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Abstract

Microarray data classification is used primarily to predict unseen data using

a model built on categorized existing Microarray data. One of the major

challenges is that Microarray data contains a large number of genes with a

small number of samples. This high dimensionality problem has prevented

many existing classification methods from directly dealing with this type of

data. Moreover, the small number of samples increases the overfitting prob-

lem of Classification, as a result leading to lower accuracy classification per-

formance. Another major challenge is that of the uncertainty of Microarray

data quality. Microarray data contains various levels of noise and quite often

high levels of noise, and these data lead to unreliable and low accuracy anal-

ysis as well as the high dimensionality problem. Most current classification

methods are not robust enough to handle these type of data properly.

In our research, accuracy and noise resistance or robustness issues are

focused on. Our approach is to design a robust classification method for

Microarray data classification.

An algorithm, called diversified multiple decision trees (DMDT) is pro-

ix



x Abstract

posed, which makes use of a set of unique trees in the decision committee.

The DMDT method has increased the diversity of ensemble committees and

therefore the accuracy performance has been enhanced by avoiding overlap-

ping genes among alternative trees.

Some strategies to eliminate noisy data have been looked at. Our method

ensures no overlapping genes among alternative trees in an ensemble com-

mittee, so a noise gene included in the ensemble committee can affect one

tree only; other trees in the committee are not affected at all. This design

increases the robustness of Microarray classification in terms of resistance to

noise data, and therefore reduces the instability caused by overlapping genes

in current ensemble methods.

The effectiveness of gene selection methods for improving the performance

of Microarray classification methods are also discussed.

We conclude that the proposed method DMDT substantially outperforms

the other well-known ensemble methods, such as Bagging, Boosting and Ran-

dom Forests, in terms of accuracy and robustness performance. DMDT is

more tolerant to noise than Cascading-and-Sharing trees (CS4), particulary

with increasing levels of noise in the data. The results also indicate that some

classification methods are insensitive to gene selection while some methods

depend on particular gene selection methods to improve their performance

of classification.
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Chapter 1
Microarray data classification

The completion of the Human Genome Project [51] which generated a rough

draft of the human genome sequence led us into a post-genomics era, and

consequently has changed our perspectives of the genetics field. The human

genome is all about biological information, and the information provided is

on a grand scale. With advances in computing technology providing large

capacity for storage, this biological data is able to be collected and stored.

Since the size of the biological data is extremely large and is still increasing

dramatically, biologists need to rely on computer analysis tools to convert

this immense store of biological data into the knowledge we needed. The

needs for computer science from the biological field has created a new field

called bioinformatics. To date, bioinformatics has become essential for bio-

logical experiments, data management, and data analysis applications using

available biological data.

In this chapter, we introduce bioinformatics and describe Microarray data

analysis. Particularly we describe the concept of gene expression and Mi-
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2 Chapter 1. Microarray data classification

croarray technology. After the introduction of Microarray data analysis, we

present our research problems and research objectives. Finally, we briefly list

our contributions and the structure of the thesis.

1.1 Bioinformatics overview

Bioinformatics, a new research field which resorts to computer technologies

to investigate biological problems at the molecular level, has grown up in the

last twenty years or so due to the advance in computer technologies and the

explosive growth of biological data [32]. The development of bioinformatics

is driven by the accelerated growth of biological data, and the activities of

bioinformatics involves researching and developing the application of compu-

tational tools for collecting, manipulating, analyzing, and transmitting huge

quantities of biological data.

According to Genbank statistics from the National Center for Biotechnol-

ogy Information website (NCBI: http://www.ncbi.nlm.nih.gov/Genbank/

genbankstats.html), the number of entries of gene sequences in databases

has grown from 606 in 1982 to 52 million in 2005. The production rate of bio-

logical data is largely driven by rapid changes in computer technologies such

as larger data storage capacity and cheaper and faster computing hardware.

Disk storage capacity doubles every 9 months, and processing capacity dou-

bles every 18 months [58]. These technological advances have made available

the storage capacity and processing power required for many applications

including biological research.

Apart from the driving force of computer technologies, the development
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of bioinformatics has also been driven by the revolution in biology itself. The

problem was, in the past, that scientists were able to study only one or a few

genes at a time, and this severely restrained scientists from examining entire

genomes. As a result, this made it impossible for scientists and biologists to

reveal the interactions among the entire genome. Researchers demand the

study of many genes together in order to discover useful information which is

hidden among genes, for example the specific roles of individual genes in var-

ious genetic diseases, such as breast cancer or heart disease [144, 66]. Other

useful information can be the gene patterns for the cause of a disease and the

similarities among genes and the functionalities of genes [102]. Toward this

end, the U.S. Department of Energy and the National Institutes of Health

has launched the Human Genome Project (HGP) from the early 1990s which

aims to identify the genes in human DNA and determine the sequences of

the billions of chemical base pairs that make up human DNA. The project

was successfully completed in year 2003. The Human Genome Project pro-

vided a large amount of genetic information facilitating our understanding of

the genetic structure of human beings. We know now that there are around

20000 - 25000 genes in a human cell, according to the International Human

Genome Sequencing Consortium [33]. The sequence of the human DNA is

stored in databases which are available to the public. All these data provide a

foundation for further study by other biological researchers. As a direct con-

sequence, the complete genome information has provided the opportunities

for biological researchers to study not just of single or a few genes, but the

functions and interactions of all the genes in the whole genome. No doubt,

these data are tremendously beneficial to biologists studying all aspects of
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human beings. The vast amount of valuable biological information provides

an opportunity to analyze the interaction between genes; to detect possi-

ble mutation genes; to investigate certain genes which might cause certain

cancers and compare genes between normal and cancer tissues. And most

importantly, the discovered information will be useful for finding effective

treatments and preventing the potential cancer patients from suffering the

disease.

Despite the human genome project being finished, the problem to realize

its full potential is challenging. From this moment on, biology research has

entered into a post-genetic era. In the post-genetic era, It is noticeable that

biology is no longer a traditional science which has little or no connection with

computer science. Since the massive biological data can be extremely useful

only if biological data can be converted into knowledge, biologists now need

help from computer science to implement tools for effective accessing and

maintaining the vast molecular biological database. In addition to computer

capacity, biologists also need computing software such as biological database

analysis algorithms that discover the information behind the generated bio-

logical data more accurately and consistently. This situation has created the

need for a new generation of tools for extracting knowledge automatically

and effectively in order to understand this biological information.

Biological databases are essential to Bioinformatics research. To be able

to handle and share the wealth of biological data and support biological data

analysis, these biological data are stored in different biological databases for

easy access. Note that these biological databases contain necessary infor-

mation to assist biological researchers to understand (a) the functions of
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proteins [120], (b)the evolution of living organisms [78], (c) the cause of dis-

eases [16, 31]. Ultimately the discovered information will be beneficial for

finding new strategies for improving human life. For example, the knowledge

can be helpful for identifying genetic risk factors for genetic diseases. Conse-

quently, these risk factors can assist doctors to detect the disease in the early

stages. More ambitiously, the knowledge can be used to discover the groups

of genes for causing breast cancer, we then might find a way to modify the

identified genes. Furthermore, if we can determine which group of patients

react positively to a certain drug with little side effects, then we should be

able to apply different drugs according to which group the patient is in, in

order to fight against cancer diseases more effectively.

Depending on the content of biological data stored, biological databases

can be divided into: protein sequence databases, protein structure databases,

genome sequence databases and Microarray databases [14]. As we are aware,

in past decades these biological databases have been used in many bioin-

formatics research areas, such as comparative genomics, systems biology,

structural biology and Microarray data analysis.

Comparative genomics [122] studies the available whole genome sequence

of living beings by comparing with genetic material of itself or other different

species. According to the theory of Charles Darwin’s evolution, human be-

ings are related to ape-like ancestors and it indicate that some species should

be more or less related to each other. The living beings with common ances-

tors, homologous, should have similar DNA while the species with different

ancestors should exhibit less similarities at the DNA level [32]. It is inter-

esting to know how different or similar they are at molecular level and how
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major evolutionary changes take place [132]. Comparative genomics has been

applied for revealing unusually long motifs in mammalian genomes [71]. It

also been used for identifying the cold-induced genes among different crops

in order to improve the freezing tolerance in plants [87].

Systems biology [8] aims to look at the big picture of everything going

on in the cells and biological systems of living beings. Instead of studying

protein activities, gene expressions and the variations proteins and genes in

living beings in isolation, systems biology combines all proteomic, genomic

and other information into an integrated picture of the logic of living be-

ings. Many systems biology researchers have focused on building computer

models for simulating biological system process [104, 37], such as the brain

system [36] and the biological cell [129].

Structural Biology [56] is used to determine the structure of proteins

from their amino acid sequences. Proteins carry out most biological activ-

ities in cells. Each protein folds into a unique three-dimensional structure

held together by chemical interactions between the amino acids in order to

perform its particular activity or functionality. In recent years, a flood of

protein sequence data has been produced, and this creates the possibility

for bioinformatics researchers to predict the structure of proteins in order to

help biologists have a better understanding of the functionalities of proteins.

Structural biology encompasses developing effective computer-based tools or

methods for protein structure prediction. Structural biology is very useful for

many research areas, such as drug design [143] and protein modeling [137].

Last but not least, Microarray analysis. Revolutionary breakthrough Mi-

croarray technologies provide an efficient, high-throughput way of producing
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vast of gene expression Microarray data. Microarray technologies enable sci-

entists to study the whole genome with a single experiment by providing a

broad snapshot of the state of a cell by measuring the expression levels of

thousands of genes simultaneously. Those technologies accelerate the pace

of every aspect of biological research. As more and more Microarray data

become available, this enables biological researchers to obtain answers to

many complex questions. For example, if it is a simple fact that a particular

gene is known to be involved in a disease, then other unknown genes with

similar expression patterns are very likely to have similar functionality. This

definitely helps biology researchers to discover the genes of unknown func-

tion with co-regulate genes of known function. Generally, many diseases are

affected by more than one gene. That means a group of genes normally acts

together to contribute to a disease or change in state. With Microarray data,

it is possible to reveal the relationship between those genes within a group

as well as between groups. Ultimately, Microarrays create the potential to

help discover the cause of human cancer diseases based on pattern differences

between diseases and healthy people.

Microarray analysis focuses on identifying the sequences of genes and

determining the expression of an abundance of genes. Its applications are

mainly divided into single nucleotide polymorphisms Microarray analysis,

and gene expression Microarray analysis.

Single nucleotide polymorphisms (SNPs) Microarray analysis focuses on

genetic variations and mutation [25]. DNA contains genetic information

coded by the bases A,G,T and C. A single mistake or change in the DNA

code can therefore result in the expression of some important differences in
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living beings. A single nucleotide polymorphisms (SNP) occurs when a single

nucleotide in the genome is substituted. For example, two sequenced DNA

fragments from different individuals, AAGCCTA to AAGCTTA, contain a

difference in a single nucleotide. The DNA at this locus is disrupted due to

SNPs, and consequently, protein synthesis is also disrupted, producing the

different phenotype, a disease for example. A very important task of SNPs

analysis is to understand how the DNA sequence variation affects protein

function, and to determine if a particular SNP is associated with disease

susceptibility in a individual [110] . The results can help researchers iden-

tify useful markers and which regions of the genome are involved in certain

diseases. It has also been used for genetic linkage analysis [61].

Gene expression Microarray analysis [130] aims to analyse gene expression

profiling. Studying gene expression profiling in different cell types based on

the entire genome helps scientists to identify novel genes associated with

certain cancers, to answer questions such as: what kind of genes contribute to

a normal cell turning to a certain type of tumor cell, how genes interact with

each other, and predicting patient outcomes. In our research, we concentrate

on gene expression Microarray analysis.

1.2 Gene expression Microarray analysis

In this section, we describe a few fundamental concepts including gene ex-

pression, Microarray technology, gene expression Microarray data. We also

point out the potential applications of the gene Microarray data analysis in

medical and cancer research.
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1.2.1 Gene expression

As we know, the basic units of all living organisms are cells. Each cell can

sustain and replicate itself. Moreover, proteins are the structural components

of cells and perform most of the critical functions of biological systems. The

construction of proteins is controlled by genes which are encoded in DNA.

DNA, standing for deoxyribonucleic acid, contains the genetic instructions to

direct the cell for making the required proteins. The instructions contained

in DNA are deciphered by ribosome molecules in cells. After the decipher,

various proteins are created accordingly to sustain live organisms.

DNA is made up of four building blocks called bases: adenine(A), thymine(T),

cytosine(C) and guanine(G)(see Figure 1.1). These building blocks make up

nucleotides, together with a 2’-deoxyribose sugar and a phosphate group. Nu-

cleotides are linked to each other forming a DNA polynucleotide. As DNA is

double-stranded, two polynucleotides are then joined together by hydrogen

bonds between the bases by base-pairing rules to form a double helix. The

base-pairing rules are: A is base-paired with T, and G is base-paired with C.

The information encoded in genes is ultimately used to construct proteins.

The construction of proteins from genes is done in two steps: transcription

and translation. The process of constructing proteins from genes is called

gene expression.

Figure 1.2 shows the process of protein synthesis from DNA. During the

transcription step, a single strand of messenger ribonucleic acid (mRNA) is

synthesized using the gene where the genetic information needed to synthesize

a protein encoded in DNA as a template. mRNA carries the information out
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Figure 1.1: A sample of DNA helix from [1]

of the nucleus to the cytoplasm where protein synthesis takes place. The

mRNA is similar to a single DNA strand with A, G, C bases, the difference

is that uracil (U) replaces T. After the transcription step, the unique sequence

of bases has been copied into mRNA.

Proteins are linear chains of arranged amino acids [23]. There are a

total of 20 amino acids that can be incorporated into a protein. From the

beginning of an mRNA strand, a sequence of three bases specifies a particular

amino acid. For example, the amino acid glycine is coded on mRNA as GGU

while lysine is coded as AAA. The genetic code is read during translation via

transfer RNAs (tRNAs). Each tRNA contains three bases complementary to

the corresponding three bases on mRNA and carries an amino acid encoded
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Figure 1.2: Protein Synthesis from DNA in [2]

in mRNA.

During the translation step, the unique sequence of bases copied from

DNA is read by a ribosome molecule through mRNA. Ribosome reads three

bases at a time, then picks up a tRNA which has a complementary sequence

of bases. The matched tRNAs joins together with the mRNA chain. The

ribosome takes the amino acid attached to the tRNA off after the mRNA

and tRNA are joined together. The carried amino acid is then put into a

chain of amino acids. After the entire mRNA chain has been read by the

ribosome, the mRNA nucleotide sequence is translated into an amino acid

chain, and this chain is called a protein.

Genes encoded in DNA are used to construct proteins which determine

our inherited traits, such as hair color, behavior and our health. The proteins

constructed then determine the traits of the living organisms which are in-
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herited from their ancestors, such as hair and skin colors, body height, shape,

and diseases. Due to genetic variations and mutations, some genes are not

dominant. That means they are passed on to their offspring, but their traits

are not expressed. These are called recessive genes. For example, a parent

who carried breast cancer might have a very healthy baby. It does not mean

the baby did not carry on the disease gene, but the gene was not dominant.

In addition, some diseases are not determined by one gene, but several genes

acting together. For instance in the case when several dominant and reces-

sive genes act together to trigger the certain diseases such as breast cancer

and heart disease.

Therefore, to discover cause of the cancer and other diseases, it is vi-

tal to know how genes react, such as over-expressed(dominant) or under-

expressed(recessive), in those disease cells and what the relationship between

them is when a disease occurs.

With all human genomes having been mapped and sequenced by the Hu-

man Genome Project, the next step would be how to apply this information

for analysis and diagnosis of cancer diseases.

1.2.2 Microarray technologies

In order to determine the state of genes - over-expressed or under-expressed,

new Microarray technologies [128] have been developed. These Microarray

technologies are mainly used to conduct gene expression profiling. Such tech-

nologies have become a powerful tool in Microarray analysis. By analyzing

microarray measurements of gene expression profiles we can achieve a better

understanding of cancer diseases .
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A gene expression Microarray is formed by placing tens of thousands of

candidate gene sequences in discrete spots on a glass slide or a silicon chip.

Each spot represents a known gene. Depending on how the length of DNA

sequences is used and how DNA sequences are laid down, Microarrays can

be divided into cDNA Microarrays [115] or Affymetrix Microarrays [91]. In

this research, we focus on cDNA gene expression Microarray data.

cDNA, complimentary DNA, is a reverse transcribed DNA which is de-

rived from mRNA shown in Figure 1.3. The level of gene expression measured

in a Microarray is defined as the measure of the abundance of transcribed

mRNA during the construction of protein. However, due to the unstable na-

ture of mRNA which can easily degrade, cDNA is widely used in experiments

since cDNA is more stable then mRNA.

