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A B S T R A C T   

Performing large scale simulation analyses using complex process-driven models can be very time consuming and 
incur significant computational expense. These analyses involve generating synthetic datasets and include pro-
cesses such as impacts analysis (IA) and variance-based sensitivity analysis (SA). Machine learning (ML) provides 
a potential alternative path to reduce computational costs incurred when generating output from large simu-
lation experiments. We assessed the accuracy and computational efficiency of three ML-based emulators (MLEs): 
artificial neural networks, multivariate adaptive regression splines, and random forest algorithms, to replicate 
the outputs of the APSIM-NextGen chickpea crop model. The MLEs were trained to predict seven outputs of the 
process-driven model. All the MLEs performed well (R2 > 0.95) for predicting outputs for the training data set 
locations but did not perform well for previously unseen test locations. These findings indicate that modellers 
using process-driven models can benefit from using MLEs for efficient data generation, provided suitable training 
data is provided.   

1. Introduction 

The agricultural and environmental science disciplines have long 
utilised the power of computer modelling for scientific enquiry and 
knowledge advancement (Jones et al., 2016). Mechanistic models have 
been developed for many biological and environmental processes, and 
these models have subsequently been integrated to form 
whole-of-system simulation computing environments which are com-
plex and computationally expensive to configure, validate and run 
(Keating et al., 2003; Holzworth et al., 2014). New developments in 
computer modelling are often driven by the need for cost reduction and 
improved efficiencies, as these two concepts are integral in the func-
tioning of most modern economies and exist as non-negotiable goals for 
most projects. As computing costs have progressively reduced over the 
past few decades, the size and complexity of experiments and analysis 
based on computer modelling has grown. These simulation experiments 
can require the running of many thousands, or even millions of model 
runs, and produce extensive amounts of data (e.g. Phelan et al. (2018) 
and Casadebaig et al. (2016)). A reduction in the computational costs of 
producing large amounts of data is one area that is a target of improved 

efficiency efforts. 
Machine learning (ML) approaches for predictive modelling are 

having a significant impact on many areas of society, including areas of 
scientific research, not the least of which are agricultural and environ-
mental sciences. Computational efficiency in producing predicted out-
comes is one benefit of ML algorithms (Balakrishnan and 
Muthukumarasamy 2016; Karandish and Šimůnek 2016; Shastry et al., 
2016; Singh et al., 2017; Ryan et al., 2018; Feng et al., 2019; Niazian and 
Niedbała 2020). Much research involving ML technologies revolves 
around the approaches being able to take diverse data sources, such as 
remote imaging and multiple sensor inputs, and predict outcomes such 
as vegetation type, soil water content, biomass and crop health (Shakoor 
et al., 2017; Prasad et al., 2018; Lawes et al., 2019; Feng et al., 2020; 
Obsie et al., 2020; Zhang et al., 2020; Fajardo and Whelan 2021; Guo 
et al., 2021; Paudel et al., 2021), while the potential computational ef-
ficiency gains have received much less attention. Systems modelling, be 
it for weather, environmental or agricultural systems, are undertaken 
using complex, process driven models. The agricultural production 
systems simulator (APSIM-NextGen) (Holzworth et al., 2018) is one such 
modelling system in the agricultural and environmental sciences 
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domain. While process driven modelling systems like APSIM-NextGen 
provide extensive modelling and research opportunities due to their 
complexity and flexible configuration, they are computationally 
expensive. This limits experimental designs where resources are insuf-
ficient to run large numbers of simulations (e.g. Casadebaig et al. 
(2016)). Impacts analysis (IA) and sensitivity analysis (SA) are two ex-
amples of processes that often requires large numbers of simulations to 
evaluate the interactions between changes in input factor values and the 
effects these have on target output values. While the expectations and 
requirements to validate models using SA continues to grow (Razavi 
et al., 2021), the ability to undertake thorough SA of complex systems 
models is compromised by the limitations imposed by computing power. 
This is just one example of how expanded output from crop models 
might be used. 

Previous studies have utilised ML emulators, or meta-models as they 
are also referred to, for the computationally efficient expansion of crop 
modelling outputs for addressing research questions that required ana-
lysing very large datasets. For example, Shahhosseini et al. (2019) 
compared four ML algorithms for the prediction of maize yield and ni-
trate loss, and generated a simulated dataset of more than three million 
data points. Results varied between which ML algorithm was best for 
predicting yield (Extreme Gradient Boosting algorithm) versus nitrate 
loss (Random Forest), while the ideal size of the training dataset and the 
sensitivity to different input variables also varied between algorithms. 
Mandrini et al. (2021) used a large synthetic dataset to compare static 
nitrogen recommendation tools to ML based dynamic recommendation 
tools. The dynamic recommendation tools lacked the accuracy in pre-
dictions and were therefore found to be of less usefulness in many sit-
uations than the static recommendations. There have also been studies 
which considered the use of emulators to improve the efficiency of 
performing SA on complex environmental models. For example, Stanfill 
et al. (2015) and Ryan et al. (2018) both used the statistical approach of 
generalised additive models to improve computational efficiency of SA 
applications. Wallach and Thorburn (2017) and Sexton et al. (2017) 
discuss the relatively new approach, at least in crop modelling research, 
of utilising machine learning based emulators (MLEs) to improve 
computational efficiency in uncertainty analysis. These studies highlight 
the early stage that research into the potential of using ML approaches to 
improve the computational efficiency of generating expanded synthetic 
datasets of complex process-driven biophysical models is currently at. 
More research is required to assess what range of biophysical modelling 
scenarios and analyses might benefit from expanded crop modelling 
output using ML techniques. Underlying these questions is the issue of 
whether any particular ML approach is better able to be trained to 
predict the outputs of complex systems models. 

The objective of this research was to demonstrate that, by using input 
parameters used to configure and run APSIM-NextGen chickpea crop 
simulations, MLEs could be developed which are able to predict selected 
APSIM model outputs. If this is demonstrated, then the use of these MLEs 
would allow the substitution of the APSIM system model, for the specific 
and limited purpose of generating synthetic data sets, with a small and 
efficient predictive model that is effective for the range of input 
parameter variations used in the training data set. These MLEs could 
then be used to generate large synthetic data sets. These datasets might 
be suitable for undertaking a variety of analyses of the underlying 
modelled relationships, analysis of impacts of varying input settings, and 
potentially for aiding in developing hybrid modelling approaches which 
could open new areas of modelling research. A further objective was to 
test if the MLEs developed were robust enough to be able to accurately 
predict crop outputs for all locations within the regions covered by the 
training data set. This required the input parameters used to develop the 
MLEs to be diverse enough and contain enough variation in values used 
to cover the expected ranges of values for all locations of interest. These 
objectives differ from the previous work of Mandrini et al. (2021) by 
evaluating MLEs ability to predict APSIM outputs rather than comparing 
the performance of the two modelling approaches against real-world 

observed data. It also varies from the work of Shahhosseini et al. 
(2019) by evaluating MLEs predictive ability across different phases of a 
crops entire lifecycle, and by including metrics to compare the compu-
tational costs of developing the MLEs and their statistical accuracy of 
predicting APSIM outputs. To fulfil these objectives, the APSIM-NextGen 
chickpea model was configured to simulate crop production over a 
120-year period at seven locations throughout the chickpea production 
regions in Australia. Six model outputs were reported and further used 
to train emulators based on three ML algorithms: 1) artificial neural 
network (ANN), 2) multivariate adaptive regression splines (MARS) and 
3) a random forest (RF), using 24 input factors from the APSIM simu-
lations. The MLEs were assessed for predictive accuracy, input variable 
importance and computational effort. The assessments of model per-
formances were conducted for the locations for which the MLEs were 
trained, as well as two additional locations not included in the training 
data set to test emulator robustness. 

