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Abstract: This paper reports a new numerical scheme based on Cartesiangrids and local in-
tegrated radial-basis-function networks (IRBFNs) for thesolution of second-order elliptic dif-
ferential problems defined on two-dimensional regular and irregular domains. At each grid
point, only neighbouring nodes are activated to construct the IRBFN approximations. Local
IRBFNs are introduced into two different schemes for discretisation of partial differential equa-
tions, namely point collocation and control-volume (CV)/subregion-collocation. Linear (e.g.
heat flow) and nonlinear (e.g. lid-driven triangular-cavity fluid flow) problems are considered.
Numerical results indicate that the local IRBFN CV scheme outperforms the local IRBFN point-
collocation scheme regarding accuracy. Moreover, the former shows a similar level of the matrix
condition number and a significant improvement in accuracy over a linear CV method.
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second-order differential problems.

1 Introduction

RBF-based discretisation methods have emerged as a new attractive solver for partial differential
equations (PDEs) (e.g. [Fasshauer (2007)]). They have the capability to work well for problems
defined on irregular domains. Very accurate results can be achieved using only a relatively-
small number of nodes. However, RBF matrices are dense and generally ill-conditioned. To
resolve this problem, local RBF methods have been developed, resulting in having to solve a
sparse system of algebraic equations. The RBF approximations are constructed locally on small
overlapping regions which are represented by a set of structured points or a set of scattered
points. Works reported include [Lee, Liu, and Fan (2003); Shu, Ding, and Yeo (2003); Tol-
stykh and Shirobokov (2003); Chantasiriwan (2004); Shu, Ding, and Yeo (2005); Tolstykh and
Shirobokov (2005); Wright and Fornberg (2006); Kosec and Sarler (2008a); Kosec and Sarler
(2008b); Orsini, Power, and Morvan (2008); Sanyasiraju andChandhini (2008); Vertnik and
Sarler (2009)].

To transform a PDE into a set of algebraic equations, one needs to discretise the problem domain.
For irregular domains, this task can be expensive and time-consuming. It can be seen that using
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Cartesian grids to represent the domain is economical. Considerable effort has been put into
the development of Cartesian-grid-based computational techniques (e.g. [Johansen and Colella
(1998); Jomaa and Macaskill (2005); Hu, Young, and Fan (2008); Parussini and Pediroda (2008);
Pasquim and Mariani (2008); Bourantas, Skouras, and Nikiforidis (2009)]).

The proposed numerical procedure combines strengths of thelocal RBF approach and the Cartesian-
grid approach for solving 2D differential problems. At eachgrid point, only neighbouring nodes
are activated to construct the RBF approximations. Unlike local RBF techniques reported in the
literature, RBFNs are employed here to approximate highest-order derivatives in a given PDE
and subsequently integrated to obtain expressions for lower-order derivatives and the field vari-
able [Mai-Duy and Tran-Cong (2001)]. This use of integration to construct the approximations
provides an effective way to circumvent the problem of reduced convergence rate caused by
differentiation and to implement derivative boundary conditions (e.g. [Mai-Duy (2005); Mai-
Duy and Tran-Cong (2006)]). In this study, we introduce local integrated RBFNs into two
PDE discretisation formulations, namely point collocation and control-volume (CV)/subregion-
collocation, and then conduct some numerical experiments to investigate accuracy of the two
local IRBFN techniques.

Recirculating viscous flows in enclosed cavities have received a great deal of attention in fluid
mechanics community as they can produce interesting flow features at different Reynolds num-
bers. Examples of this type include lid-driven flows in square and triangular cavities. For such
problems, at the two top corners, the velocity is discontinuous and the stress is unbounded.
These pose great challenges for numerical simulation. In contrast to the square cavity problem,
the triangular cavity flow presents a severe test for structured-grid-based numerical methods
(e.g. [Jyotsna and Vanka (1995)]). The latter is chosen hereto investigate the performance of
the present local IRBFN CV technique. The flow is simulated using the streamfunction and vor-
ticity formulation discretised on rectangular grids. Attractive features of the proposed technique
are (i) no coordinate transformations are required and (ii)computational boundary conditions
for the vorticity are derived in a new effective way, where analytic formulae that need only
nodal values of the streamfuntion on one grid line [Le-Cao, Mai-Duy, and Tran-Cong (2009)]
are utilised.

