on the reliability of the input. Therefore, the geometric details, initial condition, 

external loads and material property need to be defined before analysing. 

e) Prepare a series of detailed model runs: There are important elements, such as 

running time, which need to be considered for an effective and efficient parametric 

study. The computational processing time is particularly important when it comes 

to three-dimensional models. Applying monitoring stages in a model would help 

in checking with the physical data, which is beneficial in terms of a better 

interpretation of the results. 

f) Perform the model calculation: It is recommended to conduct a few individual 

detailed runs, and once the results are confirmed, a series of the runs can be 

performed. 

g) Present results for interpretation: The final phase of successful modelling is to 

interpret the results. The results can best be presented graphically in the form of 

contours and vector plots. 

In general, having a set of boundaries and an initial value, FDM is capable of solving 

the problem by using differential equations. FLAC uses this technique and reproduces 

the finite difference equation in each step of the analysis, and then the software is 

capable of storing the solutions in the form of the matrix (FLAC 2D 2003). Every set 

of the pilot equation that has been used will be substituted by the algebraic term written 

in relation to field variables, such as displacement, stress etc. 

The explicit FDM reproduces those stored equations in every step on analysis. In 

addition to the explicit method, FLAC uses the Lagrangian method to coordinate the 

grid at each step. Displacement of the material will be added to coordinates to illustrate 

the material deformation. Figure 3.22 shows the steps required to create a successful 

two‐dimension model in FLAC. 
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Figure 3.22. Numerical modelling setup in FLAC (FLAC 2D 2003). 
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The FLAC solution considers the dynamic equation of motion in its process of finding 

the static solution. This ability will ensure that the numerical system remains stable 

when the physical system is in an unstable condition. This is particularly important in 

nonlinear materials where there is always the possibility of high instability. In reality, 

some of the strain energy in the system will dissipate by converting into kinetic energy. 

To encounter such a situation, FLAC models this process directly, because the inertial 

parameters combine in kinetic energy and are dissipated. Figure 3.23 illustrates the 

general progress of the explicit method, which has been implemented in FLAC. 

 

Figure 3.23. General explicit calculation loop (FLAC 2D 2003). 

The process starts with the equation of motion, which drives new displacement and 

velocity from stresses. The strain rate would be driven from velocity to form new 

stress. The entire loop explained above would take place in one timestep. It should be 

noted that each box in the above figure will update the grid parameters from the known 

constant variables. For example, the “stress/strain relation” box would consider the 

new velocity, which has already been calculated to compute the new stress rates.  
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The explicit method has several advantages in comparison with the implicit technique 

mainly associated with the finite element method. Table 3.1 shows the comparison of 

the explicit and implicit method. 

Table 3.1. Comparison of explicit and implicit methods. 

Explicit 
  

Implicit 

Timestep must be smaller than a 

critical value for stability.  
  

Timestep can be arbitrarily large, with 

unconditionally stable schemes. 

A small amount of computational 

effort per timestep. 
  

A large amount of computational effort 

per timestep. 

No significant numerical damping 

introduced for a dynamic solution. 
  

Numerical damping dependent on 

timestep present with unconditionally 

stable schemes. 

No iterations are necessary to follow 

nonlinear constitutive law. 
  

The iterative procedure is necessary to 

follow a nonlinear constitutive law. 

Provided that the timestep criterion is 

always satisfied, nonlinear laws are 

always followed in a valid physical 

way. 

  

Always necessary to demonstrate that the 

abovementioned procedure is (a) stable 

and (b) follows the physically correct path 

(for path‐sensitive problems). 

Matrices are never formed. Memory 

requirements are always at a 

minimum. No bandwidth limitations. 

  

Stiffness matrices must be stored. Must 

find ways to overcome associated 

problems, such as bandwidth. Memory 

requirements tend to be large. 

Since matrices are never formed, large 

displacements and strains are 

accommodated without additional 

computing effort. 

  
Additional computing effort is needed to 

follow large displacements and strains. 

 

In summary, the explicit method fits best for nonlinear, large strain and physically 

unstable systems.  

3.4.3 Lagrangian analysis 

The Lagrangian strategy uses a similar principle to the finite difference method by 

dividing the continuum material into a number of connected elements. Since FLAC 

does not need to form a global stiffness matrix, amending the coordinate’s change at 
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every time step became unimportant. Unlike the Eulerian method, the Lagrangian 

equation, incremental displacement will be added to coordinates, and the grid will 

distort to suit the material. 

Grid generation 

The model will subdivide to a finite difference meshed by the user to compose 

quadrilateral elements. Using the triangular element would eliminate problems that 

may occur in constant strain finite elements. FLAC separates these mesh elements into 

two overlaid constant‐strain triangular elements. The triangles are illustrated as a, b, c 

and d in Figure 3.24. 

 

Figure 3.24. (a) Overlaid quadrilateral elements used in FLAC, (b) Typical triangular 

element with velocity vectors, (c) Nodal force vector (FLAC 2D 2003). 

FLAC uses the mixed discretisation method suggesting different discretisation for 

isotropic and deviatoric sections of materials stress and strain. The detail process was 

described by Marti and Cundall (1982). It should be noted that while deviatoric is 

fixed, the volumetric strain would be an average of each pair of triangles. So, for 

triangle a and b in Figure 3.24a, the strain rate would be the mean of both triangles as 

presented in equation 3.15. 

11 22 11 22

2

a a b b

m

e e e e
e

  
                                                                                                         (3.15) 

The similar approach would be considered for triangle c and d. However, it is 

important to note that this process is for a plane strain condition and an axisymmetric 

condition, all three direct strains need to be considered to obtain the average stress.  
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The numerical simulation programs will face difficulties when applying the 

constitutive models to characterise the geomechanical material of the soil. Those are 

physical instability, the path dependency of nonlinear materials and non‐linearity of 

stress‐strain behaviour of the material. The FLAC uses its explicit and dynamic 

problem‐solving ability with the aid of the constitutive models ranging from linear 

elastic models to highly nonlinear plastic models to address this issue. Currently, FLAC 

has fourteen constative models used to model represent the geomechanical material 

behaviour: 

 Null model: to represent the excavated/removed material. 

 Elastic, isotropic model: This model represents the homogeneous, continuous 

materials where stress‐strain behaviour presents as a linear relationship. 

 Elastic, transversely isotropic mode: The elastic, transversely isotropic model 

allows the software to simulate layered elastic materials. 

 Drucker Prager model: This model is used for materials with a low frictional angle, 

such as soft clay. 

 Mohr‐Coulomb model: This is a common plastic model, which represents the shear 

failure of the soil and rocks. 

 Ubiquitous joint model: This model represents the anisotropic plastic models, 

which includes weak planes enclosed in the Moher coulomb model. 

 Strain softening/hardening model: This criterion will represent the nonlinear 

softening and hardening behaviour of the material base on the Moher Coulomb 

properties. 

 Bilinear strain softening/hardening ubiquitous joint model: This model will 

represent the softening or hardening material behaviour of the weak plane based 

material. 

 Double yielded model: The double yielded failure criterion characterises the 

material that undergoes irreversible compaction. 

 Modified cam clay model: This criterion will be used to represent the cases where 

the volume change, bulk property and shear resistivity requires consideration. 

 Hoek Brown model: Hoek Brown characterises stress conditions, resulting in a 

failure in rocks. 

 The modified Hoek Brown model: This model represents the post-failure plastic 

behaviour in term of the dilation angle. 
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 Cysoil model: The cap‐yield soil used to represent the nonlinear behaviour of the 

soil. 

 Simplified cysoil model: Simplified cysoil uses hyperbolic model parameters, 

which are input by the user. It also uses the Moher coulomb failure envelope.  

The software uses the above criteria to simulate the behaviour of the structures 

constructed of various materials, which reach the plasticity deformation when it 

reaches the yielding limit. 

3.4.4 Shear strength reduction method (SSRM) 

With the development of computer technology over the past decades, numerical 

modelling has become an essential tool in geotechnical engineering. Stability analysis 

can be performed by the calculation of factors of safety in FLAC using the shear 

strength reduction method (SSRM). The SSRM is commonly applied through the factor 

of safety calculation by gradually reducing the shear strength of the testing material to 

estimate the point where the system reaches a state of limiting equilibrium. This 

method is popular in the stability analysis of slopes, retaining walls and tunnels; 

however, it has rarely been used in stability analysis of sinkholes. 

This study uses the shear strength reduction method (SSRM) with the aid of the built‐

in program language, FISH, to analyse the stability problem. 

This method was utilised as early as 1975 by Zeinkiewicz et al. (1975), followed by 

Naylor (1982), Matsui and San (1992), Ugai and Leshchinsky (1995), Griffiths and 

Lane (1999), Michalowski (2002), Zheng et al. (2005) and numerous other researchers. 

The SSRM is coded in the finite difference software FLAC as well as many other 

computational tools, such as Plaxis (2011) and OptumG2 (OptumCE 2017). In the 

method of shear strength reduction, a factor of safety is defined as the ratio of the 

actual undrained shear strength and the critical undrained shear strength, as shown in 

equation (3.16). 

u

c

S
FoS

S
                                                                                                                             (3.16) 

Where (Su) is the actual undrained shear strength of the soil and (Sc) is a critical shear 

strength at collapse. In practice, the factor of safety above one demonstrates a stable 

condition. In this study, the soil body is defined as a homogeneous, undrained clay, 

following the Tresca material. The shear strength reduction method (SSRM) is usually 
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applied to the conventional model of Mohr‐Columb material. The safety factor is 

defined as follows: 

1trial

trial
c c

F
                                                                                                                 (3.17) 

1
arctan tantrial

trialF
 

 
  

 
                                                                                                       (3.18) 

With this method, FLAC first brackets down the results to “stable” and “unstable”. Both 

the cohesion c and friction angle ϕ values are gradually reduced until the model 

reaches the failure state. In the second stage, the solution gradually reduces between 

“stable” and “unstable” until the solution falls below the tolerance (FLAC 2D 2003). 

To determine the boundary between a stable and unstable model, a series of individual 

runs with different strength reduction factors will be performed to determine if the 

model is at equilibrium, or if the continuing plastic flow has already reached. The final 

failure point, with the aid of successive bracketing of strength reduction factor, would 

identify the failure point (FLAC 2D 2003). 

3.4.5 Pressure relaxation method (PRM) 

With the development of powerful computers over the last three decades, numerical 

modelling has proceeded to become a dominant technique for problem resolution. The 

pressure relaxation method developed with the built-in program language of FLAC 

(FLACish or FISH). An approach such as this was first developed by Panet and Guenot 

(1983). In this method, the internal tunnel pressure (σt) is gradually reduced to zero 

from a starting amount equalling the equivalent in situ soil pressure. This approach can 

simulate reductions in the internal tunnel pressure (σt) as well as the soil's response. 

The internal pressure σt is reduced by multiplying the at-rest pressure, where no 

movement occurs, by a reduction factor, which is based on the number and range of 

relaxation steps.  At each subsequent relaxation step, the internal pressure is less than 

the at-rest pressure, and consequently, the soil moves into the tunnel void until the 

internal forces in the soil reach equilibrium, balanced or otherwise. In the elastic state, 

internal forces have reached a balanced state (total unbalanced force in FLAC 

approaches zero), no more movement takes place, and the circular tunnel is considered 

stable. Once the internal pressure is reduced to the extent where the internal forces are 

no longer sufficient to retain the earth pressures, total unbalanced forces will never 

approach zero, and the tunnel is considered unstable.  
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A screenshot of the inputs section of the FLAC script is shown in Figure 3.25. The 

developed script is quite user-friendly, and given FLAC’s ability to queue jobs, it is 

very efficient and time effective to set up and run parametric studies. 

 

Figure 3.25. Inputs section of the pressure relaxation script for FLAC. 
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CHAPTER 4: UNDRAINED ANALYSIS OF 2D 

TUNNEL HEADING 

 

4.1 Introduction 

The development of modern society and the increase of population introduce the need 

for greater utilisation of underground spaces in urban areas. Furthermore, the mining 

industry is continually looking to refine the depth excavation stability issue. One of 

the main problems when constructing a tunnel is to ensure the stability of the tunnel 

heading. Ensuring tunnel face stability is directly related to the safe and successful 

construction of the underground structure. This chapter will discuss the stability of an 

idealised tunnel heading in undrained soil conditions. The heading is rigidly supported 

along its length, while the face is subjected to internal pressure, and free to move. The 

problem approximates a longwall in an underground excavation. Failure of the heading 

in collapse and blowout is studied by different combinations of internal pressure and 

surface surcharge. Shear strength reduction technique and finite element limit analysis 

are utilised to study two-dimensional heading stability. Both the upper and lower 

bound factor of safety values are determined for a wide range of heading 

configurations and stability scenarios. The obtained results of the factor of safety (FoS) 

for various depths are presented in the form of dimensionless stability charts and 

verified by the finite difference method (FDM) as well as other existing solutions 

available in the literature. Some practical examples are provided to demonstrate the 

usefulness of the design charts and tables. These charts give a good approximation of 

FoS and can be used by engineers in preliminary designs. 

4.2 Problem Definition and Modelling Technique 

Figure 4.1 shows the problem definition of an idealised tunnel heading. The soil 

medium is considered as undrained and is modelled as a uniform Tresca material. The 

undrained shear strength (Su) and the unit weight (γ) describe soil properties used, 

while the tunnel has a height (D), cover depth (C) above its crown and axis depth (H) 

below the ground surface. The face of the heading is free to move and is subjected to 
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a normal internal pressure σt, while the ground surface is subjected to a vertical 

surcharge σs. These pressures, together with soil self-weight, are varied to test the 

collapse and blowout stability of the models. 

 

Figure 4.1. Problem definition. 

In undrained soil  0u  , the shear strength is independent of the loading direction, 

and the tunnel heading stability can be well-expressed by using Broms and 

Benermark's stability number (N), as shown in Equation 4.1. 

s t

u

H
N

S

   
                                                                                                                    (4.1) 

Numerical results based on shear strength reduction method (OptumCE 2017) are 

represented by a factor of safety (FoS) that is a function of the depth ratio (C/D) and 

the stability number (N), as shown in Equation 4.2. 

, s t

u

HC
FoS f N

D S

    
  

 
                                                                                  (4.2) 

The stability number N can be either positive, zero or negative, depending on the actual 

input design parameters (σs, σt, γ, C, D, H and Su). Thus, to cover all possible scenarios 

of failure, the present study investigates the stability of tunnel headings by relating 

FoS to a broad range of stability numbers (N = -15 to 15) and depth ratios (C/D = 1 to 

10). For example, to generate a value of N = +5 for C/D = 3, the chosen parameters 

are σs = 0, σt =153 kPa, γ= 18 kN/m3, C= 18m, D= 6m, H= 21m, and Su= 45 kPa. 
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The rigorous upper bound and lower bound factors of safety for the cases being studied 

are computed by using the shear strength reduction method (Krabbenhoft and Lyamin 

(2015). The adaptive mesh used in this study is shown in Figure 4.2. The numerical 

procedures used are based on the limit theorems of classical plasticity (Lyamin & 

Sloan 2002a, 2002b).  

 

Figure 4.2. A typical adaptive mesh used for the problem. 

Result verification is normally required in computational research. For this purpose, 

the finite difference (FD) method, via the software FLAC with built-in implementation 

of the strength reduction technique, has also been used over the same parametric range. 

4.3 Results and Discussion 

A wide range of stability numbers (N = -15 to +15) and depth ratios (C/D =1 to 10) are 

investigated to cover all possible situations associated with a tunnel heading stability. 

Figure 4.3 shows the full range of the results (LB, UB and FD) related to the collapse 

and blowout of a tunnel heading model with a depth ratio of three (C/D = 3). It can be 

seen that the curves are hyperbolic, and a pair of asymptote lines exist. The general 

equation for this graph was found to be / .cFoS N N  Any combination of N and FoS 

on this curve yields a unique Nc value, which is constant for a specific depth ratio. 
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Figure 4.3. FoS vs. N for C/D = 3. 

This Nc value is Broms and Bennermarks’ original critical stability number. For the 

depth ratio C/D = 3, LB solutions give Nc = +5.947 on the collapse side and Nc = -

5.943 on the blowout side. Graphically, the two values can be read from the 

intersection points by drawing a FoS = 1 horizontal line, as can be seen in Figure 4.3.  

Complete FoS results are presented in Tables 4.1- 4.3. 

Broms and Bennermark’s stability number (N) consists of two parts: overburden 

pressure ratio (OPR = (σs +γH)/Su) and supporting pressure ratio (SPR = σt /Su). When 

the OPR is equal to the SPR, N is equal to zero, and FoS is at a maximum (infinite). It 

is noted that a ‘weightless scenario’ exists on the asymptote line where the stability 

number is approaching zero, and the factor of safety is at an infinite value. When the 

OPR is larger than the SPR, N is greater than zero. The factor of safety (FoS) gradually 

decreases as N increases and the soil moves in the “collapse” direction. As N further 

increases, an incipient collapse is reached where FoS = 1 and the corresponding N is 

the critical Nc.  
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Table 4.1. FoS results for various values of C/D and N (LB, Collapse and Blowout). 

 C/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.277 0.351 0.396 0.433 0.461 0.484 0.503 0.517 0.535 0.545 

-12 0.333 0.419 0.475 0.520 0.553 0.578 0.604 0.621 0.642 0.654 

-10 0.416 0.521 0.594 0.650 0.693 0.727 0.756 0.776 0.802 0.823 

-7.5 0.557 0.700 0.794 0.865 0.920 0.970 1.007 1.035 1.065 1.093 

-5 0.830 1.049 1.192 1.297 1.379 1.453 1.512 1.556 1.602 1.650 

-4 1.041 1.310 1.486 1.624 1.729 1.815 1.888 1.940 2.004 2.049 

-3 1.388 1.743 1.978 2.147 2.308 2.414 2.524 2.589 2.671 2.737 

-2.5 1.666 2.096 2.377 2.598 2.766 2.903 3.021 3.104 3.206 3.278 

-2. 2.080 2.615 2.969 3.215 3.443 3.600 3.752 3.888 3.988 4.065 

-1.5 2.776 3.494 3.962 4.331 4.609 4.839 5.035 5.173 5.343 5.463 

-1 4.147 5.183 5.872 6.391 6.781 7.097 7.402 7.605 7.820 8.009 

-0.75 5.488 6.856 7.759 8.380 8.912 9.388 9.709 10.012 10.272 10.433 

-0.5 8.053 10.014 11.291 12.231 12.898 13.507 14.013 14.339 14.858 15.136 

-0.25 14.499 17.716 19.936 21.172 21.644 21.637 21.776 21.762 21.621 21.899 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 14.753 18.116 20.253 21.520 21.923 21.852 21.776 21.840 21.830 21.886 

0.5 8.018 10.065 11.309 12.268 13.038 13.671 14.136 14.674 14.926 15.334 

0.75 5.439 6.867 7.759 8.408 8.989 9.406 9.739 10.061 10.390 10.602 

1 4.113 5.199 5.888 6.423 6.790 7.106 7.465 7.678 7.852 8.037 

1.5 2.777 3.501 3.965 4.327 4.604 4.825 5.037 5.211 5.361 5.481 

2 2.080 2.615 2.963 3.235 3.431 3.616 3.764 3.878 3.992 4.084 

2.5 1.666 2.101 2.379 2.596 2.762 2.895 3.022 3.126 3.216 3.288 

3. 1.388 1.746 1.993 2.155 2.300 2.417 2.514 2.603 2.672 2.744 

4. 1.041 1.313 1.487 1.623 1.727 1.810 1.889 1.954 2.010 2.055 

5 0.834 1.050 1.193 1.300 1.379 1.449 1.512 1.564 1.610 1.646 

7.5 0.553 0.700 0.794 0.865 0.920 0.964 1.007 1.043 1.073 1.100 

10. 0.418 0.526 0.594 0.648 0.691 0.724 0.756 0.782 0.805 0.819 

12.5 0.333 0.421 0.475 0.520 0.553 0.580 0.605 0.627 0.641 0.658 

15 0.278 0.349 0.397 0.433 0.460 0.482 0.503 0.519 0.537 0.548 
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Table 4.2. FoS results for various values of C/D and N (UB, Collapse and Blowout). 

 C/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.289 0.367 0.418 0.456 0.487 0.512 0.540 0.554 0.569 0.582 

-12 0.347 0.440 0.502 0.548 0.584 0.614 0.647 0.665 0.685 0.701 

-10 0.433 0.551 0.627 0.684 0.731 0.769 0.809 0.827 0.853 0.874 

-7.5 0.578 0.733 0.838 0.913 0.974 1.023 1.079 1.108 1.144 1.167 

-5 0.866 1.099 1.254 1.370 1.462 1.539 1.618 1.654 1.707 1.753 

-4 1.083 1.376 1.568 1.713 1.826 1.920 2.023 2.075 2.135 2.186 

-3 1.446 1.833 2.088 2.281 2.437 2.565 2.698 2.753 2.842 2.918 

-2.5 1.733 2.201 2.508 2.741 2.922 3.072 3.236 3.320 3.416 3.498 

-2. 2.167 2.747 3.132 3.428 3.649 3.834 4.040 4.131 4.256 4.365 

-1.5 2.889 3.669 4.181 4.569 4.870 5.119 5.393 5.534 5.693 5.829 

-1 4.325 5.504 6.264 6.833 7.297 7.662 8.080 8.256 8.517 8.729 

-0.75 5.772 7.320 8.348 9.113 9.723 10.205 10.765 11.079 11.369 11.636 

-0.5 8.638 10.985 12.488 13.634 14.556 15.323 16.122 16.507 16.990 17.442 

-0.25 17.123 21.738 24.677 26.891 28.695 30.211 31.804 32.445 33.346 34.160 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 17.123 21.738 24.677 26.891 28.695 30.211 31.751 32.445 33.346 34.160 

0.5 8.638 10.985 12.488 13.634 14.556 15.323 16.122 16.507 16.990 17.442 

0.75 5.772 7.320 8.348 9.113 9.723 10.205 10.765 11.079 11.369 11.636 

1 4.325 5.504 6.264 6.833 7.297 7.662 8.080 8.256 8.517 8.729 

1.5 2.889 3.669 4.181 4.562 4.870 5.119 5.395 5.541 5.693 5.832 

2. 2.167 2.747 3.132 3.428 3.649 3.834 4.040 4.131 4.256 4.365 

2.5 1.734 2.201 2.508 2.737 2.922 3.072 3.237 3.324 3.416 3.499 

3. 1.446 1.833 2.088 2.281 2.437 2.565 2.698 2.753 2.842 2.918 

4. 1.084 1.376 1.568 1.711 1.826 1.920 2.023 2.078 2.135 2.187 

5 0.866 1.099 1.254 1.370 1.462 1.539 1.618 1.654 1.707 1.753 

7.5 0.578 0.733 0.838 0.913 0.974 1.023 1.079 1.108 1.144 1.167 

10 0.433 0.551 0.627 0.684 0.731 0.769 0.809 0.827 0.853 0.874 

12.5 0.347 0.440 0.502 0.548 0.584 0.614 0.647 0.665 0.685 0.701 

15 0.289 0.367 0.418 0.456 0.487 0.512 0.540 0.554 0.569 0.582 
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Table 4.3. FoS results for various values of C/D and N (FD, Collapse and Blowout). 

 C/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.310 0.390 0.440 0.470 0.500 0.530 0.550 0.560 0.580 0.600 

-12 0.370 0.470 0.530 0.570 0.600 0.630 0.660 0.680 0.700 0.720 

-10 0.470 0.580 0.650 0.710 0.750 0.790 0.820 0.850 0.870 0.900 

-7.5 0.620 0.780 0.870 0.950 1.010 1.050 1.100 1.130 1.170 1.200 

-5. 0.940 1.160 1.310 1.420 1.510 1.580 1.650 1.700 1.750 1.790 

-4 1.164 1.461 1.641 1.775 1.880 1.975 2.060 2.117 2.183 2.250 

-3. 1.560 1.940 2.180 2.370 2.520 2.640 2.740 2.840 2.910 2.990 

-2.5 1.862 2.338 2.625 2.840 3.008 3.160 3.295 3.388 3.492 3.600 

-2. 2.340 2.900 3.270 3.550 3.770 3.950 4.110 4.240 4.360 4.470 

-1.5 3.104 3.896 4.375 4.733 5.013 5.267 5.492 5.646 5.821 6.000 

-1 4.660 5.770 6.500 7.040 7.470 7.830 8.140 8.410 8.640 8.860 

-0.75 6.180 7.650 8.590 9.300 9.870 10.340 10.750 11.090 11.410 11.700 

-0.5 9.150 11.260 12.630 13.640 14.460 15.140 15.710 16.240 16.690 17.090 

-0.25 16.990 20.610 22.950 24.670 26.030 27.160 28.080 28.860 29.520 30.140 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 16.970 20.880 23.320 25.170 26.620 27.770 28.760 29.570 30.110 30.550 

0.5 9.070 11.230 12.620 13.650 14.480 15.180 15.760 16.290 16.750 17.180 

0.75 6.140 7.620 8.590 9.300 9.860 10.340 10.750 11.090 11.420 11.700 

1 4.630 5.740 6.480 7.030 7.460 7.820 8.130 8.400 8.640 8.860 

1.5 3.104 3.875 4.375 4.733 5.013 5.267 5.492 5.646 5.809 5.987 

2. 2.330 2.900 3.260 3.530 3.750 3.930 4.090 4.240 4.360 4.470 

2.5 1.862 2.325 2.625 2.840 3.008 3.160 3.295 3.388 3.485 3.592 

3. 1.560 1.940 2.180 2.360 2.500 2.620 2.720 2.820 2.900 2.980 

4. 1.164 1.453 1.641 1.775 1.880 1.975 2.060 2.117 2.178 2.245 

5 0.940 1.160 1.310 1.420 1.510 1.580 1.640 1.690 1.740 1.780 

7.5 0.620 0.780 0.870 0.950 1.010 1.050 1.100 1.130 1.160 1.190 

10. 0.470 0.580 0.650 0.710 0.750 0.790 0.820 0.850 0.870 0.900 

12.5 0.370 0.460 0.530 0.570 0.600 0.630 0.660 0.680 0.700 0.720 

15 0.310 0.390 0.440 0.470 0.500 0.530 0.550 0.560 0.580 0.600 
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When the OPR is less than the SPR, N is less than zero. In this case, the soil moves in 

the “blowout” direction. The factor of safety (FoS) gradually decreases as -N increases 

until an incipient blowout is reached where FoS = 1. The corresponding -N is the 

critical -Nc for blowout failure. 

Broms and Bennermark’s original Equation 4.1 can be re-arranged into a form that is 

more amenable to analysis, as shown in Equation 4.3. 

t s c uH N S     ´                                                                                                            (4.3) 

Using Equation 4.3, a critical supporting pressure σt can be determined as long as Nc 

(where FoS = 1) is known. Note that Nc is a function of the depth ratio C/D regardless 

of the undrained shear strength of the soil.  

It is important to study the effect of C/D on the critical stability number Nc. Figure 4.4 

shows such a relationship between Nc and C/D. The data used to prepare this figure is 

shown in Table 4.4.  

 

Figure 4.4. Comparison of Nc results (FoS = 1) in collapse and blowout. 
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Table 4.4. Comparison of Nc results (FoS = 1) in collapse and blowout. 

C/D 
Collapse  Blowout 

LB UB FD  LB UB FD 

1 4.165 4.334 4.656  -4.164 -4.333 -4.656 

2 5.252 5.503 5.813  -5.241 -5.503 -5.844 

3 5.947 6.271 6.563  -5.943 -6.271 -6.563 

4 6.491 6.843 7.100  -6.496 -6.853 -7.100 

5 6.906 7.305 7.519  -6.914 -7.305 -7.519 

6 7.238 7.679 7.900  -7.258 -7.679 -7.900 

7 7.555 8.093 8.238  -7.552 -8.090 -8.238 

8 7.816 8.311 8.469  -7.760 -8.301 -8.469 

9 8.041 8.539 8.713  -8.014 -8.539 -8.731 

10 8.221 8.748 8.981  -8.194 -8.744 -9.000 

 

In Figure 4.4, the critical stability number (Nc) increases nonlinearly as C/D increases, 

and the gradient of the curve decreases for large values of Nc. The area bounded by the 

collapse and the blowout curves represents the safe zone where FoS > 1. As the 

stability number (N) approaches zero (OPR = SPR), the factor of safety becomes 

infinite.  

In general, the finite difference results for the critical stability number Nc are always 

larger than the upper bound and lower bound results. It appears that the finite 

difference approach for this problem is not conservative, and the exact solution is 

somewhere between the limits of the LB and the UB. Since the lower bound theorem 

offers a safe assessment of the limit pressure for a stability problem, the computed 

lower bound solutions were chosen for the regression analysis.  

Equation 4.4 is an accurate curve-fitting for the relationship between Nc and C/D with 

a correlation coefficient (R2) = 0.998. 

1.79 ln( / ) 4.06cN C D ´                                                                                                      (4.4) 

Substituting Equation 4.4 into Equation 4.3, a critical supporting pressure σt can be 

computed using Equation 4.5 with known design parameters (σs, γ, H, Su and C/D).  

(1.79 ln( / ) 4.06)t s uH C D S     ´  ´                                                                       (4.5) 

Noting that cN N FoS ´  (Figure 4.3), a factor of safety can always be computed 

using Equation 4.6. 

/cFoS N N                                                                                                                              (4.6) 
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Where N is the “designed” stability number which consists of the following design 

parameters: σs, σt, γ, H, and Su. Equation 4.6 is further arranged into the form shown in 

Equation 4.7 by substituting Nc from Equation 4.4. 

1.79 ln( / ) 4.06C D
FoS

N

´ 
                                                                                 (4.7) 

Equation 4.7 can be further expanded to Equation 4.8 for collapse analysis, noting that 

( ) /s t uN H S       

(1.79 ln( / ) 4.06) u

s t

C D S
FoS

H  

´  ´


 
                                                                              (4.8) 

And Equation 4.9 is used for blowout analysis by substituting the negative value of Nc. 

( 1.79 ln( / ) 4.06) u

s t

C D S
FoS

H  

 ´  ´


 
                                                                            (4.9) 

Figure 4.5 shows a comparison of Nc results of this study with the existing solutions. 

The data used to prepare this figure is shown in Table 4.5. 

 

Figure 4.5. Comparison of Nc between the present study and published solutions. 

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

N
c

C/D

 Kimura & Mair (1981, Centrifugal Test)

 Davis et al. (1981, UB)

 Augarde et al. (2003, UB )

 Present study (FD)

 Ukirtchon & Keawsawasvong (2017, LB )

 Present study (UB)

 Present study (LB)

 Augarde et al. (2003, LB )

 Davis et al. (1981, LB)



 

66 

 

Table 4.5. Comparison of Nc between the present study and published solutions. 

 

Good agreement was found between this study and the published solutions by 

(Augarde et al. (2003). The current UB and LB solutions have been significantly 

improved owing to the use of adaptive mesh in this paper. It is not surprising to see 

that the analytical LB yields conservative results while the analytical UB provides an 

unsafe solution for the stability of plane strain tunnel headings (Davis et al. (1980), 

and hence should not be used in practice. The three-dimensional centrifugal test results 

in Kimura and Mair (1980) are consistently higher than those from the current study 

of plane strain tunnel headings. 

4.4 The Extent of Surface Failure 

Figures 4.6 to 4.8 (right-hand side) show the absolute displacement (|𝑢| = √𝑢𝑥
2 + 𝑢𝑦

2) 

contour plots for C/D = 3, 6 and 9 respectively. These plots indicate the potential 

failure mechanism and the ground surface failure extent, although the actual contour 

values of the plots are not important (not real displacement) in limit analysis with the 

perfect plasticity theorem. Please note that these plots are not based on the same scale. 

On the left-hand side of the Figures 4.6 to 4.8, vector plots of the velocity field are 

presented, showing the magnitude and direction of particle movement. The shorter 

vectors along the slip surface indicate a smaller movement of soil due to soil friction; 

whereas; in the centre of failure zone above the tunnel, the motion is nearly towards 

the tunnel face, having a greater displacement. All of the effected overburdening soil 

is being funnelled towards the opening of the tunnel, as seen by the density of the 

vectors around the tunnel face. There are obvious differences in both shape and the 

number of absolute displacement contours as the tunnel cover-to-diameter ratio 

increases. Having these plots does increase the confidence level with regards to finding 

possible slip planes within the overburden in front and above the tunnel face.  

C/D 

Davis et al. 

(1980, UB) 

Tunnel heading 

Augarde et al. 

(2003, UB) 

Tunnel heading 

Present study 

(FD) 

Tunnel heading 

Ukritchon et al. 

(2017, LB) Opening in 

underground wall 

Present study 

(UB) 

Tunnel heading 

Present study 

(LB) 

Tunnel heading 

Augarde et al. 

(2003, LB) 

Tunnel heading 

Davis et al. 

(1980, LB) 

Tunnel heading 

1 4.47 4.39 4.66 4.55 4.2 4.17 4.00 3.39 

2 6.00 5.68 5.81 5.50 5.42 5.25 5.05 4.20 

3 7.21 6.50 6.56 6.20 6.21 5.95 5.75 4.77 

4 8.25 7.21 7.10 6.70 6.80 6.49 6.25 5.22 

5 9.17 7.7 7.52 7.10 7.26 6.91 6.7 5.58 
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For all C/D, the failure zone extent (E) increases with the increasing of depth ratios. 

The potential slip surface extends below the base of the tunnel face for deep cases but 

reduces for shallow cases. It can be observed that the cohesive soil mass moves toward 

the tunnel like a flow.  

  

 

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 4.6. Absolute displacement contour |u| (right hand side) and velocity vector 

plots (left hand side) for C/D = 3. 

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 4.7. Absolute displacement contour |u| (right hand side) and velocity vector 

plots (left hand side) for C/D = 6.  

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 4.8. Absolute displacement contour |u| (right hand side) and velocity vector 

plots (left hand side) for C/D = 9. 
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No rigid block of particles movement can be recognised as in cohesionless soil, and 

that is the reason why the kinematic approaches are difficult to apply in cohesive soil 

(Mollon et al. 2013). 

Noting that the surface failure extent ratio (E/D) increases as the depth ratio (C/D) 

increases. E is the measured horizontal surface distance from the output plots, as 

shown in the figures. This can be justified by the conical shape of the failure 

mechanism. The extent of the surface failure and the corresponding depth ratio are 

recorded in Table 4.6.  

The data in Table 4.6 has been graphically presented in Figure 4.9, which shows a 

nonlinear relationship between (E/D) and (C/D). Given C/D = 1 and D = 1 metre, the 

cover depth (C) above the crown of the tunnel is 1 metre, and the resulting extent of 

the surface failure (E) is about 2 metre. When the depth ratio C/D is increased to 10, 

the extent of the surface failure (E) increases to 8.90 metres. Table 4.6 and Figure 4.9 

are useful to practical engineers during the stage of tunnel construction. 

Table 4.6. Surface failure ratios (E/D). 

Depth Ratio The ratio of failure extent to 

(C/D*) tunnel diameter (E/D*)  

1 2.04 

2 3.37 

3 4.56 

4 5.61 

5 6.52 

6 7.28 

7 7.90 

8 8.37 

9 8.70 

10 8.89 

Tunnel Heading height D = 1m 
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Figure 4.9. Surface failure ratio (E/D) vs (C/D). 

4.5 Stability Chart and Practical Examples 

The design chart is best demonstrated through some examples which can be broadly 

categorised into either analysis or design problems. Since the lower bound theorem 

offers a safe assessment of the critical stability number, a design contour chart for 

factors of safety (FoS) has been constructed in Figure 4.10 based on LB results.  

4.5.1 Face support for TBM excavation. 

It is proposed to use a TBM to excavate a deep tunnel below the central business district 

through undrained clay. The designer needs to determine the safe operating range for 

tunnel face support pressure (σt) provided by the TBM. The given parameters are; σs = 

216 kPa, Su = 72 kPa, γ = 18 kN/m3, C = 36 m, and D = 6 m.  

1. Given C/D = 6, Nc ≃ 7.26 for LB collapse and Nc ≃ – 7.26 for LB blowout (Table 

4.4 or Figure 4.4 or Equation 4.4). 

2. Using Equation 4.8, σt = 395.28 kPa (FoS = 1, for collapse, LB). 
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3. Using Equation 4.9, σt = 1440.72 kPa (FoS =1, for blowout, LB). 

4. The safe operating range (FoS ≥ 1) for tunnel face support pressure is:  

395.28 kPa (collapse limit) ≤ σt ≤ 1440.72 kPa (blowout limit).  

5. Depending on the FoS used in design considerations, this operating range can be 

further reduced.  

6. Using Equation 4.8 with FoS =2.5, σt = 708.90 kPa for collapse side. 

7. Using Equation 4.9 with FoS =2.5, σt = 1127.10 kPa for blowout side. 

8. The safe operating range for FoS ≥ 2.5 is: 

708.90 kPa (collapse side) ≤ σt ≤ 1127.10 kPa (blowout side)  

 

Figure 4.10. FoS (LB) design chart for heading stability. 
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4.6 Conclusion 

Broms and Bennermarks’ original stability number combines overburden pressures 

(surcharge and self-weight) with internal supporting pressures and is applicable to 

undrained clay. This critical stability number was studied for 2D tunnel heading 

problems. Numerical results for factors of safety were obtained for a wide range of 

stability numbers for collapse and blowout by using rigorous upper and lower bound 

limit analyses and the finite difference method. Design charts, tables, and equations 

were produced using dimensionless ratios. Examples have been given to illustrate the 

practicality of the charts. 

Broms and Bennermarks’ original stability number approach is applied to study the 

stability of 2D single circular tunnels in Chapter 5. 
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CHAPTER 5: UNDRAINED ANALYSIS OF 2D 

SINGLE CIRCULAR TUNNEL 

 

5.1 Introduction 

The evaluation of the stability of tunnels is important in determining the safe working 

pressures, the structural design of the lining segments and to prevent damage to surface 

or subsurface structures.  

In the previous chapter, the stability of plane strain tunnel heading was addressed. This 

chapter will discuss another stability problem of an idealised circular tunnel in 

undrained soil conditions. The problem approximates the stability of a very long 

unlined circular tunnel. This case is equivalent to a long cylindrical cavity, aiming to 

determine the radial pressure a cylindrical tunnel shield must resist. 

Failure of the tunnel in collapse and blowout is initiated by different combinations of 

overburden pressure and internal radial pressure. Shear strength reduction technique is 

utilised to study two-dimensional tunnel stability by using finite element limit analysis, 

to compute the upper and lower bound factor of safety values, for a wide range of 

depth ratios and stability scenarios. The obtained results of the factor of safety (FoS) 

for various depths are presented in the form of dimensionless stability charts and 

verified by the finite difference method as well as other existing solutions available in 

the literature. Some practical examples are provided to demonstrate the usefulness of 

the design charts and tables. These charts give a good approximation of FoS and can 

be used by engineers in preliminary designs. 

5.2 Modelling Technique and Problem Statement 

Figure 5.1 shows the problem definition of the idealized unlined circular tunnel. The 

soil medium is considered as undrained and is modelled as a uniform Tresca material, 

which is the same as a Mohr-Coulomb material with zero internal friction angle. The 

undrained shear strength (Su) and the unit weight (γ) describe soil properties used, 

while the tunnel has a diameter (D), cover depth (C) above its crown and axis depth 

(H) below the ground surface.  
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Figure 5.1. Problem definition. 

The tunnel is subjected to a radial internal pressure σt, while the ground surface is 

subjected to a vertical surcharge σs. These pressures, together with soil self-weight 

(γH), are varied to test the collapse and blowout stability of the models for various 

depth ratios (C/D). It is important to note that the active (collapse) failure is driven by 

the action of gravity and the surcharge pressure, with the resistance being provided by 

the internal tunnel pressure and the shear strength of the soil. The passive (blowout) 

failure is driven by the tunnel pressure and resisted by the action of the surcharge, 

gravity and shear strength of the soil. 

For tunnelling in undrained soil, the effects of the soil weight and the difference 

between the pressures (σs and σt) on stability can be investigated by using Broms and 

Bennermarks’ stability number (N), as shown in Equation 5.1. 
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s t

u

H
N

S

   
                                                                                                                       (5.1) 

The circular tunnel is symmetrical about the vertical plane (Figure 5.1); therefore, the 

critical stability calculations are based on one half of the total domain. A typical plane 

strain FELA adaptive mesh used in this study is shown in Figure 5.2. The boundary 

conditions are as follows: the ground surface is free to displace, the sides have roller 

boundaries, and the base is fixed in x and y directions. 

 

Figure 5.2. A typical adaptive mesh used for the problem. 

In case of using half of the domain, the vertical plane of the symmetry is fixed in the 

x-direction only. An automatically adaptive mesh refinement was employed in both 

the UB and LB simulations to enable accurate limit loads to be obtained through the 
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use of the bounds gap error estimator (OptumCE 2017). Three iterations of adaptive 

meshing with the number of elements increasing from 1000 to 2000 were used for all 

analyses. The large size of the model is essential as it ensures that the entire soil mass 

is modelled accurately, and the failure mechanism does not intersect the boundaries of 

the model.  

The numerical results of the shear strength reduction method (SSRM) are represented 

by a factor of safety (FoS) that is a function of the depth ratio (C/D) and the “designed” 

stability number (N), as shown in Equation (5.2). 

, s t

u

HC
FoS f N

D S

    
  

 
                                                                                     (5.2) 

In practice, the “designed” stability number N can be either positive, zero or negative. 

Furthermore, failure may occur either in collapse or blowout, depending on different 

combinations of pressures, soil parameters, and geometries. Thus, to cover all possible 

situations of failure, the present study investigates the stability of circular tunnel by 

relating FoS to a broad range of stability numbers (N = -15 to 15) and depth ratios (C/D 

= 1 - 10). The dimensionless ratios used in the paper allow the results of this study to 

be used in practice.  

The method of shear strength reduction is widely known in finite element analyses and 

has been frequently used for slope stability analyses. Although this is so, it has rarely 

been used for tunnel stability analyses. As this method yields a factor of safety (FoS), 

it is believed that it may provide some practical benefit for designers. One such method 

involving factors of safety has been described by Bishop (1955) for slope stability.  

It is defined as /u cFoS S S , where Su is the available undrained shear strength of the 

soil and Sc is the critical strength necessary to maintain limiting equilibrium. The shear 

strength of the material is reduced until the limiting condition is found. If the material 

triggers the failure condition initially, then the undrained shear strength is increased 

until the limiting equilibrium or failure state is reached. 

 The rigorous upper bound and lower bound factors of safety for the cases being 

studied are computed by using the shear strength reduction method (Krabbenhoft and 

Lyamin (2015). The numerical procedures used are based on the limit theorems of 

classical plasticity. A full detailed description of the theory and development of this 
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method can be found in Sloan (2013). Details of the numerical FELA formulation can 

be found in Lyamin and Sloan (2002a, 2002b).  

Relying on one single numerical model or method is usually not convincing. Result 

verification is normally required in computational geomechanics research. For this 

purpose, the finite difference method (FDM), via the software FLAC with built-in 

implementation of the strength reduction technique, has been used over the same 

parametric range. FISH programming language was also developed to generate the 

mesh in the FLAC environment and solve the issue automatically. By using the FISH 

script, parametric studies can be conducted efficiently and effectively with a quick 

change of material input (Shiau & Sams 2019). 

5.3 Results and Discussion  

5.3.1  Discussing N, FoS, Nc, and t 

A wide range of stability numbers (N = -15 to +15) and depth ratios (C/D = 1 to 10) 

are investigated to cover all possible situations associated with a plane strain circular 

tunnel stability. Tables 5.1 - 5.3 present three complete sets of FoS results for (LB, UB, 

and FD), respectively. 
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Table 5.1. FoS results for various values of C/D and N (LB, Collapse and Blowout). 

