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ABSTRACT

Vietnam is a developing country with a projected high economic growth. The energy
sector plays an essential role in its socio-economic development, with an average of 5%
increase in annual energy demands. As a result of its growing energy consumption, the nation
is hugely reliant on imported fossil fuels. In the foreseeable future, oil-based fuels are expected
to become somewhat limited and even too exhausted. Coal resources, in general, are not easy
to exploit or utilise due to notable climate change, economic and technical limitations. This
situation increases pressure on national energy security in Vietham. Considering the high solar
radiation footprint in Vietnam, future assessments of the availability of renewable energy
resources, through research and development initiatives and modelling studies, such as the one
performed in this research study, can effectively provide meaningful information to
Vietnamese policymakers in seeking alternative energy resources to replace the finite oil and
coal reserves. Freely available renewable resources, such as solar energy, can be ideal
sustainable solutions to satisfy the needs of energy security into the future. Research into solar
energy forecasting has great potential in the search for alternative energy resources.

Since the availability of solar radiation at the earth’s surface is directly proportional to
the harvested solar power at any specified location, the forecasting of global solar radiation is
essential for continuous monitoring and supply management of solar energy through solar
generation systems. Therefore, the forecasting of solar radiation has been studied extensively
in literature, using many forecasting methods, but these methods have been largely based on
physical and statistically driven models. In spite of their usage, these methods come with
certain limitations, such as the underlying assumptions of initial conditions, mainly with
physics-based models. The concept of persistence to forecast future solar radiation, as used in
previous methods, can also be a challenging factor to attain good accuracy. In contrast, physical
models may not adequately address issues of stochasticity (i.e. rapid change in solar radiation
or its predictor variable, e.g. cloud cover) datasets, or the issues of data non-stationarity. As an
alternative forecasting method, machine learning approaches, which capture historical
behaviour of solar radiation or its predictor variables to model utilising artificial intelligence
algorithms are now becoming prominent. Such a model is constructed and trained to learn the
patterns in historical solar radiation (and related) datasets, to build a non-linear mapping
scheme between the antecedent (i.e. lagged) inputs and the target (i.e. solar radiation) dataset.
This thesis focuses on developing and evaluating latest machine learning models for global
solar radiation forecasting in the context of Vietnam, where the potential utility of machine
learning models has not yet been fully explored.

The primary aim of this Master of Science (MSCR) thesis is to develop new and
scientifically verified models to resolve the challenges in solar radiation forecasting, addressing
the issues of complexity in predictor and the target datasets while also capturing the non-linear
behaviour of solar radiation. To pursue this aim, the study is based on Long Short-Term
Memory (LSTM) network algorithm built for global solar radiation forecasting. In some other



studies, LSTM has attained superior capability in learning the long- and short-term
dependencies in historical datasets, by employing memory cells that determine the importance
and distinguish between the important and unimportant data features through their input, forget
and output network gates. Consequently, the essential data features are then used to build the
feature engineering and data pattern learning process in the resulting LSTM model. This
research, therefore, utilises the LSTM model to forecast the hourly solar radiation and also
attempt to capture the dependence between consecutive hours on the same day, as well as the
long-term (e.g. seasonal) behaviours to be learned efficiently.

This MSCR thesis, presented as a synthesis of two journal publications, has adopted an
LSTM model incorporating a data pre-processing technique based on the Robust Local Mean
Decomposition (RLMD). The research study area has focussed on solar energy belts, which
are the critical zones in Vietnam for major solar energy projects. The aims of this research
thesis are as follows: (1) To develop a near real-time solar radiation forecasting model using
the LSTM algorithm applied to multiple time-step forecast horizons (this work has been
reported in Journal Paper 1); (2) To further improve the method in the first aim and build a
hybrid forecasting model utilising a data pre-processing technique based on the RLMD method,
and further evaluate the forecasting performance of the resulting hybrid RLMD-LSTM model
using half-hourly global solar radiation forecasting (this work has been reported in Journal
Paper 2 — under review). The overall results of this study show the LSTM model can be used
as a useful utility in global solar radiation forecasting at near real-time horizons. The findings
of this study can have important implications for renewable energy feasibility studies, and also
help in several areas where data-driven decisions may require some of the best practice
forecasting techniques.

In synopsis, the predictive models developed in this MSCR thesis will provide significant
benefits to solar energy generators, authorities for energy operation and distribution, through
new and improved solar radiation forecasting tools. Energy forecasters can therefore adopt
these novel methods, to address the issues of non-linearity and the non-stationarity in energy
usage, by constructing real-time forecasting tailored for energy industries and other
stakeholders.
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CHAPTER 1: INTRODUCTION

1.1 Foreword

This chapter first introduces the background of the research topic, which is a basis of the
statement of the problems. This chapter also highlights the two main objectives and briefly

describes the organisation of this research thesis.

1.2 Background

Vietnam is a developing country with an annual average gross domestic product of
around 7%. The energy sector has played a vital role in this growth. Both the primary and final
energy demand has increased over 5% each year, with the primary fuels accounting for such
growth being coal and oil, while the share of renewables has been negligible. Due to this
growing energy consumption, Vietnam has relied on energy imported, including coal and oil,

from foreign countries, which puts its national energy security at severe risk.

Extensive progress in science and technology has improved the comfort of human life.
However, this energy generates environmental risks and energy crises, such as increasing
environmental pollutants and reducing energy resources, which are considered threats to
human life. Hence, the exploitation of renewable energy sources has generated increasing
interest in the pursuit of environmental protection worldwide (Tan et al., 2012). In 2017,
cumulative solar photovoltaic power capacity reached almost 398 GW and generated over 460
TWh, representing around 2% of global power. This growth is projected to continue at a similar
rate in the future. Following the global trends in energy exploration (Luong, 2015; IEA, 2012;
Shem et al., 2019) and recommendations of the United Nations Sustainable Development Goal
that advocates the need for cleaner, affordable and accessible energy in all nations and regions,
Vietnam has recently commenced capacity development for solar energy resources. With its
geographical location close to the solar energy belt, Vietnam can harvest this energy from
freely available sunlight, theoretically providing 60-100 GWh year-1 of concentrated solar
power and 0.8-1.2 GWh year-1 photovoltaic power (Polo et al., 2015). These figures indicate
that consumer power shares drive the continuous growth of solar energy.

Solar energy represents one of the promising options, particularly in photovoltaic power
generation (Farivar and Asaei, 2011). However, solar radiation can be heavily influenced by
rapid changes in natural conditions; hence, it is stochastic (Perez et al., 2014). This variability
has a substantial impact on power grid security in connection with large-scale photovoltaic

1



power generation. Therefore, developing an accurate short-term solar radiation forecasting
model is crucial to ensure the optimum dispatch and management of power systems,

particularly with photovoltaic power generation (Mostafavi et al., 2013).

The commonly available computational models used to forecast short-term solar
radiation include linear regression models, satellite data-based models, and neural network-
based models (e.g. artificial neural network (ANN)) using meteorological parameters (e.g. air
temperature, related humidity). Of these, there are two main classes: physical models and
statistical models. Physical models are based on mathematical equations that describe the
physical state and dynamic motions of the atmosphere. These models are complex non-linear
equations that need strong computing power to solve them. Numerical methods are used to
obtain the approximate solutions of these equations, and these models are also known as
numerical weather prediction (NWP) models. The NWP models are used in forecasting but are
not always available. The errors of solar radiation forecasts based on NWP vary significantly
and depend on the atmosphere's different climate and dynamic motion at the study location
(Wittmann et al., 2008; Zamora et al., 2005; Lorenz et al., 2009). The statistical models based
on satellite data and sky images detect the motion of cloud structures using motion vector
fields. Cloud structure motion is determined from two consecutive cloud index images from
satellite data or sky camera images. The literature on this issue has proposed the errors of
satellite data and sky images-based forecasts (Nova et al., 2005). However, those parameters
are not always available due to high measuring costs and climate conditions, so it is necessary

to develop a new model that can generate meaningful predictions in these circumstances.

With increasing computational technigues, machine learning-based forecasting models
have been successfully proven to provide better performance over the physically-based models
(Alzahrani et al., 2017; Paulescu and Blaga, 2016; Coulibaly and Ouedraogo, 2016). Machine
learning models have also outperformed many of the time series methods (Benmouiza and
Cheknane, 2016; Sfetsos and Coonick, 2000; Hocaoglu, 2011; Rigler et al., 2004; Bracale et
al., 2013; Ming and Ningzhou, 2011; Wenbin et al., 2002) that have utilised historical patterns
to predict solar radiation (Ruiz-Arias et al., 2010; Martin et al., 2010; Moreno-Munoz et al.,
2008; Colak et al., 2015; Rao et al., 2012; Kaplani and Kaplanis, 2012; Lauret et al., 2013;
Ramedani et al., 2014). However, common weaknesses have been reported, such as those
causing bias when extending data volume (Al-Musaylh et al., 2018a; De Leone et al., 2015)
and over-fitting (Voyant et al., 2017). The latest advancements in the deep learning techniques

of machine learning can effectively and accurately solve the above issues. However, they have

2



not been fully explored yet. Notably, the application of these techniques has not yet been

performed in the context of Vietnam.

A better understanding of solar radiation's historical patterns, particularly the highly
chaotic and intermittent properties of short-term signals, can help to provide an accurate
forecast of solar energy. Capturing the patterns of variables by using novel deep learning-based
models, this study implements this forecast of solar energy at different levels with sufficient
time ahead. This knowledge is required to evaluate the stability and regulation of photovoltaic
power, including reverse power management and dispatching to a grid schedule and unit
commitment provided by energy industries. The developed deep learning model can provide
better support for energy security and operation while extending this implementation to other
fields.

This thesis aims to develop new machine learning models based on Long Short-Term
Memory (LSTM) network algorithms, which have a good ability to model time-sequential
datasets. Current literature shows that these models have not been used for solar radiation short-
term forecasting in the specific solar belt locations, in particular, Bac-Ninh (21.2013°N,
106.0629°E); Da-Nang (16.0544° N, 108.2022° E); Central Highlands (24.0330° S, 148.7374°
E); Song-Binh (10.3752° N, 106.4111° E) and Tri-An (11.0843° N, 106.9772° E) in Vietnam.
Moreover, LSTM-based models have been used in multiple forecasting horizons, especially
from one-minute to six-hourly scales in the present study region. This research thesis addresses
these gaps, and so makes a vital scientific contribution towards solar radiation forecasting in
Vietnam, where projected growth in solar energy projects is expected over the next few

decades.