Here we cite a comparative hybridization experiment with a cDNA Mi-

croarray. This experiment is conducted in six steps as shown in Figure 1.3.

1. Collecting normal and disease samples.

2. Collecting mRNA from two different samples.

3. Labeling mRNAs with different fluorescent dyes.

4. Mixing two samples on the Microarray slide.

5. Reading the results.

6. Storing gene expression profiling into an image.

To conduct a Microarray experiment, gene expression Microarray is prepared

first by spotting cDNA gene probes to a glass slide using a robotic printer.
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Figure 1.3: A comparative hybridization experiment with cDNA Microarrays

from [3].

Next, mRNA are collected from two different cells (sample and test). The

sample and test mRNA are then labeled with different fluorescent dyes, green

and red respectively, and they are reverse transcripted to colored complemen-

tary DNA (cDNA). Two colored cDNA are mixed together. The mixed cDNA

is incubated with Microarray on the slide. Each DNA spot on the slide can

pair with a cDNA. Some of the samples will bind to spots where they find

their complimentary pairs. Unbounded samples are washed off after a period

of time. The Microarray slide then is scanned with a green laser and then a

red laser to detect the abundance of cDNA. The two images are then merged
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together. Since we know which gene each spot represents, and the cDNA

only sticks to the gene that is complimentary to it, we can determine which

genes are turned on in the cells.

In summary, Microarray technology is a significant advance in biologi-

cal research because it enables biologists to look into gene profiling to dis-

cover the relationship between genes, such as relationship between over-

expressed genes, between over-expressed and under-expressed genes, and be-

tween under-expressed genes.

1.2.3 Gene expression Microarray data

Gene expression Microarray data is presented as a table with a collection of

expression levels of genes under different samples (patients for example). An

example of a gene expression Microarray dataset is shown in Table 1.1. Note

that, such a sample may have thousands of attributes. The table organizes

data into columns and rows (called samples). Within the table, a row repre-

sents a sample and a column represents an attribute. The columns contain a

set of gene (or feature) expression values and a category (a.k.a class) value.

Each feature contains the expression levels of a single gene for every sample.

The category value divides the samples into different categories. Each sam-

ple in that table contains information about the expression levels of all genes

with a consequent category.

For example, Table 1.1 represents a part of the breast cancer gene expres-

sion Microarray data set. There are total of 7 samples in the data set. Each

sample contains the gene expression values of 7 genes such as the NM 020120

gene. In Sample 1, the expression value of the NM 020120 gene is 0.112. There
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are two categories, and they divides the samples into relapse and non-relapse.

Sample NM 020120 NM 005744 NM 014003 NM 020974 NM 013438 D13540 NM 005915 Categary

Sample 1 0.112 0.039 0.002 -0.811 0.066 0.066 0.008 relapse

Sample 2 0.192 0.115 0.172 -0.981 0.101 0.293 0.487 relapse

Sample 3 -0.004 -0.045 -0.069 -0.124 -0.071 -0.042 -0.264 non-relapse

Sample 4 0.388 0.034 0 -1.194 0.171 0.088 0.066 relapse

Sample 5 -0.052 0.062 0.052 -0.628 -0.004 0.063 -0.104 non-relapse

Sample 6 -0.036 -0.005 -0.072 0.881 -0.097 -0.164 -0.293 non-relapse

Sample 7 -0.202 -0.075 -0.142 0.034 -0.003 -0.012 -0.054 non-relapse

Table 1.1: An gene expression Microarray dataset

Gene expression Microarray technologies can be used to compare gene

expression in two or more different types of cells (eg. disease and normal) by

measuring the level of expression of thousands of genes to allow identifica-

tion of genes that are over-expressed or under-expressed. For example, gene

expression Microarray technologies have brought great potential for cancer

research. A practical application of gene expression Microarray technologies

is

1. classify different diseases according to different expression levels in nor-

mal and tumor cells,

2. discover different subtypes of cancer,

3. reveal the function of novel genes based on similarities in expression

patterns with those of known genes,

4. identify marker genes which play a critical role in the development of

disease.

The research findings will ultimately play an important role in diagnosis of
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cancer patients, predicting new patients, and most importantly for discover-

ing an effective treatments for the cancer patients.

The development of new gene expression Microarray technologies raises

the need for new and more sophisticated bioinformatics methods to cope with

the vast amount of data generated, and to convert useful information from

those available Microarray data.

1.2.4 Gene expression Microarray data analysis appli-

cations

There are many active research applications currently aimed at taking ad-

vantage of the full potential of DNA Microarray technologies. The most

prominent applications include cancer classification [117, 96], gene function

identification [92, 114, 125], clinical diagnosis [138, 134], and drug discov-

ery studies [94]. One of the most active practical applications of Microarray

technology is cancer classification analysis [123, 124, 69, 57, 6]. Traditionally,

scientists classify different types of cancers based on the organs in which the

tumors develop, but gene expression Microarray technology can be used to

classify subtypes of those cancers based on the patterns of gene expression

level in the tumor cells. Note that such patterns could be used to diagnose

possible future new cancer patients and design treatment strategies targeted

directly to each specific type of cancer. In addition to cancer classification,

gene expression Microarray technology also can assist scientists to develop

more effective cancer treatments by analyzing the differences in gene expres-

sion levels among tumor cells using different drugs.

Gene expression Microarray data analysis has been the subject of inten-
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sive investigation and has been studied from different research fields such as

data mining, machine learning, and statistics. As summarized by Sun-Bae

Cho and Hong-Hee Won [29], the analysis of Microarray gene expression data

is mainly about classification, gene selection and clustering.

It is common that a Microarray data contains a large number of genes.

Not all genes however are relevant to the analysis. The fundamental task of

gene selection is to select the most informative genes which are most predic-

tive of their related class for classification. Many gene selection methods have

been developed such as correlation coefficient [124], Markov blanket [75], and

Chi-Squared [89].Gene selection methods have been widely used to reduce the

dimensionality of gene expression data in order to improve the performance

of classification [74]. Gene selection can also be applied for identification of

novel gene markers [92, 125].

Clustering involves discovering new classes and grouping the genes with

similarities in gene expression data where no categories are specified for sam-

ples. Some of these methods include hierarchical clustering [46], k-means

algorithms [127], self-organizing map [68, 127] and etc. Clustering meth-

ods have been used to discover new classes in Microarray data analysis

[46, 123, 118]. Clustering methods have also been used to cluster genes

to find co-expressed genes and to support gene selection [103, 72].

In this research, we will concentrate on gene expression Microarray data

classification problems.



1.2. Gene expression Microarray analysis 19

1.2.5 Microarray data classification

Microarray technologies have proved to be indispensable for providing new

efficient and effective ways of diagnosing cancer diseases. The goal of Mi-

croarray data classification is to build a classifier from categorized historical

Microarray gene expression data, and then to use the classifier to categorize

future in-coming data or predict the future trend of data. These methods

encompass support vector machines (SVMs) [21, 22, 59], k-nearest neighbor

classifier [138], bagging and boosting [13], decision tree based methods [20]

and Bayesian networks [44] etc. Classification has been extensively used

in cancer research for classifying and predicting clinical cancer outcomes

[123, 124, 69, 57, 6]. It is also applied to cancer diagnosis and progno-

sis [138, 134]. In addition, classification can help researchers to discover the

drug response for particular patients in order to use appropriate treatment

for individuals [94].

Like Machine learning and Data Mining [135], the objective of Microar-

ray classification is to extract implicit, previously unknown, and potentially

useful information from existing Microarray data. To apply gene expres-

sion Microarray data analysis, we must have historical gene expression data

handy, as well as effective and efficient gene expression Microarray data clas-

sification algorithms.

Microarray data used for Microarray data classification is usually stored

in relational databases or data sets as shown in Table 1.1. In this thesis,

we will use the database and data set interchangeably. For the purpose of

Microarray data classification, Microarray data will be divided into two sub

databases - training data and test data.
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Figure 1.4: The process of single decision tree classification

Microarray data classification usually involves two stages: learning and

classification. Figure 1.4 depicts the C4.5 decision tree algorithm, which is

a benchmark classification algorithm used in the machine learning and data

mining fields. Microarray data is divided into training and testing data before

or during the training stage. In the training stage, a classifier is deduced from

the training data. In the classification stage, previously unclassified data, test

data, is subjected to the deduced classifier. The class values are removed from
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the test data set. By using the classifier which has been discovered from the

training set, each record will be assigned a predicted class.

The quality of the classification is reflected in how accurate the predicted

classes match the true classes of the tested records. The accuracy here is

estimated by the percentage of the test records that are assigned correctly

by the classifier.

1.3 Research problems

Microarray analysis technologies have opened up many windows of oppor-

tunity to investigate cancer diseases using gene expressions. Bioinformatics

has bridged the gap between research in biology and novel computing tech-

nologies. Along with this have come many new research problem areas, such

as: comparative genomics, systems biology, structural biology and Microar-

ray data analysis. In our research, we will concentrate on Microarray data

analysis and Microarray data classification in particular. The fundamen-

tal task of Microarray data classification is to find a computational model

from the given Microarray data that can determine the category of unknown

samples. The key elements of classification are accuracy and quality or ro-

bustness. The accuracy of Microarray data classification relies on both the

quality of the provided Microarray data and the used algorithms for Mi-

croarray data classification. No doubt if the Microarray data provided are

wrong or partially incorrect, the model deduced from it will be either false

or less accurate. Microarray data analysis based on incorrect Microarray

data will definitely mislead the users towards a wrong decision. Moreover,
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the quality of Microarray data classification also depends on the Microar-

ray data classification algorithms used for the microarray data classification.

With existing data, quality of Microarray data classification algorithms are

required to interpret the raw biological data into meaningful information in

order to assist biologists in fighting diseases or other biological problems. We

can conclude that the ideal situation for Microarray data classification will

be a high quality Microarray data classification algorithm along with an error

free Microarray database.

However, the reality is that Microarray data is not error free. The most

current Microarray data classification methods are struggling to deal with

the curse of dimensionality and noise problems.

1. Curse of dimensionality.

Microarray data contains large number of genes with a small number

of samples. A real world gene expression Microarray data set suffers

from a so called ”curse of dimensionality” problem, ie. a huge num-

ber of genes (more than 20,000 for humans) with a small number of

samples. Many existing classification methods such as association and

classification methods [88, 86, 140] are prevented from directly deal-

ing with this type of database due to computation costs and computer

memory limitations. Furthermore, the insufficient number of samples

is a major cause of low accuracy data classification. More attributes

in a Microarray database require more samples to retain the accuracy

of classification. However, Microarray databases normally contain less

than two hundreds samples due to high experimental costs. This is far

less than the minimal requirement for Microarray classification. As a
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matter of fact, Microarray classification based on a small number of

samples can not generalize the classifier well, and this therefore de-

creases the accuracy of the Microarray data classification.

2. Noise problem.

Microarray data contains errors including incorrect or missing data val-

ues. As existing Microarray data contains a massive number of genes,

it is inevitable that some errors appear in the Microarray data sets.

These errors can be introduced at any stage during generation of the

raw Microarray data. For example, errors can be made by humans

when they enter the data; some errors can also be introduced system-

atically if the inappropriate algorithm was applied when the raw data

were transferred into the database from the Microarray data. Due to

the prematurity of Microarray technology, it is common that some er-

rors are introduced during the production of the Microarray data itself.

The high level of noise is one of the key issues of Microarray data clas-

sification. Many efforts have been made by researchers from different

fields, either to minimize or correct the errors being introduced during

the production and maintenance of Microarray data. These attempts

are certainly helpful for providing a reliable data source for Microarray

data classification. However, no matter how hard we try to prevent

the errors from being introduced, the truth is that some errors will

always be present in the Microarray data. After the Microarray data

has been generated and stored in the database, there is no way for

the users to validate the quality of the Microarray data. In current

practice, researchers normally apply databases from some trusted re-
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search institutes, or from high ranked journals or from trusted websites.

But despite this it is still not possible to guarantee the quality of the

database used for Microarray data classification. In reality, the quality

of Microarray data we used for generating the models is not equal to

the quality of Microarray data we are going to test on. That means

the Microarray data sets contain different levels of noise. This quality

uncertainty is one of the major considerations in the design of new Mi-

croarray data classification methods. And how to eliminate the effect

caused by the uncertainty of noise data during the Microarray data

classification stage remains a challenge for many existing classification

algorithms.

In summary, accuracy and noise resistance are major issues for classifying

gene expression Microarray data.

1.4 Objectives

To deal with the problems we identified in the last section related to gene

expression Microarray data classification, we will design a novel Microarray

data classification method that overcomes the problems associated with high

dimensionality and high noise.

In this thesis, we are trying to focus on the following aspects to tackle

the problems that exist in most current Microarray data classification. The

objectives of our research are as follows.

1. to design and implement a robust Microarray data classification algo-

rithm to classify gene expression Microarray cancer data more effec-
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tively and efficiently. The proposed algorithm is based on traditional

machine learning and data mining methods. Our algorithm should

be robust enough to handle a high level of noise. It is also scalable

to large Microarray data sets without any difficulties. The results of

classification should be easily understandable by researchers.

2. to investigate the noise resistance capability of various gene expression

Microarray data classification methods. As we know noise values do

exist in all gene expression Microarray data, and robustness is a very

important issue for all reliable gene expression Microarray classifica-

tion algorithms. We compare the robustness of our newly developed

algorithm to other gene expression Microarray classification methods.

3. to study the effectiveness of gene selections for various Microarray data

classification methods. To improve the quality of Microarray data, the

noise and irrelevant genes should be reduced to a minimal level before

classification is carried out. The question is whether any given gene

selection method can improve the performance of a Microarray classi-

fication algorithm. In this thesis, we study the dependency between

gene selection methods and Microarray data classification methods in

relation to enhancing the performance of Microarray data classification.

1.5 Contributions

We designed a diversified multiple decision trees algorithm. The proposed

algorithm significantly improves the performance of existing classification

algorithms in terms of accuracy and robustness.
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The contributions of this research include:

1. A robust Microarray classification algorithm.

The development of a robust decision tree-based classification proto-

type system for gene expression Microarray data analysis. This system

is able to deal with noise data more effectively then current classifica-

tion methods. The method is implemented in Perl and C programming

language. In addition, this method has been integrated with the Weka

package, and can be compared with other benchmark systems built in

with the package.

2. Examination of the robustness of gene expression Microarray classifi-

cation algorithms.

We strongly believe that the robustness issue is equally as important as

the accuracy issue in Microarray data classification. We confirmed that

the diversified ensemble method by avoiding overlapping genes is more

robust than other ensemble and non-ensemble methods in Microarray

data classification, since the noise affect has been reduced to a minimum

in this way.

3. Comparison of dependence between gene selection methods and Mi-

croarray data classification methods.

We theoretically compared and revealed the relationship between gene

selection methods and Microarray classification methods. We analyze

various gene selection methods for improving the performance of Mir-

corarray classification algorithms. We compare the filter and wrapper
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gene selection methods. We discovered the relationships between gene

selection methods and Microarray classification algorithms. We sum-

marized several criteria for how to effectively choose and apply gene

selection methods for Microarray classification.

1.6 Structure of the dissertation

This dissertation has been organized into 8 chapters. The rest of this disser-

tation is organized as follows.

In Chapter 2, we present the design of methods for comparing the accu-

racy and robustness of ensemble decision trees classification algorithms. We

introduce the data sets that were used for the experiments. These all came

from reliable sources and have been used for various publications. We also

describe our noise generation method. This method is able to systematically

generate noise data at any required level. To test the robustness of com-

pared methods in different situations, we deliberately increase the noise level

on both training and test data.

In Chapter 3, we introduce the tree based classification methods and

problems. Robustness reflects the ability of a classification method to deal

with noisy data. Single decision tree methods are not robust in Microarray

data classification. In contrast, the traditional ensemble methods attempt to

achieve diversified trees in an ensemble committee in order to increase the

accuracy and robust performance of classification.

In Chapter 4, we compare some existing ensemble decision tree methods.

Two well-known ensemble methods using re-sampling samples, Bagging and
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boosting, are described first. We discuss the advantages and disadvantages of

both methods. We conduct an experiment and point out the robustness limi-

tation existing among those methods. We introduce some improved ensemble

decision trees methods based on traditional single and ensemble decision tree

methods. The huge number of genes in Microarray data poses a number of

problems in Microarrray classification. However, they are useful if we use

them to generate diversified trees. In fact, it is feasible to create aggregated

ensemble decision trees through re-sampling genes instead of re-sampling

scared samples. To date, many newly developed ensemble methods have

constructed ensemble committees by using different gene selection methods

in some classification stages. CS4 and Random forests are described in this

chapter. We compare their robustness with traditional ensemble methods

described in Chapter 3.