 C/D (LB) 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.159 0.224 0.269 0.302 0.328 0.344 0.367 0.386 0.398 0.411 

-12.5 0.191 0.268 0.323 0.363 0.393 0.413 0.443 0.462 0.478 0.491 

-10 0.236 0.335 0.402 0.453 0.492 0.517 0.553 0.574 0.598 0.616 

-7.5 0.317 0.448 0.536 0.600 0.652 0.686 0.731 0.766 0.795 0.821 

-5 0.471 0.663 0.799 0.899 0.975 1.026 1.101 1.149 1.181 1.232 

-4 0.603 0.853 1.020 1.139 1.233 1.320 1.390 1.450 1.507 1.553 

-3 0.771 1.101 1.307 1.483 1.616 1.693 1.821 1.889 1.972 2.031 

-2.5 0.965 1.364 1.632 1.822 1.972 2.112 2.224 2.320 2.411 2.484 

-2 1.132 1.602 1.930 2.197 2.393 2.510 2.687 2.804 2.935 3.030 

-1.5 1.608 2.274 2.719 3.037 3.287 3.521 3.706 3.866 4.019 4.141 

-1 2.134 3.091 3.720 4.187 4.597 4.869 5.189 5.431 5.643 5.822 

-0.75 2.738 3.976 4.805 5.422 5.946 6.283 6.724 7.046 7.297 7.534 

-0.5 3.809 5.573 6.765 7.693 8.392 8.883 9.480 9.929 10.309 10.630 

-0.25 6.245 9.235 11.205 12.806 13.943 14.755 15.778 16.430 17.077 17.725 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 12.908 14.741 16.058 16.992 17.828 18.211 19.119 19.626 20.153 20.567 

0.5 6.059 7.651 8.637 9.369 9.895 10.259 10.843 1.824 11.588 11.897 

0.75 3.749 5.008 5.749 6.340 6.774 6.981 7.458 7.697 7.934 8.203 

1 2.734 3.691 4.278 4.714 5.065 5.284 5.637 5.866 6.013 6.229 

1.5 1.608 2.274 2.719 3.037 3.287 3.521 3.706 3.866 4.019 4.141 

2 1.283 1.783 2.094 2.322 2.514 2.635 2.811 2.936 3.042 3.112 

2.5 0.965 1.364 1.632 1.822 1.972 2.112 2.224 2.320 2.411 2.484 

3 0.839 1.167 1.373 1.539 1.673 1.754 1.858 1.946 2.020 2.083 

4 0.603 0.853 1.020 1.139 1.233 1.320 1.390 1.450 1.507 1.553 

5 0.494 0.688 0.823 0.919 0.994 1.045 1.118 1.163 1.209 1.247 

7.5 0.328 0.459 0.547 0.610 0.662 0.695 0.743 0.772 0.806 0.827 

10 0.244 0.342 0.405 0.458 0.497 0.518 0.555 0.578 0.600 0.620 

12.5 0.195 0.272 0.327 0.367 0.397 0.416 0.443 0.464 0.482 0.495 

15 0.162 0.229 0.272 0.304 0.330 0.344 0.371 0.388 0.402 0.412 
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Table 5.2. FoS results for various values of C/D and N (UB, Collapse and Blowout). 

 C/D (UB) 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.162 0.230 0.275 0.309 0.336 0.359 0.378 0.395 0.410 0.422 

-12.5 0.194 0.275 0.330 0.370 0.403 0.431 0.453 0.473 0.492 0.507 

-10 0.242 0.344 0.411 0.462 0.502 0.538 0.565 0.591 0.614 0.634 

-7.5 0.320 0.457 0.547 0.615 0.670 0.717 0.752 0.786 0.816 0.845 

-5 0.477 0.681 0.816 0.918 0.999 1.071 1.124 1.176 1.219 1.261 

-4 0.611 0.867 1.036 1.163 1.263 1.347 1.419 1.481 1.537 1.587 

-3 0.781 1.120 1.345 1.514 1.649 1.769 1.859 1.947 2.018 2.087 

-2.5 0.977 1.388 1.658 1.860 2.021 2.156 2.270 2.370 2.459 2.540 

-2 1.148 1.655 1.989 2.244 2.445 2.622 2.757 2.888 2.998 3.104 

-1.5 1.629 2.313 2.763 3.100 3.368 3.593 3.783 3.950 4.099 4.233 

-1 2.163 3.141 3.802 4.298 4.690 5.048 5.313 5.563 5.791 5.980 

-0.75 2.773 4.046 4.905 5.553 6.079 6.530 6.879 7.211 7.488 7.752 

-0.5 3.858 5.674 6.912 7.823 8.561 9.215 9.705 10.165 10.580 10.970 

-0.25 6.323 9.406 11.474 13.035 14.275 15.372 16.197 16.939 17.636 18.232 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 13.192 15.088 16.394 17.426 18.249 19.055 19.635 20.182 20.679 21.149 

0.5 6.193 7.827 8.840 9.604 10.200 10.739 11.159 11.553 11.910 12.204 

0.75 3.853 5.115 5.895 6.471 6.934 7.334 7.655 7.929 8.200 8.423 

1 2.774 3.765 4.388 4.856 5.207 5.531 5.772 5.997 6.203 6.383 

1.5 1.629 2.313 2.763 3.100 3.368 3.593 3.783 3.950 4.099 4.233 

2 1.302 1.814 2.145 2.390 2.589 2.753 2.886 3.008 3.112 3.215 

2.5 0.977 1.388 1.658 1.860 2.021 2.156 2.270 2.370 2.459 2.540 

3 0.851 1.192 1.415 1.580 1.712 1.829 1.917 1.997 2.071 2.136 

4 0.611 0.867 1.036 1.163 1.263 1.347 1.419 1.481 1.537 1.587 

5 0.502 0.707 0.844 0.942 1.022 1.092 1.145 1.195 1.239 1.279 

7.5 0.331 0.469 0.558 0.625 0.679 0.725 0.762 0.795 0.824 0.851 

10 0.248 0.350 0.418 0.468 0.509 0.543 0.570 0.595 0.617 0.639 

12.5 0.198 0.280 0.334 0.374 0.407 0.435 0.456 0.476 0.494 0.510 

15 0.164 0.233 0.278 0.312 0.339 0.362 0.380 0.397 0.411 0.425 
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Table 5.3. FoS results for various values of C/D and N (FD, Collapse and Blowout). 

 C/D (FD) 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.170 0.240 0.280 0.310 0.340 0.360 0.380 0.400 0.410 0.430 

-12.5 0.200 0.280 0.330 0.370 0.400 0.430 0.460 0.470 0.490 0.510 

-10 0.250 0.350 0.420 0.470 0.510 0.540 0.570 0.600 0.620 0.640 

-7.5 0.330 0.470 0.550 0.620 0.670 0.720 0.760 0.790 0.820 0.850 

-5 0.490 0.690 0.830 0.930 1.010 1.080 1.130 1.190 1.230 1.280 

-4 0.628 0.883 1.040 1.165 1.265 1.348 1.428 1.488 1.540 1.600 

-3 0.810 1.140 1.370 1.530 1.670 1.780 1.880 1.970 2.040 2.110 

-2.5 1.004 1.412 1.664 1.864 2.024 2.156 2.284 2.380 2.464 2.560 

-2 1.190 1.690 2.020 2.270 2.480 2.650 2.790 2.920 3.030 3.130 

-1.5 1.673 2.353 2.773 3.107 3.373 3.593 3.807 3.967 4.107 4.267 

-1 2.240 3.220 3.870 4.360 4.760 5.090 5.380 5.630 5.850 6.050 

-0.75 2.880 4.150 5.000 5.650 6.170 6.600 6.970 7.300 7.600 7.660 

-0.5 4.020 5.820 7.050 7.970 8.720 9.330 9.870 10.340 10.760 11.130 

-0.25 6.610 9.690 11.760 13.320 14.560 15.610 16.500 17.290 17.990 18.610 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 13.120 15.380 16.740 17.800 18.670 19.420 20.140 20.760 21.350 21.910 

0.5 6.330 7.970 8.990 9.750 10.370 10.890 11.350 11.750 12.100 12.430 

0.75 3.950 5.200 5.990 6.560 7.020 7.410 7.750 8.050 8.310 8.550 

1 2.850 3.830 4.450 4.910 5.270 5.580 5.830 6.060 6.290 6.480 

1.5 1.720 2.387 2.833 3.167 3.420 3.660 3.840 4.000 4.160 4.280 

2 1.340 1.850 2.170 2.410 2.610 2.770 2.920 3.040 3.150 3.240 

2.5 1.032 1.432 1.700 1.900 2.052 2.196 2.304 2.400 2.496 2.568 

3 0.880 1.210 1.430 1.600 1.720 1.830 1.930 2.010 2.090 2.160 

4 0.645 0.895 1.063 1.188 1.283 1.373 1.440 1.500 1.560 1.605 

5 0.520 0.720 0.850 0.950 1.030 1.100 1.150 1.200 1.240 1.280 

7.5 0.340 0.480 0.560 0.630 0.690 0.730 0.770 0.800 0.830 0.860 

10 0.260 0.360 0.420 0.470 0.510 0.540 0.580 0.600 0.620 0.640 

12.5 0.210 0.280 0.340 0.380 0.410 0.440 0.460 0.480 0.500 0.510 

15 0.170 0.240 0.280 0.310 0.340 0.360 0.380 0.400 0.420 0.430 
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Figure 5.3 shows the full range of the results (LB, UB and FD) relating to collapse and 

blowout of unlined circular tunnels with a depth ratio of three (C/D = 3). It is to be 

noted that the curves are hyperbolic. A pair of asymptote lines are displayed. The 

equation to describe this graph is .cN N FoS ´  Noting that a unique Nc value for a 

specific depth ratio can be obtained by using any combination of N and FoS. This 

unique Nc value is Broms and Bennermarks’ critical stability number. For the depth 

ratio C/D = 3, LB solutions give Nc = +4.08 on the collapse side and Nc = -4.08 on the 

blowout side. By drawing an FoS = 1 horizontal line, the two values can be read from 

the intersection points graphically. 

 

Figure 5.3. FoS vs. N for C/D = 3. 

Two ratios can be defined in Broms and Bennermarks’ stability number (N) equation: 

namely the overburden pressure ratio ( ) /s uOPR H S    and the supporting 

pressure ratio /t uSPR S  By adding these two pressure ratios together, it can 
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produce three various failure mechanisms (e.g. collapse, weightless scenario, or 

blowout).  

- N > 0 (OPR > SPR; soil movement in collapse direction) 

- N = 0 (OPR = SPR; weightless scenario) 

- N < 0 (OPR < SPR; soil movement in blowout direction) 

Broms and Bennermarks’ Nc Equation 5.1 can be re-arranged into a form that is more 

amenable to analysis, as shown in Equation 5.3. 

t s c uH N S     ´                                                                                                                      (5.3) 

By using Equation 5.3, a critical supporting pressure σt can be determined as long as 

Nc (where FoS = 1) is known. Note that Nc is a function of the depth ratio C/D 

regardless of the undrained shear strength of the soil.  

It is important to study the effect of C/D on the critical stability number Nc. Figure 5.4 

shows such a relationship between Nc and C/D. The data used to prepare this figure is 

shown in Table 5.4. 

 

Figure 5.4. Comparison of Nc results (FoS = 1) in collapse and blowout. 
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Table 5.4 Comparison of Nc results (FoS = 1) in collapse and blowout. 

C/D 
Collapse  Blowout 

LB UB FD  LB UB FD 

1 2.412 2.443 2.580  -2.412 -2.443 -2.510 

2 3.411 3.469 3.580  -3.411 -3.469 -3.530 

3 4.079 4.144 4.250  -4.079 -4.144 -4.160 

4 4.555 4.65 4.750  -4.555 -4.65 -4.660 

5 4.931 5.052 5.130  -4.931 -5.052 -5.060 

6 5.281 5.389 5.490  -5.281 -5.389 -5.390 

7 5.559 5.675 5.760  -5.559 -5.675 -5.710 

8 5.799 5.925 6.000  -5.799 -5.925 -5.950 

9 6.028 6.148 6.240  -6.028 -6.148 -6.160 

10 6.211 6.349 6.420  -6.211 -6.349 -6.400 

 

In Figure 5.4, the critical stability number (Nc) increases nonlinearly as C/D increases, 

and the gradient of the curve decreases for large values of Nc. The area bounded by the 

collapse and the blowout curves represents the safe zone where FoS > 1. Note that, the 

numerical upper and lower bounds are generally within about 2% of one another, with 

the true solution lying between the two bounds. In general, the finite difference results 

for the critical stability number Nc are slightly greater than the upper bound and lower 

bound results. Equation 5.4 is an accurate curve-fitting for the relationship between Nc 

(LB) and C/D with a correlation coefficient (R2) = 0.997. 

1.67 ln( / ) 2.30cN C D ´                                                                                             (5.4) 

Once the value of (Nc) is known, an appropriate factor of safety may be applied to it 

to deduce a safe working load range for tunnelling operations. Substituting Equation 

5.4 into Equation 5.3, a critical supporting pressure σt can be computed using Equation 

5.5 with known design parameters such as σs, γ, H, Su and C/D.  

(1.67 ln( / ) 2.30)t s uH C D S     ´  ´                                                                             (5.5)  

Noting that cN N FoS ´  (Figure 5.3), a factor of safety can always be computed 

using Equation 5.6.  

/cFoS N N                                                                                                                           (5.6) 
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Where N is the “designed” stability number, which consists of the following design 

parameters: σs, σt, γ, H, and Su. Equation 5.6 is further arranged into the form shown in 

Equation 5.7 by substituting Nc from Equation 5.4.  

1.67 ln( / ) 2.30C D
FoS

N

´ 
                                                                                                   (5.7) 

Equation 5.7 can be further expanded to Equation 5.8 for collapse analysis, given that: 

( ) /s t uN H S       

(1.67 ln( / ) 2.30) u

s t

C D S
FoS

H  

´  ´


 
                                                                                            (5.8) 

Equation 5.9 is used for blowout analysis by substituting the negative value of Nc. 

( 1.67 ln( / ) 2.30) u

s t

C D S
FoS

H  

 ´  ´


 
                                                                                        (5.9) 
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5.3.2 Comparison of results 

It is essential to compare and validate Nc results obtained by the present study with 

those in published literature.  Figure 5.5 shows a comparison between Nc results of this 

study and those for tunnel heading by Shiau and Al-Asadi (2018).  

 

Figure 5.5. Comparison of Nc between the present study and tunnel heading. 

It should be noted that the stability of a plane strain circular tunnel is more critical than 

that of a tunnel heading, and this is due to the difference in the geometry of the 

problems. Having said that, this is mostly due to the difference in the problem 

geometry. Strictly speaking, they should not be compared directly. 
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Figure 5.6 compares Nc results of this study with those of Davis et al. (1980), Sloan 

and Assadi (1992) and Wilson et al. (2011). The results of Davis et al. (1980) and 

Sloan and Assadi (1992) are based on analytical limit analysis and are for depth ratio 

equal to or less than 5 (C/D ≤ 5). 

 

Figure 5.6. Comparison of Nc between the present study and existing solutions. 

It was noted that the gap error between the bounds (LB and UB) is not small in their 

study. On the other hand, good agreement is observed between the FELA results of 

this study and those of Wilson et al. (2011) for UB results. However, there is a 

fluctuation in the LB results of Wilson et al. (2011) when the depth ratio is greater 

than 4. This could be attributed to the difficulty in mesh arrangement for deep cases. 
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Figure 5.7 compares the Nc results of this study with those of centrifuge experiments 

by Kimura and Mair (1981). The stability bounds predicted by this study are in good 

agreement with the experimental results. 

 

Figure 5.7. Comparison with experimental study (γD/Su = 2.6, Kimura & Mair 1981). 
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5.4 The Extent of Surface Failure 

Absolute displacement |𝑢| = √(𝑢𝑥
2 + 𝑢𝑦

2) plots can be used to give an indication of 

failure mechanism and the ground surface failure extent. Figures 5-8 to 5-10 (left-hand 

side) show |u| contour plots for C/D = 3, 6 and 9, respectively. 

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 5.8. Absolute displacement (|u|) contour and displacement vector (C/D = 3). 

For all C/D, the failure zone gets wider for increasing depth ratio. Floor heaving is 

most severe for deep cases but reduces for shallow cases. A similar observation is 

presented in the power dissipation charts by Wilson et al. (2011). 

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 5.9. Absolute displacement (|u|) contour and displacement vector (C/D = 6). 
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Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 5.10. Absolute displacement (|u|) contour and displacement vector (C/D = 9). 

It is to be noted that the actual displacement contour values of the plots are not 

important in limit analysis with perfect plasticity theorem (Sloan 2013; Shiau & Sams 

2019; Shiau & Al-Asadi 2020a, 2020b, 2020c). It can be observed that the cohesive 

soil mass moves toward the tunnel like a flow. No rigid block of particles movement 

can be recognised as in cohesionless soil, and that is the reason why the kinematic 

approaches are difficult to apply in cohesive soil (Mollon et al. 2011, 2013). Also, 

shown on the right-hand side of Figures 5.8 to 5.10 is the displacement vector plots. 

The shorter vectors along the slip surface indicate a smaller movement of soil due to 

soil friction; whereas; in the centre of mass above the tunnel, the motion is nearly 

vertical, having a greater displacement. All of the effected overburdening soil is being 

funnelled towards the opening of the cavity, as seen by the density of the vectors 

around the area. There are obvious differences in both shape and the number of 

absolute displacement contours as the tunnel cover-to-diameter ratio increases.  

Having these plots does increase the confidence level with regards to finding possible 

slip planes and ground surface failure extent. The extent of the surface failure and the 

corresponding depth ratio have been recorded in Table 5.5 and graphically presented 

in Figure 5.11, which shows a simple linear relationship between (E/D) and (C/D).  

Noting that the failure extent ratio (E/D) increases as the depth ratio (C/D) increases, 

the greater surface failure (compared to the tunnel diameter) could be the justification 

of a conical shape failure mechanism.  
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Table 5.5. Surface failure ratios. 

Depth Ratio Measured, half surface The ratio of failure extent to 

(C/D) failure extent, E/2 (m) tunnel diameter (E/D)  

1 2.3 4.6 

2 3.9 7.8 

3 5.4 10.8 

4 6.8 13.6 

5 8.2 16.4 

6 9.4 18.8 

7 10.7 21.4 

8 11.9 23.8 

9 13.0 26.0 

10 14.2 28.4 

 Tunnel diameter D = 1 (m) 

Given C/D = 1 and D = 1 metre, the cover depth (C) above the crown of the tunnel is 

1 metre, and the resulting extent of the surface failure (E) is 4.6 metres. When the 

depth ratio C/D is increased to 10, the extent of the surface failure (E) increases to 28.4 

metres. The extent of the surface failure has increased by a factor greater 6, as shown 

in Equation 5.10. 

/ 2.63 ( / ) 2.68E D C D ´                                                                                                      (5.10) 

There is a strong relationship between the surface failure ratio and the depth ratio in 

cohesive soil. Table 5.5 and Figure 5.11 are useful to practical engineers during the 

stage of tunnel construction. 
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Figure 5.11. Surface failure ratio (E/D) vs (C/D). 

5.5 Example and Practical Uses 

Since the lower bound theorem offers a safe assessment of the critical stability number, 

a design contour chart for factors of safety (FoS) is presented in Figure 5.12 based on 

LB results. For practical design purposes, this stability chart can be used by the 

engineer to relate the depth ratio (C/D), stability number (N), and a factor of safety 

(FoS). This is a convenient approach, as all relevant parameters can be observed 

clearly in one plot. 

5.5.1 Example:  

During the construction of a tunnel in clayey soil, the cylindrical tunnel shield is unable 

to resist the uniform radial pressure of the soil for a short period. A decision needs to 

be made as to whether the tunnel would be stable during this period.  
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Given C = 20 m, D = 4 m, σt = 300 kPa, σs = 30 kPa, Su = 28 kPa and γ = 18 kN/m3, 

determine whether this circular tunnel problem would result in collapse or blowout, 

and what is the FoS for the problem?  

1. Using Equation 5.1, the “designed” stability number N = 4.5. 

2. Since N greater than zero, the velocity field would be in collapse direction. 

3. For N > 0 (active movement), Equation 5.8 gives a FoS (LB) of 1.11. 

4. With C/D = 5 and N = 4.5, Figure 5.12 gives an approximate value of FoS (LB) = 

1.10. 

 

Figure 5.12. FoS (LB) design chart for circular tunnel stability. 
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5.6 Conclusion 

Broms and Bennermarks’ original stability number combines overburden pressures 

(surcharge and self-weight) with internal supporting pressures and is applicable to 

undrained clay. This original stability number has been successfully studied in this 

chapter for circular tunnel problems using the shear strength reduction method and the 

finite element limit analysis.  

Numerical results for factors of safety were obtained for a wide range of stability 

numbers for collapse and blowout scenarios. A unique critical stability number (Nc) 

was then obtained by multiplying the “designed” stability number and the 

corresponding FoS for each depth ratio (C/D). The extent of surface failure was also 

investigated in this study.   

The rigorous UB and LB results of FoS and Nc produced in this paper can be used with 

confidence in the design for tunnel stability. This undrained approach is to be 

continued in Chapter 6 for a full 3D tunnel heading analysis.  
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CHAPTER 6: UNDRAINED ANALYSIS OF 3D 

SINGLE CIRCULAR TUNNEL 

 

6.1 Introduction 

The assessment of the face stability of tunnels is an important criterion of the shield-

tunnelling in soft ground. Shield machines (earth, slurry and air) provide support 

pressure on the advancing tunnel face. If the applied pressure is insufficient, the tunnel 

heading will collapse (active failure). On the other hand, for shallow tunnels, if the 

pressure is excessively high, the soil mass in front of the heading will result in blow-

out (passive failure).  

In the previous chapters, the stability of plane strain underground openings and tunnels 

in undrained soil conditions are investigated by using two-dimensional programs, 

which are finite element limit analysis and finite difference method. 2D results for the 

stability are more conservative when compared to 3D; this is because the two-

dimensional cavity width is a cross-section of a cavity with unconstrained length when 

compared to the three-dimensional cavity opening which is constrained in size. 

This chapter investigates the stability of three-dimensional circular tunnel heading in 

undrained soil conditions. The heading is rigidly supported along its length, while the 

face is subjected to internal pressure, and free to move. Failure of the heading in 

collapse and blowout is studied by different combinations of internal pressure and 

overburden pressure at the axis of the tunnel.  

Finite element limit analysis and load multiplier method are utilised to compute the 

three-dimensional upper and lower bound critical supporting pressure values for a 

wide range of heading configurations and stability scenarios in collapse and blowout. 

The obtained results of the stability (Nc) and factor of safety (FoS) for various depths 

are presented in the form of dimensionless stability charts and verified by the existing 

solutions available in the literature. Some practical examples are provided to 

demonstrate the usefulness of the design charts and tables. These charts give a real 

approximation of stability and can be used by engineers in preliminary designs and 

construction for tunnels. 
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6.2 Problem Statement and Modelling Methodology 

Figure 6.1 shows the problem statement of a three-dimensional half-circular tunnel. 

The soil medium is considered as a perfectly plastic Mohr-Coulomb material with an 

angle of internal friction equal to zero. The tunnel has a diameter (D), cover depth (C) 

and axis depth (H) from the ground surface. σt is a normal uniform pressure on the face 

of the tunnel, and σs is a vertical surcharge pressure on the ground surface.  

 

Figure 6.1. Problem Statement. 

The tunnel is symmetrical around its vertical axis (z); therefore, the critical pressure 

calculations are based on the half of the domain of the tunnel, which is along the central 

axis (x). Using the FELA software (OptumCE 2018), rigorous upper and lower bounds 

of a 3D problem can be obtained efficiently using the finite element discretisation. 

Unlike many analytical methods, finite element limit analysis (FELA) does not need 

prior assumptions to be made in relation to the shape of the failure surface. This 

program was successfully used to study the stability problems of various ground 

structures under different loading conditions (Sloan (2013). 

A typical FELA mesh adopted in this paper is shown in Figure 6.2. Adaptive mesh 

generation and refinement were used in the simulations to enable accurate limit loads 
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to be obtained through the use of the bounds gap error estimator (Sloan 2013). For all 

analyses, 5000 to 10,000 discretisation elements and three iterations for adaptive 

meshing were used.  

 

Figure 6.2. Numerical model and adaptive mesh (C/D = 3). 

The large size of the model is essential as it ensures that the whole soil mass is 

simulated correctly, and the mechanism of failure does not intersect the boundaries of 

the model. The boundary conditions of the FELA mesh in Figure 6.2 are prepared such 

that the side surfaces are restrained in the x-direction, the back and the front surfaces 

(symmetrical plane) are restrained in the y-direction, and the ground surface is free to 

displace. The base is fixed in all directions. The rigid lining around the soil excavation 

is restrained in the normal direction to represent the smooth interface condition. For 

such a boundary condition, there is no transfer of shear force between the lining and 

the soil, and it is considered as a conservative assumption (Shiau et al. 2003; Shiau et 

al. 2008; Shiau et al. 2011). 

Using 3D FELA analysis, critical internal pressures (σt) are computed for a number of 

input parameters such as (C, D, σs, γ, H, and Su) in both blowout and collapse analyses. 
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The critical stability numbers (Nc) are then calculated using Equation 6.1. 

s t

u

H
N

S

   
                                                                                                        (6.1) 

This paper investigates the face stability of a 3D circular tunnel, allowing the results 

to be useful in design practise by making use of dimensionless ratios. The results 

obtained are compared and validated with the existing solutions available in the 

published literature as well as the two-dimensional (2D) FELA results by Shiau and 

Al-Asadi (2018). 

6.3 Results and Discussion 

6.3.1 Discussing Nc 

3D FELA is used to compute the upper and the lower bounds of the minimum support 

pressures (σt) at collapse and blowout for a series of depth ratios (C/D). The critical 

stability numbers (Nc), as shown in Table 6.1, are determined by substituting the 

obtained critical support pressure σt into Equation 6.1.  

Table 6.1. 3D Nc results (FoS = 1) in collapse and blowout (C/D = 1‐ 10). 

C/D 
Collapse   Blowout 

3D (LB)  3D (UB)   3D (LB)  3D (UB) 

1 7.339 7.634   -7.336 -7.641 

2 9.490 9.845   -9.474 -9.843 

3 10.842 11.276   -10.857 -11.286 

4 11.845 12.319   -11.846 -12.314 

5 12.589 13.163   -12.612 -13.150 

6 13.272 13.816   -13.273 -13.843 

7 13.795 14.411   -13.806 -14.410 

8 14.317 14.910   -14.294 -14.931 

9 14.734 15.370   -14.703 -15.361 

10 15.094 15.771   -15.142 -15.774 

 

The data in Table 6.1 are also graphically shown in Figure 6.3. As the depth ratio C/D 

increases, the value of critical stability number (Nc) also increases. Note that the 

gradient of the curve decreases significantly as C/D increases. Overall, the LB results 

for the critical stability number Nc are smaller than the UB results. The lower bound 
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approach is always conservative, and the “true’ solution is located between the LB and 

the UB limits. 

 

Figure 6.3. 3D Nc results (FoS = 1) in collapse and blowout (C/D = 1‐ 10). 

The relationship between lower bound Nc and C/D are mathematically presented in 

Equations 6.2 and 6.3, respectively for collapse and blowout, with a correlation 

coefficient (R2) of 0.999.  

3.40 ln( / ) 7.20cN C D ´                                                                                                  (6.2) 

3.40 ln( / ) 7.19cN C D  ´                                                                                          (6.3) 

Asymmetrical form is observed for both collapse and blowout failures. The factor of 

safety (FoS) in the range between the blowout and the collapse curves is greater than 

one, and the maximum value of FoS is in the middle of the graph (N = 0).  A designer 

is to ensure that the “designed” N value is located within the safe zone. 
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6.3.2 Discussing FoS  

Shiau and Al-Asadi (2018) investigated the stability of 2D tunnel heading in undrained 

condition and presented practical design charts showing the relationship between FoS 

and N for various C/D. The authors concluded that the relationship between FoS and 

N is in a hyperbolic form where FoS and N are the vertical and horizontal asymptote 

lines, respectively. 

The general Equation stated in Shiau and Al-Asadi (2018) is shown in Equation 6.4. 

/cFoS N N                                                                                                                   (6.4) 

For the present 3D collapse analysis, after substituting Equations 6.1 and 6.2 into 

Equation 6.4, with given parameters (σt, σs, C, D, γ, H and Su), the factor of safety 

(FoS) is calculated using Equation 6.5  

(3.40 ln( / ) 7.20) u

s t

C D S
FoS

H  

´  ´


 
                                                                          (6.5) 

For 3D blowout analysis, Equation 6.6 can be used to calculate FoS by substituting 

Equations 6.1 and 6.3 into Equation 6.4. 

( 3.40 ln( / ) 7.19) u

s t

C D S
FoS

H  

 ´  ´


 
                                                                           (6.6) 

Using Equations 6.5 and 6.6, a comprehensive 3D FoS (LB and UB) are presented in 

Tables 6.2 and 6.3 for the range of depth ratios (C/D = 1 to 10) and design stability 

numbers (N = -24 to 24).  
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Table 6.2. 3D FoS results (LB) for various values of N and C/D in collapse and 

blowout.   

N 
C/D 

1 2 3 4 5 6 7 8 9 10 

-24 0.306 0.395 0.452 0.494 0.526 0.553 0.575 0.596 0.613 0.631 

-20 0.367 0.474 0.543 0.592 0.631 0.664 0.690 0.715 0.735 0.757 

-16 0.459 0.592 0.679 0.740 0.788 0.830 0.863 0.893 0.919 0.946 

-14 0.524 0.677 0.776 0.846 0.901 0.948 0.986 1.021 1.050 1.082 

-13 0.564 0.729 0.835 0.911 0.970 1.021 1.062 1.100 1.131 1.165 

-12 0.611 0.790 0.905 0.987 1.051 1.106 1.151 1.191 1.225 1.262 

-11 0.667 0.861 0.987 1.077 1.147 1.207 1.255 1.299 1.337 1.377 

-10 0.734 0.947 1.086 1.185 1.261 1.327 1.381 1.429 1.470 1.514 

-9 0.815 1.053 1.206 1.316 1.401 1.475 1.534 1.588 1.634 1.682 

-8 0.917 1.184 1.357 1.481 1.577 1.659 1.726 1.787 1.838 1.893 

-7 1.048 1.353 1.551 1.692 1.802 1.896 1.972 2.042 2.100 2.163 

-5 1.467 1.895 2.171 2.369 2.522 2.655 2.761 2.859 2.941 3.028 

-4 1.834 2.369 2.714 2.962 3.153 3.318 3.452 3.574 3.676 3.786 

-2 3.668 4.737 5.429 5.923 6.306 6.637 6.903 7.147 7.352 7.571 

-1 7.336 9.474 10.857 11.846 12.612 13.273 13.806 14.294 14.703 15.142 

-0.5 14.672 18.948 21.714 23.692 25.224 26.546 27.612 28.588 29.406 30.284 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.5 14.678 18.980 21.684 23.690 25.178 26.544 27.590 28.634 29.468 30.188 

1 7.339 9.490 10.842 11.845 12.589 13.272 13.795 14.317 14.734 15.094 

2 3.670 4.745 5.421 5.923 6.295 6.636 6.898 7.159 7.367 7.547 

4 1.835 2.373 2.711 2.961 3.147 3.318 3.449 3.579 3.684 3.774 

5 1.468 1.898 2.168 2.369 2.518 2.654 2.759 2.863 2.947 3.019 

7 1.048 1.356 1.549 1.692 1.798 1.896 1.971 2.045 2.105 2.156 

8 0.917 1.186 1.355 1.481 1.574 1.659 1.724 1.790 1.842 1.887 

9 0.815 1.054 1.205 1.316 1.399 1.475 1.533 1.591 1.637 1.677 

10 0.734 0.949 1.084 1.185 1.259 1.327 1.380 1.432 1.473 1.509 

11 0.667 0.863 0.986 1.077 1.144 1.207 1.254 1.302 1.339 1.372 

12 0.612 0.791 0.904 0.987 1.049 1.106 1.150 1.193 1.228 1.258 

13 0.565 0.730 0.834 0.911 0.968 1.021 1.061 1.101 1.133 1.161 

14 0.524 0.678 0.774 0.846 0.899 0.948 0.985 1.023 1.052 1.078 

16 0.459 0.593 0.678 0.740 0.787 0.830 0.862 0.895 0.921 0.943 

20 0.367 0.475 0.542 0.592 0.629 0.664 0.690 0.716 0.737 0.755 

24 0.306 0.395 0.452 0.494 0.525 0.553 0.575 0.597 0.614 0.629 
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Table 6.3. 3D FoS results (UB) for various values of N and C/D in collapse and 

blowout. 

N 
C/D 

1 2 3 4 5 6 7 8 9 10 

-24 0.318 0.410 0.470 0.513 0.548 0.577 0.600 0.622 0.640 0.657 

-20 0.382 0.492 0.564 0.616 0.658 0.692 0.721 0.747 0.768 0.789 

-16 0.478 0.615 0.705 0.770 0.822 0.865 0.901 0.933 0.960 0.986 

-14 0.546 0.703 0.806 0.880 0.939 0.989 1.029 1.067 1.097 1.127 

-13 0.588 0.757 0.868 0.947 1.012 1.065 1.108 1.149 1.182 1.213 

-12 0.637 0.820 0.941 1.026 1.096 1.154 1.201 1.244 1.280 1.315 

-11 0.695 0.895 1.026 1.119 1.195 1.258 1.310 1.357 1.396 1.434 

-10 0.764 0.984 1.129 1.231 1.315 1.384 1.441 1.493 1.536 1.577 

-9 0.849 1.094 1.254 1.368 1.461 1.538 1.601 1.659 1.707 1.753 

-8 0.955 1.230 1.411 1.539 1.644 1.730 1.801 1.866 1.920 1.972 

-7 1.092 1.406 1.612 1.759 1.879 1.978 2.059 2.133 2.194 2.253 

-5 1.528 1.969 2.257 2.463 2.630 2.769 2.882 2.986 3.072 3.155 

-4 1.910 2.461 2.822 3.079 3.288 3.461 3.603 3.733 3.840 3.944 

-2 3.821 4.922 5.643 6.157 6.575 6.922 7.205 7.466 7.681 7.887 

-1 7.641 9.843 11.286 12.314 13.150 13.843 14.410 14.931 15.361 15.774 

-0.5 15.282 19.686 22.572 24.628 26.300 27.686 28.820 29.862 30.722 31.548 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.5 15.268 19.690 22.552 24.638 26.326 27.632 28.822 29.820 30.740 31.542 

1 7.634 9.845 11.276 12.319 13.163 13.816 14.411 14.910 15.370 15.771 

2 3.817 4.923 5.638 6.160 6.582 6.908 7.206 7.455 7.685 7.886 

4 1.909 2.461 2.819 3.080 3.291 3.454 3.603 3.728 3.843 3.943 

5 1.527 1.969 2.255 2.464 2.633 2.763 2.882 2.982 3.074 3.154 

7 1.091 1.406 1.611 1.760 1.880 1.974 2.059 2.130 2.196 2.253 

8 0.954 1.231 1.410 1.540 1.645 1.727 1.801 1.864 1.921 1.971 

9 0.848 1.094 1.253 1.369 1.463 1.535 1.601 1.657 1.708 1.752 

10 0.763 0.985 1.128 1.232 1.316 1.382 1.441 1.491 1.537 1.577 

11 0.694 0.895 1.025 1.120 1.197 1.256 1.310 1.355 1.397 1.434 

12 0.636 0.820 0.940 1.027 1.097 1.151 1.201 1.243 1.281 1.314 

13 0.587 0.757 0.867 0.948 1.013 1.063 1.109 1.147 1.182 1.213 

14 0.545 0.703 0.805 0.880 0.940 0.987 1.029 1.065 1.098 1.127 

16 0.477 0.615 0.705 0.770 0.823 0.864 0.901 0.932 0.961 0.986 

20 0.382 0.492 0.564 0.616 0.658 0.691 0.721 0.746 0.769 0.789 

24 0.318 0.410 0.470 0.513 0.548 0.576 0.600 0.621 0.640 0.657 
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The (LB) data in Tables 6.2 is used to prepare the design chart in Figure 6.4, where 

FoS can be determined effectively using C/D and N.  

 

Figure 6.4. 3D FoS (LB) design chart for circular heading stability. 

Figure 6.5 presents a typical plot of the FoS for various N values. This is for the depth 

ratio of C/D = 3. It is to be noted that when the overburden pressure ratio

(( ) / )s uH S   is less than the supporting pressure ratio ( / )t uS  the negative value 

of N indicates a blowout movement. Contrary to this, the positive value of N suggests 

that the soil moves in the collapsed condition. This occurs when the supporting 

pressure ratio ( / )t uS  is less than the overburden pressure ratio (( ) / )s uH S  . 

Noting that an impending collapse is approached where FoS = 1, the corresponding 

value of N is the so-called critical Nc. When the overburden pressure ratio 

(( ) / )s uH S   is the same as the supporting pressure ratio ( / )t uS  N is equal to 
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zero. For such a situation, the FoS is infinite owing to a 'weightless' scenario of the 

problem.  

 

Figure 6.5. 3D FoS vs N (C/D = 3). 

Figure 6.5 shows that a unique value can be calculated by multiplying any N value and 

the corresponding FoS. This unique value is the critical stability number (Nc), which 

corresponds to FoS of one. Graphically, by drawing the FoS = 1 horizontal line in 

Figure 6.5, the two intersection points give (Nc)3D value of 10.84 for the collapse and 

-10.86 for the blowout. Also, note the 2D values of (Nc)2D =  5.95 as reported in Shiau 

and Al-Asadi (2018).  
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6.3.3 Comparison of results 

Figure 6.6 and Table 6.4 show a comparison of Nc results from 3D analyses of the 

circular tunnel of this study with those 2D solutions in Shiau and Al-Asadi (2018).  

 

Figure 6.6. Comparison of 2D and 3D Nc results (FoS = 1) in collapse and blowout 

(C/D = 1‐ 10). 

Table 6.4. Comparison of 2D and 3D Nc results in collapse and blowout (C/D = 1‐ 10).  

C/D 
Collapse 

3D Circle (LB) 3D Circle (UB) 2D Heading (LB)* 2D Heading (UB)* 2D Heading (FD)* 

1 7.34 7.63 4.17 4.33 4.66 

2 9.49 9.85 5.25 5.50 5.81 

3 10.84 11.28 5.95 6.27 6.56 

4 11.85 12.32 6.49 6.84 7.10 

5 12.59 13.16 6.91 7.31 7.52 

6 13.27 13.82 7.24 7.68 7.90 

7 13.80 14.41 7.56 8.09 8.24 

8 14.32 14.91 7.82 8.31 8.47 

9 14.73 15.37 8.04 8.54 8.71 

10 15.09 15.77 8.22 8.75 8.98 
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C/D 
Blowout 

3D Circle (LB) 3D Circle (UB) 2D Heading (LB)* 2D Heading (UB)* 2D Heading (FD)* 

1 -7.34 -7.64 -4.16 -4.33 -4.66 

2 -9.47 -9.84 -5.24 -5.50 -5.84 

3 -10.86 -11.29 -5.94 -6.27 -6.56 

4 -11.85 -12.31 -6.50 -6.85 -7.10 

5 -12.61 -13.15 -6.91 -7.31 -7.52 

6 -13.27 -13.84 -7.26 -7.68 -7.90 

7 -13.81 -14.41 -7.55 -8.09 -8.24 

8 -14.29 -14.93 -7.76 -8.30 -8.47 

9 -14.70 -15.36 -8.01 -8.54 -8.73 

10 -15.14 -15.77 -8.19 -8.74 -9.00 

* Shiau and Al-Asadi (2018) 

As expected, the comparison appears considerable differences between 3D and 2D 

analyses. The 3D results are approximately 70% - 80% greater than 2D ones (Table 

6.5). It can be therefore concluded that the 2D analysis produces over-conservative 

results and is only suitable for the preliminary stages of design. 

Table 6.5. The percentage difference between 2D and 3D Nc results in collapse and 

blowout (C/D = 1 ‐ 10). 

C/D 
Diffs. % between the 3D and 2D (collapse) 

3D, LB  2D, LB  LB, Diffs. %   3D, UB  2D, UB  UB, Diffs. % 

1 7.34 4.17 76.21   7.63 4.33 76.14 

2 9.49 5.25 80.69   9.85 5.50 78.90 

3 10.84 5.95 82.31   11.28 6.27 79.81 

4 11.85 6.49 82.48   12.32 6.84 80.02 

5 12.59 6.91 82.29   13.16 7.31 80.19 

6 13.27 7.24 83.37   13.82 7.68 79.92 

7 13.80 7.56 82.59   14.41 8.09 78.07 

8 14.32 7.82 83.18   14.91 8.31 79.40 

9 14.73 8.04 83.24   15.37 8.54 80.00 

10 15.09 8.22 83.60   15.77 8.75 80.28 

 

C/D 
Diffs. % between the 3D and 2D (blowout) 

3D, LB  2D, LB  LB, Diffs. %   3D, UB  2D, UB  UB, Diffs. % 

1 -7.34 -4.16 76.18   -7.64 -4.33 76.34 

2 -9.47 -5.24 80.77   -9.84 -5.50 78.87 

3 -10.86 -5.94 82.69   -11.29 -6.27 79.97 

4 -11.85 -6.50 82.36   -12.31 -6.85 79.69 

5 -12.61 -6.91 82.41   -13.15 -7.31 80.01 

6 -13.27 -7.26 82.87   -13.84 -7.68 80.27 

7 -13.81 -7.55 82.81   -14.41 -8.09 78.12 

8 -14.29 -7.76 84.20   -14.93 -8.30 79.87 

9 -14.70 -8.01 83.47   -15.36 -8.54 79.89 

10 -15.14 -8.19 84.79   -15.77 -8.74 80.40 
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It is important to compare and validate Nc results of the current study with those in 

published literature. The influence of the unlined length of the heading (P) on tunnel 

stability is presented in Figure 6.7 and Table 6.6.  

 

Figure 6.7. Comparison of 3D Nc results between the present study and the centrifugal 

test of Kimura & Mair (1981) for C/D = 3. 

The present study shows a similar trend to those obtained experimentally by Kimura 

and Mair (1981). Note the dramatic decrease in stability (Nc) for P/D ratio from 0 to 

3, meaning that relatively small differences in the critical stability number can 

dramatically change the required minimum internal pressure (σt), (Kimura & Mair 

1981). 
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Table 6.6. Comparison of 3D Nc results between the present study and the centrifugal 

test of Kimura & Mair (1981) for C/D = 3. 

P/D 
Nc 

3D, (UB) 3D, (LB) Centrifugal Test, Kimura & Mair (1981)  

0 11.26 10.86 9.00 

0.5 8.95 8.69 7.75 

1 7.90 7.64 6.85 

2 6.62 6.44 5.60 

3 5.86 5.69 5.10 

4 5.40 5.27 --  

5 5.11 4.98 --  

6 4.92 4.81  -- 

7 4.79 4.67  -- 

8 4.70 4.57  -- 

9 4.62 4.49   --  

10 4.56 4.44  -- 

 

Figure 6.8 shows the failure mechanism of a circular tunnel face with a large unlined 

heading ratio (P/D = 10). A general roof collapse is expected for the unlined tunnel 

when P/D is large. 

 

Figure 6.8. Failure mechanism and adaptive mesh for C/D = 3 and P/D = 10. 
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Figure 6.9 compares Nc results of this study with the analytical upper bound approach 

by (Mollon et al. 2013; Zhang et al. 2018) and 3D numerical analysis of Ukritchon, 

Yingchaloenkitkhajorn, et al. (2017). 

 

Figure 6.9. Comparison of 3D Nc results. 

The analytical upper bound method requires a priori assumption in relation to the 

general form of the failure surface, which may yield less accurate estimates of the 

failure load (Sloan (2013). As seen in Figure 6.9, the analytical upper bound results 

are not conservative, and the difference between the FELA and analytical upper bound 

becomes greater as C/D increases. It is suggested that a transformation from general 

failure to local failure occurs as the value of C/D increases. The a priori assumptions 

of failure mechanisms in Mollon et al. (2013) and Zhang et al. (2018) need further 

improvement for large C/D. Figure 6.9 and Table 6.7 also shows that the 3D Plaxis 

results in Ukritchon, Yingchaloenkitkhajorn, et al. (2017) agree well with the current 

upper bound Nc results for collapse analysis. 
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Table 6.7. Comparison of 3D Nc results. 

 
Collapse   Blowout 

C/D 
Zhang et al. 

(2018) 
Ukritchon et al. 

(2017) 
Mollon et al. 