The remainder of this paper is organised as follows. A brief review of integrated RBFNs is given
in Section 2. The proposed computational procedure is presented in Section 3 and numerically
verified through a series of examples in Section 4. Section 5 concludes the paper.

2 Integrated radial-basis-function networks

RBFNs allow a conversion of a functionf from a low-dimensional space (e.g. 1D-3D) to a
high-dimensional space in which the function can be expressed as a linear combination of RBFs

f (x) =
m

∑
i=1

w(i)G(i)(x), (1)
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where the superscript(i) is the summation index,x the input vector,m the number of RBFs,
{w(i)}m

i=1 the set of network weights to be found, and{G(i)(x)}m
i=1 the set of RBFs.

This study is concerned with second-order differential problems in two dimensions. The inte-
gral approach [Mai-Duy and Tran-Cong (2001)] uses RBFNs (1)to represent the second-order
derivatives of the field variableu in a given PDE. Approximate expressions for the first-order
derivatives and the variable itself are then obtained through integration as

∂ 2u(x)

∂x2
j

=
m

∑
i=1

w(i)
[x j ]

G(i)(x), (2)

∂u(x)

∂x j
=

m

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x)+C1[x j ](xk), (3)

u[x j ](x) =
m

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x)+ x jC1[x j ](xk)+C2[x j ](xk), (4)

where the subscript[x j] is used to denote the quantities associated with the processof integration
with respect to thex j variable;C1[x j ](xk) andC2[x j ](xk) the constants of integration which are

univariate functions of the variable other thanx j (i.e. xk with k 6= j); H(i)
[x j ]

(x) =
∫

G(i)(x)dx j and

H
(i)
[x j ]

(x) =
∫

H(i)
[x j ]

(x)dx j. The reader is referred to [Mai-Duy and Tran-Cong (2001); Mai-Duy
and Tanner (2005); Mai-Duy (2005);Mai-Duy and Tran-Cong (2005)] for further details (e.g.
explicit forms of integrated and differentiated RBFs).

3 Proposed technique

The 2D problem domain is discretised using a Cartesian grid.Boundary points are generated
through the intersection of the grid lines and the boundaries. For a reference point, we form two
local integrated networks using (2)-(4): one associated with thex1 coordinate and the other with
the x2 coordinate. The two networks are constructed on the same setof l × l grid lines. The
reference point may not be the centre of the local grid when the construction process is carried
out near the boundary (Figure 1).

For local grids entirely embedded in the domain, the two networks have the same set of RBF
centres which are chosen to be the interior grid nodes. The value of m in (4) is equal tol2.

For local grids that are cut by irregular boundary, one generally has different sets of RBF centres
for the two associated networks. A set of the RBF centres for thex j network is comprised of the
interior grid nodes and the boundary nodes generated by thex j grid lines. The value ofm in (4)
may be less thanl2 (Figure 1).

We also employ IRBFNs to represent the variation of the constants of integration. The construc-
tion process forC1[x j ](xk) is exactly the same as that forC2[x j ](xk). To simplify the notation, the
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subscripts1[x j ] and2[x j ] are dropped. The functionC(xk) is constructed through

d2C(xk)

dx2
k

=
l

∑
i=1

w(i)g(i)(xk), (5)

dC(xk)

dxk
=

l

∑
i=1

w(i)h(i)(xk)+ c1, (6)

C(xk) =
l

∑
i=1

w(i)h̄(i)(xk)+ xkc1 + c2, (7)

wherec1 andc2 are the constants of integration which are simply unknown values, andg(i), h(i)

and h̄(i) the one-dimensional forms ofG(i), H(i) andH
(i)

, respectively. Collocating (7) at the
local grid pointsx(i)

k with i = {1,2, · · · , l} leads to

Ĉ = T̂ ŵ, (8)

whereĈ andŵ are the vectors of lengthl and(l +2), respectively, and̂T is the transformation
matrix of dimensionsl × (l +2)

Ĉ =
(

C(x(1)
k ),C(x(2)

k ), · · · ,C(x(l)
k )

)T
=

(
C(1),C(2), · · · ,C(l)

)T
,

ŵ =
(

w(1),w(2), · · · ,w(l),c1,c2

)T
,

T̂ =




h̄(1)(x(1)
k ), h̄(2)(x(1)

k ), · · · , h̄(l)(x(1)
k ), x(1)

k , 1

h̄(1)(x(2)
k ), h̄(2)(x(2)

k ), · · · , h̄(l)(x(2)
k ), x(2)

k , 1
...