In Chapter 5, we present our newly developed ensemble decision trees

method called diversified multiple decision trees algorithm (DMDT). Among

the current Microarray classification methods, most of them have not given

special consideration to the robustness issue of Microarray data classification

in terms of dealing with the uncertainty of Microarray data in training and

test data sets. Neglecting the robustness for the designing of Microarray

data classification significantly impact the accuracy performance of Microar-

ray classification. To address the disadvantage of Microarray classification

existing in current ensemble classification methods, we implement a new ro-

bust Microarray classification algorithm with minimal impact on accuracy

performance based on different levels of noise data in the same data set.

This design ensures that more highly accurate classification performance is
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achieved not only on good quality data but also on the same data with de-

creased quality, or more noisy data.

In Chapter 6, we present our robustness evaluation for some well-known

ensemble and single decision trees methods. We emphasize that the meaning

of robustness has two fold - a good robust classification algorithm can not

only resist noise data at the present level, but also tolerate noise data at an

increased level. We conduct an experiment and discuss the results.

In Chapter 7, we investigate the dependence between gene selection and

Microarray data classification algorithms. Gene selection method is helpful

for increasing Microarray data classification performance. There is not a

great deal of evidence to show the relationship between gene selection meth-

ods and Microarray data classification methods, but in the hope that gene

selection methods can improve the accuracy performance of classification

regardless. So we conduct an experiment to reveal the true relationships

between gene selection methods and classification methods.

In Chapter 8, we conclude the dissertation and outline future work. We

can see from this research that there are plenty of opportunities for further

interesting research in this field.

1.7 Summary of the chapter

In this chapter, we introduced bioinformatics, Microarray technologies and

gene expression Microarray data analysis methods. We have given an intro-

duction to some problems in gene expression Microarray data and current

Microarray data classification. We outlined our objectives, contributions and
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structure of this dissertation. In the next chapter, we will introduce the ex-

perimental design and methodology used in this thesis.



Chapter 2

Microarray datasets and research

methodology

The feasibility of an ensemble decision tree method is determined by its ac-

curacy and robustness. Our methodology is to compare the accuracy and

robustness of these different classification methods on some gene expression

Microarray data sets. In Section 1, we elaborate the gene expression Mi-

croarray data sets used for the experiments. In Section 2, we describe an

estimation of accuracy performance of Microarray classification methods. In

Section 3, we introduce the evaluation of robustness performance method.

In Section 4, we describe the software used in the experiments. In Section 5,

we summarize the chapter.

31
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2.1 Gene expression Microarray data sets

In our research, we concentrate on the gene expression Microarray data sets

which were introduced in Chapter 1. Six gene expression Microarray cancer

data sets from Kent Ridge Biological Data Set Repository [82] are selected.

Table 2.1 shows the summary of the characterustics of the six data sets. Each

Microarray dataset is described by the following parameters.

• Genes: the number of genes or attributes,

• Class: the number of classes,

• Record: the number of samples in the dataset

Table 2.1: Gene expression Microarray data sets

Dataset name Genes Class Sample

1 Breast Cancer 24481 2 97

2 Lung Cancer 12533 2 181

3 Lymphoma 4026 2 47

4 Leukemia 7129 2 72

5 Colon 2000 2 62

6 Prostate 12600 2 21

Data set 1 is a Breast cancer data set [124] which contains 97 samples

collected from patients with breast cancer. In this data set, 46 samples are

from patients who had developed distance metastases within 5 years. The

remaining 51 samples come from patients who remained free from the disease

after their initial diagnosis for an interval of at least 5 years. The patients
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with distance metastases within 5 years are classified as relapse while the

patients remaining free from the disease after their initial diagnosis for an

interval of at least 5 years are classified as non-relapse. Each sample in this

data set contains 24481 genes (attributes).

Data set 2 is a Lung Cancer data set [57] which contains 181 samples col-

lected from lung cancer patients. In this data set, 31 patients have malignant

pleural mesothelioma of the lung. The remaining of 150 patients have ade-

nocarcinoma of the lung. The patients with malignant pleural mesothelioma

of the lung are classified as Mesothelioma, while the patients with adeno-

carcinoma of the lung are classified as ADCA. Each sample in this data set

contains 12533 genes.

The third data set relates to lymphoma disease. Each Lymphoma data

set [6] has 47 samples collected from patients with different types of large

B-cell lymphoma. In the data set, 24 patients are from germinal centre B-

like type and 23 are from activated B-like type. The patients with germinal

centre B-like type are classified as germinal while the patients with activated

B-like type are classified as activated. Each sample in this data set contains

4026 genes.

Data set 4 is a Leukemia data set [123] which contains 72 bone marrow

samples collected from patients who suffered from Leukemia. In the data

set, 47 samples are ALL. The remaining 25 samples are AML. The samples

with ALL are classified as ALL, while the samples with AML are classified

as AML. Each sample in this data set contains 6817 genes.

The Colon data set [49] is collected from patients who suffer with Colon

cancer. It contains 62 tumor samples collected from patients with Colon can-
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cer. Among the 62 samples, 40 samples are from tumors and the remaining

22 samples are from healthy parts of the colons. The samples with tumor

biopsies are classified as negative, while the samples with normal biopsies are

classified as positive. Each sample in this data set contains 2000 genes.

Data set 6 is a Prostate data set [48] which contains 21 samples of patients

with prostate cancer. In the data set, 8 samples are from patients who have

relapsed within 4 years after surgery. The remaining 13 samples are from

patients who have remained relapse free for at least 4 years or longer. The

samples from relapsed patients are classified as relapse, while the samples

from relapse-free patients are classified as non-relapse. Each sample in this

data set contains 12600 genes.

2.2 Evaluation of accuracy performance

In this section, we give a definition of prediction accuracy. Then we review

an accuracy estimation method: cross-validation.

2.2.1 Accuracy of test

In our research, a number of different ensemble Microarray data classifica-

tion algorithms will be experimented on using the data sets described in

Section 2.1. The objective of the experiments is to compare the estimated

accuracy of the algorithms. Normally, we regard the algorithm with the

highest accuracy as the best algorithm.

Definition 1. Classification accuracy is defined as the percentage of correct

classifications made from the total number of classifications by an algorithm
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based on a test dataset.

classification accuracy =
#correctly classified records

#total records
∗ 100(%) (2.1)

Classification accuracy is an indicator of how many samples a classifier

can correctly classify out of the total samples; # stands for the number of.

This definition is straightforward. For instance, if a classifier has a 99%

accuracy, this means 99% of the records in the test dataset were predicted

correctly.

The prediction accuracy1 of a classifier has been seen as a major issue

in Microarray data classification. Of course, a classification algorithm with

higher accuracy is obviously more desirable. Prediction accuracy is a very

important factor for measuring the performance of an algorithm. So it is vital

that the estimated accuracy of a classifier approximate the true accuracy.

Note that a classification algorithm is usually trailed on some well-known

Microarray data sets while under development. These well-known Microar-

ray data are referred to as the training data sets. The classification accuracy

derived from performing on the training data sets is called estimated accu-

racy.

2.2.2 Accuracy estimation

There are several reliable estimation of classification accuracy methods, such

as cross-validation [116] and bootstrap [45, 47]. Among them, the cross-

validation method has proven to be the more reliable method [19, 73].

1In much of the literature, the classification accuracy is also called predicative accuracy.

Hence in this thesis we use them interchangeably.
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The basic idea of cross-validation is to learn from some training data and

then perform on the future as-yet-unseen data. This requires an independent

data set to be used to estimate the accuracy performance of a classification

algorithm. In our research, we adopt the ten-fold cross-validation technique,

in which a data set is equally divided into ten folds(i.e. partitions) with the

same type of distribution such as Normal distribution or Poisson distribution.

After the partitioning, Nine folds of data are used as training data and one

fold is for testing (unseen data set). The test procedure is repeated ten

times. The classification algorithm will perform on the test data set ten

times, and each run will generate a predication accuracy. The average of the

ten prediction accuracies will be accepted as the final prediction accuracy of

the classification algorithm.

2.3 Evaluation of robustness performance

In this section, we turn our attention to another performance index of clas-

sification methods - robustness. The objective of robustness analysis is to

analyze how well a given algorithm can resist noise values, specially with

increased levels of noise data.

Here for the sake of completeness, we present an informal definition of

robustness.

Definition 2. The robustness of a classification method is an indicator of

how well the method can resist the noise in Microarray data. It is defined as

the classification accuracy of the classification when the original data set are

introduced with white noise at levels of 0%, 20% and 60%.
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We know the Microarray data sets described in Section 2.1 definitely con-

tain various amount of noise data, but we do not know how accurate the data

are, how badly the data have been affected by noise, and most importantly at

what level the data contains noise. Therefore, in our experiments, we assume

that the original data are perfect data with zero level of noise [65]. Then

we add some noise to the original data. The way of adding noise onto the

original data is to create a systematic algorithm which can generate different

degrees of noise data, then add the noise data onto the original training and

test data.

As we can see in Table 2.1, a Microarray data set organizes data into

columns and rows (samples). The columns contain a set of gene values and

a category value. Each column contains the expression levels of a single gene

for every sample. Each row in that table contains sample information about

the expression levels of all genes with a consequent class.

Here we elaborate the process of adding noise. In our experiments, the

Polar form of the Box-Muller transformation method [39] has been used to

generate noise data. The noise data is White Gaussian noise 2, that means

the noise data is added independently to each gene in the original data set.

In mathematical terms, let g be a gene expression level value of gene G in

the original data set. The perturbed value of g will be g′ = g + n, where n is

generated using the Polar form of the Box-Muller method. Note that set of

n has a mean of 0 and a variance of d ∗ δ [98], where d represents the noise

level while δ represents the variance of gene G in the original data set.

2White noise data is generated by a white random process. The white random process

is represented as n ∼ N(0, d ∗ δ).



38 Chapter 2. Microarray datasets and research methodology

2.4 Related works and tools

Much work has been done in the data classification area. These efforts have

resulted in many algorithms including decision tree algorithms. Decision

tree algorithms are categorized into single decision tree and ensemble de-

cision tree algorithms. In our research, we focus on 5 well-known single

and ensemble methods, namely C4.5, Random Forests, AdaBoostC4.5, Bag-

gingc4.5 and CS4. These algorithms have been implemented in perl or the

Java programming language. We have done our experiments with all four

algorithms apart from CS4 using the Weka-3-5-2 package which is available

online (http://www.cs.waikato.ac.nz/ml/weka/).

Figure 2.1 is a snapshot of Weka.

Figure 2.1: Weka Software GUI

We have done the experiments with CS4 using the software tool provided
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by Dr Jinyan Li and Huiqing Liu.

2.5 Summary of the chapter

In this chapter, we presented six Microarray data sets which have been col-

lected by Kent Ridge Biological Data Set Repository. We described two

performance indices of Microarray data classification algorithms - prediction

accuracy and robustness, which are important factors affecting the practi-

cality and feasibility of classification methods. After that, we listed some

related software that supports single and ensemble decision tree algorithms

and their tools. In the next chapter, we introduce the traditional ensem-

ble decision tree methods which will be used for comparison with our newly

developed method.





Chapter 3
Tree based classification and problems

In this chapter, we present a few Microarray data analysis methods. We also

discuss their robustness of analysis when they are applied to the Microarray

datasets we gave in Chapter 2. Although Microarray data analysis is a rela-

tively new term, the technology which is used to do it is not. The purpose

of gene expression Microarray data classification analysis is to diagnose and

determine the prognosis of cancer patients. Therefore, it is crucial that the

representation of classification is understandable or interpretable by users so

they can use the discovered knowledge to help them in future decision mak-

ing. This chapter is organized as follows. In Section 3.1, we overview the

techniques used for data classification in the past. In Section 3.2, we account

for one category of classification method: the single decision tree method. In

Section 3, we discuss ensemble decision tree methods and the robustness of

Microarray data classification. In Section 4, we introduce some traditional

ensemble decision tree methods. In Section 5, we summarize the chapter.

41
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3.1 Overview of classification techniques

Microarray data classification is a multidisciplinary field, and its techniques

are drawn from areas such as machine learning, data mining, and artificial

intelligence. There are many different classification methods for building

classifiers such as decision tree based methods [107, 20], rule based meth-

ods [88, 95, 26], neural networks [112] and Bayesian networks [44]. Neural

networks can be used as black box models but lack the transparency and in-

terpretation of generated knowledge. The presentation of Bayesian networks

is in the form of extremely complex graphs. This becomes cumbersome for

gene expression Microarray datasets. Rule based methods use simple, intu-

itive and easily modified production rules, but they cannot handle databases

such as gene expression Microarray data with huge attributes. In contrast,

decision tree has a simple, intuitive representation of knowledge as a simple

tree and is able to generate understandable rules, which are implications in

the form of if... then.... They are therefore a popular basis for gene expression

Microarray classification tasks.

3.2 Tree based classification method

According to the number of classifications generated, data classification meth-

ods can be catergorized into single decision and ensemble tree method. As

the name suggests, a single decision tree classification generates one single

classifier, which is usually represented as a decision tree for predicting the

samples that have not been seen before. A decision tree is essentially a spe-

cial data structure, which contains some decision nodes and leaf nodes [111].
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To generate a decision tree, a classification algorithm recursively partitions

a Microarray dataset into some disjointed subsets simultaneously, based on

the values of an attribute. At each step in the construction of the decision

tree, it selects an attribute which separates data with certain criteria such

as the highest information gain ratio [108]. A good example is the C4.5 de-

cision tree algorithm. We must be aware that the same process is repeated

on all subsets until each subset contains only one class. In most cases such

a decision tree is complex and redundant. To simplify a decision tree, the

decision tree needs to be pruned using some criteria such as the pessimistic

error estimation [108].

Figure 3.1 shows an example of a tree classifier. The C4.5 classification

algorithm is used to classify the patients whose Microarray data were col-

lected in the Breast Cancer data set that has been described in details in

Section 2.1 of Chapter 2. Note that NM * and AL* are all the attributes,

and relapse or non-relapse are the classes. Each link from the root to a leaf

in the decision tree is interpreted as a rule. Therefore, the tree contains three

rules as follows.

1. if (NM 013438 <= 0.14) and (AL137635 <= -0.12) then patient

= relapse. It means that if a patient has an expression level of NM 013438

under 0.14 while the expression level of AL137635 is under −0.12 , then

the patient is likely to relapse after treatment.

2. if (NM 013438 <= 0.14) and (AL137635 <= -0.12) and ( NM 004029

> -0.29) then patient = Non−relapse. It means that if a patient

has an expression level of NM 013438 under 0.14 while the expression

level of AL137635 is above -0.12 and the expression level of NM 004029
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is above -0.29, then the patient is unlikely to relapse of breast cancer

after treatment.

3. if (NM 013438 > 0.14) then patient = relapse. It means that the

patient is likely to relapse after treatment if the expression level of

NM 013438 is above 0.14.

A decision tree classifier is often utilized to make a predictive class on a

new record or sample. A decision tree classifies a new record by tracing it

down the tree from the root to a leaf node choosing branches at each node

according to the values contained in the new record. The specified class by

the leaf node is assigned to the new record.

NM_013438

<=-0.12

AL137615

relapse

NM_004029

>-0.29

Non-relapse

>-0.12

relapse

>0.14

NM_013438

<=-0.12

<=0.14

AL137615

relapse

NM_004029

>-0.29

Non-relapse

>-0.12

Figure 3.1: A tree classifier generated using the C4.5 algorithm

In the past few decades, many decision tree classifications [20, 11, 107,

24, 106], C4.5 [107] in particular, have become one of the most popular and

successful classification methods in the machine learning and data mining
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fields [136]. In addition to its understandability, the C4.5 single decision tree

algorithm has also several advantages as follows.

1. C4.5 is capable of dealing with different types of data. It can handle

numerical values including continuous values and discrete values, as

well as categorical values. This ability makes C4.5 more flexible for

different types of data with less data preparation time for classification.

2. C4.5 is tolerant to and unaffected by redundant data. During the

decision tree construction in C4.5, using the information gain ratio each

node in the decision tree is selected if it can best separate the examples

of different classes into different subsets and therefore can make the

subsets as pure as possible. If one feature is selected, all other features

in the data set are ignored. This characteristic helps eliminating the

effect of redundant data in Microarray data classification.

