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Abstract: This paper reports a new numerical scheme based on Cartggiarand local in-

tegrated radial-basis-function networks (IRBFNSs) for sliidution of second-order elliptic dif-
ferential problems defined on two-dimensional regular anegular domains. At each grid
point, only neighbouring nodes are activated to constrisetlRBFN approximations. Local
IRBFNs are introduced into two different schemes for dissagion of partial differential equa-
tions, namely point collocation and control-volume (C\jsegion-collocation. Linear (e.g.
heat flow) and nonlinear (e.g. lid-driven triangular-caviiuid flow) problems are considered.
Numerical results indicate that the local IRBFN CV schemiperiorms the local IRBFN point-
collocation scheme regarding accuracy. Moreover, thedoshows a similar level of the matrix
condition number and a significant improvement in accuraey a linear CV method.

Keyword: local approximations, integrated RBFNs, point collocatisubregion collocation,
second-order differential problems.

1 Introduction

RBF-based discretisation methods have emerged as a nautig#rsolver for partial differential
equations (PDESs) (e.g. [Fasshauer (2007)]). They havesghabdlity to work well for problems
defined on irregular domains. Very accurate results can higvaxd using only a relatively-
small number of nodes. However, RBF matrices are dense aretally ill-conditioned. To
resolve this problem, local RBF methods have been develaesditing in having to solve a
sparse system of algebraic equations. The RBF approxinsasice constructed locally on small
overlapping regions which are represented by a set of stegttpoints or a set of scattered
points. Works reported include [Lee, Liu, and Fan (2003)y,9bing, and Yeo (2003); Tol-
stykh and Shirobokov (2003); Chantasiriwan (2004); ShugDand Yeo (2005); Tolstykh and
Shirobokov (2005); Wright and Fornberg (2006); Kosec ande42008a); Kosec and Sarler
(2008b); Orsini, Power, and Morvan (2008); Sanyasiraju @hdndhini (2008); Vertnik and
Sarler (2009)].

To transform a PDE into a set of algebraic equations, onesteatiscretise the problem domain.
For irregular domains, this task can be expensive and tonstening. It can be seen that using



Cartesian grids to represent the domain is economical. i@enable effort has been put into
the development of Cartesian-grid-based computatiocahigues (e.g. [Johansen and Colella
(1998); Jomaa and Macaskill (2005); Hu, Young, and Fan (R@@&ussini and Pediroda (2008);
Pasquim and Mariani (2008); Bourantas, Skouras, and Ni#ig(2009)]).

The proposed numerical procedure combines strengths lmidaeRBF approach and the Cartesian-
grid approach for solving 2D differential problems. At eaghd point, only neighbouring nodes
are activated to construct the RBF approximations. Unbkall RBF techniques reported in the
literature, RBFNs are employed here to approximate higbeer derivatives in a given PDE
and subsequently integrated to obtain expressions forrloveker derivatives and the field vari-
able [Mai-Duy and Tran-Cong (2001)]. This use of integnatio construct the approximations
provides an effective way to circumvent the problem of redliconvergence rate caused by
differentiation and to implement derivative boundary dtinds (e.g. [Mai-Duy (2005); Mai-
Duy and Tran-Cong (2006)]). In this study, we introduce ldotegrated RBFNSs into two
PDE discretisation formulations, namely point collocatand control-volume (CV)/subregion-
collocation, and then conduct some numerical experimenisvestigate accuracy of the two
local IRBFN techniques.

Recirculating viscous flows in enclosed cavities have wecka great deal of attention in fluid
mechanics community as they can produce interesting floturfem at different Reynolds num-
bers. Examples of this type include lid-driven flows in sguand triangular cavities. For such
problems, at the two top corners, the velocity is discomtrsuand the stress is unbounded.
These pose great challenges for numerical simulation. htrast to the square cavity problem,
the triangular cavity flow presents a severe test for stredugrid-based numerical methods
(e.g. [Jyotsna and Vanka (1995)]). The latter is chosen teemevestigate the performance of
the present local IRBFN CV technique. The flow is simulatadgithe streamfunction and vor-
ticity formulation discretised on rectangular grids. Atttive features of the proposed technique
are (i) no coordinate transformations are required ancc@ipputational boundary conditions
for the vorticity are derived in a new effective way, wherelgtic formulae that need only
nodal values of the streamfuntion on one grid line [Le-Caaj-Bluy, and Tran-Cong (2009)]
are utilised.

