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ABSTRACT Structural Plasticity (SP) in the brain is a process that allows structural neuronal changes,
in response to learning. Spiking Neural Networks (SNN) are an emerging form of artificial neural networks
that use brain-inspired techniques to learn. However, the application of SP in SNNss, its impact on overall
learning, and network behaviour is rarely explored. In the present study, we use an SNN with a single hidden
layer, to apply SP in classifying Electroencephalography (EEG) signals of two publicly available datasets.
We considered classification accuracy as the learning capability and applied metaheuristics to derive the
optimised number of neurons for the hidden layer along with other hyperparameters of the network. The
optimised structure was then compared with overgrown and undergrown structures to compare the accuracy,
stability, and behaviour of the network properties. Networks with SP yielded ~94% and ~92% accuracies
in classifying wrist positions and mental states(stressed vs relaxed) respectively. The same SNN developed
for mental stress classification produced ~77% and ~73% accuracies in classifying arousal and valence
states. Moreover, the networks with SP demonstrated superior performance stability during iterative random
initiations. Interestingly, these networks had a smaller number of inactive neurons and a preference for
lowered neuron firing thresholds. This research highlights the importance of systematically selecting the
hidden layer neurons over arbitrary settings, particularly for SNNs using Spike Time Dependent Plasticity
learning and provides potential findings that may lead to the development of SP learning algorithms for
SNNs.

INDEX TERMS Artificial neural networks, structural plasticity, electroencephalography, evolutionary

computation.

I. INTRODUCTION
Spiking Neural Networks (SNNs) referred to as the third
generation of neural networks [1], are capable of accommo-
dating pattern recognition and function approximations with
greater computational efficiency [2]. This can be credited to
the approach of adopting biologically inspired information
processing techniques in SNNs. Although this approach does
not guarantee better accuracy in pattern recognition tasks, it is
more likely to give detailed insight into brain-like comput-
ing [3], such as event-based spatiotemporal data processing.
However, the advantages of SNNs cannot be fully uti-
lized in Machine Learning(ML) tasks due to the lack of
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robust and well-justified learning techniques [2]-[4], which
inhibits accuracy. Therefore, it is a common practice to make
SNNs larger and deeper [5], [6]. Additionally, SNN's operate
with many hyperparameters, which can make network imple-
mentation and optimisation more computationally expensive.
To resolve these issues, it is important to better understand the
unified function of neurons, synapses and hyperparameters in
accurately recognizing patterns.

The remarkable pattern recognition capability of the mam-
malian neocortex is achieved with a power consumption
of 10 to 20 Watts [7]. One key attribute that accommo-
dates this phenomenon is structural plasticity (SP). This is
the self-regulation capability of neuronal circuits which was
initially investigated by [8]. Moreover, neuroscience liter-
ature [9]-[12] further highlights the positive impact of SP
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on learning. Though brain-inspired learning concepts such as
spike time dependent plasticity(STDP) [13], [14] and its vari-
ants are being applied for training SNNs, the working of SP in
an STDP learning environment is rarely investigated. Studies
exploring the interplay between SP and computational prop-
erties of neurons and synapses such as firing thresholds are
even rarer.

In this paper, we explore the impact of systemati-
cally varying the number of neurons in the hidden layer
(denoted as 1) based on prior learning, on ML performance.
Furthermore, we investigate the role of hyperparameters
(i.e., intrinsic properties of neurons and synapses) under
this process to provide better insights to further expand the
knowledge in the area. For this purpose, we use metaheuris-
tics with SNNs. To the best of our knowledge, this is the
first time where the impact of n on hyperparameters and
network performance is analysed quantitatively and quali-
tatively. Our research used a 3 layered SNN architecture
and two publicly available Electroencephalographic (EEG)
datasets [15], [16].

This paper is organized as follows. Section II presents
a summary of research in the application of SP in SNNs.
Section III introduces the two EEG datasets, annotation and
encoding procedures. Section IV describes the SNN setup
and learning procedures involved. In Section V, we intro-
duce the structural optimisation techniques and experimen-
tal framework. Section VI presents results and observations
which is discussed and concluded in Sections VII and VIII,
respectively.

Il. STRUCTURAL PLASTICITY (SP) IN SNNs

In this section, we summarise SP methods found in SNN
literature and, highlight the research gap. Here, we commonly
refer to all structural adaptation methods in SNN literature as
SP. This includes both growth and pruning of neurons and/or
synapses. When we consider SP in SNNGs, all research in the
area can be divided into two main categories. Use of SP as a
learning mechanism introduced in [17]-[20] or as a method
to increase efficiency [21], [22].