1.3 Statement of the problem

The research into solar radiation forecasting should be taken for several reasons, such as
making proper operations and security, growing the capacity of the existing system and
scheduling distributions (Zhang et al., 2017). In addition, solar radiation is highly variable
because it is driven by synoptic and local weather patterns. This high variability presents
challenges to meeting power production and the demand curve. Solar radiation forecasting is
vital for energy industries, allowing for the set up of contingency mechanisms to mitigate any
deviation from the required production. The underestimation and overestimation of solar
radiation forecasting cause either very high or adverse prices on the intraday market, and

intraday forecast errors determine the need for costly balancing power (Zhang et al., 2017).

3



Consequently, a robust predictive model with minimal inaccuracies is necessary for the context

of the national solar energy market.

Vietnam is now following the global trend of developing renewable energy with the aim
of reducing fossil fuel usage and environmental issues. With a geographic location close to the
equator, Vietnam takes advantage of a high volume of solar radiation; hence solar energy is
one of the significant energy sectors. The national estimated energy consumption is relatively
high and will account for 60% of the national demand in the next five years. Currently, there
are still several errors in forecasts for solar energy from the old forecast technique. An accurate
solar radiation forecasting model is essential to minimize the errors, which can lead to a better

performance of the energy market. Nevertheless, at present, none is available in Vietnam.

Solar radiation can be predicted from historical time-series data with several independent
variables (e.g. temperature, rainfall). Also, the non-stationarity features of solar radiation can
influence the precision and accuracy of forecasting models. To address these issues, a robust
forecasting model from data-driven models is used, which can significantly deal with complex

temporal behaviour of solar radiation.

Data-driven models can manage uncertainties as a common issue in forecasting problems
where physical (i.e. mathematically based) models can be less effective. A review of previous
and recent studies showed that various data-driven models had been successfully adopted, in
which machine learning is the most common technique. Such machine learning includes the
Multivariate Adaptive Regression Splines (MARS) (Srivastava et al., 2019) and Support
Vector Regression (SVR) (Ghimire et al., 2019c; Deo et al., 2016). Moreover, recently deep
learning techniques are more popular due to their advanced benefits for different data
forecasting, such as a Recurrent Neural Network (RNN) (Yona et al., 2013), Long Short-Term
Memory (LSTM) (Ghimire et al., 2019b) and Multilayer Perceptron (MLP) (Azimi et al.,
2016).

Data decomposition methods, such as a robust version of local mean decomposition, are
also required to address the non-stationarity features of those input variables (Liu et al., 2017b).
Furthermore, optimisation and selecting the best parameters are other challenges for solar
radiation forecasting that can be achieved by grid search and trial-and-error techniques.
Therefore, this study investigates the ability of the methods above for solar radiation

forecasting.



An integration of forecasting approaches and decomposition techniques, which can be
used to improve the model’s forecast accuracy, has been rare in short-term solar radiation
forecasting. Motivated by the reasons mentioned above, this study developed a hybrid LSTM
model by integrating LSTM with RLMD, which can analyse the erratic and chaotic solar
radiation better. This thesis assesses the effectiveness of the developed model over multiple
horizons and locations. However, it was essential first to identify relevant research problems.
While these established questions are extensively represented in the following sections, the
research gaps have also been identified at the same time, based on published literature.

1.4 Research aims and objectives

The main objectives of this master thesis are to develop and evaluate the utility of
machine learning algorithms in real-life solar radiation forecasting problems. This thesis also
aims to test these models for their usage in five specific solar-rich locations in Vietham by
presenting a set of two high-quality publications. Therefore, this research study will examine
the viability and explore the most optimal machine learning model for solar radiation

forecasting from a minute to half-hourly horizons.

The primary purpose of this thesis is to develop Long Short-Term Memory (LSTM)
based models for analysing solar radiation in Vietnam. Subsequently, the LSTM is applied
along with Robust Local Mean Decomposition (RLMD) to analyse solar radiation's stochastic

patterns.

This thesis adopts a deep learning technique within a forecasting model framework to
achieve the following specific objectives:

i. Todevelop anear real-time solar radiation prediction model using LSTM for multiple
time horizons (i.e. 1-, 5-, 10-, 15-minute) in the context of Vietnam and to compare
their accuracies with other machine learning models by using visual analysis and
performance metric measures. This objective is achieved and the results are
published in Paper 1 (Chapter 4).

ii. To evaluate the LSTM model's forecasting performance incorporated with a pre-
processing technique — RLMD — in multiple locations in Vietnam in a longer short-
term horizon (i.e. half-hourly). This objective is achieved and will be published in
Paper 2 (Chapter 5).



These objectives have been fulfilled through two journal papers produced as an outcome
of the MSCR Thesis by Publication.

1.5 Organisation of the Thesis

This thesis comprises two parts focusing on two objectives, presented as an MSCR
Thesis by Publication, which covers the two objectives, and with a conclusion that summarises
the challenges, findings, significance and scientific contributions of this study and

recommendations for future work.

Chapter 1 presents the introduction with the background, research gaps and research questions

and also presents the objectives of this study.

Chapter 2 overviews the literature based on LSTM and RLMD and their applications in terms
of solar radiation forecasting. This chapter firstly explains the requirement of short-term solar
radiation forecasting. Secondly, it provides the literature review of Deep Learning and LSTM,
in particular in terms of solar radiation forecasting. Then, a general review of RLMD regarding
its application is presented. Finally, this section summarises a statement of existing gaps from

the above literature review.

Chapter 3 describes the data sources and methodology. This chapter provides general
viewpoints while the specific study area, data and methods are presented in respective chapters.
It also presents the model development process and the equations of the different methods used

in this research.

Chapter 4 presents a published journal article in the journal Energies (DOI:
https://doi.org/10.3390/en13143517). It presents the research results of very short-term (i.e.

multi-horizon) solar radiation forecasting, which covers this research's first objective. It also
explores the application of data-driven models, including LSTM, ARIMA, SVR, MLP, DNN.

Chapter 5 presents as a journal article submitted for a review in the journal Applied Energy. It
describes half-hourly solar radiation forecasting results. It also shows an improvement of

forecast accuracy and reduction in forecast error using the RLMD method.

Chapter 6 covers conclusions and limitations, and recommendations for future research in solar

radiation forecasting.


https://doi.org/10.3390/en13143517

CHAPTER 2: LITERATURE REVIEW

2.1 Foreword

This chapter provides a literature review of methodology for forecast horizon in terms
of solar radiation forecasting. This chapter also provides a brief statement of existing gaps,

which will be addressed in this study.

2.2 The importance of understanding the properties of solar radiation and the short-term
forecasting model

The increase in fossil fuel prices and climate change concern has spurred the demand
for renewable energy resources, which have many advantages, including being
environmentally friendly and sustainable. Solar energy is one of the renewable energies, which
uses solar photovoltaic systems to convert sunlight into electricity. These sources are highly
intermittent and have chaotic properties. Typically, the output of solar photovoltaic is highly
dependent on solar radiation, temperature and different weather parameters. A generative
power generally depends on a numerical weather prediction, which is called a physical model.
The quality of the power forecasting algorithm heavily depends on numerical weather
prediction, which means it decreases with increasing time horizons. Forecasting algorithm
horizons range from short-term forecasts in hourly ranges, mid-term forecasts up to some days,
to long-term forecasts in the range of some weeks. Different time horizons are of interest for
different market participants that help improve the various application of power systems. In
particular, there are several models such as a long-term forecast, a mid-term forecast (e.g. a
day-ahead forecast) (Yang et al., 2014; Pierro et al., 2015), and a short-term forecast (e.g. an
hourly-ahead forecast) (Qing and Niu, 2018; Mellit and Pavan, 2010).

Based on the interest of users from scheduling to management, different time horizons
— namely, very short-term forecasting, short-term forecasting, medium-term forecasting and
long-term forecasting — are considered. In detail, very short-term forecasting concentrates on a
few seconds up to a 30-minutes interval, which is useful in immediate actions. In contrast,
short-term forecasting, ranging from 30-minute intervals to 6 hours ahead, is suitable for load
dispatch planning and operational security. For example, medium forecasting, ranging from a
day ahead forecast, is helpful while achieving significant operational management and cost

optimization; long-term forecasting, from one day to a longer time horizon, is considered.



Solar radiation plays a vital role in the success of solar energy operation, which is
shown in various studies. The solar radiation-based forecasting models provide the best
accuracy compared to other methods (e.g. cloud-based, temperature-based or other
meteorological parameter-based models). However, solar radiation is not always available for
various specific usage purposes (e.g. long-term, medium-term, short-term) due to high
measuring cost and weather condition. It is even more challenging when analysing solar
radiation in the short-term since minute solar radiation is rare. While the use of hourly radiation
to evaluate the overall energy delivery of a solar system usually provides accurate results,
hourly data cannot predict the short-term behaviour. Although it has been known for over 30
years that hourly radiation data are not representative of actual instantaneous or minute
radiation, models based on hourly radiation measurements have continued to be used due to
lack of available detailed radiation data (Mccormick and Suehrcke, 2018). Therefore, there is
an urgent need to develop a proper short-term forecasting model that can reduce previously
noted limitations. Moreover, the intermittent and non-controllable characteristics of solar
production bring several other problems, such as voltage fluctuations, low power quality and
stability issues (Moreno-Munoz et al., 2008); (Anderson and Leach, 2004). In short, the new
modelis also necessary for: estimating the reserves; scheduling the power system; congestion
management; optimal management of the storage with the stochastic production; trading the
produced power in the electricity market; and, finally, to achieve a reduction in the costs of

electricity production (Espinar et al., 2010); (Moreno-Munoz et al., 2008).

2.3 Limitations of common forecasting methods

Regarding solar radiation forecasting, there is no one-fits-all approach. Particularly, the
forecast horizon decides the suitability of alternative models, such as deciding on operational
management. For example, short-term forecasting models will forecast solar radiation from
5 minutes to a few hours ahead. A very short-term horizon mentioned in the literature is
meaningful from an economic perspective, in that a rise in the accuracy of solar energy
forecasts may facilitate major cost savings (Martinez-Anido et al., 2016). The main purpose of

short-term forecasts is to maintain operation security (Voyant et al., 2017).

Specifically, a review of solar radiation forecasts using machine learning algorithms with a
forecast horizon of 30 minutes and below are given. For instance, the review by Raza et al.
(2016) is based on a comprehensive study of several machine learning-based forecasting
methods. A design of solar radiation forecasting offers several research views, and these

complicate cross-study comparisons. Although studies often employ specific spatio-temporal
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data in a unique context of weather characteristics, there is no guarantee that a method can be
successful in all places and with the specific time horizons. The following table provides a
summary of the previous related studies in terms of solar radiation’s forecast horizon,

corresponding data, and the employed forecasting methods.