The remainder of this paper is organised as follows. A beefaw of integrated RBFNs is given
in Section 2. The proposed computational procedure is preden Section 3 and numerically
verified through a series of examples in Section 4. Sectiam6lades the paper.

2 Integrated radial-basis-function networks

RBFNs allow a conversion of a functioh from a low-dimensional space (e.g. 1D-3D) to a
high-dimensional space in which the function can be express a linear combination of RBFs

f(x) = ;W(i)G(i)(x), 1)



where the superscrigi) is the summation index the_input vectorm the number of RBFs,
{wl}m the set of network weights to be found, af@" (x)}™, the set of RBFs.

This study is concerned with second-order differentiabfems in two dimensions. The inte-
gral approach [Mai-Duy and Tran-Cong (2001)] uses RBFNddXgpresent the second-order
derivatives of the field variabla in a given PDE. Approximate expressions for the first-order
derivatives and the variable itself are then obtained thindategration as
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where the subscripk;| is used to denote the quantities associated with the prot@segration
with respect to the; variable;Cl[Xj](xk) andCz[Xj](xk) the constants of integration which are

univariate functions of the variable other thgr(i.e. x with k # j); H[()ij)] (x) = [ GV (x)dx; and

ﬁg(] (x)=JH ')] x)dx;. The reader is referred to [Mai-Duy and Tran-Cong (2001);-Blay
and Tanner (2005); Mai-Duy (2005);Mai-Duy and Tran-Con@Q®)] for further details (e.g.
explicit forms of integrated and differentiated RBFs).

3 Proposed technique

The 2D problem domain is discretised using a Cartesian @iwlindary points are generated
through the intersection of the grid lines and the boundaf®r a reference point, we form two
local integrated networks using (2)-(4): one associatet thiex; coordinate and the other with
the x, coordinate. The two networks are constructed on the samef $et| grid lines. The
reference point may not be the centre of the local grid wherctimstruction process is carried
out near the boundary (Figure 1).

For local grids entirely embedded in the domain, the two pete have the same set of RBF
centres which are chosen to be the interior grid nodes. Tle wimin (4) is equal td?.

For local grids that are cut by irregular boundary, one gahehas different sets of RBF centres
for the two associated networks. A set of the RBF centresiaxjtnetwork is comprised of the
interior grid nodes and the boundary nodes generated by; tipéd lines. The value ofmin (4)
may be less thal? (Figure 1).

We also employ IRBFNs to represent the variation of the @omistof integration. The construc-
tion process foCyy,1(X«) is exactly the same as that 1Ggj, | (x«). To simplify the notation, the



subscriptsi[xj] andz[xj] are dropped. The functioB(x) is constructed through
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wherec; andc; are the constants of integration which are simply unknownes andy’”, h("

andhl) the one-dimensional forms @&, HO andH

local grid pointsx,((” withi={1,2,---,l} leads to
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whereC andW are the vectors of lengthand (I + 2), respectively, and” is the transformation
matrix of dimensions$ x (I 4+ 2)
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Taking (8) into account, the value 6fin (7) at an arbitrary poink, can be computed in terms
of nodal values o€ as

COx) = [N 060 h? (x0). -+ 1 (%), %6, 1] TC. ©)
or
Clx) = il PO (x)C, (10)

whereP()(x,) is the product of the first vector on RHS and ttiecolumn of. 7+, and 7 * is
the generalised inverse of of dimensions(l + 2) x I, which can be obtained using the SVD
technique. It is noted that bo®f!) (x,) and.7* could not be defined explicitly.