(2013) 
This study 
(G3, UB) 

This study 
(G3, LB) 

 This study 
(G3, LB) 

This study 
(G3, UB) 

Zhang et al. 
(2018) 

0.5 --  6.20 6.90 --  --    --  --  --  

1 9.61 7.87 8.91 7.63 7.34   -7.34 -7.64 -9.90 

1.5 11.14 9.02 10.39 8.74 8.41   -8.41 -8.74 -11.34 

2 12.68 9.94 11.63 9.85 9.49   -9.47 -9.84 -12.78 

2.5 13.75 10.72 12.67 10.56 10.17   -10.17 -10.56 -13.84 

3 14.83 11.40 13.53 11.28 10.84   -10.86 -11.29 -14.90 

4 16.60 12.54 -- 12.32 11.85   -11.85 -12.31 -16.53 

5 17.87 13.50 -- 13.16 12.59   -12.61 -13.15 -17.77 

6 --  --  --  13.82 13.27   -13.27 -13.84 --  

7 --  --  --  14.41 13.80   -13.81 -14.41 --  

8 --  --  --  14.91 14.32   -14.29 -14.93 --  

9 --  --  --  15.37 14.73   -14.70 -15.36 --  

10 --  --  --  15.77 15.09   -15.14 -15.77 --  

 

Ukritchon, Keawsawasvong, et al. (2017) applied 2D and 3D finite element studies to 

the undrained face stability of tunnels in Bangkok clays. The non-homogeneous profile 

was considered as a single clay layer. Using the average undrained cohesion and unit 

weight, four sections of the Mass Transit Railway Authority of Thailand (MRTA), 

namely 23-001, 26-001, CS-8 and 7C, were analysed. Their 3D results are presented 

in Tables 6.8 and 6.9, together with our 3D upper and lower bounds and the analytical 

3D upper bound of Mollon et al. (2013).  

Table 6.8. Input parameters for the face stability analyses of Bangkok MRTA (After 

Ukritchon, Keawsawasvong, et al., 2017). 

Section 
Average unit weight, 

γavg (kN/m3) 

Average undrained shear 

strength, Suavg (kPa) 

Tunnel diameter, 

D (m) 

Tunnel covered 

depth, C  (m) 

23-001 17.15 66.32 6.30 19.50 

26-001 17.36 41.87 6.30 14.70 

CS-8 17.37 40.50 6.30 14.35 

7C 17.96 62.25 6.30 18.00 
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Table 6.9. Comparison of 3D FoS results (After Ukritchon, Keawsawasvong, et al., 

2017).  

 
The factor of safety (FoS) 

Section 
Face pressure 

σt (kPa) 

3D, Present 

study (LB) 

3D, Present 

study (UB) 

3D, Ukritchon et al. 

(2017, FEA) 

3D, Mollon et al. 

(2013, K.A.) 

23-001 

40 2.101 2.188 2.036 2.206 

60 2.229 2.321 2.157 2.326 

80 2.373 2.471 2.292 2.460 

26-001 

130 2.346 2.441 2.539 2.201 

155 2.725 2.835 2.906 2.486 

180 3.249 3.381 3.389 2.856 

CS-8 

150 2.629 2.736 2.821 2.392 

175 3.139 3.266 3.301 2.751 

200 3.894 4.051 3.965 3.236 

7C 

50 2.032 2.115 2.599 2.102 

100 2.395 2.493 3.047 2.430 

150 2.916 3.036 3.655 2.880 

 

In general, the comparison shows that the results of Ukritchon, Keawsawasvong, et al. 

(2017) and Mollon et al. (2013) are in good agreement with our upper and lower 

bounds for the problems with small depth ratios C/D ≤ 3. For large depth ratios such 

as C/D > 3, a local failure mechanism may develop, as stated before, and it is necessary 

to carefully validate the results when the analytical upper bound method is used. 
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6.4 The Extent of Surface Failure 

Figures 6.10-6.12 show the |u| contour plots for C/D = 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. 

The absolute displacement (|𝑢| = √𝑢𝑥
2 + 𝑢𝑦

2) contour plot can be used to observe 

failure mechanism as well as the extent of the ground surface failure. As discussed 

before, the actual values of the colour in the plots are not real, and they are not shown 

for such a perfectly plastic model.  

 

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 6.10. Absolute displacement (|u|) contour plots for C/D = 0.5 and C/D = 1.0. 

 

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 6.11. Absolute displacement (|u|) contour plots for C/D = 1.5 and C/D = 2.0. 
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Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 6.12. Absolute displacement (|u|) contour plots for C/D = 2.5 and C/D = 3.0. 

 

Figure 6.13. Surface failure ratio (E/D) vs (C/D). 
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It is interesting to see a transformation of 3D failure mechanisms from a general 

surface failure to a local failure as the depth ratio (C/D) increases in these plots. 

Based on the visual inspection of the plots in Figures 6.10-6.12, Figure 6.13 shows the 

relationship between the surface failure extent ratio E/D and the corresponding depth 

ratio C/D. The data used in this figure is presented in Table 6.10. It is observed that 

the failure did not propagate through to the ground surface once the depth ratio is 

greater than 2.2. This finding is useful for the analytical upper bound, which requires 

a priori assumption in relation to the general form of the failure mechanism.  

Table 6.10. Surface failure ratios (E/D) vs (C/D). 

Depth Ratio The ratio of failure extent to 

(C/D*) tunnel diameter (E/D*)  

0.25 1.05 

0.5 1.22 

0.75 1.38 

1 1.55 

1.25 1.72 

1.5 1.76 

1.75 1.78 

2 1.77 

2.1 1.63 

2.2 0.85 

Tunnel Diameter D = 1m 

6.5 Examples and Practical Uses 

The key to the estimation of tunnel stability is through the use of a critical stability 

number Nc. The value of Nc depends on the depth ratio (C/D) of the problem and is 

irrelevant to the undrained shear strength of the soil. The usefulness of Nc is best 

described by some examples using the design contour chart of LB in Figure 6.4, which 

can be used to relate stability number (N), depth ratio (C/D), and factor of safety (FoS). 

Together with Equations 6.2 to 6.6, the design chart can also be used to estimate a safe 

working pressure to maintain the stability of the tunnel face. 
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6.5.1 To determine FoS 

Given C = 20m, D = 4m, σt = 300 kPa, σs = 30 kPa, Su = 28 kPa and γ = 18 kN/m3, 

determine whether the soil movement would be in the collapse or blowout direction? 

What is the FoS for the problem?  

1. ( / 2) 22H C D   m, ( ) / 4.5s t uN H S        

2. Since N > 0, the resulting soil movement is in the collapse direction. 

3. For collapse analysis, Equation 6.5 is used, giving FoS (LB) of 2.81. 

4. For C/D = 5 and N = 4.5, Figure 6.4 gives an approximate FoS (LB) of 2.80. 

5. Table 6.2 can also be used to determine FoS (LB) ≃ 2.83 directly. 

6.5.2 Analysis of a temporary unsupported tunnel heading 

A decision needs to be made as to whether the tunnel would be stable for a short period 

of time due to machine maintenance (no internal support pressure is available). Design 

parameters are given as: Su = 54 kPa, γ = 19 kN/m3, σs = 65 kPa, D = 5m, C = 20m, 

( / 2) 22.5H C D   m. 

1. Since there is no internal heading pressure, ( ) / 9.12s t uN H S       

2. Given C/D = 4, Table 6.1 gives Nc (LB) of 11.85. Therefore, FoS (LB) = Nc (LB)/ 

N = 11.85/9.12 = 1.30 

3. For collapse analysis, Equation 6.5 can be used, giving FoS (LB) of 1.306. 

4. Using Figure 6.4, for C/D = 4 and N = 9.12, an approximate FoS (LB) of 1.30 is 

obtained. It is interesting to note that, for the same problem, the 2D analysis gives 

FoS (LB) of 0.71. 

6.5.3 To determine face support 

A TBM is used to excavate a tunnel below a central business district.  It is necessary 

to estimate the safe operating range of the limiting face pressured (σt) in blowout and 

collapse. The given parameters are; σs = 216 kPa, Su = 72 kPa, γ = 18 kN/m3, C = 36m 

and D = 6m.  

1. Equations 6.5 and 6.6 can be rearranged to determine the range of internal pressure 

(σt) for a specific factor of safety in collapse and blowout, respectively. 

2. Given C/D = 6, Table 6.1 gives Nc (LB) = 13.272 for collapse and Nc (LB) = 13.273 

for blowout. 
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3. Using Equation 6.5 and the critical collapse (FoS = 1), σt (LB, Collapse) = -37.58 

kPa. The negative sign for the critical support pressure means that the tunnel is 

already stable (FoS > 1). Theoretically speaking, to reach a collapsed state a pulling 

pressure of 37.58 kPa is required (or increasing the surface pressure σs by 37.58 

kPa). 

4. Using Equation 7.6 and the critical blowout (FoS = 1), σt (LB, Blowout) = 1873.66 

kPa.  

5. Therefore, the safe operating range of the face support pressures is: -37.58 kPa 

(collapse limit) ≤ σt ≤ 1873.66 kPa (blowout limit). 

What is the operating range for a factor of safety equal to 2.5? 

6. Using Equation 6.5 with FoS = 2.5, σt = 535.76 kPa for collapse side. 

7. Using Equation 6.6 with FoS = 2.5, σt = 1300.26 kPa for blowout side. Therefore, 

the safe operating range (FoS = 2.5): 535.76 kPa (collapse limit) ≤ σt ≤ 1300.26 

kPa (blowout limit). 

6.6 Conclusions 

Three-dimensional circular tunnel face stability in cohesive soil was analysed using 

finite element formulation of the limit theorems. The upper and lower bound results of 

the critical stability number Nc of the circular tunnel were presented and consideration 

given to the effect of the unlined length ratio of the tunnel heading (P/D) on the 

stability of the tunnel.   

A comparison of the 3D FELA solutions with those published from experimental and 

kinematic analysis approaches showed a good agreement among the results. In general, 

the 3D results are approximately 70% - 80% greater than the 2D ones. It is suggested 

that a 3D transformation from general failure to local failure occurs as the depth ratio 

increases. The finding is useful for the analytical upper bound, which requires a priori 

assumption in relation to the general form of the failure surface. 

After the stability studies of 2D and 3D single tunnels in Chapters 4, 5 and 6, the 

stability of 2D and 3D twin tunnels are investigated in the next two chapters (i.e. 

Chapters 7 and 8) using Broms and Bennermarks’ original stability number approach. 
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CHAPTER 7: UNDRAINED ANALYSIS OF 2D 

TWIN CIRCULAR TUNNELS 

 

7.1 Introduction 

The development of contemporary society and the increase of population introduce the 

need for more new tunnels, which often have to be constructed in congested urban 

areas underground. These tunnels are often constructed in parallel. The construction 

of twin tunnels does present some challenges for geotechnical engineers. 

The 2D undrained clay twin circular tunnel models are used to determine many 

stability problems aligned with the construction of tunnels. This chapter will address 

the twin stability problem using finite element limit analysis, by rigorously commuting 

the upper and lower (FoS) bounds, and subsequently developing a factor of safety 

approach in developing design stability charts. Furthermore, a correlation between the 

individual and twin stability failure will be established. Correctly analysing the 

stability of underground infrastructures, such as twin circular tunnels, is crucial to 

prevent the collapse of such a complex assembly. 

7.2 Problem Definition and Modelling Technique 

Figure 7.1 shows the problem definition of an idealized 2D twin circular tunnels.  

Broms and Bennermark’s original stability number (N) is defined as: 

s t

u

H
N

S

   
                                                                                                        (7.1) 

Where H is the depth of the tunnel axis that is equal to ( / 2),C D  C is the tunnel 

cover, D is the tunnel height, and S is the tunnel centre-to-centre distance. Su and γ 

represent the undrained soil cohesion and the unit weight of the soil, respectively.  
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Figure 7.1. Problem Definition. 

The tunnel is subjected to a normal internal pressure σt, while the ground surface is 

subjected to a vertical surcharge σs. These pressures, together with soil self-weight 

(γH) are varied to test the collapse and blowout stability of the models for various 

values of spacing ratio (S/D) and depth ratios (C/D). 

Numerical results based on the shear strength reduction method (SSRM) are 

represented by a factor of safety (FoS) that is a function of the depth ratio (C/D), the 

spacing ratio (S/D) and the “designed” stability number (N), as shown in Equation 7.2. 

, , s t

u

HC S
FoS f N

D D S

    
  

 
                                                                                (7.2) 

In practice, a “designed” stability number N (i.e. a combination of the parameters σs, 

σt, γ, H and Su) can be either positive, zero or negative. It is not known whether the 

“designed” stability number corresponds to a tunnel failure or not. Therefore, it is 

necessary to compare the “designed” N value with the critical stability number Nc and 

calculate the corresponding factor of safety. To cover all possible scenarios of failure, 

the present study investigates the stability of twin tunnels by relating FoS to a broad 

range of stability numbers (N = -15 to 15), depth ratios (C/D = 2 to 10) and spacing 

ratios (S/D = 2 to 30).  

The rigorous upper bound and lower bound factors of safety for the cases being studied 

are based on the limit theorems of classical plasticity (Krabbenhoft and Lyamin 

(2015). A full detailed description of the theory and development of this method can 
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be found in Sloan (2013). Details of the numerical FELA formulation can be found in 

Lyamin and Sloan (2002a, 2002b).  

The FELA adaptive meshes used in this study are shown for S/D = 4, 7, and 10, 

respectively, in Figures 7.2 to 7.4. The boundary conditions are as follows: the ground 

surface is free to displace, the sides have roller boundaries, and the base is fixed. The 

boundary conditions are as follows: the ground surface is free to displace, the sides 

have roller boundaries, and the base is fixed. 

 

Figure 7.2. Typical adaptive mesh used for the problem (for C/D = 3 and S/D = 4). 

 

Figure 7.3. Typical adaptive mesh used for the problem (for C/D = 3 and S/D = 7).   
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Figure 7.4. Typical adaptive mesh used for the problem (for C/D = 3 and S/D = 10). 

An automatically adaptive mesh refinement was employed in both the UB and LB 

simulations to enable accurate limit loads to be obtained through the use of the bounds 

gap error estimator. Three iterations of adaptive meshing with the number of elements 

increasing from 1000 to 2000 were used for all analyses. The large size of the model 

is essential as it ensures that the entire soil mass is modelled accurately, and the failure 

mechanism does not intersect the boundaries of the model. 

It is imprudent to rely on one single numerical model or method. Result verification is 

normally required. For this purpose, the finite difference (FDM) method, via the 

software FLAC with a built-in implementation of the strength reduction technique, was 

used over the same parametric range. FISH programming language was also developed 

to generate the mesh in the FLAC environment and solve the problems automatically 

(Shiau & Sams 2019). 

7.3 Results and Discussion 

Figures 7.5-7.7 show the full range of the results (LB, UB, and FD) relating to the 

collapse and blowout of twin tunnel models for a depth ratio of three (C/D = 3) and 

various spacing ratios (S/D = 4, 7 and 10). It can be seen that the curves are hyperbolic, 

and a pair of asymptote lines exist. The general equation for this graph was found to 

be . ´cN N FoS  Any combination of N and FoS on this curve yields a unique Nc 

value, which is constant for a specific depth ratio. This Nc value is Brooms and 

Bennermarks’ original critical stability number. For the depth ratio C/D = 3 and 

spacing ratios S/D = 4, 7 and 10, LB solutions give Nc = 3.27, 3.87 and 4.04 on the 

collapse side and Nc = -3.24, -3.85 and -4.01 on the blowout side.  
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Figure 7.5. FoS vs. N for C/D = 3 and S/D = 4. 

Graphically, these values can be read from the intersection points by drawing FoS = 1 

horizontal lines. The data used to prepare these figures are shown in Tables 7.1-7.3. 

Brooms and Bennermarks’ stability number (N) consists of two parts: overburden 

pressure ratio ( ( ) / )s uOPR H S    and supporting pressure ratio ( / )t uSPR S  

The combination of these ratios would result in three situations: namely collapse (OPR 

> SPR), weightless (OPR = SPR), and blowout (OPR < SPR). Broms and 

Bennermarks’ Nc Equation 7.1 can be re-arranged into a form that is more amenable 

to analysis, as shown in Equation 7.3.  

t s c uH N S     ´                                                                                                                    (7.3)  

Using Equation 7.3, the critical supporting pressure σt can be determined as long as the 

critical stability number Nc (where FoS = 1) is known.  
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Figure 7.6. FoS vs. N for C/D = 3 and S/D = 7. 

 

Figure 7.7. FoS vs. N for C/D = 3 and S/D = 10. 
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Table 7.1. LB FoS results vs N and C/D (Collapse and Blowout, C/D = 3). 

 S/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.200 0.220 0.240 0.270 0.270 0.270 0.270 0.270 0.270 0.270 

-12.5 0.240 0.260 0.290 0.320 0.320 0.320 0.320 0.320 0.320 0.320 

-10 0.300 0.320 0.360 0.400 0.400 0.400 0.400 0.400 0.400 0.400 

-7.5 0.400 0.430 0.490 0.530 0.530 0.530 0.530 0.530 0.530 0.530 

-5 0.600 0.640 0.730 0.790 0.790 0.780 0.790 0.790 0.790 0.790 

-4 0.711 0.811 0.913 0.996 0.995 0.994 0.994 0.992 0.995 0.994 

-3 0.990 1.060 1.200 1.300 1.310 1.300 1.300 1.300 1.300 1.300 

-2.5 1.138 1.297 1.462 1.593 1.592 1.591 1.591 1.587 1.593 1.591 

-2 1.460 1.570 1.780 1.930 1.930 1.940 1.920 1.930 1.930 1.920 

-1.5 1.897 2.162 2.436 2.655 2.653 2.652 2.652 2.645 2.654 2.652 

-1 2.810 3.040 3.470 3.680 3.670 3.680 3.690 3.680 3.680 3.680 

-0.75 3.650 3.950 4.510 4.750 4.770 4.760 4.760 4.760 4.760 4.770 

-0.5 5.170 5.630 6.420 6.710 6.720 6.700 6.700 6.700 6.700 6.700 

-0.25 8.740 9.520 10.890 11.120 11.120 11.130 11.140 11.170 11.140 11.180 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 13.260 13.360 13.870 14.930 15.790 15.800 15.800 15.810 15.800 15.830 

0.5 6.680 6.900 7.480 8.120 8.560 8.520 8.550 8.560 8.530 8.500 

0.75 4.360 4.570 5.030 5.490 5.670 5.690 8.550 5.690 5.680 5.690 

1 3.240 3.410 3.780 4.120 4.230 4.230 4.220 4.230 4.220 4.230 

1.5 1.918 2.182 2.448 2.687 2.690 2.685 2.686 2.688 2.694 2.692 

2 1.620 1.670 1.860 2.030 2.070 2.070 2.070 2.070 2.070 2.060 

2.5 1.151 1.309 1.469 1.612 1.614 1.611 1.612 1.613 1.617 1.615 

3 1.030 1.110 1.240 1.360 1.370 1.360 1.360 1.370 1.370 1.370 

4 0.719 0.818 0.918 1.008 1.009 1.007 1.007 1.008 1.010 1.009 

5 0.620 0.660 0.740 0.810 0.810 0.810 0.810 0.810 0.810 0.810 

7.5 0.410 0.440 0.490 0.540 0.540 0.540 0.540 0.540 0.540 0.540 

10 0.310 0.330 0.370 0.400 0.400 0.410 0.400 0.400 0.400 0.400 

12.5 0.240 0.260 0.290 0.320 0.320 0.320 0.320 0.320 0.320 0.320 

15 0.200 0.220 0.240 0.270 0.270 0.270 0.270 0.270 0.270 0.270 
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Table 7.2. UB FoS results vs N and C/D (Collapse and Blowout, C/D = 3). 

 S/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.200 0.220 0.250 0.280 0.280 0.280 0.280 0.280 0.280 0.280 

-12.5 0.230 0.270 0.300 0.330 0.330 0.330 0.330 0.330 0.330 0.330 

-10 0.290 0.330 0.380 0.410 0.410 0.410 0.410 0.410 0.410 0.410 

-7.5 0.390 0.440 0.500 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

-5 0.580 0.660 0.750 0.820 0.820 0.820 0.820 0.820 0.820 0.820 

-4 0.730 0.835 0.945 1.032 1.034 1.032 1.032 1.032 1.034 1.032 

-3 0.950 1.100 1.250 1.350 1.350 1.350 1.350 1.350 1.350 1.350 

-2.5 1.168 1.335 1.513 1.651 1.654 1.651 1.651 1.651 1.654 1.651 

-2 1.410 1.620 1.850 1.990 1.990 2.000 2.000 2.000 2.000 1.990 

-1.5 1.947 2.225 2.521 2.752 2.756 2.752 2.752 2.752 2.756 2.752 

-1 2.690 3.140 3.590 3.810 3.810 3.810 3.810 3.810 3.810 3.810 

-0.75 3.470 4.070 4.660 4.920 4.930 4.930 4.930 4.930 4.920 4.930 

-0.5 4.900 5.780 6.640 6.930 6.930 6.930 6.930 6.930 6.930 6.930 

-0.25 8.250 9.810 11.310 11.510 11.540 11.510 11.530 11.540 11.540 11.540 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 14.120 13.760 14.460 15.500 16.470 16.440 16.440 16.460 16.440 16.460 

0.5 6.860 7.140 7.780 8.450 8.890 8.860 8.860 8.870 8.870 8.860 

0.75 4.400 4.730 5.220 5.700 5.910 5.920 5.920 5.920 5.920 5.920 

1 3.220 3.510 3.900 4.280 4.400 4.400 4.400 4.400 4.400 4.400 

1.5 1.985 2.252 2.543 2.795 2.795 2.794 2.794 2.794 2.795 2.794 

2 1.540 1.720 1.930 2.120 2.150 2.150 2.150 2.160 2.150 2.150 

2.5 1.191 1.351 1.526 1.677 1.677 1.676 1.676 1.676 1.677 1.676 

3 1.010 1.140 1.280 1.410 1.420 1.420 1.420 1.420 1.420 1.420 

4 0.744 0.845 0.954 1.048 1.048 1.048 1.048 1.048 1.048 1.048 

5 0.600 0.680 0.770 0.850 0.840 0.850 0.850 0.850 0.850 0.850 

7.5 0.400 0.450 0.510 0.560 0.560 0.560 0.560 0.560 0.560 0.560 

10 0.300 0.340 0.380 0.420 0.420 0.420 0.420 0.420 0.420 0.420 

12.5 0.240 0.270 0.310 0.340 0.340 0.340 0.340 0.340 0.340 0.340 

15 0.200 0.230 0.250 0.280 0.280 0.280 0.280 0.280 0.280 0.280 
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Table 7.3. FD FoS results vs N and C/D (Collapse and Blowout, C/D = 3). 

 S/D 

N 1 2 3 4 5 6 7 8 9 10 

-15 0.200 0.230 0.260 0.280 0.280 0.280 0.280 0.280 0.280 0.280 

-12.5 0.240 0.270 0.310 0.330 0.330 0.330 0.330 0.330 0.330 0.330 

-10 0.300 0.340 0.380 0.420 0.420 0.420 0.420 0.420 0.420 0.420 

-7.5 0.400 0.450 0.510 0.550 0.550 0.550 0.550 0.550 0.550 0.550 

-5 0.600 0.670 0.760 0.830 0.830 0.830 0.830 0.830 0.830 0.830 

-4 0.750 0.850 0.963 1.041 1.041 1.041 1.041 1.041 1.041 1.041 

-3 0.980 1.120 1.260 1.370 1.370 1.370 1.370 1.370 1.370 1.370 

-2.5 1.200 1.360 1.540 1.665 1.665 1.665 1.665 1.665 1.665 1.665 

-2 1.450 1.650 1.880 2.020 2.020 2.020 2.020 2.020 2.020 2.020 

-1.5 2.000 2.267 2.567 2.775 2.775 2.775 2.775 2.775 2.775 2.775 

-1 2.770 3.200 3.640 3.870 3.870 3.870 3.870 3.870 3.870 3.870 

-0.75 3.580 4.160 4.730 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

-0.5 5.060 5.920 6.740 7.050 7.050 7.050 7.050 7.050 7.050 7.050 

-0.25 8.520 10.090 11.490 11.760 11.760 11.760 11.760 11.760 11.760 11.760 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.25 14.53 14.14 14.68 15.45 16.21 16.71 16.71 16.70 16.70 16.71 

0.5 7.060 7.320 7.890 8.460 8.960 8.970 8.980 8.980 8.980 8.980 

0.75 4.520 4.830 5.290 5.690 5.980 5.980 5.980 5.980 5.990 5.980 

1 3.300 3.580 3.960 4.280 4.450 4.450 4.450 4.450 4.450 4.450 

1.5 2.029 2.300 2.567 2.808 2.808 2.808 2.808 2.808 2.808 2.808 

2 1.580 1.750 1.960 2.140 2.170 2.170 2.170 2.170 2.170 2.170 

2.5 1.218 1.380 1.540 1.685 1.685 1.685 1.685 1.685 1.685 1.685 

3 1.040 1.160 1.300 1.420 1.430 1.430 1.430 1.430 1.430 1.430 

4 0.761 0.863 0.963 1.053 1.053 1.053 1.053 1.053 1.053 1.053 

5 0.620 0.690 0.780 0.850 0.850 0.850 0.850 0.850 0.850 0.850 

7.5 0.410 0.460 0.510 0.560 0.560 0.560 0.560 0.560 0.560 0.560 

10 0.310 0.340 0.380 0.420 0.420 0.420 0.420 0.420 0.420 0.420 

12.5 0.240 0.280 0.310 0.340 0.340 0.340 0.340 0.340 0.340 0.340 

15 0.200 0.230 0.260 0.280 0.280 0.280 0.280 0.280 0.280 0.280 
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Figures 7.8 and 7.9 show LB and UB results of Nc versus S/D for a range of depth ratios 

(C/D = 2 - 10), respectively. The data used to prepare these figures are shown in Tables 

7.4-7.5. Note that the critical stability number (Nc) increases nonlinearly as S/D 

increases. The gradient of the curves decreases as values of S/D increase and approach 

to zero when there is no interaction between the tunnels (each tunnel behaves as a 

single isolated tunnel).  

 

Figure 7.8. Nc results (LB) vs. S/D for C/D = 2 - 10 in collapse and blowout. 
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Figure 7.9. Nc results (UB) vs. S/D for C/D = 2 - 10 in collapse and blowout. 
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Table 7.4. Nc results for various C/D and S/D (LB, Collapse, and Blowout). 

 
Nc, LB (Collapse)   Nc, LB (Blowout) 

S/D 
C/D   C/D 

2 3 4 5 6   2 3 4 5 6 

2 2.381 2.877 3.361 3.769 4.133   -2.336 -2.846 -3.305 -3.714 -4.069 

3 2.67 3.061 3.424 3.759 4.059   -2.641 -3.016 -3.37 -3.712 -4.025 

4 2.954 3.273 3.558 3.841 4.088   -2.928 -3.243 -3.516 -3.794 -4.054 

5 3.228 3.481 3.724 3.961 4.189   -3.195 -3.454 -3.701 -3.934 -4.149 

6 3.396 3.671 3.931 4.089 4.293   -3.338 -3.654 -3.86 -4.059 -4.259 

7 3.401 3.87 4.055 4.226 4.394   -3.342 -3.847 -4.03 -4.198 -4.357 

8 3.393 4.03 4.206 4.367 4.527   -3.341 -3.983 -4.181 -4.338 -4.482 

9 3.387 4.039 4.359 4.499 4.628   -3.338 -3.983 -4.333 -4.47 -4.606 

10 3.399 4.036 4.489 4.618 4.746   -3.338 -3.98 -4.451 -4.599 -4.714 

11 3.394 4.037 4.504 4.729 4.853   -3.338 -3.976 -4.455 -4.706 -4.825 

12 3.389 4.037 4.519 4.839 4.959   -3.337 -3.972 -4.46 -4.813 -4.936 

13 3.39 4.033 4.510 4.863 5.048   -3.335 -3.973 -4.458 -4.826 -5.025 

14 3.391 4.029 4.501 4.886 5.136   -3.333 -3.973 -4.456 -4.839 -5.114 

15 3.389 4.028 4.508 4.887 5.182   -3.335 -3.976 -4.454 -4.844 -5.145 

16 3.388 4.027 4.516 4.888 5.228   -3.338 -3.978 -4.452 -4.849 -5.177 

17 3.39 4.028 4.511 4.895 5.213   -3.338 -3.978 -4.456 -4.848 -5.169 

18 3.393 4.029 4.507 4.903 5.198   -3.339 -3.978 -4.46 -4.848 -5.161 

19 3.393 4.03 4.509 4.897 5.206   -3.339 -3.973 -4.46 -4.849 -5.159 

20 3.393 4.031 4.512 4.891 5.214   -3.339 -3.967 -4.459 -4.85 -5.157 

21 3.393 4.033 4.514 4.889 5.214   -3.339 -3.97 -4.462 -4.85 -5.158 

22 3.393 4.035 4.516 4.887 5.214   -3.339 -3.973 -4.465 -4.851 -5.159 

23 3.393 4.037 4.518 4.885 5.214   -3.339 -3.976 -4.468 -4.851 -5.161 

24 3.393 4.039 4.52 4.883 5.213   -3.339 -3.978 -4.471 -4.851 -5.162 

25 3.393 4.041 4.519 4.881 5.213   -3.339 -3.981 -4.452 -4.851 -5.163 

27 3.393 4.04 4.515 4.886 5.217   -3.339 -3.98 -4.46 -4.846 -5.161 

30 3.393 4.038 4.512 4.893 5.22   -3.339 -3.978 -4.468 -4.837 -5.158 
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Table 7.4. Cont’d. 

 
Nc, LB (Collapse)   Nc, LB (Blowout) 

S/D 
C/D   C/D 

7 8 9 10   7 8 9 10 

2 4.429 4.704 4.954 5.143   -4.378 -4.623 -4.889 -5.099 

3 4.348 4.599 4.852 5.049   -4.301 -4.561 -4.794 -4.995 

4 4.349 4.571 4.787 4.993   -4.31 -4.527 -4.738 -4.955 

5 4.389 4.599 4.794 4.974   -4.351 -4.555 -4.745 -4.921 

6 4.485 4.647 4.824 4.991   -4.443 -4.61 -4.789 -4.953 

7 4.576 4.728 4.867 5.029   -4.539 -4.689 -4.848 -4.992 

8 4.679 4.81 4.947 5.097   -4.646 -4.773 -4.919 -5.051 

9 4.762 4.904 5.029 5.139   -4.744 -4.874 -5.001 -5.121 

10 4.864 4.993 5.115 5.213   -4.846 -4.958 -5.089 -5.196 

11 4.956 5.072 5.186 5.286   -4.934 -5.049 -5.158 -5.262 

12 5.048 5.15 5.257 5.359   -5.023 -5.14 -5.228 -5.328 

13 5.144 5.236 5.332 5.429   -5.113 -5.221 -5.306 -5.406 

14 5.241 5.323 5.406 5.499   -5.204 -5.302 -5.383 -5.484 

15 5.321 5.409 5.481 5.569   -5.288 -5.383 -5.461 -5.561 

16 5.401 5.469 5.549 5.632   -5.371 -5.439 -5.53 -5.622 

17 5.466 5.529 5.617 5.694   -5.418 -5.496 -5.599 -5.682 

18 5.483 5.588 5.685 5.757   -5.453 -5.553 -5.668 -5.743 

19 5.48 5.648 5.753 5.819   -5.439 -5.61 -5.738 -5.803 

20 5.477 5.708 5.821 5.882   -5.426 -5.667 -5.807 -5.864 

21 5.475 5.709 5.837 5.928   -5.43 -5.669 -5.824 -5.908 

22 5.473 5.71 5.853 5.974   -5.434 -5.67 -5.842 -5.953 

23 5.471 5.711 5.87 6.021   -5.438 -5.672 -5.859 -5.997 

24 5.468 5.712 5.886 6.067   -5.442 -5.673 -5.876 -6.041 

25 5.466 5.713 5.902 6.113   -5.446 -5.675 -5.894 -6.086 

27 5.472 5.716 5.909 6.107   -5.44 -5.673 -5.894 -6.096 

30 5.481 5.719 5.921 6.099   -5.438 -5.669 -5.894 -6.061 
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Table 7.5. Nc results for various C/D and S/D (UB, Collapse, and Blowout). 

 
Nc, UB (Collapse)   Nc, UB (Blowout) 

S/D 
C/D   C/D 

2 3 4 5 6   2 3 4 5 6 

2 2.433 2.978 3.456 3.828 4.259  -2.392 -2.920 -3.397 -3.820 -4.198 

3 2.740 3.152 3.528 3.879 4.200  -2.709 -3.110 -3.484 -3.831 -4.151 

4 3.051 3.378 3.683 3.978 4.251  -3.017 -3.338 -3.641 -3.931 -4.203 

5 3.331 3.604 3.859 4.103 4.341  -3.304 -3.568 -3.826 -4.070 -4.307 

6 3.508 3.814 4.038 4.249 4.462  -3.449 -3.782 -4.004 -4.221 -4.416 

7 3.511 4.014 4.210 4.394 4.583  -3.446 -3.985 -4.178 -4.359 -4.538 

8 3.508 4.193 4.367 4.538 4.702  -3.446 -4.128 -4.341 -4.509 -4.676 

9 3.508 4.191 4.521 4.671 4.816  -3.449 -4.128 -4.492 -4.638 -4.790 

10 3.511 4.193 4.668 4.803 4.946  -3.448 -4.134 -4.642 -4.773 -4.908 

11 3.509 4.192 4.685 4.926 5.056  -3.449 -4.131 -4.642 -4.900 -5.026 

12 3.508 4.191 4.702 5.049 5.165  -3.450 -4.128 -4.642 -5.028 -5.143 

13 3.508 4.191 4.701 5.103 5.273  -3.451 -4.128 -4.642 -5.047 -5.250 

14 3.508 4.191 4.700 5.103 5.382  -3.452 -4.128 -4.642 -5.050 -5.358 

15 3.509 4.191 4.701 5.103 5.413  -3.453 -4.128 -4.642 -5.051 -5.378 

16 3.511 4.191 4.701 5.104 5.445  -3.453 -4.128 -4.642 -5.052 -5.398 

17 3.509 4.192 4.703 5.105 5.448  -3.452 -4.131 -4.643 -5.052 -5.400 

18 3.508 4.193 4.704 5.106 5.452  -3.450 -4.134 -4.644 -5.052 -5.401 

19 3.510 4.192 4.699 5.106 5.452  -3.451 -4.131 -4.641 -5.052 -5.401 

20 3.513 4.191 4.694 5.106 5.452  -3.452 -4.128 -4.638 -5.053 -5.401 

21 3.513 4.191 4.695 5.106 5.451  -3.452 -4.129 -4.638 -5.053 -5.398 

22 3.513 4.191 4.697 5.107 5.450  -3.452 -4.129 -4.638 -5.054 -5.395 

23 3.513 4.191 4.698 5.108 5.449  -3.452 -4.129 -4.638 -5.054 -5.391 

24 3.513 4.191 4.700 5.108 5.448  -3.452 -4.130 -4.638 -5.055 -5.388 

25 3.513 4.191 4.701 5.109 5.447  -3.452 -4.130 -4.638 -5.056 -5.384 

27 3.513 4.193 4.705 5.107 5.452  -3.452 -4.132 -4.641 -5.055 -5.387 

30 3.513 4.195 4.711 5.104 5.459  -3.452 -4.134 -4.646 -5.055 -5.390 
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Table 7.5. Cont’d. 

 
Nc, UB (Collapse)   Nc, UB (Blowout) 

S/D 
C/D   C/D 

7 8 9 10   7 8 9 10 

2 4.578 4.855 5.118 5.349  -4.516 -4.811 -5.059 -5.278 

3 4.503 4.783 5.026 5.239  -4.447 -4.734 -4.980 -5.205 

4 4.518 4.755 4.966 5.201  -4.468 -4.709 -4.928 -5.135 

5 4.578 4.783 4.988 5.173  -4.528 -4.749 -4.936 -5.131 

6 4.658 4.850 5.023 5.207  -4.624 -4.820 -4.991 -5.159 

7 4.761 4.926 5.090 5.242  -4.724 -4.893 -5.052 -5.205 

8 4.859 5.020 5.168 5.318  -4.841 -4.988 -5.126 -5.272 

9 4.973 5.111 5.249 5.368  -4.943 -5.081 -5.212 -5.348 

10 5.074 5.204 5.315 5.438  -5.045 -5.188 -5.296 -5.418 

11 5.181 5.298 5.408 5.525  -5.153 -5.279 -5.389 -5.497 

12 5.289 5.393 5.501 5.613  -5.261 -5.370 -5.482 -5.576 

13 5.383 5.484 5.585 5.692  -5.356 -5.459 -5.562 -5.659 

14 5.478 5.575 5.669 5.771  -5.451 -5.547 -5.641 -5.742 

15 5.572 5.666 5.753 5.850  -5.543 -5.636 -5.721 -5.825 

16 5.666 5.747 5.826 5.916  -5.636 -5.720 -5.797 -5.894 

17 5.736 5.827 5.899 5.982  -5.694 -5.804 -5.872 -5.962 

18 5.739 5.900 5.972 6.048  -5.694 -5.879 -5.948 -6.031 

19 5.743 5.973 6.045 6.114  -5.697 -5.954 -6.023 -6.100 

20 5.746 6.001 6.116 6.182  -5.700 -5.957 -6.099 -6.169 

21 5.745 6.001 6.189 6.248  -5.699 -5.957 -6.174 -6.231 

22 5.744 6.001 6.207 6.314  -5.698 -5.957 -6.180 -6.294 

23 5.743 6.001 6.224 6.381  -5.697 -5.957 -6.186 -6.356 

24 5.742 6.001 6.226 6.395  -5.696 -5.957 -6.188 -6.370 

25 5.741 6.001 6.227 6.409  -5.693 -5.957 -6.189 -6.383 

27 5.744 5.998 6.224 6.424  -5.698 -5.959 -6.189 -6.397 

30 5.749 5.993 6.227 6.431  -5.705 -5.963 -6.189 -6.397 

 



 

130 

 

 

Figure 7.10. Minimum spacing ratios (S/D)min vs depth ratios (C/D = 2 - 10). 

Figure 7.10 and Table 7.6 show the relationship between the minimum spacing ratio 

(S/D)min and the depth ratios (C/D = 2 - 10). (S/D)min is the minimum spacing ratio 

required for each tunnel to behave as a single isolated tunnel. Equations 7.4 is an 

accurate curve-fitting for the relationship between (S/D)min and C/D.  

( / ) 2.22 ( / ) 2.41minS D C D ´                                                                                                     (7.4) 

Table 7.6. Max. Nc (LB, UB and FD) results vs. minimum spacing ratios (S/D)min. 

C/D 
Twin Tunnels Nc at (S/D)min 

(S/D)min Nc (LB) Nc (UB) Nc (FD) 

2 6.84 3.401 3.511 3.575 

3 9.06 4.039 4.191 4.213 

4 11.28 4.504 4.685 4.706 

5 13.50 4.863 5.103 5.125 

6 15.72 5.228 5.445 5.444 

7 17.94 5.483 5.739 5.765 

8 20.16 5.708 6.001 6.000 

9 22.38 5.87 6.224 6.227 

10 24.60 6.113 6.409 6.400 
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Figure 7.11. Comparison of Nc results in collapse and blowout for C/D = 3 and 9. 

Figure 7.11 and Table 7.7 show comparisons between Nc results (LB, UB, and FD) for 

two depth ratios (C/D = 3 and 9) and a range of spacing ratios (S/D = 2-30). The UB 

and FD results agree well, though they are not conservative when compared to LB. 
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Table 7.7. Comparison of Nc results in collapse and blowout for C/D = 3 and C/D = 9. 

 Collapse   Blowout 

S/D 
C/D = 3   C/D = 9   C/D = 3   C/D = 9 

LB  UB  FD   LB  UB  FD   LB UB FD   LB UB FD 

2 2.88 2.98 3.04   5.15 5.12 5.15   -2.85 -2.92 -3.00   -4.89 -5.06 -5.11 

3 3.06 3.15 3.21   5.04 5.03 5.04   -3.02 -3.11 -3.16   -4.79 -4.98 -4.99 

4 3.27 3.38 3.45   4.99 4.97 4.99   -3.24 -3.34 -3.40   -4.74 -4.93 -4.95 

5 3.48 3.60 3.65   4.99 4.99 4.99   -3.45 -3.57 -3.61   -4.75 -4.94 -4.98 

6 3.67 3.81 3.85   5.03 5.02 5.03   -3.65 -3.78 -3.85   -4.79 -4.99 -4.99 

7 3.87 4.01 4.03   5.11 5.09 5.11   -3.85 -3.99 -4.03   -4.85 -5.05 -5.11 

8 4.03 4.19 4.21   5.19 5.17 5.19   -3.98 -4.13 -4.16   -4.92 -5.13 -5.19 

9 4.04 4.19 4.21   5.25 5.25 5.25   -3.98 -4.13 -4.16   -5.00 -5.21 -5.26 

10 4.04 4.19 4.21   5.32 5.32 5.32   -3.98 -4.13 -4.16   -5.09 -5.30 -5.31 

11 4.04 4.19 4.21   5.41 5.41 5.41   -3.98 -4.13 -4.16   -5.16 -5.39 -5.41 

12 4.04 4.19 4.21   5.51 5.50 5.51   -3.97 -4.13 -4.16   -5.23 -5.48 -5.51 

13 4.03 4.19 4.21   5.59 5.59 5.59   -3.97 -4.13 -4.16   -5.31 -5.56 -5.58 

14 4.03 4.19 4.21   5.68 5.67 5.68   -3.97 -4.13 -4.16   -5.38 -5.64 -5.64 

15 4.03 4.19 4.21   5.76 5.75 5.76   -3.98 -4.13 -4.16   -5.46 -5.72 -5.71 

16 4.03 4.19 4.21   5.83 5.83 5.83   -3.98 -4.13 -4.16   -5.53 -5.80 -5.79 

17 4.03 4.19 4.21   5.90 5.90 5.90   -3.98 -4.13 -4.16   -5.60 -5.87 -5.86 

18 4.03 4.19 4.21   5.97 5.97 5.97   -3.98 -4.13 -4.16   -5.67 -5.95 -5.93 

19 4.03 4.19 4.21   6.04 6.05 6.04   -3.97 -4.13 -4.16   -5.74 -6.02 -6.00 

20 4.03 4.19 4.21   6.12 6.12 6.12   -3.97 -4.13 -4.16   -5.81 -6.10 -6.08 

21 4.03 4.19 4.21   6.14 6.19 6.14   -3.98 -4.13 -4.16   -5.82 -6.17 -6.16 

22 4.03 4.19 4.21   6.16 6.21 6.16   -3.98 -4.13 -4.16   -5.84 -6.18 -6.16 

23 4.03 4.19 4.21   6.18 6.22 6.18   -3.98 -4.13 -4.16   -5.86 -6.19 -6.16 

24 4.03 4.19 4.21   6.18 6.22 6.18   -3.98 -4.13 -4.16   -5.86 -6.19 -6.16 

25 4.03 4.19 4.21   6.18 6.22 6.18   -3.97 -4.13 -4.16   -5.86 -6.19 -6.16 

27 4.03 4.19 4.21   6.18 6.22 6.18   -3.97 -4.13 -4.16   -5.86 -6.19 -6.16 

30 4.03 4.19 4.21   6.18 6.22 6.18   -3.97 -4.13 -4.16   -5.86 -6.19 -6.16 
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Figure 7.12. Comparison of Nc between the present study and published solutions (C/D 

= 3). 

Figure 7.12 and Table 7.8 show a comparison of the Nc results obtained by the present 

study and those in published literature. The results of this study agree well with those 

of Wilson et al. (2014).  

The present UB solution has been significantly improved owing to the use of adaptive 

mesh. The results from Sahoo and Kumar (2013) are conservative, while the 

comparison between the present numerical UB results and those from Osman (2010) 

and Wu and Lee (2003) using analytical UB shows very high variation. It is not 

surprising to see that the rigid block UB yields an unsafe solution and hence should 

not be used in practice.  
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Table 7.8. Comparison of Nc with published solutions (C/D = 3 and S/D = 2 - 10).  