Table 2.1. Prior studies on near real-time solar radiation forecasting

Number of data

. Method
stud Date Time Forecast points
Benchmark
set set method

Sivaneasan et . . Fuzzy Logic-

al. (2017) GSR 5 minutes 5-minute 24,260 8,640 BPNN BPNN
Golestaneh et . . Persistent,

al. (2016) GSR 10 minutes 10-minute 52,560 52,560 ELM BELM

Sun et al. . .

(2018) TSI 1 minute 15-minute 68,833 8,075 CNN N/A
Kh(e;g'zg; A GSR iminute  10-minute  N/A N/A MLP RBF
Paulescu and

Paulescu TSI 10 minutes 20-minute 38,371 33,644 ARIMA RW, MA, ES

(2019)

(Vazetal., . . ANN, MLP,

2016) GSR 15 minutes  15-minute 21,170 1,798 ANN NARX
Nobre et al. ] . .

(2016) GSR 15 minutes  15-minute 35,040 35,040 ARIMA Persistence

Ryu et al. TSI, . 5,10,15,20 .
1 . 2,01 4 NN P
(2019) GSR minute minute 016 86 C ersistence
ARIMAX
Zhou et al. ) 7.5,15, '
(2019) GSR 7.5 minutes 30,60 201,480 67,160 LSTM MLP,

Persistence

As shown in Table 2.1, several methods have been applied to different datasets with

different spatio-temporal scales and time resolution, ranging from one minute to 7.5 minutes
resolution. Furthermore, several forecast horizons have been tested, from a minute timescale
to few minutes ahead forecasting. Moreover, Table 2.1 reveals that few studies involve an
evaluation of models across several forecast horizons and big data context. Except for (Zhou
et al., 2019), the authors devise a model for multiple forecast horizon with training set greater
than 100,000 points.



This study adopts deep learning to capitalize its benefits for short-term forecasting;
primarily, to overcome limitations of conventional data-driven models (e.g. machine learning),
since they are unable to capture short- and long-term dependency between a target (e.g. future
solar radiation) and the corresponding historical variables. Firstly, machine learning cannot be
used directly with big data due to the issues of scalability, and it may not have a sufficiently
sophisticated architecture to extract complex patterns. A similar conclusion can be found in
(Voyant et al., 2017). Secondly, no study considers the efficiency of a forecasting model for
more than one forecast horizon due to the shortage of data in the real-time horizon. Finally, no
study considers the ability of LSTM in dealing with data efficiency (e.g. data volume).
Therefore, a restriction of prior studies is that they solely explain solar radiation behaviour and

forecasting efficiency in a specific context.

2.4 LSTM-based forecasting techniques

Some sequential models (e.g. Markov models, Kalman filters and conditional random
fields) are commonly used tools to address the raw sequential input data in previous works.
However, the drawback of these traditional sequential models is that they cannot adequately
capture long-term temporal dependencies. Many indiscriminative or even noisy signals in the
sequential input during an extended period may ignore informative and discriminative signals
in applying day-ahead solar radiation, and this can lead to the failure of these above sequence
models. Recently, RNN has emerged as one useful model for sequence learning, which has
already been successfully applied in various fields, including image captioning, speech
recognition, genomic analysis and natural language processing (L&ngkvist et al., 2014).

For a problem in which time-series are forecasted using historical patterns within a
forecasting framework, a Long Short-Term Memory (LSTM) model, the advanced version of
RNN, has been embraced as a powerful new tool. The LSTM model (Hochreiter and
Schmidhuber, 1997) has shown its ability to handle predictive issues (e.g. over-fitting)
(Alzahrani et al., 2017) by absorbing long-term dependencies of historical data and is
extensively employed in image recognition (Zhu et al., 2017), automatic speech recognition
(Sak et al., 2014) and natural language processing (Wang and Jiang, 2015). In terms of solar
radiation forecasting, LSTM is expected to explore the temporal and spatial dependence of data
while utilising contextual information (Yu et al., 2019; Zhou et al., 2019). Hence, LSTM has
been studied in solar forecasting during the last 5 years (Wang et al., 2019; Caballero et al.,
2018; Alzahrani et al., 2017; Qing and Niu, 2018; Yu et al., 2019; Mukherjee et al., 2018;

Ghimire et al., 2019b; Lee and Lee, 2018; Zhou et al., 2019; Gensler et al., 2016; Wang et al.,
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2018a; Muhammad et al., 2019; Siddiqui et al., 2019; Lee et al., 2018). The study by (Qing and
Niu, 2018) used LSTM to forecast hourly solar energy on an island of Santiago, Cape Verde.
In another study, LSTM was used by (Gensler et al., 2016) to forecast solar radiation base on
weather-based data in Germany. In another study (Srivastava and Lessmann, 2018), LSTM was

used to present solar energy forecasting in Europe and US.

A developed Principal Component Analysis (PCA) was incorporated with LSTM for
solar forecasting in Europe. An LSTM standalone model was developed by (Ghimire et al.,
2019b) and (Ghimire et al., 2019a), where a hybrid Convolutional Neural Network (CNN) is
incorporated with LSTM for solar forecasting among Australian solar-rich cities. Despite their
growing applications in solar forecasting, an LSTM-based model has not been fully explored

in terms of near real-time solar forecasting in general, and in the context of Vietnam.

2.5 Robust Local Mean Decomposition (RLMD)

Although standalone models and hybrid models achieve good predictions, they may
provide unsatisfactory forecasting results in some circumstances where actual solar radiation
is non-stationary (Voyant et al., 2017). Therefore, decomposition-based methods, for example
Local Mean Decomposition (LMD) (Wang et al., 2018c), Empirical Mode Decomposition
(EMD) (Li et al., 2018), Discrete Wavelet Transform (DWT) (Ren et al., 2015), Ensemble
(EMD) (Wang et al., 2015), Empirical Wavelet Decomposition (EWT) (Dash et al., 2020) and
Variational Mode Decomposition (VMD) have been successfully exploited in solar radiation
forecasting (Wang and Wu, 2016). Nevertheless, they still contain inherent disadvantages
(Wang and Wu, 2016), such as the end effect and mode-mixing problems of LMD. A Robust
LMD (or RLMD) was developed by Liu et al. (2017b) to address weaknesses of LMD in terms
of signal processing. These techniques of RLMD and LMD are applied to adapt time-frequency
by demodulating amplitude and frequency modulated signals into a set of sub-series. Therefore,
they can help to avoid the negative frequency of the decomposed sub-series, increasing the
precision in further processing steps. A study with this idea (Jiang et al., 2019) first applied
RLMD in wind forecasting that indicates better performance in short-term wind forecasting.
Table 2.2 provides an overview of the common hybrid deep learning methods in terms of short-
term solar radiation forecasting. Most models were integrations of pre-processing techniques
and deep learning forecasting models; however, they have not been fully explored. In short,
from Table 2.2 and to the best of our knowledge, RLMD has not been studied previously in

terms of short-term solar radiation forecasting.
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Table 2.2. Prior studies of hybrid deep learning method in terms of short-term solar

radiation forecasting

Reference Horizon Method

Zang et al. (2018) Short-term VMD-CNN

Wang et al. (2019) Short-term CNN-LSTM
Ghimire et al. (2019b) Short-term CNN-LSTM
Khodayar et al. (2019) Long-term CGAE

Gensler et al. (2016) Long-term Auto encoder LSTM
Wang et al. (2018b) Long-term DWT-CNN-LSTM
Siddiqui et al. (2019) Long-term CNN-LSTM

Lee et al. (2018) Long-term CNN-LSTM

2.6 Statement of gaps in the existing literature

In terms of forecasting technique, the mentioned studies show that machine learning has
good potential in very short-term solar energy forecasting. However, a noted limitation of ML
algorithms is the insufficient learning capability for high dimensional datasets (Goodfellow et
al., 2016), which directly influences the precision and accuracy of forecasting models by over-
fitting and extrapolation (Jieni and Zhongke, 2008). By considering that the GSR time series
often have the long-term and short-term dependency in the low-frequency approximate parts,
the LSTM network, a special type of RNN, is employed to predict the decomposed low-
frequency sub-layer. Also, to deal with the non-stationarity of solar radiation, Robust LMD is
adopted to decompose the high temporal data, to improve the precision of the forecasting model

and reduce forecasting errors.

To address gaps in knowledge that advocate a need to assist in integrating solar energy
variability behaviour into real-time systems, the novelty of this research is to design a new deep
learning predictive model based on an integration of the Long Short-Term Memory and Robust
Local Mean Decomposition algorithms tailored for short-term solar radiation predictions. This

12



study also aims to emulate the RLMD-LSTM model at multi-step forecast horizons. Following
the studies mentioned in previous sections, the RLMD algorithm is incorporated to extract
intrinsic features of the solar radiation series, while in the second phase LSTM utilises all
relevant features for prediction. This research designs, and then evaluates, the RLMD-LSTM
hybrid predictive model with non-linear data pre-processing and mapping capability, integrated

with an RLMD, to obtain accurate solar radiation predictions.

13



CHAPTER 3: DATA AND METHODOLOGY

3.1 Foreword

This chapter provides an overview of the study area and the datasets used in developing
the hybridised, data intelligent, solar radiation forecasting models in this MSCR thesis. In
Vietnam, there were different chosen study sites depending on the availability of the data, to
achieve the objectives of this thesis. The following sections describe these locations in detail
and provide a summary for these study areas with relevant data. This chapter also provides a
brief methodology, whereas the specific methodology of the model development techniques is
presented in detail in other relevant chapters. In summary, this chapter provides an overview

of the procedure that was used to develop the hybridised solar radiation forecasting.

3.2 Data locations

The study area includes five different locations from the North to the South in Vietnam, where
the solar radiation is potentially more solar rich than other parts of the country with higher solar
radiation volume. These locations, namely Bac-Ninh (21.2013°N, 106.0629°E), Da-Nang
(16.0544°N, 108.2022°E), Central Highlands (24.0330°S, 148.7374°E), Song-Binh
(10.3752°N, 106.4111°E), and Tri-An (11.0843°N, 106.9772°E) are shown in Figure 3.1.

A brief description of these study sites is as follows:

(i) Bac-Ninh has a subtropical dry winter climate characterized by hot and humid summers
with frequent tropical downpours of short duration and warm and frequently dry winters.
This province is undergoing revitalization with more sustainable future solar energy
systems, partly funded by the World Bank. The province also meets the criteria set for
selection for the future installation of solar measurement stations, (i.e. homogeneous
landscape and land-usage without large water bodies). Thus, the development of a solar
radiation forecasting model at multiple forecast horizons, especially in Bac-Ninh, is a
justified research endeavour to support the United Nation’s Sustainable Development Goal

#7, related to the access to affordable renewable energies for all populations.