...
. . .

...
...

...

h̄(1)(x(l)
k ), h̄(2)(x(l)

k ), · · · , h̄(l)(x(l)
k ), x(l)

k , 1




.

Taking (8) into account, the value ofC in (7) at an arbitrary pointxk can be computed in terms
of nodal values ofC as

C(xk) =
[
h̄(1)(xk), h̄

(2)(xk), · · · , h̄(l)(xk),xk,1
]
T̂

+Ĉ, (9)

or

C(xk) =
l

∑
i=1

P(i)(xk)C
(i), (10)

whereP(i)(xk) is the product of the first vector on RHS and theith column ofT̂ +, andT̂ + is
the generalised inverse of̂T of dimensions(l + 2)× l, which can be obtained using the SVD
technique. It is noted that bothP(i)(xk) andT̂ + could not be defined explicitly.
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Substitution of (10) into (3) and (4) yields

∂u(x)

∂x j
=

m

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x)+
l

∑
i=1

P(i)
[x j ]

(xk)C
(i)
1[x j ]

, (11)

u[x j ](x) =
m

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x)+
l

∑
i=1

x jP
(i)
[x j ]

(xk)C
(i)
1[x j ]

+
l

∑
i=1

P(i)
[x j ]

(xk)C
(i)
2[x j ]

. (12)

For convenience of presentation, expressions (2), (11) and(12) can be rewritten as

∂ 2u(x)

∂x2
j

=
m+2l

∑
i=1

w(i)
[x j ]

G(i)
[x j ]

(x), (13)

∂u(x)

∂x j
=

m+2l

∑
i=1

w(i)
[x j ]

H(i)
[x j ]

(x), (14)

u[x j ](x) =
m+2l

∑
i=1

w(i)
[x j ]

H
(i)
[x j ]

(x), (15)

where

{G(i)
[x j ]

(x)}m+2l
i=m+1 ≡ {0}2l

i=1,

{H(i)
[x j ]

(x)}m+l
i=m+1 ≡ {P(i)

[x j ]
(xk)}l

i=1, {H(i)
[x j ]

(x)}m+2l
i=m+l+1 ≡ {0}l

i=1,

{H
(i)
[x j ]

(x)}m+l
i=m+1 ≡ {x jP

(i)
[x j ]

(xk)}l
i=1, {H

(i)
[x j ]

(x)}m+2l
i=m+l+1 ≡ {P(i)

[x j ]
(xk)}l

i=1,

{w(i)
[x j ]

}m+l
i=m+1 ≡ {C(i)

1[x j ]
}l

i=1, and{w(i)
[x j ]

}m+2l
i=m+l+1 ≡ {C(i)

2[x j ]
}l

i=1.

We seek the solution in terms of nodal values of the field variable u. To do so, (15) is collocated
at the nodal points on the local grid, from which the relationship between the network-weight
space and the physical space can be established as

ũ[x j ] = T̃[x j ]w̃[x j ], (16)

w̃[x j ] = T̃
+

[x j ]
ũ[x j ], (17)

whereũ[x j ] is the vector of lengthm consisting of the nodal values ofu on the local grid,w̃[x j ]

the vector of length(m + 2l) made up of the RBF weights and the nodal values ofC(i)
1[x j ]

and

C(i)
2[x j ]

, andT̃
+

[x j ]
the generalised inverse of̃T[x j ]. The transformation matrix̃T[x j ] has the entries

T̃[x j ]rs = H
(s)
[x j ]

(x(r)), where 1≤ r ≤ m and 1≤ s ≤ (m +2l).

It is noted that the two vectors,̃u[x1] andũ[x2], are unknown. From now on, they are forced to be
identical

ũ[x1] ≡ ũ[x2] ≡ ũ. (18)
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The values ofu, ∂u/∂x j and∂ 2u/∂x2
j at an arbitrary pointx can be computed in terms of nodal

variable values as

u(x) =
1
2

2

∑
j=1

u[x j ](x) =
1
2

2

∑
j=1

([
H

(1)
[x j ]

(x),H
(2)
[x j ]

(x), · · · ,H(m+2l)
[x j ]

(x)
]
T̃

+
[x j ]

)
ũ, (19)

∂u(x)

∂x j
=

[
H(1)

[x j ]
(x),H(2)

[x j ]
(x), · · · ,H(m+2l)

[x j ]
(x)

]
T̃

+
[x j ]

ũ, (20)

∂ 2u(x)

∂x2
j

=
[
G(1)(x),G(2)(x), · · · ,G(m+2l)(x)

]
T̃

+
[x j ]

ũ. (21)

In (19), there are two integrated networks in thex1 andx2 directions that produce two values of
the function at a point. Theoretically, they are the same. However, due to approximation errors,
these two values are not identical. As a result, the functionvalue is computed by taking the
average of the two.