In previous research [17], a four-layered SNN was intro-
duced with 2D maps of integrate and fire neurons, specifically
designed for visual recognition tasks. The first two layers
filter incoming samples according to contrast and orientation.
The third layer of this SNN learns using rank order(RO)
rule [23]. Each time a sample is presented to the network,
a new neuronal map is created in the third layer. Similarity
of the newly created map with already exciting maps is
calculated by applying inverse Euclidean Distance measure
between weight matrices. If the similarity exceeds a pre-
defined similarity threshold value, maps are merged and, if
not, maintained separately. For each of the maps in the third
layer, a single neuron is maintained at the fourth layer. The
synapse in this layer responds only to excitatory signals where
weight is increased by +1 for each spike arrival. During
inferencing the class specific neuron at the fourth layer
spikes.
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Another SP algorithm is introduced in [18], a three layered
SNN with population coding introduced in the first layer with
multiple delays. The hidden layer consists of RBF neurons
where the sample representative capability of a given input is
determined by the time taken to produce a spike. Therefore,
the neuron that spikes first in the hidden layer is considered
as the winner neuron. The time taken by the winner to fire,
is compared with a predefined threshold to decide the new
neuron addition (i.e., existing neurons is not representative
enough). Similarly, if two winner neurons fire with a certain
time gap that is below a predefined pruning threshold, one
neuron is removed (i.e., two neurons demonstrate similar rep-
resentative capability). In the case of neuron addition, scaled
weights are assigned to the newly added neuron, making it
fire first for the current sample. STDP and anti-STDP rules
are used to update the weights between hidden and output
layers. Rate coding is used at the output layer to determine
the class of a given input.

In [19], two-layered SNN is introduced with SP applied at
the output layer. The input layer of the network is used for
population coding and the output neurons are leaky integrate
and fire (LIF) neurons. The weights between the layers are
updated using the modified RO rule. The class of a given
input signal is determined by the neuron that produces a
spike earliest at the output layer. When a new sample is
propagated, if the timestamps of the first spikes produced
by output neurons exceed a predefined threshold, a neuron is
added and, if it is below the threshold, the sample is skipped.
The time gap between the predefined threshold and the actual
spike time for the current sample determines whether a new
neuron should be added, sample to be skipped or weights
should be updated.

An online learning mechanism based on adaptable
connectivity is introduced in [20]. In this study, a winner-
takes-all network is implemented with a single layer of
LIF neurons with multiple synapses. A separate connection
matrix is maintained which keeps a track of the connections to
synapses and input streams. The efficacy of a certain connec-
tion to make a neuron spike is being calculated using STDP
inspired learning algorithm. This value of spike efficacy is
then compared with a dynamic threshold value to allow the
elimination of connections after each training epoch. There-
fore, apart from weight learning, synaptic rewiring takes
place.

Pruning is another form of SP applied mainly to increase
efficiency, often at the cost of learning capability. In [21],
researchers introduce a synaptic pruning method based on
STDP weights. There, a pruning threshold is defined and
STDP weights below the threshold values are pruned. In the
same research, the applicability of weight quantization is
introduced which restricts all the values in the trained weight
matrix to a predefined scale. Another form of synapse elimi-
nation is Soft-Pruning [22], where synapses selected to prune
are set to their lowest value instead of completely removing
during training epochs. The total elimination of synapses is
made once training is completed. Both methods have proven
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to have the capability of reducing the network parameters
drastically while maintaining accuracy performance up to a
certain extent.

As discussed [21], [22] are methods where SP can be
implemented to increase resource efficiency which is par-
ticularly important in hardware implementations of SNNs.
In contrast, [17]-[20] introduces SP as a form of learning
method where neurons are added and/or removed with prede-
fined thresholds to obtain desired spiking patterns. However,
these methods are not intended to explore the impact of
under STDP learning or the impact of the same on overall
ML performance and intrinsic properties of the network.

Ill. DATA USED IN THE STUDY

SNNs process and communicate information with sparse and
asynchronous binary signals called ‘spikes’ [4]. This method
of operation combined with unsupervised learning methods
such as STDP makes SNNs an ideal solution for exploring
the dynamics of spatiotemporal data [2], [3], [24]. EEG is
one such data type with properties of autocorrelation and
heterogeneity built into the temporal signal. In contrast to
studies [25], [26] using manual feature extractions, we have
used an SNN architecture with STDP learning for automated
spatiotemporal feature recognition for pattern classification.