Substitution of (10) into (3) and (4) yields
ou(x)

0X; - ZW 21 [XJ] XJ]’ (11)
U] (x) = ZW x] +lel 1[x +Zl [x] XJ] 12)

For convenience of presentation, expressions (2), (11]E2jcdcan be rewritten as
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We seek the solution in terms of nodal values of the field téia. To do so, (15) is collocated
at the nodal points on the local grid, from which the relagiip between the network-weight
space and the physical space can be established as

U] = Wi (16)
W = Ty Uiy (17)
wherel;) is the vector of lengtim consisting of the nodal values afon the local grid Wi
the vector of lengtim+ 2l) made up of the RBF weights and the nodal vaIue@jlgj and
Cé[z(] and 3[*] the generalised inverse (ﬁx] The transformation matr|z€7[x] has the entries
ﬂ[ \iJrs = HEX)]( (), where 1< r <mand 1< s< (m+2l).

It is noted that the two vectorsiy,; anduy,, are unknown. From now on, they are forced to be
identical

U[Xl] = U[XZ] = U (18)



The values ofi, du/9x; anddzu/dxj2 at an arbitrary poink can be computed in terms of nodal
variable values as
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In (19), there are two integrated networks in #ieandx, directions that produce two values of
the function at a point. Theoretically, they are the samewxél@r, due to approximation errors,
these two values are not identical. As a result, the functmoe is computed by taking the
average of the two.

For the point-collocation formulation, there are no inggms required for the discretisation.
The process of converting the PDE into a set of algebraictemsais straightforward.

For the control-volume formulation, one has to define a @ntolume for each node, over
which the PDE will be integrated. The control volume is fotmsing the lines that are parallel
to the x; and x, axes and go through the middle points between the referende and its
neighbours or appropriate points on the boundary (Figurént¢grals can be calculated using
high-order (e.g. 5-points used here) Gauss quadrature #iecpresent approximation scheme
allows the accurate evaluation of the variabland its derivatives at any point within the local
grid.

The use of local integrated networks results in a sparsersyst simultaneous equations. It can
be seen that operations on zero elements are unnecessaigingvthese operations provides a
considerable saving in time. By taking account of sparsenéthe system matrix, one has the
capability to reduce the computational time and storagéitias. Such sparse equation sets can
be solved effectively by means of iterative solvers (e.gegalised minimum residual methods).

4 Numerical examples

For all numerical examples presented here, the approxanmgtre constructed on local grids of
5x 5. IRBFNSs are implemented with the multiquadric (MQ) basiisdtion whose form is given

G (x) = \/(X_C(i))T(X_C(i))_|_a(i)2’ (22)

wherecl) andal’) are the centre and width of tligh MQ basis function, respectively. The set
of centres and the set of collocation points are identidds Wwell known that the width/shape-
parameter strongly affects accuracy of the RBF scheme. Wawé is still very difficult to



determine the optimal value of the shape parameter in peadti this study, we do not focus on
the study of the RBF width. All MQ centres are associated wWithsame width that is chosen

to be the grid size. For problems whose exact solution idaai we use the discrete relative
L, norm of u, denoted byNe(u), to measure accuracy of an approximate scheme. We apply
the matrix 1-norm estimation algorithm for estimating citiod numbers of the system matrix.
Furthermore, linear CV (central difference) techniquebiciv are similar to those described in
[Patankar (1980)], are referred to as a standard CV techniqu

4.1 Test problem
Consider the following PDE

d%u  d%u

ey o 23
X2 0% 23)

with Dirichlet boundary conditions. Two computational daims, namely a unit square<0
X1, X2 < 1 and a circle centered at the origin with radius of 0.5, anmesictered. The exact
solution is given by

e — 1
¢~ sinh(m)

sin(71x, ) sinh(1xo) (24)

from which the boundary values afcan be derived.

The point-collocation formulation consists in forcing {28 be satisfied exactly at discrete
points in order to form a determined set of algebraic equoatiolt means that (23) needs be
collocated at the interior grid nodes.