S/D 

Wu & Lee 

(2003) 

Osman  

(2010) 

Wilson et 

al. (2014) 

Present 

study 

Present 

study 

Wilson et 

al. (2014) 

Present 

study 

Sahoo and 

Kumar (2013) 

R. Block (UB) R. Block (UB) FELA (UB)  FDM FELA (UB)  FELA (LB)  FELA (LB)  FELA (UB)  

2 3.6 3.43 3.11 3.04 2.94 2.90 2.92 2.88 

3 3.9 3.81 3.25 3.21 3.12 3.08 3.09 3.04 

4 4.3 4.20 3.45 3.45 3.34 3.31 3.31 3.20 

5 4.9 4.47 3.66 3.65 3.56 3.53 3.51 3.40 

6 - 4.57 3.87 3.85 3.78 3.74 3.75 3.60 

7 - 4.60 4.06 4.03 3.98 3.94 3.93 3.74 

8 - 4.60 4.24 4.21 4.14 4.09 4.08 3.75 

9 - 4.60 4.24 4.21 4.14 4.09 4.09 3.77 

10 - 4.60 4.24 4.21 4.14 4.09 4.08 3.77 

  

7.4 Failure Mechanism 

On the left-hand side of Figures 7.13 to 7.15,  the absolute displacement contour plots 

are presented for C/D = 3 with various spacing ratio (S/D = 4, 8, 9). As discussed 

before, the absolute displacement (|𝑢| = √𝑢𝑥
2 + 𝑢𝑦

2) plots are useful to give an overall 

indication of failure mechanism and the ground surface failure extent while the actual 

values of the displacement are not real. 

Also shown on the right-hand side of Figures 7.13 to 7.15 are the displacement vector 

plots. The vector plot is useful as both the magnitude and direction of soil movement 

can be observed.  

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.13. Absolute displacement (|u|) contour and velocity plots for C/D = 3 and 

S/D = 4. 
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Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.14. Absolute displacement (|u|) contour and velocity plots for C/D = 3 and 

S/D = 8. 

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.15. Absolute displacement (|u|) contour and velocity plots for C/D = 3 and 

S/D = 9. 

Note that these are symmetrical plots; only half of the domain is presented. As 

expected, there are obvious differences in the failure shape when the spacing ratio S/D 

increases. A simple and direct observation is that the overlapping effects of twin 

tunnels disappear at S/D = 9, where a single tunnel failure mechanism is achieved. At 

this point, the corresponding S/D is the minimum spacing ratio (S/D)min required to 

eliminate the interaction effect between the tunnels, where each tunnel behaves as a 

single isolated tunnel. For all C/D, the failure zone gets wider for increasing depth 

ratios. Floor heaving is most severe for deep cases but reduces for shallow cases (small 

C/D). It is also interesting to see a second failure surface occurring between the two 

tunnels when the spacing ratio S/D is small (see Figures 7.13 and 7.14).  

Another set of plots are presented in Figures 7.16-7.18 for a larger depth ratio of C/D 

= 6 with various spacing ratio (S/D = 10, 15, 16). 
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Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.16. Absolute displacement (|u|) contour and velocity plots for C/D = 6 and 

S/D = 6. 

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.17. Absolute displacement (|u|) contour and velocity plots for C/D = 6 and 

S/D = 15.  

  

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 7.18. Absolute displacement (|u|) contour and velocity plots for C/D = 6 and 

S/D = 16. 
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7.5 Example and Practical Uses 

The usefulness of this study is best demonstrated through examples. Since the lower 

bound theorem offers a safe assessment of the critical stability number, the calculations 

of the examples are based on LB results.  

7.5.1 Example 

Two side-by-side tunnels are planned to be 30 metres apart (centre-to-centre) and are 

assumed to be bored simultaneously. The tunnel boring machines have a diameter (D) 

of 6.0m and are buried at a depth (C) of 18m in an undrained clayey soil with properties 

Su = 27kPa, ϕu = 0° and γ = 18 kN/m3. The site is assumed to be a Greenfield ( 0).s   

The dimensionless ratios are calculated as C/D = 3 and S/D = 5. With Table 7.4, it is 

found that the LB critical stability number (Nc) is approximately 3.48. Therefore, 

/ 3.48/ ((0 18 21 0) / 27) 0.249cFoS N N   ´    

Using (Nc = 3.48) and Equation 7.3, the internal tunnel pressure required for FoS = 1 

is calculated as 284.04 kPa. 

With S/D = 5, the LB critical stability number is (Nc = 3.48). For a depth ratio C/D = 

3, the maximum stability number (Nc = 4.04) occurs at S/D = 9 for a single tunnel 

response (Table 7.4 or Equation 7.4). Therefore, the reduction % in stability number 

due to twin tunnel effect is approximately 14.8 %. 

7.6 Conclusions  

This chapter has successfully investigated the stability of twin circular tunnels. Both 

upper and lower FoS bounds were calculated for a wide ranges of stability numbers (N 

= -15 to 15), depth ratios (C/D = 2 - 10) and spacing ratios (S/D = 2 - 30). The obtained 

numerical upper and lower bounds are generally within a few per cents of one another, 

with the true solution lying between the two bounds. A unique critical stability number 

(Nc) was presented by multiplying the “designed” stability number and the 

corresponding FoS for each depth ratio. The variation of Nc has been studied as a 

function of C/D and S/D and the minimum spacing ratios required to avoid twin tunnel 

interaction determined for uses in practical designs. 

A full 3D analysis of twin tunnel headings is presented next in Chapter 8.   
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CHAPTER 8: UNDRAINED ANALYSIS OF 3D 

TWIN CIRCULAR TUNNELS 

 

8.1 Introduction 

In comparison to the 3D single circular tunnel investigated in Chapter 6, the effect of 

the centre-to-centre distance appears as a new problem parameter and plays a key 

factor in the behaviour of twin circular tunnels.  

This chapter addresses the 3D twin tunnels stability problem using finite element limit 

analysis. Rigorous solutions of the upper and lower bounds of the critical pressure (σt) 

in collapse and blowout are determined, and subsequently, the factor of safety 

calculated using Brooms and Bennermarks' critical stability number (Nc). Furthermore, 

a correlation between the individual and twin stability failure is established.  

The results are presented as dimensionless stability charts for use by practising 

engineers, and the actual tunnel stability numbers closely bracket the true solution 

from above and below. 

Correctly analysing the stability of underground infrastructures, such as twin circular 

tunnels, is crucial to prevent the collapse of such a complex assembly. 

8.2 Problem Definition and Modelling Technique 

Figure 8.1 shows the problem definition of 3D twin circular tunnels. The undrained 

shear strength (Su), and the unit weight (γ) describe soil properties used for an elastic-

perfectly plastic Tresca material, while the tunnels are of diameter (D), cover depth 

(C) above the crown of the tunnels and centre-to-centre distance (S) between the 

tunnels. The undrained stability of twin tunnels is described by a stability number (N) 

that was originally stated in Broms and Bennermark (1967). The twin tunnel stability 

number (N) is a function of the depth ratio (C/D) and the spacing ratio (S/D), and it is 

defined as shown in Equation 8.1. 

s t

u

H
N

S

   
                                                                                                                   (8.1) 
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Where σs is the possible surcharge loading acting on the ground surface, σt is the 

uniform pressure applied to the tunnel face and H is the depth of the tunnel axis that is 

equal to ( / 2)C D . 

 

Figure 8.1. Problem definition. 

Broms and Bennermarks’ original stability number has been successfully applied to a 

number of two-dimensional soil stability problems (Shiau, Lamb, et al. 2016; Shiau, 

Sams, et al. 2016; Shiau & Al-Asadi 2018; Shiau & Sams 2019).  

The present twin tunnels problem is symmetrical about the vertical plane, which passes 

through the centerline of the distance between tunnels centres. Therefore, the failure 

load and the stability number calculations are based on one half of the total domain 

size. It is essential to use a large mesh size as it ensures that the entire soil mass is 

unaffected by the boundaries of the model. The boundary conditions of the FELA 

model are as follows: the ground surface is free to displace, the side surfaces are 

restrained in the x-direction, while the back and the front surfaces (symmetrical plane) 

are restrained in the y-direction. The base is fixed in all directions. The rigid lining 
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around the soil excavation is restrained in the normal direction to represent the smooth 

interface condition. A typical 3D FELA adaptive mesh used for C/D = 3 is shown in 

Figure 8.2. An automatically adaptive mesh refinement was employed in both the UB 

and LB simulations. Three iterations of adaptive meshing with the number of elements 

increasing from 5000 to 10000 were used for all analyse. 

 

Figure 8.2. A typical adaptive mesh with boundary conditions and failure mechanism 

(C/D = 3 and S/D = 4).  

The numerical simulations presented in this study make use of recently developed 3D 

finite element limit analysis (OptumCE 2018). This technique can accurately 

determine the limit load of a 3D problem with the power of finite element discretisation 

and the bounding capability of lower and upper bound plastic limit theorems (Sloan 

2013). Using the limit analysis of 3D FELA and the undrained stability number in 

Equation 8.1, critical internal pressures (σt) are optimised for various material 

parameters such as (σs, γ, H, and Su), depth ratios (C/D) and spacing ratios (S/D) in 

both collapse and blowout scenarios. Shown in Figure 8.2 is also a plot of the failure 

mechanism for (C/D = 3 and S/D = 4) using the contours of UB power dissipation. 
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Noting that this is the symmetrical model for a close twin tunnel (S/D = 4), the resulting 

surface failure area resembles an elliptical shape due to the twin tunnel effects.  

 

Figure 8.3. A typical single tunnel response for large twin tunnel spacing (symmetrical 

UB shear dissipation plot for C/D = 3 and S/D = 9). 

Another plot of the failure mechanism for (C/D = 3 and S/D = 9) is shown in Figure 

8.3. Due to the large value of S/D, it is not surprising to see a single tunnel response 

with a near-circular failure surface. 

8.3 Results and Discussion  

For various centre-to-centre spacing ratio (S/D) between the twin tunnels, the stability 

is expressed in terms of Broms and Bennermark’s critical stability number (Nc) in both 

the collapse and blowout analyses. The obtained upper and lower bound Nc numbers 

at collapse and blowout are presented in Table 8.1 for each depth ratio (C/D) in a series 

of spacing ratio (S/D). These results were used to produce stability Figures 8.4 - 8.6, 

showing the relationship between Nc and S/D for various depth ratios (C/D = 2 - 10). 
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Table 8.1. Complete Nc values in collapse and blowout (LB and UB for C/D = 2- 10 

and various S/D). 

C/D S/D 
Collapse   Blowout 

LB UB Diff. %   LB UB Diff. % 

2 

2 8.465 8.964 5.726   -8.514 -8.959 5.094 

3 8.886 9.397 5.590   -8.897 -9.380 5.285 

4 9.253 9.770 5.436   -9.249 -9.796 5.744 

5 9.364 9.925 5.817   -9.350 -9.919 5.906 

6 9.364 9.925 5.817   -9.350 -9.919 5.906 

7 9.364 9.925 5.817   -9.350 -9.919 5.906 

3 

2 9.608 10.163 5.614   -9.627 -10.172 5.505 

3 9.903 10.461 5.480   -9.897 -10.454 5.474 

4 10.156 10.767 5.840   -10.151 -10.774 5.955 

5 10.400 11.057 6.124   -10.427 -11.051 5.811 

6 10.635 11.296 6.028   -10.632 -11.292 6.021 

7 10.703 11.358 5.938   -10.682 -11.346 6.029 

8 10.703 11.358 5.938   -10.682 -11.346 6.029 

9 10.703 11.358 5.938   -10.682 -11.346 6.029 

4 

2 10.543 11.154 5.632   -10.539 -11.139 5.536 

3 10.698 11.329 5.729   -10.694 -11.336 5.828 

4 10.901 11.550 5.781   -10.887 -11.554 5.944 

5 11.117 11.768 5.689   -11.128 -11.758 5.506 

6 11.311 12.000 5.911   -11.335 -12.000 5.700 

7 11.502 12.205 5.931   -11.512 -12.209 5.877 

8 11.613 12.381 6.402   -11.630 -12.365 6.126 

9 11.654 12.410 6.283   -11.670 -12.392 6.001 

10 11.654 12.410 6.283   -11.670 -12.392 6.001 

12 11.654 12.410 6.283   -11.670 -12.392 6.001 

14 11.654 12.410 6.283   -11.670 -12.392 6.001 

5 

2 11.299 11.940 5.517   -11.290 -11.944 5.630 

3 11.365 12.019 5.594   -11.368 -12.020 5.576 

4 11.500 12.198 5.891   -11.501 -12.217 6.038 

5 11.673 12.385 5.919   -11.659 -12.407 6.216 

6 11.833 12.572 6.056   -11.838 -12.597 6.212 

7 12.020 12.762 5.988   -12.034 -12.758 5.841 

8 12.190 12.936 5.938   -12.199 -12.938 5.880 

9 12.350 13.100 5.894   -12.330 -13.097 6.033 

10 12.460 13.222 5.934   -12.406 -13.199 6.194 

12 12.460 13.222 5.934   -12.407 -13.231 6.428 

12 12.460 13.222 5.934   -12.407 -13.231 6.428 

14 12.460 13.222 5.934   -12.407 -13.231 6.428 
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Table 8.1. Cont’d. 

C/D S/D 
Collapse   Blowout 

LB UB Diff. %   LB UB Diff. % 

6 

2 11.918 12.661 6.046   -11.986 -12.677 5.604 

3 11.940 12.679 6.003   -11.974 -12.669 5.641 

4 12.010 12.770 6.134   -12.045 -12.793 6.023 

5 12.158 12.917 6.054   -12.156 -12.926 6.140 

6 12.298 13.070 6.086   -12.288 -13.087 6.298 

7 12.448 13.246 6.212   -12.450 -13.257 6.278 

8 12.606 13.417 6.233   -12.616 -13.419 6.169 

9 12.733 13.568 6.350   -12.763 -13.567 6.107 

10 12.877 13.714 6.295   -12.892 -13.706 6.121 

12 13.046 13.912 6.425   -13.070 -13.908 6.212 

14 13.046 13.912 6.425   -13.070 -13.908 6.212 

7 

2 12.545 13.232 5.330   -12.533 -13.253 5.584 

3 12.520 13.222 5.454   -12.502 -13.226 5.628 

4 12.572 13.290 5.553   -12.518 -13.320 6.208 

5 12.658 13.411 5.777   -12.617 -13.432 6.257 

6 12.767 13.535 5.840   -12.733 -13.548 6.202 

7 12.885 13.678 5.971   -12.850 -13.672 6.199 

8 13.020 13.826 6.005   -12.990 -13.810 6.119 

9 13.145 13.961 6.021   -13.131 -13.946 6.020 

10 13.275 14.093 5.978   -13.276 -14.082 5.892 

12 13.480 14.341 6.190   -13.483 -14.334 6.119 

14 13.598 14.512 6.503   -13.592 -14.504 6.492 

16 13.598 14.512 6.503   -13.592 -14.504 6.492 

8 

2 13.016 13.741 5.419   -13.028 -13.762 5.480 

3 12.980 13.706 5.441   -12.982 -13.700 5.382 

4 13.000 13.764 5.709   -12.983 -13.756 5.782 

5 13.072 13.854 5.809   -13.029 -13.861 6.188 

6 13.138 13.971 6.146   -13.140 -13.970 6.123 

7 13.237 14.088 6.229   -13.255 -14.076 6.008 

8 13.352 14.204 6.184   -13.376 -14.195 5.941 

9 13.486 14.322 6.013   -13.483 -14.314 5.979 

10 13.595 14.446 6.070   -13.608 -14.422 5.808 

12 13.817 14.682 6.070   -13.830 -14.645 5.724 

14 13.990 14.883 6.186   -13.987 -14.871 6.127 

16 14.025 14.995 6.685   -14.060 -15.011 6.543 

18 14.025 14.995 6.685   -14.060 -15.011 6.543 

20 14.025 14.995 6.685   -14.060 -15.011 6.543 
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Table 8.1. Cont’d. 

C/D S/D 
Collapse   Blowout 

LB UB Diff. %   LB UB Diff. % 

9 

2 13.477 14.211 5.302   -13.464 -14.203 5.342 

3 13.366 14.171 5.847   -13.353 -14.156 5.838 

4 13.345 14.166 5.969   -13.343 -14.144 5.828 

5 13.358 14.190 6.040   -13.380 -14.180 5.806 

6 13.390 14.252 6.237   -13.435 -14.239 5.811 

7 13.458 14.322 6.220   -13.520 -14.324 5.775 

8 13.570 14.423 6.094   -13.606 -14.420 5.809 

9 13.702 14.563 6.092   -13.719 -14.555 5.914 

10 13.828 14.712 6.195   -13.852 -14.700 5.940 

12 14.074 15.000 6.370   -14.103 -14.974 5.991 

14 14.290 15.226 6.342   -14.300 -15.215 6.200 

16 14.358 15.287 6.267   -14.441 -15.379 6.291 

18 14.425 15.347 6.194   -14.487 -15.475 6.595 

20 14.425 15.347 6.194   -14.487 -15.475 6.595 

22 14.425 15.347 6.194   -14.487 -15.475 6.595 

24 14.425 15.347 6.194   -14.487 -15.475 6.595 

26 14.425 15.347 6.194   -14.487 -15.475 6.595 

28 14.425 15.347 6.194   -14.487 -15.475 6.595 

10 

2 13.821 14.634 5.714   -13.810 -14.644 5.862 

3 13.717 14.580 6.100   -13.750 -14.594 5.955 

4 13.720 14.581 6.085   -13.740 -14.588 5.987 

5 13.764 14.624 6.059   -13.772 -14.622 5.987 

6 13.830 14.699 6.092   -13.835 -14.700 6.063 

7 13.890 14.783 6.229   -13.900 -14.782 6.150 

8 13.963 14.869 6.285   -13.982 -14.883 6.243 

9 14.056 14.961 6.238   -14.078 -14.972 6.155 

10 14.146 15.053 6.213   -14.162 -15.076 6.252 

12 14.320 15.244 6.251   -14.350 -15.266 6.186 

14 14.524 15.441 6.120   -14.547 -15.459 6.079 

16 14.687 15.648 6.336   -14.696 -15.665 6.383 

18 14.805 15.855 6.849   -14.785 -15.839 6.883 

20 14.851 15.855 6.539   -14.811 -15.847 6.758 

22 14.851 15.855 6.539   -14.811 -15.847 6.758 

24 14.851 15.855 6.539   -14.811 -15.847 6.758 

26 14.851 15.855 6.539   -14.811 -15.847 6.758 

28 14.851 15.855 6.539   -14.811 -15.847 6.758 

30 14.851 15.855 6.539   -14.811 -15.847 6.758 
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8.3.1 Discussing S/D, Nc and (S/D)min 

The limit analysis is most useful when both the upper and lower bounds are calculated 

to bracket the exact collapse load. Figure 8.4 presents upper and lower bound Nc values 

for various values of S/D and C/D. Note that the finite element upper and lower bounds 

for the most depth ratios (C/D = 2- 10) lie within a few per cent (5% - 7%) of each 

other. Although the current bounding % is considered to be accurate for practical 

applications, it can be further reduced by refining the meshes to gain a more accurate 

set of bounds (Sloan 2013).  

 

Figure 8.4. Nc versus S/D (LB and UB, C/D = 2 - 10, in collapse and blowout). 

It is important to study the effect of spacing ratio (S/D) on the critical stability number 

Nc. Figure 8.5 presents the lower bound Nc values for various S/D and C/D values, 

while the upper bound ones are presented in Figure 8.6. These figures show that the 

critical stability number (Nc) increases nonlinearly as S/D increases until it approaches 

a constant value, which indicates that the twin tunnels stability is unaffected by the 

tunnel spacing. At this point, the stability responses are identical to those of 

corresponding single tunnel and the stability number is at its maximum value. It is also 

noted that the corresponding S/D is the minimum spacing ratio (S/D)min required to 

eliminate the overlapping effect between the tunnels.  
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Figure 8.5. Nc versus S/D (LB only, C/D = 2 - 10, in collapse and blowout). 

 

Figure 8.6. Nc versus S/D (UB only, C/D = 2 - 10, in collapse and blowout). 

Since the lower bound theorem offers a conservative assessment in soil stability, the 

LB results (Table 8.1 and Figure 8.5) are used to define the minimum spacing ratios 

(S/D)min for various depth ratios C/D. This is shown in Figure 8.7. A linear relationship 

is observed between C/D and (S/D)min. The linear line separates two zones: one being 
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the single tunnel (unaffected by the tunnel spacing) and the other is the zone with twin 

tunnels effects. Equations 8.2 is an accurate curve-fitting for the relationship between 

(S/D)min and C/D, with a correlation coefficient (R2) of 0.999. 

( / ) 1.85 ( / ) 1.20minS D C D ´                                                                                        (8.2) 

 

Figure 8.7. Minimum spacing ratios (S/D)min vs depth ratios (C/D = 2 - 10). 

Also plotted in Figure 8.7 is the 2D results of Shiau & Al-Asadi (2020e) for the purpose 

of results comparison. It is to be noted that the minimum 2D spacing ratios (S/D)min 

are consistently greater than those of 3D by 20%-30%. 

8.3.2 Discussing FoS  

Broms and Bennermarks’ critical stability number (Nc) represents a factor of safety of 

unity in conventional geotechnical designs. In general, the practising engineers prefer 

the safety factor approach as it is a familiar quantity that can be used to determine soil 

stability directly.  Based on their 2D undrained stability analysis, Shiau and Al-Asadi 

(2018) proposed an equation ( / )cFoS N N  to relate factors of safety to a wide range 

of “designed” stability number (N) for known values of Nc.  

For the depth ratio of C/D = 3, Tables 8.2 - 8.3 produce the factors of safety results 

(LB and UB) for a broad range of “designed” stability numbers (N = - 24 + 24) and 

S/D using Shiau and Al-Asadi’s equation. 
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Table 8.2. FoS vs N (C/D = 3 and S/D = 2 - 12, LB). 

N 
 S/D (LB) 

2 3 4 5 6 7 8 9 10 

-24 0.401 0.412 0.423 0.434 0.443 0.445 0.445 0.445 0.445 

-20 0.481 0.495 0.508 0.521 0.532 0.534 0.534 0.534 0.534 

-16 0.602 0.619 0.634 0.652 0.665 0.668 0.668 0.668 0.668 

-14 0.688 0.707 0.725 0.745 0.759 0.763 0.763 0.763 0.763 

-13 0.741 0.761 0.781 0.802 0.818 0.822 0.822 0.822 0.822 

-12 0.802 0.825 0.846 0.869 0.886 0.890 0.890 0.890 0.890 

-11 0.875 0.900 0.923 0.948 0.967 0.971 0.971 0.971 0.971 

-10 0.963 0.990 1.015 1.043 1.063 1.068 1.068 1.068 1.068 

-9 1.070 1.100 1.128 1.159 1.181 1.187 1.187 1.187 1.187 

-8 1.203 1.237 1.269 1.303 1.329 1.335 1.335 1.335 1.335 

-7 1.375 1.414 1.450 1.490 1.519 1.526 1.526 1.526 1.526 

-5 1.925 1.979 2.030 2.085 2.126 2.136 2.136 2.136 2.136 

-4 2.407 2.474 2.538 2.607 2.658 2.671 2.671 2.671 2.671 

-2 4.814 4.949 5.076 5.214 5.316 5.341 5.341 5.341 5.341 

-1 9.627 9.897 10.151 10.427 10.632 10.682 10.682 10.682 10.682 

-0.5 19.254 19.794 20.302 20.854 21.264 21.364 21.364 21.364 21.364 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.5 19.216 19.806 20.312 20.800 21.270 21.406 21.406 21.406 21.406 

1 9.608 9.903 10.156 10.400 10.635 10.703 10.703 10.703 10.703 

2 4.804 4.952 5.078 5.200 5.318 5.352 5.352 5.352 5.352 

4 3.203 3.301 3.385 3.467 3.545 3.568 3.568 3.568 3.568 

5 2.402 2.476 2.539 2.600 2.659 2.676 2.676 2.676 2.676 

7 1.373 1.415 1.451 1.486 1.519 1.529 1.529 1.529 1.529 

8 1.201 1.238 1.270 1.300 1.329 1.338 1.338 1.338 1.338 

9 1.068 1.100 1.128 1.156 1.182 1.189 1.189 1.189 1.189 

10 0.961 0.990 1.016 1.040 1.064 1.070 1.070 1.070 1.070 

11 0.873 0.900 0.923 0.945 0.967 0.973 0.973 0.973 0.973 

12 0.801 0.825 0.846 0.867 0.886 0.892 0.892 0.892 0.892 

13 0.739 0.762 0.781 0.800 0.818 0.823 0.823 0.823 0.823 

14 0.686 0.707 0.725 0.743 0.760 0.765 0.765 0.765 0.765 

16 0.601 0.619 0.635 0.650 0.665 0.669 0.669 0.669 0.669 

20 0.480 0.495 0.508 0.520 0.532 0.535 0.535 0.535 0.535 

24 0.400 0.413 0.423 0.433 0.443 0.446 0.446 0.446 0.446 
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Table 8.3. FoS vs N (C/D = 3 and S/D = 2 - 12, UB). 

N 
S/D (UB) 

2 3 4 5 6 7 8 9 10 

-24 0.424 0.436 0.449 0.460 0.471 0.473 0.473 0.473 0.473 

-20 0.509 0.523 0.539 0.553 0.565 0.567 0.567 0.567 0.567 

-16 0.636 0.653 0.673 0.691 0.706 0.709 0.709 0.709 0.709 

-14 0.727 0.747 0.770 0.789 0.807 0.810 0.810 0.810 0.810 

-13 0.782 0.804 0.829 0.850 0.869 0.873 0.873 0.873 0.873 

-12 0.848 0.871 0.898 0.921 0.941 0.946 0.946 0.946 0.946 

-11 0.925 0.950 0.979 1.005 1.027 1.031 1.031 1.031 1.031 

-10 1.017 1.045 1.077 1.105 1.129 1.135 1.135 1.135 1.135 

-9 1.130 1.162 1.197 1.228 1.255 1.261 1.261 1.261 1.261 

-8 1.272 1.307 1.347 1.381 1.412 1.418 1.418 1.418 1.418 

-7 1.453 1.493 1.539 1.579 1.613 1.621 1.621 1.621 1.621 

-5 2.034 2.091 2.155 2.210 2.258 2.269 2.269 2.269 2.269 

-4 2.543 2.614 2.694 2.763 2.823 2.837 2.837 2.837 2.837 

-2 5.086 5.227 5.387 5.526 5.646 5.673 5.673 5.673 5.673 

-1 10.172 10.454 10.774 11.051 11.292 11.346 11.346 11.346 11.346 

-0.5 20.344 20.908 21.548 22.102 22.584 22.692 22.692 22.692 22.692 

0 Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity Infinity 

0.5 20.326 20.922 21.534 22.114 22.592 22.716 22.716 22.716 22.716 

1 10.163 10.461 10.767 11.057 11.296 11.358 11.358 11.358 11.358 

2 5.082 5.231 5.384 5.529 5.648 5.679 5.679 5.679 5.679 

4 3.388 3.487 3.589 3.686 3.765 3.786 3.786 3.786 3.786 

5 2.541 2.615 2.692 2.764 2.824 2.840 2.840 2.840 2.840 

7 1.452 1.494 1.538 1.580 1.614 1.623 1.623 1.623 1.623 

8 1.270 1.308 1.346 1.382 1.412 1.420 1.420 1.420 1.420 

9 1.129 1.162 1.196 1.229 1.255 1.262 1.262 1.262 1.262 

10 1.016 1.046 1.077 1.106 1.130 1.136 1.136 1.136 1.136 

11 0.924 0.951 0.979 1.005 1.027 1.033 1.033 1.033 1.033 

12 0.847 0.872 0.897 0.921 0.941 0.947 0.947 0.947 0.947 

13 0.782 0.805 0.828 0.851 0.869 0.874 0.874 0.874 0.874 

14 0.726 0.747 0.769 0.790 0.807 0.811 0.811 0.811 0.811 

16 0.635 0.654 0.673 0.691 0.706 0.710 0.710 0.710 0.710 

20 0.508 0.523 0.538 0.553 0.565 0.568 0.568 0.568 0.568 

24 0.423 0.436 0.449 0.461 0.471 0.473 0.473 0.473 0.473 
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Note that the “designed” stability number is a combination of the known design 

parameters such as σs, γ, H, σt, and Su (see Equation 8.1). Graphically, these data are 

plotted in Figures 8.8 - 8.10 for C/D = 3 and various S/D (4, 7 and 10). 

 

Figure 8.8. FoS vs N for C/D = 3 and S/D = 4. 

It can be seen that a pair of asymptote lines exist for collapse and blowout scenarios. 

The curves are hyperbolic, meaning that any combination of N and FoS on this curve 

yields a unique Nc value. This Nc value is constant for a specific depth ratio. For the 

spacing ratio S/D = 4 (Figure 8.8), LB solutions give Nc = +10.16 on the collapse side 

and Nc = -10.15 on the blowout side. These two values can be read from the intersection 

points by drawing a FoS = 1 horizontal line on the figure. 

Figures 8.8 - 8.10 also compare the current 3D results with those 2D ones in Shiau and 

Al-Asadi (2020e). For a given “design” N value, the 2D analysis produces lower 

factors of safety than those in 3D analysis, indicating that 2D analysis is a conservative 

method in comparison to the 3D analysis. 
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Figure 8.9. FoS vs N for C/D = 3 and S/D = 7. 

 

Figure 8.10. FoS vs N for C/D = 3 and S/D = 10. 
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8.3.3 Comparison of results 

It is crucial to compare and validate Nc results obtained by the present study with those 

in published literature. The comparisons are necessary to ensure that findings from this 

paper and the conclusions drawn are relevant and reliable. To the authors’ best 

knowledge, perhaps due to the technical difficulty in studying 3D twin tunnels, no 

published literature can be found in relation to the 3D heading stability of twin tunnels. 

It was decided that the current 3D results be compared with available 2D twin tunnel 

results. Figure 8.11 shows a comparison between the present 3D study and those 2D 

FELA results by Shiau and Al-Asadi (2020e). 

 

Figure 8.11. Comparison of 2D and 3D Nc results (LB) for various depth ratios and 

spacing ratios in collapse and blowout.  

Figure 8.11 suggests that there is a significant variance between the 3D and 2D results. 

In general, the 3D stability results are approximately 2.5 fold higher than those in the 

2D analysis. Noting that the use of 3D analysis produces realistic stability results, they 

are less conservative than 2D analysis. 
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Figure 8.12 shows a comparison of current 3D results with some existing 2D solutions 

for the depth ratio C/D of three. Noting that the 3D results are significantly greater 

than the 2D results, the variations are mostly attributed to the differences in the two 

types of problems. The twin tunnels are assumed to be unlined and infinitely long in 

the plane strain 2D analysis, while the 3D analysis of twin tunnel is for the close face 

heading scenario.  

 

Figure 8.12. Comparison of 3D Nc results with the available 2D solutions in the 

literature. 

Having said that, the 2D twin tunnel analysis yields conservative results in comparison 

with those in the 3D analysis, and it can be used in the preliminary stage of lining 

designs. Nevertheless, the current 3D results shall be used for the estimation of heading 

pressure and ground settlement during the construction stage. 
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8.4 Failure Mechanism 

As in the previous chapter for 2D twin tunnels, shown in Figure 8.13 is asymmetrical 

plot of failure mechanisms using the contour of the absolute displacement 

(|𝑢| = √𝑢𝑥
2 + 𝑢𝑦

2) for C/D = 2 and various spacing ratio (S/D = 2 - 5). These plots 

show the overlapping effect between the 3D tunnel headings. Note that the 3D twin 

tunnel effect decreases as the spacing ratio (S/D) increase. This effect approaches to 

none when there is no interaction between the tunnels (Figure 8.13d). At this point, the 

corresponding S/D is the minimum spacing ratio (S/D)min required to eliminate the 

interaction effect between the tunnels, where each tunnel behaves as a single isolated 

tunnel. It is interesting to see the perfect circle predicted for the ground surface failure 

extent in the plot. On the other hand, due to the 3D twin effects, the ground surface 

failure extent resembles the outline of an ellipse (Figure 8.13a, b and c). 

 

Note that the actual contour values of the plots are not important in limit analysis with the perfect plasticity theorem. 

Figure 8.13. Absolute displacement (|u|) contour and velocity plots for C/D = 2 and 

various spacing ratio (S/D = 2 - 5). 
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8.5 An Illustrated Example 

It is known that lower bound solutions provide a safe assessment of the critical stability 

number Nc. Therefore, the following example is based on the use of LB results. The 

design tables and equations produced in the paper can be used to estimate a safe 

working pressure to maintain the stability of the tunnel faces. 

8.5.1 Evaluation of a twin tunnel heading stability in cohesive soil 

Two side-by-side tunnels are planned to be 30 metres apart (centre-to-centre) and are 

assumed to be bored simultaneously. 

The tunnel boring machines have a diameter (D) of 6.0m and are buried at a depth of 

18m (C) in an undrained clayey soil with the soil properties Su = 27kPa, ϕ u = 0° and γ 

= 18 kN/m3. The site is assumed to be a Greenfield without surface pressure (σs = 0). 

8.5.2 To determine FoS for the unsupported face of the tunnel (σt = 0) 

The dimensionless ratios are calculated as C/D = 3 and S/D = 5. With Table 8.1, it is 

found that the LB critical stability number (Nc) is approximately 10.4. Therefore, 

/ 10.4 / ((0 18 21 0) / 27) 0.743cFoS N N   ´    

8.5.3 To determine the critical tunnel pressure to avoid collapse (FoS = 1) 

Using (Nc = 10.4) in Equation 8.1, the minimum internal tunnel pressure to avoid 

collapse is 
10.4 27

0 18 21 97.2
1

c u
t s

N S
H

FoS
  

´ ´
     ´    kPa. 

8.5.4 To determine the reduction % of Nc due to twin effects 

For a depth ratio C/D = 3, the maximum stability number (Nc = 10.7) occurs at S/D ≃ 

7 for a single tunnel response (see Table 8.1 or Equation 8.2). For the current example 

with S/D = 5, the LB critical stability number is (Nc = 10.4). Therefore, the reduction 

% in the stability number due to the twin tunnel effect is approximately 2.84 %. 

8.6 Conclusion 

Three-dimensional heading stability of two parallel circular tunnel faces has been 

investigated in collapse and blowout scenarios using finite element limit analyses and 

Broms and Bennermarks’ critical stability numbers Nc. The current numerical upper 
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and lower bounds of Nc are generally within a few per cents of one another, with the 

true solution lying between the two bounds. The critical stability number Nc, that is a 

function of the depth ratio C/D and the spacing ratio S/D can be used to estimate the 

working pressures required for a given factor of safety.  

Based on the observation of the failure mechanism and the Nc results for each increase 

in the spacing ratio S/D, an equation was derived to calculate the critical spacing 

(S/D)min required for a single tunnel response (i.e. without overlapping effects). To the 

author’s best knowledge, there is no published literature on the 3D heading stability 

investigation of twin tunnels. The presented numerical results in this paper are valuable 

for practical engineers. 

Chapters 4-8 (Part A) have successfully studied the undrained stability of five tunnel 

configurations (i.e. 2D heading, 2D circle, 3D circle, 2D twin circle and 3D twin 

circle). Drained analysis of the five tunnel configurations using the tunnel stability 

factor approach is presented next in Part B (chapters 9-13). 
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DRAINED ANALYSIS 

(Chapters 9 - 13) 
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CHAPTER 9: DRAINED ANALYSIS OF 2D 

TUNNEL HEADING  

 

9.1 Introduction 

One of the main problems when constructing a tunnel is to ensure the stability of the 

tunnel heading. Ensuring tunnel face stability is directly related to the safe and 

successful construction of the underground structure.  

This chapter discusses the stability of an idealised tunnel heading in drained soil 

conditions. The primary method adopted is a conventional equation based on the soil 

property and stability factors, analogous to the bearing capacity factors (Nc, Ns and Nγ) 

of strip footings. The heading is rigidly supported along its length, while the face is 

subjected to internal pressure, and free to move. The problem approximates a longwall 

in an underground excavation. This model can also be assumed to be the longitudinal 

section of a tunnel.  

The finite element limit analysis (FELA) is employed to determine rigorous upper 

bound (UB) and lower bound (LB) solutions of stability factors (Fc, Fs and Fγ), which 

are functions of the depth ratio (C/D) and soil internal friction angle (ϕ), for a wide 

range of heading configurations and stability scenarios. The obtained results are 

compared and validated by using the finite-difference analysis as well as other 

available published results in the literature. A number of examples are illustrated on 

how to use the factors to estimate tunnel heading pressures. 

9.2 Problem Definition and Modelling Technique 

Finite element limit analysis is the numerical computational method of limit analysis 

that employs the classical plasticity theorems with the concept of finite element and 

mathematical programming (Sloan (2013). It is particularly powerful when upper 

bound (UB) and lower bound (LB) estimates are calculated together so that the true 

collapse load is bracketed. The difference between the two limits then provides an 

exact measure of the discretization error in the solution and can be used to refine the 
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meshes until a suitably accurate estimate of the collapse load is found. The initial 

developments using linear programming are in (Sloan 1988b, 1989). The newer 

developments are based on a much faster nonlinear programming formulation by 

(Lyamin & Sloan 2002b, 2002a) and Krabbenhoft et al. (2005 and 2007). The 

underlying bound theorems assume a rigid-perfectly plastic material with associated 

plasticity, i.e. the dilation angle was assumed to equal to the friction angle. The details 

of limit analysis and FELA can be found in Sloan (2013).  

Recently, the FELA software, OptumG2 (OptumCE 2017) has been successfully 

applied to solve a variety of drained and undrained stability problems in geotechnical 

engineering. Consequently, it was chosen in this study to compute the stability factors 

(Fc, Fs and Fγ) for the calculation of minimum heading support pressures by using 

Equation 9.1.  

t c s scF F DF                                                                                                   (9.1) 

The layout of the plane strain heading stability problem is shown in Figure 9.1. The 

heading has a height D and soil cover C. The ground surface is subject to a vertical 

surcharge σs. The face of the heading is free to move and is subject to normal stress 

(σt) in order to induce collapse or blowout failure (depending on the load direction). 

 

Figure 9.1. Problem definition. 
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The problem is similar to a longwall mining or any flat wall in an underground 

excavation with an infinitely long flat wall. Therefore, the assumption of 2D plane 

strain is valid for the analysis as, in practice, the length of the longwall mining is about 

10,000 ft - 15,000 ft (Thakur 2014).  

Figure 9.2 shows a typical FELA mesh and the boundary conditions used in the 

analysis. In both upper and lower bound calculations, the soil mass was discretised as 

triangular elements and modelled as Mohr-Coulomb material with the associated flow 

rule. For all analyses, 1000 to 2000 discretisation elements and three iterations for 

adaptive meshing were used. The boundary condition of the problem was defined such 

that the bottom boundary of the model was fixed in both vertical and horizontal 

directions, while the left and the right boundary of the problem was allowed to move 

only in the vertical direction. A smooth rigid lining along the tunnel length is achieved 

by constraining the movement in the vertical direction only. 

 

Figure 9.2. A typical adaptive mesh used for the problem. 

The normal stress (i.e. internal pressure σt) is optimised in both upper and lower bound 

simulations to compute the bound solution of the stability factors (Fc, Fs and Fγ). The 

size of the problem domains was chosen to be large enough so that the plastic yielding 

zone was contained within the domain. The UB and LB solutions of the limiting 

pressure σt are solved by employing the second-order cone programming (Krabbenhøft 
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et al. (2007). An automatically adaptive mesh refinement was employed in both the 

UB and LB simulations to compute the tight UB and LB solutions. Using the load 

multiplier method, the numerical results of tunnel stability factors (Fc, Fs and Fγ) are 

obtained for tunnel heading in the cohesive-frictional soil. The principles of these 

calculations using Equation (9.2) are as follows. 

1. To determine Fc, both 0   and 0s   are used in the analysis. Fc is then 

calculated using the equation ' .t cc F    

2. To determine Fs, both 0   and ' 0c   are used in the analysis. Fs is then calculated 

using the equation .t s sF   

3. To determine Fγ, both ' 0c   and 0s   are used in the analysis. Fγ is then 

calculated using the equation .t DF   

Using the principle of superposition, the minimum support pressure σt at collapse is 

determined for a wide range of soil parameters (ϕ = 0˚ - 40˚) and depth ratios

( / 1 10).C D    

9.3 Discussing the Tunnel Stability Factors (Fc, Fs and Fγ) 

Numerical analyses were performed to calculate the upper bound (UB) and the lower 

bound (LB) limits of the stability factors (Fγ, Fs and Fc) for various depth ratios (C/D 

= 1 - 10) and angles of internal friction (ϕ = 0˚- 40˚). The obtained tunnel stability 

factors are presented in Tables 9.1 to 9.3 and Figures 9.3 to 9.5. 

9.3.1 The stability factor for cohesion, Fc 

Given no surcharge load ( 0)s   and an idealised weightless soil ( 0)   a total of 

820 FELA were performed to calculate the cohesion stability factors Fc using

/ '.c tF c   Figure 9.3 shows that the greater the C/D value is, the greater the Fc 

factor is. Fc decreases as ϕ increases for all values of C/D. The effect of soil cohesion 

diminishes as the soil friction angle increases. It is interesting to see that all curves 

merge into a single line at approximately ϕ = 30 degree, indicating that the Fc factor 

is independent of C/D values for ϕ > 30°. Double logarithmic regression analysis was 

employed to develop Equation 9.2 using LB results. The equation has a correlation 

coefficient (R2) = 0.996.  
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Table 9.1. Fc vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB). 

 Fc    

 C/D = 1                C/D = 2  C/D = 3  C/D = 4  C/D = 5 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 4.178 4.326   5.236 5.496   5.963 6.260   6.509 6.844   6.920 7.295 

1 4.083 4.224   5.096 5.326   5.738 6.030   6.247 6.551   6.622 6.960 

2 3.992 4.131   4.944 5.153   5.562 5.797   5.996 6.276   6.352 6.638 

3 3.901 4.031   4.794 4.989   5.349 5.573   5.738 6.003   6.046 6.328 

4 3.794 3.935   4.636 4.823   5.137 5.351   5.504 5.731   5.775 6.025 

5 3.712 3.835   4.485 4.659   4.960 5.137   5.267 5.473   5.515 5.738 

6 3.624 3.739   4.342 4.496   4.761 4.929   5.032 5.226   5.256 5.456 

7 3.510 3.645   4.194 4.335   4.577 4.723   4.820 4.988   5.014 5.189 

8 3.441 3.548   4.045 4.179   4.392 4.526   4.608 4.757   4.779 4.930 

9 3.337 3.450   3.902 4.023   4.218 4.334   4.409 4.538   4.541 4.683 

10 3.255 3.354   3.764 3.873   4.041 4.147   4.200 4.323   4.328 4.450 

11 3.174 3.259   3.631 3.728   3.873 3.968   4.019 4.117   4.119 4.225 

12 3.071 3.164   3.501 3.584   3.712 3.794   3.835 3.923   3.924 4.011 

13 2.994 3.070   3.372 3.445   3.555 3.626   3.661 3.737   3.738 3.810 

14 2.898 2.977   3.240 3.310   3.406 3.465   3.495 3.559   3.563 3.619 

15 2.820 2.884   3.116 3.180   3.257 3.312   3.333 3.390   3.393 3.440 

16 2.723 2.794   2.999 3.052   3.120 3.165   3.183 3.229   3.227 3.270 

17 2.643 2.704   2.883 2.929   2.986 3.024   3.037 3.077   3.075 3.110 

18 2.565 2.616   2.770 2.811   2.860 2.891   2.900 2.933   2.932 2.960 

19 2.484 2.529   2.664 2.698   2.734 2.763   2.770 2.797   2.796 2.818 

20 2.403 2.445   2.559 2.588   2.618 2.642   2.647 2.669   2.666 2.685 

21 2.325 2.361   2.458 2.483   2.507 2.527   2.531 2.548   2.545 2.560 

22 2.247 2.279   2.361 2.382   2.401 2.417   2.420 2.434   2.432 2.443 

23 2.170 2.200   2.269 2.286   2.301 2.313   2.316 2.326   2.325 2.334 

24 2.095 2.123   2.179 2.194   2.205 2.215   2.217 2.225   2.224 2.231 

25 2.027 2.049   2.094 2.106   2.115 2.123   2.124 2.130   2.129 2.134 

26 1.953 1.976   2.013 2.022   2.029 2.035   2.036 2.040   2.039 2.043 

27 1.891 1.905   1.935 1.942   1.947 1.952   1.952 1.956   1.955 1.958 

28 1.823 1.837   1.860 1.866   1.870 1.873   1.874 1.876   1.876 1.878 

29 1.760 1.771   1.789 1.794   1.796 1.799   1.799 1.801   1.801 1.802 

30 1.698 1.707   1.721 1.725   1.727 1.729   1.729 1.730   1.730 1.731 

31 1.638 1.646   1.657 1.659   1.661 1.662   1.662 1.663   1.663 1.664 

32 1.581 1.587   1.595 1.597   1.598 1.599   1.599 1.600   1.599 1.600 

33 1.526 1.530   1.536 1.538   1.538 1.539   1.539 1.539   1.539 1.540 

34 1.472 1.476   1.480 1.481   1.481 1.482   1.482 1.482   1.482 1.482 

35 1.420 1.423   1.421 1.427   1.426 1.428   1.427 1.428   1.428 1.428 

36 1.371 1.373   1.375 1.376   1.376 1.376   1.376 1.376   1.376 1.376 

37 1.323 1.325   1.326 1.327   1.327 1.327   1.327 1.327   1.327 1.327 

38 1.277 1.279   1.279 1.280   1.280 1.280   1.280 1.280   1.280 1.280 

39 1.233 1.234   1.235 1.235   1.235 1.235   1.235 1.235   1.235 1.235 

40 1.190 1.191   1.192 

 
1.192   1.192 1.192   1.192 1.192   1.192 1.192 
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Table 9.1. Cont’d. 