(i) Da-Nang includes a steep Annamite mountain range that dominates Da-Nang to the
North and North-west, and which features peaks ranging from 700 to 1,500 meters (2,300
to 4,900 feet) in height, and low-lying coastal plains with some salting to the South and East,

with several white sand beaches along the coast.
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(iii) Central Highlands has a lower altitude and higher temperatures than other sub-regions.
Influenced by the equatorial climate, the annual average temperature is about 20°C with a
moderate climate all year round. The climate in Central Highlands Vietnam has two distinct

seasons: a dry season and a rainy season.

(iv) Song-Binh is a solar rich city. On average, the temperatures are high. The rainy season
is from May to October. The warmest month is April with an average maximum temperature
of 35°C (95°F), and the coldest month is December with an average maximum temperature
of 30°C (86°F).

(v) Tri-Anis in South-east Vietnam. In Tri-An, the wet season is oppressive and overcast.
The dry season is muggy and partly cloudy. Over the year, the temperature typically varies
from 30°C to 35°F and is rarely below 24°C or above 40°C.

250°N

20.0° N

150 N

10.0° N

100.0°E 105.0°E  1100°E

Figure 3.1 Location of study sites in this project. Bac-Ninh is in blue, Da-Nang is in pink,

Central Highlands is in red, Song-Binh is in green, Tri-An is in cyan.

3.3 Data sources

The data for model development has been acquired from the World Bank (Peters et al.,
2019) for ground-based solar radiation measurement. The purpose of this study was to forecast
multiple time horizons (i.e. 1-minute, 5-minute, 10-minute, 15-minute and 30-minute) (very
short-term) and half-hourly (short-term) solar radiation forecasting in five specific regions in
Vietnam. However, the primary data were not available at every timescale, since it is rare to

have specific time horizon data (e.g. 5-minute or half-hourly). Therefore, the original solar
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radiation data had been converted into appropriate timescale data (e.g. from 1-minute to
5-minute). Notably, global solar radiation measurements were performed simultaneously, 24 h
a day, at equidistant time intervals of 1 minute. Only the data from 06:00 to 18:00 were used
for designing the predictive model as these times represent a period of meaningful daylight
hours. The details of these data for each objective are presented in Table 3.1.

For Objective 1, the aggregated data from Bac-Ninh were used and extracted from the
World Bank. Besides, five forecast horizons of 1-minute, 5-minute, 10-minute, 15-minute and
30-minute were presented utilising data from the period Sep-2017 to June-2019. Chapter 4
provides more details of these data.

For Objective 2, the aggregated data from four different locations (i.e. Da-Nang, Central
Highlands, Song-Binh, Tri-An) were extracted from the same source as Objective 1. Chapter

5 provides more details of these data.

Table 3.1 Details of data used in this study

Study period

Objective Data type Source Forecast horizon
(dd-mm-yyyy)

1-minute (1M) 1-6-2019 to 30-6-2019
5-minute (5M) 1-1-2019 to 30-6-2019
10-minute (10M)  27-9-2017 to 30-6-2019
15-minute (15M)  27-9-2017 to 30-6-2019
30-minute (30M)  27-9-2017 to 30-6-2019

Objective 1

(Paper 1) Global solar The World
radiation Bank

Obijective 2
(Paper 2)

30-minute (30M)  27-9-2017 to 30-6-2019

3.4 General Methodology

Various necessary tasks were applied to the data before the model development step.
Converting the original data including the inputs and relative targets into their required forecast
horizons, using partial correlation function (PACF) to select best statistically significant lags
from the target variable were the first two steps in all objectives of this thesis. Secondly, the
data in Objective 2 were decomposed using a robust version of Local Mean Decomposition
(RLMD) to address the non-stationarity issues associated with the data. Also, to avoid large
numeric ranges from the higher frequency data from inputs and target datasets of all objectives,
this study normalised these data between zero and one using Eq. (1,2). Finally, the best

parameters and boundary conditions of the models developed in the respective objectives of
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this study were selected using optimisation and trial-and-error methods. Respective chapters

describe specifically these processes.

GSRACTUAL _GSRMIN (1)
GSR,,,x —GSR,

GSR 1. =GR (GSRyp —GSRyy, ) +GSRy 2)

GSR, =

This thesis considers various forecasting models to evaluate and compare their abilities
of solar radiation forecasting over different horizons. The models are: deep recurrent neural
network (DNN); multivariate adaptive regression splines (MARS); support vector regression
(SVR); autoregressive integrated moving average (ARIMA); multilayer perceptron (MLP);
and, Long Short-Term Memory (LSTM). The pre-processing approach used to handle the non-
stationarity features in this study is robust local mean decomposition (RLMD). A trial-and-

error method was also utilised in this study to select the appropriate parameters.

In the literature review, the LSTM algorithm was introduced by Hochreiter and
Schmidhuber (1997) to address the vanishing gradient issue. The ARIMA model was
popularised by the work of Box and Jenkins(Box, 1994) Support vector regression (SVR) is a
regression version of the SVM model that is common in solar energy forecasting (Fentis et al.,
2017; Alfadda et al., 2017). The deep neural network is a machine learning method that has
been advanced based on artificial neural networks (ANN), and is capable of trained complex
input and learning procedures (Liu et al., 2017a). Similar applications of DNN in solar energy
forecasting can be found in (Diaz—Vico et al., 2017; Alzahrani et al., 2017). The multilayer
perceptron network (MLP) is the most common type of feed-forward network (Werbos, 1974).
MLP has three layers: an input layer, an output layer and a hidden layer. In a range of
forecasting applications, the LSTM model is considered a fast and precise data intelligent
approach that can offer better performance compared to other algorithms (Ghimire et al.,
2019a).

Obijective 1 provides forecasting model developments and evaluations for multiple time
horizons (i.e. 1-minute, 5-minute, 10-minute, 15-minute and 30-minute). In this objective
(Chapter 4), LSTM was used and developed against SVR, ARIMA, DNN, MLP. In Objective
2 (Chapter 5), the hybrid RLMD-LSTM was developed and compared with RLMD-MARS,
RLMD-SVR for short-term horizon (i.e. 30-minute). Each related chapter presents the details
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of the theoretical backgrounds and methods. To sum up, the novel and hybrid models

developed in this study were:

1-

The LSTM model for multiple forecast horizon (i.e. 1-minute, 5-minute, 10-minute, 15-
minute and 30-minute) presented in Chapter 4. The study applied the PACF technique
to select the significant lag (input)s variables from the target variables.

The two phases RLMD-LSTM for half-hourly forecasting horizons is presented in
Chapter 5. The RLMD was adopted to decompose the target data into product functions
(PFs) and a residual component.

In this thesis, several methods are adopted to evaluate the model’s performance

(Steyerberg et al., 2010) including correlation coefficient (r), Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Willmott (WI ) and Nash-Sutcliffe (ENS)

Legate & McCabe's Index (LM). The details and mathematical equations for these
statistical indices are shown in each chapter of this thesis. Additionally, this thesis also

provides visual analysis by box plots, scatter plots, time series plots and Taylor plots.
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CHAPTER 4: MULTIPLE VERY SHORT-TERM HORIZON
FORECASTING

Article I: Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step
Horizons Using the Long Short-Term Memory Network

4.1 Foreword

This chapter proposes the Long Short-Term Memory (LSTM) network modelling strategy
based on deep learning algorithms for the context of the very short-term global solar radiation
(GSR) forecasting. This study uses five different time-step solar radiation data at a solar-rich
study site (Bac-Ninh, Vietnam) from 2017 to 20109.

Before developing the LSTM model, the partial autocorrelation function was applied to the
high-resolution 1-minute scaled solar radiation dataset that generates statistically significant
lagged predictor variables. Those lagged variables describe the historical behaviour of GSR.
After that, the LSTM algorithm is applied to capture the short- and long-term dependencies
within the GSR data series patterns to predict future GSR at multiple forecasting horizons. The
benchmarked models are: other deep learning, a statistical model, a single hidden layer and a
machine learning-based model. As a result, the LSTM model provides a satisfactory result with

a correlation coefficient exceeding 0.90 and also outperforming the benchmark models.

In accordance with robust statistical metrics (e.g. root-mean-square error, mean absolute
error, Willmott’s Index, Nash-Sutcliffe coefficient and the Legates & McCabe’s Index) and
visual analysis of model performance in the testing period, this study ascertains the practicality
of the proposed LSTM deep learning approach to generate reliable GSR forecasts for all five
timescales. While the predictive performance is seen to reduce as the forecast horizon is
increased (from a minute to 30-minute interval) the relative root-mean-square error remained
profoundly lower for the LSTM (12-44%) compared with the ANN (23-50%) and ARIMA
models (54-137%) in the testing phase. The Legates & McCabe’s Index, yielding a value of
approximately 0.8194-0.9545 for LSTM, compared with 0.8051-0.9255 and 0.4065-0.8005,
respectively, for the ANN and ARIMA models, also confirms the superiority of the LSTM
approach for GSR forecasting at multiple forecast horizons. Accordingly, the present study
confirms the utility of LSTM for its potential application in solar energy monitoring, including
its usage in renewable energy resource evaluations and modern management systems tailored
for continuous monitoring of energy variables (e.g. ocean waves, hydropower and wind).

Further exploration of LSTM, based on its excellent performance, is also encouraged in other
19



areas such as energy sustainability, or demand and supply modelling, energy pricing and policy

development areas.

4.3 Published article |
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Abstract: This paper aims to develop the long short-term memory (LSTM) network modelling
strategy based on deep learning principles, tailored for the very short-term, near-real-time global
solar radiation (GSR) forecasting. To build the prescribed LSTM model, the partial autocorrelation
function is applied to the high resolution, 1 min scaled solar radiation dataset that generates
statistically significant lagged predictor variables describing the antecedent behaviour of GSR. The
LSTM algorithm is adopted to capture the short- and the long-term dependencies within the GSR
data series patterns to accurately predict the future GSR at 1, 5, 10, 15, and 30 min forecasting
horizons. This objective model is benchmarked at a solar energy resource rich study site (Bac-Ninh,
Vietnam) against the competing counterpart methods employing other deep learning, a statistical
model, a single hidden layer and a machine learning-based model. The LSTM model generates
satisfactory predictions at multiple-time step horizons, achieving a correlation coefficient exceeding
0.90, outperforming all of the counterparts. In accordance with robust statistical metrics and visual
analysis of all tested data, the study ascertains the practicality of the proposed LSTM approach to
generate reliable GSR forecasts. The Diebold—Mariano statistic test also shows LSTM outperforms
the counterparts in most cases. The study confirms the practical utility of LSTM in renewable energy
studies, and broadly in energy-monitoring devices tailored for other energy variables (e.g., hydro
and wind energy).

