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Abstract: To support regional electricity markets, accurate and reliable energy demand (G) forecast
models are vital stratagems for stakeholders in this sector. An online sequential extreme learning
machine (OS-ELM) model integrated with a maximum overlap discrete wavelet transform (MODWT)
algorithm was developed using daily G data obtained from three regional campuses (i.e., Toowoomba,
Ipswich, and Springfield) at the University of Southern Queensland, Australia. In training the objective
and benchmark models, the partial autocorrelation function (PACF) was first employed to select the
most significant lagged input variables that captured historical fluctuations in the G time-series data.
To address the challenges of non-stationarities associated with the model development datasets,
a MODWT technique was adopted to decompose the potential model inputs into their wavelet and
scaling coefficients before executing the OS-ELM model. The MODWT-PACF-OS-ELM (MPOE)
performance was tested and compared with the non-wavelet equivalent based on the PACF-OS-ELM
(POE) model using a range of statistical metrics, including, but not limited to, the mean absolute
percentage error (MAPE%). For all of the three datasets, a significantly greater accuracy was achieved
with the MPOE model relative to the POE model resulting in an MAPE = 4.31% vs. MAPE = 11.31%,
respectively, for the case of the Toowoomba dataset, and a similarly high performance for the other
two campuses. Therefore, considering the high efficacy of the proposed methodology, the study
claims that the OS-ELM model performance can be improved quite significantly by integrating the
model with the MODWT algorithm.

Keywords: energy security; time-series forecasting; predictive model for electricity demand; OS-ELM;
wavelet transformation; MODWT; sustainable energy management systems

1. Introduction

To promote the application of appropriate strategic measures and provide accurate scheduling of
electrical power in energy security platforms, a forecasting model that can reliably and precisely forecast
the electricity energy demand (G), is required. Arising from a shift in consumer energy usage, the large
fluctuations evident in G data records leave traditional machine learning models, for example, artificial
neural network (ANN) [1], multivariate adaptive regression spline (MARS) [1–3], support vector
regression (SVR) [2,3], M5 model tree [3], online sequential extreme learning machine (OS-ELM) [4],
and multiple linear regression (MLR) [1] needing to improve their capability to accurately forecast
the G data. To achieve this task, a data pre-processing method, to be implemented before running
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the model, is required to address this issue if such data are unsteady, stochastic, or chaotic, as found
with real life variables.

Wavelet transformation (WT) algorithm, a popular data pre-processing technique that has
been widely adopted in the field of energy forecasting (e.g., [5–10]), has been largely explored to
decompose the model input datasets through high and low-pass filters. By applying WT, a more
coherent structure of the complex time-series can be supplied and fed to a machine learning model to
significantly improve the forecast accuracy. Additionally, energy modelers can potentially address
issues of non-stationary input data using the WT algorithm, thereby, assisting the model to be
more responsive to the input variables’ stochastic behaviors [5]. Wavelet transformation can also
provide the relevant information regarding the time-series decomposition process, including the
provision of patterns of energy usage within the time and frequency domains, thereby increasing a
forecasting model’s capacity to capture such valuable information at different levels of resolution [7,11].
Because of the detailed information that is produced by WT to convert the data from time domain
to frequency domain, a machine learning model can work more intelligently to forecast electricity
demand data. The fact that several recent studies have applied the WT algorithm to improve global
forecasting accuracies in a range of parameters in several fields, for example, rainfall [11], price of
electricity [7,8,10], solar radiation [5,6,9], synthetic hydrological time-series [12], flood levels [13,14],
water demand [15], electricity demand [16] and streamflow [17], demonstrates the ability of the WT
technique to significantly enhance forecasting accuracy.