 Fc    

 C/D = 6                C/D = 7  C/D = 8  C/D = 9  C/D = 10 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 7.257 7.671   7.573 7.991   7.845 8.262   8.036 8.516   8.251 8.737 

1 6.934 7.295   7.208 7.581   7.442 7.822   7.617 8.038   7.820 8.237 

2 6.629 6.934   6.853 7.183   7.045 7.404   7.194 7.592   7.381 7.750 

3 6.282 6.582   6.508 6.806   6.685 6.995   6.836 7.154   6.977 7.303 

4 5.977 6.251   6.197 6.446   6.328 6.610   6.445 6.742   6.575 6.867 

5 5.686 5.930   5.868 6.098   6.006 6.237   6.104 6.353   6.222 6.451 

6 5.427 5.626   5.570 5.767   5.689 5.884   5.777 5.983   5.874 6.067 

7 5.154 5.336   5.273 5.453   5.386 5.553   5.449 5.639   5.534 5.709 

8 4.892 5.055   4.999 5.157   5.091 5.241   5.152 5.309   5.228 5.371 

9 4.659 4.789   4.741 4.878   4.817 4.944   4.879 5.002   4.925 5.050 

10 4.421 4.539   4.499 4.608   4.563 4.666   4.604 4.715   4.650 4.754 

11 4.205 4.303   4.267 4.359   4.316 4.405   4.349 4.446   4.389 4.478 

12 3.993 4.075   4.047 4.122   4.089 4.162   4.117 4.195   4.140 4.221 

13 3.795 3.864   3.836 3.902   3.871 3.932   3.893 3.961   3.920 3.981 

14 3.606 3.663   3.638 3.693   3.666 3.719   3.686 3.742   3.708 3.757 

15 3.427 3.474   3.454 3.500   3.477 3.520   3.494 3.537   3.509 3.550 

16 3.258 3.298   3.279 3.318   3.301 3.334   3.313 3.347   3.326 3.358 

17 3.102 3.132   3.119 3.148   3.133 3.161   3.143 3.171   3.152 3.179 

18 2.951 2.977   2.966 2.989   2.978 2.999   2.986 3.007   2.993 3.013 

19 2.811 2.831   2.823 2.841   2.832 2.849   2.837 2.855   2.844 2.859 

20 2.679 2.696   2.688 2.703   2.695 2.709   2.701 2.713   2.705 2.717 

21 2.555 2.569   2.563 2.574   2.568 2.578   2.572 2.582   2.575 2.584 

22 2.440 2.449   2.445 2.454   2.449 2.457   2.452 2.460   2.452 2.461 

23 2.331 2.338   2.335 2.341   2.338 2.344   2.340 2.346   2.342 2.347 

24 2.228 2.234   2.231 2.236   2.233 2.238   2.235 2.239   2.236 2.240 

25 2.132 2.136   2.134 2.138   2.136 2.139   2.137 2.140   2.138 2.141 

26 2.042 2.045   2.043 2.046   2.045 2.047   2.045 2.047   2.046 2.048 

27 1.957 1.959   1.958 1.960   1.959 1.960   1.960 1.961   1.960 1.961 

28 1.877 1.879   1.878 1.879   1.878 1.879   1.879 1.880   1.879 1.880 

29 1.802 1.803   1.802 1.803   1.802 1.803   1.803 1.803   1.803 1.804 

30 1.730 1.731   1.731 1.731   1.731 1.732   1.731 1.732   1.731 1.732 

31 1.663 1.664   1.664 1.664   1.664 1.664   1.664 1.664   1.664 1.664 

32 1.600 1.600   1.600 1.600   1.600 1.600   1.600 1.600   1.600 1.600 

33 1.539 1.540   1.540 1.540   1.540 1.540   1.540 1.540   1.540 1.540 

34 1.482 1.482   1.482 1.483   1.482 1.483   1.482 1.483   1.482 1.483 

35 1.428 1.428   1.428 1.428   1.428 1.428   1.428 1.428   1.428 1.428 

36 1.376 1.376   1.376 1.376   1.376 1.376   1.376 1.376   1.376 1.376 

37 1.327 1.327   1.327 1.327   1.327 1.327   1.327 1.327   1.327 1.327 

38 1.280 1.280   1.280 1.280   1.280 1.280   1.280 1.280   1.280 1.280 

39 1.235 1.235   1.235 1.235   1.235 1.235   1.235 1.235   1.235 1.235 

40 1.192 1.192   1.192 1.192   1.192 1.192   1.192 1.192   1.192 1.192 
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Table 9.2. Fs vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB). 

 Fs   

 C/D = 1                C/D = 2  C/D = 3  C/D = 4  C/D = 5 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 0.996 0.996   0.995 0.995   0.994 0.994   0.993 0.993   0.993 0.993 

1 0.925 0.922   0.906 0.902   0.894 0.889   0.885 0.879   0.878 0.872 

2 0.857 0.852   0.822 0.815   0.8 0.792   0.785 0.775   0.772 0.762 

3 0.792 0.785   0.744 0.734   0.714 0.702   0.694 0.679   0.677 0.662 

4 0.731 0.721   0.671 0.658   0.635 0.62   0.61 0.594   0.59 0.573 

5 0.671 0.661   0.603 0.588   0.561 0.545   0.534 0.516   0.512 0.492 

6 0.616 0.603   0.54 0.523   0.495 0.477   0.466 0.445   0.442 0.421 

7 0.564 0.549   0.481 0.463   0.433 0.415   0.403 0.383   0.379 0.358 

8 0.513 0.498   0.427 0.409   0.378 0.359   0.348 0.327   0.323 0.302 

9 0.468 0.45   0.378 0.359   0.328 0.309   0.297 0.277   0.276 0.254 

10 0.423 0.405   0.333 0.313   0.283 0.265   0.255 0.233   0.233 0.211 

11 0.38 0.363   0.291 0.272   0.244 0.225   0.215 0.196   0.195 0.175 

12 0.344 0.324   0.252 0.235   0.207 0.19   0.181 0.162   0.162 0.143 

13 0.305 0.288   0.218 0.201   0.176 0.159   0.151 0.134   0.133 0.116 

14 0.273 0.255   0.189 0.171   0.147 0.133   0.125 0.109   0.108 0.094 

15 0.241 0.224   0.162 0.145   0.124 0.109   0.104 0.088   0.088 0.075 

16 0.216 0.196   0.137 0.122   0.102 0.089   0.084 0.071   0.071 0.059 

17 0.188 0.171   0.116 0.101   0.084 0.072   0.069 0.056   0.057 0.046 

18 0.164 0.147   0.097 0.084   0.068 0.058   0.055 0.044   0.044 0.035 

19 0.142 0.127   0.08 0.068   0.056 0.046   0.043 0.034   0.034 0.027 

20 0.123 0.108   0.066 0.056   0.045 0.036   0.034 0.026   0.027 0.02 

21 0.105 0.091   0.054 0.044   0.035 0.028   0.026 0.02   0.02 0.015 

22 0.09 0.077   0.044 0.035   0.027 0.021   0.02 0.014   0.015 0.01 

23 0.077 0.064   0.035 0.027   0.021 0.016   0.015 0.01   0.011 0.007 

24 0.065 0.052   0.028 0.021   0.016 0.011   0.011 0.007   0.008 0.005 

25 0.053 0.043   0.021 0.016   0.012 0.008   0.008 0.005   0.005 0.003 

26 0.044 0.034   0.016 0.012   0.008 0.005   0.005 0.003   0.003 0.001 

27 0.035 0.028   0.012 0.008   0.006 0.003   0.003 0.001   0.002 0 

28 0.029 0.022   0.009 0.006   0.004 0.002   0.002 0.001   0.001 0 

29 0.023 0.017   0.007 0.004   0.002 0.001   0.001 0   0 0 

30 0.018 0.013   0.005 0.002   0 0   0 0   0 0 

31 0.014 0.009   0.003 0   0 0   0 0   0 0 

32 0.011 0.007   0.002 0   0 0   0 0   0 0 

33 0.008 0.005   0 0   0 0   0 0   0 0 

34 0.006 0.003   0 0   0 0   0 0   0 0 

35 0.004 0.002   0 0   0 0   0 0   0 0 

36 0.003 0   0 0   0 0   0 0   0 0 

37 0 0   0 0   0 0   0 0   0 0 

38 0 0   0 0   0 0   0 0   0 0 

39 0 0   0 0   0 0   0 0   0 0 

40 0 0   0 0   0 0   0 0   0 0 
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Table 9.2. Cont’d. 

 Fs   

 C/D = 6            C/D = 7  C/D = 8  C/D = 9  C/D = 10 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 0.993 0.992   0.992 0.992   0.992 0.992   0.992 0.991   0.992 0.991 

1 0.872 0.865   0.867 0.86   0.862 0.856   0.859 0.852   0.856 0.848 

2 0.762 0.751   0.754 0.742   0.747 0.734   0.742 0.727   0.735 0.722 

3 0.664 0.648   0.652 0.637   0.643 0.626   0.635 0.618   0.627 0.61 

4 0.576 0.557   0.56 0.543   0.551 0.531   0.543 0.522   0.534 0.513 

5 0.497 0.475   0.481 0.46   0.469 0.448   0.46 0.438   0.449 0.429 

6 0.424 0.403   0.409 0.388   0.396 0.376   0.387 0.365   0.377 0.356 

7 0.362 0.34   0.347 0.325   0.334 0.313   0.325 0.302   0.315 0.293 

8 0.307 0.284   0.293 0.27   0.279 0.258   0.271 0.249   0.26 0.24 

9 0.257 0.237   0.244 0.223   0.232 0.212   0.222 0.203   0.215 0.195 

10 0.216 0.195   0.202 0.183   0.191 0.173   0.184 0.164   0.175 0.157 

11 0.178 0.159   0.166 0.148   0.156 0.139   0.15 0.131   0.144 0.125 

12 0.148 0.13   0.136 0.12   0.127 0.111   0.121 0.104   0.114 0.099 

13 0.12 0.104   0.111 0.095   0.103 0.088   0.097 0.082   0.091 0.077 

14 0.097 0.083   0.089 0.076   0.082 0.069   0.077 0.063   0.072 0.059 

15 0.078 0.066   0.071 0.059   0.065 0.053   0.06 0.049   0.056 0.045 

16 0.062 0.051   0.056 0.045   0.05 0.041   0.047 0.037   0.043 0.034 

17 0.048 0.039   0.044 0.034   0.039 0.03   0.036 0.027   0.033 0.025 

18 0.038 0.03   0.033 0.026   0.029 0.023   0.027 0.02   0.024 0.018 

19 0.029 0.022   0.025 0.019   0.022 0.016   0.02 0.014   0.018 0.013 

20 0.022 0.016   0.019 0.013   0.016 0.011   0.014 0.01   0.013 0.008 

21 0.017 0.011   0.014 0.009   0.012 0.008   0.01 0.006   0.009 0.005 

22 0.012 0.008   0.01 0.006   0.008 0.005   0.007 0.004   0.006 0.003 

23 0.008 0.005   0.007 0.004   0.005 0.003   0.004 0.002   0.004 0.002 

24 0.006 0.003   0.004 0.002   0.003 0.001   0.003 0.001   0.002 0 

25 0.004 0.002   0.003 0.001   0.002 0   0 0   0 0 

26 0.002 0   0 0  0 0  0 0  0 0 

27 0 0   0 0  0 0  0 0  0 0 

28 0 0   0 0  0 0  0 0  0 0 

29 0 0   0 0  0 0  0 0  0 0 

30 0 0   0 0  0 0  0 0  0 0 

31 0 0   0 0  0 0  0 0  0 0 

32 0 0   0 0  0 0  0 0  0 0 

33 0 0   0 0  0 0  0 0  0 0 

34 0 0   0 0  0 0  0 0  0 0 

35 0 0   0 0  0 0  0 0  0 0 

36 0 0   0 0  0 0  0 0  0 0 

37 0 0   0 0  0 0  0 0  0 0 

38 0 0   0 0  0 0  0 0  0 0 

39 0 0   0 0  0 0  0 0  0 0 

40 0 0   0 0  0 0  0 0  0 0 

 



 

166 

 

Table 9.3. Fγ vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB). 

 Fγ   

 C/D = 1                C/D = 2  C/D = 3  C/D = 4  C/D = 5 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 1.665 1.652   2.622 2.628   3.661 3.633   4.661 4.632   5.621 5.634 

1 1.571 1.556   2.444 2.441   3.364 3.331   4.246 4.208   5.101 5.079 

2 1.481 1.465   2.275 2.265   3.088 3.050   3.872 3.818   4.625 4.568 

3 1.395 1.378   2.115 2.098   2.830 2.789   3.506 3.452   4.171 4.097 

4 1.313 1.295   1.963 1.940   2.587 2.544   3.177 3.117   3.757 3.672 

5 1.238 1.217   1.820 1.794   2.367 2.316   2.885 2.811   3.382 3.283 

6 1.160 1.142   1.687 1.650   2.161 2.109   2.612 2.532   3.040 2.929 

7 1.087 1.070   1.555 1.519   1.972 1.915   2.359 2.275   2.724 2.607 

8 1.021 1.003   1.437 1.398   1.796 1.736   2.124 2.039   2.432 2.316 

9 0.958 0.939   1.326 1.284   1.634 1.573   1.916 1.824   2.168 2.052 

10 0.901 0.880   1.221 1.178   1.485 1.422   1.726 1.631   1.932 1.819 

11 0.845 0.823   1.123 1.080   1.347 1.283   1.543 1.451   1.717 1.606 

12 0.792 0.769   1.033 0.989   1.218 1.157   1.382 1.295   1.521 1.416 

13 0.741 0.718   0.948 0.904   1.101 1.042   1.237 1.153   1.350 1.248 

14 0.695 0.670   0.872 0.826   0.995 0.937   1.106 1.025   1.199 1.099 

15 0.649 0.624   0.797 0.754   0.901 0.843   0.988 0.911   1.059 0.965 

16 0.606 0.582   0.732 0.689   0.816 0.759   0.887 0.810   0.943 0.849 

17 0.565 0.542   0.670 0.628   0.736 0.684   0.793 0.722   0.835 0.753 

18 0.528 0.504   0.614 0.573   0.665 0.614   0.712 0.643   0.744 0.665 

19 0.492 0.469   0.561 0.522   0.604 0.554   0.637 0.575   0.663 0.590 

20 0.459 0.436   0.516 0.478   0.551 0.500   0.570 0.515   0.589 0.524 

21 0.429 0.406   0.472 0.437   0.499 0.454   0.514 0.462   0.527 0.471 

22 0.399 0.377   0.434 0.401   0.452 0.411   0.466 0.417   0.473 0.421 

23 0.373 0.351   0.400 0.368   0.412 0.375   0.420 0.377   0.429 0.380 

24 0.346 0.327   0.368 0.339   0.377 0.343   0.383 0.343   0.390 0.342 

25 0.323 0.304   0.339 0.312   0.346 0.314   0.352 0.313   0.355 0.312 

26 0.345 0.283   0.315 0.289   0.319 0.289   0.323 0.286   0.324 0.287 

27 0.282 0.264   0.290 0.267   0.293 0.267   0.295 0.264   0.298 0.265 

28 0.264 0.246   0.269 0.249   0.272 0.247   0.274 0.247   0.276 0.245 

29 0.247 0.231   0.251 0.230   0.252 0.229   0.254 0.228   0.256 0.227 

30 0.231 0.216   0.233 0.216   0.235 0.214   0.237 0.212   0.238 0.209 

31 0.217 0.203   0.218 0.201   0.219 0.200   0.221 0.198   0.222 0.195 

32 0.203 0.190   0.204 0.188   0.205 0.187   0.207 0.185   0.208 0.183 

33 0.191 0.178   0.191 0.177   0.192 0.175   0.194 0.173   0.195 0.171 

34 0.179 0.167   0.179 0.166   0.180 0.164   0.182 0.161   0.183 0.158 

35 0.168 0.158   0.169 0.156   0.169 0.154   0.171 0.152   0.172 0.146 

36 0.159 0.148   0.159 0.146   0.159 0.145   0.161 0.141   0.162 0.141 

37 0.150 0.139   0.150 0.138   0.150 0.136   0.152 0.133   0.153 0.132 

38 0.141 0.131   0.141 0.129   0.141 0.126   0.143 0.125   0.144 0.124 

39 0.133 0.123   0.133 0.122   0.133 0.118   0.135 0.117   0.135 0.115 

40 0.125 0.116   0.126 0.115   0.126 0.112   0.128 0.110   0.128 0.108 

 



 

167 

 

Table 9.3 Cont’d. 

 Fγ   

 C/D = 6                C/D = 7  C/D = 8  C/D = 9  C/D = 10 

ϕ LB UB   LB UB   LB UB   LB UB   LB UB 

0 6.650 6.627   7.631 7.630   8.639 8.625   9.637 9.617   10.606 10.616 

1 5.986 5.941   6.841 6.811   7.706 7.659   8.588 8.507   9.419 9.357 

2 5.369 5.310   6.111 6.042   6.851 6.768   7.584 7.487   8.323 8.210 

3 4.819 4.733   5.456 5.355   6.088 5.968   6.715 6.581   7.325 7.187 

4 4.317 4.215   4.863 4.737   5.399 5.255   5.930 5.769   6.456 6.278 

5 3.854 3.743   4.323 4.182   4.766 4.614   5.217 5.039   5.659 5.466 

6 3.431 3.315   3.829 3.686   4.209 4.037   4.580 4.387   4.960 4.722 

7 3.050 2.930   3.387 3.234   3.694 3.527   4.021 3.811   4.316 4.082 

8 2.703 2.581   2.979 2.832   3.239 3.070   3.511 3.299   3.749 3.512 

9 2.408 2.271   2.634 2.471   2.847 2.660   3.064 2.845   3.257 3.013 

10 2.118 1.991   2.306 2.154   2.493 2.309   2.639 2.451   2.814 2.590 

11 1.871 1.745   2.027 1.869   2.170 1.994   2.301 2.107   2.428 2.215 

12 1.651 1.524   1.777 1.624   1.887 1.722   2.000 1.807   2.077 1.892 

13 1.458 1.332   1.548 1.409   1.645 1.484   1.721 1.553   1.793 1.614 

14 1.274 1.163   1.352 1.220   1.417 1.280   1.484 1.331   1.538 1.374 

15 1.120 1.015   1.188 1.064   1.235 1.104   1.286 1.143   1.327 1.170 

16 0.986 0.889   1.031 0.920   1.067 0.953   1.108 0.983   1.138 1.002 

17 0.868 0.777   0.903 0.801   0.928 0.826   0.965 0.846   0.987 0.861 

18 0.766 0.684   0.790 0.700   0.808 0.717   0.841 0.730   0.849 0.745 

19 0.676 0.601   0.700 0.614   0.714 0.627   0.732 0.634   0.732 0.645 

20 0.601 0.533   0.619 0.543   0.631 0.548   0.639 0.553   0.646 0.556 

21 0.537 0.476   0.547 0.479   0.548 0.482   0.563 0.483   0.570 0.488 

22 0.479 0.424   0.488 0.429   0.492 0.427   0.501 0.423   0.503 0.433 

23 0.432 0.382   0.435 0.381   0.439 0.382   0.448 0.372   0.448 0.384 

24 0.391 0.347   0.395 0.346   0.399 0.345   0.396 0.342   0.397 0.345 

25 0.354 0.316   0.359 0.315   0.362 0.314   0.359 0.310   0.363 0.315 

26 0.323 0.289   0.326 0.287   0.328 0.287   0.329 0.276   0.329 0.285 

27 0.298 0.264   0.300 0.263   0.300 0.262   0.303 0.260   0.301 0.260 

28 0.276 0.244   0.276 0.244   0.277 0.242   0.278 0.236   0.277 0.241 

29 0.257 0.222   0.256 0.224   0.257 0.223   0.258 0.216   0.256 0.224 

30 0.239 0.206   0.238 0.209   0.238 0.209   0.240 0.203   0.239 0.207 

31 0.222 0.192   0.222 0.195   0.223 0.195   0.224 0.190   0.222 0.193 

32 0.207 0.181   0.207 0.183   0.209 0.182   0.208 0.178   0.209 0.182 

33 0.194 0.169   0.194 0.172   0.195 0.171   0.195 0.161   0.195 0.170 

34 0.182 0.158   0.183 0.160   0.183 0.160   0.183 0.151   0.183 0.158 

35 0.171 0.147   0.171 0.151   0.173 0.150   0.172 0.141   0.173 0.150 

36 0.160 0.138   0.162 0.141   0.162 0.141   0.162 0.136   0.162 0.139 

37 0.151 0.131   0.152 0.133   0.153 0.133   0.153 0.128   0.153 0.132 

38 0.143 0.122   0.143 0.124   0.144 0.125   0.143 0.121   0.144 0.118 

39 0.134 0.115   0.135 0.117   0.136 0.114   0.135 0.114   0.136 0.112 

40 0.127 0.108   0.128 0.110   0.129 0.107   0.128 0.107   0.128 0.108 
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0.24 ln( / ) 1.11 ( 0.49 ln( / ) 1.18) ln(tan )cF C D C D   ´    ´  ´                        (9.2) 

 

Figure 9.3. Fc vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB). 

For ϕ > 30°, Equation 9.3 gives the best fit. This equation was obtained by using 

double regression analysis (power and logarithmic) with a correlation coefficient (R2) 

= 0.997.  

0.008 0.034 ln( / ) 0.9261.017 ( / ) (tan ) C D
cF C D   ´  ´ ´                                                         (9.3) 

9.3.2 The stability factor for surcharge, Fs 

Given no cohesion ( ' 0)c   and an idealised weightless soil ( 0)  , a total of 820 

FELA were performed to calculate the surcharge stability factors Fs using / .s t sF    

Figure 9.4 shows that the maximum value of the surcharge stability factor (Fs) is equal 

to one. This occurs when the internal friction angle (ϕ) of the soil is equal to zero. For 

such an undrained case, there is no volume loss during plastic shearing and the stability 

results are independent of the loading direction (Shiau & Hassan 2019; Shiau & Sams 

2019). With increasing angle of internal friction ϕ, the value of Fs decreases and 
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merges into one line at ϕ = 35 degree where Fs approaches to zero. The surcharge 

pressure σs has very little contribution to the internal heading pressure when the value 

of ϕ is large.  

 

Figure 9.4. Fs vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB).  

A double regression analysis (exponential and logarithmic) was employed to develop 

Equation 9.4 using LB results. It gives a correlation coefficient (R2) = 0.991.  

( 3.33 ln( / ) 5.973) tan(0.056 ( / ) 1.163) C D
sF C D e  ´  ´ ´  ´                                                  (9.4) 

9.3.3 The stability factor for unit weight, Fγ 

Given no cohesion ( ' 0)c   and no surcharge ( 0)s   a total of 820 FELA were 

performed to calculate the unit weight stability factors Fγ using / .tF D    

Figure 9.5 shows that Fγ has a maximum value of (C/D + 0.5) at ϕ = 0˚ and decreases 

dramatically as the soil friction angle ϕ increases due to the development of soil 

arching. 
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Figure 9.5. Fγ vs ϕ for various depth ratios (C/D = 1 - 10, ϕ = 0˚- 40˚, UB and LB). 

The effect of unit weight (or the overburden pressure) is reduced as the soil friction 

angle increases due to the presence of soil arching. All C/D curves merge into a single 

line at approximately ϕ = 25 degree.  

Fγ factor is independent of C/D for ϕ ≥ 25°. On the other note, for ϕ < 25°, Figure 9.5 

shows that the greater the C/D value is, the greater the Fγ factor is.  

Double regression analysis (exponential and logarithmic) was employed to develop 

Equation 9.5 using LB results. It has a correlation coefficient (R2) = 0.983.  

0.347 ln( / ) 0.994( 0.016 ln( / ) 0.143) (tan ) C DF C D   ´   ´  ´                                      (9.5) 

Equation 9.6 gives the best fit for ϕ ≥ 25°. This equation was obtained by using double 

regression analysis (power and logarithmic) with a correlation coefficient (R2) = 0.999. 

0.059 ln( / ) 1.635( 0.0004 ln( / ) 0.094) (tan ) C DF C D   ´   ´  ´                                          (9.6) 
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9.4 Comparison of Results 

Figure 9.6 shows a comparison of the stability factor Fc with published results. The 

available solutions for the comparison are for ϕ > 20˚.  

 

Figure 9.6. Comparison of cohesion stability factor (Fc). 

The Fc results of Vermeer et al. (2002) are based on 3D finite element analysis and is 

only available for a depth ratio of C/D = 5. It can be seen that their results agree well 

with the present study of lower bound results (for ϕ > 20˚). On the other hand, the Fc 

results of limit equilibrium method by Anagnostou and Kovári (1996) are significantly 

greater than the lower bound results for both C/D = 1 and C/D = 5. Their sliding wedge 

model provides an un-conservative solution for the tunnel heading problem, and hence 

it should be used with care in practice.  

Figure 9.7 shows a comparison of the surcharge stability factor (Fs) with published 

results. The only available results for comparison purpose are the experimental 

solutions provided by Atkinson and Mair (1981).  
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Figure 9.7. Comparison of surcharge stability factor (Fs).  

They are for depth ratios of C/D ≤ 3 and are based on model tests. Overall, there is a 

good agreement in the trend of all curves despite that their results are conservative  

The unit weight stability factor (Fγ) were discussed by Atkinson and Potts (1977), 

Atkinson and Mair (1981), Leca and Dormieux (1990), Anagnostou and Kovári (1996) 

and Vermeer et al. (2002). It was concluded that the values of Fγ depend only on the 

angle of internal friction (ϕ) and are independent of the depth of the tunnel. This 

conclusion was merely based on the study of shallow tunnels with ϕ >25˚. 

Figure 9.8 shows a comparison within this range of ϕ >25˚. It can be seen from Figure 

9.8 that the results from the sliding wedge model by Anagnostou and Kovári (1996) 

agrees well with the present study using FELA. However, the results of Atkinson and 

Mair (1981) are located above the FELA results while those of Leca and Dormieux 

(1990) and Vermeer et al. (2002) below the FELA results.  Note that this comparison 

is for ϕ >25˚. 
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Figure 9.8. Comparison of self-weight stability factor (Fγ) (after Vermeer et al. 2002). 

Interestingly, this comparison becomes insignificant were the results plotted in Figure 

9.5, which covers a broad range of internal friction (ϕ = 0˚- 40˚) and depth ratios (C/D 

= 1 - 10).  

9.5 Examples and practical Uses 

Relying on one single numerical method is usually not convincing, and result 

verifications are normally required. For this purpose, the finite difference method 

(FDM) via the software package FLAC and the pressure relaxation method (Shiau & 

Kemp 2013; Shiau et al. 2014)) has also been used for comparison purpose in the 

following examples. Since the lower bound theorem offers a safe assessment of the 

limit pressure for a stability problem, Equations (9.2 to 9.6) have been derived based 

on LB results. These results can assist designers and practising engineers in the safe 

evaluation of tunnel heading stability.  
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9.5.1 Stability analysis of a tunnel heading in cohesive soil 

A tunnel boring machine has a height (D) of 6.0m in cohesive material with a unit 

weight (γ) of 18 kN/m3 and cohesion (c) of 45 kPa. The internal friction angle ϕ = 0˚. 

The site is assumed to be located in a developed area, and the surface pressure (σs) is 

40 kPa. The soil cover (C) above the tunnel boring machine is 18m. Determine the 

minimum support pressure (σt) at collapse. 

- For C/D = 3 and ϕ = 0˚, Tables 9.1-9.3 give LB values of Fc = 5.963, Fs = 0.994 

and Fγ = 3.661, and UB values of Fc = 6.26, Fs = 0.994 and Fγ = 3.633. 

- Using Equation 9.1, σt (LB) = 166.8 kPa and σt (UB) = 150.4 kPa. 

- A FELA analysis of this case gives σt (LB) = 153.4 kPa and σt (UB) = 140.3 kPa.  

- A FDM analysis using pressure relaxation method gives σt (FDM) = 143.1 kPa.  

- A positive value of σt indicates that an internal support pressure is required to 

maintain tunnel stability. This belongs to the class of “active” failure. The lower 

bound (LB) support pressure is always greater than the upper bound (UB) one.  

9.5.2 Stability analysis of a tunnel heading in cohesive-frictional soil 

A planned tunnel has a height (D) of 6m and a cover depth (C) of 24m. The soil is 

found to be cohesive-frictional with a unit weight (γ) of 18 kN/m3, angle of internal 

friction (ϕ) of 35˚ and cohesion (c) of 54 kPa. Determine the critical internal pressure 

(σt) when the surcharge pressure (σs) is zero. 

- For C/D = 4 and ϕ = 35˚, Tables 9.1-9.3 gives LB values of Fc = 1.427, Fs = 0.0 

and Fγ = 0.171, and UB values of Fc = 1.428, Fs = 0.0 and Fγ = 0.152.  

- Using Equation 9.1, σt (LB) = -58.59 kPa and σt (UB) = -60.69 kPa. 

- A FELA analysis of this case gives σt (LB) = -58.7 kPa and σt (UB) = -60.7kPa.  

- A FDM analysis using pressure relaxation method gives σt (FDM) = -59.3 kPa.  

- A negative value of σt indicates that an internal “pulling” pressure is required in 

order to reach a collapsed state. In other words, the tunnel will remain stable 

without any internal pressure. 

- This belongs to the class of “passive” failure. The upper bound (UB) pressure is 

always greater than the lower bound (LB) one.  
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9.5.3 Stability analysis of a tunnel heading in cohesionless soil 

It is proposed to excavate a tunnel in greenfield conditions (σs = 0) through a 

cohesionless soil (c = 0 kPa, ϕ = 35˚ and γ = 18 kN/m3). The tunnel has a height (D) 

of 6m and a soil cover (C) of 18 m. Determine the critical internal support pressure.  

- For the greenfield condition (σs = 0) with C/D = 3 and ϕ = 35˚, Table 9.3 gives LB 

value of Fγ = 0.169 and UB value of Fγ = 0.154.  

- Using Equation 9.2, σt (LB) = 18.25 kPa and σt (UB) = 16.63 kPa.  

- A FELA analysis of this case gives σt (LB) = 18.27 kPa and σt (UB) = 16.67 kPa.  

- A FDM analysis using pressure relaxation method gives σt (FDM) = 16.59 kPa.  

- In cohesionless soil, a positive internal pressure σt (support pressure) is always 

required to maintain tunnel stability and prevent collapse regardless of the value 

of the internal friction (ϕ). 

9.6 Conclusion 

In order to study the face stability of tunnel heading in cohesive-frictional soils, 

numerical simulations through finite element limit analyses were performed. A series 

of parametric studies for different soils (ϕ = 0˚- 40˚) and various depth ratios (C/D = 

1 - 10) were studied to calculate the tunnel stability factors (Fc, Fs and Fγ). Examples 

were illustrated on how to use the factors to estimate limit support pressures, and they 

were favourably compared with those obtained from the pressure relaxation method 

using finite difference method. The following conclusions are drawn: 

1. Unlike the traditional bearing capacity factors (Nc, Ns and Nγ), the tunnel stability 

factors (Fc, Fs and Fγ) are functions of the soil friction angle ϕ and the depth ratio 

(C/D). 

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves for various C/D 

merge into a single line at approximately ϕ = 30˚.  

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. Fs has a maximum value of one at ϕ = 0˚ and a minimum value of 

zero at approximately ϕ = 35˚ for all depth ratios (C/D). In general, the effect of 
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surcharge load (σs) diminishes as the soil friction angle increases due to the 

development of soil arching. 

4. The unit weight stability factor (Fγ) increases as the depth ratio (C/D) increases. Fγ 

has a maximum value of (C/D + 0.5) at ϕ = 0˚ and decreases dramatically as the 

soil friction angle ϕ increases due to the development of soil arching. The Fγ curves 

merge into a single line at approximately ϕ = 25˚. 

The finite element limit analysis is useful as both upper and lower bounds are 

calculated and they bracket the actual collapse load from above and below, which 

provides confidence to the end-users in using the design tables, equations and charts. 

Using the novel tunnel stability factor approach, 2D single circular tunnels are studied 

next in Chapter 10. 
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CHAPTER 10: DRAINED ANALYSIS OF 2D 

SINGLE CIRCULAR TUNNEL 

 

10.1 Introduction 

Chapter 9, the stability of plane strain tunnel heading was addressed. This chapter 

discusses another stability problem of an idealised circular tunnel in drained soil 

conditions. The problem approximates the stability of a very long unlined circular 

tunnel, to determine the radial pressure a cylindrical tunnel shield must resist. This 

case is equivalent to a long cylindrical cavity. Failure of the tunnel in collapse is 

initiated by different combinations of overburden pressure and internal radial pressure. 

The focus of this chapter is to assess the stability of unlined circular tunnel problem 

by using stability factors (Fc, Fs and Fγ) for the calculation of minimum radial support 

pressures to achieve stability. The primary method adopted in the analyses is a 

conventional equation based on the soil property and stability factors, analogous to the 

bearing capacity factors (Nc, Ns and Nγ) of strip footings.  

The finite element limit analysis (FELA) is employed to determine rigorous upper 

bound (UB) and lower bound (LB) solutions of stability factors (Fc, Fs and Fγ), which 

are functions of the depth ratio (C/D) and soil internal friction angle (ϕ). The obtained 

results are compared and validated by using the available published results in the 

literature. A number of examples are illustrated on how to use the factors to estimate 

internal tunnel support pressures. 

10.2 Problem Definition and Methodology 

Finite element limit analysis is the numerical computational method of limit analysis 

that employs the classical plasticity theorems with the concept of finite element and 

mathematical programming (Sloan (2013). It is particularly powerful when upper 

bound (UB) and lower bound (LB) estimates are calculated together so that the true 

collapse load is bracketed. The difference between the two limits then provides an 

exact measure of the discretisation error in the solution and can be used to refine the 
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meshes until a suitably accurate estimate of the collapse load is found (Lyamin & Sloan 

2002b, 2002a). The initial developments using linear programming are in (Sloan 

1988b, 1989). The newer developments are based on a much faster nonlinear 

programming formulation by (Lyamin & Sloan 2002b, 2002a) and (Krabbenhøft et al. 

2005; Krabbenhøft et al. 2007). The underlying bound theorems assume a rigid-

perfectly plastic material with associated plasticity, i.e. the dilation angle was assumed 

to equal to the friction angle. The details of limit analysis and FELA can be found in 

Sloan (2013). Recently, the FELA has been successfully applied to solve a variety of 

drained and undrained stability problems in geotechnical engineering 

(Keawsawasvong & Ukritchon 2017; Ukritchon & Keawsawasvong 2017; Shiau & 

Al-Asadi 2020a, 2020b, 2020c). Consequently, OptumG2 (OptumCE 2017) was 

chosen in this study to compute the stability factors Fc, Fs and Fγ for the calculation of 

minimum heading support pressures by using Equation 10.1.  

t c s scF F DF                                                                                                  (10.1) 

The layout of the plane strain heading stability problem is shown in Figure 10.1. The 

tunnel has a diameter (D), cover depth (C) above its crown and axis depth (H) below 

the ground surface. The ground surface is horizontal and subject to a vertical surcharge 

(σs), while the normal internal pressure of the tunnel is (σt). 

 

Figure 10.1. Problem Definition. 
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Because the geometry of the problem is assumed to be a very long unlined circular 

tunnel, a plane strain condition was adopted (Shiau & Sams 2019).  

Figure 10.2 shows a typical FELA mesh used in the analysis. In both upper and lower 

bound calculations, the soil mass was discretised as triangular elements and modelled 

as Mohr-Coulomb material with the associated flow rule. 

 

Figure 10.2. Numerical model, boundary condition and adaptive mesh for OptumG2. 

The boundary condition of the problem was defined such that the bottom boundary of 

the model was fixed in both vertical and horizontal directions, while the left and the 

right boundary of the problem was allowed to move only in the vertical direction.  

The size of the problem domains was chosen to be large enough so that the plastic 

yielding zone was contained within the domain. The UB and LB solutions of the 

limiting pressure σt are solved by employing the second-order cone programming 

(Krabbenhøft et al. (2007).  

An automatically adaptive mesh refinement was employed in both the UB and LB 

simulations to compute the tight UB and LB solutions. Using the load multiplier 

method, the numerical results of tunnel stability factors (Fc, Fs and Fγ) are obtained for 

estimating the minimum support pressure (σt) at collapse.  
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10.3 Results and Discussion 

Wide ranges of tunnel cover-to-diameter ratios (C/D = 1 - 10) and angles of internal 

friction (ϕ = 0˚- 40˚) have been studied. The obtained results of the stability factors 

(Fc, Fs and Fγ) are presented in Tables 10.1 to 10.6 and Figures 10.3 to 10.5.  

For all stability factors (Fc, Fs and Fγ) presented in this study, there are good 

agreements between the upper and the lower bounds results, and the limits of each 

stability factor are within a few percentages from each other.  

As discussed in Sloan (2013), using both upper bound and lower bound of the finite 

element limit analysis, it is not difficult to explore the modelling error from the other 

sources of error, and the real solution can be estimated with high accuracy. 

10.3.1 The stability factor for cohesion, Fc 

Assuming no surface load ( 0)s   and a weightless soil ( 0)   equation 10.1 

reduces to ' .t cc F    Using a constant value of cohesion c, a total of 820 FELA runs 

was conducted to obtain the upper and lower bounds results of σt. The cohesion 

stability factor (Fc) is then calculated as ( / ').c tF c   This is done for (ϕ = 0˚- 40˚) 

and (C/D = 1 - 10), as shown in Tables 10.1 and 10.2 and Figure 10.3.  
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Table 10-1.Fc vs ϕ (LB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fc, LB) 

1 2 3 4 5 6 7 8 9 10 

0 2.412 3.411 4.079 4.555 4.931 5.281 5.559 5.799 6.028 6.211 

1 2.399 3.357 3.980 4.453 4.800 5.112 5.372 5.602 5.797 5.977 

2 2.380 3.310 3.898 4.336 4.670 4.955 5.187 5.398 5.576 5.741 

3 2.352 3.255 3.818 4.226 4.532 4.800 5.017 5.206 5.371 5.511 

4 2.335 3.207 3.731 4.104 4.401 4.641 4.839 5.017 5.163 5.295 

5 2.320 3.137 3.645 3.997 4.269 4.490 4.678 4.823 4.957 5.081 

6 2.296 3.089 3.558 3.888 4.136 4.337 4.503 4.643 4.763 4.860 

7 2.268 3.028 3.476 3.779 4.007 4.188 4.334 4.467 4.577 4.658 

8 2.244 2.969 3.384 3.667 3.875 4.045 4.178 4.289 4.388 4.467 

9 2.225 2.913 3.297 3.56 3.746 3.893 4.014 4.121 4.205 4.282 

10 2.203 2.850 3.211 3.456 3.627 3.762 3.868 3.957 4.033 4.097 

11 2.174 2.792 3.126 3.34 3.498 3.622 3.720 3.795 3.863 3.918 

12 2.145 2.734 3.041 3.237 3.376 3.490 3.570 3.645 3.702 3.750 

13 2.119 2.673 2.955 3.134 3.264 3.357 3.430 3.494 3.543 3.587 

14 2.090 2.612 2.871 3.035 3.148 3.232 3.295 3.352 3.395 3.430 

15 2.062 2.548 2.784 2.934 3.035 3.107 3.165 3.213 3.251 3.282 

16 2.029 2.486 2.703 2.837 2.924 2.987 3.039 3.078 3.110 3.138 

17 1.999 2.425 2.619 2.740 2.815 2.875 2.916 2.952 2.978 3.001 

18 1.966 2.365 2.537 2.643 2.712 2.761 2.799 2.828 2.851 2.870 

19 1.934 2.302 2.459 2.553 2.613 2.655 2.687 2.711 2.729 2.744 

20 1.902 2.24 2.379 2.465 2.515 2.551 2.577 2.598 2.614 2.627 

21 1.870 2.179 2.308 2.377 2.421 2.451 2.473 2.491 2.503 2.513 

22 1.833 2.117 2.233 2.292 2.330 2.355 2.374 2.388 2.398 2.406 

23 1.800 2.057 2.159 2.210 2.242 2.263 2.279 2.289 2.298 2.305 

24 1.764 1.998 2.085 2.130 2.156 2.175 2.187 2.197 2.203 2.209 

25 1.727 1.938 2.016 2.054 2.075 2.09 2.101 2.108 2.113 2.117 

26 1.690 1.883 1.948 1.979 1.998 2.009 2.018 2.023 2.028 2.031 

27 1.652 1.825 1.882 1.908 1.922 1.932 1.939 1.943 1.946 1.949 

28 1.618 1.769 1.816 1.838 1.851 1.858 1.863 1.867 1.869 1.871 

29 1.580 1.713 1.754 1.772 1.782 1.788 1.791 1.794 1.796 1.797 

30 1.541 1.659 1.693 1.708 1.715 1.720 1.723 1.725 1.727 1.727 

31 1.504 1.606 1.635 1.646 1.652 1.656 1.658 1.659 1.660 1.661 

32 1.465 1.554 1.578 1.586 1.591 1.594 1.596 1.597 1.598 1.598 

33 1.427 1.503 1.523 1.530 1.534 1.536 1.537 1.538 1.538 1.538 

34 1.390 1.455 1.47 1.475 1.478 1.480 1.481 1.481 1.481 1.482 

35 1.351 1.407 1.419 1.423 1.425 1.426 1.427 1.427 1.427 1.428 

36 1.314 1.360 1.370 1.373 1.374 1.375 1.376 1.376 1.376 1.376 

37 1.276 1.315 1.322 1.325 1.326 1.326 1.326 1.327 1.327 1.327 

38 1.239 1.271 1.277 1.278 1.279 1.279 1.280 1.280 1.280 1.280 

39 1.202 1.228 1.233 1.234 1.234 1.235 1.235 1.235 1.235 1.235 

40 1.166 1.187 1.190 1.191 1.191 1.192 1.192 1.192 1.192 1.192 
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Table 10-2. Fc vs ϕ (UB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fc, UB) 

1 2 3 4 5 6 7 8 9 10 

0 2.443 3.469 4.144 4.65 5.052 5.389 5.675 5.925 6.148 6.349 

1 2.426 3.415 4.058 4.533 4.909 5.220 5.486 5.717 5.921 6.104 

2 2.406 3.361 3.971 4.418 4.767 5.055 5.300 5.509 5.696 5.863 

3 2.386 3.306 3.883 4.301 4.628 4.892 5.114 5.308 5.478 5.627 

4 2.366 3.249 3.795 4.185 4.487 4.731 4.935 5.110 5.262 5.398 

5 2.345 3.192 3.707 4.070 4.348 4.571 4.757 4.916 5.052 5.174 

6 2.322 3.134 3.617 3.955 4.212 4.414 4.583 4.726 4.849 4.958 

7 2.299 3.074 3.529 3.841 4.076 4.260 4.412 4.541 4.651 4.748 

8 2.276 3.015 3.439 3.728 3.942 4.110 4.246 4.359 4.458 4.543 

9 2.250 2.955 3.350 3.615 3.811 3.961 4.083 4.185 4.271 4.346 

10 2.225 2.892 3.261 3.505 3.681 3.816 3.925 4.014 4.091 4.157 

11 2.199 2.830 3.172 3.394 3.553 3.674 3.771 3.851 3.917 3.974 

12 2.171 2.769 3.084 3.286 3.429 3.536 3.621 3.690 3.748 3.798 

13 2.143 2.707 2.996 3.179 3.306 3.401 3.476 3.537 3.586 3.629 

14 2.114 2.643 2.909 3.073 3.187 3.271 3.336 3.389 3.431 3.467 

15 2.084 2.580 2.822 2.970 3.071 3.144 3.200 3.245 3.282 3.313 

16 2.054 2.517 2.737 2.869 2.957 3.021 3.069 3.108 3.139 3.165 

17 2.022 2.453 2.653 2.769 2.847 2.902 2.944 2.976 3.002 3.024 

18 1.989 2.391 2.570 2.673 2.740 2.788 2.823 2.850 2.872 2.890 

19 1.957 2.327 2.488 2.578 2.636 2.677 2.706 2.729 2.747 2.762 

20 1.923 2.264 2.408 2.486 2.536 2.570 2.595 2.614 2.628 2.640 

21 1.889 2.201 2.329 2.397 2.439 2.468 2.488 2.504 2.516 2.525 

22 1.854 2.139 2.252 2.310 2.346 2.370 2.386 2.399 2.408 2.416 

23 1.818 2.077 2.176 2.226 2.256 2.275 2.289 2.299 2.307 2.313 

24 1.781 2.016 2.102 2.144 2.169 2.185 2.196 2.204 2.210 2.215 

25 1.745 1.956 2.030 2.066 2.086 2.099 2.108 2.114 2.119 2.122 

26 1.707 1.897 1.960 1.990 2.006 2.017 2.023 2.028 2.032 2.034 

27 1.670 1.838 1.892 1.916 1.930 1.938 1.943 1.947 1.950 1.952 

28 1.632 1.780 1.826 1.846 1.856 1.863 1.867 1.870 1.872 1.873 

29 1.593 1.724 1.762 1.778 1.786 1.791 1.794 1.796 1.798 1.799 

30 1.555 1.669 1.700 1.713 1.719 1.723 1.725 1.727 1.728 1.729 

31 1.516 1.615 1.640 1.650 1.655 1.658 1.660 1.661 1.662 1.662 

32 1.477 1.562 1.582 1.590 1.594 1.596 1.597 1.598 1.599 1.599 

33 1.438 1.510 1.527 1.533 1.536 1.537 1.538 1.538 1.539 1.539 

34 1.399 1.460 1.473 1.478 1.480 1.481 1.481 1.482 1.482 1.482 

35 1.360 1.411 1.421 1.425 1.426 1.427 1.427 1.428 1.428 1.428 

36 1.322 1.364 1.372 1.374 1.375 1.376 1.376 1.376 1.376 1.376 

37 1.283 1.318 1.324 1.326 1.326 1.327 1.327 1.327 1.327 1.327 

38 1.246 1.273 1.278 1.279 1.279 1.280 1.280 1.280 1.280 1.280 

39 1.208 1.230 1.233 1.234 1.235 1.235 1.235 1.235 1.235 1.235 

40 1.171 1.189 1.191 1.191 1.192 1.192 1.192 1.192 1.192 1.192 
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Figure 10.3. Fc vs ϕ (UB and LB) for various depth ratios (C/D = 1 - 10). 