3. C4.5 is more robust in handling data sets with missing values. For

historic reasons, Microarray data often contains missing values. C4.5

handles this effectively by assigning missing data the value that is most

common among training examples at the node [108]. In this way, C4.5

becomes more robust in handling data sets with missing values. To

adapt C4.5 for Microarray data classification, we have to enhance this

ability of Microarray data classification to deal with the missing data

contained in Microarray data.

The good comprehensibility and reliability which the C4.5 decision tree

method demonstrates, makes it a favorable choice which has been widely

applied to many classification systems across different fields in the last few
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decades. For instance, C4.5 has been applied as an analysis tool to diagnosis

skin cancer [9], breast cancer [124], lung cancer [57] and many other cancer

diseases [145]. C4.5 also has been applied to machine fault diagnosis tasks

such as bearing defects [79]. The application of the C4.5 algorithm can be

seen in other domains. To name a few, C4.5 has been applied for recognition

of printed text [7] and assessing the quality of certain types of text [67]. By

using video information, C4.5 has been applied for detecting soccer goals [28].

We noticed, however, that there are a few disadvantages in the C4.5 single

decision tree algorithm when used for Microarray data classification.

1. C4.5 suffers the generalization problem. As we saw in Section 3.2,

to construct a decision tree C4.5 splits data into disjoint subsets until

each subset contains only one class. As a result, each example cannot

be covered by more than one rule. The decision tree generated from

C4.5 is therefore relatively small. An argument for preferring a small

tree is that they do not overfit the training data sets and this results in

higher accuracies in test data sets. In data mining and machine learn-

ing domains, such as retail, financial, communication and marketing

data, large numbers of samples are available for classification purposes.

They are very easy to collect with very low cost. However, this becomes

a major hurdle when it comes to Microarray classification applications.

The nature of Microarray data is that it contains a large number of at-

tributes with a very small number of samples. The number of samples

is very small due to the cost of experiments and the source of samples

etc. When the sample data is too small, it is more likely that the tree

stops growing before it can be general enough to represent a reliable
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classifier.

2. The C4.5 method is susceptible to noise in the datasets Fur-

thermore, high-throughput DNA Microarray technologies generate com-

plex biological Microarray data with a great deal of noise. It is a very

dangerous situation for Microarray data classification when noisy data

helped to predict data during the training stage, but failed at the test-

ing stage, because the predictions are based on false Microarray data.

False Microarray data inducts false conclusions. And the serious con-

sequences are obvious.

The vulnerability of C4.5 can be highlighted in the following example.

The small rule sets included in the decision tree are too slim to tolerate

the possible noisy values in the unseen test data. For example, Test A,

Test B and Test C need to be taken before a patient is diagnosed with

having diabetes. After applying a decision tree classification algorithm

on past patients data, a single decision tree is generated with contains

a rule

Test A = high ==> diabetes.

Other potential rules:

Test B = high ==> diabetes

and

Test C = high ==> diabetes
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are not be able to be included in the tree. Therefore patients who do

not take Test A will miss the matching of the rule, and may be classified

as normal by the default class even though the patients test B result

is High. It is obvious that if we included other rules to cover the same

patient sample, then it will not misclassify patients who do not take

test A.

Like C4.5, many Microarray data classification methods which have one

single decision tree suffer the same problem. In other words, a single decision

tree Microarray data classification faces a great risk as it can be led astray

by noisy data.

Now we seem to have a dilemma for Microarray data classification by

using a single decision tree. One one hand, a single decision tree classification

method is accurate and scalable with easily understandable representation

of output. This is very desirable for Microarray data classification. On the

other hand, most existing Microarray data would not be able to provide

sufficient sample data. This situation has raised a great challenge for single

decision tree classification methods in making reliable decision trees.

3.3 Ensemble decision tree classification

In this section, we focus on ensemble decision tree methods. As we discussed

in Section 2.3 in Chapter 2, we refer to robustness as a good feature to tolerate

noise in data, and it is associated with predictions based on data with noisy

values. A Microarray classification algorithm which performs accurately and

reliably even with increasing levels of noise data is considered robust. Hence,
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to increase the reliability of Microarray classification, we have to ensure that

the classification algorithms are robust in tolerating the high level of noise.

Otherwise, Microarray data classification based on Microarray data with high

levels of noise will not necessarily lead to a reliable classification.

Naturally, an intuitive and simple way to achieve robustness is to take

advantage of redundancy. This idea has been used in telecommunications for

many years. A typical example of using redundancy in telecommunications is

data transfer, in which some redundant bits are used for correction purposes

in order to ensure the data transfer has minimum errors caused by missing

or incorrect bits.

Instead of using one decision tree for prediction, ensemble decision tree

classification methods combine the prediction of several decision trees for

classification tasks [17].

Ensemble methods combine multiple classifiers or models, which are built

on a set of re-sampled training data sets or generated from various classifi-

cation methods on a training data set. For the sake of simplicity, this set of

classifiers is referred to as a decision committee, by which future incoming

samples are classified. The aggregation of the decision committee can be a

simple vote or a weighted vote of individual classifiers in the committee.

Figure 3.2 shows the basic framework for an ensemble methods.

One approach to generating an ensemble committee with n decision trees

is to obtain n different data sets derived from the original data set using

different re-sampling methods. The re-sampling methods usually re-sample

the original data sets, and each re-sampled data set is divided into training

and test data sets. The selected single decision tree method then is applied
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Microarray Data

Re-sample
Mcroarray data

n times

Training data nTraining data n-1Training data 2Training data 1
…

Re-sampled Microarray data
From data 1 to data n

Final prediction

Classifier nClassifier n-1Classifier 2Classifier 1 …

Test data nTest data n-1Test data 2Test data 1 …

Prediction nPrediction n-1Prediction 2Prediction 1 …

Apply Microarray data classification algorithm

Vote for final prediction

Figure 3.2: Ensemble classification flow chart
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to each re-sampled training data set for n times. After the training stage, a

decision tree is generated. During the test stage, each decision tree in turn

is used to classify the samples in the test samples.

Ensemble methods which aggregate many diversified trees, are more effec-

tive than single decision tree methods in reducing bias that might exist in an

individual tree, and consequently improve the robustness of Microarray clas-

sification. Compared with single decision tree methods, ensemble methods

also show promise of achieving high classification accuracy and the classifi-

cation from the ensemble tree methods are relatively easy to be interpret.

Because of those features, we will describe ensemble decision tree methods

in more details in Chapter 4.

3.4 Summary of the chapter

In this chapter, we described single and ensemble decision tree methods.

We discussed the understandability and robustness issues in Microarray data

classification. In addition, we described the workings of C4.5 in details, which

is a representative of the single decision tree methods. We also presented a

brief flow chart of multiple classifiers.

In the next chapter, we introduce a few well-known ensemble decision

tree methods and compare their performance.





Chapter 4
A comparison of ensemble decision tree

algorithms

In past decades, many researchers have devoted their efforts to the study

of combining decision trees for gene expression Microarray classification, in

order to enhance the predictive accuracy and robustability of gene expression

Microarray data analysis [17, 52, 18, 83].

The essence of ensemble tree methods is to generate alternative decision

trees in the decision committee. In this Chapter, we describe a few ensemble

decision tree methods which use different techniques for generating alter-

native trees. We also conduct a robustness analysis between the described

methods.

This chapter is organized as follows. In Section 1, we introduce some

ensemble decision tree methods by re-sampling samples. We show our ex-

perimental results and present discussions. In Section 2, we introduce some

ensemble decision tree methods by re-sampling attributes. We also show our

53
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experimental results and present discussions. In Section 3, we summarize the

chapter.

4.1 Ensemble decision tree methods by re-

sampling samples

Traditional classification algorithms, such as Bagging and Boosting, re-sample

samples in the training data to build multiple classifiers. In this section, we

elaborate some of these ensemble decision tree methods.

Bagging and Boosting are well-known ensemble methods in the machine

learning and data mining fields and have been extensively studied in gene

expression Microarray data analysis.

4.1.1 Bagging

In this section, we briefly describe the Bagging algorithm. Let’s assume a

given relational data set D with n attributes and m samples. Let s be a

sample containing a set of attribute-value pairs with a class value c which

is one of C classes in D. The preset number of ensemble decision tree is

denoted by K. The ensemble decision tree or classifier of Ti represents the

tree generated on the i-th iteration while Di represents the i-th data set used

for generating Ti. Ci is a classifier.

The Bagging method is detailed in Algorithm 1

Bagging or Booststrap aggregation was proposed by Leo Breiman [17, 12]

in 1990. Bagging(see Algorithm 6.4) uses a bootstrap technique to re-sample
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Algorithm 1: The Bagging algorithm [12]

input : training set D, Tree classifier T , integer K (number of

ensemble trees)

for i = 1 to k do1

Di = bootstrap sample from D (sample with replacement);2

Ci = Ti(Di)3

end4

C∗(s) = arg max
∑

i:Ci(s)=c 1(the most often predicted label c);5

output: classifier C∗

the training data sets D. To form a re-sampled data set Di, each sample

is independently drawn from D with n samples. Each sample in D has a

probability of /1/n of being drawn in any trial. Note that Di contains the

same number of samples as the original data set D. However, in Di, some

samples may appear more than once, and some samples do not appear at all.

Ti is built on a set of re-sampled Di. The Ti will in turn be used to classify

every sample in the testing data set. This process repeats for K times. The

final prediction of a sample is determined by simple voting and each classifier

has an equal weight of 1. The most often predicted label will be the final

classification result.

4.1.2 Boosting

Another well-known ensemble tree method which uses re-sampling technique

is the Boosting method. The Boosting method was first developed by Freund

and Schapire [52] in 1996. Boosting uses a re-sampling technique which is



56 Chapter 4. A comparison of ensemble decision tree algorithms

different from Bagging. The re-sampling technique can be described simply

as follows. A new training data set is generated according to its sample

distribution. The first classifier is constructed from the original data set

where every sample has an equal distribution ratio of 1.

In the following training data set Di, the distribution ratios are made dif-

ferent among samples depending on their prediction accuracy in the previous

data set Di−1. If a sample has a lower prediction accuracy rate in Di−1, it

will be given a higher weight in Di and therefore get a higher chance to be

selected in Di. The Boosting algorithm is described in Algorithm 2. The final

prediction of a sample is determined by the weighted voting on all classifiers.

Although the Bagging method is slightly different than the Boosting al-

gorithm, both of these ensemble decision tree methods can improve classifi-

cation accuracy performance [109, 40, 27, 93, 121, 38]. Tan and Gilbert [121]

used Bagging and Boosting C4.5 decision trees. For Microarray data classifi-

cation, the results showed that both methods outperform C4.5 single tree on

some Microarray cancer data sets. In the later 1990’s, Statistik and Surich

developed a new BagBoosting method [38]. Their experiments showed that

BagBoosting outperforms the Boosting and Bagging methods and achieved

a better accuracy result on some Microarray data sets compared with some

well-known single classification algorithms such as C4.5 and Support Vector

Machines(SVM)methods.

In addition to the comparison with single classification methods, many

ensemble methods have been compared with each other, such as mentioned

above. Note that these comparisons mainly focused on predictive accuracy.

Robustness comparisons between existing ensemble methods have been so
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Algorithm 2: The AdaBoost algorithm [131]

input : training set D of size n, Tree classifier T , integer K (number
of ensemble trees)

D1 = D with instance weights assigned to be 11

for i = 1 to k do2

Ci = T〉(Di)3

εi = 1
n

∑
sj∈Di:Ci(sj) 6=ci

weight(s) (weighted error on the4

training set)
if εi > 1/2 then5

set Di to a bootstrap sample from D with weight 1 for every6

instance and goto step 3
end7

βi = εi/(1− εi)8

foreach sj ∈ Di do9

if Ci(cj) = cj then10

weight(sj) = weight(sj) ·βi11

end12

end13

Normalize the weights of instance so the total weight of Di is m14

end15

C∗(s) = arg max
∑

c∈C log 1
βi16

output: classifier C∗
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far ignored in most research literature. In the next section, we will conduct

a series of robustness experiments to evaluate the robustness performance of

Bagging and Boosting.

4.1.3 Comparison of robustness results with C4.5

To compare their robustness, we select a single decision tree method — C4.5

and two ensemble decision tree methods: Bagging and Boosting. All these

methods are working on four Microarray data sets listed in Chapter 2. Here

we emphasize that white noise will be added to the original data sets. These

Microarray data sets are ALL-AML Leukemia, Colon , Lymphoma and Lung

Cancer. White noise or Gaussian noise were generated based on the selected

Microarray cancer data sets with 0%, 20% and 60% levels of noise.

Firstly we present Table 4.1, which shows the individual and average

accuracy results of the compared methods based on four original data sets

(ie. with 0% noise level) using ten fold cross-validation method. Note that

the last row in Table 4.1 is the average.

Data set C4.5 AdaBoostC4.5 BaggingC4.5
1 Leukemia 79.2 87.5 86.1
2 Colon 82.3 77.4 82.3
3 Lymphoma 78.7 85.1 85.1
4 Lung Cancer 95.0 96.1 97.2

Average 83.8 86.5 87.7

Table 4.1: Accuracy comparison of four original data sets of three classifica-
tion methods.

Based on table 4.1, we make the following observations from comparing

the performance between the ensemble decision tree methods.

Firstly, the two ensemble decision tree methods both outperform over the

single decision tree C4.5 and improve the average accuracy by up to 3.9%.
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These results demonstrate that ensemble decision tree methods generally can

improve the accuracy on average over single decision tree methods on Mi-

croarray data sets. These results are consistent with most machine learning

studies.

We also notice that interestingly, AdaBoostC4.5 decreases the accuracy

performance on the Colon data set by 4.9%.

Secondly we present Table 4.2, Table 4.3 and Table 4.4 which show the

details of the accuracy results with various levels of noise values for C4.5,

AdaBoostC4.5, Baggingc4.5 respectively.

Data set C4.5 (with 0%) 20% 60%
1 Leukemia 79.2 70.4 66.7
2 Colon 82.3 72.5 47.9
3 Lymphoma 78.7 78.2 70.7
4 Lung Cancer 95.0 72.3 65.8

Average 83.8 73.3 62.8

Table 4.2: Prediction accuracy of C4.5 with different levels of noise values

Data set original 20% 60%
1 Leukemia 87.5 80.0 76.7
2 Colon 77.4 82.5 64.6
3 Lymphoma 85.1 88.2 75.7
4 Lung Cancer 96.1 71.7 70.3

Average 86.5 80.6 71.8

Table 4.3: Prediction accuracy of AdaBoostc4.5 with different levels of noise
values

From the experimental results in Table 4.3 and Table 4.4, we make the

following observations:

1. Training datasets with a lower noise level of 20%

BaggingC4.5 performs the best with decreasing accuracy on average

by 1.1%. AdaBoostC4.5 decreases the accuracy by 5.9% while single
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Data set original 20% 60%
1 Leukemia 86.1 88.3 82.1
2 Colon 82.3 85.8 62.1
3 Lymphoma 85.1 85.7 84.1
4 Lung Cancer 97.2 86.7 81.9

Average 87.7 86.6 77.5

Table 4.4: Prediction accuracy of Baggingc4.5 with different levels of noise
values

tree method C4.5 decreases the accuracy on average by 10.5%. For self

comparison to the original results, Baggingc4.5 increases its accuracy

on the Leukemia data set by 2.2%,while all other algorithms decrease

their accuracy by up to 8.8%; all algorithms increase their accuracy on

the Colon data set by up to 5.1% except C4.5; Adaboostc4.5 and Bag-

gingc4.5 increase their accuracy on Lymphoma despite C4.5 decreasing

its performance; Both algorithms decrease this accuracy on the Lung

cancer data set, while Adaboostc4.5 performs the worst among the

ensemble methods with the biggest decrease of 24.4%.

2. Training data sets with a relatively high noise level of 60%

All compared classification algorithms decrease the accuracy perfor-

mance on average. Among the two ensemble methods, Baggingc4.5

and AdaBoostc4.5 decrease their accuracy by 10.2% and 14.7% respec-

tively while C4.5 decreases the accuracy on average by 21%.

By comparing Table 4.2, Table 4.3 and Table 4.4, we notice that ensem-

ble decision tree methods generally tolerate noise values better than single

decision tree C4.5 does.

The reason the single decision methods have poor robustness on Microar-

ray data with high levels of noise is that a single decision method is suscep-
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tible to noise and nothing dampens this adverse effect.

In contrast, an ensemble decision tree method, which usually contains a

multiple of trees, always has a better robustness, since if one tree is affected

by noise, the other trees might not be affected at all. The impact of noise is

averaged down due to the ensemble classifier voting process.