Although several research studies (e.g., [5–8,17,18]) have implemented WT for different data
forecasting purposes, a recent study in hydrological and water resources forecasting has shown that
these studies may have incorrectly applied WT in the data decomposition step. In doing so, they have
generated models that should not be employed for real-world forecasting problems because their
accuracy is potentially falsely represented [19]. This issue can arise because: (i) future data is drawn
upon when the WT uses some data from the testing period to calculate the wavelet and scaling
coefficients for the training data, (ii) decomposition levels and wavelet filters are incorrectly selected,
and (iii) the training/validation/testing data are split up in an inappropriate manner [19]. It is important
to note that these three problems have not been addressed by the current studies in the field of energy
forecasting when they apply WT. While some other studies [5,6,17,20,21] have tried to address these
issues by applying different forms of WT multiresolution analysis (MRA), for example, discrete wavelet
transform (DWT)-MRA or maximal overlap discrete wavelet transform (MODWT)-MRA separately to
the training, validation, and testing of data, these approaches require the full time-series to calculate the
detail and approximation coefficients, leaving some of the previously mentioned issues unresolved [19].
Therefore, again these studies have failed to apply WT in real-world forecasting problem. Consequently,
as only one study has correctly applied MODWT without added MRA to forecast hydrological and
water resources, additional studies are needed to explore the impact of MODWT and address the
drawbacks cited above when this approach has been used on energy forecasting sector.

In the present study, an OS-ELM model, a fast, reliable and accurate machine learning tool that can
offer a better generalization performance than other algorithms in a range of forecasting applications
(e.g., regression, classification or time-series) and can learn data one by one as do basic extreme learning
machine (ELM) algorithms [22,23], was coupled for the first time with the correct MODWT technique
in an effort to forecast G data. Moreover, OS-ELM input and output parameters as well as weights
were randomly and analytically selected, respectively [22]. First, the study selected the significant
model input variables using a partial autocorrelation function (PACF) to construct a PACF-OS-ELM
(POE) model. The novel MODWT-PACF-OS-ELM (MPOE) model was thus built and compared with
the standalone (non-wavelet) POE model to investigate the influence of WT on G forecasting when the
MODWT transform was applied separately to each input variable to generate the wavelet and scaling
coefficients used in feeding the OS-ELM portion of the model. Data from the three regional campuses
(Toowoomba, Ipswich, and Springfield) of the University of Southern Queensland (USQ), Australia,
were drawn upon to develop and evaluate the accuracy of these techniques in forecasting daily G.
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To outline how these goals were achieved, this paper is organized as follows. The theory of
the OS-ELM and MODWT algorithms are presented in Section 2. Section 3 describes the study area,
data, and methods, while model evaluation criteria, results, and discussions are shown in Section 4.
Finally, the study limitations showing future work opportunities, and conclusions are summarized in
Sections 5 and 6, respectively.

2. Theoretical Background

2.1. Online Sequential Extreme Learning Machine Model (OS-ELM)

In this paper, the machine learning data intelligent ELM-based model architecture was employed
to design a single-layer feed-forward neural network (SLFN), expressed as [4,24]:

yk =
i=M∑
i=1

ρi f (wi.xk + ci) (1)

where k = 1, 2, . . . ; N, M is the hidden nodes of N inputs (lagged variables generated from partial
autocorrelation function (PACF) for G data or the decomposition of the lagged data resulting from
MODWT) xk(t) = {xk}

N
k=1 ∈ RN, and output (G forecasted) yk(x) =

{
yk

}N
k=1 ∈ R in the training period).

A high-level flowchart is presented in Figure 1 to show how these input variables were used to
feed the OS-ELM model. f (.) is the activation function, ci ∈ Γ denotes the threshold of the ith
hidden node, the weight vectors that connect the ith hidden node with the input and output nodes are
wi = [wi1, wi2, . . . , win]

T and ρi = [ρi1,ρi2, . . . ,ρim]
T, respectively, and the term wi.xk refers to the inner

product of wi and xi.
According to [24], Equation (1) can be simplified to the form below:

Hρ = Y (2)

where H =


f (w1.x1 + c1) · · · f (wM.x1 + cM)

...
. . .

...
f (w1.xN + c1) · · · f (wM.xN + cM)


′

N×M

is the hidden layer output matrix of the neural

network, ρ =


ρT

1
...
ρT

M


M×m

and Y =


yT

1
...

yT
N


N×m

.