2. Methods 

Three MLEs representing different ML algorithmic approaches were 
developed from data generated from APSIM simulations of chickpea 
growth, development, and yield for seven locations in the Australian 
chickpea production regions. The MLEs were trained on a subset of 80% 
of the randomised generated data and then validated using the 
remaining 20% of data. A bootstrap process was used to repeat this 
randomisation and model generation ten times to assess the consistency 
of the MLEs developed. The workflow of this process is summarised by 
the flowchart in Fig. 1. Goodness-of-fit of emulator generated data 
against the original APSIM data for six model outputs were analysed and 
are presented in the results section. The output targets were as follows: 
1) days from sowing to emergence (EmergenceDAS), 2) days from 
sowing to flowering (FloweringDAS), 3) days from sowing to first 
fruiting pod (PoddingDAS), 4) days from sowing to crop maturity 
(MaturityDAS), 5) above ground crop biomass at harvest (kg/ha) 
(Biomass), and 6) weight of harvested grain (kg/ha) (GrainWt). These 
results cover some of the more significant chickpea model outputs for 
monitoring and assessing crop growth from emergence to harvest. 
Additionally, two test locations within the chickpea production area, but 
not included in the original seven locations, were used to generate the 
ML data that was then compared against the APSIM generated outputs 
for further benchmarking purposes. 

2.1. Computing environment 

All simulations and data analyses were performed on an Intel Core-i7 
7600U CPU 2.9 GHz based computer with 16 GB RAM running Microsoft 
Windows 10 operating system. The APSIM version used was APSIM- 
NextGen (version 2020.02.05.4679) (Holzworth et al., 2018). The 
APSIM-NextGen prototype chickpea model was used as the crop model. 
Built-in features of the APSIM-NextGen User Interface were used to 
configure and execute factorial simulation experiments which generated 
the data used for building the MLEs. 

2.2. Machine learning based emulators 

The MLEs were developed and run in an installation of R (version 
4.0.3 (2020-10-10)) (R Core Team 2020) in Microsoft Windows. The R 
environment was also used for data preparation and manipulation, 
reporting and graphics generation, with the packages ggplot2 (version 
3.3.3) (Wickham 2016) and other packages from the tidyverse library 
(version 1.3.0) (Wickham et al., 2019) primarily used for these func-
tions. The three MLEs, which are detailed below, were: nnet represent-
ing an ANN, Earth representing a MARS implementation and a Random 
Forest representing a decision tree implementation. 
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2.2.1. Artificial neural network (ANN) 
Artificial neural networks (ANNs) are some of the earliest ML algo-

rithms. They represent a computing paradigm which consists of a 
massively interconnected network of nodes acting in parallel which 
simulate the actions of biological neurons. Each network connection is 
characterised by a weighting factor. Each neuron calculates the sum of 
its weighted inputs and produces an activation level output value via a 
generally nonlinear activation function. Models based on ANNs are 
developed by adjusting the number of neurons, number of layers of 
neurons (topology), neuron characteristics of activation functions and 
bias, and the sensitivities to training responses (Lippmann 1987). They 
are typically characterised by the ‘black box’ phenomena in ML where 
networks are trained on input data and automatically self-calibrate to 
classify or predict output values, the internals of the ML model generally 
not being able to be observed by a user of the system. Artificial neural 

networks have been used to predict outputs, such as yield, from bio-
logical and environmental systems (Shastry et al., 2016; Ghimire et al., 
2018; Sanikhani et al., 2018; Nettleton et al., 2019; Shahhosseini et al., 
2021) and were found to be the third most used ML approach in a review 
of Big Data applications in agriculture (Cravero and Sepúlveda 2021). In 
this experiment, the standard R library, nnet (version 7.3–15, 
2021-01-21) based on the work of Venables and Ripley (2002) has been 
used to implement a feed-forward neural network with 20 nodes in its 
hidden layer and utilising 100 iterations for self-configuration. These 
settings were established by trial and error as optimal for predictive 
accuracy. The number of nodes was tested over the range of 10 nodes to 
40 nodes, using increments of 2 nodes. The iterations for 
self-configuration were tested over a range of 50–200 in increments of 
10. Default settings were utilised for all other model parameters. The 
ANN algorithm has been included in this study because of its general 

Fig. 1. Flowchart of work design for the generation of the synthetic datasets, and the training, validation, and testing of three machine learning based emulators.  
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applicability in environmental and biological studies and its wide use as 
a baseline for comparative ML studies. 

2.2.2. Multivariate adaptive regression splines (MARS) 
The Multivariate Adaptive Regression Splines (MARS) method for 

modelling, developed by Friedman (1991) and further described in 
Friedman and Roosen (1995), is a flexible regression modelling 
approach which has its roots in the recursive partitioning approach used 
in some forms of regression analysis. Continuous models with contin-
uous derivatives are generated by repeatedly splitting product regres-
sion splines and introducing new basis functions for additional splines. 
This continues until the addition of more splines fails to improve the 
fitting of the response curves to the sampled data (Friedman 1991). The 
method meets the criteria for a ML data analysis tool as the resulting 
model is automatically determined by the data used to generate the 
model and does not require additional programming to address the 
specific problem that the data relates to. For this study, the earth package 
(version 5.3.0) (Milborrow 2020) in R was used to implement the MARS 
algorithm. The MARS algorithm has been included in the ML approaches 
for this study as it provides an interesting comparison for computational 
performance and predictive accuracy with the other two pure ML based 
approaches. 

2.2.3. Random forest (RF) 
Random forests (RF) are a computing paradigm based on an 

ensemble of decision trees. A random selection of features is used to split 
each node, with the accuracy of prediction used to weight the strength of 
each tree. The generalisation error for forests reduces as the number of 
trees increase and correlation between strong individual trees increases. 
Random forests have been shown to be quite robust with respect to 
outlier data points and noise within datasets (Breiman 2001; Sexton and 
Laake 2009).They are one of the most widely used forms of ML frame-
works for both classification and regression, with Cravero and Sepúl-
veda (2021) finding that they are the second most referenced technique 
for analysis of big data in agriculture. There are many examples in 
agriculture of RF models being used for soil models (Gebauer et al., 
2019; Hussein et al., 2020), yield forecasting (Kouadio et al., 2018; Feng 
et al. 2019, 2020; Obsie et al., 2020; Guo et al., 2021) and analysis of 
remote sensing (Belgiu and Drăguţ 2016; Dahms et al., 2016). The RF 
algorithm has been included in this study because of its wide applica-
bility and use in agricultural and environmental modelling. The imple-
mentation of the RF algorithm used was the randomForest package 
(version 4.6–14 2018-03-22) (Liaw and Wiener 2018) in the R envi-
ronment. Default values were used for all model settings. The default 
settings include that the number of features to be included in each de-
cision tree is (p/3), where p is the number of input parameters. The 
default settings also specify that the algorithm calculates, via its internal 
code, the number of decision trees that are formed to optimise its pre-
dictive accuracy during its learning phase. The RF algorithm has been 
included in this study because of its wide applicability and use in agri-
cultural and environmental modelling. 