Figure 10.3 shows that for all C/D ratios, the cohesion stability factor Fc decreases 

with the increasing of ϕ. It is to be noted that all curves of Fc merge in one line at 

approximate ϕ of 35 ˚ and Fc reaches a minimum value of 1.19 at ϕ = 40˚. Noting that 

Fc increases with increasing C/D, the effect of the C/D ratio on Fc is significant for ϕ 

< 20 ˚. A double regression analysis (exponential and logarithmic) was employed to 

develop Equation 10.2 using the lower bound Fc results. The Equation has a correlation 

coefficient (R2) = 0.995.  

(( 0.01 ln( / ) 0.02) )(1.558 ln( / ) 2.641) C D
cF C D e  ´  ´ ´  ´                                                  (10.2) 

10.3.2 The stability factor for surcharge, Fs 

Assuming a cohesionless soil ( ' 0)c   and a weightless soil ( 0)  , Equation 10.1 

reduces to .t s sF   Using a constant value of surface load σs, a total of 820 FELA 

runs was conducted to obtain the upper and lower bounds results of the surcharge 
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stability factor (Fs) is then calculated as ( / ).s t sF    This is done for (ϕ = 0˚- 40˚) 

and (C/D = 1 - 10), as shown in Tables 10.3-10.4 and Figure 10.4.  

Table 10-3. Fs vs ϕ (LB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fs, LB) 

1 2 3 4 5 6 7 8 9 10 

0 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.994 0.994 0.994 

1 0.956 0.938 0.927 0.918 0.911 0.906 0.901 0.897 0.893 0.89 

2 0.915 0.881 0.860 0.844 0.832 0.822 0.813 0.806 0.800 0.794 

3 0.874 0.826 0.796 0.774 0.758 0.744 0.732 0.722 0.713 0.705 

4 0.834 0.773 0.735 0.709 0.688 0.671 0.657 0.644 0.634 0.625 

5 0.795 0.722 0.677 0.646 0.622 0.603 0.586 0.573 0.561 0.550 

6 0.756 0.673 0.623 0.588 0.561 0.54 0.522 0.507 0.494 0.484 

7 0.719 0.625 0.570 0.532 0.504 0.482 0.463 0.447 0.433 0.423 

8 0.682 0.580 0.521 0.481 0.452 0.428 0.409 0.393 0.379 0.368 

9 0.646 0.536 0.474 0.432 0.403 0.379 0.36 0.344 0.330 0.318 

10 0.609 0.494 0.430 0.387 0.357 0.333 0.314 0.299 0.285 0.274 

11 0.575 0.454 0.389 0.347 0.316 0.292 0.273 0.258 0.245 0.234 

12 0.542 0.416 0.351 0.308 0.279 0.254 0.237 0.221 0.210 0.199 

13 0.508 0.381 0.315 0.273 0.243 0.222 0.205 0.190 0.178 0.168 

14 0.477 0.346 0.281 0.240 0.212 0.191 0.176 0.161 0.150 0.141 

15 0.446 0.315 0.251 0.211 0.184 0.164 0.149 0.136 0.126 0.117 

16 0.416 0.285 0.222 0.184 0.159 0.14 0.126 0.114 0.105 0.097 

17 0.387 0.256 0.197 0.160 0.137 0.118 0.105 0.095 0.086 0.079 

18 0.359 0.229 0.173 0.138 0.116 0.100 0.088 0.078 0.071 0.065 

19 0.332 0.205 0.151 0.118 0.098 0.083 0.072 0.064 0.057 0.052 

20 0.306 0.182 0.132 0.100 0.082 0.069 0.060 0.052 0.046 0.041 

21 0.280 0.162 0.112 0.085 0.068 0.057 0.048 0.041 0.037 0.033 

22 0.258 0.143 0.096 0.072 0.056 0.046 0.038 0.033 0.029 0.025 

23 0.234 0.125 0.081 0.060 0.046 0.037 0.031 0.026 0.022 0.019 

24 0.213 0.108 0.069 0.050 0.038 0.030 0.024 0.020 0.017 0.015 

25 0.193 0.094 0.058 0.040 0.030 0.023 0.018 0.015 0.012 0.011 

26 0.174 0.080 0.048 0.033 0.024 0.018 0.014 0.011 0.009 0.008 

27 0.157 0.068 0.039 0.026 0.019 0.014 0.010 0.008 0.006 0.005 

28 0.138 0.057 0.032 0.021 0.014 0.010 0.008 0.006 0.004 0.003 

29 0.123 0.049 0.026 0.016 0.011 0.007 0.005 0.004 0.003 0.002 

30 0.109 0.041 0.021 0.012 0.008 0.005 0.003 0.002 0.002 0.001 

31 0.095 0.033 0.016 0.009 0.006 0.003 0.002 0.001 0.001 0 

32 0.084 0.027 0.012 0.007 0.004 0.002 0.001 0 0 0 

33 0.072 0.022 0.009 0.005 0.003 0.001 0 0 0 0 

34 0.062 0.018 0.007 0.003 0.001 0 0 0 0 0 

35 0.052 0.013 0.005 0.002 0.001 0 0 0 0 0 

36 0.044 0.011 0.003 0.001 0 0 0 0 0 0 

37 0.037 0.008 0.002 0 0 0 0 0 0 0 

38 0.030 0.006 0.001 0 0 0 0 0 0 0 

39 0.026 0.004 0.001 0 0 0 0 0 0 0 

40 0.020 0.003 0 0 0 0 0 0 0 0 
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Table 10-4. Fs vs ϕ (UB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fs, UB) 

1 2 3 4 5 6 7 8 9 10 

0 0.998 0.997 0.996 0.995 0.995 0.995 0.994 0.994 0.994 0.994 

1 0.955 0.937 0.925 0.916 0.909 0.904 0.899 0.895 0.891 0.887 

2 0.914 0.879 0.857 0.841 0.829 0.818 0.810 0.802 0.795 0.789 

3 0.873 0.823 0.793 0.770 0.753 0.739 0.727 0.716 0.708 0.699 

4 0.832 0.770 0.731 0.703 0.682 0.664 0.65 0.638 0.627 0.617 

5 0.793 0.718 0.672 0.640 0.615 0.595 0.579 0.565 0.553 0.542 

6 0.754 0.668 0.616 0.580 0.553 0.532 0.514 0.499 0.486 0.474 

7 0.715 0.619 0.563 0.524 0.496 0.473 0.454 0.438 0.424 0.412 

8 0.678 0.573 0.513 0.472 0.442 0.418 0.399 0.383 0.369 0.357 

9 0.641 0.529 0.466 0.424 0.393 0.369 0.349 0.333 0.319 0.307 

10 0.605 0.487 0.422 0.379 0.347 0.323 0.304 0.288 0.275 0.263 

11 0.570 0.447 0.380 0.337 0.306 0.282 0.263 0.248 0.235 0.224 

12 0.536 0.409 0.341 0.298 0.268 0.245 0.227 0.212 0.199 0.189 

13 0.503 0.372 0.305 0.263 0.233 0.211 0.194 0.180 0.168 0.159 

14 0.471 0.338 0.272 0.231 0.202 0.181 0.165 0.152 0.141 0.132 

15 0.439 0.306 0.241 0.201 0.174 0.155 0.139 0.127 0.117 0.109 

16 0.409 0.276 0.212 0.174 0.149 0.131 0.117 0.106 0.097 0.089 

17 0.380 0.247 0.186 0.151 0.127 0.110 0.097 0.087 0.079 0.073 

18 0.352 0.221 0.162 0.129 0.107 0.092 0.080 0.071 0.064 0.058 

19 0.324 0.196 0.141 0.110 0.090 0.076 0.065 0.058 0.051 0.046 

20 0.298 0.174 0.121 0.093 0.074 0.062 0.053 0.046 0.041 0.036 

21 0.273 0.153 0.104 0.078 0.061 0.050 0.042 0.036 0.032 0.028 

22 0.249 0.134 0.088 0.064 0.050 0.040 0.033 0.028 0.025 0.022 

23 0.227 0.116 0.074 0.053 0.040 0.032 0.026 0.022 0.019 0.016 

24 0.205 0.100 0.062 0.043 0.032 0.025 0.020 0.017 0.014 0.012 

25 0.185 0.086 0.051 0.035 0.025 0.019 0.015 0.012 0.010 0.008 

26 0.166 0.073 0.042 0.028 0.020 0.015 0.011 0.009 0.007 0.006 

27 0.148 0.062 0.034 0.022 0.015 0.011 0.008 0.006 0.005 0.004 

28 0.131 0.051 0.027 0.017 0.011 0.008 0.006 0.004 0.003 0.002 

29 0.115 0.043 0.022 0.013 0.008 0.005 0.004 0.003 0.002 0.001 

30 0.101 0.035 0.017 0.009 0.006 0.004 0.002 0.001 0.001 0 

31 0.088 0.028 0.013 0.007 0.004 0.002 0.001 0 0 0 

32 0.076 0.023 0.010 0.005 0.002 0.001 0 0 0 0 

33 0.065 0.018 0.007 0.003 0.001 0 0 0 0 0 

34 0.055 0.014 0.005 0.002 0.001 0 0 0 0 0 

35 0.046 0.010 0.003 0.001 0 0 0 0 0 0 

36 0.039 0.008 0.002 0 0 0 0 0 0 0 

37 0.032 0.006 0.001 0 0 0 0 0 0 0 

38 0.026 0.004 0 0 0 0 0 0 0 0 

39 0.021 0.002 0 0 0 0 0 0 0 0 

40 0.016 0.001 0 0 0 0 0 0 0 0 
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Figure 10.4. Fs vs ϕ (UB and LB) for various depth ratios (C/D = 1 - 10). 

Figure 10.4 shows that, for all C/D ratios, the surcharge stability factor Fs decreases 

with the increasing of ϕ. Noting that Fs has a minimum value of zero at ϕ = 40˚, the 

effect of surcharge loading is practically none when the soil friction angle ϕ is large. 

This is due to the strong material arching for soils with large ϕ (Shiau & Al-Asadi 

2020b, 2020c). On the other hand, Fs has a maximum value of one at ϕ = 0˚ (i.e. 

undrained clay). Different level of the C/D effect on Fs can be observed for 0 ˚ < ϕ < 

40˚. Take ϕ = 15˚ for example, the deeper the tunnel is, the smaller the Fs (surcharge 

effect) is. 

A double regression analysis (exponential and logarithmic) was employed to develop 

Equation 10.3 using the lower bound Fs results. Equation 10.3 has a correlation 

coefficient (R2) = 0.991.  

(( 0.061 ln( / ) 0.065) )(0.082 ( / ) 1.150)  ´  ´ ´  ´ C D
sF C D e                                                 (10.3) 
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10.3.3 The stability factor for unit weight, Fγ 

To investigate the unit weight stability factor (Fγ) and its effect on the tunnel stability, 

both the cohesion (c’) and the surface load (σs) are set to zero. Equation 10.1 now 

reduces to .t DF   Using constant values of γ and D, a total of 820 FELA runs was 

conducted to obtain the upper and lower bounds results of σt. The unit weight stability 

factor (Fγ) is then calculated as Fγ = (σt/γD). This is done for (ϕ = 0˚- 40˚) and (C/D = 

1 - 10), as shown in Figure 10.5 and Tables 10.5-10.6. 

 

Figure 10.5. Fγ vs ϕ (UB and LB) for various depth ratios (C/D = 1 - 10). 

Figure 10.5 shows that Fγ has a maximum value of (C/D + 0.5) at ϕ = 0˚ (i.e. undrained 

clay). A dramatic decline in Fγ with the increasing ϕ is observed for all curves. The 

value of Fγ is very sensitive to the increase of ϕ value due to the soil arching effect. 

Most C/D curves merge into one line at approximately ϕ ≥ 25˚. For C/D ≤ 2, the curves 

merge at ϕ ≥ 30˚. This is because the shallow depths provide smaller soil arching 

support. 
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Table 10-5. Fγ vs ϕ (LB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fγ, LB) 

1 2 3 4 5 6 7 8 9 10 

0 1.521 2.582 3.549 4.580 5.545 6.518 7.515 8.581 9.526 10.547 

1 1.431 2.405 3.312 4.249 5.141 6.034 6.932 7.884 8.773 9.651 

2 1.352 2.249 3.095 3.954 4.774 5.589 6.391 7.187 7.977 8.766 

3 1.275 2.109 2.901 3.671 4.421 5.158 5.880 6.592 7.291 7.993 

4 1.199 1.983 2.711 3.411 4.090 4.762 5.404 6.037 6.663 7.274 

5 1.151 1.867 2.541 3.184 3.803 4.400 4.965 5.527 6.070 6.618 

6 1.104 1.754 2.378 2.965 3.522 4.045 4.552 5.037 5.521 5.995 

7 1.034 1.658 2.233 2.765 3.258 3.725 4.175 4.601 5.017 5.422 

8 0.973 1.566 2.094 2.571 3.007 3.419 3.817 4.189 4.545 4.893 

9 0.926 1.482 1.962 2.388 2.776 3.142 3.485 3.797 4.108 4.399 

10 0.882 1.403 1.833 2.212 2.558 2.874 3.165 3.448 3.715 3.962 

11 0.842 1.327 1.719 2.056 2.358 2.627 2.879 3.114 3.342 3.550 

12 0.804 1.252 1.603 1.901 2.161 2.396 2.610 2.813 2.997 3.176 

13 0.769 1.181 1.493 1.754 1.985 2.181 2.357 2.528 2.691 2.828 

14 0.735 1.114 1.395 1.624 1.819 1.985 2.140 2.274 2.397 2.523 

15 0.704 1.049 1.291 1.493 1.661 1.800 1.932 2.047 2.144 2.233 

16 0.673 0.986 1.202 1.375 1.511 1.625 1.738 1.832 1.912 1.984 

17 0.644 0.927 1.117 1.261 1.374 1.477 1.561 1.635 1.705 1.762 

18 0.614 0.868 1.032 1.154 1.252 1.335 1.400 1.460 1.513 1.561 

19 0.586 0.814 0.954 1.058 1.137 1.197 1.257 1.309 1.338 1.375 

20 0.559 0.762 0.880 0.970 1.028 1.074 1.125 1.164 1.194 1.212 

21 0.533 0.712 0.812 0.885 0.931 0.982 1.009 1.036 1.057 1.076 

22 0.507 0.663 0.749 0.806 0.845 0.881 0.904 0.924 0.937 0.954 

23 0.481 0.619 0.687 0.737 0.771 0.793 0.812 0.823 0.837 0.844 

24 0.458 0.577 0.631 0.671 0.691 0.714 0.728 0.735 0.750 0.749 

25 0.433 0.535 0.582 0.612 0.626 0.647 0.654 0.656 0.662 0.668 

26 0.410 0.494 0.536 0.558 0.574 0.584 0.589 0.589 0.594 0.591 

27 0.389 0.460 0.491 0.508 0.518 0.525 0.531 0.531 0.533 0.532 

28 0.367 0.428 0.450 0.466 0.471 0.477 0.480 0.481 0.478 0.477 

29 0.349 0.394 0.417 0.426 0.433 0.432 0.435 0.435 0.432 0.432 

30 0.327 0.366 0.382 0.390 0.391 0.390 0.397 0.395 0.397 0.395 

31 0.308 0.341 0.352 0.358 0.358 0.361 0.360 0.359 0.364 0.356 

32 0.290 0.315 0.323 0.328 0.328 0.329 0.330 0.328 0.327 0.326 

33 0.272 0.291 0.298 0.301 0.302 0.301 0.302 0.301 0.301 0.299 

34 0.256 0.269 0.274 0.277 0.278 0.276 0.277 0.278 0.278 0.275 

35 0.240 0.249 0.255 0.256 0.258 0.255 0.256 0.257 0.257 0.254 

36 0.225 0.231 0.235 0.237 0.237 0.238 0.237 0.237 0.238 0.237 

37 0.210 0.216 0.220 0.220 0.219 0.221 0.221 0.219 0.220 0.219 

38 0.197 0.200 0.204 0.204 0.206 0.207 0.203 0.204 0.204 0.208 

39 0.182 0.187 0.190 0.193 0.194 0.194 0.192 0.193 0.190 0.191 

40 0.172 0.175 0.176 0.181 0.181 0.181 0.181 0.181 0.181 0.181 
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Table 10-6. Fγ vs ϕ (UB) for various depth ratios (C/D = 1 - 10). 

ϕ 
C/D (Fγ, UB) 

1 2 3 4 5 6 7 8 9 10 

0 1.514 2.583 3.555 4.572 5.543 6.517 7.552 8.572 9.521 10.543 

1 1.436 2.402 3.309 4.237 5.130 6.019 6.950 7.865 8.747 9.626 

2 1.355 2.242 3.087 3.940 4.756 5.563 6.363 7.157 7.945 8.728 

3 1.279 2.099 2.887 3.647 4.390 5.119 5.838 6.546 7.245 7.936 

4 1.208 1.972 2.694 3.391 4.064 4.719 5.360 5.987 6.603 7.209 

5 1.148 1.853 2.522 3.157 3.763 4.349 4.915 5.468 6.007 6.535 

6 1.096 1.743 2.360 2.935 3.479 3.999 4.498 4.981 5.450 5.907 

7 1.027 1.646 2.212 2.731 3.215 3.673 4.111 4.531 4.936 5.329 

8 0.967 1.555 2.072 2.537 2.967 3.369 3.750 4.113 4.461 4.798 

9 0.919 1.470 1.939 2.354 2.733 3.084 3.413 3.724 4.020 4.306 

10 0.876 1.389 1.813 2.181 2.512 2.817 3.099 3.365 3.615 3.856 

11 0.836 1.311 1.692 2.017 2.305 2.568 2.808 3.033 3.244 3.444 

12 0.798 1.237 1.577 1.863 2.112 2.335 2.539 2.727 2.904 3.069 

13 0.762 1.166 1.468 1.716 1.930 2.121 2.291 2.448 2.593 2.728 

14 0.729 1.097 1.364 1.579 1.762 1.921 2.063 2.193 2.310 2.419 

15 0.697 1.031 1.266 1.450 1.604 1.737 1.856 1.959 2.055 2.142 

16 0.666 0.968 1.172 1.330 1.459 1.568 1.664 1.748 1.826 1.895 

17 0.636 0.907 1.085 1.218 1.325 1.413 1.491 1.558 1.618 1.672 

18 0.607 0.849 1.002 1.113 1.201 1.272 1.334 1.387 1.433 1.475 

19 0.579 0.794 0.924 1.016 1.087 1.144 1.193 1.233 1.269 1.301 

20 0.551 0.741 0.851 0.926 0.983 1.028 1.065 1.097 1.123 1.147 

21 0.524 0.691 0.783 0.844 0.89 0.923 0.952 0.975 0.995 1.013 

22 0.498 0.643 0.719 0.769 0.803 0.829 0.851 0.868 0.882 0.895 

23 0.473 0.598 0.661 0.699 0.725 0.745 0.76 0.773 0.783 0.792 

24 0.448 0.555 0.606 0.636 0.656 0.67 0.681 0.689 0.697 0.702 

25 0.424 0.515 0.555 0.578 0.593 0.603 0.610 0.616 0.621 0.625 

26 0.401 0.478 0.509 0.526 0.536 0.544 0.549 0.553 0.555 0.557 

27 0.379 0.442 0.467 0.479 0.486 0.491 0.494 0.497 0.499 0.500 

28 0.357 0.409 0.428 0.437 0.442 0.445 0.447 0.448 0.449 0.450 

29 0.336 0.379 0.392 0.399 0.402 0.404 0.405 0.405 0.406 0.407 

30 0.316 0.350 0.360 0.364 0.366 0.367 0.368 0.368 0.368 0.369 

31 0.297 0.324 0.331 0.333 0.335 0.335 0.336 0.335 0.336 0.336 

32 0.279 0.300 0.304 0.306 0.307 0.307 0.307 0.307 0.307 0.307 

33 0.261 0.277 0.28 0.281 0.282 0.282 0.282 0.282 0.281 0.281 

34 0.245 0.256 0.258 0.259 0.259 0.259 0.259 0.259 0.259 0.259 

35 0.229 0.237 0.239 0.239 0.239 0.239 0.238 0.239 0.239 0.238 

36 0.214 0.220 0.221 0.221 0.221 0.221 0.221 0.220 0.220 0.220 

37 0.200 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 0.204 

38 0.187 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 0.189 

39 0.174 0.176 0.176 0.176 0.176 0.176 0.175 0.175 0.175 0.175 

40 0.163 0.164 0.163 0.163 0.163 0.163 0.163 0.163 0.163 0.162 
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Noting that underground excavations in cohesionless soils (i.e. dry sand) are unstable 

and internal support pressure is always needed regardless of how high the value of 

internal friction angle is. It is interesting to note that, for all depth ratios C/D, Fγ (LB) 

has a minimum value of (0.18) at ϕ = 40˚.  

A double regression analysis (exponential and logarithmic) was employed to develop 

Equation 10.4 using the lower bound Fs results. Equation 10.4 has a correlation 

coefficient (R2) = 0.999.  

0.860 (( 0.024 ln( / ) 0.051) )1.521 ( / ) 


 ´  ´ ´ ´ C DF C D e                                                      (10.4) 

10.4 Comparison of Results 

Finite element limit analysis provides a comparison between the upper and lower 

limits, which can be used to verify the results and increase the user confidence. 

However, by comparing the upper and lower bounds with other available solutions 

does increase the credibility of the study and the feasibility of implementing it in 

practice. 

10.4.1 Comparison with a plane strain tunnel heading 

Within the same parametric study (C/D = 1 - 10 and ϕ = 0˚ - 40˚), Figures 10.6-10.8 

show comparisons of tunnel stability factors (Fc, Fs and Fγ) between the present study 

and the plain strain tunnel heading in Shiau and Al-Asadi (2020b).  

The comparisons show the same trend: i.e. the stability factors decrease with the 

increasing of the internal friction angle. In general, circular tunnel stability factors are 

consistently higher than tunnel heading stability factors. This indicates that the stability 

of the circular tunnel is more critical than the stability of the tunnel heading. In other 

words, the support pressure required to maintain the stability of the circular tunnel is 

higher than that in tunnel heading for the same soil properties and depth ratios. This 

difference is due to the variance in geometry between the two cases. The circular tunnel 

is an unlined cylindrical cavity with infinite length, while the tunnel heading has a long 

unsupported vertical face. Therefore, the geometric arching of the tunnel heading is 

greater than that for the unlined circular tunnel. 
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Figure 10.6. Comparison Fc (LB) of this study with that for tunnel heading (Shiau and 

Al-Asadi, 2020b). 

 

Figure 10.7. Comparison Fs (LB) of this study with that for tunnel heading (Shiau and 

Al-Asadi, 2020b). 
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Figure 10.8. Comparison Fγ (LB) of this study with that for tunnel heading (Shiau and 

Al-Asadi, 2020b). 

10.4.2 Comparison with a 2D circular tunnel heading 

Figures 10.9-10.10 compares the critical pressure ratio ( / ').t c  between (Lyamin & 

Sloan 2000) and the present study. In (Lyamin & Sloan 2000), a dimensionless critical 

pressure ratio ( / ').t c  was presented. Their study did not produce stability factors 

for a direct comparison. Unlike our stability factor approach, their solution is only 

suitable for cohesive-frictional soil with cohesion greater than zero (cannot be used for 

cohesionless soil) and for shallow depth ratios (C/D ≤ 5). 

The comparison was achieved by assuming both of the surcharge pressure (σs) and the 

unit weight of the soil (γ) are equal to zero. Therefore, the cohesion stability factor is 

equal to ( / ').t c  The comparisons show a very good agreement between the two 

studies for LB and UB analyses. 
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Figure 10.9. Comparison of (-σt/c’, LB) of this study with that for circular tunnel from 

(Lyamin and Sloan, 2000). 

 

Figure 10.10. Comparison of (-σt/c’, UB) of this study with that for circular tunnel 

from (Lyamin and Sloan, 2000). 
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10.5 Examples 

A circular tunnel in greenfield conditions (σs = 0) has a diameter of 6m and a cover 

depth of 18m. The soil is found to be cohesionless (c’ = 0) with a unit weight of 18 

kN/m3 and an angle of internal friction of 22˚.  

For C/D = 3 and ϕ = 22˚, Tables 10.1, 10.3 and 10.5 give lower bound Fc = 2.233, Fs 

= 0.096 and Fγ = 0.749. Equations 10.2 to 10.4 give lower bound Fc = 2.226, Fs = 

0.096 and Fγ = 0.724. 

10.5.1 Minimum support pressure to maintain stability 

Equation 10.1 reduces to .t DF   for such a cohesionless soil without surcharge (c’ 

and σs are equal to zero). Substituting γ, D, and Fγ into the equation, σt = 80.89 kPa 

(using tables) is the minimum support pressure to maintain soil stability for the 

cohesionless soil with ϕ = 22˚. 

10.5.2 Minimum cohesion to maintain stability 

The minimum cohesion required to maintain stability without internal support pressure 

(σt = 0) can be estimated using 0 ( ) ( 2.233 18 6 0.749).t ccF DF c       ´  ´ ´  

Therefore c is calculated as 36.23 kPa. This is approximately equal to (36.23/γD) = 

33.55% of (γD) value for this case when ϕ = 22˚. 

10.5.3 Effect of the depth ratios (C/D = 3, 6 and 8)  

For the same example but the angle of internal friction is 40˚, determine the critical 

support pressure for the three depth ratios C/D = 3, 6 and 8. 

Using Tables 10.1, 10.3, and 10.5, the lower bound stability factors for the three depth 

ratios of ϕ = 40˚ are: 

For C/D = 3: Fc = 1.190, Fs = 0 and Fγ = 0.176; σt = 19.01 kPa 

For C/D = 6: Fc = 1.192, Fs = 0 and Fγ = 0.181; σt = 19.55 kPa 

For C/D = 8: Fc = 1.192, Fs = 0 and Fγ = 0.181; σt = 19.55 kPa 

The above calculations have shown that the support pressures are independent of the 

depths for a large value of soil friction angle. This is due to the effect of material 

arching as discussed before. 
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10.6 Conclusion 

Numerical simulations through finite element limit analyses were performed to study 

the stability of a circular tunnel in cohesive-frictional soil. Parametric studies for 

various depth ratios (C/D = 1 - 10) and internal friction angles (ϕ = 0˚- 40˚) were 

achieved to calculate the lower and upper bound tunnel stability factors (Fc, Fs and Fγ). 

The upper and lower bounds of each factor are in a good agreement with only a few 

percentages of each other. The results were also favourably compared with those 

existing solutions in the literature. Some examples are used to illustrate the usefulness 

of the factors.  The following conclusions are drawn based on this study: 

1. The tunnel stability factors (Fc, Fs and Fγ) are functions of the soil friction angle ϕ 

and the depth ratio (C/D). 

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves merge into a single 

line at approximately ϕ = 35 ˚, and Fc reaches a minimum value of 1.19 at ϕ = 40˚. 

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. Fs has a maximum value of one at ϕ = 0˚ (i.e. undrained clay) and a 

minimum value of zero at approximately ϕ = 40˚. In general, the effect of 

surcharge load (σs) diminishes as the soil friction angle increases due to the 

development of soil arching. 

4. The unit weight stability factor (Fγ) has a maximum value of (C/D + 0.5) at ϕ = 0˚ 

(i.e. undrained clay) and decreases dramatically as the soil friction angle ϕ 

increases due to the development of soil arching. The deeper the tunnel is, the 

larger the Fγ (unit weight effect) is. Most C/D curves merge into one line at 

approximately ϕ ≥ 25˚. For C/D ≤ 2, the curves merge at ϕ ≥ 30˚. 

The finite element limit analysis is useful as both upper and lower bounds are 

calculated and they bracket the actual collapse load from above and below, which 

provides confidence to the end-users in using the design tables, equations and charts. 

A full 3D circular tunnel in the drained condition is studied next in Chapter 11 using 

the developed tunnel stability factors approach. 
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CHAPTER 11: DRAINED ANALYSIS OF 3D 

SINGLE CIRCULAR TUNNEL 

 

11.1 Introduction 

In the previous chapters, the drained stability of plane strain tunnel heading and plane 

strain circular tunnel was investigated by using tunnel stability factors approach. 

Tunnel stability is an inherently three-dimensional problem and therefore requires a 

full 3D analysis. Two-dimensional (2D) results may be misleading, although they 

always result in a conservative design. Thus, this chapter will discuss the three-

dimensional stability problem of a circular tunnel in cohesive-frictional soil under 

drained conditions.  

Following the superposition principle of the traditional bearing capacity equations, this 

chapter focuses on tunnel face stability analysis in cohesive-frictional soil by using the 

3D FELA technique. The purpose of the study is to achieve an accurate and realistic 

assessment of the limit support pressure of the tunnel face, by bracketing the upper 

and lower values of the tunnel stability factors (Fc, Fs and Fγ).  

These factors are functions of the depth ratio (C/D) and soil internal friction angle (ϕ). 

The obtained results are compared and validated by using the available published 

results in the literature. A number of examples are illustrated on how to use the factors 

to estimate internal tunnel support pressures.  

11.2 Methodology and Problem Definition  

Finite element limit analysis (FELA) is the numerical computational method of limit 

analysis that employs the classical plasticity theorems with the concept of finite 

element and mathematical programming (Sloan 2013). The underlying bound 

theorems assume a perfectly plastic material with associated flow rule, i.e. the dilation 

angle is assumed to be equal to the friction angle. It is particularly powerful when the 

upper bound (UB) and lower bound (LB) estimates are calculated together as the two 

limits provide a measure of the discretisation error in the solution. The initial 



 

197 

 

developments using linear programming are in (Sloan 1988b, 1989). The newer 

developments are based on a much faster nonlinear programming formulation by 

(Lyamin & Sloan 2002b, 2002a) and (Krabbenhøft et al. 2005; Krabbenhøft et al. 

2007). Most of the available 3D numerical simulations such as the Finite Element 

Method (FEM), the Finite Difference Method (FDM) and the Discrete Element 

Method (DEM) are considered very time consuming for simulating the failure of a 3D 

tunnel face. The new development of 3D FELA technique has been successfully 

applied to solve a variety of drained and undrained stability problems in geotechnical 

engineering (Sloan 2013; Shiau & Al-Asadi 2020a, 2020c, 2020d). Consequently, 

OptumG3 (OptumCE 2018) was chosen in this study to compute the rigorous upper 

and lower bounds of the tunnel stability factors (Fc, Fs and Fγ).  

Figure 11.1 shows the problem definition of a three-dimensional half-circular tunnel. 

The soil medium is considered as a perfectly plastic Mohr-Coulomb material with a 

cohesion of c’ and an angle of internal friction ϕ. The tunnel has a diameter (D), cover 

depth (C) and axis depth (H) from the ground surface. 

 

Figure 11.1. Problem definition (C/D = 3). 
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σt is a normal uniform pressure on the face of the tunnel, and σs is a vertical surcharge 

pressure on the ground surface.  

As symmetrical tunnels are considered, the stability factor calculations are based on 

half a circular tunnel, which is cut lengthwise along the central axis. The tunnel has a 

diameter D, and soil cover C. The ground surface is subject to a vertical surcharge (σs). 

Using Equation 11.1, the internal pressure (σt) is optimised in both upper and lower 

bound analyses to compute the bound solution of the stability factors (Fc, Fs and Fγ). 

t c s scF F DF                                                                                                   (11.1) 

A typical FELA adaptive mesh used in this study is shown in Figure 11.2. An 

automatically adaptive mesh refinement was employed in both the UB and LB 

simulations to enable accurate limits to be obtained through the use of an exact error 

estimate. Three iterations of adaptive meshing with the initial number of elements 

increasing from 5000 to10000 were used in all analyses. 

 

Figure 11.2. Numerical model and adaptive mesh (C/D = 3). 
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The boundary conditions of 3D FELA mesh are presented in Figure 11.2. The ground 

surface is free to displace and the side surfaces, including the symmetrical surface, 

have roller boundaries (i.e. restrained in the normal direction). The base is fixed in all 

directions and the rigid lining around the soil excavation is restrained in the normal 

direction to represent the nature of the lining supports. The tunnel linings are assumed 

to be smooth and there is no transfer of shear force between the lining and the soil. 

Using the load multiplier method in FELA, the tunnel internal pressure (σt) is optimised 

in both upper and lower bound analyses for a circular tunnel heading in cohesive-

frictional soil under various depth ratios (C/D) and angles of internal friction (ϕ). The 

finite-element limit analysis does not require assumptions to be made about the mode 

of failure and uses only shear strength parameters that are familiar to geotechnical 

engineers (Sloan 2013). This has the advantage over the displacement finite-element 

method in geotechnical stability analysis, which requires not only the conventional 

strength parameters but also the deformation parameters (Poisson’s ratio and elastic 

modulus). The principles of calculating the stability factors (Fc, Fs and Fγ) using 

equation (11.1) are as follows: 

1. Fc is calculated using ' .t cc F   , while 0   and 0s   are used in the analysis. 

2. To determine Fs, both 0   and ' 0c   are used in the analysis. Fs is then calculated 

using .t s sF   

3. To determine Fγ, both ' 0c   and 0s   are used in the analysis. Fγ is then 

calculated using .t DF   

By using the principle of superposition, the minimum support pressure σt at collapse 

can then be estimated for various soil parameters (ϕ) and depth ratios (C/D) using the 

stability factors (Fc, Fs and Fγ) produced in this paper. 

11.3 Discussing the Tunnel Stability Factors (Fc, Fs and Fγ) 

Numerical analyses were performed to calculate the upper bound (UB) and the lower 

bound (LB) limits of the stability factors (Fc, Fs and Fγ) for various depth ratios (C/D 

= 1 - 10) and angles of internal friction (ϕ = 0˚ - 40˚). The comprehensive solutions of 

(Fc, Fs and Fγ) are presented in Tables 11.1-11.3 and Figures 11.3-11.6. 
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Table 11-1. Fc vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

 Fc    

 
C/D = 1               C/D = 2 C/D = 3 C/D = 4 C/D = 5 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 6.940 7.821 9.196 10.041 10.552 11.469 11.546 12.516 12.246 13.361 

1 6.616 7.378 8.656 9.304 9.776 10.548 10.548 11.415 11.235 12.097 

2 6.305 7.023 8.093 8.670 9.115 9.706 9.710 10.433 10.228 10.971 

3 6.007 6.633 7.563 8.089 8.410 8.918 8.952 9.485 9.338 9.928 

4 5.723 6.300 7.072 7.533 7.780 8.223 8.233 8.675 8.545 9.035 

5 5.449 5.965 6.668 7.008 7.206 7.574 7.591 7.947 7.842 8.218 

6 5.188 5.656 6.236 6.542 6.689 6.991 7.002 7.279 7.196 7.487 

7 4.940 5.348 5.842 6.092 6.216 6.466 6.456 6.690 6.632 6.847 

8 4.700 5.055 5.475 5.686 5.779 5.980 5.978 6.155 6.113 6.276 

9 4.475 4.791 5.131 5.311 5.390 5.541 5.539 5.678 5.639 5.771 

10 4.259 4.542 4.823 4.961 5.025 5.145 5.141 5.248 5.217 5.315 

11 4.054 4.291 4.531 4.642 4.690 4.789 4.786 4.864 4.838 4.916 

12 3.860 4.075 4.265 4.350 4.386 4.461 4.461 4.523 4.496 4.555 

13 3.675 3.858 4.013 4.083 4.112 4.165 4.165 4.210 4.195 4.238 

14 3.500 3.658 3.777 3.838 3.858 3.901 3.898 3.931 3.919 3.951 

15 3.333 3.469 3.570 3.612 3.627 3.658 3.656 3.680 3.674 3.694 

16 3.178 3.291 3.369 3.404 3.414 3.439 3.436 3.455 3.449 3.465 

17 3.030 3.129 3.187 3.214 3.221 3.239 3.237 3.249 3.246 3.257 

18 2.891 2.974 3.018 3.040 3.043 3.057 3.055 3.065 3.061 3.070 

19 2.759 2.828 2.862 2.878 2.882 2.891 2.889 2.896 2.894 2.900 

20 2.634 2.693 2.718 2.729 2.732 2.738 2.738 2.742 2.741 2.745 

21 2.517 2.559 2.584 2.593 2.594 2.600 2.599 2.601 2.600 2.604 

22 2.408 2.442 2.462 2.467 2.469 2.472 2.471 2.473 2.472 2.473 

23 2.304 2.306 2.335 2.340 2.340 2.343 2.342 2.344 2.343 2.343 

24 2.207 2.216 2.240 2.243 2.243 2.245 2.244 2.246 2.244 2.245 

25 2.114 2.121 2.140 2.143 2.142 2.143 2.143 2.144 2.143 2.144 

26 2.028 2.033 2.047 2.049 2.048 2.049 2.049 2.050 2.050 2.050 

27 1.945 1.948 1.960 1.962 1.962 1.962 1.962 1.962 1.962 1.962 

28 1.868 1.868 1.879 1.880 1.880 1.880 1.880 1.880 1.880 1.880 

29 1.794 1.793 1.803 1.804 1.803 1.804 1.804 1.804 1.804 1.804 

30 1.724 1.725 1.731 1.732 1.732 1.732 1.732 1.732 1.732 1.732 

31 1.658 1.660 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 

32 1.596 1.596 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 

33 1.536 1.537 1.539 1.540 1.540 1.540 1.539 1.540 1.540 1.540 

34 1.480 1.480 1.482 1.482 1.482 1.482 1.482 1.482 1.482 1.482 

35 1.426 1.426 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 

36 1.375 1.375 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 

37 1.326 1.326 1.327 1.327 1.327 1.327 1.327 1.327 1.327 1.327 

38 1.279 1.280 1.280 1.279 1.280 1.280 1.280 1.280 1.280 1.280 

39 1.234 1.235 1.235 1.235 1.235 1.235 1.235 1.235 1.235 1.235 

40 1.191 1.191 1.192 1.192 1.192 1.192 1.192 1.192 1.192 1.192 
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Table 11.1. Cont’d. 