The following output weight is calculated by applying the least square solution of the linear
systems as follows:

ρ = H∗Y (3)

where H∗ denotes the inverse matrix of H.
With the classical ELM model, all N samples of data are used during the learning process, making

the model relatively time consuming [4]; however, the OS-ELM model, such as the one developed
in the present study, addresses this issue: data are only used once within the two learning stages of
initialization and sequential learning [4]. The hidden layer output matrix is designed in the initialization
step by allocating the input node (wi) and the threshold (ci) to a small piece of initial training data,
while the second step of sequential learning is then launched on a one-by-one basis to stop reusing
training data [4,22,23,25].
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2.2. Maximum Overlap Discrete Wavelet Transform (MODWT)

Serving as a pre-processing method, the MODWT algorithm [26] was implemented before running
the model to address non-stationarity issues in time-series datasets by decomposing the input data into
high and low-pass filters, resulting in MODWT wavelet and scaling coefficients, respectively (Figure 1).
Basically, those components are defined as follows [6,19,26]:

W j,i =

l=L j−1∑
l=0

h j,lXi−1mod N (4)

V j,i =

l=L j−1∑
l=0

g j,lXi−1mod N (5)

where X is an input time-series vector with N values; j = 1, 2, . . . J, where J is the decomposition level at
the time i; h j,l and g j,l are the jth level wavelet (W j,i) and scaling

(
V j,i

)
filters of MODWT, respectively,

and L j denotes the width of the jth level filters.
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3. Data and Methods in the Training Period

3.1. Study Area and Data

In the present case study, the ability of the MPOE model to forecast daily electricity demand (G)
was tested using electricity use data from three regional university campuses (Toowoomba, Ipswich,
and Springfield) of the University of Southern Queensland (USQ), Australia. The historical data were
provided by the university campus services for the periods of 1 January 2013 to 31 December 2014 for
the main feed of Toowoomba, 1 September 2015 to 31 August 2016 for the main feed and Building A
block of Ipswich and Springfield campuses, respectively. Data were recorded every 15-min (96 times
per day) in kilowatts (kW), with a total of 70,080 values including 60 zeros for Toowoomba, 35,136
points each for Ipswich and Springfield including 30 zeros and non-zeros, respectively. Zeros were
filled in by taking the average values for the points at the same time of day, across the previous month.
Daily data were then obtained by summing each set of the 96 values, resulting in 730 points (days) for
Toowoomba and 366 points (days) each for Ipswich and Springfield.

Descriptive statistics for the daily time-series datasets are given in Table 1, while plots of the series
datasets for the three university campuses are shown in Figure 2 to demonstrate the electricity demand
values recorded for each day. The current G data clearly showed large fluctuations in G values, resulting
in the need to implement wavelet transformation through MODWT to address non-stationary issues.

Energies 2020, 13, x FOR PEER REVIEW 5 of 19 

3. Data and Methods in the Training Period 

3.1. Study Area and Data 

In the present case study, the ability of the MPOE model to forecast daily electricity demand (G) 
was tested using electricity use data from three regional university campuses (Toowoomba, Ipswich, 
and Springfield) of the University of Southern Queensland (USQ), Australia. The historical data were 
provided by the university campus services for the periods of 1 January 2013 to 31 December 2014 
for the main feed of Toowoomba, 1 September 2015 to 31 August 2016 for the main feed and Building 
A block of Ipswich and Springfield campuses, respectively. Data were recorded every 15-min (96 
times per day) in kilowatts (kW), with a total of 70,080 values including 60 zeros for Toowoomba, 
35,136 points each for Ipswich and Springfield including 30 zeros and non-zeros, respectively. Zeros 
were filled in by taking the average values for the points at the same time of day, across the previous 
month. Daily data were then obtained by summing each set of the 96 values, resulting in 730 points 
(days) for Toowoomba and 366 points (days) each for Ipswich and Springfield. 

Descriptive statistics for the daily time-series datasets are given in Table 1, while plots of the 
series datasets for the three university campuses are shown in Figure 2 to demonstrate the electricity 
demand values recorded for each day. The current G data clearly showed large fluctuations in G 
values, resulting in the need to implement wavelet transformation through MODWT to address non-
stationary issues. 