2.3. Simulation configuration 

Simulations of chickpea crops were configured in APSIM-NextGen 
for seven locations throughout the chickpea growing regions in 
Australia (Fig. 2), for six chickpea cultivars, sown on 26 sow dates for 
each of 120 years (1900–2019). Reports were configured in APSIM to 
record all relevant input settings, summarise weather details, report the 
days after sowing of key crop development phases and report final above 
ground biomass and grain yield. For each combination of year, location, 
cultivar, and sowing date, one APSIM simulation was performed, with a 
total of 131,040 simulations. Each of those simulations produced one 
report with summarised output. Each report is considered one unit of 
observation in our analysis. In the end, a large database was obtained 
where each row was one simulation. The input settings and summarised 

weather details were used as the inputs to train the MLEs, with the crop 
development times, biomass and yield details used as the output targets 
for training and testing. In addition to the seven locations used to train 
the MLEs, two extra test locations, not included in the training and 
testing data sets, were used to test the robustness of the MLEs for loca-
tions outside the development data set. 

2.3.1. APSIM simulation configuration 
A typical soil type for the area was selected for each location. The 

details of these are shown in Table 2. All simulations had plant available 
soil water reset to 70% capacity on 1st March in each simulation year. 
Sowing dates were simulated for each 5-day interval from 30 March 
until 5 August. Row spacing was consistent at 0.5 m, sowing depth was 
50 mm, and plant population was 30 plants/m2 for northern sites (above 
32◦ S), and 40 plants/m2 for southern sites (below 32◦ S). Two chickpea 
genotypes, Desi and Kabuli, were sown at each location, with three 
varieties for each genotype; Seamer, HatTrick and CICA1521 for Desi; 
Monarch, Almaz and Kalkee for Kabuli. The genotypes differed from 
each other in four phenological parameters, each defined in terms of 
thermal time; ShootLag, VegTarget, LateVegTarget and Flower-
ingTarget. The cultivar parameters used in APSIM are shown in Table 1. 

2.3.2. Machine learning emulator inputs 
The MLEs were developed and assessed for six output targets of in-

terest for chickpea production: EmergenceDAS, FloweringDAS, Pod-
dingDAS, MaturityDAS, Biomass and GrainWt. The models were then 
evaluated using data for seven production locations around Australia, 
with additional testing of the MLEs undertaken using two additional 
locations which were not included in the training and validation data 
set. Input factors (Table 3) used to train the MLEs were sourced from the 
reports generated by APSIM-NextGen. Weather details were summarised 
for each simulation for three blocks of time from the day of sowing: 0–30 

Fig. 2. Chickpea growing regions in Australia with the nine locations used for 
crop simulations marked by colored dots. Seven locations (green dots) were 
used to develop (train and validate) the machine learning based emulators. 
These, ordered by latitude are: 1) Emerald, Qld, 2) Bongeen, Qld, 3) Mungindi, 
NSW, 4) Mingenew, WA, 5) Gunnedah, NSW, 6) Clare, SA, and 7) Horsham, Vic. 
Additionally, two unseen test locations (yellow dots) 8) Goondiwindi, Qld, and 
9) Mildura, Vic, were included for further model assessment. 

D.B. Johnston et al.                                                                                                                                                                                                                            



Environmental Modelling and Software 162 (2023) 105634

5

days, 31–60 days and 61–90 days. Temperatures, both maximum and 
minimum, were averaged for each time block, while rain and solar ra-
diation were summed to give totals for each time block. Soil water was 
represented in two ways. Firstly, a single value of how much plant 
extractable soil water (mm) was present at sowing (SowingESW) was 
included. Secondly, the soil’s water holding capacity, measured as the 
plant available water capacity (mm) (PAWCmm) and the sowing water 
content as a fractional value of this (FracPAWCmm), were included in 
the input parameters. These two measures are highly correlated within a 
soil type, but variable between soil types. 

2.3.3. Machine learning emulator targets 
Six APSIM-NextGen chickpea model outputs were recorded in the 

APSIM reports, along with their corresponding input factor values, to 

create ‘observed data’ sets. Each of the three ML approaches was 
assessed on how well an emulator could predict the output values 
generated by the APSIM-NextGen simulation, as well as assessing the 
time taken, indicating computational effort required, to develop each 
ML emulator. This was undertaken on a comparative basis to assess 
differences between the various approaches. 

2.4. Statistical measures for ‘goodness-of-fit’ 

The ‘goodness-of-fit’ between the APSIM generated target values and 
those generated by the MLEs was assessed using the following statistical 
measures: (1) mean bias (MB), (2) mean absolute error (MAE), (3) root 
mean squared error (RMSE), (4) coefficient of determination (R2), and 
(5) coefficient of efficiency (COELM, also known as Legates-McCabe 
index) (Legates and McCabe Jr 1999). These metrics were used to 
compare the ML predicted versus APSIM-generated value datasets to 
determine the degree of match between the tested datasets. 

Mean bias (MB) measured in days or kg/ha, depending on the output 

MB=

∑n

i=1
(yi − xi)

n
(1) 

Mean absolute error (MAE) measured in days or kg/ha, depending on 
the output 

MAE=

∑n

i=1
|(yi − xi

)⃒
⃒
⃒
⃒

n
(2) 

Root mean squared error (RMSE) measured in days or kg/ha, 
depending on the output 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
⎛

⎜
⎜
⎝

∑n

i=1

(

(yi − xi)
2
)

n

⎞

⎟
⎟
⎠

√
√
√
√
√
√
√ (3) 

Coefficient of determination (R2) 

R2 =

(
n(Σxy) − (Σx)(Σy)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
nΣx2 − (Σx)2][nΣy2 − (Σy)2]

√

)2

(4) 

Coefficient of efficiency (COELM: Legates McCabe index) 

Table 1 
The APSIM NextGen phenological parameters of each chickpea cultivar used in this study. All parameter values are in thermal time units.   

Desi Kabuli 

Seamer HatTrick CICA1521 Monarch Almaz Kalkee 

ShootLag 120 120 120 140 140 140 
VegTarget 400 400 600 600 500 500 
LateVegTarget 200 250 100 0 100 0 
FloweringTarget 200 100 100 200 100 200  

Table 2 
Soil descriptions by location used for chickpea crop simulations. 
The soil type descriptions and reference number refer to the APSoil database of soils from which the properties of the modelled soils were sourced.  