For the control-volume formulation, (23) is forced to beisfad in the mean. Integrating (23)
over a control volumé;, we have

J%udQ; = 0. (25)
Qi

Using the divergence theorem, (25) becomes
/ (Ou-n)dr; =0, (26)
I

wherel; is the boundary of); andn the outward normal unit vector. To compule/dx; on
the faces that are parallel to tle(k # j) direction, we use thg; network.

Uniform Cartesian grids are employed to represent the proldlomain.

In the case of rectangular domain, condition numbers of yegem matrix by the present local

collocation and CV techniques are presented in Table 1. [Restained by the standard CV
method are also included for comparison purposes. It caedre that the three methods yield



a similar level of the matrix condition number. The use ofaloapproximations leads to a
significant improvement in stability over that of global amgmations. It was reported in the
literature that the global RBF matrices may be ill-condigd when using 1000 nodes. Here,
with 42849 nodes taken, condition numbers of the RBF matéxamly O(10%). In terms of
accuracy, both RBF methods are more accurate than the sia@éfanethod as shown in Figure
2. The IRBFN-CV method outperforms the IRBFN-collocatioethod. Given a grid size, the
CPU time for the IRBFN-CVM solution is seen to be greater thzat for the standard-CVM
solution. However, from Figure 2, the IRBFN-CVM is much mamerurate than the standard
CVM. To achieve a similar level of accuracy, it is necessaryde denser grids for the standard
CVM. For example, to yiellNe = 1.9 x 10/, one needs to employ approximately a grid of
1701x 1701 for the standard CVM (this grid density is estimatedulgh extrapolation) and only
203x 203 for the IRBFN CVM. lt is noted that very high grid densitiead to ill-conditioned
matrices. For a given accuracy, the IRBFN CVM can thus be rafirgient than the standard
CVM. Figure 3 shows the locations of nonzero entries in tHBHR system matrix.

In the case of circular domain, we generate boundary nodesgh the intersection of the grid
lines and the boundary. It can be seen that there may be séen®irgrid nodes that are very
close to the boundary. A parametet= h/8 is introduced here. Interior nodes, which fall within
a small distancé to the boundary, are set aside. The matrix condition numtetitze accuracy
of the three methods are shown in Table 2 and Figure 4. Renfarltkis case are similar to
those for the rectangular case.

Theoretical studies [Sarra (2006)] showed that IRBFNs Hégker approximation power than
differentiated RBFNs. The implementation of local- andogiblRBFN versions incorporating
Cartesian grids shares many common features. The lattgonessnted in detail in our previous
works [Mai-Duy and Tran-Cong (2009a); Mai-Duy and Tran-G¢8009b)]. For the handling
of a Neumann boundary condition on a curved boundary, thaerda referred to [Mai-Duy and
Tran-Cong (2009b)] for a full detail. Generally speakintpb@l versions are capable of giving
more accurate results than local versions. However, glstiames produce fully-populated
matrices that may limit the number of nodes to a few hundredg. oFor problems, which
require a relatively-dense discretisation for an accuwsatellation, the use of local schemes is a
preferred option.

Numerical experiments studied here indicate that the obmtlume formulation works better
for local IRBFNs than the collocation formulation. The IRBECV method is now applied to
simulate some heat transfer and fluid flow problems.

4.2 Heat flow

Find the temperatur@ such that

1
0.(ve——=06) =0 Q 27
(v Fe ) , X€EQ, (27)



wherev is a prescribed velocityR the domain anéethe Peclet number. Her@, andv are taken
as[0,1] x [-0.5,0.5] and(1,0)T, respectively. Boundary conditions are prescribed asviall

0=0, for x=-0.5 andx, =0.5, (28)
6 =coqrmnxy) for x;=0, and (29)
6=0 for x =1 (30)

The exact solution to this problem can be verified to be

_ cogTxp) B
e = o) — expD) (exp(a+bx;) —explb+ax;)), (31)
wherea= 0.5 <Pe+ VPe+ 4n2> andb=0.5 (Pe— VPe+ 4712) . This problem is taken from
[Kohno and Bathe (2006)].