For the point-collocation formulation, there are no integrations required for the discretisation.
The process of converting the PDE into a set of algebraic equations is straightforward.

For the control-volume formulation, one has to define a control volume for each node, over
which the PDE will be integrated. The control volume is formed using the lines that are parallel
to the x1 and x2 axes and go through the middle points between the reference node and its
neighbours or appropriate points on the boundary (Figure 1). Integrals can be calculated using
high-order (e.g. 5-points used here) Gauss quadrature since the present approximation scheme
allows the accurate evaluation of the variableu and its derivatives at any point within the local
grid.

The use of local integrated networks results in a sparse system of simultaneous equations. It can
be seen that operations on zero elements are unnecessary. Avoiding these operations provides a
considerable saving in time. By taking account of sparseness of the system matrix, one has the
capability to reduce the computational time and storage facilities. Such sparse equation sets can
be solved effectively by means of iterative solvers (e.g. generalised minimum residual methods).

4 Numerical examples

For all numerical examples presented here, the approximations are constructed on local grids of
5×5. IRBFNs are implemented with the multiquadric (MQ) basis function whose form is given

G(i)(x) =
√

(x− c(i))T (x− c(i))+ a(i)2, (22)

wherec(i) anda(i) are the centre and width of theith MQ basis function, respectively. The set
of centres and the set of collocation points are identical. It is well known that the width/shape-
parameter strongly affects accuracy of the RBF scheme. However, it is still very difficult to
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determine the optimal value of the shape parameter in practice. In this study, we do not focus on
the study of the RBF width. All MQ centres are associated withthe same width that is chosen
to be the grid size. For problems whose exact solution is available, we use the discrete relative
L2 norm of u, denoted byNe(u), to measure accuracy of an approximate scheme. We apply
the matrix 1-norm estimation algorithm for estimating condition numbers of the system matrix.
Furthermore, linear CV (central difference) techniques, which are similar to those described in
[Patankar (1980)], are referred to as a standard CV technique.

4.1 Test problem

Consider the following PDE

∂ 2u

∂x2
1

+
∂ 2u

∂x2
2

= 0 (23)

with Dirichlet boundary conditions. Two computational domains, namely a unit square 0≤
x1,x2 ≤ 1 and a circle centered at the origin with radius of 0.5, are considered. The exact
solution is given by

ue =
1

sinh(π)
sin(πx1)sinh(πx2) (24)

from which the boundary values ofu can be derived.

The point-collocation formulation consists in forcing (23) to be satisfied exactly at discrete
points in order to form a determined set of algebraic equations. It means that (23) needs be
collocated at the interior grid nodes.

For the control-volume formulation, (23) is forced to be satisfied in the mean. Integrating (23)
over a control volumeΩi, we have
∫

Ωi

∇2udΩi = 0. (25)

Using the divergence theorem, (25) becomes
∫

Γi

(∇u ·n)dΓi = 0, (26)

whereΓi is the boundary ofΩi andn the outward normal unit vector. To compute∂u/∂x j on
the faces that are parallel to thexk (k 6= j) direction, we use thex j network.

Uniform Cartesian grids are employed to represent the problem domain.