Keywords: solar radiation; long short-term memory network; near real-time solar radiation
forecasting

1. Introduction

Conventional energies (e.g., fossil fuel) have been a primary energy resource for many decades
[1-3]; however, these resources are being replaced gradually by various renewable resources as a
pivotal solution that aims to meet the future energy crisis caused by their depleting nature and the
environmental damage caused by greenhouse gas emissions through the burning of carbon-positive
fuel [4,5]. Following the global trends in energy exploration [6-8] and the recommendations of the
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United Nations Sustainable Development Goal that advocates a dire need for cleaner, affordable and
accessible energy in all nations and regions. Thus, Vietnam has recently commenced capacity
development for solar energy resources. With its geographical location close to the solar energy belt,
Vietnam can harvest this energy from freely available sunlight, theoretically, providing 60-100
GWh-year™ of solar concentrated power and 0.8-1.2 GWh-year as photovoltaic power [9]. These
figures advocate a continuous growth of solar energy which will meet the increasing consumer power
demand. As such, it is important to develop modern technologies for energy management systems
that purposely support real-time energy integration in a power grid or a distribution system [10]. An
accurate near-real-time forecasting tool, especially tailored for solar energy management and
proportional dispatching to and from a grid system is therefore a scientific contrivance for the update
of solar energy into a real grid system [11].

Solar energy forecasting is typically based on consumer usage to provide greater stability and
energy regulation, reverse management and dispatching, scheduling and unit commitments [11]. For
each of the consumer’s usages, the forecasting timescales can vary from being a long-term forecast
(e.g., a monthly forecast) [12] to a mid-term forecast (e.g., a day-ahead forecast) [13,14] and to a short-
term forecast (e.g., an hour-ahead) period [15,16]. However, studies on a very short-term or near-real-
time forecast are relatively scarce, thus, the present research work aims to fulfil this need.

There are many approaches in solar radiation forecasting, divided roughly into data-driven (or
artificial intelligence) and physical (atmospheric dynamic) models [17]. Many existing studies,
however, reveal limitations in forecasting techniques (e.g., computational resources to calibrate a
huge volume of data, thus encountering unexpected errors) and challenges arising from complexity
of predictor variables (e.g., intermittent and chaotic properties of consumer demands, meteorological
and geographical data) [11,18]. To overcome these issues, the present research work is focused on
developing a new modelling strategy for near-real-time solar radiation forecasting by implementing
the latest deep learning techniques.

The construction of a solar radiation-forecasting model in general and the global solar radiation
(GSR) model, in particular, have been intensively explored. With the recent advances of
computational data science, machine learning-based forecasting models typically provide distinct
advantages over physical models [17,19,20] and time-series models [21-35]. Models based on
machine learning and neural networks have evolved over recent decades. However, common
weaknesses have been reported, such as those causing bias when extending data volume, and over-
fitting [11]. Deep learning techniques, the latest advancement of machine learning, can solve the
above issues but have not been fully explored. On the other hand, solar forecasting is relatively new
in Vietnam, although there were previous studies of solar radiation [36-38] and solar potential
mapping [39] in recent decades. Studies implementing machine learning methods for solar
forecasting can be found in other Asian countries [40-43]. However, the application of these
techniques has not been performed in the context of Vietnam, although a recent study with a similar
approach was undertaken in Australia [44]. Nonetheless, to the best of the author’s knowledge, the
present study is the first exploring the predictive power of a deep learning method —the long short-
term memory (LSTM) network model for minute-ahead solar energy forecasting, particularly in the
context of Vietnam where the prospect for solar powered energy systems is relatively high.

This study adopts long short-term memory (LSTM) networks, a branch of deep neural networks,
which has shown an excellent ability to handle predictive issues and has been extensively employed
in image recognition, automatic speech recognition and natural language processing [45-52]. LSTM
is believed to overcome limitations of conventional data-driven models in capturing short- and long-
term dependency between a target (e.g., future solar radiation) and corresponding historical variables
and big data issues. In addition, due to its ability of removing abundant information to resolve
vanishing gradient issues, LSTM is appropriate to represent the learning data over different temporal
domains [17]. Hence, LSTM has been studied in solar forecasting during the past five years
[15,17,44,53-63]. For instance, the first study regarding LSTM [64] demonstrated its forecasting skills
for one-day ahead utilizing remote-sensing data under various topographical conditions with the
best root mean square error (RMSE) ~24% and mean absolute error (MAE) ~17%. In [15,65], LSTM
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performed well for one-day-ahead forecasting under multiple seasonal and weather conditions.
Generally, although forecasting methods show their predictive skills in a different context,
optimizing the forecasting methods has still been an important problem of interest. Similarly,
developing an optimal LSTM model in terms of solar energy forecasting is also under consideration.
Most recent papers have focused on data pre-processing techniques to optimize predictive results
[59,60,66,67]; hence, there is a lack of intensive papers relating to optimizing the LSTM technique
itself. Moreover, a huge dataset volume was discussed in the context of traditional time-series
methods which pointed out that performance efficiency decreased against the increase of data
volume. Thus, the present work aims to extensively explore optimization and performance
assessment of the LSTM forecasting technique in the near-real-time case by also considering multiple
performance metrics (i.e., relative prediction errors, including Willmott's index, the Nash-Sutcliff
index, and the Legates and McCabe index) adopted for multiple forecast horizons ranging from 1
min to %2 hour periods.

In terms of the model performance evaluation, despite higher levels of model assessment skill
in the error measurement approaches compared with the correlation coefficient (r) which represents
the relationship between observed and predicted values [68], it is not totally sensible when applying
RMSE and MAE alone [44,69], especially in deep learning method evaluation. Therefore, it is
reasonable to apply multiple metrics in model performance evaluation to avoid their specific
weaknesses [70]. For this reason, applying multiple evaluation metrics to assess the predictive
performance of the LSTM method in near-real-time forecasts is a novelty in this paper.

Moreover, due to geographical location and weather condition, in some circumstances (e.g.,
Vietnam), it is difficult and costly to obtain such meteorological variables in a near-real-time horizon
(i.e,, minute interval). To address this issue, the present work will employ historical global solar
radiation (GSR) time-series, data which is hardly seen in the literature.

Since the model’s accuracy is expected to decrease over the passage of time, the timescale of the
forecasts encompasses the next minute of the GSR data in advance, to verify the persistence skill of
the LSTM model. Therefore, to address the gaps in knowledge and also to advocate the need for a
sustainable real-time energy management, the novelty of this paper is to firstly develop a near-real-
time solar forecasting based on the integration of the LSTM algorithm. The paper also aims to emulate
the LSTM model at multiple forecast horizons (i.e., 1, 5, 10, 15, 30 min) to ensure it is validated over
a much longer period.

To perform this, a time series of the GSR data measured at the minute interval at a selected
location (Bac-Ninh, Vietnam) is obtained. To demonstrate the advantages of the LSTM model in terms
of near-real-time solar forecasting, this paper also compares LSTM performances against those of the
traditional forecasting method, autoregressive integrated moving average (ARIMA), and the well-
known machine learning methods of multilayer perceptron (MLP) network, support vector
regression (SVR), and a deep learning method, deep neural network (DNN), in GSR near-real-time
solar forecasting. As a representative of traditional forecast modelling, ARIMA and SVR are chosen
for the modelling due to the non-stationary properties of the collected data [71]. Meanwhile, the MLP
and DNN models are representative of neural network algorithms, which have been widely
employed in recent decades [72,73]. To explore the predictive skill of the proposed method, the
minute interval data is evaluated at multiple time horizons: 1 min (IM), 5 min (M), 10 min (10M), 15
min (15M) and 30 min (30M) forecast.

The main contributions of this study are as follows.

1. Development and optimization of a near-real-time GSR forecasting method by implementing
the LSTM algorithm for 1 minute using lagged combinations of the aggregated GSR data as the
predictor variables.

2. Evaluation of the performance of the proposed model against benchmarked models (DNN,
MLP, ARIMA, SVR) by a range of model evaluation metrics.

3. Implementation of the proposed models for multi-minute ahead (e.g., 5M, 10M, 15M, 30M) and

evaluation of the performance of LSTM over multiple forecast horizons.
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To reach these objectives, this paper is organized as follows: Section 2 reviews previous
literature. Section 3 presents a theoretical overview of the objective models. In Section 4, the dataset
considered is introduced and explained, detailing model tuning and benchmark algorithms. Section
5 presents model performance metrics. A discussion of empirical results is available in Section 6
before the paper concludes in Section 7.

2. Related Work

In terms of solar irradiance forecasting, there is no one-fits-all modelling approach; in particular,
the forecast horizon determines the suitability of alternative models (e.g., to support decision-making
in operational management). Previous research has studied short-term models which forecast solar
irradiance from 5 min to a few hours ahead. The focus of this paper is minute ahead forecasting (e.g.,
1 min, 5 min, 10 min, 15 min and 30 min). A minute horizon is established in the literature and
meaningful from an economic perspective since a rise in accuracy of solar energy forecasts may
facilitate major cost savings [74]. The main purpose of minute-ahead forecasts is to maintain
operational security [11].

In the following, previous studies with comparable forecast horizons from the past decade are
discussed. Specifically, a review of solar irradiance forecasts using machine learning algorithms with
forecast horizon of 30 min and below are given. The review [75-77] is based on a comprehensive
study of several solar energy forecasting methods. A design of solar irradiance forecasts offers several
research views and these complicate cross-study comparisons. Although studies often employ a
specific spatio-temporal data in a unique context of weather characteristics, there is no guarantee that
a method can be successful in all places and with all different time horizons. To depict a review of
minute solar energy forecasting, the following table classifies and summarizes the previous related
studies in terms of forecast horizon, corresponding data, and the employed forecasting methods.

As shown in Table 1, several methods have been applied to different data sets with different
spatio-temporal scales and time resolution, ranging from 1 to 7.5 min resolution. In addition, several
forecast horizons have been tested, from a minute timescale to few-minutes-ahead forecasting.
Moreover, Table 1 reveals few studies involving an evaluation of models across several forecast
horizons and in a big data context. Except for [58], the authors devise a model for multiple forecast
horizon with training sets greater than 100,000 points.