Location APSoil description and code Profile depth (mm) Plant available water capacity (mm) 

1. Emerald Grey Vertosol (No. 106) 1500 282 
2. Bongeen Black Vertosol (No. 001) 1800 335 
3. Mungindi Grey Vertosol (No. 906) 1800 339 
4. Mingenew Clay (No. 71) 1800 320 
5. Gunnedah Black Vertosol (No. 1174) 1800 285 
6. Clare Clay Loam on Clay Loam over Clay (No. 290) 1500 284 
7. Horsham Grey Cracking Clay (No. 1008) 1300 341 
8. Goondiwindi Grey Vertosol (No. 219) 1800 262 
9.Mildura Sandy Loam over Sandy Clay Loam (No. 332) 1400 142  

Table 3 
Machine learning input factors used for the development of the MLEs.  

Input Factor 
Name 

Description 

AvgMaxT0_30 Average maximum temperature for 0–30 days after sowing 
AvgMaxT31_60 Average maximum temperature for 31–60 days after sowing 
AvgMaxT61_90 Average maximum temperature for 61–90 days after sowing 
AvgMinT0_30 Average minimum temperature for 0–30 days after sowing 
AvgMinT31_60 Average minimum temperature for 31–60 days after sowing 
AvgMinT61_90 Average minimum temperature for 61–90 days after sowing 
Cv Chickpea cultivar (coded as 1 to 6 for the different genotype/ 

cultivar combinations used) 
FloweringTarget Phenological parameter. Differs between genotypes. 
FracPAWCmm Amount of soil water present at sowing. As a fraction of PAWC. 
Lat Latitude of the sowing location. 
LateVegTarget Phenological parameter. Differs between genotypes. 
PAWCmm Soil’s plant available water capacity to 1.5m depth (mm) 
Population Sown plant population in plants/m2 

Radn0_30 Sum of solar radiation for 0–30 days after sowing 
Radn31_60 Sum of solar radiation for 31–60 days after sowing 
Radn61_90 Sum of solar radiation for 61–90 days after sowing 
Rain0_30 Sum of rainfall for 0–30 days after sowing 
Rain31_60 Sum of rainfall for 31–60 days after sowing 
Rain61_90 Sum of rainfall for 61–90 days after sowing 
ShootLag Phenological parameter. Differs between genotypes. 
SowDepth Sowing depth of crop 
SowingDOY Sowing date as Day Of Year 
SowingESW Extractable soil water at sowing 
VegTarget Phenological parameter in thermal time. Differs between 

genotypes.  
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COELM = 1 −

⎡

⎢
⎢
⎣

∑n

i=1
|yi − xi|

∑n

i=1
|xi − x|

⎤

⎥
⎥
⎦ (5) 

In equation 1 through 5: ‘n’ is the number of pairs of (APSIM- 
generated (x), predicted (y)) values, where APSIM-generated values are 
the model output values generated by APSIM; and ‘predicted’ are the ML 
emulator ‘simulated’ value for the model output. ‘i’ is the output 
generated from the ith set of input parameters. The six target outputs 
generated were: EmergenceDAS, FloweringDAS, PoddingDAS, Matur-
ityDAS, Biomass and GrainWt. 

2.5. Variable importance 

The contribution that each input factor (Table 3) has towards the 
value of the output target (EmergenceDAS, FloweringDAS, PoddingDAS, 
MaturityDAS, Biomass or GrainWt) is calculated by each of the ML al-
gorithms. The values reported and presented as a heat-map (Fig. 4) have 
been standardised so that the most significant input is assigned an 
importance index value of 100, non-contributing inputs are given a 
value of zero (0) and all other inputs are rated with index values pro-
portionate to the most influential input. Each of these routines was 
configured to report index values rated on the reduction in the residual 
sum of squares (RSS) value of generated predictions versus the actual 
target values when the input parameter being assessed was included in 
the model. That is, the input that resulted in the greatest reduction in the 
RSS when it was added to the algorithm was assigned an importance 
index of 100. 

3. Results 

3.1. Performance based on training data set 

Results from the training data set, where the MLEs were trained on a 
random subset of 80% of the data and then validated on the unused 20% 
of data, showed that each of the three ML approaches, ANN, MARS and 
RF algorithms, can produce MLEs with significant predictive accuracy 
for each of the six crop output targets (Table 4). There were no observed 
occurrences of any model encountering overfitting issues, which would 
have been evidenced by the accuracy of the predictions of the validation 
data set being significantly lower than the accuracy for the training data 
sets. All reported values are those for the validation data sets for each 
MLE. The accuracy of prediction, the importance of input variables used 
to achieve these predictions, and the computational effort required to 
develop the MLEs, did vary between the approaches. Across all outputs, 
the RF emulators showed the best and most consistent accuracy at 
prediction. This, however, come at significant computational 
investment. 

3.1.1. Graphical and statistical analysis of ML approaches 
A visual inspection of the plots of ML predicted versus APSIM 

generated data as Hexbin plots (Fig. 3) confirmed the accuracy of the 
dataset of validation predictions for the six target outputs (Emergence-
DAS, FloweringDAS, PoddingDAS, MaturityDAS, Biomass and GrainWt). 
The corresponding values from the statistical analyses of the data of 
these graphs is presented in Table 4. Of note is the superiority of the RF 
emulators’ predictions for each output target. All three MLEs produced 
exceptional results for predicting the start of flowering (FloweringDAS). 
Regional variations are evident for each ML emulator with northern 
locations flowering after a shorter duration than locations with more 
southern latitudes (cooler climates). Predictions of podding date were 
much less precise for each of the MLEs, with noticeably wider variations 
occurring at Mingenew. This indicates that some crop growth factor(s) 
used within APSIM which affected early pod development were possibly 
not included in the input parameter details. One APSIM parameter that 

was omitted and fits this profile is the “Phenology.Budding.Target. 
XYPairs” values. These values represent the budding target response 
curve measured in thermal time. This response relationship was not 
converted into an equivalent single response numeric suitable of inclu-
sion as an ML predictor variable, and so was not included in the input 
parameter list for developing the MLEs. While producing the most ac-
curate predictions of podding date for most locations, most noticeably 
for Horsham, the RF emulator’s predictions for Bongeen were slightly 
less accuracy than other MLEs. There was no clear indication as to why 
this was the case. The ‘black-box’ nature of ML models makes the 
analysis of outputs and explanation of model performance challenging. 
The above ground crop biomass and the crop yield, reported as GrainWt, 
were the least predictable outputs for each ML algorithm. The MARS 
emulators, on average, had the greatest tendency to under-predict the 
output values, as indicated by the negative mean bias values (Table 4). 
The RF emulators had about one quarter the amount of variance of the 
other two MLEs, as shown by the mean absolute error (MAE) values 
(Table 4). The ANN and MARS emulators each produced predictions 

Table 4 
A summary of the predictive ability of the MLEs against outputs generated by the 
APSIM-NextGen chickpea crop model. 
The mean and standard deviations (sd) of the statistical measures for goodness- 
of-fit analysis for the training validation of the machine learning emulators 
(MLEs) using 10 fold repetition. The statistics shown are, MB: mean bias re-
ported in days or kg/ha, depending upon the output variable; MAE: mean ab-
solute error reported in days or kg/ha, depending upon the output variable; 
RMSE: root mean squared error reported in days or kg/ha, depending upon the 
output variable; R2: coefficient of determination; COELM: coefficient of efficiency 
(Legates McCabe index). The three MLEs are Artificial Neural Networks (ANN), 
Multivariate Adaptive Regression Spline (MARS) and Random Forest (RF).  