In the case of rectangular domain, condition numbers of the system matrix by the present local
collocation and CV techniques are presented in Table 1. Results obtained by the standard CV
method are also included for comparison purposes. It can be seen that the three methods yield
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a similar level of the matrix condition number. The use of local approximations leads to a
significant improvement in stability over that of global approximations. It was reported in the
literature that the global RBF matrices may be ill-conditioned when using 1000 nodes. Here,
with 42849 nodes taken, condition numbers of the RBF matrix are only O(104). In terms of
accuracy, both RBF methods are more accurate than the standard CV method as shown in Figure
2. The IRBFN-CV method outperforms the IRBFN-collocation method. Given a grid size, the
CPU time for the IRBFN-CVM solution is seen to be greater thanthat for the standard-CVM
solution. However, from Figure 2, the IRBFN-CVM is much moreaccurate than the standard
CVM. To achieve a similar level of accuracy, it is necessary to use denser grids for the standard
CVM. For example, to yieldNe = 1.9× 10−7, one needs to employ approximately a grid of
1701×1701 for the standard CVM (this grid density is estimated through extrapolation) and only
203×203 for the IRBFN CVM. It is noted that very high grid densities lead to ill-conditioned
matrices. For a given accuracy, the IRBFN CVM can thus be moreefficient than the standard
CVM. Figure 3 shows the locations of nonzero entries in the IRBFN system matrix.

In the case of circular domain, we generate boundary nodes through the intersection of the grid
lines and the boundary. It can be seen that there may be some interior grid nodes that are very
close to the boundary. A parameter∆ = h/8 is introduced here. Interior nodes, which fall within
a small distance∆ to the boundary, are set aside. The matrix condition number and the accuracy
of the three methods are shown in Table 2 and Figure 4. Remarksfor this case are similar to
those for the rectangular case.

Theoretical studies [Sarra (2006)] showed that IRBFNs havehigher approximation power than
differentiated RBFNs. The implementation of local- and global-IRBFN versions incorporating
Cartesian grids shares many common features. The latter waspresented in detail in our previous
works [Mai-Duy and Tran-Cong (2009a); Mai-Duy and Tran-Cong (2009b)]. For the handling
of a Neumann boundary condition on a curved boundary, the reader is referred to [Mai-Duy and
Tran-Cong (2009b)] for a full detail. Generally speaking, global versions are capable of giving
more accurate results than local versions. However, globalschemes produce fully-populated
matrices that may limit the number of nodes to a few hundreds only. For problems, which
require a relatively-dense discretisation for an accuratesimulation, the use of local schemes is a
preferred option.

Numerical experiments studied here indicate that the control volume formulation works better
for local IRBFNs than the collocation formulation. The IRBFN-CV method is now applied to
simulate some heat transfer and fluid flow problems.

4.2 Heat flow

Find the temperatureθ such that

∇.

(
vθ − 1

Pe
∇θ

)
= 0, x ∈ Ω, (27)
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wherev is a prescribed velocity,Ω the domain andPe the Peclet number. Here,Ω andv are taken
as[0,1]× [−0.5,0.5] and(1,0)T , respectively. Boundary conditions are prescribed as follows

θ = 0, for x2 = −0.5 and x2 = 0.5, (28)

θ = cos(πx2) for x1 = 0, and (29)

θ = 0 for x1 = 1. (30)

The exact solution to this problem can be verified to be

θe =
cos(πx2)

exp(a)−exp(b)
(exp(a+ bx1)−exp(b+ ax1)) , (31)

wherea = 0.5
(

Pe+
√

Pe2 +4π2
)

andb = 0.5
(

Pe−
√

Pe2+4π2
)

. This problem is taken from

[Kohno and Bathe (2006)].

The temperature boundary layer becomes thinner with increasing Pe. At Pe = 1000, very steep
boundary layer is formed. Figure 5 shows the temperature contours for three different values
of Pe by the present CV method. Its accuracy is better than that of the standard CV method as
shown in Table 3. Figure 6 displays variations of temperature along the centre line. It can be
seen that the proposed method produces very accurate results for all cases. Figure 7 show that
there are no fluctuations in the IRBFN CVM solution.

4.3 Lid-driven triangular-cavity flow

Consider the steady recirculating flow of a Newtonian fluid inan equilateral triangular cavity.
Figure 8 shows the cavity geometry. We takeP =

√
3 andQ = 3. The lid moves from left to right

with a unit velocity (v = (1,0)T ), while the left and right walls are stationary (v = (0,0)T ). The
problem was numerically studied by different techniques, including the finite-different method
with a transformed geometry (e.g. [Ribbens, Watson, and Wang (1994)] and the finite-element
method with a flow-condition-based interpolation (e.g. [Kohno and Bathe (2006)]).