Table 1. Prior studies of near-real-time solar irradiance forecasting.

i The Number of Data Points Method
Study Data Time Forecast Training Proposed
Source  Resolution Horizon Testing Set Benchmark
Set Method
[78] GSR 5 min 5 min 24,260 8640 BPNN Fuzzy Logic-BPNN
[79] GSR 10 min 10 min 52,560 52,560 ELM Persistent, BELM
[80] TSI 1 min 15 min 68,833 8075 CNN N/A
[81] GSR 1 min 10 min N/A N/A MLP RBF
[82] TSI 10 min 20 min 38,371 33,644 ARIMA RW, MA, ES
[83] GSR 15 min 15 min 21,170 1798 ANN ANN, MLP, NARX
[84] GSR 15 min 15 min 35,040 35,040 ARIMA Persistence
[46] ég; 1 min 5 1?;\35’ 20 2016 864 CNN Persistence
[58] GSR 7.5 min 7.5, 15, 30, 60 201, 480 67,160 LSTM ARIMAX' MLP,
Persistence

In terms of forecasting technique, these studies show that machine learning (ML) has good
potential in very short-term solar energy forecasting. However, a limitation of ML algorithms is the
insufficient learning models for high dimensional datasets [85], which directly influences the
precision and accuracy of forecasting model by over-fitting and extrapolation [86]. By considering
that the GSR time series often have long-term and short-term dependency in the low-frequency
approximate parts, the long short-term memory (LSTM) network, a special type of recurrent neural
network (RNN), is employed to predict the decomposed low-frequency sub-layer in this study.
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Multiple conclusions emerge from Table 1. Firstly, the potential of LSTM has not been fully
explored, especially in analysing high dimensional data at 1 min intervals. The similar conclusion can
be found in [11]. Secondly, no study considers the efficiency of forecasting models for more than one
forecast horizon. This might be due to the shortage of data in real time horizons. Finally, no study
considers the ability of LSTM in dealing with data efficiency (e.g., data volume). Therefore, a
restriction of prior studies is that they solely explain the GSR behaviour and forecasting efficiency in
a specific context.

In this paper, the aim is to overcome these issues. Firstly, the forecasting ability across multiple
forecast horizons through employing GSR accelerated from 1 min interval data for each horizon is
demonstrated. This technique can resolve the shortage of available datasets, which facilitates a
broader demonstration of the forecasting model efficiency across multiple forecast horizons. In
addition, the bias toward data efficiency through employing different partition proportions in
training and testing sets is addressed. An appropriate data proportion in forecasting models is thus
carefully chosen. Finally, a high number of data points (over 100,000) is used for validation to test
model efficiency in terms of big data.

As the objective technique in this study, LSTM is employed to prove its potential in real-time
solar radiation forecasting, as well as dealing with high dimensional real-time GSR. As shown in
Table 1, this approach has not yet been fully explored and previous studies on LSTM-based solar
energy forecasting faced a risk of over-tuning [87]. Overcoming the limitation of the available dataset
and facilitating multiple forecast horizons, the approach implemented in this study allows the
mitigation of this risk using appropriate hyperparameter testing to optimize the LSTM model. With
respect to benchmark methods, another deep learning technique (i.e., DNN), two machine learning
techniques (i.e., MLP, SVR) and a statistical technique (i.e., ARIMA) are developed for comparison.

3. Theoretical Overview

3.1. Objective Predictive Model: Long Short-Term Memory (LSTM) Network

The LSTM algorithm, used recently in solar radiation modelling is a branch of the deep recurrent
neural network (RNN) (Figure 1a), which is an advanced method of machine learning, feed-forward
neuron networks (FFNNs) (Figure 1b) [88]. Both models apply the idea of the human brain neuron
network in which each neuron (blue colour) is an information processing unit. The improvement of
RNN over FENN is feedback loops (in red colour), which are units with memory. These units can
remember, re-incorporate and update information from patterns learnt from previous steps, thus,
RNN can learn progressively, rather than randomly, as is the case with FFNN. The previous state of
the neuron, that is, the parameters of the previous time step, can be re-incorporated and taken into
account when updating the memory. However, this property of RNN causes the vanishing gradient
problem that prevents RNNs learning from deep sequences of broad contexts [89].

TARGET GSR TARGET G5R

Hidden
layer

Hidden
layer

GSR PREDICTOR VARIABLES GSR PREDICTOR VARIABLES
(a) (b)

Figure 1. Descriptive flowchart of: (a) conventional feed-forward neuron network (FFNN), (b)
recurrent neural network (RNN) based on deep learning methodology. The GSR predictor variables
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could be either the exogenous variables related to the target GSR or statistically significant lagged

GSR ., values capturing historical dependence of antecedent GSR to forecast the future values.

The long short-term memory (LSTM) algorithm was introduced by Hochreiter and Schmidhuber
[90] in 1997 to address the vanishing gradient issue. Figure 2 illustrates the internal structure of LSTM
with the innovative memory blocks called cells from which LSTM outperforms RNNs. From Figure
2, the transmission stage is between the previous hidden layer, the cell state and the next hidden
layer. The cell state is the main chain of data flow, which allows the data to flow forward essentially
unchanged. However, in this cell, there are specific gates, which allow some linear transformations
to occur. The main utility of the LTSM model applied in real-time modelling contexts is its capability
to learn long-term dependencies among the consecutive events on a relative timestamp through
incorporating self-connected “gates” in the hidden units. In the context of GSR, especially at multiple
forecasting horizons in this study, this model is likely to capture more accurately the real-time
dependence of the historical, the current and the future GSR values, to finally create a more
representative modelling framework. The gates enable LSTM units to read, write and remove
information in the memory. Thus, they allow LSTM to remember the relevant data patterns while
removing the irrelevant data, hence, sustaining a constant and relatively low error level, unlike the
ARIMA (and other time-series) statistical model that uses its error to propagate into the future
timescale, and potentially induces the inherent inaccuracies in the testing phase.

In terms of solar energy forecasting and applications in real time, the LSTM model is expected
to exploit the temporal and spatial dependence of antecedent GSR data, while utilizing the contextual
information. Consequently, in recent years, the LSTM has been implemented in many fields,
including solar energy prediction [55,58], although the present study is the first of its kind to develop
and apply this model for Vietnam, and, in particular, at multiple forecasting horizons.
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Figure 2. Descriptive flowchart of a long short-term memory (LSTM) unit in the first layer for time
step t which is an advancement of the hidden layers of the RNN, as adopted for the proposed LSTM
model. Reproduced from [91].

3.1.1. Computational Aspects of LSTM Network Model

To gain an in-depth understanding of LSTM, Figure 2 illustrates a single localized LSTM cell in
the first layer of a network at the timestep t. Symbols & and @ represent point-wise scalar
multiplication and summation, respectively. The colour arrows 4| show direction of input to the
systems. @D is an activation function which sets the ReLU (rectified linear units) in this experiment.
These units are known as the Input Gate, Update Gate, Output Gate, and Forget Gate, and they
represent the output value at the separate gates [92]. The gates normally receive an input of the same

LSTM unit’s output, but obtained at a previous time step (%.,). These gates also receive the input data

related to the current time step ( X, ) in order to emulate the future value of GSR at any given timestep.

With the same structure as RNN, a novel Forget Gate function enables inappropriate information to
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be removed and forgotten, which resolves the gradient vanishing issues of the RNN algorithm when
applied to a large dataset context.

Firstly, based on the last hidden state (/#,_, ) and the new input X,, LSTM possibly selects the
information, which is to be processed from the cell state represented by the Forget Gate ( 1 ):

=0 (wyx[h_.x]+b,) 1)
Secondly, the next step is to determine the information that is stored in the cell state. There is a
new candidate c~, which is generated by X, and /,_, througha tanh layer. This new candidate is
then scaled by the Input Gate i:
¢, = tanh(w, x[1_,,x,]+b,) @)

i, = (w x[h_.x]+b,) ®)

Then, by combining the previous cell state C, both C,_, and ¢,, in which the former is
determined in the Forget Gate ( /' ) and the latter is identified by the Input Gate (i) as Equation (4):

¢, = fixc,_ +ixc 4)

The above three kinds of gates are not static. The recent state information /#,_, and the current

input X, are jointly determined by non-linear activation after linear combination.

Finally, in the output process, there are two steps. The Output Gate is known as a new gate
which is responsible for deciding appropriate parts from the cell state to be outputted. The cell state

¢, is activated by tanh function, which is then filtered through multiplying by o, . The

multiplication result is the desired output 7, :

o, =o(w,x[h_.x]+b,) ©)

h =0, xtanh(c,) (6)
where w,,w,w,w are weight matrices, b,,5,b,b are bias vectors. , () is the sigmoid activation

function.

3.1.2. Benchmark Model: Autoregressive Integrated Moving Average (ARIMA)

This study also adopts the autoregressive integrated moving average (ARIMA) model to further
validate the efficacy of the LSTM Network model. The ARIMA model was popularized by the work
of Box and Jenkins [93]. ARIMA analyses a set of (univariate) predictor data partitioned into a subset
of input/target to validate the LSTM and other models. Using its own time-lagged information and
the respective model errors, ARIMA can identify the intermittent and chaotic patterns of original GSR
time-series data, which is an alternative effective skill when other methods (e.g., LSTM or others) are
not available.

An ARIMA model includes three parameters (p, d, q), with p as the number of autoregressive
terms, d as non-seasonal differences and g as the number of lagged errors. The ARIMA process
generally involves model identification, estimation and forecasting, defined as follows:

v, (B)1-B)'Y, =5+6,(B), )

in which ¥, —the autoregressive parameter of order p; B—the backshift operator; Y, —the original

predictor dataset; & —constant value; ¢, —the moving average parameter §; and d is the

differencing order used for the regular or non-seasonal part of the series.

In the identification of an ARIMA model, the differencing parameter (d) is analysed by
autocorrelation and partial autocorrelation to decide whether the differencing effect should be
performed in a non-stationary dataset. Furthermore, p and g terms are identified for the model by
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analysing maximum likelihood estimation, which determines parameters maximising the probability
of data by least squares. There are various terms (e.g., log likelihood, Akaike’s information criterion
(AIC), Bayesian information criterion (BIC), ¥, RMSE) to determine the maximum combination of (p,
d, q). Expressions of AIC and BIC are as follows:

AIC = =2log(L)+2(p+q+k+1) 8)

BIC = 2log(L) + (p +q +k)*(p +q +k +1)log(n) ©)

where L is the log likelihood of data, k=1 if ¢ =0 and k = 0 if ¢ = 0; n is the sample size. The last term
in brackets is the number of parameters (including the variance of the residual)

A detailed description of the ARIMA model can be found elsewhere and further applications of
this method can be found in other’s works [31,94,95]. Generally, the ARIMA model assumes a
scenario where there is no change in consecutive periodical measurements or the readings used to
construct a model. Given that previous studies have employed an ARIMA model for GSR forecasting,
this technique is also employed in this study in the interest of its ability in capturing historical
patterns from the present time-series data.