Development validation statistics of accuracy 

Emulator/Target  MB MAE RMSE R2 COELM 

ANN 
EmergenceDAS 

(days) 
mean 0.000 0.683 0.884 0.950 0.791 
sd 0.006 0.003 0.007 0.001 0.002 

FloweringDAS 
(days) 

mean − 0.012 1.119 1.525 0.995 0.933 
sd 0.035 0.060 0.076 0.001 0.004 

PoddingDAS (days) mean − 0.026 5.152 7.838 0.949 0.817 
sd 0.080 0.156 0.130 0.002 0.005 

MaturityDAS (days) mean − 0.013 3.255 4.665 0.980 0.880 
sd 0.050 0.026 0.042 0.000 0.001 

Biomass (kg/ha) mean − 0.279 76.030 102.031 0.923 0.757 
sd 1.225 1.055 1.227 0.002 0.004 

GrainWt (kg/ha) mean 0.076 35.291 47.784 0.910 0.740 
sd 0.876 0.418 0.512 0.002 0.003 

MARS 
EmergenceDAS 

(days) 
mean − 0.002 0.695 0.899 0.948 0.787 
sd 0.004 0.003 0.005 0.001 0.001 

FloweringDAS 
(days) 

mean 0.002 2.031 2.658 0.984 0.879 
sd 0.019 0.143 0.187 0.002 0.009 

PoddingDAS (days) mean − 0.013 5.968 8.891 0.934 0.788 
sd 0.051 0.030 0.050 0.001 0.001 

MaturityDAS (days) mean − 0.018 4.009 5.600 0.971 0.851 
sd 0.030 0.041 0.058 0.001 0.002 

Biomass (kg/ha) mean − 0.103 87.392 115.039 0.902 0.721 
sd 0.867 0.494 0.859 0.001 0.002 

GrainWt (kg/ha) mean − 0.366 40.606 53.872 0.886 0.701 
sd 0.315 0.336 0.558 0.002 0.002 

RF 
EmergenceDAS 

(days) 
mean 0.001 0.221 0.326 0.993 0.932 
sd 0.002 0.003 0.010 0.000 0.001 

FloweringDAS 
(days) 

mean 0.012 1.000 1.355 0.996 0.940 
sd 0.011 0.008 0.012 0.000 0.001 

PoddingDAS (days) mean 0.029 2.507 4.356 0.984 0.911 
sd 0.026 0.021 0.057 0.000 0.001 

MaturityDAS (days) mean 0.018 1.808 2.830 0.993 0.933 
sd 0.018 0.014 0.047 0.000 0.001 

Biomass (kg/ha) mean − 0.037 16.088 26.956 0.995 0.949 
sd 0.254 0.138 0.761 0.000 0.000 

GrainWt (kg/ha) mean 0.007 12.272 20.241 0.984 0.910 
sd 0.133 0.094 0.313 0.001 0.001  
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with a wider distribution around the APSIM predicted values than the 
predictions of the RF emulators. The data points, however, are still most 
densely clustered along the one-to-one line, as Fig. 3 shows. Again, RF 
emulators did a noticeably better job of predicting each of these outputs 
than emulators based on the other ML algorithms. 

Further analysis of the least accurate ten percent of predictions for 
each MLE for the outputs biomass and crop yield, showed highly vari-
able results between the three MLEs. For the ANN emulators, the least 

accurate predictions generally resulted in significant under-predictions 
of biomass and crop yield. These results were strongly associated with 
late maturing crops, with a mean MaturityDAS value of 172 days 
compared to an average for the rest of the simulations of 148 days. A 
likely cause of such errors is that environmental factors that caused a 
decrease in the above ground crop biomass and yield in the APSIM 
simulations occurred late in the crop lifecycle. With ML weather inputs 
only recording meteorological data up to 90 days after sowing, weather 
events or dry conditions late in the crop cycle would not have been 
considered by the ANN emulators. For the MARS emulators, the least 
accurate predictions also tended to result in under-prediction of biomass 
and crop yield, but these were not biased towards late maturing crops. 
Instead, these simulations tended to have drier soil conditions at sowing 
(low SowingESW) and lower solar radiation levels later in the crop’s life. 
The RF emulators showed a very different pattern again, with the least 
accurate ten percent of predicted biomass and crop yield values gener-
ally being associated with over-prediction of values. For the RF emula-
tors, the poor predictions were more strongly associated with elevated 
soil water at sowing (high SowingESW), higher than average rainfall 
beyond 60 days and lower solar radiation during the same period. Poor 
prediction of biomass was also associated with earlier sowing dates and 
small LateVegTarget parameter values. The ‘black-box’ nature of ML 
models makes detailed and accurate investigation of underlying model 
issues impossible. 

In the case of the RF emulators, it is worth noting that the outlier 
values only represent between 20 and 40 data points out of a set of 
26,185 data points, indicating that any visual impact of these points 
might have in data plots is overstating their importance. This is 
confirmed by considering the hexbin plot of the distribution density of 
the data points (Fig. 3). Low numbers of data points are seen in a clearer 
perspective of their importance. One interesting aspect to note that 
differs between the MLEs is the generation of a small number of erro-
neous negative values for GrainWt. RF did not suffer from this feature, 
while the MARS emulators showed this feature for both the crop yield 
and above ground biomass predictions. One of the noted strengths of the 
RF algorithm is bootstrap aggregation, also known as ‘bagging’, which 
results in an ensemble of RF models. This approach has the benefits of 
reducing bias and variance in the resulting prediction model and pro-
ducing a more representative outcome for variable data (Sexton and 
Laake 2009; Biau and Scornet 2016). A disadvantage of this ensemble 
approach is the increased computational effort required. The pattern of 
fast emulators being the least accurate in both bias and error statistics 
calculated, as well as the accuracy of predicted target values, is observed 
in the data presented in Table 4. This is most likely a reflection of the fact 
that accurate predictions are more consistently produced when greater 
numbers of values are processed and averaged. There appears to be a 
generalised inverse relationship between emulator speed and accuracy 
of prediction. 