However, the experimental results also revealed some limitations that

Bagging and Boosting methods suffer in terms of dealing with high levels of

noisy data. The limitations can be seen as follows.

1. The Bootstrap method prevents the individual decision tree being gen-

erated from the entire training data set.

With the bootstrap method, only about 2/3 of the original training

examples are used for constructing an individual decision tree. The ac-

curacy of individual decision trees might not be affected if the training

data set is big enough. However, as far as gene expression Microarray

data analysis is concerned, gene expression Microarray data usually

contains less than 100 samples. With the scarcity of the original train-

ing data set, the bootstrap method tends to decrease the accuracy of

the decision tree compared to the one based on full training data set.

2. The Bagging method does not guarantee the diversity of ensemble deci-

sion tree.

When re-sampled training datasets by the bootstrap process are identi-

cal or have similar class distributions, the decision trees generated from

them are not so diversified. Intuitively, if individual decision trees in

an ensemble committee are all identical, the ensemble committee is of
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little use in improving the prediction performance over a single decision

tree algorithm. Ho [64] demonstrated that both the Bagging and the

Boosting methods generated a high percentage of similar decision trees.

The Boosting method uses the entire training data set for constructing an

individual decision tree, therefore the prediction accuracy of each individual

tree tends to be more accurate than that of the Bagging method. However,

it still has a disadvantage for gene expression Microarray data classification.

It has the same risk as Bagging in terms of diversity. In addition, it is

potentially not robust to noise data due to the re-sample technique used. The

Boosting method assigns more weight to the samples with a higher prediction

error rate. This is the case when a sample with a higher weight contains a

high level of noise of genes or attributes. Since we know that Microarray

data contains high levels of noise, as a result the re-sampled training dataset

contains increased noise data, and the decision tree based on such a data set

causes an overfit problem.

Therefore, re-sample examples are not good for Microarray data classi-

fication, and the boosting and bagging methods need to be improved with

regard to diversity and robustability issues.

4.2 Ensemble decision tree methods by re-
sampling attributes

The re-sample attributes technique is to vary genes instead of samples in

order to maximally use the small number of samples and the large number

of genes. In stead of re-sampling samples, a few new ensemble methods [142,

18, 83]have been proposed which construct decision tree ensembles by re-
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sampling genes since a Microarray data set normally has abundant genes,

which can be used to counter the overfitting problem caused by a small

sample size.

4.2.1 Random Forests

Random decision forests ensemble decision tree methods have been researched

extensively [64, 63, 18, 142]. For example, Leo Breiman proposed a random

decision forests method called Random Forests [18] in 1999. This early ran-

dom decision trees method combines Bagging and random feature selection

methods to generate multiple classifiers.

The Random Forests method is show in Algorithm 8. In Algorithm ??

first, bootstrap is adopted to form a re-sampled training data set Di from

which Ti will be constructed. During the Ti constructing stage, at each

node a fixed number of features is selected randomly for splitting on. Two

features are tried among the selected set of features and the one with the

higher information gain ratio is selected to split the training data set.

Algorithm 3: The Random Forests [81]

Initially select the number of K of trees to be generated; samples s in1

training set D; Tree classifier T
for i = 1 to K do2

Di = bootstrap sample from D (sample with replacement) A3

Vector θ is generated
(random selected genes for each node) Construct Tree Ti = (s, θ)4

using any decisions tree algorithm
end5

Each Tree casts 1 vote for the most popular class at S6

C∗(s) = arg max
∑

i:Ci(s)=c 1 (The class at S is predicted by selecting7

the class with max votes)
Outputclassifier C∗

8
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Zhang and et al. [142] proposed a new ensemble decision tree method called

deterministic forest which was a modified version of random forests. The

modification is that instead of re-sampling the training data set, this method

selects a specified number of the top splits of the root node and then generates

a number of alternative trees, based on the selected top splits.

With another modified Random Forests, instead of using bootstrap method

to re-sample the original training data set, Tin Kam Ho [64, 63] introduced

a new method to generate random forests by re-sampling the features 1 from

the original training data set. Di contains all samples appearing in the orig-

inal training data set with a randomly selected subset of features included in

the original training data set.

4.2.2 CS4-Cascading-and-Sharing

CS4–cascading-and-sharing (simply called CS4) proposed by Jinyan Li and

Huiqing Liu [83] makes use of gene selection at root nodes in their ensemble

C4.5 algorithm for Microarray data classification. CS4(see Algorithm 4), first

uses the information gain ratio to select the top n genes from the original

data set. Then each of these n genes in turn is used as the root node of

an alternative tree of ensemble trees. Root nodes of ensemble trees are not

determined by C4.5, but the remaining parts of trees are constructed by

C4.5. Based on the coverage of rules, the final predicted class is the class

that receives the highest score. CS4 diversifies the roots of ensemble decision

tree, but does not diversify all trees in the committee as does our proposed

algorithm.

1Note that features can be different gene.
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Algorithm 4: CS4 Algorithm [84]

Data: Given a training data set D, k is significantly less than the
number of features used in D

Use gain ratios to rank all the features into an ordered list with the1

best features at the first position
i = 12

for i = 1, i <= k do3

Use the ith feature as root node to construct the ith rulei4

end5

Score the predicted class based on the coverages of the rules6

Final predicted class is the class that receives the highest score7

4.2.3 Comparison of robustness results

To compare the robustness of the newly developed ensemble methods, Ran-

dom Forests and it variants, CS4 are selected for ensemble decision tree ac-

curacy comparison on four data sets, namely Leukemia, Colon , Lymphoma

and Lung Cancer. Ten fold cross-validation is used in this experiment. Note

that for ease of comparison, we also place the accuracy results of the Boosting

method and Bagging method as column 4 and 5 respectively in Table 4.5.

Like the Boosting or Bagging methods described in Section 3, white noise

or Gaussian noise were generated based on the selected Microarray cancer

data sets with 0%, 20% and 60% levels of noise.

Table 4.6, Table 4.7, Table 4.2, Table 4.3 and Table 4.4 show the details

of the accuracy results with various level of noisy values for Random Forests,

CS4, C4.5, AdaBoostC4.5, BaggingC4.5 respectively.

Table 4.5 shows the average accuracy results for the two selected algo-

rithms: Random Forests, CS4 are selected along with BaggingC4.5 and Ad-

aBoostingC4.5 over the four original data sets.

Table 4.6 shows the prediction accuracy of Random Forests over four data
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Data set C4.5 Boost Bagging Random Forests CS4
1 Leukemia 79.2 87.5 86.1 86.1 98.6
2 Colon 82.3 77.4 82.3 75.8 82.3
3 Lymphoma 78.7 85.1 85.1 80.9 91.5
4 Lung Cancer 95.0 96.1 97.2 98.3 98.9

Average 83.8 86.5 87.7 85.3 92.8

Table 4.5: Average accuracy comparison

Data set original 20% 60%
1 Leukemia 86.1 80.8 83.3
2 Colon 75.8 80.0 76.3
3 Lymphoma 80.9 80.7 76.4
4 Lung Cancer 98.3 96.1 92.3

Average 85.3 84.4 82.0

Table 4.6: Prediction accuracy of Random Forests

sets with different levels of noise values.

Data set original 20% 60%
1 Leukemia 98.6 95.0 89.6
2 Colon 82.3 81.3 70.4
3 Lymphoma 91.5 95.0 91.6
4 Lung Cancer 98.9 97.8 98.9

Average 92.8 92.3 87.6

Table 4.7: Prediction accuracy of CS4 over four data sets with different levels
of noise values

Table 4.7 shows the prediction accuracy of CS4 over four data sets with

different levels of noise values.

From the experimental results presented in Table 4.5, Table 4.6 and Ta-

ble 4.7, we have the following observations:

1. Based on the original data sets, compared to the single decision tree

CS4 is the best ensemble method and outperforms C4.5 by 9.0%. Ran-

dom Forests, AdaboostC4.5 and BaggingC4.5 also improve the accu-

racy on average by up to 3.9%. Among the four ensemble methods, CS4
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is the most accurate classification method and improves the accuracy

of classification on all cancer data sets by up to 19.4%. BaggingC4.5

also outperforms C4.5 on all data sets by up to 6.9%. Random Forests

and AdaBoostC4.5 improve the accuracy on lung cancer, Lymphoma

and Leukemia data sets by up to 8.3%, but fail to improve the accuracy

on the Colon data set.

2. With a lower noise level of 20%, CS4 and Random forests perform

the best with a slight change over the original data by up to 0.9%

on average. BaggingC4.5 performs well with decreasing accuracy on

average by 1.1%. AdaBoostC4.5 decreases the accuracy by 5.9% while

single tree method C4.5 decreases the accuracy on average by 10.5%.

3. With a high noise level of 60%, Random Forests perform the best with a

smallest decrease of 3.3% compared with the other ensemble methods.

CS4 decreases the accuracy by 5.2% while BaggingC4.5, AdaBoost-

ingC4.5 and C4.5 decrease their accuracy by 10.2%, 14.7% and 21%,

respectively.

4.3 Discussions

The robustness of Microarray classification is affected by data re-sampling

methods. A traditional ensemble method assumes that a training data set

has a large number of samples with small numbers of attributes. The re-

sampled data set is only slightly different from the original data set. The

trees constructed on those re-sampled data are still reliable. However, most

Microarray data contains less than 200 samples, a slight change of samples
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may cause a dramatic structural change in the training data set. The trees

constructed on such unreliable data sets are more likely to lead to a higher

risk of the unreliability problem. This risk affects the performance of classi-

fication. In contrast, CS4 is designed specially for Microarray data analysis.

It kept the structure of the original data sets and therefore the generated

trees are more reliable and the ensemble committee is more robust.

4.4 Summary of the chapter

In this chapter, we conducted a comparative study of a few newly developed

ensemble classification methods by re-sampling samples and attributes. In

particular, we introduced Bagging, Boosting, Random Forests and CS4. We

compared these methods on four Microarray data sets with various level of

noise. We discussed the the comparison results. In the next chapter, we

introduce our newly developed ensemble decision decision trees method.
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DMDT—A novel robust Microarray

classification method

From the observations of previous chapters, we noticed that there are a num-

ber of factors which affect the accuracy and robustness of Microarray classi-

fication. As we discussed in Chapter 1, Microarray data commonly contains

a high level of noise. High noise in Microarray data is not helpful in im-

proving the accuracy of Microarray data classification. On the other hand,

a Microarray data set normally has a small number of samples, and the

re-sampling samples method does not improve the accuracy performance of

classification significantly on Microarray data. In the worst case, it decreases

the performance of Microarray data classification especially with increased

noise levels.

In this chapter, we propose a new Microarray data classification method,

based on diversified multiple trees. The new method contains features that,

69
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(1) make most use of the information from the abundant genes in the Mi-

croarray data, and (2) maximize diversity in the ensemble decision com-

mittee. This chapter is organized as follows. In Section 1, we discuss the

measurement of diversity. In Section 2, we apply the concept of diversity

measurement to evaluate the diversity among compared ensemble decision

tree methods. In Section 3, we propose a new Microarray data classification

method called d
¯
iversified multiple decision trees algorithm (DMDT). In Sec-

tion 4, we show experimental results. In Section 5, we present a discussions

on the DMDT algorithm. This chapter is concluded by a short summary in

Section 6.

5.1 Measurement of diversity

Apart from the generally high noise level in Microarray data, the level of noise

also varies from one data set to another. This data uncertainty is another

characteristic of Microarray data. To cope with this data uncertainty, ensem-

ble methods aim to improve their predictive power by combining diversified

or alternative trees in order to increase the robustness of Microarray classi-

fication. To achieve this goal, many methods have been applied to diversify

the ensemble committee, such as re-sampling samples using bootstrapping

or re-sampling attributes with gene selection.

Ensemble decision tree classification methods all generate a set of decision

trees to form a committee. Due to the different approaches used to generate

the committee, the decision trees in the final ensemble committee could be

diverse from each other in certain ways. In the past decades, measuring
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diversity has become a very important issue in the research of Microarray

ensemble classification methods [77, 5, 131].

Measuring outputs is a most natural way to measure the diversity of

ensemble classifiers [5]. The output from measuring the classifiers in a com-

mittee may give a result of total different, partially different or identical

with each other. If the classifiers in a committee are all identical in a com-

mittee, we can say these classifiers are not diversified; if the classifiers are

partially different, we can say they are diversified. When the classifiers are

totally different or unique to each other, we say the classifiers are maximally

diversified.

There are also many statistical diversity measures available, such as diver-

sity of errors [101, 5], and pairwise and non-pairwise diversity measures [77,

55, 5]. It is desirable if every classifier in an ensemble committee can agree

on most samples which are predicted correctly. At the same time, we also

expect that they do not make same incorrect predictions on testing samples.

Those methods are also very important measurements of diversity, because

if their errors were correlated, classification prediction would not lead to any

performance gain by combining them.

The approach of measuring diversity based on statistical methods has

drawbacks. There is a lack of robustness consideration in Microarray clas-

sification in terms of incorrect and missing data values. Identical trees are

excluded from the ensemble committee since they are not helpful in improving

the prediction accuracy of classification. However, this measurement allows

overlapping genes among diversified trees. Overlapping genes are a problem

for reliable Microarray data classification.



72
Chapter 5. DMDT—A novel robust Microarray classification

method

Let’s use an example to illustrate the problem. For simplicity purposes,

we assume that each ensemble decision tree generated contains only one rule.

a,b,c,d,e,f ,g,h represent attributes, while z represents a class. In our example,

we have an ensemble committee containing three trees.

• tree1: g and h ⇒ z

• tree2: a and b and c ⇒ z

• tree3: b and c ⇒ z

b had values in training data but is missing in the unseen test data. The

problem occurs when the ensemble committee applies to the unseen test

data since the missing value b paralyze both tree2 and tree3. In this case

having redundant rules does not help the ensemble classifier to outperform

the accuracy performance of a single classification regardless how diversified

they are. This is not good for overall robustness. In contrast, this problem

can be easily dealt with by measuring the outputs using ensemble classifica-

tion methods. We simply require tree1, tree2 and tree3 to be disjunctive by

containing totally different genes:

• tree1 g and h ⇒ z,

• tree2 a and b and c ⇒ z and

• tree3 d and e and f ⇒ z.

In this case, if one gene of a, b, c, d,e, f , g or h is missing, only one rule is

paralyzed. The other rules still work.
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In addition, measuring outputs takes advantage of the abundant genes

contained in Microarray data. This character of Microarray data ensures

that completed different outputs can be generated from any give Microarray

data without any difficulties.

In summary, Microarray data suffers from the curse of dimensionality

and a high degree of data uncertainty. Ensemble decision tree formed by

way of measuring the outputs increases the possibility of tolerating incoming

unknown data, which involves a higher degree of noise than the data used

for training ensemble decision tree. That is to say, a general Microarray data

analysis technique requires the disjointed outputs to be generated and be

able to take full advantage of abundant genes.

To the best of our knowledge, so far there is still not a generally ac-

cepted formal definition of measurement of diversity [77]. There is no such

general diversity measurement which is best for improving the classification

performance of ensemble methods in all applications cross different research

fields.

In this thesis, diversity is measured by the difference of outputs for Mi-

croarray data classification problems. The degree of diversity is dependent

on how many overlapping genes are included between the decision trees of

an ensemble committee.

Definition 3 (Degree of diversity). Given a data set D with n attributes,

A = {att1, · · · , attn}; C is an ensemble decision tree committee with k(k > 1)

individual decision trees generated from D, C = {c1, · · · , ck}; ci ∈ C and

cj ∈ C are any single decision trees; ci contains a set of attributes Aci
=
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{att|att ∈ A} and Acj
= {att|att ∈ A};

let |Aci
∩ Acj

| = number of element contained in Aci
∩ Acj

,

|Aci
∪ Acj

| = number of element contained in Aci
∪ Acj

degree of diversity between ci and cj is

DD = 1−
|Aci

∩ Acj
|

|Aci
∪ Acj

|
( 0 ≤ DD ≤ 1)

When an ensemble committee contains only decision trees which have to-

tally different outputs, or unique trees with no overlapping genes, we say that

the ensemble committee is maximally diversified. According to Definition 3,

the DD of the unique decision trees is 1.

Definition 4 (Unique decision trees). ci and cj are called unique decision

trees, if Aci
∩ Acj

= φ.

We say an ensemble decision tree classification method has greater diver-

sity when its decision trees have a higher degree of different outputs with less

overlapping genes. It is clear that diversified decision trees have a DD value

awhich is between 0 and 1.