 
 

 
 

 
Figure 2. Daily electricity demand (G, kW) time-series for the three study sites of Toowoomba, 
Ipswich, and Springfield campuses.
Figure 2. Daily electricity demand (G, kW) time-series for the three study sites of Toowoomba, Ipswich,
and Springfield campuses.



Energies 2020, 13, 2307 6 of 19

Table 1. Data splitting and descriptive statistics for the G data from the University of Southern Queensland campuses’ three stations.

Station
Data Period

(dd-mm-yyyy)
Original 15-Mins Data No. Daily Data Points Descriptive Statistics for the Whole Daily Datasets

Total No. Zeros Total Training (70%) Validation (15%) Testing (15%) Minimum (kW) Maximum (kW) Mean (kW)

Toowoomba campus
(Main feed)

01-01-2013 to
31-12-2014 70,080 60 730 512 109 109 81,579.70 195,037 141,328

Ipswich campus
(Main feed) 01-09-2015 to

31-08-2016
35,136 30

366 256 55 55
23,336 62,378.06 43,716.96

Springfield campus
(A Block) 35,136 0 5214 13,536.80 8310.05
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3.2. Forecast Model Development and Validation

In this study, the proposed MPOE model and its traditional non-WT equivalent POE were
developed under the MATLAB environment running on an Intel i7 processor at 3.60 GHz. The original
(non-wavelet) dataset with its statistically significant lagged variables, identified using the partial
autocorrelation function (PACF) operating in a 95% confidence interval, was used as an input to
develop the classical POE model. Figure 3 illustrates the number of those lags used to build the model
where the first two significant lags were selected using the data from all three study sites.
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Figure 3. The model input variables constructed from the statistically significant lags at a 95% confidence
interval from the original daily G-datasets in the training period for the three study sites based on
correlation coefficient (r) of predictors (lags) using the partial autocorrelation function (PACF).

On the other hand, to construct the MPOE model, wavelet transformation through MODWT was
employed on the individual PACF lagged variables, and the wavelet outputs (wavelet and scaling
coefficients) were used along with the PACF lagged components as model inputs. The critical task
in achieving a robust model with wavelet transformation is to identify the type of wavelet scaling
(h j,l/g j,l) filter and the decomposition level (J). As no single technique to select the best filter and
the level of decomposition can be confirmed in the literature [6,27], a trial-and-error method was
employed in the present case. Defining a total of 30 wavelet filters, four different widely tested wavelet
families (e.g., [5,6,12,17,19]) were used: Daubechies (dbi, i = 1, 2, · · · , 10), where db1 is the same as
the Haar wavelet (haar); Fejer–Korovkin ( f ki, i = 4, 6, 8, 14, 18, 22); Coiflets (coi fi, i = 1, 2, · · · , 5);.
and Symlets (symi, i = 2, 3, · · · , 10). The maximum level of decomposition (J) was computed using
Equation (6) [6,17,28]:

J = int
(
log2 N

)
(6)

where N is the number of daily data points in this work, and int(). is the function that returns the
nearest integer. For example, for the Toowoomba campus data, a value of J. = 9 was computed, so all
possible levels of decomposition (J = 1, 2, . . . 9) were tested. More details about the MODWT filter and
the decomposition level are shown in Table 2. Figure 4 shows the two MODWT wavelet coefficients
(WC1 and WC2) and the MODWT scaling coefficient (SC) using lag 1 data from the Toowoomba
campus with the best wavelet filter ( f k8) and decomposition level (2). The results of MODWT (wavelet
and scaling coefficients) with db2. and db3 were found to be the same as those with sym2 and sym3,
for all study datasets, respectively.
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Table 2. Optimum model performance and parameters in the training and validation phases based on correlation coefficient (r) and root-mean square error (RMSE;
kW), for the three stations with the daily forecast horizon. The models in boldface are the optimal (best performing) models.