A. EEG DATASETS

1) DATASET 1- WRIST FLEXION DATASET

This dataset is from a study conducted to test the feasi-
bility of an SNN architecture in detecting motor execu-
tion and motor intention [15]. EEG was collected from
3 healthy participants when performing 3 different wrist
positions, namely flexion, extension, or rest. EEG was
recorded using 14 channel Emotive Neuroheadset with
international 10-20 locations and each recording lasted
for 20 seconds. Recordings were obtained under an eyes-
closed state minimizing artefacts due to eye blinking and,
no additional data cleaning techniques were utilised except
for the data encoding. The recordings were sampled at
128 Hz without additional data preparation steps. (Dataset is
available at https://github.com/KEDRI-AUT/neucube-cloud-
sample-file/blob/master/wrist_movement_eeg.zip)

2) DATASET 2- DEAP DATASET

We used an extraction of DEAP dataset [16] to detect
emotional stress. This dataset consisted EEG recordings
of 32 healthy participants collected while watching 1-minute
video clips, consequently annotated by each individual for
valence and arousal using a self-assessment manikin [27].
Each recording was conducted using 32 channels at 512Hz.
Our experiments used 32 channel data downsampled to
128Hz, filtered with a 4Hz to 45Hz bandpass filter, and EOG
removed. (The main pre-processed dataset is publicly avail-
able at https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
download.html). We then normalised each sample to bring
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FIGURE 1. Data preparation process used for dataset 2.

all values to a common scale as per Fig.1. This process was
conducted on all samples prior to data encoding.

B. DATA ANNOTATION

Firstly, we converted all samples of both datasets into comma-
separated values (CSV) file format. Therefore, each sample
file represented the format of an m x n matrix with rows
representing time points and, the column representing EEG
channels (i.e., Features/Attributes).

1) DATASET 1- WRIST FLEXION DATASET

A sample of this dataset is a 128 x 14 (i.e., time steps X
channels) matrix. The dataset comprised 60 samples in total,
with 20 samples corresponding to each of the wrist position.
We annotated wrist flexion as class one, extension as class
two, and resting state as class three.

2) DATASET 2- DEAP DATASET
The extraction from the main DEAP dataset used the follow-
ing equations,

Stressed = (Arousal > 5) N (Valence < 3) @))
Relaxed = (Arousal < 4) N (4 < Valence < 6) (2)

obtained from [28]. We assigned stressed samples as class one
and relaxed as class two. A sample of the selected dataset
is in the form of 252 x 32 (i.e., time steps x channels)
matrix. A total of 208 samples were obtained using the above
equations with 104 samples for each class. This same data
extraction method with DEAP dataset was carried out by [29],
[30] and [31] which enables performance comparison.

C. DATA ENCODING

Before feeding the data into the SNN, a spike conversion
takes place. For this, we used the Address Event Represen-
tation (AER) [32] for both datasets considering the repre-
sentation and noise filtering capability. Equation (3) provides
the threshold calculation, where M (dif ) and Std (dif ) denotes
the median and standard deviation of temporal difference
signal dif. A dif of a particular EEG channel is calculated
by subtracting amplitude at time ¢ by the amplitude at # — 1.
The threshold factor f is set by the user (In our experiments
this was set to 0.5). Once Tr is calculated according to (3),
dif amplitudes at each time point are compared. If the dif
amplitude exceeds Tr at time ¢, an excitatory spike is emitted
and if the dif amplitude drops below - Tr, an inhibitory spike
is emitted.

Tr = M(dif ) + f * Std (dif) 3)

As shown in Fig.2 where peaks of the original signal are
represented with a volley of spikes, this encoding algorithm
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FIGURE 2. Spike representation of FP1 channel extracted from a stressed
class sample. The top plot illustrates the original signal (Blue) and
reconstruction of the same using spikes generated (Red).
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FIGURE 3. SNN architecture used for classification task using dataset
2 accommodating 32 inputs.

gives prominence to amplitude fluctuations, enabling preser-
vation of salient events in the EEG signal. This method can
filter out minute fluctuations caused by signal noise.

IV. SNN ARCHITECTURE

In our experiments, we used a 3-layered SNN with leaky inte-
grate and fire (LIF) neurons, developed based on the JNeu-
Cube framework, publicly available at https://github.com/
Auckland-University-of-Technology/NeuCube-java.

The input layer consisted of pairs of nodes capable of
accommodating both excitatory and inhibitory spikes. The
number of pairs depended on the number of EEG chan-
nels. (i.e., for Dataset 1, 14 pairs and dataset 2, 32 pairs).
We fully connected the input to the hidden layer with pseudo-
random weight initiations following the gaussian distribution
and an unsupervised learning strategy based on spike time
dependency(STDP) algorithm [13], [14] to update weights.
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The hidden to output layer also followed fully connected cri-
teria. The weight update strategy was inspired by deSNN [33]
algorithm.