Definition 5 (Diversified decision trees). if Aci
6= Acj

and Aci
∩ Acj

6= φ,

then ci and cj are called diversified decision trees.

Similarly, if all decision trees in an ensemble decision tree committee are

identical, the degree of its diversity would be 0.

Definition 6 (Identical decision trees). We call ci and cj are identical deci-

sion trees,if Aci
= Acj

.
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5.2 Diversity of current ensemble decision tree

methods

In this section, we look into diversity measurement in some specific ensemble

decision tree methods. Up to date, all ensemble decision trees methods have

kept diversity in mind. However, among those methods, Boosting and Bag-

ging do not guarantee that each ensemble decision tree in the committee is

different from outputs, namely identical trees and overlapping genes are not

prohibited from an ensemble committee. Identical trees decrease the diver-

sity of an ensemble committee, and noise in one gene may affect a number of

ensemble decision tree; the noise will ultimately affect the reliability of Mi-

croarray classification. Therefore, committees built on Bagging and Boosting

methods may not be as effective as a committee that contains no identical

trees and overlapping genes.

A quick fix to improve diversity in the ensemble decision tree committee

is to include a set of diversified decision trees with no overlapping genes.

If classifiers in the ensemble decision tree committee are not guaranteed to

be different to each other, the committee must be very large, in order to

create certain diversity in the committee. This behoves us to pay special

attention while designing our algorithm. One concern for such a split is

that it might break down some attribute combinations that are good for

classification. However, an apparent benefit of such trees is that a noise

attribute cannot affect more than one tree in the committee. Considering

that Microarray data normally contains much noise and many missing values,

the idea of using diversified trees with no overlapping genes may provide a
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better solution.

CS4–cascading-and-sharing trees [83] is a diversified decision trees ensem-

ble. CS4 selects the n top genes and then builds n trees from the roots of

these n top genes. Apart from the root of the tree being fixed, other levels

of trees are constructed by using a normal tree construction method. CS4

has been show to achieve a higher classification accuracy than Bagging and

Boosting. It has also been reported that CS4 is better than other ensem-

ble decision tree methods for Microarray data analysis. However, CS4 has

some limitations. For instance, apart from the top level genes, other genes

in the decision trees are shared. And a number of trees may use some genes

repeatedly. Consequently, noise from one gene may affect most trees. Also,

the performance of CS4 largely relies on the selection of top genes.

Generally, CS4 is better than other ensemble methods in term of diver-

sity. Despite using traditional and most newly developed tree construction

methods, the constructed alternative trees may share the same genes at ei-

ther root nodes or branch nodes. To increase the diversity of all constructed

trees, CS4 tries to guarantee no overlapping genes among the root nodes.

Unfortunately, CS4 is unable to prevent overlapping genes from the second

level of a tree and onwards.

If we want to further increase the diversity of the alternative trees, we

need to make sure that all alternative trees are truly unique. That is to say,

if we want to ensure truly unique trees are constructed from the ensemble

decision tree method, we need to guarantee that no overlapping genes exist

among the constructed trees.

A distinction between CS4 and our proposed algorithm is that there are
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no common genes in our trees in the decision committee whereas genes in

trees of CS4 are overlapping except the root genes. We will compare these

two diversified decision tree approaches in this chapter, and compare them

with other traditional ensemble methods.

5.3 Diversified multiple decision trees algo-

rithm

On the preceding section, we investigated the limitations existing in ensem-

ble decision tree methods. In this section, we design a new diversified mul-

tiple decision trees algorithm (DMDT), which is capable of dealing with the

problem of small samples versus high dimensions in Microarray data. The

objective of DMDT is to improve the accuracy and reliability of ensemble de-

cision tree methods. Our DMDT algorithm is presented in Algorithm 5. The

DMDT is designed based on the C4.5 single decision tree method. We design

a new Microarray data re-sampling method with the concept of robustness

in mind. The features of DMDT include guaranteeing that constructed trees

are truly unique, and maximizing the diversity of the final classifiers. To

achieve this, DMDT reduces the instability caused by overlapping genes in

current ensemble methods. For example, if the expression level of one gene

is read wrongly, it only affects one tree and all other trees are unaffected.

DMDT algorithm consists of the following two steps:

1. Tree construction

The main idea is to construct multiple decision trees by re-sampling



78
Chapter 5. DMDT—A novel robust Microarray classification

method

genes. All trees are built on all of the samples but with different sets

of genes. We conduct re-sampling data in a systematic way. First, all

samples with all genes are used to build the first decision tree. The

decision tree is built using the c4.5 algorithm. After the decision tree is

built, the used genes appearing in the decision tree are removed from

the data. All samples with the remaining genes are used to built the

second decision tree. Then the used genes are removed and so on. This

process repeats until the number of trees reaches a preset number. As

a result, all trees are unique and do not share common genes.

2. Classification

Since the k-th tree has only used the genes that have not been selected

by the previously created k−1 trees, the quality of the k-th tree might

be decreased. To fix this problem, we take a vote approach; that is

to say, the final predicted class of an unseen sample is determined

by the weighted votes from all constructed trees. Each tree is given

the weight of its training classification accuracy rate. When the vote

is a tie, the class predicted by the first tree is preferred. Since all

trees are built on the original data set, all trees are accountable on all

samples. This avoids the unreliability of voting caused by sampling a

small data set. Since all trees make use of different sets of genes, trees

are independent. This adds another merit to this diversified committee.

One gene containing noise or missing values affects only one tree, and

not multiple trees. Therefore, it is expected to be more reliable in

Microarray data classification where noise and missing values prevail.
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Algorithm 5: Diversified multiple decision trees algorithm (DMDT)

1. TREECONSTRUCTION(D, T , n)1

INPUT: A Microarray data set D, and the number of trees n.

OUTPUT: A set of disjointed trees T
let T = ∅
for i = 0 to n− 1 do

call c4.5 to build tree Ti on D;

remove genes used in Ti from D;

T = T ∪ Ti.

end for

Output T ;

2. CLASSIFICATION(T , x, n)

INPUT: A set of trained trees T , a test sample x, and the number of

trees n.

OUTPUT: A class label of x

let vote(i) = 0 where i = 1 to c = the number of classes.

for j = 1 to n do

let c be the class outputted by Tj;

vote(c) = vote(c) * accuracy(Tj);

end for

Output c that maximizes vote(c);

We give some explanation of the algorithms in the following.

As we know, C4.5 is itself a gene selection algorithm based on informa-

tion gain ratio. Within DMDT no gene selection algorithm is required. In

addition, C4.5 discretizes continuous values by an information gain ratio. No

discretization pre-process is required for this algorithm.

In DMDT, The required input is a Microarray data set and a preset

number of trees. Within the tree construction stage, the first tree (T1) is
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constructed based on the original training data set. The second tree (T2) is

based on a re-sampled training data set where genes used in T1 are removed.

As a result, T1 and T2 share no common genes and hence are unique. The

process repeats until the required number of trees k is generated.

5.4 Experimental methods

The detailed experimental methods have been introduced in Chapter 2. To

evaluate the performance of the ensemble decision tree methods, five data

sets, namely Breast Cancer, Lung Cancer, Lymphoma, Leukemia and Colon,

are selected for the experiment. Table 2.1 shows the summary of the char-

acters of the five data sets. We conduct our experiments by using tenfold

cross-validation on the merged original training and test data sets.

Our developed DMDT algorithm is compared with five well known single

and ensemble decision tree algorithms, namely C4.5, Random Forests, Ad-

aBoostC4.5, Baggingc4.5 and CS4. Our experiments with all four algorithms

apart from CS4, were done using the Weka-3-5-2 package. The experiments

with CS4 were done using the software tool provided by Dr Jinyan Li and

Huiqing Liu as mentioned in Section 2.4 in Chapter 2. In our examples,

the default settings are used for all compared ensemble methods. We were

aware that the accuracy of some methods on some data sets can be improved

when the parameters are tuned. However, it was difficult to find another

uniform setting good for all data sets. Therefore, we did not change the

default settings since the default produced high accuracy on average. We set

the number of trees at 25 for the tenfold cross-validation test since further
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increasing the number of ensemble trees does not help to improve the average

prediction accuracy of classification significantly for most of the Microarray

data sets we used.
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Figure 5.1: Prediction accuracy vs number of ensemble trees using DMDT

Figure 5.1 shows the individual and average accuracy results of the DMDT

algorithm with different numbers of decision trees based on Leukemia, Colon,

Lymphoma and Lung cancer data sets.

5.5 Experimental results

In this section, we first present the accuracy of individual methods and the

average prediction accuracy of the six methods, which are all based on the

ten-fold validation technique.
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Table 5.1 shows the individual and average accuracy results of the six

methods based on tenfold cross-validation method.

Data set C4.5 Random Forests AdaBoostC4.5 BaggingC4.5 CS4 DMT

Breast Cancer 62.9 61.9 61.9 66.0 68.0 64.3

Lung Cancer 95.0 98.3 96.1 97.2 98.9 98.9

Lymphoma 78.7 80.9 85.1 85.1 91.5 94.1

Leukemia 79.2 86.1 87.5 86.1 98.6 97.5

Colon 82.3 75.8 77.4 82.3 82.3 85.8

Average 79.62 80.6 81.6 83.3 87.9 88.1

Table 5.1: Average accuracy of five data sets with six classification algorithms

based on tenfold cross-validation

Figure 5.2 shows the average prediction accuracy of the six methods based

on tenfold cross-validation methods. The individual accuracy results are

shown in Figure 5.3, Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7.

Figure 5.3 depicts the accuracy of six classification algorithms performing

on the Breast Cancer data set.

Figure 5.4 depicts the accuracy of six classification algorithms performing

on the Lung Cancer data set.

Figure 5.5 depicts the accuracy of six classification algorithms performing

on the Lymphoma Cancer dataset.

Figure 5.6 depicts the accuracy of six classification algorithms performing

on the Leukemia dataset.

Figure 5.7 depicts the accuracy of six classification algorithms performing
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Figure 5.2: Average accuracy of six classification algorithms

on the Colon dataset.

Based on the tenfold cross-validation test, our DMDT outperforms other

ensemble methods. For instance, compared to the single decision tree, DMDT

is a more favorable ensemble method and outperforms C4.5 by 10.0% on

average.

From Fig 5.2, we notice that CS4 also performs very well and improves

the accuracy by 8.4% on average. Random Forests, Adaboostc4.5 and Bag-

gingC4.5 improves the accuracy on average by up to 4.3%.

More specifically,
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Figure 5.3: Accuracy of Breast cancer data set with six classification algo-

rithms

1. Among the five ensemble methods used in our experiments, DMDT

turns to be the most favorable classification algorithm with the highest

accuracy, which improves the accuracy of classification on all cancer

data sets by up to 26.7% as shown in Figure 5.3.

2. As shown in Figure 5.2, CS4 is comparable to DMDT in the test which

improves the accuracy of classification on all data sets by up to 17.4%.

3. Baggingc4.5 also outperforms C4.5 on all data sets by up to 9.6%.
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Figure 5.4: Accuracy of Lung cancer data set with six classification algo-

rithms

4. Random Forests improves the accuracy on lung cancer, Lymphoma,

Leukemia and Prostate data sets by up to 19.1%, but fails to improve

the accuracy on breast cancer shown in Figure 5.3, Colon and Ovarian

data sets in Figure 5.7. AdaBoostc4.5 can only improve the accuracy

on Lung Cancer,Lymphoma and Leukemia and decreases the accuracy

performance on the Breast Cancer and Colon data sets shown in Fig-

ure 5.7.

It is interesting to see that traditional ensemble decision tree algorithms
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Figure 5.5: Accuracy of Lymphoma data set with six classification algorithms

do not always outperform a single tree algorithm. This is because the tradi-

tional ensemble methods assume that a training data set has a large number

of samples with small numbers of attributes. As a result, the re-sampled

data set is only slightly different from the original data set. The trees con-

structed on those re-sampled data are still reliable. However, in Microarray

data analysis, the problem that we are facing is completely the opposite: a

small number of samples with large numbers of attributes (genes). As most

Microarray data contains less than 200 samples, a slight change of samples

may cause a dramatic structural change in the training data set. The trees
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Figure 5.6: Accuracy of Leukemia data set with six classification algorithms

constructed on such unreliable data sets are more likely to lead to higher risk

of the problem of unreliability. This risk affects the performance of classifi-

cation. In contrast, DMDT and CS4 are designed specially for Microarray

data analysis. DMDT keeps the alternative trees using all available samples

in order to minimize the impact of the unreliability problem.
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Figure 5.7: Accuracy of Colon data set with six classification algorithms

5.6 Discussions

The results of our experiments show that our proposed diversified multi-

ple decision trees method outperforms the majority of traditional ensemble

methods. This reveals that diversity improves the classification accuracy of

ensemble classification. It also implies that the robustness of Microarray

classification relies on the diversity of ensemble decision tree. Hereinafter,

to increase the performance of ensemble classification, the ensemble decision

tree algorithms must be able to generate a number of individual trees that

are distinguished from (diverse to) each other [40]. For example, DMDT and
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CS4 are designed to guarantee diversified trees in an ensemble committee.

The results proved that DMDT and CS4 performs reasonably well in dealing

with noise data. In contrast, all other ensemble decision trees method do not

guarantee that all trees in an ensemble committee are different from each

other.

Although the performance of CS4 is compatible to DMDT, CS4 has some

weakneses which DMDT does not necessarily have.

CS4 includes a set of decision trees in the decision committee, and the

decision trees have a set of distinct top genes at roots. The top genes are

identified using an information gain ratio in the current CS4 algorithm. Ap-

parently, other criteria can be used to find top genes too. If top genes are

biologically meaningful, this algorithm is very useful for biologists. It groups

genes by some informative genes and builds a classifier based on meaning-

ful gene groups. However, if the top genes are mis-identified due to noise,

the classifier committee will mislead the prediction results. In addition, apart

from the top genes, other genes in decision trees may overlap. One noise gene

may affect a number of trees. We refer to this phenomenon as ”propagation”.

That is not a problem in the DMDT algorithm. A noise gene affects

only one tree, which would not be propagated to other decision trees in the

decision committee. Hence DMDT should be more tolerant to noise than

CS4. One concern associated with DMDT is that the enforcement of unique

trees could break up some gene combinations that are good for classification.

However, the experimental results shown in Section 5.5 do not indicate that

this is an issue. DMDT probably affects finding some combinations of highly

informative genes with less informative genes. Nevertheless DMDT is capable
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of finding some combinations of less informative genes that are missed by

CS4. Therefore, this is a plus. Keep in mind that many biologists believe

that many ”uninformative genes” play an important role in diseases. DMDT

has the advantage of finding such gene combinations which are missed by

CS4.

In short, CS4 is capable of finding informative genes and the combi-

nations of informative genes with informative genes, and combinations of

informative genes with less informative genes, whilst DMDT is capable of

discovering combinations of informative genes with their informative genes,

and combinations of less informative genes with other less informative genes.

In addition, DMDT has the potential of being less insensitive to noise data

than CS4. Note that informative or less informative genes may only make

sense to data analyzers. For biologists, the two methods use different gene

sets and different combinations to equally explain a Microarray data. Both

diversified ensemble methods have the potential of offering biologists some

interesting discoveries.

5.7 Summary of the chapter

In this chapter, we studied the concept of diversity measurement in ensemble

classifiers. We then proposed an algorithm that maximally diversifies trees

in the ensemble decision tree committee. Decision trees in the committee

should share no common genes. We conducted experiments on six Microarray

cancer data sets. The experimental results show that DMDT and CS4, which

diversifies trees by using distinct tree roots, are more accurate on average
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than other well-known ensemble methods, including Bagging, Boosting and

Random Forests. The experiments indicate that the diversity in decision trees

improves the classification accuracy of ensemble classification on Microarray

data. Finally we discussed the relative strengths and weaknesses of both

diversified ensemble classification methods.





Chapter 6
Robustness analysis of DMDT and

other ensemble methods

DMDT has shown promise for achieving higher classification accuracy for

Microarray data classification analysis based on existing Microarray data.

However, a robust Microarray data classification algorithm should be able

to handle the noise data well and produce reliable results from lower quality

Microarray data sets. Robustness is therefore another very important criteria

- in addition to accuracy - for evaluating reliable Microarray classification

algorithms. Robustness is associated with predictions on data with noise.

The noise can be missing data, redundant data or errors. The objective

of robustness analysis is to analyze how well a given algorithm can resist

noise values, specially with increased levels of noise data. Microarray data

sets used for experiments may contain various amount of noise data. It is

impossible for us to know how accurate the data is, how badly the data has

93
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been affected by noise, and most importantly at what level the data contains

noise.