The temperature boundary layer becomes thinner with isorg&e. At Pe = 1000, very steep
boundary layer is formed. Figure 5 shows the temperaturéouom for three different values
of Pe by the present CV method. Its accuracy is better than thdteoftandard CV method as
shown in Table 3. Figure 6 displays variations of tempeeatlong the centre line. It can be
seen that the proposed method produces very accuratesrésudtil cases. Figure 7 show that
there are no fluctuations in the IRBFN CVM solution.

4.3 Lid-driven triangular-cavity flow

Consider the steady recirculating flow of a Newtonian fluigimequilateral triangular cavity.
Figure 8 shows the cavity geometry. We téke: v/3 andQ = 3. The lid moves from left to right
with a unit velocity ¢ = (1,0)T), while the left and right walls are stationany+ (0,0)T). The
problem was numerically studied by different techniquasluding the finite-different method
with a transformed geometry (e.g. [Ribbens, Watson, andg/a894)] and the finite-element
method with a flow-condition-based interpolation (e.g. fiko and Bathe (2006)]).

Governing equations.
The governing equations are obtained from the streamfamefbrticity formulation

w= %y, (32)
Jw Jw Jw 1,
- - =0
at + (Vlax1+vzax2> Re~ & (33)

whereRe is the Reynolds number defined Be=UL/v (L: the characteristic lengtiy: the
characteristic velocity an# the kinematic viscosity)y the streamfunction the vorticity,

vy = dY/dx% andv, = —dyY/0%;. The reference length and velocity are presently chosen as
L = Q/3 andU = 1 (the velocity of the lid), respectively.
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Spatial discretisation:

The equilateral triangular cavity is discretised using at€an grid. Grid nodes inside the
cavity are taken to be the interior grid points. For this igatar geometry, boundary nodes are
generated using only grid lines that contain at least oreiont grid node. With this approach,

the set of RBF centres/collocation-points do not includettio top corners and hence infinite
values of the vorticity do not enter the discrete system.

Boundary conditions.

Boundary conditions for the velocity lead o= 0 anddy/dx, = 1 on the lid, andy = 0 and
Jdy/on = 0 on the remaining walls( the direction normal to the wall).

We will use the boundary valugg = 0 for solving the streamfunction equation. Fram=0
anddy/dn = 0, one obtaindy/dx; = 0 anddy/dx, = 0 along the boundaries, which are
used for solving the vorticity equation. A vorticity boumglaondition is computed through

%y n 9%
o 0%

(34)

where the subscriftis used to indicate the boundary value. On the top wall, (Bdlices to

0y
0%

(35)

On the side walls, there are two possible cases

(i) A boundary point is also a grid node and the number of npdéahts on the two associated
grid lines are sufficiently-large for an accurate approxiora and

(i) A boundary point is not a grid node or the number of nodaihgs on one of the two associ-
ated grid lines is too small.

To computew,, one can use (34) directly for the first case but may need toedarsuitable
formula from (34), which requires information abogiton one grid line only, for the second
case. The latter will be handled here by applying formulg®med in our previous work (e.qg.
[Le-Cao, Mai-Duy, and Tran-Cong (2009)]), namely

t1\] 9%
=1 = 36
Wy [+<tz>] e (36)
for ax;-grid line, and
t2\ ] 9%
=11 = 37
a=[1+(2)] 58 @

for axe-grid line. In (36) and (37)t; andt, are thex;- andx,-components of the unit vector
tangential to the boundary.
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As mentioned earlier, one has to incorporatg,/dx; = 0 andd ,/dx, = 0 into (35), (34), (36)
and (37). The incorporation process is similar to that in-jimh, Mai-Duy, and Tran-Cong
(2009)]. It will be briefly reproduced here for the sake of geteness. Considenq grid line.
On the line, one has