A. LEAKY INTEGRATE AND FIRE NEURONS

For the neuron model selection, we focused on using a simple
biological representation with tractability. Therefore, we used
LIF model described in [34]. The behaviour of a LIF is
modelled using a resistor-capacitor circuit adhering to the
following equations,

d
E(U) = [Rl(t) — (v — Urest)] /Tm 4

where v denotes membrane potential, R resistance, I(;) for
instantaneous current, v, for resting voltage and 7, the
membrane time constant, which is calculated as,

Tn = RC 5

and when membrane potential v exceeds a defined threshold
Urhresh» @ spike denoted as s™ is generated i.e.,

"2 Vi) = Ughresh (6)

B. SPIKE TIME DEPENDENT PLASTICITY

STDP is a temporally asymmetric form of Hebbian learning
which depends on the spiking time between pre and post-
synaptic neurons to adjust the weight of the synapse [14].
Therefore, STDP is a local learning rule i.e., it does not
consider the information of other synapses for weight update.
The significance here is that STDP enables neurons to dis-
criminate temporally distinct inputs and then integrate them
to form a meaningful output [35]. Hence by using STDP
in a fully connected network, we ought to capture the pat-
terns between spatially distributed yet temporally synchro-
nized spiking activity. One of the drawbacks in using STDP
for learning is the runaway synaptic potentiation, i.e. the
synapse getting caught up in a potentiation loop that increases
weight even if the information coming into the synapse is
insignificant [36]. For the experiments discussed in this paper,
we have restricted the weight increase by defining boundaries
(+0.1 and —0.1) and we have introduced inhibitory nodes in
the input layer to balance the spiking activity.

The formalized mathematical model for STDP can be
interpreted using (7) adapted from [37]. Depending on
the coincidence between spiking activity within the learn-
ing window (i.e. the time window considered for weight
adjustments between the pre and the post-synaptic spike),
the long-term potentiation (LTP) i.e. synaptic strengthening
by weight increasing or long-term depreciation(LTD) i.e.
synaptic weakening by weight decreasing takes place accord-
ing to (8) and (9) [13].

y z
Awij =3 > Fa"—1) (M
Flan = Ay 78799 At >0 (8)
Fian = —A_ 818 Ap <0 9)
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As per (7), the weight adjustment Aw;; is an accumulation
of weight fluctuations calculated using function F over pre-
synaptic spikes occurring from k to y and post-synaptic spikes
occurring from m to z, where t{" represents post-synaptic spik-
ing times and t}‘ represents pre-synaptic spiking times. In (8),
At is the time gap between the two spikes and A represents
positive modification factor and tpos denotes the learning
window for positive weight modifications. Vice versa, equa-
tion (9) denotes the negative weight modification with rel-
evant modification factor A_, and learning window, tneg.
During our experiments, Az was held equal and constant at
10 ms for excitation and inhibition, according to previous
experimentations [14]. It is also understood that inequality
of the same would create biases causing misrepresentations.
Moreover, A and A_ were selected as parameters to be tuned
with a starting value of 0.001. The selection of these values
depended on the simulations conducted with the encoded
data.

C. CLASSIFIER LEARNING

We used a version of the Dynamic Evolving Spiking Neural
Network (deSNN) [33] algorithm to create and adapt weights
from hidden to output layer. This segment of the network
considers the global activity of the hidden layer for learning
and inferencing. Therefore, with STDP, it is a combination of
local and global learning, a contrast to methods using only
RO learning (i.e. global learning only) [17], [19].

The output layer (i.e., the sample classifying layer) is a
setup that increases its number of neurons with each passing
sample. Therefore, during the training cycle, each sample will
be represented with a neuron at the output. This neuron is
fully connected with the hidden layer. Initial weights of the
hidden to output layer were established according to rank
order rule [23] as per (10),

Who = ot.mod ™ :0) (10)

where wy, represents synaptic weight between hidden and
output neurons. ¢ is the learning parameter; the constant
factor which decides the magnitude of the weight. For these
experiments, we have set this to 1 based on previous simula-
tion experience. The modulation factor mod takes the values
between 0 and 1. Each synapse coming from the hidden layer
is set with an initial weight based on the spike arrival order
order(h, 0). Here, mod is set to 0.8, and the corresponding
neuron synapse will get a weight of 1 since the order(h, o)
would be set to 0. The spiking proceeded will receive weights
from order(h, o) increased 0 onwards.