This chapter is organized as follows. In Section 1, we introduce the causes

of noise data and its side effects on Microarray data classiciation. In section

2, we test the robustness of selected algorithms. The results are summarized

into figures and tables. In section 3, we discuss the results. In section 4, we

conclude the paper.

6.1 Characteristics of Microarray gene data

High-throughput DNA Microarray technologies generate complex biological

Microarray data with a great deal of noise. DNA Microarray production

involves many processes [100], such as sample preparation, spotting samples

on a chip, hybridization, results collection, and data transformation [10, 100,

43] etc. Unfortunately every process can potentially bring in errors or noise

due to the quality of DNA samples, such as during experimental set up,

different treatment of chips during hybridization, and finally the quality of

reading equipment and statistical methods [4, 50]. Although much research

has been conducted to eliminate gene expression level errors through control

of image processing [105] and normalization for Microarray data [126], noise

data is still a key issue for Microarray data.

As a result, Microarray data classification faces a great risk as it can

be led astray by these noise data. With overwhelming gene information

waiting to be discovered behind the data, discovering truthful information

effectively from the available abundant yet imperfect data is a great challenge
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for Microarray data classification.

Unlike missing data which can be seen, incorrect data hides in the existing

database. It is very hard to know how much noise data is included in a

database. In particular, it is dificult to detect which genes are affected.

To avoid the effect of noise data, we need to ensure that Microarray data

classification algorithms are robust enough to tolerate noise data contained

in the Microarray data.

Robustness refers to the toleration of noise data and it is associated with

predictions on data with noise values. A robust Microarray classification

algorithm should perform accurately and reliably even with increasing levels

of noise data. Hence, to increase the reliability of Microarray classification,

we have to ensure that the algorithms we apply are robust for tolerating high

levels of noise. Otherwise, Microarray data classification based on Microarray

data with high levels of noise will lead to unreliable and low accuracy analysis.

Robustness therefore is one of the most important criteria for judging

Microarray classification algorithms due to the nature of Microarray data.

Robust ensemble classification algorithms improve the accuracy performance

of Microarray data classification.

In this chapter, we focus on the robustness comparison between existing

single and ensemble decision tree methods including our newly developed

diversified multiple decision tree algorithm (DMDT). We test and evaluate

how well a given single or ensemble decision tree classification method can

tolerate noise values, particularly with increasing levels of noise.
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6.2 Experimental results

In our experiments, five data sets are selected, namely the cancer, ALL-AML

Leukemia [123], Colon [49], Lymphoma [6] and Lung Cancer [57]data sets.

The same algorithms selected for ensemble decision tree accuracy compari-

son in Chapter 3 are used for robustness comparison. They are: C4.5, Ran-

dom Forests, AdaBoostC4.5, Baggingc4.5 and CS4. The Polar form of the

Box-Muller transformation method [39] has been used to generate additional

White Gaussian noise. Please refer to Chapter 2 for details.
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Figure 6.1: Average prediction accuracy over five data sets

Figure 6.1 shows the average accuracy results for the six selected algo-

rithms over the four data sets with noise level of 0%, 20% and 60%. Table 6.1,

Table ??, Table 6.3, Table 6.4, Table 6.5 and Table 6.6 show the details of
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the accuracy results for C4.5, Random Forests, AdaBoostC4.5, Baggingc4.5,

CS4 and DMDT respectively.

Data set original 20% 60%

Breast Cancer 62.9 55.7 57.7

Leukemia 79.2 70.4 66.7

Colon 82.3 72.5 47.9

Lymphoma 78.7 78.2 70.7

Lung Cancer 95.0 72.3 65.8

Average 79.6 69.8 61.8

Table 6.1: Prediction accuracy of C4.5 over five data sets with different level

of noise values

From the experimental results, we make the following observations:

1. Based on the original data sets with 0% level of noise, compared to the

single decision tree DMDT and CS4 are the best ensemble methods

and outperform C4.5 by up to 10.2% on average. Random Forests,

Adaboostc4.5 and BaggingC4.5 improve the accuracy on average by

up to 3.9%. Among the five ensemble methods, DMDT and CS4 are

the most accurate classification algorithms and improve the accuracy of

classification on all cancer data sets by up to 19.4%. CS4 is comparable

to DMDT in the test. DMDT performs better than CS4 on Colon and

Lymphoma by up to 3.2% while CS4 outperforms DMDT on Leukemia

by 1.1%. And DMDT and CS4 perform equally well on the Lung cancer
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Data set original 20% 60%

Breast Cancer 61.9 59.8 55.7

Leukemia 86.1 80.8 83.3

Colon 75.8 80.0 76.3

Lymphoma 80.9 80.7 76.4

Lung Cancer 98.3 96.1 92.3

Average 80.6 79.5 76.8

Table 6.2: Prediction accuracy of Random Forests over five data sets with

different level of noise values

data set. Baggingc4.5 also outperforms C4.5 on all data sets by up to

6.9%. Random Forests and AdaBoostc4.5 improve the accuracy on

lung cancer, Lymphoma and Leukemia data sets by up to 8.3%, but

fails to improve the accuracy on the Colon data set.

2. With a lower noise level of 20%, DMDT performs the best with no de-

creasing accuracy on average. CS4 and Random Forests also perform

well with a slight decrease on average by up to 1.1%; BaggingC4.5 de-

creases the accuracy on average by 2.1%. AdaBoostC4.5 decreases the

accuracy by 5.9% while single tree method C4.5 decreases the accuracy

on average by 9.8%. DMDT keeps the accuracy unchanged on average

while all other algorithms decrease their accuracy by up to 9.8%; all

algorithms increase their accuracy on the Colon data set by up to 5.1%

except C4.5 and CS4; Adaboostc4.5, Baggingc4.5 and DMDT increase
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Data set original 20% 60%

Breast Cancer 61.9 60.8 61.9

Leukemia 87.5 80.0 76.7

Colon 77.4 82.5 64.6

Lymphoma 85.1 88.2 75.7

Lung Cancer 96.1 71.7 70.3

Average 81.6 76.6 69.8

Table 6.3: Prediction accuracy of AdaBoostc4.5 over five data sets with

different level of noise values

their accuracy on Lymphoma despite C4.5, while Random Forests and

CS4 decrease their performance; All algorithms decrease the accuracy

on the Breast cancer and Lung cancer data sets while Adaboostc4.5

performs the worst among the ensemble methods with the biggest de-

crease of 24.4%.

3. With a high noise level of 60%, all compared classification algorithms

decrease the accuracy performance on average. Among the six meth-

ods, DMDT and Random Forests perform the best with the smallest

decreases of 2.5% and 3.8% respectively. CS4, Baggingc4.5 and Ad-

aBoostc4.5 decrease their accuracy by 7.6%, 10.0% and 11.8% respec-

tively while C4.5 decreases the accuracy on average by 17.9%.



100
Chapter 6. Robustness analysis of DMDT and other ensemble

methods

Data set original 20% 60%

Breast Cancer 66 59.8 56.7

Leukemia 86.1 88.3 82.1

Colon 82.3 85.8 62.1

Lymphoma 85.1 85.7 84.1

Lung Cancer 97.2 86.7 81.9

Average 83.3 81.3 73.4

Table 6.4: Prediction accuracy of Baggingc4.5 over five data sets with differ-

ent level of noise values

6.3 Discussions

1. Ensemble methods increase the robustness of decision tree classifica-

tion. Experimental results show that ensemble decision tree methods

tolerate noise values better than single tree C4.5. Since we know that

Microarray data contains a huge number of noise values, it can be very

difficult for a small tree to tolerate noise, hence it is not robust. For ex-

ample, if a single tree is affected by noise, the whole classifier is affected

and this leads to and unreliable and lower accuracy result. In contrast,

an ensemble decision tree method contains multiple trees. When one

tree is affected by noise, other trees might not be affected at all, and the

impact of noise is reduced due to the ensemble classifier voting process.

2. The robustness of Microarray classification is affected by the diversity

of ensemble methods. The essence of ensemble methods is to generate
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Data set original 20% 60%

Breast Cancer 68 67 50.8

Leukemia 98.6 95.0 89.6

Colon 82.3 81.3 70.4

Lymphoma 91.5 95.0 91.6

Lung Cancer 98.9 97.8 98.9

Average 87.9 87.2 80.3

Table 6.5: Prediction accuracy of CS4 over five data sets with different level

of noise values

diversified classifiers in the decision committee. Intuitively, if individual

trees in an ensemble committee are all identical, the ensemble commit-

tee is of little use for improving prediction performance over a single

decision tree algorithm.

To increase the power of ensemble classification, ensemble decision tree

algorithms must be able to generate a number of individual trees that

are distinguished from each other [40]. Bagging does not guarantee

the diversity of an ensemble tree. In contrast, CS4 and DMDT are

designed to guarantee diversified trees in an ensemble committee. CS4

guarantees the diversified trees by selecting the top n unique genes from

the original data set. Then each of the n genes in turn is used as the

root node of an alternative tree of ensemble trees. DMDT guarantees

that constructed trees are truly unique by using disjointed genes among

alternative genes. The results indicate both methods perform very well
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Data set original 20% 60%

Breast Cancer 64.3 71.1 61.8

Leukemia 97.5 97.5 92.5

Colon 85.5 87.5 82.1

Lymphoma 94.1 95.0 93.2

Lung Cancer 98.9 98.3 98.4

Average 88.1 89.9 85.6

Table 6.6: Prediction accuracy of DMDT over five data sets with different

level of noise values

in dealing with noise data.

The Random Forests method combines Bagging and random feature

selection methods to generate alternative classifiers. Decision trees

generated in this way increase the diversity among alternative trees.

It still does not guarantee that every decision tree in the committee

is unique. However, due to the enormous number of genes existing in

Microarray data sets, Random forests has a good chance of generating

a higher degree of diversified trees with little or no overlapping genes

among them. So the Random decision forests algorithm should be more

robust or more resistance to noise data than Bagging. The results prove

that DMDT, CS4 and Random Forests outperform BaggingC4.5 and

BoostingC4.5.

3. Regarding the degree of diversity of ensemble decision tree, we can
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see from the results that DMDT and CS4 perform similarly on the

original test data. However, when test data contains more noise values,

DMDT performs better than CS4 and other ensemble methods. In CS4

ensemble trees, apart from the top genes, other genes in the trees might

overlap. One noise gene may affect a number of trees. In contrast, in

the DMDT algorithm, a noise gene affects only one tree, and hence

DMDT should tolerate more noise than CS4. The results indicate that

avoiding overlapping genes among the ensemble trees is an intuitive,

simple and effective way to achieve a higher degree of diversity for

ensemble decision tree methods.

4. From the results, we observe that Random forests performs similar to

DMDT from the perspective of robustness. One of the possible reasons

is that it is beneficial in the way it constructs the alternative trees.

Unlike Bagging, Random forests constructs a tree by using random

selected genes at each node. It therefore greatly increases the chance

of obtaining unique trees without overlapping genes.

6.4 Summary of the chapter

In this paper, we explored the robustness of ensemble decision tree meth-

ods. Perturbed data sets with increased noise data level were used to test

the robustness of the ensemble decision trees generated from C4.5, Random

Forests, AdaBoostC4.5, Baggingc4.5, CS4 and DMDT. We discussed the ex-

perimental results. In the next chapter, we will investigate the dependency

between gene selection methods and Microarray data classification.





Chapter 7
Gene selection for Microarray

classification

In past decades, gene selection technology has been used to select the most

effective genes from high dimensional Microarray data. In this Chapter, we

look at how the gene selection technology affect the performance of the Mi-

croarray classification methods, such as the ensemble descision tree methods,

SVMs.

Diversified multiple decision trees(DMDT)method is designed to directly

deal with high dimensional Microarray data. It takes into account the nature

of Microarray data which often contains high levels of noisy data. Noisy data

has a large impact on the prediction performance of robust Microarray data

classification. Using noise genes for classification causes a risk of decreasing

the accuracy of Microarray classification. The curse of dimensionality prob-

lem slows down or even prevents the Microarray data classification process,
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and this is one of the major hurdles for Microarray data classification.

The basic requirement for effective Microarray classification is to work on

a quality Microarray data source. To improve the performance of Microarray

data classification, we should remove the noise genes as much as possible from

Microarray data before classification takes place. In this chapter, we investi-

gate the effectiveness of gene selection methods and the relationships between

gene selection methods and Microarray data classification algorithms.

This chapter is organized as follows. In Section 1, we identify problems in

gene expression Microarray data classification and highlight the importance

of gene selection for gene expression Microarray data. In Section 2, we review

a number of gene selection methods. In Section 3, we present the design of

methods for comparing the accuracy of SVMs and C4.5 using different gene

selection methods. In Section 4, we test four different gene selection methods

with six data sets. In Section 5, we present a discussion of the results. In

Section 6, we summarize the chapter.

7.1 Review of Microarray gene data

The Microarray data we acquire from Microarray technology is quite different

from normal relational databases. Normal relational databases contain a

small number of attributes and a large number of samples. In contrast,

gene expression Microarray data usually contains a very large number of

attributes but a small number of samples. With a large number of genes,

it is desirable to have a large number of samples accordingly in order to

build reliable Microarray classification models. The reality is that for most
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Microarray experiments, a limited number of samples are available due to

the huge cost of producing such Microarray data and other factors, such as

privacy and availability. As an example, for cancer Microarray data, the

number of samples is usually less than 100.

High dimensionality causes many problems in Microarray data analysis

as follows.

1. Irrelevant and noise genes can significantly decrease the quality of Mi-

croarray data classification. Among the huge number of genes, there

is unavoidably a great deal of noise which may be caused by human

error, malfunctions and missing values. Apart from that, it is common

that not all genes in a dataset are informative for classification. Using

irrelevant and noise genes for classification causes a risk of decreasing

the accuracy of classification.

2. Processing the huge number of genes causes great computational com-

plexity in building classifiers. High dimensionality is the main cause

of inefficient Microarray data classification. Actually, it renders many

classification algorithms inapplicable [76]. For instance, it could take

days for some classification algorithms to analyze a Microarray cancer

data. Such a speed of Microarray data classification is not acceptable

to any practical users. In the worst case, some classification algorithms

can not be used for analying original Microarray data if the dimensions

of the Microarray data are too high.

In short, high dimensionality renders many classification methods not

applicable for analyzing raw gene expression Microarray data. Furthermore,
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high dimension Microarray data with noisy attributes leads to unreliable

and low accuracy analysis results. Consequently, reducing irrelevant and

removing noise gene expression values from the original Microarray data

are crucial for applying classification algorithms to analyze gene expression

Microarray data.

To deal with the problems caused by high dimensionality and noise data,

a preprocessing phase should be introduced to reduce the noise and irrelevant

genes before the Microarray data classification. As a preprocessing method of

Microarray data Classification, gene selection is a very effective way for elim-

inating the noisy genes. In essence, gene selection aims to select a relatively

small set of genes which can be used to improve the accuracy and efficiency

of Microarray data classification from a high dimensional gene expression

data set. Gene selection helps to clean up the existing Microarray data

and therefore improve Microarray data quality. In other words, removing

irrelevant and noisy genes is helpful for improving the accuracy of Microar-

ray data classification. The resultant Microarray data classification models

would therefore better characterize the true relationships among genes and

hence be easier to be interpreted by biologists. Arguably, a good gene se-

lection method not only increases the accuracy of classification through the

improvement of the Microarray data quality, but also speeds up the classifi-

cation process through the cutdown of high dimensionality.
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7.2 Gene selection methods

In this subsection, we overview a number gene selection methods. Gene

selection strives to reduce the risk of an overfitting problem, enhances the

efficiency of the classification process, and increases understandability of the

result [113]. Gene selection essentially is a process of selecting a subset

of genes from the original data which are most predictive of categorized

classes [35, 42]. Many gene selection methods have been applied to Microar-

ray data classification in past decades [80, 90, 54, 62, 139]. Many of these

have been proven to be very effective in eliminating noise data, efficient in

speeding up the process of Microarray classification, and capable of increasing

the accuracy performance of classification prediction.

Based on the dependency on classification algorithms, gene selection

methods can be roughly divided into wrapper and filter methods [74].

A filter method performs gene selection independently from a classifica-

tion method. It preprocesses a Microarray data set before the data set is used

for classification analysis. Some filter gene selection methods are: ranking

gene selection methods [97], and information gain gene selection method [90],

Markov blanket-embedded genetic algorithm for gene selection [146], and

so on. One-gene-at-a-time filter methods, such as ranking [97], signal-to-

noise [123], information gain [108], are fast and scalable but do not take the

relationships between genes into account. Some genes among the selected

genes may have similar expression levels among classes, and they are redun-

dant since no additional information is gained for classification algorithms by

keeping them all in the dataset. To this end, Koller and Sahami [75] devel-

oped an optimal gene selection method called Markov blanket filtering which
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models feature dependencies and can eliminate redundant genes. Further to

this method, Yu and Liu [141] proposed the Redundancy Based Filter(RBF)

method, which is able to deal with redundant problems. Favorable results

have been achieved.