3.1.2. Variable importance 
By comparing the influence that the input factors have on the outputs 

across each of the MLEs, patterns and variations can be observed in what 
is driving each emulator. Fig. 4 highlights the patterns of the index 
values. For EmergenceDAS, all three MLEs were strongly influenced by 
the maximum and minimum temperatures during the first 30 days after 
sowing. This is expected as emergence is primarily a temperature driven 
response in the chickpea model, and it occurs in the first 30 days of the 
crop simulation. The MARS algorithm was shown to be significantly 
more sensitive to the input variable ShootLag than were the other two 
MLEs for the prediction of EmergenceDAS, with the ShootLag input 
having an input variable importance (Fig. 4) of 93 for the MARS 
emulator, but values of only nine and six for the other emulators. 
Interestingly the ANN and MARS emulators had consistent values for the 
accuracy of EmergenceDAS predictions (Table 4), with R2 values of 0.95, 
and COELM values of 0.79, which is a clear demonstration that different 
ML algorithms can use different input information to achieve similarly 

Fig. 3. HexBin plot of the distribution density of data points for the emulator 
development validation data tests. 
Each panel shows the summary of 26,185 data points, being the 20% validation 
portion of the full dataset of 130,928 data points. These consisted of 26 sowing 
dates for each of six cultivars at seven locations for each of 120 years, less crops 
that did not produce a yield. 
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accurate predictions. This finding is consistent with the findings of 
Shahhosseini et al. (2019) who also found that ML models differed in 
their sensitivities to input variables. 

Other output targets showed greater diversity in the input variables 
identified as most important. For the ANN emulators, the input 
SowingDOY was very significant for predicting the output target Flow-
eringDAS, while the MARS and RF emulators rated average maximum 
temperatures between 31 and 60 days after sowing as highly influential. 
PoddingDAS and MaturityDAS showed something of a consist pattern 
between MLEs, with SowingDOY being most important for the ANN 
emulator, while average maximum temperature for 61 to 90 DAS was 
the most significant for the MARS and RF emulators. The RF emulator 
was the only one to have an additional value over 50, that of 
AvgMinT61_90. 

The patterns of rating significance for both biomass and crop yield 
were similar in each of the MLEs. Above ground biomass and crop yield 
were both strongly influenced by SowingESW by all ML algorithms, 
although RF emulators used the closely correlated FracPAWCmm input 
instead. Only the RF emulator rated the latitude (Lat) variable as a 
significantly important input, which it did for both above ground 
biomass and crop yield. Both the MARS and the RF emulators used the 
AvgMaxT61_90 for crop yield prediction, while no temperature, rainfall 
or radiation inputs were rated above an importance of 36 by the ANN 
emulator for crop yield. 

3.1.3. Computational requirements 
The time taken to train the MLEs is an indicator of the computational 

costs associated with developing each emulator system. Table 5 shows 
that there was a great spread in the computational requirements needed 
to develop each type of emulator. Times ranged from 12.1 s for the 
MARS algorithm to develop a predictive emulator for the output 
EmergenceDAS, to a high of 17,644.8 s (4hrs 54mins) for the RF algo-
rithm to produce a predictive emulator for the same output. On average, 
MARS emulators were developed with least computational effort, ANN 
emulators were almost three times more costly, and RF emulators were 
approximately 500 times more costly. This observation is based solely 

on the performance measured for the code libraries and computing 
environment used for this study. 

3.2. Performance at test locations 

The MLEs developed using data from seven locations within the 
Australian chickpea production regions, were tested using data from two 
additional locations, also within the same production regions. Hexbin 
plots of the APSIM generated values plotted against the values generated 
by the predictive MLEs are shown in Fig. 5, with the statistical analyses 
of the ‘goodness-of-fit’ of the data values provided in Table 6. For pre-
dictions of EmergenceDAS and FloweringDAS, the three ML algorithms, 
ANN, MARS and RF, all performed well with consistent R2 values of 0.91 
for EmergenceDAS and of 0.98 for FloweringDAS. The corresponding 
values of COELM ranged between 0.72 and 0.73 for EmergenceDAS and 
between 0.86 and 0.88 for FloweringDAS. Values for each test location 
were equally well predicted. For the three ML emulators, ANN, MARS 
and RF, the prediction of MaturityDAS was the next most accurate 
output with R2 values of 0.95 and 0.96 and COELM values ranging from 

Fig. 4. Heat maps of input variable importance for three MLEs. 
Results are for six output parameters. Importance indices are rated from zero (0) for no effect on the output value, to 100 being the input with the most significant 
effect on the output values. Index values are relative to the most significant input rated at 100. 

Table 5 
Time (in seconds) taken to train each MLE. 
Training data sets used 26,185 data points for each target output. The times are 
representative only and were obtained from developing the MLEs in an R 
environment on an Intel core-i7 laptop computer.  

Output ANN MARS RF 

EmergenceDAS 77.8 12.1 17644.8 
FloweringDAS 77.9 37.4 10930.8 
PoddingDAS 86.5 34.8 16149.9 
MaturityDAS 86.3 31.5 17191.2 
Biomass 76.5 35.0 13544.1 
GrainWt 77.5 34.9 14530.5  

Average: 80.4 30.9 14998.6 
(all times in seconds)  
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0.72 to 0.82. This was followed by the predictions for PoddingDAS with 
R2 values ranging from 0.87 to 0.90 and COELM values ranging from 0.60 
to 0.72. 

All three ML approaches, however, failed to accurately predict above 
ground biomass and crop yield at the unseen test locations, although the 
ANN models did come close to being acceptable. The MLEs were inca-
pable of making accurate predictions for the test locations based on the 
data from the training locations. Given that biomass and crop yield were 
both strongly influenced by soil water holding capacity and soil water 
content at sowing (Fig. 4), it is most likely that insufficient soil types and 
soil water conditions were included in the original data set to allow the 
test locations to be accurately modelled. The test locations effectively 
fell outside the parameter value ranges and effects observed at the 
training locations and so predicted values were nonsense. This high-
lights a failing of the input data used, not of the MLEs or the modelling 
approach. 

4. Discussion 

4.1. Performance with training data set 

The focus of this research is on the accuracy of MLEs to predict 
APSIM generated outputs, and the computational costs associated with 
developing the MLEs. The discussion that follows concentrates on these 
issues and does not attempt to review or discuss the implications of the 
agronomic or environmental results which would involve shifting the 
focus to a review of the APSIM-NextGen chickpea model itself. The re-
sults of this study have shown that MLEs can be developed that can aid in 
expanding biophysical crop modelling systems, such as APSIM, by 
providing a computationally efficient approach for the generation of 
very large synthetic datasets, such as are required for IA and variance- 
based SA. They show that all three ML approaches reviewed are 

Fig. 5. HexBin plot of the distribution density of data points for the test loca-
tion data sets. 
Each panel shows the summary of 37,395 data points, being the full dataset 
consisting of 26 sowing dates for each of six cultivars at two locations for each 
of 120 years, less crops that failed to emerge. 

Table 6 
The predictive ability of the MLEs for two unseen test locations against outputs 
generated by the APSIM-NextGen chickpea crop model. 
Statistical measures for goodness-of-fit performance analysis for two test loca-
tions. The statistics shown are, mean bias (MB), mean absolute error (MAE), root 
mean squared error (RMSE), coefficient of determination (R2), coefficient of 
efficiency (Legates McCabe index) (COELM). The three machine learning emu-
lators (MLEs) are Artificial Neural Net (ANN), Multivariate Adaptive Regression 
Spline (MARS) and Random Forest (RF).  