2 =2 wllg® (x;) + 0cy + Oc, (38)

W) @ i) e

an - I;W h (XJ)+C1+0C2) (39)
nj o _

Px) = 'ZLW(')h(')(Xj)JFXjClJrCz, (40)
i=

wheren; is the number of nodal points on the line and other notatioesdafined as before.
There are two extra coefficients andc; in (40). As a result, two extra equations representing

boundary derivative valuei;q_l(xgl)) /OX; anddw(xgnj)) /0x; can be added to the transformation
system

7
ay(x) —

5Xj . — gW (41)
apix")

5Xj

where ) is the vector of nodal variable values of length W the coefficient vector of length
(nj+2) and.7 is the transformation matrix of dimensiofis; + 2) x (n; +2)

) T
= (W™ w0), ™)) (42)
T
W: (W(l))W(Z)a"' )W(nj))claCZ) ) (43)
ron( 1 1 | 1 1 7
MO, WO, e B, K
(1)()(j ), h(2>(xj ), , h(”J)(xj ), %7, 1
5 : : :
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The values oB?y/dx? at the two boundary points can be computed by

(")
dsz .
32UJ(X§nj)) - (44)
dsz
_ 0
gD, g0, e, gMgY), 0 0] | aued) (45)
. ) X s
| gVx™), g@x™), g ™), o, o0
(9Xj

where.Z 1is an inverse of7.

By means of point collocation and integration constantsivdtive boundary values are forced
to be satisfied exactly. Moreover, all grid points on the aisded grid lines are used to compute
wy. The present boundary schemes thus have a global property.

Four Cartesian grids, namely Grid 1 (2352 interior poin@id 2 (5402 points), Grid 3 (9702
points) and Grid 4 (15252 points), are employed to study theergence of the solution. The
flow is simulated at the Reynolds number of 0, 100, 200 and 206me-marching approach
is applied here to solve the present system of non-lineaatemmns. For the vorticity transport
equation (33), the diffusive and convective terms are ékamnplicitly and explicitly, respec-
tively. We choose the initial solution to be the solution &waer Re. For the case dkRe= 0, the
flow starts from rest.

Figures 9 and 10 present contour plots of the streamfunetiohvorticity variables, which look
reasonable when compared with those available in the tliterge.g. [Ribbens, Watson, and
Wang (1994); Kohno and Bathe (2006)]).

Figure 11 presents variations of ttecomponent of the velocity vector on the vertical centreline
x; = 0 and thex, component of velocity on the horizontal ling@ = 2. Results obtained by
[Kohno and Bathe (2006)] are also included for comparisomp@ses. It can be seen that the
present results agree well with those by the flow-conditiebased interpolation FEM for all
values ofRe.

5 Concluding remarks

This paper is concerned with the use of local integrated RB&MN Cartesian grids in the point-
collocation and control-volume frameworks. Two main adages of the present local tech-
nigues are that (i) their matrices are sparse and (ii) theipocessing is simple. Numerical
results show that (i) both local IRBFN methods result in th&tem matrix with a much lower
condition number than global RBF techniques, (ii) they edigrm standard control-volume
techniques regarding accuracy for a given grid size, (ig) lbcal IRBFN control-volume tech-
nigue is much more accurate than the local IRBFN collocatahnique, (iv) the local IRBFN



13

control-volume technique has the capability to produceuate results for the simulation of
flow problems having steep gradients and complex patterns.
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Table 1: Rectangular domain: Condition numbers of the gystetrix by standard CV, local
IRBFN collocation and local IRBFN CV methods. Notice tlaélh) meansa x 10P.