In contrast, a wrapper method embeds a gene selection method within

a classification algorithm. An example of a wrapper method is SVMs [59],

which uses a recursive feature elimination(RFE) approach to eliminate the

features iteratively in a greedy fashion until the largest margin of separation

is reached. Wrapper methods are not as efficient as filter methods due to

the fact that they usually run on the original high dimensional Microarray

dataset. However, Kohavi and John [74] discovered that wrapper meth-

ods could significantly improve the accuracy of classification algorithms over

filter methods. This discovery indicates that the performance of a classifi-

cation algorithm is largely dependent on the chosen gene selection method.

Nevertheless, no single gene selection method can universally improve the

performance of classification algorithms in terms of efficiency and accuracy.

In past years, some filter and wrapper methods have been widely applied

by many researchers in various cancer research applications, such as Signal-

to-Noise ratio filter method being used for leukemia cancer research [123];

and a correlation coefficient filter method being applied for breast cancer

analysis [124]. Support Vector Machines [60, 133], wrapper Approaches [15]

and ensemble of neural networks [30] have also been used for cancer classifi-

cation.

Many researches have shown that gene selection can improve the per-

formance of Microarray classification [41, 85, 119, 123, 124]. The current
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research does not answer the question: Is there any given gene selection

method which can enhance the prediction performance of different types of

Microarray classification methods?

As stated in the beginning of the chapter, one objective of our research is

to find out the relationship between gene selection methods and classification

methods. It is undesirable if we apply a gene selection method and eventually

the accuracy of Microarray data classification is decreased.

In the following sections, we investigate the dependency between gene

selection methods and Microarray data classification methods.

7.3 Experimental design and methodology

Our approach is to use different existing gene selection methods to preprocess

Microarray data for classification. We have carried out our experiments by

comparing with benchmark algorithms SVMs and C4.5 . Note that this

choice is based on the following considerations.

Consideration of benchmark systems: For a number of years, SVMs

and C4.5 have been regarded as benchmark classification algorithms. SVMs

was proposed by Cottes and Vapnik [34] in 1995. It has been one of the

most influential classification algorithms. SVMs has been applied to many

domains, for example, text categorization [70], image classification [99], can-

cer classification [53, 21]. SVMs can easily deal with high dimensional data

sets with a wrapper gene selection method. SVMs also can achieve a higher

performance compared to most existing classification algorithms.
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Considering of wrapper methods: SVMs and C4.5 are not only bench-

mark classification systems, but each of them contains a wrapper gene selec-

tion method. SVMs uses a recursive feature elimination(RFE) approach to

eliminate the features iteratively in a greedy fashion until the largest margin

of separation is reached. Decision tree method can also be treated as a gene

selection method. It selects the gene with the highest information gain at

each step and all selected genes appear in the decision tree.

A ranking method identifies one gene at a time with differentially ex-

pressed levels among predefined classes and puts all genes in decreasing order.

After a specified significance expressed level or number of genes is selected,

the genes lower than the significance level or given number of genes are fil-

tered out. The advantages of these methods is that they are intuitive, simple

and easy to implement. In this study, we choose and implement four popu-

lar ranking methods collected by Cho and Won [29], namely Signal-to-Noise

ratio (SNR), correlation coefficient (CC), Euclidean (EU) and Cosine (CO)

ranking methods.

To evaluate the performance of different gene selection methods, three

datasets from Kent Ridge Biological Data Set Repository [82] were selected.

These data sets were collected from some influential journal papers, namely

the breast cancer, lung cancer, Leukemia, lymphoma, colon and prostate

data sets which we described in Chapter 2.

During the gene expression Microarray data preprocessing stage, we de-

fine the number of selected genes as 20, 50 and 100 and 200 for all filter gene

selection methods. In our experiments, a tenfold cross-validation method is

also carried out for each classification method to test its accuracy.
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Figure 7.1: The accuracy results for C4.5 tested on Breast cancer data set
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Figure 7.2: The accuracy results for C4.5 tested on lung cancer data set
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7.4 Experimental results and discussions

Figure 7.1, Figure 7.5, Figure 7.4, Figure 7.2, Figure 7.3, Figure 7.6,Figure 7.7,

Figure 7.11, Figure 7.10, Figure 7.8, Figure 7.9 and Figure 7.12, show the de-

tailed results for SVMs and C4.5 tested on six different datasets preprocessed

by four different filter gene selection methods.
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Figure 7.3: The accuracy results for C4.5 tested on Lymphoma data set

From these experimental results, we make the following observations.

1. When Microarray data sets are preprocessed, SVMs improves its predic-

tion accuracy on Breast Cancer and Lymphoma data sets only. Signal-

to-Noise and Correlation coefficient methods performed best and im-

proved the accuracy up to 16.5% and 15.5% respectively on Cancer

data. The Cosine method also improved the accuracy by up to 7.2%
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Figure 7.4: The accuracy results for C4.5 tested on Leukemia data set
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Figure 7.5: The accuracy results for C4.5 tested on Colon data set
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Figure 7.6: The accuracy results for C4.5 tested on Prostate data set
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Figure 7.7: The accuracy results for SVM tested on Breast cancer data set
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Figure 7.8: The accuracy results for SVM tested on lung cancer data set

on Cancer data. On the Lymphoma data set, the Correlation coefficient

method is the only method which improved the accuracy performance

over original data set by up to 2.2% while other methods were not

able to improve the accuracy. None of the gene selection methods im-

proved nor decreased the prediction accuracy based on Lung Cancer,

Leukemia, Colon and Prostate data sets with 200, 100, 50 and 20 genes.

Instead, the accuracy performance is kept unchanged.

2. The performance of C4.5 improves its prediction accuracy by up to

28.6%. Among the four gene selection methods, Correlation coefficient

is the most effective preprocessing method with an improvement of

accuracy up to 7.6% on average, followed by Cosine 7.3%, and Signal-

to-Noise 6.0%. The Signal-to-Noise gene selection method performed
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Figure 7.9: The accuracy results for SVM tested on Lymphoma data set

consistently better on Breast Cancer and Leukemia data sets with im-

proved accuracy by up to 12.4%, but failed on the other cancer data

sets. Euclidean in contrast performed worst among the compared meth-

ods, decreasing the accuracy performance on all provided cancer data

sets except Breast and Prostate by up to 18.7%.

3. The experimental results show that with preprocessing, the number of

genes selected has an affect on some classification methods in terms

of performance accuracy. In the figures for C4.5, the highest accuracy

for all cancer data sets except the prostate cancer data set are based

on 50 genes; while the highest accuracy for prostate cancer data set is

based on 20 genes. The overall performance is better when data sets

contain 50. However, the number of genes selected has little impact on
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Figure 7.10: The accuracy results for SVM tested on Leukemia data set
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Figure 7.11: The accuracy results for SVM tested on Colon data set
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Figure 7.12: The accuracy results for SVM tested on Prostate data set

the performance of SVMs.

7.5 Discussion of experimental results

In this section, we discuss the implication of gene selection methods

upon the classification methods.

(a) The results indicate that gene selection improves the performance

of classification methods in general. using a suitable gene selection

method with C4.5 increases the accuracy performance of C4.5 dra-

matically. For SVMs, its performance remained unchanged unless

a very small size of genes was selected. Moreover, gene selection
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does not decrease the accuracy performance of SVMs. This result

ensures that we can reduce the number of genes to a smaller size

without hurting the accuracy performance of classification. This

is very helpful for noisy Microarray data classification as most ir-

relevant genes in Microarray data classification would be reduced.

It increases the performance of classification significantly in terms

of speeding up the efficiency of Microarray data classification.

(b) These results indicate that not all gene selection methods help

the performance of Microarray classification methods in terms of

improving the prediction accuracy of classification. Their perfor-

mance depends on which Microarray classification method they

are combined with. For C4.5, with the help of some gene se-

lection, such as the Correlation coefficient method, the accuracy

performance improved significantly. The Signal-to-Noise method

generated mixed results combined with C4.5; while the Euclidean

method is not a suitable gene selection method for C4.5 as it failed

to improved the accuracy performance of C4.5 on most data sets.

So to apply gene selection to C4.5, we have to seriously consider

which gene selection algorithm to use to achieve maximum im-

provement. With SVMs, only the Correlation coefficient method

managed to improve the accuracy performance on up to two data

sets.

(c) Gene selection may have little impact on some classification meth-

ods. The figures show that SVMs is insensitive to the gene selec-

tion methods used and hence data preprocessing does not increase
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its performance in most cases. This indicates that the SVMs clas-

sification method can initially handle noise data very well. More-

over, it would require little effort to select a gene selection method

for SVMs.

(d) The observations indicate that a data set with less genes or at-

tributes does not necessarily guarantee the highest prediction ac-

curacy. The number of genes selected by a preprocessing method

should not be too small. At this stage, the objective of gene se-

lection is just to eliminate irrelevant and noise genes. However,

less informative genes can sometimes enhance the power of clas-

sification if they are co-related with the most informative genes.

If the number of genes has been eliminated too harshly, it can

also decrease the performance of the classification. So during the

preprocessing, we need to make sure that a reasonable number of

genes are left for classification.

(e) Those results remind us that when selecting the gene selection

method for data preprocessing, we must consider which classifica-

tion method the gene selection is for. For example, if we select

SVMs as a classification algorithm, then the Correlation coefficient

or Signal-to-Noise gene selection methods are better for data pre-

processing. An inappropriate choice can only harm the power of

classification prediction.
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7.6 Summary of the chapter

In this chapter, we introduced several gene selection methods. We discussed

the advantage of applying gene selection methods for Microarray data clas-

sification. We have conducted some experiments on different existing gene

selection methods for preprocessing gene expression Microarray data for clas-

sification by SVMs and C4.5, which themselves contain a wrapped method.

In the next chapter, we conclude our research findings and describe the future

work.





Chapter 8
Conclusions and future work

In this thesis, we described and investigated the development of a robust and

accurate Microarray data classification method. The research presented in

this thesis has proved practically that medical researchers or biologists can

take advantage of Microarray technologies to help their medical research, in

particular with cancer studies. More specifically, (1) we proposed an algo-

rithm of diversified multiple decision trees method (DMDT), which makes

use of a set of diversified trees in the decision committee; (2) then compared

DMDT with some well-known ensemble methods; (3) we also investigated

how gene selection affect classification accuracy.

This chapter is organized as follows. In Section 1, we summarize all the

research findings and experimental results. In Section 2, we reflect on our

research. In Section 3, we highlight some possible study directions for the

future.

125
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8.1 Summary of our research

8.1.1 New diversified multiple decision tree algorithm

In this research, we concentrated on a study which uses diversified multiple

decision trees to classify Microarray data. DMDT can maximally diversify

trees in the ensemble decision tree committee. The maximal diversity is

attributed to the fact that trees in the committee share no common genes;

genes in trees are not randomly selected, but are chosen by C4.5 in a covering-

algorithm manner. The experimental results demonstrated that the proposed

method and another existing diversified decision tree method, which diversi-

fies trees by using distinct tree roots, are more accurate on average than the

Bagging, Boosting and Random Forests methods. This study also indicates

that diversity improves the classification accuracy of ensemble classification

on Microarray data.

8.1.2 Robustness analysis of Microarray classification

Apart from the accuracy of Microarray data classification methods, we also

explored the robustness of many ensemble decision tree methods including

DMDT. Perturbed data sets with increased noise data level were used to test

the robustness of the ensemble decision trees generated from C4.5, Random

Forests, AdaBoostC4.5, Baggingc4.5, CS4 and DMDT. We observed that

DMDT, CS4 and Random Forests tolerate noise better than Baggingc4.5 and

Boostingc4.5 methods do, particularly with increasing levels of noise data.

Experimental results indicate that Random Forests is comparable to DMDT
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regarding the robustness issue and performs better than CS4 AdaBoostC4.5

and BaggingC4.5 on noise data, while CS4 is comparable to DMDT on orig-

inal data sets. However, when the noise level increases in the training and

test data, DMDT performs better than CS4. Experimental results also show

that ensemble decision tree methods tolerate noise values better than single

tree C4.5 does.

These observations imply that the proposed DMDT with unique trees

can tolerate noise values better than the ensemble methods with ensemble

trees containing overlapping genes. It indicates that maximally diversifying

the outputs of ensemble trees is a simple and effective way to improve the

classification prediction accuracy of Microarray classification.

8.1.3 Gene selection methods for Microarray data clas-

sification

In addition to the accuracy and robustness analysis, we have looked into a

technique to improve the quality of Microarray data sets using the technology

of preprocessing gene expression Microarray data for classification by SVMs

and C4.5, which themselves contain a wrapped method. We observed that

although in general the performance of SVMs and C4.5 are improved by using

the preprocessed datasets rather than original data sets in terms of accuracy

and efficiency, not all gene selection methods help improve the performance

of classification. The rule-of-thumb is that some gene selection methods

are suitable for some specific classification algorithms. For example, if we

select SVMs as the classification algorithm, then a Correlation coefficient or
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Signal-to-Noise gene selection method is better for data preprocessing. On

the contrary, an inappropriate choice can only harm the power of prediction.

Our results also implied that with preprocessing, the number of genes selected

affects the classification accuracy.

8.2 Reflection on our research

DMDT provides more accurate and robust classification than the many ex-

isting systems and the results generated are more easily evaluated and in-

terpreted by users. It might be even better to combine filter and wrapper

methods to further improve the accuracy performance of gene expression Mi-

croarray data classification. The study also reminds us that not all filter gene

selection methods help improve the performance of classification for a given

classification algorithm.

8.3 Future work

Although the DMDT algorithm has many advantages over many well-known

ensemble decision tree methods, we certainly can further improve on our

research in the future. More specifically, we may expand our existing work

on the following aspects.

1. Based on the experimental design in this thesis, in the future we will

conduct extended robustness experiments under the following condi-

tions.
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(a) Training data contains a higher level of noise than test data. Un-

der this condition, the test data are original data with 0 level of

noise. We increase the certain level of noise in training data only

for each experiment. This condition is tested for the situation

when the historical data has lower quality than future incoming

data.

(b) Test data contains a higher level of noise data. Under this condi-

tion, the training data are original historical data with 0 level of

noise. We increase the certain level of noise in test data only for

each experiment. this condition is tested for the situation when

the future incoming data contains more noise data than the his-

torical data.

2. A strong diversified committee should include trees that are indepen-

dent of each other. It seems that we should not use two correlated genes

in different trees. To simplify the explanation, let us consider that each

tree only contains one gene. If all genes in trees are independent, it

is not easy to achieve a consensus . What we really want is that all

trees are correlated for corrections and uncorrelated for errors. In this

case, no simple remedy works. This is one direction to further improve

DMDT and CS4.

3. In all of our experimental study, we found that the deviations among

the constructed trees are big. The question arises whether we need to

select the most accurate trees from the constructed trees in order to

further improve the performance of the maximally diversified multiple
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decision tree algorithm. In future, we will explore a best tree selection

method and combine it into this maximally diversified multiple decision

tree algorithm.
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[106] K. Polat and S. Günes. Classification of epileptiform EEG using a hy-

brid system based on decision tree classifier and fast fourier transform.

Applied Mathematics and Computation, 187(2):1017–1026, 2007.

[107] J. R. Quinlan. Induction of decision trees. Machine Learning, 1,1:81–

106, 1986.

[108] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauf-

mann, San Mateo, California, 1993.

[109] R. J. Quinlan. Bagging, boosting, and c4.5. In AAAI/IAAI, Vol. 1,

pages 725–730, 1996.

[110] J. Reumers, S. Maurer-Stroh, J. Schymkowitz, and F. Rousseau.

SNPeffect v2.0: a new step in investigating the molecular phenotypic

effects of human non-synonymous SNPs. Bioinformatics, 22(17):2183–

2185, 2006.

[111] S. Ruggieri. Efficient C4.5. IEEE Trans. Knowl. Data Eng, 14(2):438–

444, 2002.

[112] D. E. Rumelhart, G. E. Hinton, and J. R. Williams. Learning internal

representations by error propagation. In D. E. Rumelhart and J. L. Mc-

Clelland, editors, Proceedings of Parallel Distributed Processing, pages

318–362, Cambridge, MA, 1986. MIT Press.

[113] Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection
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