Statistics of accuracy for unseen test locations 

Emulator/Target MB MAE RMSE R2 COELM 

ANN 
EmergenceDAS (days) 0.07 0.74 0.95 0.91 0.72 
FloweringDAS (days) 0.61 1.58 2.10 0.98 0.88 
PoddingDAS (days) 3.32 8.97 13.18 0.87 0.60 
MaturityDAS (days) 2.04 3.84 5.42 0.96 0.82 
Biomass (kg/ha) − 136.26 193.16 260.08 0.76 0.35 
GrainWt (kg/ha) − 21.50 74.85 95.84 0.79 0.39  

MARS 
EmergenceDAS (days) − 0.08 0.75 0.95 0.91 0.72 
FloweringDAS (days) − 0.04 1.77 2.25 0.98 0.86 
PoddingDAS (days) − 1.96 6.26 9.17 0.89 0.72 
MaturityDAS (days) 3.68 5.41 7.32 0.95 0.75 
Biomass (kg/ha) 1315.60 2437.08 2772.21 0.62 − 7.25 
GrainWt (kg/ha) 227.21 901.09 931.87 0.48 − 6.28  

RF 
EmergenceDAS (days) 0.02 0.73 0.93 0.91 0.73 
FloweringDAS (days) 0.70 1.74 2.47 0.98 0.87 
PoddingDAS (days) 4.40 7.23 11.43 0.90 0.68 
MaturityDAS (days) 3.88 6.12 9.18 0.95 0.72 
Biomass (kg/ha) 224.23 290.65 374.34 0.20 0.02 
GrainWt (kg/ha) 105.06 134.92 173.40 0.10 − 0.09  
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capable of being used to generate predictive regression MLEs for the 
crop model outputs tested. The FloweringDAS prediction was the most 
accurate output for each of the MLEs, indicating that the input factors 
included did cover all the important driving variables for this output. It 
is revealing that the importance of the input variables (Fig. 4, panel 
‘FloweringDAS’) was not consistent between the different algorithms. 
For FloweringDAS, the ANN emulator was heavily reliant upon the time 
of sowing, with no other input coming close to having as significant an 
impact. The MARS emulator relied almost entirely on mid-season 
maximum temperatures, with its next most important input, time of 
sowing, rated as only half as important. The RF emulator was most 
strongly influenced by mid and late-season maximum temperature. This 
shows clearly that great care must be taken if interpreting the input 
importance values for MLEs as being an accurate predictor of the 
importance of input factors for an underlying model. Different algo-
rithms can, and do, predict the correct answer in the majority of in-
stances, using significantly different importance weightings of input 
values. Boehmke and Greenwell (2019) have previously warned that 
algorithms, like that used in the MARS approach, can give misleading 
results for variable importance where there are closely correlated input 
factors. This is due to the algorithms approach of selecting input factors 
based on their contribution to an output value and discarding additional 
inputs if they do not improve the prediction by some given marginal 
amount. This can result in only one of a closely correlated set of inputs 
being used to predict output values, with the other inputs, although 
equally as influential on the output, rated as not used or of low impor-
tance. Breiman (2001) and Dumancas and Bello (2015) indicate that the 
RF algorithm is well suited to cope with multico-linearity of inputs, and 
so is not subject to this limitation to the same degree as the MARS al-
gorithm. For neural networks, which is represented by the ANN algo-
rithm, the robustness and accuracy of their predictions have been found 
to be adversely affected by co-linearity between input factors (Duman-
cas and Bello 2015; Samarasinghe 2016). These authors advise that 
feature selection needs to be undertaken in order to remove 
non-influential inputs and inputs that exhibit co-linearity from the data 
set, before reliable neural net models can be built. For the purpose of 
comparing the ML algorithms based on a consistent approach, this step 
was not undertaken in this study. 

The greatest differences between the accuracy of predictions of the 
MLEs was for the outputs of above ground biomass and grain weight 
(yield). These two outputs are the ones in the output set most influenced 
by a wide range of crop, environmental and management factors, and 
represent the sum of everything the crop has experienced. They are key 
outputs for most crop models (Stöckle et al. 1994, 2003; Jones et al., 
2003; Keating et al., 2003). For these two outputs, the RF emulator was 
clearly a superior predictor than the emulators produced by the other 
two ML algorithms. The reasons for this difference in accuracy are not 
easily determined. Contributing factors are likely to include the inherent 
suitability of the underlying ML algorithm for the data being analysed, 
and the extent to which the data set has been optimised for the ML 
approach. One factor that was identified during analysis of this data was 
that the summary climate details were only recorded until 90 days after 
sowing, while many of the crops with the poorest predictions of biomass 
and yield reached maturity (as shown by harvest date) well beyond this 
cut-off. It is probable that adverse weather conditions during the final 
stages of crop growth and crop maturation resulted in unpredictable 
crop vigour and yield loss. Extended periods of weather details in the 
input parameters may have aided in more accurate predictions of 
biomass and yield. While feature selection and dimensionality reduction 
steps are warranted for the neural net based algorithms (Samarasinghe 
2016), the purpose of this study was to compare the performance of the 
core approaches. The investigation of optimal feature selection algo-
rithms would constitute a research study in its own right. It is worth 
noting that, under the constructs of this study, where the outputs of the 
simulation model are being predicted rather than trying to match real 
world observations, all potential input factors for the MLEs are known, 

albeit a very large number of them. This makes the possibility of iden-
tifying a complete set of driving input factors a feasible objective. 

Based on the accuracy of predicted values, the RF algorithm is the 
best of the three algorithms tested. The accuracy of predicted output 
values produced by the RF emulators for the locations on which it was 
trained are good, with the lowest accuracy being for both PoddingDAS 
and GrainWt at R2 = 0.98 and COELM = 0.91. With this level of accuracy, 
the RF emulators could be used to predict with a high degree of confi-
dence, any of the six model outputs for any of the seven training loca-
tions for input values within the range of values observed in the training 
set. The design of this experiment meant that one set of input factors was 
tested for their ability to be used to predict each of the six outputs. With 
careful review and iterative testing, it should be possible to improve the 
predictive accuracy for any chosen output. 