 Fc    

 
C/D = 6               C/D = 7 C/D = 8 C/D = 9 C/D = 10 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 13.272 13.834 13.795 14.411 14.317 14.910 14.734 15.379 15.094 15.771 

1 11.681 12.660 12.128 13.100 12.467 13.523 12.757 13.869 13.076 14.215 

2 10.623 11.395 10.952 11.737 11.241 12.077 11.523 12.346 11.689 12.585 

3 9.652 10.266 9.934 10.557 10.183 10.801 10.384 11.011 10.513 11.192 

4 8.824 9.311 9.006 9.513 9.197 9.685 9.356 9.841 9.464 9.984 

5 8.042 8.416 8.218 8.576 8.359 8.725 8.468 8.850 8.565 8.947 

6 7.363 7.649 7.489 7.773 7.582 7.879 7.669 7.960 7.756 8.037 

7 6.747 6.976 6.833 7.057 6.928 7.142 6.983 7.199 7.042 7.257 

8 6.198 6.366 6.286 6.434 6.327 6.493 6.375 6.531 6.410 6.571 

9 5.710 5.836 5.768 5.884 5.804 5.929 5.840 5.960 5.874 5.985 

10 5.275 5.364 5.316 5.399 5.345 5.430 5.377 5.452 5.389 5.491 

11 4.877 4.952 4.913 4.974 4.932 4.997 4.952 5.019 4.963 5.037 

12 4.529 4.581 4.552 4.600 4.568 4.612 4.584 4.629 4.592 4.628 

13 4.218 4.257 4.232 4.266 4.246 4.276 4.252 4.279 4.261 4.322 

14 3.938 3.964 3.948 3.969 3.954 3.976 3.963 3.982 3.967 3.985 

15 3.684 3.702 3.692 3.707 3.699 3.711 3.701 3.715 3.705 3.717 

16 3.456 3.469 3.463 3.473 3.465 3.475 3.469 3.478 3.471 3.479 

17 3.250 3.261 3.255 3.262 3.257 3.264 3.260 3.263 3.261 3.266 

18 3.064 3.071 3.068 3.071 3.070 3.074 3.071 3.074 3.071 3.075 

19 2.897 2.900 2.898 2.901 2.899 2.900 2.900 2.901 2.900 2.902 

20 2.742 2.745 2.743 2.745 2.743 2.746 2.744 2.746 2.745 2.746 

21 2.602 2.603 2.602 2.603 2.602 2.605 2.603 2.604 2.603 2.604 

22 2.473 2.474 2.473 2.474 2.474 2.474 2.474 2.474 2.474 2.474 

23 2.343 2.344 2.343 2.344 2.343 2.343 2.343 2.344 2.343 2.344 

24 2.245 2.246 2.245 2.246 2.245 2.246 2.246 2.245 2.245 2.246 

25 2.144 2.143 2.144 2.144 2.144 2.144 2.144 2.144 2.144 2.144 

26 2.050 2.049 2.050 2.050 2.050 2.050 2.050 2.050 2.050 2.050 

27 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962 1.962 

28 1.880 1.880 1.880 1.881 1.880 1.881 1.880 1.881 1.880 1.881 

29 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 

30 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 

31 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 1.664 

32 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 

33 1.540 1.540 1.540 1.540 1.540 1.540 1.540 1.540 1.540 1.540 

34 1.482 1.482 1.482 1.482 1.482 1.482 1.482 1.482 1.482 1.482 

35 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 1.428 

36 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 1.376 

37 1.327 1.327 1.327 1.327 1.327 1.327 1.327 1.327 1.327 1.327 

38 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 1.280 

39 1.235 1.235 1.235 1.235 1.235 1.235 1.235 1.235 1.235 1.235 

40 1.191 1.192 1.191 1.192 1.192 1.191 1.192 1.192 1.192 1.192 
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Table 11-2. Fs vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

 Fs  

 
C/D = 1               C/D = 2 C/D = 3 C/D = 4 C/D = 5 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 0.993 0.992 0.991 0.990 0.989 0.989 0.988 0.988 0.988 0.987 

1 0.874 0.863 0.841 0.828 0.820 0.806 0.805 0.789 0.794 0.777 

2 0.766 0.748 0.708 0.688 0.675 0.651 0.651 0.626 0.633 0.607 

3 0.669 0.645 0.596 0.569 0.552 0.523 0.522 0.493 0.501 0.469 

4 0.581 0.553 0.497 0.465 0.448 0.417 0.418 0.384 0.392 0.360 

5 0.504 0.473 0.412 0.378 0.361 0.329 0.330 0.297 0.305 0.273 

6 0.433 0.401 0.337 0.307 0.290 0.257 0.257 0.228 0.235 0.204 

7 0.371 0.338 0.277 0.247 0.231 0.200 0.201 0.172 0.178 0.152 

8 0.315 0.284 0.225 0.196 0.182 0.154 0.154 0.129 0.136 0.111 

9 0.270 0.236 0.182 0.154 0.141 0.116 0.117 0.094 0.100 0.080 

10 0.225 0.194 0.146 0.120 0.109 0.087 0.088 0.069 0.073 0.057 

11 0.188 0.161 0.114 0.093 0.084 0.064 0.066 0.049 0.054 0.040 

12 0.157 0.131 0.090 0.070 0.063 0.047 0.048 0.035 0.038 0.027 

13 0.131 0.105 0.070 0.053 0.046 0.034 0.034 0.024 0.026 0.018 

14 0.109 0.085 0.053 0.040 0.034 0.023 0.024 0.016 0.018 0.011 

15 0.087 0.066 0.041 0.028 0.024 0.016 0.017 0.010 0.012 0.006 

16 0.069 0.052 0.031 0.020 0.017 0.010 0.011 0.006 0.008 0.003 

17 0.057 0.040 0.023 0.014 0.012 0.006 0.007 0.003 0.004 0.001 

18 0.044 0.031 0.016 0.009 0.008 0.004 0.004 0.001 0.002 0 

19 0.034 0.023 0.011 0.006 0.005 0.001 0.002 0 0 0 

20 0.027 0.017 0.007 0.003 0.003 0 0.001 0 0 0 

21 0.021 0.012 0.005 0.002 0.001 0 0 0 0 0 

22 0.015 0.008 0.005 0.002 0 0 0 0 0 0 

23 0.011 0.005 0.003 0 0 0 0 0 0 0 

24 0.009 0.003 0.002 0 0 0 0 0 0 0 

25 0.006 0.002 0 0 0 0 0 0 0 0 

26 0.004 0.001 0 0 0 0 0 0 0 0 

27 0.003 0 0 0 0 0 0 0 0 0 

28 0.001 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 0 
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Table 11.2. Cont’d. 

 Fs  

 
C/D = 6               C/D = 7 C/D = 8 C/D = 9 C/D = 10 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 0.987 0.986 0.987 0.985 0.986 0.985 0.986 0.985 0.986 0.984 

1 0.785 0.767 0.776 0.758 0.771 0.756 0.766 0.743 0.760 0.738 

2 0.617 0.590 0.608 0.578 0.596 0.567 0.587 0.558 0.578 0.549 

3 0.482 0.452 0.470 0.436 0.459 0.422 0.448 0.411 0.438 0.403 

4 0.375 0.340 0.358 0.325 0.348 0.311 0.336 0.300 0.328 0.292 

5 0.287 0.255 0.272 0.241 0.261 0.228 0.250 0.219 0.242 0.209 

6 0.219 0.189 0.205 0.176 0.193 0.163 0.185 0.155 0.177 0.147 

7 0.165 0.138 0.152 0.126 0.144 0.116 0.136 0.109 0.128 0.102 

8 0.122 0.099 0.112 0.089 0.103 0.079 0.096 0.075 0.091 0.071 

9 0.090 0.070 0.081 0.062 0.075 0.055 0.068 0.050 0.064 0.046 

10 0.064 0.049 0.058 0.042 0.053 0.037 0.047 0.033 0.044 0.029 

11 0.046 0.033 0.040 0.028 0.037 0.024 0.033 0.021 0.029 0.018 

12 0.032 0.022 0.027 0.018 0.024 0.015 0.021 0.013 0.019 0.010 

13 0.022 0.013 0.018 0.011 0.016 0.008 0.014 0.007 0.012 0.005 

14 0.014 0.008 0.011 0.006 0.009 0.004 0.008 0.003 0.007 0.002 

15 0.009 0.004 0.007 0.003 0.006 0.001 0.004 0.001 0.003 0 

16 0.005 0.002 0.003 0.001 0.003 0 0.002 0 0.001 0 

17 0.003 0 0.002 0 0.001 0 0 0 0 0 

18 0.001 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 0 0 

28 0 0 0 0 0 0 0 0 0 0 

29 0 0 0 0 0 0 0 0 0 0 

30 0 0 0 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0 0 

32 0 0 0 0 0 0 0 0 0 0 

33 0 0 0 0 0 0 0 0 0 0 

34 0 0 0 0 0 0 0 0 0 0 

35 0 0 0 0 0 0 0 0 0 0 

36 0 0 0 0 0 0 0 0 0 0 

37 0 0 0 0 0 0 0 0 0 0 

38 0 0 0 0 0 0 0 0 0 0 

39 0 0 0 0 0 0 0 0 0 0 

40 0 0 0 0 0 0 0 0 0 0 
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Table 11-3. Fγ vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

 Fγ   

 
C/D = 1               C/D = 2 C/D = 3 C/D = 4 C/D = 5 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 1.667 1.682 2.652 2.646 3.628 3.620 4.601 4.613 5.581 5.638 

1 1.524 1.520 2.331 2.344 3.150 3.113 3.949 3.888 4.719 4.697 

2 1.387 1.370 2.050 2.049 2.731 2.665 3.356 3.283 3.978 3.870 

3 1.260 1.237 1.833 1.780 2.354 2.280 2.857 2.756 3.336 3.210 

4 1.145 1.114 1.615 1.558 2.039 1.947 2.433 2.320 2.813 2.650 

5 1.040 1.005 1.426 1.368 1.765 1.672 2.068 1.944 2.357 2.192 

6 0.947 0.909 1.264 1.199 1.530 1.437 1.758 1.642 1.978 1.826 

7 0.862 0.823 1.119 1.056 1.323 1.228 1.503 1.386 1.662 1.514 

8 0.784 0.745 0.991 0.930 1.152 1.060 1.281 1.169 1.399 1.259 

9 0.716 0.677 0.879 0.813 1.021 0.912 1.096 0.979 1.171 1.050 

10 0.655 0.614 0.781 0.715 0.869 0.788 0.943 0.844 0.996 0.881 

11 0.598 0.557 0.699 0.638 0.761 0.684 0.807 0.719 0.851 0.745 

12 0.548 0.509 0.621 0.567 0.668 0.597 0.700 0.618 0.727 0.632 

13 0.500 0.465 0.557 0.508 0.589 0.524 0.609 0.537 0.626 0.539 

14 0.460 0.424 0.500 0.453 0.521 0.465 0.538 0.470 0.548 0.475 

15 0.421 0.390 0.453 0.406 0.466 0.419 0.472 0.415 0.478 0.419 

16 0.390 0.357 0.411 0.366 0.417 0.374 0.420 0.372 0.427 0.372 

17 0.359 0.330 0.373 0.334 0.377 0.335 0.382 0.334 0.383 0.331 

18 0.333 0.303 0.341 0.304 0.341 0.303 0.342 0.300 0.346 0.301 

19 0.305 0.281 0.315 0.278 0.316 0.281 0.312 0.272 0.313 0.273 

20 0.284 0.258 0.287 0.258 0.288 0.256 0.285 0.256 0.288 0.251 

21 0.262 0.238 0.267 0.234 0.266 0.237 0.266 0.233 0.264 0.233 

22 0.245 0.221 0.246 0.210 0.244 0.222 0.246 0.216 0.246 0.210 

23 0.229 0.206 0.230 0.200 0.229 0.202 0.230 0.194 0.229 0.199 

24 0.213 0.191 0.214 0.185 0.214 0.187 0.213 0.187 0.214 0.186 

25 0.200 0.179 0.201 0.175 0.198 0.174 0.199 0.174 0.200 0.175 

26 0.188 0.167 0.187 0.160 0.186 0.161 0.186 0.157 0.185 0.155 

27 0.175 0.155 0.176 0.151 0.174 0.155 0.174 0.156 0.176 0.153 

28 0.165 0.145 0.165 0.140 0.165 0.144 0.165 0.146 0.163 0.143 

29 0.155 0.135 0.155 0.134 0.154 0.137 0.154 0.136 0.155 0.130 

30 0.147 0.127 0.145 0.128 0.145 0.124 0.146 0.128 0.145 0.128 

31 0.138 0.119 0.138 0.120 0.138 0.119 0.138 0.120 0.137 0.118 

32 0.131 0.110 0.130 0.107 0.129 0.113 0.129 0.113 0.129 0.109 

33 0.123 0.103 0.123 0.101 0.122 0.105 0.121 0.106 0.121 0.101 

34 0.116 0.097 0.116 0.096 0.115 0.095 0.116 0.099 0.115 0.099 

35 0.109 0.091 0.109 0.090 0.109 0.094 0.108 0.092 0.109 0.092 

36 0.103 0.085 0.102 0.085 0.102 0.086 0.103 0.089 0.103 0.087 

37 0.098 0.079 0.097 0.080 0.096 0.082 0.097 0.079 0.098 0.077 

38 0.092 0.075 0.092 0.075 0.091 0.078 0.091 0.077 0.091 0.078 

39 0.087 0.070 0.086 0.069 0.087 0.071 0.086 0.068 0.086 0.068 

40 0.082 0.065 0.081 0.069 0.081 0.067 0.081 0.065 0.081 0.066 
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Table 11.3 Cont’d. 

 Fγ   

 
C/D = 6               C/D = 7 C/D = 8 C/D = 9 C/D = 10 

ϕ LB UB LB UB LB UB LB UB LB UB 

0 6.611 6.594 7.598 7.580 8.578 8.555 9.565 9.529 10.570 10.510 

1 5.527 5.437 6.300 6.191 7.066 6.930 7.827 7.667 8.592 8.404 

2 4.585 4.450 5.172 5.019 5.767 5.566 6.344 6.110 6.916 6.641 

3 3.810 3.636 4.262 4.048 4.710 4.455 5.136 4.852 5.565 5.250 

4 3.159 2.968 3.494 3.277 3.846 3.577 4.173 3.853 4.471 4.122 

5 2.632 2.432 2.883 2.662 3.140 2.855 3.357 3.067 3.570 3.225 

6 2.179 1.989 2.360 2.135 2.541 2.266 2.711 2.411 2.868 2.545 

7 1.808 1.621 1.935 1.744 2.061 1.810 2.185 1.906 2.301 2.005 

8 1.503 1.332 1.594 1.407 1.688 1.463 1.771 1.524 1.836 1.578 

9 1.236 1.104 1.313 1.149 1.383 1.173 1.434 1.202 1.485 1.262 

10 1.051 0.916 1.092 0.940 1.129 0.955 1.173 0.985 1.198 1.014 

11 0.886 0.759 0.908 0.779 0.933 0.792 0.966 0.789 0.989 0.823 

12 0.752 0.643 0.766 0.656 0.785 0.659 0.805 0.674 0.809 0.662 

13 0.643 0.542 0.652 0.564 0.663 0.557 0.670 0.555 0.694 0.564 

14 0.559 0.468 0.560 0.480 0.574 0.472 0.582 0.483 0.573 0.480 

15 0.484 0.418 0.486 0.421 0.495 0.411 0.496 0.422 0.498 0.419 

16 0.429 0.364 0.433 0.364 0.435 0.353 0.434 0.362 0.432 0.371 

17 0.383 0.328 0.386 0.335 0.385 0.322 0.388 0.330 0.387 0.327 

18 0.348 0.296 0.347 0.298 0.347 0.282 0.349 0.291 0.347 0.290 

19 0.314 0.275 0.315 0.274 0.316 0.271 0.317 0.272 0.313 0.271 

20 0.290 0.252 0.290 0.256 0.291 0.225 0.292 0.229 0.289 0.251 

21 0.267 0.231 0.267 0.233 0.266 0.227 0.276 0.214 0.263 0.213 

22 0.247 0.212 0.249 0.210 0.247 0.208 0.249 0.201 0.248 0.209 

23 0.230 0.198 0.227 0.200 0.228 0.194 0.228 0.197 0.226 0.193 

24 0.214 0.187 0.214 0.182 0.213 0.187 0.212 0.184 0.211 0.182 

25 0.200 0.174 0.199 0.172 0.199 0.165 0.198 0.173 0.196 0.168 

26 0.186 0.162 0.185 0.163 0.185 0.157 0.185 0.152 0.184 0.155 

27 0.176 0.148 0.176 0.145 0.175 0.153 0.175 0.146 0.173 0.154 

28 0.164 0.136 0.164 0.141 0.164 0.135 0.163 0.135 0.164 0.136 

29 0.153 0.124 0.156 0.131 0.154 0.123 0.155 0.129 0.156 0.131 

30 0.146 0.120 0.146 0.120 0.146 0.118 0.146 0.112 0.142 0.122 

31 0.136 0.115 0.137 0.114 0.137 0.114 0.136 0.115 0.135 0.115 

32 0.130 0.110 0.129 0.111 0.128 0.104 0.127 0.114 0.129 0.104 

33 0.122 0.104 0.123 0.097 0.121 0.091 0.123 0.103 0.122 0.100 

34 0.114 0.096 0.115 0.091 0.114 0.083 0.115 0.095 0.115 0.089 

35 0.109 0.087 0.108 0.088 0.108 0.087 0.108 0.090 0.107 0.087 

36 0.103 0.088 0.102 0.083 0.103 0.090 0.102 0.084 0.104 0.080 

37 0.096 0.081 0.096 0.078 0.096 0.083 0.096 0.080 0.097 0.078 

38 0.091 0.070 0.091 0.071 0.091 0.072 0.091 0.075 0.094 0.077 

39 0.086 0.069 0.087 0.061 0.085 0.068 0.086 0.065 0.086 0.063 

40 0.082 0.066 0.081 0.065 0.081 0.059 0.081 0.060 0.081 0.066 
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11.3.1 The stability factor for cohesion, Fc 

Given no surcharge load ( 0)s   and an idealised weightless soil ( 0)  , a total of 

820 FELAs were performed to calculate the cohesion stability factors Fc using

( / ').c tF c   Figure 11.3 shows that, for all depth ratios (C/D =1 - 10), the cohesion 

stability factor (Fc) decreases as the angle of friction (ϕ) increases. 

 

Figure 11.3. Fc vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

For ϕ = 0˚, Figure 11.4 presents the relationship between Fc and C/D. The two curves 

are for the upper and lower bound solutions respectively and are best fitted with the 

Equations (11.2) and (11.3). 

( ) 3.569 ln( / ) 7.464cF UB C D ´                                                                                    (11.2) 

( ) 3.398 ln( / ) 7.199cF LB C D ´                                                                                    (11.3) 
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Figure 11.4. Fc vs C/D for ϕ = 0˚. 

Figure 11.3 can be divided into three distinct zones with the discussions as follow: 

For ϕ =1˚ - 10˚, Fc decreases dramatically as ϕ increases for all depth ratios (C/D). 

Power and logarithmic regression analyses were employed to develop Equation (11.4) 

using LB results. The equation has a correlation coefficient (R2) = 0.999. 

(( 1.214 ln ( / ) 2.828) tan )(3.107 ln ( / ) 7.007  ´  ´ ´  ´ C D
cF C D e                                      (11.4) 

For ϕ =11-20, Fc decreases moderately as ϕ increases. Double power and logarithmic 

regressions analyses were employed to develop Equation (11.5) using LB results. It is 

the best fit for the data in this range with a correlation coefficient (R2) = 0.951. 

0.096 ( 0.106 ln( / ) 0.727)(1.298 ln ( / ) ) (tan )  ´  ´ ´ C D
cF C D                                        (11.5) 

For ϕ = 21˚ - 40˚, Fc decreases gradually as ϕ increases. In this range, all curves merge 

into a single line at approximately ϕ = 21˚, indicating that the Fc factor is independent 

of C/D values for ϕ > 20˚. Using LB results, Equation (11.6) has a correlation 

coefficient (R2) = 1. 

1(tan ) cF                                                                                                                 (11.6) 
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11.3.2 The stability factor for surcharge, Fs  

Given no cohesion ( ' 0)c   and an idealised weightless soil ( 0)  , a total of 820 

FELAs were performed to calculate the surcharge stability factors using ( / ).s t sF    

Figure 11.5 shows the relationship between the surcharge stability factor (Fs) and the 

angle of the internal friction of the soil (ϕ). 

 

Figure 11.5. Fs vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

There is a unique curve for each depth ratio (C/D), and all the curves have the same 

maximum value of one (Fs = 1) when ϕ = 0˚. With an increasing angle of internal 

friction ϕ, the value of Fs decreases dramatically. A 50% reduction of Fs is observed 

at a small ϕ = 3˚- 5˚ (ϕ = 3˚ for C/D = 10 and ϕ = 5˚ for C/D = 1). Note that Fs 

approaches zero when ϕ > 15˚ (for deep tunnels, C/D > 4) and ϕ > 20˚ (for shallow 

tunnels, C/D < 2). It is interesting to see that the surcharge pressure σs has little 

contribution to the internal tunnel face pressure for ϕ > 20˚. This may be attributed to 

the development of soil arching in greater soil internal friction angles. 
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Double exponential and logarithmic regressions analyses were employed to develop 

Equation 11.7 using LB results of Fs. The equation has a correlation coefficient (R2) = 

0.992. 

( 5.081 ln ( / ) 8.647) tan(0.034 ( / ) 1.069  ´  ´ ´  ´ C D
sF C D e                                        (11.7) 

11.3.3 The stability factor for soil weight, Fγ 

Given no cohesion ( ' 0)c   and no surcharge ( 0)s   a total of 820 FELAs were 

performed to calculate the soil weight stability factors Fγ using / .tF D    

Figure 11.6 shows that Fγ has a maximum value of approximately (C/D + 0.5) at ϕ = 

0˚ and decreases dramatically as the friction angle (ϕ) increases. 

 

Figure 11.6. Fγ vs ϕ for various depth ratios (C/D = 1 - 10, UB and LB). 

Also note that the larger the C/D value is, the greater the Fγ factor is. For ϕ = 0˚ -17˚ 

a double regression analysis (power and logarithmic) was employed to develop 

Equation (11.8) using LB results. Equation (11.8) has a correlation coefficient (R2) = 

0.992.  
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( 2.673 ln ( / ) 4.732) tan(0.861 ln ( / ) 0.802) 


 ´  ´ ´  ´ C DF C D e                                  (11.8) 

Owing to the presence of soil arching (ϕ ≠ 0˚), all C/D curves merge into a single line 

at approximately ϕ = 17˚.  It is interesting to know that Fγ is independent of C/D for ϕ 

≥ 17˚ and Equation (11.9) is the best fit for Fγ in this range with a correlation coefficient 

(R2) = 0.995.  

1.5170.064 (tan )F   ´                                                                                                               (11.9) 

11.4 Comparison of Results (Fc, Fs and Fγ) 

11.4.1 Comparison with published results 

Figure 11.7 shows a comparison of the stability factor Fc with published results. The 

available solutions for the comparison are mostly for ϕ greater than 20˚. 

 

Figure 11.7. Comparison of cohesion stability factor (Fc). 

The Fc results of Vermeer et al. (2002) are based on 3D displacement finite element 

analysis and is only available for a depth ratio of C/D = 5 and ϕ >20˚. It can be seen 

that their results agree well with the present study of 3D lower bound results and, as 
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discussed before, there is no effective difference between 2D and 3D analyses when ϕ 

> 20˚. On the other hand, Fc results using the limit equilibrium method by Anagnostou 

and Kovári (1996) are greater than the lower bound results. Their sliding wedge model 

provides an un-conservative solution for the tunnel heading problem, and hence it 

should be used with caution in practice.  

Figure 11.8 shows a comparison of the surcharge stability factor (Fs) with published 

results.  

 

Figure 11.8. Comparison of surcharge stability factor (Fs). 

The only available results for comparison are the experimental solutions for depth 

ratios of C/D ≤ 3 by Atkinson and Mair (1981). Overall, there is good agreement in 

the trend of all curves despite their results being highly conservative. 

The soil weight stability factor (Fγ) was discussed by Atkinson and Potts (1977), 

Atkinson and Mair (1981), Leca and Dormieux (1990), Anagnostou and Kovári (1996) 

and Vermeer et al. (2002). It was concluded in these studies that the values of Fγ are 

independent of the depth of the tunnel. This conclusion was reached based on the study 
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of shallow tunnels with ϕ > 20˚. Figure 11.9 shows a comparison of Fγ between the 

3D FELA studies and those published results for ϕ = 20˚ - 40˚.  

 

Figure 11.9. Comparison of soil weight stability factor (Fγ) (after Vermeer et al., 2002). 

As discussed in Figure 11.6, all C/D curves merge into a single line at approximately 

ϕ = 17˚. Therefore, it is not surprising to see from Figure 11.9 that very little difference 

of Fγ is observed between the two FELA curves (i.e. C/D = 1 and C/D = 10). Note that 

the results reported by Vermeer et al. (2002) are very close to our 3D FELA LB. On 

the other hand, the analytical upper bounds reported by Leca and Dormieux (1990) are 

about 25% below our FELA LB results, while those of Atkinson and Mair (1981) and 

Anagnostou and Kovári (1996) are more conservative. This comparison is for 20˚< ϕ 

< 40˚. Should these data be plotted in Figure 11.6, which covers a broad range of 

internal frictions (ϕ = 0˚- 40˚) and depth ratios (C/D = 1 - 10), the differences are 

shown in Figure 11.9 become insignificant. 

11.4.2 Comparison with experimental results 

Figure 11.10 shows a comparison of the normalised face pressures (σt/γD) at collapse 

between the experimental results and other published solutions (after Kirsch (2010). 
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The experimental tunnel has a diameter D = 10m and a soil cover C = 10m in sandy 

soil with a variation of friction angle ϕ between 30˚ and 42˚. The 3D upper and lower 

bound solutions of the present study are added to Figure 11.10. Note that, with ' 0c  

and 0s  , /tF D    (see Equation 11.1). 

 

Figure 11.10. Comparison with various studies (after Kirsch, 2010). 

The experimental results of ϕ = 30˚, 32˚ and 34˚ by Kirsch (2010) show a horizontal 

line, which is similar to the experimental results of ϕ = 38˚, 40° and 42° by Chambon 

& Corte (1994). The difference between current 3D FELA and these experimental 

results varies despite the small values of ( / )tF D    in the figure. Close agreement 

is found between the LB results and the 3D FEM results by Vermeer et al. (2002). 

Numerical results of Leca and Dormieux (1990) are also reasonably close to the UB 

results. Note that for the problem of “support” pressure, LB provides conservative 

estimation and are greater than UB. 
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11.5 Examples and Practical Uses 

Since the lower bound theorem offers a safe assessment of the limit pressure for a 

stability problem, Equations (11.4-11.9) have been derived based on LB results. These 

results can assist designers and practising engineers in the safety evaluation of tunnel 

face stability.  

11.5.1 Stability analysis of a tunnel face in cohesionless soil 

It is proposed to excavate a tunnel in the greenfield condition (σs = 0) through a 

cohesionless soil ( ' 0c kPa, ϕ = 35˚ and γ = 18 kN/m3). The tunnel has a diameter 

(D) of 6m and a soil cover (C) of 18m. Determine the critical internal support pressure.  

- For the greenfield condition ( 0)s   with C/D = 3 and ϕ = 35˚, Table 11.3 gives 

LB value of Fγ = 0.109. Equation (11.9) also gives LB value of Fγ = 0.109.  

- Equation (11.1) is used to calculate the critical pressure, σt (LB) = 11.772 kPa. An 

actual 3D FELA analysis gives σt (LB) = 11.775 kPa.  

- In cohesionless soil, a positive internal pressure σt (support pressure) is always 

required to prevent tunnel collapse regardless of the value of internal friction (ϕ). 

This case belongs to the class of “active” failure where LB pressures are always 

greater than UB ones. 

11.5.2 Stability analysis of a tunnel face in cohesive-frictional soil 

A planned tunnel has a diameter (D) of 6m and a cover depth (C) of 24m. The soil is 

found to be cohesive-frictional with a unit weight (γ) of 18 kN/m3, angle of internal 

friction (ϕ) of 35˚ and cohesion (c) of 54 kPa. Determine the critical internal pressure 

(σt) when the surcharge pressure (σs) is zero. 

- For C/D = 4 and ϕ = 35˚, Tables 11.1-11.3 gives LB values of (Fc = 1.428, Fs = 0 

and Fγ = 0.108) and UB values of (Fc = 1.428, Fs = 0 and Fγ = 0.092).  

- Using Equation (11.1), σt (LB) = -65.448 kPa and σt (UB) = -67.176 kPa. 

- An actual 3D FELA analysis gives σt (LB) = -65.438 kPa and σt (UB) = -67.834 

kPa.  

- The negative value of σt indicates that an internal “pulling” pressure is required to 

reach a collapse state. In other words, the tunnel will remain stable without any 

internal “pulling” pressure. This case belongs to the class of “passive” failure 

where UB pressures are always greater than LB ones.  
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11.6 Conclusion 

In order to study the face stability of circular tunnels in cohesive-frictional soil, 

numerical simulations were conducted using the 3D finite element limit analyses. A 

series of parametric studies for different soils (ϕ = 0˚- 40˚) and various depth ratios 

(C/D = 1 - 10) were performed and the tunnel stability factors (Fc, Fs and Fγ) were 

calculated. Examples were provided, demonstrating how to use the factors to estimate 

internal support pressures. The following conclusions are drawn: 

1. Unlike the traditional bearing capacity factors (Nc, Ns and Nγ), the tunnel stability 

factors (Fc, Fs and Fγ) are functions of both the soil friction angle ϕ and the depth 

ratio (C/D). The equation for estimating the tunnel face support pressures is 

σt = -c Fc + σs Fs + γDFγ 

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves for various C/D 

merge into a single line at approximately ϕ = 21˚.  

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. For all depth ratios (C/D), Fs has a maximum value of one at ϕ =0˚ 

and a minimum value of zero when ϕ > 20˚. In general, the effect of surcharge load 

(σs) diminishes as the soil friction angle increases due to the development of soil 

arching. 

4. The soil weight stability factor (Fγ) increases as the depth ratio (C/D) increases. Fγ 

has a maximum value of (C/D + 0.5) at ϕ = 0˚ and decreases dramatically as the 

soil friction angle ϕ increases due to the development of soil arching. The Fγ curves 

merge into a single line at approximately ϕ =17˚. 

Similar to the undrained study in Part A, both 2D and 3D twin tunnels are studied in 

drained condition using the tunnel stability factors approach in Chapters 12 and 13. 
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CHAPTER 12: DRAINED ANALYSIS OF 2D 

TWIN CIRCULAR TUNNELS 

 

12.1 Introduction 

In the previous chapters, the stability of single circular tunnels was studied. This 

chapter presents the stability problem of twin circular tunnels drive side-by-side in 

drained cohesive-frictional soil. Unlike the case of a single tunnel, the centre-to-centre 

distance between the twin tunnels appears as a new parameter that must be considered 

in twin tunnel stability.  

Similar to the bearing capacity equation proposed by Terzaghi, the proposed method 

is based on the three stability factors that are functions of the soil internal friction angle 

and the tunnel depth ratio. Two-dimensional finite element limit analysis (FELA) is 

employed to determine rigorous upper bound (UB) and lower bound (LB) solutions of 

the tunnel stability factors (Fc, Fs and Fγ). 

The variations of the stability factors with tunnels’ spacing ratio are established for 

various depth ratios (C/D) and soil internal friction angles (ϕ). For practical suitability, 

the results are presented in the form of dimensionless stability charts with the actual 

tunnel stability factors closely bracketed from above and below using upper and lower 

bound methods. As an extra validation, the results are compared with available 

solutions reported in the literature. 

12.2 Problem Definition and Methodology 

Finite element limit analysis (FELA) is a novel computational method of limit analysis. 

It employs the classical plasticity theorems with the concept of finite element and 

mathematical programming (either linear or nonlinear programming). When upper 

bound (UB) and lower bound (LB) estimates are calculated together, a true collapse 

load is bracketed. The difference between the two limits provides an exact measure of 

the discretisation error in the solution (Lyamin & Sloan 2002a, 2002b; Sloan 2013). 
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Recently, the FELA software, OptumG2 (OptumCE 2017), has been successfully 

applied to solve a variety of drained and undrained stability problems in geotechnical 

engineering (Keawsawasvong & Ukritchon 2017; Ukritchon & Keawsawasvong 2017; 

Shiau & Al-Asadi 2018, 2020b). Consequently, it was chosen in this study to 

compute the stability factors (Fc, Fs and Fγ) that can be used in a traditional formula, 

as shown in Equation 12.1.  

t c s scF F DF                                                                                                   (12.1) 

The initial developments of the FELA were by using linear programming (Sloan 

1988b, 1989). The newer developments are based on a much faster nonlinear 

programming formulation by (Lyamin & Sloan 2002b, 2002a) and (Krabbenhøft et al. 

2005; Krabbenhøft et al. 2007). The underlying bound theorems assume a rigid-

perfectly plastic material with associated plasticity. The details of limit analysis and 

FELA can be found in Sloan (2013), and they will not be repeated here.  

The layout of the unlined twin tunnels stability problem is shown in Figure 12.1. The 

tunnels have a diameter D and soil cover C. The ground surface is horizontal and 

subject to a vertical surcharge σs, while the internal uniform support pressure is 

represented by σt. Since the tunnels are unlined with infinite length, a plane strain 

condition was adopted (Shiau & Sams 2019).  

 

Figure 12.1. Statement of the problem. 
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Figure 12.2 shows a typical FELA half mesh used in the analysis for (C/D = 2 and S/D 

= 3). In both upper and lower bound calculations, the soil mass was discretised as 

triangular elements and modelled as Mohr-Coulomb material with the associated flow 

rule. 

 

Figure 12.2. Adaptive mesh (half) and absolute displacement (|u|) contour plot for the 

twin tunnel problem (C/D = 2 and S/D = 3). 

The boundary condition of the problem was defined such that the bottom boundary of 

the model be fixed in both vertical and horizontal directions, while the left and the 

right boundary of the problem was allowed to move only in the vertical direction. Note 

that the right-hand side boundary is the plane of symmetry. The size of the problem 

domains was chosen to be large enough so that the plastic yielding zone was contained 

within the domain.  

An automatically adaptive mesh refinement was employed in both the UB and LB 

simulations to compute the tight UB and LB solutions. It is interesting to see the 

adaptive mesh created using the latest FELA program, which was so generated in such 

a way that it follows exactly the potential slip surface of the failure mechanism. The 

mechanism transforms from the twin effects to a non-twin effect of a single tunnel. 

This can be seen in Figures 12.3-12.4 where (S/D = 5 and S/D = 7).  
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Figure 12.3. Adaptive mesh (half) and absolute displacement (|u|) contour plot for the 

twin tunnels problem (C/D = 2 and S/D = 5). 

 

Figure 12.4. Adaptive mesh (half) and absolute displacement (|u|) contour plot for the 

twin tunnels problem (C/D = 2 and S/D = 7). 

Approximately 40,836 FELA analyses were performed to calculate the stability factors 

(Fc, Fs and Fγ) for a wide range of soil parameters (ϕ = 0˚- 40˚), spacing ratios (S/D = 

2 - 28) and depth ratios (C/D = 2 - 10). The principles in the calculations of the three 

factors are as follows: (1) both 0   and 0s   are used in the analysis to determine 

Fc, which can be calculated using the equation '  t cc F ; (2) both 0   and ' 0c

are adopted in the analysis and Fs is calculated using the equation  t s sF ; (3) both 

' 0c  and 0s   are used in the analysis so that Fγ can be determined using the 
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equation 
t DF  . Similar to the superposition principle of the traditional bearing 

capacity equations, the minimum support pressures σt at collapse can be determined 

using equation (12.1) with the produced twin tunnel stability factors in this chapter. 

12.3 Discussing the Twin Tunnel Stability Factors (Fc, Fs and Fγ) 

Numerical analyses were performed to calculate the upper and the lower bounds limits 

of the stability factors (Fc, Fs and Fγ) for various depth ratios (C/D = 2 - 10), spacing 

ratios (S/D = 2 - 28) and angles of internal friction (ϕ = 0˚ - 40˚). The effect of the 

parameters C/D, S/D and ϕ on the tunnel stability factors are presented in Figures 12.5-

12.7, 12.9-12.20, and they are discussed below. 

12.3.1 Fc, Fs and Fγ in undrained condition (ϕ = 0˚) 

Figure 12.5 shows that Fc is a function of the depth ratio (C/D) and the spacing ratio 

(S/D). Fc increases with the increasing of C/D. For each C/D, Fc increases nonlinearly 

as S/D increases until it reaches a constant value, which indicates that the twin tunnels 

stability is unaffected by the tunnel spacing.  

 

Figure 12.5. Fc vs S/D and various C/D (ϕ = 0˚). 
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At this point, the stability responses are identical to those of corresponding single 

tunnels, and the stability factor (Fc) are at their maximum values. The corresponding 

S/D to the first constant value of Fc is the minimum spacing ratio (S/D)min required to 

eliminate the interaction effect between the twin tunnels. It is interesting to see that the 

minimum value of Fc is not always at the closest spacing ratio but at the spacing ratio 

of 3-4, in particular for deep cases (C/D ≥ 6).  

For Fs in undrained condition (ϕ = 0˚), Figure 12.6 shows that the factor Fs has a 

constant value of unity no matter what values of C/D and S/D are. This finding is 

understandable for such cases in the undrained condition where no volume loss occurs 

during plastic shearing. 

 

Figure 12.6. Fs vs S/D and various C/D (ϕ = 0˚). 

For Fγ in the undrained condition (ϕ = 0˚), Figure 12.7 shows that the factor Fγ is a 

function of C/D only. The value of S/D does not affect the factor Fγ.  Indeed, the unit 

weight effect displays the same trend as the surcharge in an undrained condition. In 

general, Fγ = (C/D + 0.5). The larger the C/D value is, the larger the factor Fγ is. This 
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finding is the same as in Shiau and Al-Asadi (2020b, 2020c) for 2D and 3D tunnel 

heading studies.  

 

Figure 12.7. Fγ vs S/D and various C/D (ϕ = 0˚). 

Figure 12.8 shows the minimum spacing ratios (S/D)min for various depth ratios (C/D). 

A linear relationship is observed between C/D and (S/D)min. The line separates two 

zones; one being the single tunnel (unaffected by the tunnel spacing) and the other is 

the zone with twin tunnels effects. Equations 2 is an accurate curve-fitting for the 

relationship between (S/D)min and C/D, with a correlation coefficient (R2) of 0.999.  
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Figure 12.8. Comparison of the minimum spacing ratio (S/D)min required to eliminate 

the interaction between the tunnels (ϕ = 0˚). 

12.3.2 Fc, Fs and Fγ in drained condition (ϕ > 0˚)  

In contrary to undrained condition, Figures 12.9 - 12.20 (for ϕ > 0˚ drained analysis) 

show that all the stability factors are a function of the angle of internal friction (ϕ), 

depth ratio (C/D) and spacing ratio (S/D). 

Figures 12.9 - 12.12 (ϕ = 10 ˚, 20 ˚, 30 ˚ and 40˚ respectively) show that Fc increases 

with the increasing of C/D. For each C/D, Fc increases nonlinearly as S/D increases 

until it reaches a constant value, which indicates that no interactions occur between the 

tunnels. However, for high friction angles (ϕ > 30˚), both C/D and S/D have little 

effects on the results of Fc in particular for large depth ratios (C/D > 5). Also, note that 

the minimum spacing ratios (S/D)min decrease with the increasing of ϕ. 
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Figure 12.9. Fc vs S/D and various C/D (ϕ = 10˚). 

 

Figure 12.10. Fc vs S/D and various C/D (ϕ = 20˚). 
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Figure 12.11. Fc vs S/D and various C/D (ϕ = 30˚). 

 

Figure 12.12. Fc vs S/D and various C/D (ϕ = 40˚). 
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With regards to Fs, Figures 12.13 - 12.16 (ϕ = 10˚, 20˚, 30˚ and 40˚ respectively) show 

that the surcharge stability factor (Fs) decreases with the increasing of C/D. In general, 

Fs decreases with the increasing of S/D until it reaches a constant value, indicating no 

interference occurs between twin tunnels. Also, Fs decreases with the increasing of ϕ 

and the effect of C/D and S/D diminishes when ϕ > 20˚. Figure 12.16 shows that, for 

all C/D values, Fs = 0 when ϕ = 40˚. 

 

Figure 12.13. Fs vs S/D and various C/D (ϕ = 10˚). 
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Figure 12.14. Fs vs S/D and various C/D (ϕ = 20˚). 

 

Figure 12.15. Fs vs S/D and various C/D (ϕ = 30˚). 
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Figure 12.16. Fs vs S/D and various C/D (ϕ = 40˚). 

Finally, for the factor Fγ, Figures 12.17-12.20 (ϕ = 10˚, 20˚, 30˚ and 40˚ respectively) 

show that the unit weight stability factor (Fγ) increases with the increasing of C/D. 

Similar to Fs, the unit weight stability factor (Fγ) increases with the decreasing of S/D 

below the minimum spacing ratios (S/D)min. Also, Fγ decreases with increasing of ϕ, 

due to the material arching. It is noted that a minimum value of Fγ ≃ 0.181 is obtained 

for ϕ = 40˚ irrespective of C/D values (see Figure 12.20). 

 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

-0.010

-0.005

0.000

0.005

0.010
 Lower bound (LB)

 Upper bound (UB)

F
s

S/D

C/D =  2

            3

            4

            6

            8

            10

40

All C/D



 

229 

 

 

Figure 12.17. Fγ vs S/D and various C/D (ϕ = 10˚). 

 

Figure 12.18. Fγ vs S/D and various C/D (ϕ = 20˚). 
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Figure 12.19. Fγ vs S/D and various C/D (ϕ = 30˚). 

 

Figure 12.20. Fγ vs S/D and various C/D (ϕ = 40˚). 
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12.4 Comparison of Results 

Following Sahoo and Kumar (2013), Figure 12.21 and Table 12.1 show a comparison 

of the stability results of this study with those of (Osman 2010; Sahoo & Kumar 2013; 

Wilson et al. 2014, 2015) for a depth ratio of five (C/D = 5). A different expression for 

the stability (N = γmaxH/c) was used in Sahoo and Kumar (2013) for undrained clay. 

To make the comparison, both (Fc and Fγ) factor for C/D = 5 are used to reproduce the 

corresponding (N = γmaxH/c). 

 

Figure 12.21. Comparison of the γmaxC/c results with those available in the literature 

for twin tunnels (C/D = 5 and ϕ = 0˚, after Sahoo and Kumar, 2013). 

The comparisons in Figure 12.21 show good agreements with the results of (Wilson et 
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0 2 4 6 8 10 12 14 16

1

2

3

4

5

6

7

8

9

 m
a

xC
/c

S/D

 Osman (2010, circular tunnels)

 Sahoo & Kumar (2013, circular tunnels)

 Wilson et al. (2014, UB, circular tunnels)

 The present study  (UB)

 The present study  (LB)

 Wilson et al. (2015, UB, square tunnels)

0
c¹0



 

232 

 

higher than the upper and lower bounds of this paper. However, the rigid block 

mechanism of Osman (2010) produced results that are approximately 30% - 40% 

greater than the current upper and lower bounds. Osman’s failure mechanism shall be 

further improved so that the results can be used with confidence.  

Table 12-1. Comparison of the γmaxC/c results with those available in the literature for 

twin tunnels (C/D = 5 and ϕ = 0˚, after Sahoo and Kumar, 2013). 

S/D 

Osman 
(2010) UB, 

circular 
tunnels 

Sahoo 
 & Kumar 

(2013) UB, 
circular tunnels 

Wilson et al. 
(2014) UB, 

circular 
tunnels 

The 
present 

study 
(UB) 

The 
present 

study 
(LB) 

Wilson et al. 
(2015) UB, 

Square 
tunnels 

1.00 --  3.79 3.86 3.47 3.36 3.15 

1.36 4.40 --    -- --  --  --  

2.00 --  3.85 3.68 3.47 3.37 3.06 

2.74 4.50 --   --  --  --  --  

3.00 --  3.91 3.65 3.55 3.46 3.15 

4.00 --  3.99 3.73 3.67 3.57 3.32 

4.10 4.80 --   --  --  --  --  

5.00 --  4.09 3.84 3.80 3.69 3.46 

5.45 5.10 --   --  --  --  --  

6.00 --  4.21 3.96 3.93 3.81 3.59 

6.83 5.27 --    -- --  --  --  

7.00 --  4.35 4.09 4.06 3.95 3.72 

8.00 --  4.50 4.22 4.19 4.06 3.83 

8.19 5.35 --    -- --  --  --  

9.00 --  4.65 4.35 4.30 4.17 3.95 

9.63 5.40 --   --  --  --  --  

10.00 --  4.78 4.47 4.41 4.27 4.05 

11.00 5.40 4.81 4.60 4.52 4.36 4.15 

12.00 --  4.81 4.71 4.56 4.39 4.17 

12.36 5.40 --    -- --  --  --  

13.00 --  4.81 4.76 4.56 4.40 4.18 

14.00 --  4.81 4.76 4.56 4.41 4.18 

 

Figure 12.8 shows a comparison of the minimum spacing ratio (S/D)min of the present 

study and those of Sahoo and Kumar (2013) for various depth ratios (C/D). In general, 

the comparison shows a good agreement for shallow depth ratios. For deep tunnels 

(C/D > 5), larger differences are observed between the two methods. This could be 

attributed to the inaccuracy in the assumed rigid blocks for deep cases in Sahoo and 

Kumar (2013). 
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To the authors’ knowledge, there are no published results of stability factors for twin 

tunnels. Therefore, no other comparisons can be made at this stage. Having said that, 

FELA is most useful when both the upper and lower bounds are calculated to bracket 

the true collapse load from above and below (Sloan 2013). The numerical upper and 

lower bounds of this study are generally within a few per cent of one another, with the 

true solution lying between the two bounds. These results are valuable and can be used 

for comparison by future researchers. 

12.5 A Simple Example 

Tunnel stability factors are useful in practice for preliminary design as they provide a 

quick calculation of the supporting pressure of the tunnels. In this paper, the variation 

of the stability factors with tunnels’ spacing ratio (S/D) has been established for a series 

of depth ratios (C/D = 2 - 10) and angle of internal friction (ϕ = 0˚ - 40˚).  The 

usefulness of these stability factors is best demonstrated through the use of examples.  