Once the initial weight of each synapse is set, using two
parameters namely positive drift and negative drift, weights
are updated according to the spike arrival at each time step.
The values of these parameters were tuned. If a spike arrived
at a given time step, the new weight was set to wp,+ positive
drift, or wp,— negative drift otherwise.

At the beginning of testing, the output layer consists of
N number of neurons, each representing a training sample
with the label being known. During testing, a sample is
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propagated, a new neuron is created, and weights evolved at
each time step. Thereafter, the weight vector of that sample
is used to calculate the Euclidean distance. According to
the Euclidean distance, the model selects the closest training
sample neuron and predicts by assigning the same label to the
testing sample.

Considering the uniqueness of each participant’s EEG
data, we used this technique for the classification layer
without neuron clustering in contrast to methods in
[17], [19], and [33].

TABLE 1. Hyperparameters of the experiment.

Range Tuned
Step Hyperparameter or Held
Constant
AER Encoding Spike Threshold 0.5
LIF Reset Voltage 0
Resistance 1
Capacitance 10
Voltage Threshold* [0.01 - 0.5]
Refractory period* [2-10]
Local Learning STDP Positive Modification
Time Window 10 ms
STDP Negative Modification
Time Window 10 ms
Random weight initiation
boundaries [-0.1,0.1]
Maximum weight bounds [-0.1, 0.1]
Positive Synaptic Modification* [0.001 —0.05]
Negative Synaptic Modification* [0.001 —0.05]
Global Learning RO learning parameter 1
RO modulation factor 0.8
Positive Drift* [0.001 - 0.05]
Negative Drift* [0.001 — 0.05]

Describes all hyperparameters used in the SNN algorithm. The
hyperparameters used for tuning are noted with *, with search range.

V. NETWORK OPTIMISATION

When it comes to SP, it is not justifiable to only change
n and evaluate the performance of the network since the
6 hyperparameters mentioned in Table 1 directly influence
spiking activity and classification accuracy. Therefore, each
network with a certain n requires appropriate hyperparame-
ter values. This section describes the process of tuning the
hyperparameters.

A. DIFFERENTIAL EVOLUTION

We used Differential Evolution (DE) (i.e., DE/rand/2/bin ver-
sion) as the optimisation algorithm to search for the most
suitable parameters/hyperparameters that would produce the
highest fitness. Amongst the advantages of DE, the capability
to handle non-differentiable cost functions with minimum
control variables, computational efficiency achieved through
the independent generation of populations using stochastic
perturbation and good convergence properties that have been
experimentally proven were most important [38].
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FIGURE 4. The fitness function of a single network initiation.

In DE, the greedy criterion is used to determine the accep-
tance of a given vector solution and an annealing process
is introduced at trial vector generation to counter the search
process getting trapped in a local optimum. A selected tar-
get vector solution performance is tested with a trial vec-
tor solution developed based on a mutation and crossover.
The two variables of the algorithm are the weight factor
used to amplify the differential variation in mutation and
the crossover constant that determines the probability of the
component representation from the mutant vector. In these
experiments, we set the weight factor at 0.1 and constant
for crossover probability at 0.8 according to the heuristic
findings of [38].

B. EXPERIMENT FRAMEWORK

A single trial solution is tested on 10 pseudo-random network
initiations. For each network initiation, data samples were
selected randomly based on a 0.7 split, 70% of samples
for training and 30% for testing. Each network initiation
was validated for classification accuracy with 5-fold cross-
validation and a testing round with unseen data. The fit-
ness function of a given trial solution was obtained as the
median of average accuracies of cross-validation and testing.
(i.e. (average cross-validation accuracy over 10 initiations +
average testing accuracy over 10 initiations)/2). Termination
criteria were set to 100 iterations or maximization of the
fitness function. Each iteration consisted of 50 agent solu-
tions. Enabling validation of a maximum of 5000 candidate
solutions.

1) EXPERIMENT 1 — OPTIMISING HIDDEN LAYER NEURON
COUNT AND HYPERPARAMETERS

In this experiment, we optimised 1 and the 6 hyperparameters
mentioned in Table 1. We selected 30 to 200 as the search
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FIGURE 5. Representation of a sample trial solution vector with 6
hyperparameters (given under headings highlighted in blue) and hidden
layer neuron count (highlighted in red) which was only used in Exp. 1.

space for n. This range was selected following random per-
formance testing conducted. We conducted the same experi-
mental procedures to both dataset 1 and dataset 2. Fig.5 shows
the sample candidate solution used for experimentl. After
completing experiment 1, we obtained structurally optimised
networks with corresponding hyperparameter values that pro-
duced the highest fitness. This method enables the application
of SP based on the network performance where each iteration
generates information on 7 and other network properties that
would enable better performance. This information is used as
feedback in regenerating candidate solutions.