3.1.3. Benchmark Model: Support Vector Regression (SVR)

Support vector regression (SVR) is a regression version of the SVM model that is usually applied
in solar energy forecasting [96,97]. SVR transforms the original feature space into a high-dimensional
one using a hyperplane which employs kernel functions (e.g., Gaussian, linear) to effectively separate
data [98]. Herein, SVR is implemented using Python environment version 3.6 using the Sklearn
library which is optimized using a grid search procedure.

3.1.4. Benchmark Model: Deep Neural Network (DNN)

The deep neural network is a machine learning method that has been advanced based on
artificial neural networks (ANN), and is capable of trained complex input and learning procedures
[45]. Similar applications of DNN in solar energy forecasting can be found in [17,99]. Herein, the deep
learning library of Python retrieving solar radiation is applied. Like other neural network methods,
the employed model comprised one input/output layer and multiple hidden layers. Various
structures of the deep neural network were analysed to determine an optimal training model.

3.1.5. Benchmark Model: Multilayer Perceptron Network (MLP)

The multilayer perceptron network (MLP) is the most common type of feed-forward network
[100]. MLP has three layers: an input layer, an output layer and a hidden layer. In this paper, MLP is
implemented by the Python environment version 3.6 using the deep learning library. As for LSTM
and DNN, various structures of MLP were analysed to determine an optimal training model.

4. Materials and Method

4.1. Study Region

The data utilized to build and evaluate the proposed LSTM network model comprised the
minute interval time-series of global solar radiation (GSR), acquired from the reliable source of World
Bank repositories from September 2017 to June 2019. The Vietnam government aims to develop large
solar plants near its capital city that can reduce load emissions and avoid a downwind situation. A
chosen location, the Bac-Ninh region (Figure 3), is a small city with about 100,000 people. The city is
located in the North of Vietnam, not far from the capital, at latitude 21.2013° N and longitude
106.0629° E, and elevation of 60 m above sea level. The Bac-Ninh site has a subtropical dry winter
climate characterized by hot and humid summers with frequent tropical downpours of short
duration, and warm and frequently dry winters [101]. This province is undergoing revitalization in
terms of more sustainable future solar energy systems, which are partly funded by the World Bank.
The province also meets the criteria set for the selection of the present study location for the future
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installation of solar measurement stations, i.e., it is solar-rich with terrain either flat or characterised
by low obstructions, homogeneous landscape and land-usage (clearly represented by satellite pixels
for validation), without large water bodies, mountains, dirt roads, industrial pollution, open-pit
mining operations, or a danger of flooding [102,103]. Thus, the development of a solar forecasting
model at multiple forecast horizons, especially in Bac-Ninh, is a justified research endeavour to
support the United Nation’s Sustainable Development Goal #7 related to the access to affordable
renewable energies for all populations.
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Figure 3. The study site in Bac-Ninh—Vietnam’s solar city —where the proposed LSTM model was
developed for multiple forecast horizons of global solar radiation (GSR).

4.2. Data Preparation

This section details the activities of related to data preparation, including the construction of
multiple time-scale datasets using 1 min original measurements, the handling of missing data, and
the input of those data structures into the LSTM network. Notably, GSR measurements were
performed simultaneously, 24 h a day, at equidistant time intervals of 1 min. Only the data from 06:00
to 18:00 were used for designing the predictive model as these times represent a period of meaningful
daylight hours.

With the aim to construct a framework for a near-real-time prediction model, the raw 1 min
time-series data were firstly used to generate the data at 5-, 10- 15- and 30 min-ahead time-series data,
which were then used as the target variable. Details of those data are presented in Table 2.

Table 2. Descriptive statistics of the global solar radiation (GSR) dataset aggregated at various
timescales for the Bac-Ninh region in Vietnam used to develop the prescribed LSTM model tested at

multiple forecast horizons.

Minimum  Maximum  Mean Standard Deviation

Forecasting Horizon Data Period Wm- Wm= Wm-2 Wm=
1 min (1M) 1 June 2019 to 30 June 2019 0 1376 207 283
5 min (5M) 1 March 2019 to 30 June 2019 0 6047 730 1157
10 min (10M) 27 September 2017 to 30 June 2019 0 11,889 1416 2297re
15 min (15M) 27 September 2017 to 30 June 2019 0 16,574 2124 3430
30 min (30M) 27 September 2017 to 30 June 2019 0 32,042 4249 6804

With respect to the missing data, it is noted that missing values represent only 0.15% of the time-
series data, and were due to equipment faults or site closures in the measured period. We imputed
those missing values by the mean value of the whole period [95,104]. Clearly, more powerful
techniques (e.g., step-wise linear regression fit, Kalman filters) could be considered and might
facilitate better imputation but given the relatively low percentage of missing data, these may not be
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required in this study. Moreover, these data are employed for the comparison of LSTM with the other
models. Consequently, the imputation method should not influence the relative performance of the
alternative forecasting methods.

To prepare the suitable number of inputs for each time-scale horizon (based on historical
behaviour of short-term solar radiation measurements), the autocorrelation coefficient and the partial
correlation coefficient (PACF) were employed. The detailed procedures can be found in [94].
Explicitly, the PACF function computes a time-series regression against its n-timescale lagged values
by removing the dependency on intermediate elements and identifying those patterns potentially
prevalent in the future GSR data that are correlated to the antecedent GSR data. This procedure aims
to develop forecast models that consider the role of memory (i.e., antecedent GSR) adopted in
forecasting the current GSR value, and possibly, considers several other atmospheric factors that

could potentially influence ground level GSR. Consequently, the input vector GSR_,GSR ,,...GSR ,
called the n-lagged set of inputs deduced from the PACF method, was then used as the LSTM model’s

input to predict the GSR as the target. Figure 4 shows the PACF plot of GSR time series with lagged

inputs as predictor variables for the LSTM model applied at 1M, 5M, 10M, 15M, and 30M forecast
horizons.
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Figure 4. Partial autocorrelation function (PACF) plots of the GSR time series showing lagged inputs
autocorrelation of GSR as predictor variables used for GSR models at different forecast horizons (i.e.,
1M, 5M, 10M, 15M,, and 30M timescales). The blue lines denote the statistically significant boundary

at the 95% confidence interval. The green circles are used to show the zone outside which the target
GSR has statistically significant correlations with its antecedent values.

The primary scope of this study is to design, for the first time in the present study region, an
LSTM model that has the capability to forecast near real-time GSR using minute interval data, applied
for multi-step forecasting horizons. To expand the practical scope of the modelling techniques, the
developed model was applied at 1 min (1M), 5 min (5M), 10 min (10M), 15 min (15M) and 2 hourly
(30M) forecasting horizons, to enable LSTM to generate a more granular interval GSR, as required in
real-life decisions, for example, through constant monitoring of solar energy resources. Hence, the
primary task is to construct a matrix of a training and testing dataset that can reliably be applied to
the proposed LSTM model.
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The normalization of modelled data was accomplished by statistical rules to overcome the
numerical difficulties caused by the data features, patterns and fluctuations using the conventional
methods of feature scaling [105]. Normalization is applied to the n-lagged inputs [9] to be in the range
of [0-1] by the following formula:

GSRACTUAL — GSRMIN
GSR,,;x —GSR,

GSR, = (10)

GSR i, = GSR(GSR, 5 —GSR, ;) +GSR, (11)

After normalization, a major task was to determine the training data, to construct the predictive
model, and the testing data, and thus achieve the highest performance. The partitioning of data
followed the notion that researchers use different divisions between testing and training sets, which
generally vary with the problem. There is no ‘rule of thumb’ for data divisions. In [58], the authors
employed about 75% of inputs for training and the remainder for the testing set, while in [44] the
partition proportion for training and testing sets was approximately 80:20. Subsequently, the
normalized data are then divided into the training (80%) and testing (20%) sets (Table 3a). Noticeably,
the number of data points is significantly higher than any of the previous relevant papers [15,64].

Table 3. (a) Model designations and various input combinations based on the partial autocorrelation
function used to identify antecedent lagged GSR for the objective LSTM and the comparative
counterparts adopted at multi-step forecasting horizons. (b) Training phase results of LSTM with
different partition proportions.

(a)

Training Validation Testing
Forecast Significant Number of Percentage
Horizon Lagged GSR Data Point 80% of Training 20%
Data
M 18 43,197 34,558 8637
5M 6 35,133 49,518 12,376
10M 3 92,874 24,757 10% 6187
15M 19 61,897 34,558 8637
30M 10 30,946 28,106 7025
(b)
Model Training-Testing Proportion r (I‘z)anif) (QV/Ii’EZ)
LSTM 80-20 0.9957 32.086 13.670
- 70-30 0.9901 43.7088 15.715
- 6040 0.9799 60.9179 23.402

4.3. LSTM Model Implementation

Prior to developing the proposed LSTM-based solar radiation forecasting model, the historical
GSR data were pre-processed at multiple forecasting time horizons. The proposed model-based
LSTM was developed under the Python environment on an Intel Core i5 and 16 GB RAM computer.

The development and validation of the proposed method, as shown in Figure 5, is presented in
the following steps:

Step 1: Construct the data matrix which is used as the input in the first layer. The statistically
significant lags were calculated from the original GSR time series data using the partial
autocorrelation function (PACF). In addition, to demonstrate data efficiency in this model, we also
used different partition proportion in dividing training and testing sets (Table 3b). As a result, the
scale of 80:20 represents the highest performance of the LSTM, therefore, this scale is appropriate in
this study.

Step 2: After incorporating the significant lagged inputs as the input predictor, the LSTM was
implemented using the Keras deep learning package in Python [106]. The input layer of the trained
LSTM network had four timesteps; hidden neurons were set to 80; and the output layer with a linear
activation function had one neuron. In addition to these fixed values, we ran the LSTM model with
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different combinations of hyperparameters (epoch-drop rate-batch size) which were selected through
a grid search. Table 3a summarizes the general architecture of different types of LSTM by various
combinations of hyperparameters. However, only those experiments for 1M are shown.

Step 3: To select the optimal model for each case, the LSTM algorithm begins with the change of
each hyperparameter. Then, based on the recorded evaluation metrics (r-value, RMSE) in the training
phase, we selected the optimal LSTM model with the highest r-value and the lowest RMSE. Table 4b
presents the experimental results in the training phase with the optimal models highlighted in red.
However, only those experiments for 1M are shown. After conducting all experiments, the
summarized results of the optimal model for all forecasting time horizons (1M, 5M, 10M, 15M and
30M) are shown in Table 4c.
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Figure 5. Descriptive flowchart for the relevant steps in the LSTM model design phase.