Grid Standard-CV IRBFN-collocation IRBFN-CV

15x 15 1.1(2) 1.8(2) 1.2(2)
27x 27 3.9(2) 6.4(2) 4.3(2)
39x 39 8.5(2) 1.3(3) 9.3(2)
51x 51 1.4(3) 2.4(3) 1.6(3)
63x 63 2.2(3) 3.7(3) 2.4(3)
75% 75 3.2(3) 5.2(3) 3.5(3)
87x 87 4.3(3) 7.1(3) 4.7(3)
99x 99 5.6(3) 9.2(3) 6.2(3)
111x 111 7.1(3) 1.1(4) 7.8(3)
123x 123 8.7(3) 1.4(4) 9.6(3)
135x 135 1.0(4) 1.7(4) 1.1(4)
147x 147 1.2(4) 2.0(4) 1.3(4)
159x 159 1.4(4) 2.4(4) 1.6(4)
171x 171 1.7(4) 2.7(4) 1.8(4)
183x 183 1.9(4) 3.1(4) 2.1(4)
195x 195 2.2(4) 3.6(4) 2.4(4)

207x207  2.5(4) 4.0(4) 2.7(4)
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Table 2: Circular domain: Condition numbers of the systenrimby standard CV, local IRBFN
collocation and local IRBFN CV methods. Notice ttagb) meansa x 10°.

Grid Standard-CV IRBFN-collocation IRBFN-CV

15x 15 9.8(1) 2.1(2) 1.0(2)
27x 27 3.3(2) 1.0(3) 3.7(2)
39x 39 8.5(2) 3.2(3) 8.6(2)
51x 51 1.3(3) 4.7(3) 1.4(3)
63x 63 2.2(3) 8.1(3) 2.4(3)
75% 75 2.8(3) 8.3(3) 3.2(3)
87x 87 3.8(3) 1.1(4) 4.4(3)
99x 99 5.6(3) 1.8(4) 7.0(3)
111x 111 6.5(3) 1.9(4) 7.4(3)
123x 123 8.8(3) 2.7(4) 1.1(4)
135x 135 1.0(4) 3.5(4) 1.1(4)
147x 147 1.3(4) 4.6(4) 1.6(4)
159x 159 1.5(4) 5.8(4) 1.7(4)
171x 171 1.8(4) 6.5(4) 2.4(4)
183x 183 2.0(4) 7.5(4) 2.2(4)
195x 195 2.2(4) 6.6(4) 2.3(4)

207x 207  2.7(4) 8.5(4) 3.2(4)
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Table 3: Heat FlowPe = 1000: ErrorNe(u) by standard CV and local IRBFN CV methods.
Notice thata(—b) meansa x 107",

Grid Standard-CV IRBFN-CV
11x11 2.69(-1) 1.00(-1)
51x51 1.83(-2) 3.69(-3)

101x 101 4.25(-3) 9.36(-4)
151x 151 1.83(-3) 3.47(-4)
201x 201 1.01(-3) 1.75(-4)
251x 251 6.45(-4) 1.11(-4)
301x 301 4.46(-4) 8.32(-5)
351x 351 3.27(-4) 6.92(-5)

401x 401 2.50(-4) 6.15(-5)
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Figure 2: Rectangular domaif?,x 7,11x 11,--- ,203x 203: Error versus grid size for standard
CVM/FDM and local IRBFN methods.
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Figure 4: Circular domain|7 x 7,11x 11,---,203x 203: Error versus grid size for standard
CVM/FDM and local IRBFN methods.
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Figure 5. Heat flow: Temperature distribution for a wide ramg Pe by the local IRBFN-CV
method. There are 21 contour lines whose values vary linbéativeen the two extremes.
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Figure 8: Cavity flow: geometry and boundary conditions.
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Figure 9: Cavity flow: Streamlines which are drawn using 2ifasm lines between the mini-
mum and zero values, and 11 uniform lines between the zeronamdnum values.
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Figure 10: Cavity flow: Iso vorticity lines whose values ane same as those in [Kohno and
Bathe (2006)]
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Figure 11. Cavity flow: Vertical and horizontal velocity fiites along the centre linex{ = 0)
and the horizontal linext = 2) for three Reynolds numbers. Results by FEM [Kohno and@&ath
(2006)] are also included for comparison purposes. It igthdhat the obtained results on the
two grids used are indiscernible.