2) EXPERIMENT 2 — OPTIMISING COMPARATIVE NETWORKS
If we consider the structurally optimised network to have p
number of neurons in the hidden layer, we created 2 addi-
tional networks, with 1.5 times of p and 0.5 times of p
(i.e., A network with 50% more and 50% fewer hidden
neurons). These two networks (referred to as overgrown and
undergrown) were separately optimised using DE to find the
best values for the 6 hyperparameters mentioned in Table 1.
The search spaces and the number of candidate solutions
remained the same. Therefore, we concluded Experiment 2,
with 3 optimised networks, for each dataset. (Optimised
parameter values for each of the network and dataset is
appended as Table 7).

During the evaluation stage, we reinitiated a selected net-
work 30 times with optimised parameters and pseudo-random
weights that followed gaussian distribution. During each ini-
tiation, data was split randomly with 70% for training and
30% for testing. This allowed a statistical evaluation of the
performance.

VI. RESULTS

A. TESTING NETWORK PERFORMANCES

1) DATASET 1-WRIST FLEXION DATASET

As shown in Fig.6, the SNN with 111 hidden neurons pro-
duced ~94% average classification accuracy for the 3-class
classification task. The standard deviation of the network
performance was recorded at 0.048.

We compared this network performance with other opti-
mised networks. Fig.7 shows the distribution of testing accu-
racy across the 3 networks. The network with 111 neurons
produced a 7% better average accuracy than 56 neurons.
Moreover, 111 neurons produced lesser performance vari-
ance comparatively. The average accuracy of 111 neurons
and 167 neurons was almost similar. Each of the networks
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FIGURE 6. Statistical analysis of the performance for dataset 1 across
30 random initiations.

1 f‘ + - T
| I
: I |
oss! | ] 1
I
T
> 09 | o
L ,
-
o |
< o085 | |
g ' !
@ | |
2 os I + 1 1
I
I
075 —— + 1
0.7 + o 4
56 11 167

Number of Neurons in Hidden Layer

FIGURE 7. Comparative statistical analysis of the generalization
capability of the 3 networks for dataset 1.

TABLE 2. Network performance comparison dataset 1.

Network (n)  Testaccuracy  Cohen's Kappa Fl-score
56 0.865 +0.091 0.678 £0.129 0.817+0.114
111 0.937+0.048  0.819 +0.099 0.909 + 0.068
167 0.922+0.058  0.819+0.122 0.889 £ 0.078

produced a single outlier performance with 111 neurons hav-
ing the highest accuracy amongst them.

Moreover, we compared the performance of the 3 net-
works on Cohen’s Kappa and Fl1s-score using the confusion
matrices produced during iterative network testing. A statis-
tical summary of the performance is given in Table 2. SNN
with 111 neurons performing better than other SNNs in all
measures.

Table 3 compares the performance of this study with pre-
vious studies that used the same dataset for classification.
Please note that [15] used a 50:50 split for training and
validation for the experiments with NeuCube architecture
without hyperparameter optimisation.
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TABLE 3. Dataset 1 classification accuracies.

Average
Study Method Classification
Accuracy
Taylor[15] MLP 55%
SVM 62%
NeuCube architecture 76%
This Study 3-Layer SNN 93.7+4.8%

Number of Network Initiations

0.86 0.88 0.9 092 094 096 098 1 1.02
Testing Accuracy

FIGURE 8. Statistical analysis of the performance for dataset 2 across
30 random initiations.

2) DATASET 2-DEAP DATASET
We obtained ~92% average classification accuracy for
2-class classification tasks used to determine between
Stressed and Relaxed brain states using the SNN with
130 hidden layer neurons. As shown in Fig.8, the Standard
deviation of the network performance was recorded at 0.025.
Fig.8 shows the distribution of testing accuracy across the
3 networks. The network with 130 neurons produced 6%
better average accuracy than 65 neurons and 1% better than
195 neurons. Moreover, 130 neurons produced comparatively
smaller performance variance.

TABLE 4. Network performance comparison dataset 2.