Station Model No. Hidden
Neurons

No. Wavelet/Scaling
Filter

No. Wavelet
Level

No. Models
Developed

Best Model

Training Validation
Wavelet/Scaling

Filter
Wavelet Level Hidden

Neuron Sizer RMSE
(kW) r RMSE

(kW)

Toowoomba
campus (Main feed)

POE 100 Non-wavelet model 100 0.70 17715.42 0.74 16284.72 Non-wavelet model 9
MPOE 100 30 9 27,000 0.96 7260.42 0.94 8026.74 fk8 2 90

Ipswich campus
(Main feed)

POE 100 Non-wavelet model 100 0.68 6944.43 0.67 7543.30 Non-wavelet model 10
MPOE 100 30 8 24,000 0.97 2476.19 0.90 4279.08 db2/sym2 3 54

Springfield campus
(A Block)

POE 100 Non-wavelet model 100 0.65 1036.28 0.61 1641.08 Non-wavelet model 4
MPOE 100 30 8 24,000 0.95 441.64 0.89 1164.65 fk14 5 76
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While forecasting models must go through training, validation, and testing datasets, there is no
single agreed-upon scenario for data splitting [2,3,5]. Accordingly, these data were divided into 70:15:15
for training: validation: testing (Table 1). Data normalization, a very common practice in machine
learning, was applied using Equation (7) to scale values down to a range of (0 1), thereby avoiding
large numbers in the predictor values of datasets [29]. De-normalization was then applied on predicted
data to scale those data back to their original range before models were evaluated.

xnormalized =
x− xminimum

xmaximum − xminimum
(7)

The MATLAB-based OS-ELM function [23], was used to build the present OS-ELM models
in this paper. The most important step in developing an OS-ELM model is the selection of the
activation function ( f (.)) and the hidden neuron size (M; Equation (1)). The radial basis function
(RBF) was employed as the activation function in developing the present model, while values of
hidden neuron size from 1 to 100 were tested, resulting in 100 POE models for each of the three
stations. Additionally, many MPOE models were developed as a result of the numbers of hidden
neuron size (M), wavelet filters and decomposition levels (J); for example 100 (M) × 30 (wavelet
filters) ×9(J) = 27000 models for the Toowoomba site alone. Table 2 summarizes the details of model
development including those factors tested in the training period.

The model accuracy statistics of Pearson correlation coefficient (r) and root-mean square error
(RMSE; kW) were used to assess the performance of the POE and MPOE models in the training and
validation periods, and thereby to identify the best wavelet and model parameters (Table 2).

r =

∑i=n
i=1

[(
Gobs

i −Gobs
)(

G f or
i −G f or

)]
√∑i=n

i=1

(
Gobs

i −Gobs
)2
·

√∑i=n
i=1

(
G f or

i −G f or
)2

(8)

RMSE =

√√√
1
n

i=n∑
i=1

(
G f or

i −Gobs
i

)2
(9)

where n is the total number of values of forecast (or observed) G, G f or
i and Gobs

i are the ith forecasted and

observed values, while G f or and Gobs are the means of the forecasted and observed values, respectively,
in the training period.

The statistical metrics of r and RMSE indicate the greatest model accuracy when they approach 1
and 0, respectively. For all the three sites, MPOE models outperformed POE models. For example,
for the Toowoomba campus, the MPOE training/validation model accuracy statistics were r = 0.96/0.94
and RMSE = 7260.42/8026.74 kW with f k8, 2 and 90 as the best wavelet filter, decomposition level,
and hidden neuron size, respectively. Comparatively, the POE training/validation model accuracy was
poorer: r = 0.70/0.74 and RMSE = 17,715.42/16,284.72 kW for the best hidden neuron size of 9.
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4. Model Evaluation and Results in the Testing Period

4.1. Model Prediction Quality

As the quality of model forecasts of G data cannot be established by a single statistical metric
for the testing phase [30], additional measures, besides the RMSE (Equation (9)), were used [30–39].
These included the Mean absolute error (MAE), relative root-mean square error (RRMSE%), and
relative mean absolute error (MAPE%),

MAE =
1
n

i=n∑
i=1

∣∣∣∣G f or
i −Gobs

i

∣∣∣∣ (10)

RRMSE = 100×

√
1
n
∑i=n

i=1

(
G f or

i −Gobs
i

)2

Gobs
(11)

MAPE = 100×
1
n

i=n∑
i=1

∣∣∣∣∣∣∣∣
G f or

i −Gobs
i

Gobs
i

∣∣∣∣∣∣∣∣ (12)

This MAE shows the model approaching perfection as its value approaches 0. The RRMSE and
MAPE, both best when approaching 0, present an assessment of model accuracy relative to the range
and mean of the forecasted parameter, when a clear evaluation cannot be provided by the RMSE or
MAE alone [17]. Model performance is considered to be excellent when RRMSE < 10%, good if 10% <
RRMSE < 20%, fair if 20% < RRMSE < 30%, and poor if RRMSE > 30% [9,31,40,41].