Governing equations:

The governing equations are obtained from the streamfunction-vorticity formulation

ω = ∇2ψ , (32)

∂ω
∂ t

+

(
v1

∂ω
∂x1

+ v2
∂ω
∂x2

)
=

1
Re

∇2ω , (33)

whereRe is the Reynolds number defined asRe = UL/ν (L: the characteristic length,U : the
characteristic velocity andν the kinematic viscosity),ψ the streamfunction,ω the vorticity,
v1 = ∂ψ/∂x2 andv2 = −∂ψ/∂x1. The reference length and velocity are presently chosen as
L = Q/3 andU = 1 (the velocity of the lid), respectively.
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Spatial discretisation:

The equilateral triangular cavity is discretised using a Cartesian grid. Grid nodes inside the
cavity are taken to be the interior grid points. For this particular geometry, boundary nodes are
generated using only grid lines that contain at least one interior grid node. With this approach,
the set of RBF centres/collocation-points do not include the two top corners and hence infinite
values of the vorticity do not enter the discrete system.

Boundary conditions:

Boundary conditions for the velocity lead toψ = 0 and∂ψ/∂x2 = 1 on the lid, andψ = 0 and
∂ψ/∂n = 0 on the remaining walls (n: the direction normal to the wall).

We will use the boundary valuesψ = 0 for solving the streamfunction equation. Fromψ = 0
and∂ψ/∂n = 0, one obtains∂ψ/∂x1 = 0 and∂ψ/∂x2 = 0 along the boundaries, which are
used for solving the vorticity equation. A vorticity boundary condition is computed through

ωb =
∂ 2ψb

∂x2
1

+
∂ 2ψb

∂x2
2

, (34)

where the subscriptb is used to indicate the boundary value. On the top wall, (34) reduces to

ωb =
∂ 2ψb

∂x2
2

. (35)

On the side walls, there are two possible cases

(i) A boundary point is also a grid node and the number of nodalpoints on the two associated
grid lines are sufficiently-large for an accurate approximation, and
(ii) A boundary point is not a grid node or the number of nodal points on one of the two associ-
ated grid lines is too small.

To computeωb, one can use (34) directly for the first case but may need to derive a suitable
formula from (34), which requires information aboutψ on one grid line only, for the second
case. The latter will be handled here by applying formulae reported in our previous work (e.g.
[Le-Cao, Mai-Duy, and Tran-Cong (2009)]), namely

ωb =

[
1+

(
t1
t2

)]
∂ 2ψb

∂x2
1

, (36)

for a x1-grid line, and

ωb =

[
1+

(
t2
t1

)]
∂ 2ψb

∂x2
2

, (37)

for a x2-grid line. In (36) and (37),t1 andt2 are thex1- andx2-components of the unit vector
tangential to the boundary.
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As mentioned earlier, one has to incorporate∂ψb/∂x1 = 0 and∂ψb/∂x2 = 0 into (35), (34), (36)
and (37). The incorporation process is similar to that in [Ho-Minh, Mai-Duy, and Tran-Cong
(2009)]. It will be briefly reproduced here for the sake of completeness. Consider ax j grid line.
On the line, one has

∂ 2ψ(x)

∂x2
j

=
n j

∑
i=1

w(i)g(i)(x j)+0c1 +0c2, (38)

∂ψ(x j)

∂x j
=

n j

∑
i=1

w(i)h(i)(x j)+ c1+0c2, (39)

ψ(x j) =
n j

∑
i=1

w(i)h̄(i)(x j)+ x jc1 + c2, (40)

wheren j is the number of nodal points on the line and other notations are defined as before.
There are two extra coefficientsc1 andc2 in (40). As a result, two extra equations representing

boundary derivative values∂ψ(x(1)
j )/∂x j and∂ψ(x

(n j)
j )/∂x j can be added to the transformation

system




ψ̂
∂ψ(x(1)

j )

∂x j

∂ψ(x
(n j )

j )

∂x j


 = T̂ ŵ (41)

whereψ̂ is the vector of nodal variable values of lengthn j, ŵ the coefficient vector of length

(n j +2) andT̂ is the transformation matrix of dimensions(n j +2)× (n j +2)

ψ̂ =
(

ψ(x(1)
j ),ψ(x(2)

j ), · · · ,ψ(x
(n j)
j )

)T
, (42)

ŵ =
(

w(1),w(2), · · · ,w(n j),c1,c2

)T
, (43)

T̂ =




h̄(1)(x(1)
j ), h̄(2)(x(1)

j ), · · · , h̄(n j)(x(1)
j ), x(1)

j , 1

h̄(1)(x(2)
j ), h̄(2)(x(2)

j ), · · · , h̄(n j)(x(2)
j ), x(2)

j , 1
...