The computational costs involved in developing, or training, the 
MLEs (Table 5) varied widely between the different algorithms. One 
potential application of using MLEs to efficiently expand the output of 
process-driven crop models is that of running SA. Studies, such as that by 
Zhao et al. (2014), which looked at the SA of the APSIM wheat model, 
focused considerable effort on identifying a data efficient analysis 
method to maximise their research outcome and minimise their cost of 
running APSIM simulations. The use of MLEs could provide an alter-
native method for generating such datasets. To be useful as a tool to run 
IA or SA as a background process on a systems model, such as APSIM, an 
MLE needs to be able to be rapidly developed, used, and discarded rather 
than having an iterative development and retention lifecycle. This is 
because each analysis will be based on a different scenario and designed 
to test different input parameters or different ranges for input parameter 
values each time they are run. As the MLEs are generated for specific sets 
of inputs and can only be used to predict outputs for input settings 
within the value ranges with which they were developed, reuse of MLEs 
may be limited. This would depend upon the design of the experiment at 
development time. Even where MLEs can be reused, great care would be 
required to ensure that the value ranges of all input parameters were 
within the development limits of the MLE, thus avoiding covariate shift, 
and that the mix of those inputs was of a pattern that was not dissimilar 
to patterns used to develop the MLEs. While broadly applicable MLEs 
might be possible to produce, a narrowly applicable MLE developed for a 
specific application is a safer option if unpredictable outcomes are to be 
avoided. The focus on the expected use and life timeframe of the 
emulator is a key feature of this study that differs from many studies into 
the development of ML models. Comparisons of development times of 
ML models are not readily available in the literature. In this study the 
MARS algorithm was, on average, almost 500 times faster to train than 
the RF algorithm, with the ANN algorithm being approximately 200 
times faster than the RF algorithm. It must be noted that this represents 
just one snapshot of specific implementations of three algorithms out of 
potentially dozens of alternative algorithms. The code used to imple-
ment the algorithm solution, the computing environment utilised to run 
the code and the computing hardware that the ML was run on, all have 
the potential to significantly affect the outcomes of such a comparison. 
Advances in, or reimplementation of, any of these factors, or the selec-
tion of alternative algorithms or environments, will have effects on the 
outcomes. For this study, the outcome is clear; the RF algorithm was the 
most accurate of the ML approaches, but it came at a significant 
computational cost. The superior results from the RF emulator are in 
contrast to Kouadio et al. (2018) who found an extreme learning ma-
chine, which is an advanced form of ANN algorithm, superior at fore-
casting coffee yield. Obsie et al. (2020) reported an extreme gradient 
boosting model produced better results than a RF model for blueberry 
yield prediction, although both the gradient boosting model and the RF 
model performed better than a multi linear regression approach. Other 
researchers (Jeong et al., 2016; Dayal et al., 2019; Feng et al. 2019, 
2020; Lawes et al., 2019) have chosen RF models as their preferred ML 
approach in studies predicting crop growth. 
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4.2. Performance with test locations 

A second part of this study assessed the robustness of the MLE so-
lutions by generating prediction for output values at locations which 
were not included in the development (training and validation) data 
sets. The three ML algorithms were not as accurate in predicting the 
chronological development of the crop, that is the EmergenceDAS, 
FloweringDAS, PoddingDAS and MaturityDAS, as when predicting 
values for locations in the training data set, but predictions were not 
unrealistic for the ANN, MARS and RF emulators, as shown in Fig. 5 and 
associated statistical values in Table 6. This demonstrates that the MLEs, 
if developed with sufficiently diverse data sets, are robust enough to 
predict outputs for any location in the production region, regardless of 
whether that location was used in the training data set or not. The 
FloweringDAS predictions, with R2 values 0.98 and COELM values 
ranging from 0.86 to 0.88 for each of the algorithms, were the most 
accurate of the predictions for the test locations. The other statistical 
measures generated to test the accuracy of the emulators, MB, MAE and 
RMSE, all followed the same relative patterns of which was the most to 
least accurate emulator, with RF being the most accurate, ANN being 
next, and MARS being the least accurate. With this level of accuracy, the 
use of any of these three MLEs to predict flowering date as days after 
sowing, for any location within the Australian chickpea production re-
gions, would be justifiable. 

By using test locations, most of the input factors used to train the 
MLEs were able to be controlled and ensure that they fell within the 
ranges used to develop the MLEs. Factors that were not controlled and 
had the potential to fall outside the development dataset boundaries 
were related to the soil, specifically the water holding capacity of the soil 
and starting soil moisture levels. The predictions for above ground 
biomass and grain weight (Fig. 5 and Table 6) are shown to be erroneous 
for all three ML algorithms. As noted previously, these outputs reflect 
the sum of all the factors that influence crop growth. Consequently, their 
predicted values are most likely to reveal any weakness in the robustness 
of the MLEs. Even though the management and genomic factors were 
consistent with the training data, the test locations introduced different 
soils to the simulations. For example, the predictions of biomass and 
yield for Mildura were the least accurate and most varied between the 
different MLEs. Mildura soil was the only sandy loam in the data set and 
had the lowest water holding capacity of any of the soils. This soil was 
the most contrasting soil, and the emulators performed most poorly with 
it. This is consistent with the findings of Shahhosseini et al. (2021) who 
identified soil water parameters as key drivers of ML models used to 
predict corn yields. Some of the patterns that define the relationships 
between input factors and output values observed at the test locations in 
our study were not present in the training data, so none of the ML al-
gorithms could predict them for the new locations. The situation where 
input data values fall outside the range of the training dataset is referred 
to as covariate shift, and it is a known limitation of ML that predictive 
models are unable to handle such data variations. This clearly stands as a 
warning about the potential use of MLEs for generating synthetic dataset 
by expanding the outputs of process driven models. All patterns of input 
factors affecting output values must be included in the training data to 
develop an ML emulator that is capable of robustly predicting outputs. 
Other recent research integrating process-driven models with ML has 
focused on the effects of climate change on crop yields (Feng et al., 2019; 
Leng and Hall 2020). Both studies have reported significant benefits in 
integrating the two modelling approaches but have not highlighted the 
dangers and limitations of supplying incomplete data sets to the ML 
models during development. In this study, the training data included all 
required patterns for predicting FloweringDAS but lacked details which 
determine above ground biomass and grain weight. As a result, the 
FloweringDAS predictors are more robust than the above ground 
biomass and yield predictors. 

5. Conclusion 

This study has shown that emulators of crop models, built on ML 
algorithms, can be developed to predict a range of simulated crop out-
puts. The accuracy of predictions varies based the algorithm used and 
the output being predicted, with the RF emulator being the most 
consistently accurate emulator used in this study. Computational costs, 
measured as the time taken to train the MLEs, also varied by algorithm. 
The MARS emulators were the fastest emulators to be trained in this 
study, with the RF emulators having the longest training times. These 
findings will have implications for the choice of algorithm if this 
approach of utilising MLEs were to be used to improve the time effi-
ciency of running very large numbers of model simulations. Addition-
ally, the robustness of the emulator needs to be tested for each output 
variable. There is no set of input factors that will be suitable for pre-
dicting all outputs in all situations. It is, however, reasonable to assume 
that it is possible to develop accurate predictive MLEs for any output as 
all input factors for the process driven simulation model are known, so it 
should be possible to generate training data sets with all input factors 
required for the prediction of the target output. A potential disadvantage 
of the MARS algorithm is that it discards input parameters if they are 
found to be unimportant during its development. This could limit its 
usefulness as a generation tool for datasets intended for IA or SA as 
parameters of low importance within one scope may become more 
important if the scope is altered by fixing some of the more influential 
parameters. 
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