Further model accuracy indexes include the Willmott’s Index (WI), Nash–Sutcliffe model efficiency
coefficient (ENS) and Legates and McCabe’s Index (LM) below where values closest to 1 indicate the
best performance.

WI = 1−


∑i=n

i=1

(
G f or

i −Gobs
i

)2

∑i=n
i=1

(∣∣∣∣G f or
i −Gobs

∣∣∣∣+ ∣∣∣∣Gobs
i −Gobs

∣∣∣∣)2

, and 0 ≤WI ≤ 1 (13)

ENS = 1−


∑i=n

i=1

(
G f or

i −Gobs
i

)2

∑i=n
i=1

(
Gobs

i −Gobs
)2

, and∞ ≤ ENS ≤ 1 (14)

LM = 1−


∑i=n

i=1

∣∣∣∣Gobs
i −G f or

i

∣∣∣∣∑i=n
i=1

∣∣∣∣Gobs
i −Gobs

∣∣∣∣
, and (∞ ≤ ELM ≤ 1) (15)

Two statistical tests were also used to show that the MPOE model performs better than the POE
model. Those were Wilcoxon Signed-Rank test [42–44] and T test [2]. They were performed with 0.05
significance level and 2-tailed hypothesis.

4.2. Results and Discussion

Using a plethora of model accuracy statistics (i.e., Equations (9)–(15)), the capability and accuracy
of the MPOE model in forecasting daily electricity demand (G) was evaluated and compared to that
of a traditional POE model, both drawing on testing datasets obtained from three USQ campuses
(Toowoomba, Ipswich, and Springfield). While several models were developed and evaluated in
this study, only results from optimum models, selected from these several trained models, are shown
in Table 3. For all three stations’ datasets, the MPOE model showed close to 50% lower values of RMSE,
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MAE, RRMSE and MAPE and near 50% greater values of ENS and LM than those of the POE model.
For example, for the Toowoomba campus dataset, the MPOE model (MAPE = 4.31%, LM = 0.74) clearly
outperformed the POE model (MAPE = 11.31%, LM = 0.39). Moreover, the MPOE model yielded better
WI values (0.98, 0.98, and 0.95) than the POE model (0.76, 0.75, and 0.67) for the Toowoomba, Ipswich,
and Springfield study areas, respectively. This comparison (Table 3) demonstrated the MPOE model to
have yielded a better performance than the non-wavelet POE model.

Table 3. Optimum model performance in the testing phase for daily forecast horizon based on Willmott’s
Index (WI), Nash–Sutcliffe model efficiency coefficient (ENS), root-mean square error (RMSE; kW),
mean absolute error (MAE; kW), mean absolute percentage error (MAPE%), relative root-mean square
error (RRMSE %), as well as Legates and McCabes Index (LM) for the three stations. The models in
boldface are the optimal (best performing) models.

Station Model WI ENS RMSE (kW) MAE (kW) MAPE (%) RRMSE (%) LM

Toowoomba campus
(Main feed)

POE 0.76 0.42 18,030.44 12,812.32 11.31 13.58 0.39
MPOE 0.98 0.91 7267.62 5400.99 4.31 5.47 0.74

Ipswich campus
(Main feed)

POE 0.75 0.23 7564.84 4860.76 16.29 19.29 0.36
MPOE 0.98 0.93 2337.80 1980.87 5.46 5.96 0.74

Springfield campus
(A Block)

POE 0.67 -0.10 1612.92 1142.36 12.49 17.43 0.11
MPOE 0.95 0.80 692.78 540.30 5.84 7.49 0.58

Additionally, to ensure the superiority of the proposed approach and support the results introduced
in Table 3, Wilcoxon Signed-Rank test and T test have been presented in Table 4 for the forecasted

error statistic |FE| =
∣∣∣∣G f or

i −Gobs
i

∣∣∣∣ generated by the MPOE model against the |FE| generated by the
POE model. With 0.05 significance level and 2-tailed hypothesis, significant results were shown in
both tests (p value < 0.05). These results clearly indicate that the MOPE model receives the significance
than the POE model.