...
. . .

...
...

...

h̄(1)(x
(n j)
j ), h̄(2)(x

(n j)
j ), · · · , h̄(n j)(x

(n j)
j ), x

(n j)
j , 1

h(1)(x(1)
j ), h(2)(x(1)

j ), · · · , h(n j)(x(1)
j ), 1, 0

h(1)(x
(n j)
j ), h(2)(x

(n j)
j ), · · · , h(n j)(x

(n j)
j ), 1, 0




.
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The values of∂ 2ψ/∂x2
j at the two boundary points can be computed by




∂ 2ψ(x(1)
j )

∂x2
j

∂ 2ψ(x
(n j )

j )

∂x2
j


 = (44)

[
g(1)(x(1)

j ), g(2)(x(1)
j ), · · · , g(n j)(x(1)

j ), 0, 0

g(1)(x
(n j)
j ), g(2)(x

(n j)
j ), · · · , g(n j)(x

(n j)
j ), 0, 0

]
T̂

−1




ψ̂
∂ψ(x(1)

j )

∂x j

∂ψ(x
(n j)

j )

∂x j


 , (45)

whereT̂ −1 is an inverse of̂T .

By means of point collocation and integration constants, derivative boundary values are forced
to be satisfied exactly. Moreover, all grid points on the associated grid lines are used to compute
ωb. The present boundary schemes thus have a global property.

Four Cartesian grids, namely Grid 1 (2352 interior points),Grid 2 (5402 points), Grid 3 (9702
points) and Grid 4 (15252 points), are employed to study the convergence of the solution. The
flow is simulated at the Reynolds number of 0, 100, 200 and 500.A time-marching approach
is applied here to solve the present system of non-linear equations. For the vorticity transport
equation (33), the diffusive and convective terms are treated implicitly and explicitly, respec-
tively. We choose the initial solution to be the solution at alower Re. For the case ofRe = 0, the
flow starts from rest.

Figures 9 and 10 present contour plots of the streamfunctionand vorticity variables, which look
reasonable when compared with those available in the literature (e.g. [Ribbens, Watson, and
Wang (1994); Kohno and Bathe (2006)]).

Figure 11 presents variations of thex1 component of the velocity vector on the vertical centreline
x1 = 0 and thex2 component of velocity on the horizontal linex2 = 2. Results obtained by
[Kohno and Bathe (2006)] are also included for comparison purposes. It can be seen that the
present results agree well with those by the flow-conditioned-based interpolation FEM for all
values ofRe.

5 Concluding remarks

This paper is concerned with the use of local integrated RBFNs and Cartesian grids in the point-
collocation and control-volume frameworks. Two main advantages of the present local tech-
niques are that (i) their matrices are sparse and (ii) their preprocessing is simple. Numerical
results show that (i) both local IRBFN methods result in the system matrix with a much lower
condition number than global RBF techniques, (ii) they outperform standard control-volume
techniques regarding accuracy for a given grid size, (iii) the local IRBFN control-volume tech-
nique is much more accurate than the local IRBFN collocationtechnique, (iv) the local IRBFN
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control-volume technique has the capability to produce accurate results for the simulation of
flow problems having steep gradients and complex patterns.

Acknowledgement: This work is supported by the Australian Research Council. We would like
to thank the referees for their helpful comments.
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Table 1: Rectangular domain: Condition numbers of the system matrix by standard CV, local
IRBFN collocation and local IRBFN CV methods. Notice thata(b) meansa×10b.

Grid Standard-CV IRBFN-collocation IRBFN-CV
15×15 1.1(2) 1.8(2) 1.2(2)
27×27 3.9(2) 6.4(2) 4.3(2)
39×39 8.5(2) 1.3(3) 9.3(2)
51×51 1.4(3) 2.4(3) 1.6(3)
63×63 2.2(3) 3.7(3) 2.4(3)
75×75 3.2(3) 5.2(3) 3.5(3)
87×87 4.3(3) 7.1(3) 4.7(3)
99×99 5.6(3) 9.2(3) 6.2(3)

111×111 7.1(3) 1.1(4) 7.8(3)
123×123 8.7(3) 1.4(4) 9.6(3)
135×135 1.0(4) 1.7(4) 1.1(4)
147×147 1.2(4) 2.0(4) 1.3(4)
159×159 1.4(4) 2.4(4) 1.6(4)
171×171 1.7(4) 2.7(4) 1.8(4)
183×183 1.9(4) 3.1(4) 2.1(4)
195×195 2.2(4) 3.6(4) 2.4(4)
207×207 2.5(4) 4.0(4) 2.7(4)
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Table 2: Circular domain: Condition numbers of the system matrix by standard CV, local IRBFN
collocation and local IRBFN CV methods. Notice thata(b) meansa×10b.