Network (n)  Testaccuracy  Cohen's Kappa Fl-score
65 0.860 +0.033 0.615+0.076 0.8 +£0.048
130 0.924 +0.025 0.823 £0.073 0.909 +0.039
195 0.910+0.036 0.631+0.086 0.796 +0.053

Table 4 presents the Cohen’s Kappa and Fl-score cal-
culated over testing iterations where structurally optimised
network indicated to have better performance in all measures.

Table 5 presents a comparison of the studies that used the
same data previously for classification tasks with different
machine learning techniques and feature extraction methods.
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TABLE 5. Dataset 2 classification accuracies.

Average
Study Method Classification
Accuracy
Bastos[29] K-NN with feature extraction 70.1%
Garcia[30] SVM with feature extraction 81.31%
Shon[31] K-NN with feature extraction 71.76%
This study 3-Layer SNN without feature 02.4+25%

extraction

TABLE 6. Dataset 2 classification valence and arousal dimensions.

Valence Arousal
Method Fl Fl
Accuracy Score Accuracy Score
GNB[16] 57.6% 56.3% 62% 58.3%
DBN[40] 60.9% . 51.20% .
gﬁw RNN 25 06% ; 74.12% -
13331\]\/11_[ n 58.40% . 64.20% .
DNNJ42] 75.78% . 73.13% -
CNN[42] 81.41% - 73.36% -
DBN-GC-
:zzzﬂlble 76.83% 70.15% 75.92% 69.31%
DNN[39]
This sud 73.10+ 69.5 + 76.86 + 70.92 +
Y 15% 1.8% 13 % 1.7%

We tested the same SNN with hyperparameters used for
stress state classification, for emotion recognition based on
valence and arousal dimensions with 10-fold cross validation
to compare with the results summarised in [39]. Table 6
presents this performance comparison.

B. INACTIVE NEURONS AND LIF THRESHOLD
With the differences in performance observed, we analysed
the average inactive neurons to the total number of hid-
den layer neurons ratios for the three networks for each of
the dataset. We obtained the average inactive neuron count
from the iterations used for statistical performance evaluation
in part A. The results of this analysis are summarized in
Fig.10 for both datasets. We observed a reduction in the
ratio, for the optimised network structures for both datasets.
In other words, in comparison to undergrown and overgrow
networks, the network with the optimised number of neurons
had a lesser number of inactive neurons compared to the total
number of neurons.

In terms of the LIF threshold values, for 56, 111 and 167
n values, we recorded 0.081, 0.064 and 0.067 respectively
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FIGURE 9. Comparative statistical analysis of the generalization
capability of the 3 networks for dataset 2.
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FIGURE 10. Graphical representation comparing inactive neurons to total
neurons of different structures tested with dataset 1 (Blue) and
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FIGURE 11. LIF Threshold selections for the SNNs with different y values
for dataset 2.

for dataset 1. Similarly, for dataset 2, for 65, 130 and 195
values, LIF threshold was recorded at 0.049, 0.013 and 0.059.
This indicates a drop in LIF threshold for the structurally
optimised network for both datasets. Fig.11 graphically rep-
resent this drop for dataset 2.
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VII. DISCUSSION

One of the key findings of this study is the level of
performance and stability obtained using SP, reported
in Table 2 and IV. For all performance measurements
namely, accuracy, F1-Score and Kappa, network with SP
produced comparatively higher mean and lower standard
deviation. Therefore, in addition to having higher accuracy,
the SP network performed well in terms of adaptability
(i.e., performance stability under changing inputs and/or
environments) [43]. This speculation was made with the
randomization we introduced in, sample selection, weight
initiations and input mapping, during network testing. This
indicates the importance of considering SP in ML tasks,
particularly when using STDP for learning, which aligns with
neuroscientific findings [9]-[12]. Moreover, it is also clear
that for SP to provide this performance, the corresponding
hyperparameters needs to be optimised.

Investigating the better performance of SP revealed low-
ered LIF thresholds for both datasets in the optimised struc-
ture which results in higher probability for the neurons to
fire. Fig.11 presents this finding for dataset 2. However,
this spiking was sparser amongst neurons since the relative
number of active neurons of the optimised networks were
increased (i.e., inactive to total number of neurons decreased)
as per Fig.10. This relates to most neurons having balanced
firing rates, preventing selected set of neurons from over-
activation which is desired in SNNs [5]. However, this desired
state is not achieved in bigger networks presented in this
paper. For an instance Fig.13 (appended), indicates firing
activity of the trained network for dataset 1, where overgrown
network with 167 neurons produced 5 over-activated neurons.
These over-activated neurons can be attributed to, excessive
exposure to similar patterns in training data and/or runaway
synaptic potentiation [36] caused by STDP. Either case, this
will have a negative impact on generalisation capability as
observed. Since the classifier presented here is based on RO
and spike counts, over-activation restrains pattern separation.
This spiking domination can be potentially minimised by
introducing self-regulation methods such as inhibitory neu-
rons [12], lateral inhibition and homeostatic intrinsic plas-
ticity [5] or reducing training simulation time [44]. As per
the smaller networks presented, the level of activation is
insufficient to capture the temporal dynamics in the data.