Table 4. Wilcoxon Signed-Rank test and T test results for the |FE| of the MOPE model vs. the |FE| for
the POE model.

Station
Wilcoxon Signed-Rank Test T Test

p Value p Value

Toowoomba campus (Main feed) 0.00001 0.00001
Ipswich campus (Main feed) 0.00076 0.00053
Springfield campus (A Block) 0.00018 0.00043

To further examine the success of the MPOE model over the POE model for G forecasting in
the testing period, observed and forecasted values were plotted as ordinate and abscissa for each
model (Figures 5 and 6), and models’ absolute forecasted errors |FE| (Figure 7). Time-series plots in
Figure 5 show that the wavelet models have achieved greater accuracy (closer to observed) than the
wavelet-free models for all sites.

Scatterplots (Figure 6) show the coefficient of determination
(
R2

)
and the linear regression line

(G f or = aGobs + b where a is the slope and b is the ordinate intercept) between the observed and
forecasted values. The greater R2 and values of a and b closer to 1 and 0, respectively, showed that
the MPOE model outperformed the POE model when using each of the campus datasets. For the
Ipswich campus dataset, the MPOE model yielded R2 = 0.93, a = 0.99 and b = 993.15, in contrast to
R2 = 0.42, a = 0.47 and b = 24601 for the POE model.
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Using boxplots (Figure 7) and all station datasets, the MPOE and POE models were compared
based on their 25%, 50% and 75% quartiles (lower, middle, upper line of box) as well as maximum and

minimum values of the forecasted error statistic |FE| =
∣∣∣∣G f or

i −Gobs
i

∣∣∣∣. Consequently, the statistical error
criteria generated for the MPOE model were significantly lower than those for POE.

Overall, from the results in Tables 3 and 4, as well as Figures 5–7, we can conclude that the MPOE
model has achieved better forecasting performance than the POE model by generating lower values
from MAE, MAPE%, RMSE, and RRMSE% (Table 3), larger values from WI, ENS and LM (Table 3),
significant p values (Table 4), closer forecasted values to the observed values (Figure 5), better values
from R2, a and b (Figure 6) and lower |FE| (Figure 7). The reason behind this is that the MODWT
method has successfully addressed the non-stationarity issues in time-series datasets before running
the POE model to enhance the forecasting accuracy.
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Figure 6. Scatterplots of the observed and forecasted G data in the testing phase with the optimal
models of POE and MPOE. Equations of linear regression and the coefficient of determination are
incorporated. (a) Toowoomba Campus. (b) Ipswich campus. (c) Springfield campus.
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Figure 7. Boxplots of the absolute forecasted error |FE| in the testing dataset for the three study sites
with the optimal models of POE and MPOE.

5. Challenges and Future Work

While this study was the first to apply the best suitable wavelet transforms to energy forecasting
datasets, thereby achieving a high performance MPOE model, some limitations should be addressed
in upcoming works, in particular, the incorporation of external datasets, such as climate variables,
which can be downloaded from different sources (e.g., SILO [45], the European Centre for Medium
Range Weather Forecasts (ECMWF) and global numerical weather prediction models [1,46] and
NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) [47–50]). These can be decomposed
together with lag values using MODWT. The OS-ELM model will be then fed by the wavelet and
scaling components resulting from the climate and lag variables, to develop a very high-dimensional
model. Although this study has used a good amount of data (730 days and 366 days), a larger power
grid model should be built and evaluated using larger datasets from electricity demand (G) to support
national electricity markets. This could be achieved by testing the proposed method of this work with
a larger study area or incorporating new datasets from the University of Southern Queensland (study
area) when these data are available. However, given the large number of input variables that would be
generated by MODWT, a method to select and narrow down the best input variables or a very fast
model would be necessary to speed up the development step. Accordingly, different pre-processing
techniques (e.g., iterative input selection (IIS) [51], grouping genetic algorithm (GGA) [52] or coral
reef optimization (CRO) [53,54]), along with a fast forecasting method (e.g., deep learning strategy
or long short term memory network [55]) should be integrated with MODWT to improve G data
forecasting accuracy.