Grid Standard-CV IRBFN-collocation IRBFN-CV
15×15 9.8(1) 2.1(2) 1.0(2)
27×27 3.3(2) 1.0(3) 3.7(2)
39×39 8.5(2) 3.2(3) 8.6(2)
51×51 1.3(3) 4.7(3) 1.4(3)
63×63 2.2(3) 8.1(3) 2.4(3)
75×75 2.8(3) 8.3(3) 3.2(3)
87×87 3.8(3) 1.1(4) 4.4(3)
99×99 5.6(3) 1.8(4) 7.0(3)

111×111 6.5(3) 1.9(4) 7.4(3)
123×123 8.8(3) 2.7(4) 1.1(4)
135×135 1.0(4) 3.5(4) 1.1(4)
147×147 1.3(4) 4.6(4) 1.6(4)
159×159 1.5(4) 5.8(4) 1.7(4)
171×171 1.8(4) 6.5(4) 2.4(4)
183×183 2.0(4) 7.5(4) 2.2(4)
195×195 2.2(4) 6.6(4) 2.3(4)
207×207 2.7(4) 8.5(4) 3.2(4)
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Table 3: Heat Flow,Pe = 1000: ErrorNe(u) by standard CV and local IRBFN CV methods.
Notice thata(−b) meansa×10−b.

Grid Standard-CV IRBFN-CV
11×11 2.69(-1) 1.00(-1)
51×51 1.83(-2) 3.69(-3)

101×101 4.25(-3) 9.36(-4)
151×151 1.83(-3) 3.47(-4)
201×201 1.01(-3) 1.75(-4)
251×251 6.45(-4) 1.11(-4)
301×301 4.46(-4) 8.32(-5)
351×351 3.27(-4) 6.92(-5)
401×401 2.50(-4) 6.15(-5)
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Figure 1: Local networks inx1 (top) andx2 (bottom) (∗: RBF centre and o: interior point).
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Figure 2: Rectangular domain,[7×7,11×11, · · · ,203×203]: Error versus grid size for standard
CVM/FDM and local IRBFN methods.
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Figure 3: Rectangular domain, 151×151: The structure of the 22201×22201 IRBFN system
matrix.
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Figure 4: Circular domain,[7× 7,11× 11, · · · ,203× 203]: Error versus grid size for standard
CVM/FDM and local IRBFN methods.
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Pe = 10(21×21)

Pe = 100(51×51)

Pe = 1000(401×401)

Figure 5: Heat flow: Temperature distribution for a wide range of Pe by the local IRBFN-CV
method. There are 21 contour lines whose values vary linearly between the two extremes.
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Figure 6: Heat flow: temperature variations on the horizontal centreline for different values of
Pe. Exact values are also included for comparison purposes.
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Figure 8: Cavity flow: geometry and boundary conditions.
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 9: Cavity flow: Streamlines which are drawn using 21 uniform lines between the mini-
mum and zero values, and 11 uniform lines between the zero andmaximum values.
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Re = 0, Grid 1 Re = 100, Grid 2

Re = 200, Grid 3 Re = 500, Grid 4

Figure 10: Cavity flow: Iso vorticity lines whose values are the same as those in [Kohno and
Bathe (2006)]



29

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Grid 1

Grid 2

v
1
 by FEM

v
2
 by FEM

Re = 100

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Grid 2

Grid 3

v
1
 by FEM

v
2
 by FEM

Re = 200

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

Grid 3

Grid 4

v
1
 by FEM

v
2
 by FEM

Re = 500

Figure 11: Cavity flow: Vertical and horizontal velocity profiles along the centre line (x1 = 0)
and the horizontal line (x2 = 2) for three Reynolds numbers. Results by FEM [Kohno and Bathe
(2006)] are also included for comparison purposes. It is noted that the obtained results on the
two grids used are indiscernible.