Furthermore, we have obtained the state-of-the-art classi-
fication accuracies of ~94% and ~92% for datasets 1 and 2,
respectively. Moreover, the same SNN developed with SP
for mental state recognition yielded 76.86% and 73.1% in
classifying arousal and valence, respectively under 10-fold
cross validation. As per Table 6, this result is compara-
ble with contemporary deep learning methods tested using
DEAP dataset. The performance of this method can be
attributed to the capability of SNNs to learn from temporal
spiking sequences, especially favouring data that are spa-
tiotemporal by nature [2], [3], [24]. Responsiveness of STDP
learning in recognising temporal patterns in the data auto-
matically [45]-[47] may further enhance the said capability.
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TABLE 7. Optimised parameter values.

Step Hyperparameter Exp. 1 Exp. 2
Dataset 1 ~ Voltage Threshold 0.064 0.081 0.067
Refractory period 5.5 5.6 6.1
STDP Positive Synaptic
Modification 0.0027  0.0015 | 0.0038
STDP Negative Synaptic
Modification 0.0029  0.0018 | 0.0041
Positive Drift 0.0372  0.0005 | 0.0114
Negative Drift 0.0257  0.0071 0.0129
Number of neurons 111 56* 167*
Dataset 2 Voltage Threshold 0.013 0.049 0.052
Refractory period 5 5 5
STDP Positive Synaptic
Modification 0.079 0.0009 | 0.059
STDP Negative Synaptic
Modification 0.001 0.001 0.001
Positive Drift 0.040 1.05 0.025
Negative Drift 0.001 0.001 0.001
Number of neurons 130 65%* 195 *

Presents optimised values of the hyperparameters used in the SNN
algorithm. The hyperparameters with * indicate values set manually.
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FIGURE 12. Hyperparameter (i.e., Neurons & synaptic properties)
preferences over 3 SNN structures compared for dataset 1(Left) and
dataset 2 (Right).

Interestingly, [39] also demonstrates the importance of fusing
temporal and frequency characteristics of EEG for affect
recognition. However, in SNNs, the formulation of an algo-
rithm for salient pattern recognition continues to be challeng-
ing. In this study, we have empirically studied the importance
of SP in the said formulation process and the findings corre-
late with foundational works in SNNs [1] showing the ability
to form function approximation with lesser computational
units (i.e., neurons).

In terms of the STDP learning algorithm, we could
not observe particular patterns of hyperparameters com-
mon to both datasets (Fig. 12 appended), however, larger
values for Ay and A_ seemed to push synaptic values
towards the boundary values quicker (i.e., with fewer training
samples) thereby missing valuable information in the data
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FIGURE 13. Comparison of firing count of each neuron after training with
dataset 1 for network with 111 neurons (Blue) and 167 neurons (Orange).

during training. It is important to experiment further on STDP
weight fluctuations with time and spiking activity of the
network during training to understand behaviour patterns of
Ay and A_ that correlates with SP.

VIIl. CONCLUSION & FUTURE WORK

The “tuning” of SNN structures is often seen as a matter of
expert opinion and may not always be reported in sufficient
depth to reproduce existing results. There is a danger that
such a “black box” approach may reduce the credibility and
acceptability. While this work does not solve this problem
completely, it offers some potential approaches to move for-
ward in the area.

The findings of this study a) challenge the common prac-
tice of having larger n values to produce better accuracies in
SNNs and discourage arbitrary setting of the same, but do not
suggest that there is one perfect neuron structure for a given
data modelling task, b) highlight the importance of SP in
achieving higher accuracy and adaptability of the network to
increase generalization capability, and c) demonstrate struc-
turally optimised networks producing sparser spiking activity.

The methods introduced in this paper apply SP based
on evolutionary knowledge of network performance passed
on over iterations. Structural adaptation using STDP learn-
ing can only make SP much more efficient. Extending
this research, we foresee the possibility of developing
autonomous SP algorithms using the ratio of active to total
number of neurons as a measure of network learning con-
trolled by n and LIF threshold. This can then be applied as
an extension of STDP learning.

APPENDIX
See Table 7 and Figs. 12 and 13.
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