6. Conclusions

This study has developed a new energy forecasting model by integrating wavelet transformation
based on MODWT with the PACF-OS-ELM model to improve the forecasting accuracy of
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electricity demand (G) data using the datasets from three regional campuses (Toowoomba, Ipswich,
and Springfield) from the University of Southern Queensland (USQ). The MPOE model’s testing phase
accuracy of prediction was then evaluated and compared to that of its classical non-wavelet model
equivalent (i.e., POE) using several statistical criteria including correlation coefficient (r), root-mean
square error (RMSE), mean absolute error (MAE), relative root-mean square error (RRMSE%), and
relative mean absolute error (MAPE%), Willmott’s Index (WI), Nash–Sutcliffe efficiency coefficient
(ENS) and Legates and McCabe’s Index (LM) as well as two statistical tests of Wilcoxon Signed-Rank
test and T test. The MPOE model outperformed the POE model for all campus datasets.

Although better accuracy was yielded by the MPOE model developed, than the basic POE model,
future work is needed to address some limitations associated with the data and methods used in this
work. External datasets, such as climate variables and a pre-processing technique used to select the
best inputs from those variables, such as IIS, could be employed to further reduce forecasting errors.

To sum up, accurate and reliable G forecasting can be supplied by the MPOE model, and can
therefore help regional electricity markets to improve their system by delivering more precise decisions.
However, improved model performance can be provided by future works that could address the
challenges above.
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Acronyms

ci Threshold of ith hidden node
coi fi Coiflets wavelet filter
dbi Daubechies wavelet filter
f (.) SFLM activation function
f ki Fejer–Korovkin wavelet filter
g j,l jth level scaling filter
h j,l jth level wavelet filter
int(.) Nearest integer function
k Number of hidden nodes in SFLM
kW Kilowatts
r Pearson’s correlation coefficient
symi Symlets wavelet filter
wi weight vectors linking ith hidden node with the input node (SFLM)
ANN Artificial neural network
CRO Coral reef optimization
DWT Discrete wavelet transform
DWT-MRA Discrete wavelet transform–multiresolution analysis
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ECMWF European Centre for Medium Range Weather Forecasts
ELM Extreme learning machine
ENS Nash–Sutcliffe model efficiency coefficient
|FE| Absolute Forecasted error statistics
G Electricity demand (kW)

G f or
i

ith forecasted value of G (kW)

G f or Mean of forecasted G values (kW)
POE PACF-OS-ELM
R2 Coefficient of determination
RMSE Root-mean square error
RRMSE Relative root-mean square error, %
SC Scaling coefficient (MODWT)
SFLM single-layer feed-forward neural network
Gobs

i ith observed value of G (Kw)

Gobs Mean of observed G values (kW)
GGA grouping genetic algorithm
H SFLM’s hidden layer output matrix
H* Inverse of H matrix
IIS Iterative input selection
J Decomposition level
Lj Width of the jth level filters
LM Legates and McCabe’s Index
M Hidden neuron size
MAE Mean absolute error
MAPE Mean absolute percentage error, %
MARS Multivariate adaptive regression spline
MLR Multiple linear regression
MODIS Moderate Resolution Imaging Spectroradiometer (NASA)
MODWT Maximum overlap discrete wavelet transform
MODWT-MRA Maximum overlap discrete wavelet transform–multiresolution analysis
MPOE MODWT-PACF-OS-ELM
MRA Multiresolution analysis
N Number of values in a data series
OS-ELM Online sequential extreme learning machine
PACF Partial autocorrelation function
SVR Support vector regression
V j,i MODWT scaling coefficients
W j,i MODWT wavelet coefficients
WC1, WC2 MODWT wavelet coefficients
WI Willmott’s Index
WT Wavelet transforms
ρi weight vectors linking ith hidden node with the output node (SFLM)
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