Example: Two side-by-side tunnels are planned to be 20 metres apart (centre-to-

centre) and are assumed to be bored simultaneously. The tunnels have a diameter (D) 

of 4.0 m and are buried at a depth of 12m (C) in a cohesive-frictional soil with 

properties c’ = 27 kPa, ϕ = 10° and γ = 18 kN/m3. The site is assumed to be a 

Greenfield, so no surface pressure is assumed (σs = 0). The following procedures can 

be used to determine the minimum tunnel internal pressure (σt) to prevent collapse. 

1. Calculate the dimensionless ratios: C/D = 3 and S/D = 5.  

2. With Figures 12.9, 12.13 and 12.17 (for ϕ = 10˚), it was found that the LB stability 

factors are Fc = 2.92, Fs = 0.48 and Fγ = 1.85.  

3. Using equation (12.1), the critical internal tunnel pressure to avoid collapse is  

27 2.92 0 18 4 1.85 54.36t   ´   ´ ´   kPa 

12.6 Conclusions  

The stability of twin circular tunnels horizontally aligned in cohesive–frictional soil 

was investigated by using finite element limit analysis (FELA). A series of parametric 

studies for a wide range of angles of internal friction (ϕ = 0˚- 40˚), various depth ratios 

(C/D = 2 - 10) and spacing ratios (S/D = 2 - 28) were conducted to calculate the bounds 
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of the stability factors (Fc, Fs and Fγ). An example was illustrated on how to use the 

factors to estimate limit support pressures. The following conclusions are drawn: 

1. For undrained conditions, the stability factor Fc is a function of the depth ratio 

(C/D), and the spacing ratio (S/D) while the stability factor Fγ is a function of the 

depth ratio (C/D) only i.e. Fγ = (C/D + 0.5). Also, note that, in the undrained 

condition, the stability factor Fs has a value of unity and is independent of (C/D) 

and (S/D).   

2. It has been observed that the minimum spacing ratio ((S/D)min) required to 

eliminate the interference effect of the twin tunnels increases with the increasing 

of the depth ratio (C/D). An equation has been derived for the determination of 

(S/D)min for the undrained condition, which is considered as the worst scenario of 

the whole study. 

3. The proposed equation for estimating the tunnel critical support pressures is 

t c s scF F DF       . 

4. For drained conditions, these stability factors depend on the soil friction angle (ϕ), 

the depth ratio (C/D) and the spacing ratio (S/D). Due to the soil arching effects, 

the factors decrease with the increasing of ϕ. However, for large values of ϕ such 

as 40 degrees in this study, the stability factors are independent of the depth ratio 

(C/D) and the spacing ratio (S/D).  

5. The finite element limit analysis is robust and computationally efficient. It is useful 

as both upper and lower bounds are calculated, providing great confidence to the 

end-users in using the tunnel stability factors.  

A full 3D study of twin tunnels stability in the drained condition is presented in the 

very final technical chapter next in Chapter 13. 
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CHAPTER 13: DRAINED ANALYSIS OF 3D 

TWIN CIRCULAR TUNNELS 

 

13.1 Introduction 

In cohesive-frictional soil, the weight of the soil is small when it is compared with the 

soil arching developed due to the internal friction angle of soil.  The failure study of 

the shield or the permanent lining has become insignificant, and the most obvious 

possibility of instability arises from the tunnel face, which is normally unsupported or 

supported by insufficient air or bentonite slurry pressure.  

In the previous chapter, the stability of 2D twin tunnels in drained soil conditions was 

investigated by using tunnel stability factors approach. Tunnel stability is an inherently 

three-dimensional problem and therefore requires a full 3D analysis. This chapter 

discusses the three-dimensional stability problem of twin circular tunnels in cohesive-

frictional soil under drained conditions. The minimum supporting pressure required to 

maintain the face stability of twin circular tunnels aligned horizontally in drained 

cohesive-frictional soil is studied using a stability factor approach. The primary 

concept adopted is the use of a conventional equation that is analogous to the bearing 

capacity factors (Nc, Ns and Nγ) in Terzaghi’s bearing capacity equation. Three-

dimensional finite element limit analysis (FELA) is employed to perform the analysis. 

For various spacing ratios (S/D) between the tunnels, the stability of tunnels is 

expressed in terms of non-dimensional tunnel stability factors (Fc, Fs and Fγ). The 

variation of the stability factors with tunnels’ spacing ratios have been established for 

different combinations of depth ratio (C/D) and soil internal friction angle (ϕ).  

For practical suitability, the results are presented in the form of dimensionless stability 

charts and tables with the tunnel stability factors closely bracketed from above and 

below using the rigorous upper and lower bound solutions. 
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13.2 Problem Statement and Modeling Technique 

The centre-to-centre distance (S) plays a key role in twin tunnel stability. When the 

distance (S) is small, the stress field around each tunnel overlaps and the interactions 

of two tunnel become important in stability design. Figure 13.1 shows the problem 

definition of twin circular tunnels in three-dimension. The ground is modelled as a 

uniform Mohr-Coulomb material with cohesion (c’), friction angle (ϕ), and unit 

weight (γ). The tunnels have a diameter (D), cover depth (C) above the crown of the 

tunnel and separated by a centre-to-centre distance (S). σs is the surcharge applied to 

the ground surface, and σt is the internal tunnel pressure. 

 

Figure 13.1. Problem Definition. 

As the problem of twin tunnels is symmetrical about the vertical plane. Since it passes 

through the centerline of the distance between tunnels centres, the numerical 

calculations are based on one half of the total domain size. 

Typical FELA adaptive meshes and boundary conditions used in this study are shown 

in Figures 13.2-13.3 (S/D = 4 and 8). An automatically adaptive mesh refinement was 
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employed in both the UB and LB simulations to enable accurate limit loads to be 

obtained through the use of the bounds gap error estimator (Sloan 2013). Three 

iterations of adaptive meshing with the number of elements increasing from 5000 to 

10000 were used for all analyses. 

 

Figure 13.2. A typical adaptive mesh with boundary conditions and failure mechanism 

plot showing twin tunnel effects (C/D = 3 and S/D = 4). 

The large size of the model is essential as it ensures that the entire soil mass is modelled 

accurately, and the failure mechanism does not intersect the boundaries of the model. 

The boundary conditions of the numerical models in Figures 13.2 and 13.3 are as 

follows: the ground surface is free to displace, the side surfaces are restrained in the x-

direction, while the back and the front surfaces (symmetrical plane) are restrained in 

the y-direction. The base is fixed in all directions. The rigid lining around the soil 

excavation is restrained in the normal direction to represent the smooth interface 

condition. For such a boundary condition, there is no transfer of shear force between 

the lining and the soil. 
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Shown in Figure 13.2 is also a plot of the failure mechanism using the contours of UB 

power dissipation. Noting that this is the symmetrical model for a close twin tunnel 

(C/D = 3 and S/D = 4), the resulting surface failure area resembles an elliptical shape 

due to the twin tunnel effects. 

 

Figure 13.3. A typical adaptive mesh with boundary conditions and failure mechanism 

plot showing a single tunnel response (C/D = 3 and S/D = 8). 

Another plot of the failure mechanism for (C/D = 3 and S/D = 8) is shown in Figure 

13.3. Due to the large value of S/D, it is not surprising to see a single tunnel response 

with a near-circular failure surface. 

The numerical simulations presented in this study are based on the state of the art 

FELA software (OptumCE 2018). This software can accurately determine the limits of 

2D and 3D stability problems with the power of finite element discretisation and the 

bounding capability of lower and upper bound plastic limit theorems. Furthermore, it 

has been successfully applied to solve various stability problems in underground 

stability problems (Keawsawasvong & Ukritchon 2017; Ukritchon & Keawsawasvong 

2017; Shiau & Al-Asadi 2018, 2020a, 2020b, 2020c). 
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Approximately 27,666 FELA analyses were performed to calculate the stability factors 

(Fc, Fs and Fγ) for a wide range of soil parameters (ϕ = 0˚- 40˚), spacing ratios (S/D = 

2 - 28) and depth ratios (C/D = 2 - 10). The principles in the calculations of the three 

factors are as follows: (1) both 0   and 0s   are used in the analysis to determine 

Fc, which can be calculated using the equation ' .t cc F   ; (2) both 0   and ' 0c  

are adopted in the analysis and Fs is calculated using the equation .t s sF  ; (3) both 

' 0c  and 0s   are used in the analysis so that Fγ  can be determined using the 

equation .t DF   

Similar to the superposition principle of the traditional bearing capacity equations, the 

minimum support pressures σt at collapse can be determined using Equation (13.1) 

with the produced twin tunnel stability factors in this paper. The use of dimensionless 

ratios allows the results of this study to be useful in design practice. 

13.3 Discussing the Twin Tunnel Stability Factors (Fc, Fs and Fγ)  

Three-dimensional finite element limit analyses (FELA) were performed to calculate 

the upper and the lower bounds limits of the stability factors (Fc, Fs and Fγ) for various 

depth ratios (C/D = 2-10), spacing ratios (S/D = 2 - 28) and angle of internal friction 

(ϕ = 0˚ - 40˚). The effects of the parameters C/D, S/D and ϕ on the tunnel stability 

factors (Fc, Fs and Fγ) are presented in Figures 13.4 - 13.6 and Figures 13.8 - 13.18. 

13.3.1 Fc, Fs and Fγ in undrained condition (ϕ = 0˚) 

Figure 13.4 shows that Fc is a function of the depth ratio (C/D) and the spacing ratio 

(S/D). Fc increases with the increasing of C/D. For each depth ratio, Fc increases 

nonlinearly as S/D increases until it reaches a constant value. At this point, the stability 

factor (Fc) is at its maximum value, and the twin tunnels stability is unaffected by the 

tunnel spacing. The corresponding S/D to the first constant value of Fc is the minimum 

spacing ratio (S/D)min, which is a critical spacing ratio separating twin tunnels and 

single tunnel effects. 

 



 

240 

 

 

Figure 13.4. 3D Fc vs S/D and various C/D (ϕ = 0˚). 

Figure 13.5 shows that the factor Fs has a constant value of unity no matter what values 

of C/D and S/D are. This finding is understandable for soils in undrained condition (ϕ 

= 0˚) where the stability is independent of the loading direction due to zero volume 

loss during plastic shearing (Shiau & Sams 2019). 
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Figure 13.5. 3D Fs vs S/D and various C/D (ϕ = 0˚). 

For Fγ in the undrained condition (ϕ = 0˚), Figure 13.6 shows that the value of S/D 

does not affect the factor Fγ, which is a function of C/D only. Indeed, the unit weight 

effect displays the same trend as the surcharge effect, except that now Fγ = (C/D + 0.5) 

for all values of S/D. The larger the C/D value is, the larger the factor Fγ is. This finding 

is the same as in (Shiau & Al-Asadi 2020c) for the 3D single circular tunnel stability 

in cohesive-frictional soil under undrained condition using tunnel stability factors 

approach. 
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Figure 13.6. 3D Fγ vs S/D and various C/D (ϕ = 0˚). 

Figure 13.7 shows the minimum spacing ratios (S/D)min for various depth ratios (C/D). 

A linear relationship is observed between C/D and (S/D)min. When the spacing ratio is 

less than (S/D)min, it is necessary to study the twin tunnel interaction effects. Once the 

spacing ratio is equal to or larger than (S/D)min, the stability of each of the tunnels is 

essentially identical to those of corresponding single tunnel. The results of (S/D)min for 

various depth ratios, which presented in Figure 13.7, can also be calculated using 

Equation 13.2.  

( / ) 1.8 ( / ) 1.0minS D C D ´                                                                                    (13.2) 

More discussions of Figure 13.7 are also presented in the comparison section. 
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Figure 13.7. Comparison of the minimum spacing ratio (S/D)min required to eliminate 

the interaction between the tunnels. 

13.3.2 Fc, Fs and Fγ in drained condition (ϕ > 0˚)  

Figures 13.8-13.18 (for ϕ > 0˚, drained analysis) show that all the stability factors are 

functions of the angle of internal friction (ϕ), depth ratio (C/D) and spacing ratio (S/D). 

This is in contrary to the undrained condition (ϕ = 0˚). 

Figures 13.8-13.9 (ϕ = 10˚ and 20˚) show that Fc increases with the increasing of C/D. 

For each C/D, Fc increases nonlinearly as S/D increases until it reaches a constant 

value, which indicates that no interactions between the tunnels. However, for high 

friction angles (ϕ ≥ 20, see Figures 13.10 and 13.11), both C/D and S/D have negligible 

effects on the results of Fc. In general, Fc decreases as ϕ increases from 10˚ to 40 ˚. 

Also, note that for the range of ϕ between zero and twenty degrees (0˚ < ϕ < 20˚), the 

minimum spacing ratios (S/D)min decrease with the increasing of the angle of internal 

friction. 
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Figure 13.8. 3D Fc vs S/D and various C/D (ϕ = 10˚). 

 

Figure 13.9. 3D Fc vs S/D and various C/D (ϕ = 20˚). 
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Figure 13.10. 3D Fc vs S/D and various C/D (ϕ = 30˚). 

 

Figure 13.11. 3D Fc vs S/D and various C/D (ϕ = 40˚). 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1.728

1.729

1.730

1.731

1.732

1.733

1.734

1.735

1.736

1.737

1.738

 Upper bound (UB)

 Lower bound (LB) 

F
c

S/D

C/D = 10

           8

           6

           4

           3

           2

 = 30

All C/D

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1.188

1.189

1.190

1.191

1.192

1.193

1.194

1.195

1.196

 Upper bound (UB)

 Lower bound (LB) 

F
c

S/D

C/D = 10

           8

           6

           4

           3

           2

 = 40

All C/D



 

246 

 

With regards to Fs, Figure 13.12 (ϕ = 10˚) shows that the surcharge stability factor 

(Fs) decreases with the increasing of C/D. It is interesting to see that the diminishing 

effect of the depth ratio (C/D) on (Fs) when ϕ increases from 10˚ to 40˚. This can be 

seen from Figures 13.13 - 13.14 (ϕ = 20˚ and ϕ ≥ 25˚). It is to be noted that Fs decreases 

with the increasing of S/D until it reaches a constant value, although the actual Fs 

values are very small. 

 

Figure 13.12. 3D Fs vs S/D and various C/D (ϕ = 10˚). 
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Figure 13.13. 3D Fs vs S/D and various C/D (ϕ = 20˚). 

 

Figure 13.14. 3D Fs vs S/D and various C/D (ϕ ≥ 25˚). 
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Finally, for the factor Fγ, Figure 13.15 (ϕ = 10˚) shows that the unit weight stability 

factor (Fγ) increases with the increasing of C/D. Similar to Fs, the unit weight stability 

factor (Fγ) decreases with the increasing of S/D until it reaches a constant value. Also, 

Fγ decreases dramatically with the increasing of ϕ due to the developing of a stress 

arch that could carry the overburden pressure, and the tunnel stability becomes 

independent of the geometries (C/D) and (S/D). This can be seen in Figures 13.16-

13.18. It is also noted that Fγ has a minimum value of 0.08 when ϕ = 40˚. 

 

Figure 13.15. 3D Fγ vs S/D and various C/D (ϕ = 10˚). 
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Figure 13.16. 3D Fγ vs S/D and various C/D (ϕ = 20˚). 

 

Figure 13.17. 3D Fγ vs S/D and various C/D (ϕ = 30˚). 
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Figure 13.18. 3D Fγ vs S/D and various C/D (ϕ = 40˚). 

13.4 Comparison of Results 

FELA is most useful when both the upper and lower bounds are calculated to bracket 

the true collapse load from above and below. This allows an accurate measure of the 

error in the solution to be computed. Figures 13.4-13.6 and Figures 13.8-13.18 show 

that the numerical upper and lower bounds are generally within a few per cents of one 

another, with the true solution lying between the two bounds. The confidence level in 

producing these results are extremely high even though very few literatures can be 

found in relation to 2D and 3D twin tunnels in cohesive-frictional soil. Therefore, the 

comparison will be made with the available 2D and 3D results of twin tunnels under 

undrained conditions (ϕ = 0˚). Table 13.1 and Figure 13.19 show a comparison 

between the present results and those by (Sahoo & Kumar 2013; Wilson et al. 2014; 

Shiau & Al-Asadi 2020a,2020f). The Figure presents an excellent agreement between 

the results of this study (tunnel stability factor approach) and the 3D stability results 

of twin tunnels in cohesive soil using Broms and Bennermarks’ original stability 

number approach by (Shiau & Al-Asadi 2020a). However, Figure 13.19 highlights a 

significant variance between the 3D and 2D results. 
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Table 13-1. Comparison of the γmaxC/c results with those available in the literature for 

twin tunnels (C/D = 5 and ϕ = 0˚, after Sahoo and Kumar, 2013). 

S/D 

The 
present 

study  
(3D, UB) 

The 
present 

study  
(3D, LB) 

Shiau & 
Al-Asadi 
(2020a), 
(3D, UB) 

Shiau & 
Al-Asadi 
(2020a), 
(3D, LB) 

Sahoo & 
Kumar 
(2013), 

 (2D, UB) 

Wilson 
 et al. 

(2014),  
(2D, UB) 

Shiau & 
Al-Asadi 
(2020f), 
(2D, UB) 

Shiau & 
Al-Asadi 
(2020f), 
(2D, LB) 

1 10.93 10.22 10.85 10.27 3.79 3.86 3.47 3.36 

2 10.97 10.26 10.93 10.33 3.85 3.68 3.47 3.37 

3 11.10 10.37 11.09 10.45 3.91 3.65 3.55 3.46 

4 11.30 10.52 11.26 10.61 3.99 3.73 3.67 3.57 

5 11.50 10.68 11.43 10.76 4.09 3.84 3.80 3.69 

6 11.70 10.87 11.60 10.93 4.21 3.96 3.93 3.81 

7 11.88 11.05 11.76 11.08 4.35 4.09 4.06 3.95 

8 12.02 11.16 11.91 11.23 4.50 4.22 4.19 4.06 

9 12.10 11.19 12.02 11.33 4.65 4.35 4.30 4.17 

10 12.12 11.19 12.02 11.33 4.78 4.47 4.41 4.27 

11 12.12 11.19 12.02 11.33 4.81 4.60 4.52 4.36 

12 12.12 11.19 12.02 11.33 4.81 4.71 4.56 4.39 

13 12.12 11.19 12.02 11.33 4.81 4.76 4.56 4.40 

14 12.12 11.19 12.02 11.33 4.81 4.76 4.56 4.41 

 

 

Figure 13.19. Comparison of the γmaxC/c results with those available in the literature 

for twin tunnels (C/D = 5 and ϕ = 0˚, after Sahoo and Kumar, 2013). 
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In general, the 3D stability results are approximately 2.5-3.0 fold higher than those in 

the 2D analysis. It can be concluded that the 2D analysis produces over-conservative 

results and is only suitable for the preliminary stages of design.  

Also, Figure 13.7 shows a comparison of the minimum spacing ratio (S/D)min of the 

present study and those of Sahoo and Kumar (2013) and (Shiau & Al-Asadi 2020f) for 

various depth ratios (C/D). Generally, the comparison shows that the results of the 2D 

analyses are conservative compared to the results of the 3D analysis. 

13.5 An Example 

The produced figures and tables for the stability factors (Fc, Fs and Fγ) can be used to 

estimate the critical pressure to maintain the stability of the headings of 3D twin 

tunnels. The usefulness of these stability factors is best demonstrated through the 

example below. 

Example: Two side-by-side tunnels are planned to be 30 metres apart (centre-to-

centre) and are assumed to be bored simultaneously. The tunnels have a diameter (D) 

of 6.0 m and are buried at a depth of 18m (C) in a cohesive-frictional soil with 

properties c’ = 15 kPa, ϕ = 10˚ and γ = 18 kN/m3. The site is assumed to be a greenfield 

(σs = 0). The following procedures can be used to determine the minimum internal 

pressure (σt) to prevent collapse. 

1. Calculate the dimensionless ratios: C/D = 3 and S/D = 5.  

2. With Figures 13.8, 13.12 and 13.15 (for C/D = 3, S/D = 5 and ϕ = 10˚), it was 

found that the LB stability factors are Fc =5.01, Fs = 0.116 and Fγ = 0.870.  

3. Using Equation (13.1), the minimum internal supporting tunnel pressure (σt) to 

present collapse is  

15 5.01 0 18 6 0.870 18.81t c s scF F DF        ´   ´ ´   kPa. 

What is the required critical pressure when ϕ = 20˚? 

1. With Figures 13.9, 13.13 and 13.16 (for C/D = 3, S/D = 5 and ϕ = 20˚), it was 

found that the LB stability factors are Fc = 2.73, Fs = 0.003 and Fγ = 0.278.  

2. Using Equation (13.1), the minimum internal supporting tunnel pressure (σt) to 

induce collapse is 

15 2.73 0 18 6 0.278 10.93t c s scF F DF        ´   ´ ´    kPa. 
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3. A negative value of σt indicates that the tunnel requires a pulling pressure to reach 

a collapsed state. In other words, the tunnel will remain stable without any internal 

pressure. 

13.6 Conclusions  

The stability of twin circular tunnels horizontally aligned in cohesive–frictional soil 

has been studied using 3D finite element limit analysis. A series of parametric studies 

for a wide range of internal soil friction (ϕ = 0˚- 40˚), depth ratios (C/D = 2 - 10) and 

spacing ratios (S/D = 2 - 28) were conducted to calculate the tunnel stability factors 

(Fc, Fs and Fγ). An example was illustrated on how to use the factors to estimate limit 

support pressures. The following conclusions are drawn: 

1. The equation for estimating the tunnel critical support pressures of 3D twin tunnels 

is: t c s scF F DF       . 

2. For the undrained condition (ϕ = 0˚), the stability factor Fc is a function of the 

spacing ratio (S/D) and the depth ratio (C/D), while the stability factors Fs and Fγ 

are independent of (S/D) and have constant values of Fs = 1 and Fγ = (C + 0.5), 

respectively. 

3. For drained condition, the stability factors are functions of the angle of internal 

friction (ϕ), depth ratio (C/D) and spacing ratio (S/D). In general, the factors 

decrease with the increasing of ϕ. For ϕ ≥ 20˚, owing to the developing of soil 

arching, the stability factors are independent of the depth ratio (C/D) and the 

spacing ratio (S/D). 

Three-dimensional finite element limit analysis is robust and computationally 

efficient. It is useful as both upper and lower bounds are calculated, providing great 

confidence to the end-users in using the tunnel stability factors. The proposed tunnel 

stability factor approach to estimate tunnel face pressures, similar to the bearing 

capacity problem, is convenient and effective for practical engineers. 

This is the very final technical chapter of the thesis, which provides a comprehensive 

study of undrained (Part A) and drained (Part B) analyses for five tunnel geometries. 

Chapter 14 concludes the thesis study with new research contributions. Future work is 

also recommended. 
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CHAPTER 14: CONCLUSIONS AND 

RECOMMENDATIONS 

 

14.1 Summary 

The thesis has successfully investigated the undrained and drained stability of five 

tunnel configurations (i.e. 2D heading, 2D circle, 3D circle, 2D twin circles and 3D 

twin circles). Finite element limit analysis (FELA) is used to determine lower and 

upper bound stability limits for a range of various geometrical and material scenarios. 

The thesis is divided into two parts. 

Part A (Chapters 4-8): This part focuses on undrained stability analysis. The method 

used to check the stability of a tunnel face is based on the so-called Broms and 

Bennermarks’ original stability number (N). For the 2D undrained analyses, the safety 

factors were calculated using the shear strength reduction method in FELA and finite 

difference method in FLAC, while for the 3D undrained analysis, the critical 

supporting pressure values were calculated using the load multiplier method in FELA. 

To the author’s best knowledge, it is the first to use Broms and Bennermarks’ original 

stability number with shear strength reduction method in the stability analysis of 

underground openings. Comprehensive design charts, tables, and equations have been 

produced for various tunnel shapes (i.e. 2D heading, 2D circle, 3D circle, 2D twin 

circles and 3D twin circles) with wide ranges of stability numbers (N), factor of safety 

(FoS) and depth ratios (C/D =1-10). These results can be used to determine the safe 

operating range for the pressure that can be applied to the tunnel excavation face by a 

tunnel boring machine during construction. 

Part B (Chapters 9-13): Following the superposition principle of the bearing capacity 

equations, this part focuses on the drained analysis using tunnel stability factors (Fc, 

Fs and Fγ). This approach is convenient for stability analysis of underground openings 

with a wide range of depth ratios (C/D = 1 - 10) in the more general case of a cohesive 

and/or frictional soil (ϕ = 0 - 40˚). Tunnel stability factors allow a quick calculation of 

the critical collapse pressure, which is useful for practical purposes. This can be 
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performed by a simple application of a traditional equation (analogous to Terzaghi’s 

bearing capacity equation) using the superposition principle.  

To the author’s best knowledge, this thesis is the first to use the advanced FELA with 

the tunnel stability factor approach in the stability analysis of underground openings 

and to produce comprehensive results of the three stability factors (Fc, Fs and Fγ) for a 

wide range of design parameters of the following five tunnel configurations: 

- Two-dimensional tunnel heading (Chapter 9) 

- Two-dimensional circular tunnel (Chapter 10) 

- Three-dimensional circular tunnel heading (Chapter 11) 

- Two-dimensional twin circular tunnels (Chapter 12) 

- Three-dimensional twin circular tunnel heading (Chapter 13) 

 

The key conclusions for each chapter are presented as follows: 

14.2 Key conclusions in Chapter 4 

The following main conclusions were drawn based on the two-dimensional analysis of 

tunnel heading in cohesive undrained soil. 

1. The relationship between the factor of safety (FoS) and the stability number (N), 

for any given depth ratio (C/D), was represented by a pair of identical hyperbolic 

curves. One curve relating to failure due to the collapse mechanism and the other 

relating to failure due to the blowout mechanism.  

2. Any combination of N and FoS on these curves yield a unique critical stability 

number (Nc) value, which is a function of the depth ratio and increases nonlinearly 

as C/D increases. 

3. For all cases analysed, it was found that the optimum factor of safety occurs at a 

stability number of zero, where the internal tunnel pressure equal to the overburden 

stress. 

4. In the 2D analysis of tunnel heading in a cohesive soil, the study showed that the 

failure of the tunnel face propagates to the ground surface and failure extent ratio 

increases linearly as C/D increases. 



 

256 

 

5. Based on the obtained results, the contour chart has been produced for stability 

number N, which can be used to relate it to the factor of safety (FoS) for any C/D. 

6. The obtained upper and lower bounds results are within a few percentages from 

each other and compared favourably with those published and those obtained by 

the finite difference method. 

7. Design charts, tables, and equations were produced using dimensionless ratios. It 

was discovered that one particularly useful practical application of the design 

charts, tables, and equations is the ability to determine a safe operating range for 

the pressure that can be applied to the tunnel excavation face by a tunnel boring 

machine during construction. Examples have been given to illustrate the 

practicality of the charts. 

14.3 Key conclusions in Chapter 5 

The following main conclusions were drawn based on the two-dimensional analysis of 

a single circular tunnel in cohesive undrained soil. 

1. The relationship between the factor of safety (FoS) and the stability number (N), 

for any given depth ratio (C/D), was represented by a pair of identical hyperbolic 

curves. One curve relating to failure due to the collapse mechanism and the other 

relating to failure due to the blowout mechanism.  

2. For each depth ratio (C/D), a unique critical stability number (Nc) was obtained by 

multiplying the “designed” stability number and the corresponding FoS, where Nc 

is a function of the depth ratio and increases nonlinearly as C/D increases. 

3. For all scenarios analysed, it was found that the optimum factor of safety occurs at 

a stability number of zero, where the internal tunnel pressure equal to the 

overburden stress. 

4. In the 2D analysis of circular tunnel in a cohesive soil, the study showed that the 

failure of the tunnel face propagates to the ground surface, and failure extent ratio 

increases linearly as C/D increases. 

5. Based on the obtained LB results, the contour chart has been produced for stability 

number N, which can be used to relate it to the factor of safety (FoS) for any C/D. 
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6. The obtained upper and lower bounds results are within a few percentages from 

each other and compared favourably with the finite difference results and the 

available solutions reported in the literature. 

7. It was noted that the stability of 2D circular tunnel is more critical than the stability 

of a 2D tunnel heading, and this is due to the difference in the geometry of the 

problems. 

8. Design charts, tables, and equations were produced using dimensionless ratios. It 

was discovered that one particularly useful practical application of the design 

charts, tables, and equations is the ability to determine a safe operating range for 

the pressure that can be applied to the tunnel excavation face by a tunnel boring 

machine during construction. Examples have been given to illustrate the 

practicality of the charts. 

14.4 Key conclusions in Chapter 6 

The following main conclusions were drawn based on the three-dimensional analysis 

of a single circular tunnel heading in cohesive undrained soil. 

1. The relationship between the factor of safety (FoS) and the stability number (N), 

for any given depth ratio (C/D), was represented by a pair of identical hyperbolic 

curves. One curve relating to failure due to the collapse mechanism and the other 

relating to failure due to the blowout mechanism.  

2. Any combination of N and FoS on these curves yield a unique critical stability 

number (Nc) value, which is a function of the depth ratio and increases nonlinearly 

as C/D increases. 

3. For all scenarios analysed, it was found that the optimum factor of safety occurs at 

a stability number of zero, where the internal tunnel pressure equal to the 

overburden stress. 

4. The obtained upper and lower bounds results are within a few percentages from 

each other and compared favourably with the available solutions reported in the 

literature. 

5. Based on the obtained results, the contour chart has been produced for stability 

number N, which can be used to relate it to the factor of safety (FoS) for any C/D 
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and to determine the safe operating pressure range that can be applied to the tunnel 

face by a tunnel boring machine during construction. 

6. The study showed that a significant drop in the stability of the tunnel occurred 

as the unlined length ratio of the tunnel heading (P/D) increased from 0 to 3.  

7. A comparison of the 3D FELA solutions with those published from experimental 

and kinematic analysis approaches showed a good agreement among the results, 

indicating that the used technical tool was capable of accurately analysing 3D 

circular tunnel heading stability related to the failure mechanism in collapse and 

blowout.  

8. In general, the 3D results are approximately 70% - 80% greater than the 2D ones. 

The variations are mostly attributed to the differences in the geometry of problems. 

9. The study of the failure mechanism indicated a 3D transformation from general 

failure to local failure occurs once C/D is greater than about 2, where it observed 

that the collapse failure did not propagate through to the ground surface. This 

finding is useful for the analytical upper bound, which requires a priori assumption 

in relation to the general form of the failure surface.  

14.5 Key conclusions in Chapter 7 

The following main conclusions were drawn based on the two-dimensional analysis of 

twin circular tunnels in cohesive undrained soil. 

1. The relationship between the factor of safety (FoS) and the stability number (N), 

for any given depth ratio (C/D), was represented by a pair of identical hyperbolic 

curves. One curve relating to failure due to the collapse mechanism and the other 

relating to failure due to the blowout mechanism.  

2. For all scenarios analysed, it was found that the optimum factor of safety occurs at 

a stability number of zero, where the internal tunnel pressure equal to the 

overburden stress. 

3. It was found that the critical stability number (Nc) is a function of C/D and S/D, it 

increases nonlinearly as S/D increases. The gradient of the curves decreases as 

values of S/D increase and approach to zero when there is no interaction between 

the tunnels (each tunnel behaves as a single isolated tunnel). The minimum spacing 
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ratios required to avoid twin tunnel interaction determined for uses in practical 

designs. 

4. The obtained upper and lower bounds results are within a few percentages from 

each other and compared favourably with the finite difference results and the 

available solutions in the literature.  

5. In comparison with the existing published results, the UB and LB solutions of this 

study have been significantly improved owing to the use of adaptive mesh. 

6. Design charts, tables, and equations were produced using dimensionless ratios. 

Examples have been given to illustrate the practicality of the charts. 

14.6 Key conclusions in Chapter 8 

The following main conclusions were drawn based on the three-dimensional analysis 

of twin circular tunnels heading in cohesive undrained soil. 

1. The relationship between the factor of safety (FoS) and the stability number (N), 

for any given depth ratio (C/D), was represented by a pair of identical hyperbolic 

curves. One curve relating to failure due to the collapse mechanism and the other 

relating to failure due to the blowout mechanism.  

2. For all cases analysed, it was found that the optimum factor of safety occurs at a 

stability number of zero, where the internal tunnel pressure equal to the overburden 

stress. 

3. The critical stability number (Nc) is a function of the depth ratio (C/D) and the 

spacing ratio (S/D). Nc increases with the increasing of C/D. For each C/D, Fc 

increases nonlinearly as S/D increases until it reaches a constant value, which 

indicates that the twin tunnels stability is unaffected by the tunnel spacing. 

4. The obtained upper and lower bounds results are within a few percentages from 

each other and compared favourably with the available solutions reported in the 

literature. 

5. Based on the observation of the failure mechanism and the Nc results for each 

increase in the spacing ratio S/D, an equation was derived to calculate the critical 

spacing (S/D)min required for a single tunnel response (i.e. without overlapping 

effects). 
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6. The study showed that for close twin tunnels, the resulting surface failure area 

resembles an elliptical shape due to the twin tunnel effects. On the other hand, 

when there is a large value of S/D between the twin tunnels, it is not surprising to 

see a single tunnel response with a near-circular failure surface. 

7. The comparison of the 3D results with some existing 2D solutions shows that the 

3D results are significantly greater than the 2D results; the variations are mostly 

attributed to the differences in the two types of problems. The twin tunnels are 

assumed to be unlined and infinitely long in the plane strain 2D analysis, while the 

3D analysis of twin tunnel is for the close face heading scenario. 

14.7 Key conclusions in Chapter 9 

The following main conclusions were drawn based on the two-dimensional analysis of 

tunnel heading in cohesive-frictional drained soil. 

1. Unlike the traditional bearing capacity factors (Nc, Ns and Nγ), the tunnel stability 

factors (Fc, Fs and Fγ) are functions of the soil friction angle ϕ and the depth ratio 

(C/D). 

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves for various C/D 

merge into a single line at approximately ϕ = 30˚.  

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. Fs has a maximum value of one at ϕ = 0˚ and a minimum value of 

zero at approximately ϕ = 35˚ for all depth ratios (C/D). In general, the effect of 

surcharge load (σs) diminishes as the soil friction angle increases due to the 

development of soil arching. 

4. The unit weight stability factor (Fγ) increases as the depth ratio (C/D) increases. Fγ 

has a maximum value of (C/D + 0.5) at ϕ = 0˚ and decreases dramatically as the 

soil friction angle ϕ increases due to the development of soil arching. The Fγ curves 

merge into a single line at approximately ϕ = 25˚. 

5. The obtained results are compared and validated by using the finite-difference 

analysis as well as other available published results in the literature. A number of 
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examples are illustrated on how to use the factors to estimate tunnel heading 

pressures. 

6. The tunnel stability factors of this study showed a good agreement with the 

published results despite that available solutions are for high friction angle (ϕ ≥ 

0˚) and shallow depth ratios (C/D ≤ 3). Also, the critical pressures calculated by 

using the stability factor of this study showed a good agreement with those 

produced by using the finite difference method. 

14.8 Key conclusions in Chapter 10 

The following main conclusions were drawn based on the two-dimensional analysis of 

a single circular tunnel in cohesive-frictional drained soil. 

1. The tunnel stability factors (Fc, Fs and Fγ) are functions of the soil friction angle ϕ 

and the depth ratio (C/D). 

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves merge into a single 

line at approximately ϕ = 35 ˚, and Fc reaches a minimum value of 1.19 at ϕ = 40˚. 

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. Fs has a maximum value of one at ϕ = 0˚ (i.e. undrained clay) and a 

minimum value of zero at approximately ϕ = 40˚. In general, the effect of 

surcharge load (σs) diminishes as the soil friction angle increases due to the 

development of soil arching. 

4. The unit weight stability factor (Fγ) has a maximum value of (C/D + 0.5) at ϕ = 0˚ 

(i.e. undrained clay) and decreases dramatically as the soil friction angle ϕ 

increases due to the development of soil arching. The deeper the tunnel is, the 

larger the Fγ (unit weight effect) is. Most C/D curves merge into one line at 

approximately ϕ ≥ 25˚. For C/D ≤ 2, the curves merge at ϕ ≥ 30˚. 

5. A comparison of the 2D FELA solutions with those published from similar 

technique showed a good agreement among the results, 

6. The comparisons of the stability factors (Fc, Fs and Fγ) between this study and the 

2D tunnel heading showed the same trend: i.e. the stability factors decrease with 

the increasing of the internal friction angle. However, circular tunnel stability 

factors produce higher internal tunnel pressure than tunnel heading stability 



 

262 

 

factors, which indicates that the stability of the circular tunnel is more critical than 

the stability of the tunnel heading. 

14.9 Key conclusions in Chapter 11 

The following main conclusions were drawn based on the three-dimensional analysis 

of a single circular tunnel heading in cohesive-frictional drained soil. 

1. Unlike the traditional bearing capacity factors (Nc, Ns and Nγ), the tunnel stability 

factors (Fc, Fs and Fγ) are functions of both the soil friction angle ϕ and the depth 

ratio (C/D). The equation for estimating the tunnel face support pressures is 

t c s scF F DF       

2. The cohesion stability factor (Fc) increases as the depth ratio (C/D) increases, but 

it decreases as the soil friction angle ϕ increases. The Fc curves for various C/D 

merge into a single line at approximately ϕ = 21˚.  

3. The surcharge stability factor (Fs) decreases nonlinearly as the soil friction angle 

ϕ increases. For all depth ratios (C/D), Fs has a maximum value of one at ϕ =0˚ 

and a minimum value of zero when ϕ > 20˚. In general, the effect of surcharge load 

(σs) diminishes as the soil friction angle increases due to the development of soil 

arching. 

4. The soil weight stability factor (Fγ) increases as the depth ratio (C/D) increases. Fγ 

has a maximum value of (C/D + 0.5) at ϕ = 0˚ and decreases dramatically as the 

soil friction angle ϕ increases due to the development of soil arching. The Fγ curves 

merge into a single line at approximately ϕ =17˚. 

5. For all stability factors (Fc, Fs and Fγ) presented in this study, there are good 

agreements between the upper and the lower bounds results, and the limits of each 

stability factor are within a few percentages from each other. 

6. A comparison of the 3D FELA solutions with those published from experimental, 

kinematic and numerical approaches showed a good agreement in the trend of the 

curves of stability factors (Fc, Fs and Fγ), despite that the available results are for 

high friction angle (ϕ  ≥  0˚) and shallow depth ratios (C/D ≤ 3). 
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7. Comprehensive tables, figures and equations were produced for the stability 

factors (Fc, Fs and Fγ). Examples were illustrated on how to use these factors to 

estimate the limit support pressure at collapse. 

14.10 Key conclusions in Chapter 12 

The following main conclusions were drawn based on the two-dimensional analysis of 

twin circular tunnels in cohesive-frictional drained soil. 

1. A series of parametric studies for a wide range of angles of internal friction (ϕ = 

0˚- 40˚), various depth ratios (C/D) and spacing ratios (S/D) were conducted to 

calculate the bounds of the stability factors (Fc, Fs and Fγ). An example was 

illustrated on how to use the factors to estimate limit support pressures. The 

following conclusions are drawn: 

2. For undrained conditions, the stability factor Fc is a function of the depth ratio 

(C/D) and the spacing ratio (S/D) while the stability factor Fγ is a function of the 

depth ratio (C/D) only. Also, note that the stability factor Fs is independent of 

(C/D) and (S/D) in undrained condition.   

3. It has been observed that the minimum spacing ratio ((S/D)min) required to 

eliminate the interference effect of the twin tunnels increases with the increasing 

of the depth ratio (C/D). An equation has been derived for the determination of 

(S/D)min for the undrained condition, which is considered as the worst scenario of 

the whole study. 

4. The equation for estimating the tunnel critical support pressures is 

     t c s scF F DF  . 

5. For drained conditions, these stability factors depend on the soil friction angle (ϕ), 

the depth ratio (C/D) and the spacing ratio (S/D). Due to the soil arching effects, 

the factors decrease with the increasing of ϕ. However, for large values of ϕ such 

as 40 degrees in this study, the stability factors are independent of the depth ratio 

(C/D) and the spacing ratio (S/D).  

6. A comparison of the 2D FELA results with those published from 2D numerical and 

of twin tunnels in undrained clayey soil showed a very good agreement. However, 

the rigid block mechanism produced results that are approximately 30% - 40% 
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greater than the current upper and lower bounds. An example was provided to 

demonstrate the usefulness of the design charts. 

14.11 Key conclusions in Chapter 13 

The following main conclusions were drawn based on the three-dimensional analysis 

of twin circular tunnels heading in cohesive-frictional drained soil. 

1. A series of parametric studies for a wide range of internal soil friction (ϕ = 0˚- 

40˚), depth ratios (C/D) and spacing ratios (S/D) were conducted to calculate the 

tunnel stability factors (Fc, Fs and Fγ). An example was illustrated on how to use 

the factors to estimate limit support pressures. 

2. For the undrained condition (ϕ = 0˚), the stability factor Fc is a function of the 

spacing ratio (S/D) and the depth ratio (C/D), while the stability factors Fs and Fγ 

are independent of (S/D) and have constant values of Fs = 1 and Fγ = (C + 0.5). An 

equation has been derived for the determination of (S/D)min, which is considered 

as the worst scenario of the whole study. 

3. The equation for estimating the tunnel critical support pressures is: 

t c s scF F DF      . 

4. For drained conditions, the stability factors decrease with the increasing of ϕ. For 

ϕ ≥ 20˚, owing to the developing of soil arching, the stability factors are 

independent of the depth ratio (C/D) and the spacing ratio (S/D). 

5. A comparison of the 3D FELA results with those published from 3D FELA of twin 

tunnels in undrained clayey soil showed a good agreement. However, significant 

variance between the 3D and 2D results. In general, the 3D stability results are 

approximately 2.5-3.0 fold higher than those in the 2D analysis. The variations are 

mostly attributed to the 2D analysis, which is cannot possibly capture the effect of 

arching in the soil. A practical example was provided to demonstrate the usefulness 

of the design charts. 

6. The study showed that the 3D FELA is robust and computationally efficient. It is 

useful as both upper and lower bounds are calculated, providing great confidence 

to the end-users in using the tunnel stability factors. The proposed tunnel stability 
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factor approach to estimate tunnel face pressures, similar to the bearing capacity 

problem, is convenient and effective for practical engineers. 

14.12 Recommendation for future work 

When it comes to research, simplifications are always necessary for geotechnical 

engineering to develop models with confidence. This is mainly due to the uncertainty 

and complexity of the behaviour of soil and this is especially true with tunnel 

modelling. Not only is there the geometry, material properties and the complexity of 

simulating the tunnel construction, but also the possibility of many other complications 

such as surface surcharges (buildings, roads), sub-surface structures (pipelines, piles, 

other tunnels), and complex geology (layers). 

With the recent advancements of numerical modelling, the accuracy of construction-

related simulation has improved greatly. However, parametric studies are still 

important in the study to appreciate the response to changing variables. Using a wide 

range of practical parameters, it does provide insight into the likely behaviour. It also 

allows the development of some useful and simple design tools for preliminary work. 

Following the research outcome in this study, some important areas have been 

identified for future investigation. The following recommendations for future work are 

presented. 

1. Using the proposed Broms and Bennermarks’ original stability number approach, 

it is recommended to extend the investigation into the undrained stability of other 

geotechnical stability problems such as trapdoor, a sinkhole with circular and 

square openings, square tunnel, rectangular tunnel, launch wall, earth pressure 

problems, and undrained stability of braced excavation. 

2. Using the proposed stability factor approach, future work may include the 

investigation many other drained stability problems such as trapdoor, a sinkhole 

with circular and square openings, square tunnel, rectangular tunnel, launch wall, 

earth pressure problems, and undrained stability of braced excavation. 

3. It is recommended to expand the current investigations to large-diameter tunnels 

(D > 10 m), where the earth pressure distribution is highly nonlinear. 
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4. It is recommended to expand the current investigation of tunnel stability to 

nonhomogeneous soil such as multi-layered formations and the increasing shear 

strength of the soil with depth. 

5. It is recommended to expand the current study to the probabilistic analysis with 

special consideration to spatial variability of soil. 
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