For the case of an LSTM network model, the computational cost is considered to be an important
aspect in terms of learning process [107], which is directly influenced by the dataset size in the
training phase [107] and the respective hyperparameters [108]. To reduce the high computational cost
in the learning process of the objective (i.e., LSTM) model, the hyperparameters for the model are
chosen through a grid search process for the optimal parameters; however, this can be relatively time-
consuming. For instance, for each LSTM model, the search took about 11-12 h; however, when the
optimal hyperparameters are determined prior to running the primary LSTM model, the
computational time of the model was reduced to a much lower value (<15 min).

Generally, a hyperparameter is a parameter whose value is set before the learning process
commences. There are two types of hyperparameters, namely, model hyperparameters (e.g., the size
of the neural network and the number of input layers in FFNNs) and algorithm model
hyperparameters (e.g., dropout and batch size). Model hyperparameters cannot be inferred during
the training process since this must be referred to the model selection task. The latter, algorithm
hyperparameters, in principle, can increase the speed and quality of the learning process. Therefore,
determining the most appropriate hyperparameters is essential for the success of a deep learning
model such as the LSTM model adopted in this study. Depending on the model types, strategies for
choosing hyperparameters may vary. While some of the hyperparameters are model-specific, some
common hyperparameters that can be used in any deep learning model, and that were also adopted
in this study, are:

e  Epoch defines the number of times that the learning algorithm will work through the entire
training dataset. The number of epochs is usually hundreds or thousands, allowing the learning
algorithm to run until the error from the learning model is minimized. In this study, the number
of epochs is set to a maximum of 2000 (Table 4).

e  Batch size defines the number of data points that are propagated through the network. The batch
size can be seen as a for-loop iterating over one or more data points. At the end of each batch,
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the predicted values are compared to the actual values and the errors are calculated. From these
errors, the update algorithm is used to improve the model. Depending on data length, to
determine whether a greater batch size can provide the better performance, the batch size is set
as in Table 3.

e  Dropout is a regularization layer that blocks a random set of cell units in one iteration of LSTM
training. Since over-fitting is prone during training, the dropout layer creates blocked units
which can remove connections in the network. Therefore, it possibly decreases the number of
free data points to be predicted and the complexity of the network. The dropout rate is often set
between 0 and 1. In this study, this parameter was tested between two values, 0.1 and 0.2, to
determine whether a greater value of dropout rate improves LSTM performance (Table 4a).

e Least absolute deviations and least square error (L1 and L2 regulation): In addition to dropout,
the L1 and L2 regularization parameter is also used such that the L1 and L2 penalization
parameter decreases the sum of absolute differences and the sum of square of differences
between observed and forecasted values. In principle, adding a regularization term to the loss
will facilitate a better network mapping (by penalizing large values of parameters which
minimize the amount of nonlinearity of GSR values).

e  Activation function: With the exception of the output layer, all the layers within a network
typically use the same activation function known as the rectified linear unit (ReLU).

Table 4. (a) The architecture of the objective LSTM model with various model design parameters.
Note that ReLU stands for rectified linear unit. (b) Experimental results of LSTM model in 1M forecast
horizon in the training phase. (c) The optimal architecture used in designing optimized LSTM vs. the
comparative models (i.e., autoregressive integrated moving average (ARIMA), deep neural network
(DNN), multilayer perceptron (MLP), support vector regression (SVR)) in the training phase.

(a)

Model Model Hyperparameters Search Space for Optimal Hyperparameters
LSTM Hidden neurons (100, 200, 300, 400, 500)
- Epochs (1000, 1200, 1500, 2000)
- Optimizer (Adam)
- Drop rate (0.1,0.2)
- Activation function (ReLu)
Layer 1 (L1) and Layer 2 (L2),
Layer 3 (L3) (50, 40, 40)
- Batch size (400, 600, 700, 750, 800)
(®)
. Actual Used Drop Batch RMSE
Sequence Initial Set-Up Epoch Epoch Rate Size r (Wm-=)
1 2000 54 0.1 500 0.9874 33.201
2 2000 55 0.1 750 0.9875 33.178
3 2000 53 0.1 800 0.9884 33.098
4 2000 62 0.1 1000 0.9876 33.096
5 2000 64 0.2 800 0.9956 32.086
©
Time- . RMSE
Horizon GSR Model Design Parameter r (Wm-2)
LSTM Number of epoch.s—Drop rate- 64-0.1- 0.9956 332012
Batch size 800
DNN Number of epoch.s—Drop rate- 162-0.1- 0.990 44,0404
1M Batch size 500
MLP - - 0.9821 61.7642
ARIMA p-d-q 0-1-0 0.9808 57.6876
SVR Cost Function (C), Epsilon (¢) 1.0-1.0 0.9846 59.2223
LSTM Number of epocbs—Drop rate- 59-0.2- 0.9714 265.5456
Batch size 800
5M DNN Number of epoch.s—Drop rate- 199-0.1- 0.9650 1338.4922
Batch size 500
MLP - - 0.9721 361.7641

ARIMA p-d-q 0-1-0 0.9724 287.7479
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SVR Cost Function (C), Epsilon (&) 1.0-1.0 0.9218 389.6317
LSTM Number of epocbs-Drop rate- 59-0.2- 0.9914 26.4411
Batch size 800
DNN Number of epoch.s—Drop rate- 194-0.1- 0.9871 26.6411
10M Batch size 500
MLP - - 0.9599 26.3175
ARIMA p-d-q 0-1-0 0.9205 22.622
SVR Cost Function (C), Epsilon (¢) 1.0-1.0 0.9514 51.6976
LSTM Number of epocbs-Drop rate- 70-0.2- 0.9653 76,9883
Batch size 500
DNN Number of epoch.s—Drop rate- 162-0.1- 0.9657 88,9887
15M Batch size 500
MLP - - 0.9547 220.7234
ARIMA p-d-q 0-1-0 0.9618 1033.4372
SVR Cost Function (C), Epsilon (&) 0.8983 117.7362
LSTM Number of epocbs—Drop rate- 62-0.2- 0.9572 7107477
Batch size 500
Number of epochs-Drop rate- 28-0.1-
30M DNN Batch size 700 0.9067 709.0347
MLP - - 0.9192 900.1132
ARIMA p-d-q 0-1-0 0.8859 952.8502
SVR Cost Function (C), Epsilon (&) 1.0-1.0 0.8314 1270.7158

4.4. Benchmark Models Implementations

To comprehensively evaluate the optimal LSTM forecasting model, five other popular
forecasting models based on the ARIMA, DNN, MLP, and SVR algorithms were developed under
the Python environment, version 3.6, on an Intel Core i5 computer. For the purpose of brevity and
conciseness, only the results at the 1 min (1M) forecasting horizon are shown here, but the results
obtained at the other forecasting horizons resulted in relatively similar deductions. Finally, following
the previous steps, the optimal models based on the LSTM versus the counterpart models are shown
in Table 4c for a diverse range of forecasting horizons.

5. Model Performance Criteria

Several methods have been previously adopted to evaluate model performance [109]. In the
present work, a popular set of statistical metrics (e.g., bias, mean square error, linear correlation
coefficient) are employed to assess the model performance since each individual metric has its own
strength and weakness [110]. For instance, due to the standardization of observed and forecasted
means and variance, the robustness of Pearson’s correlation coefficient (r), which exceeds 1 as the
perfect model, may have limited meaning [70,95]. Moreover, while root mean square error (RMSE) is
relevant for high values, mean absolute error (MAE) assesses all deviations of observed data both in
the same manner and regardless of sign [111]. RMSE and MAE are recommended to address each
other’s weaknesses and to obtain accuracy in an absolute unit [111]. The performance of a model can
be decreased because of partial peaks and higher magnitudes, which may cause large errors and be
insensitive to small magnitudes. To solve this problem, efficiency measurement indexes, such as

Willmott (W7 ) and Nash-Sutcliffe ( £,s) [112] are introduced with the advantage of overcoming

insensitivity and over-dominance of significant errors over small errors [113,114]. Nevertheless, £
is relatively high even in the poorly-fitted models and vice versa, hence, it can confuse performance
evaluation [115]. Therefore, WI is implemented to be incorporated with E,; [112].

However, a certain degree of insufficiency still occurs with W/ that can be improved by the
Legate and McCabe index (LM) [116]. Since different forecasting horizons can lead to differences in
data distribution, the relative root mean square error (RRMSE) [117] and mean absolute percentage
error (MAPE) [118] are computed since they are also the benchmark of evaluating a “good” model.
A model’s precision level is excellent if RRMSE < 10%, good if 10% < RRMSE < 20%, fair if 20% <
RRMSE < 30%, and poor if RRMSE > 30% [117]. Therefore, to properly assess model performance, in
this paper, several statistical score metrics are exploited, such as the Pearson’s correlation coefficient
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(r) [119], root mean square error [120] (RMSE; W m ), mean absolute error [121] (MAE; Wm ™),
including the relative error values: RMSE (RRMSE; %), MAE, MAPE, W1 , and EN , which are
adopted as the well-known metrics employed elsewhere (e.g., [79]).
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6. Statistical Significance Testing

Based on performance metrics it is difficult to conclude whether the results are due to chance or
decisive. We possibly reject a factually good parallel model since the performance metrics might be
generated stochastically. Consequently, from a statistical perspective, a significant difference of
forecasting performance cannot be solely judged by traditional performance metrics. Therefore, this
paper employed a modern statistic evaluation method, the Diebold-Mariano (DM) test [122], which
can offer a quantitative method to evaluate the forecast accuracy of forecasting model. The DM test
is applicable to nonquadratic loss functions, multi-period forecasts and forecast errors that are non-
Gaussian and nonzero-mean. Details of the DM test can be found in [122] and some applications of
the DM test can be found in [123,124]

Finally, with the help of the DM test, the interference by sample stochastic difference can be
revealed, such that the better forecasting model can be identified statistically. To determine whether
one forecasting model is better than another, we might first test the equal accuracy hypothesis. A null

hypothesis (/,) means that the observed differences between the performances of two forecasting

models are not significant. An alternative hypothesis (1) means that the observed differences
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between the performances of two forecasting models are significant. Since the DM statistics converge
to a normal distribution, we can reject the null hypothesis at the 5% level of significance if IDMI| >
1.96, otherwise, we cannot reject the null hypothesis ( ho ). If the DM statistic value does not meet the
acceptable criterion, then the null hypothesis cannot be accepted, i.e., the two forecasts are statistically
not different. By comparing LSTM to each counterpart in turn, it can be concluded whether the LSTM
model is superior than its counterparts.

7. Results and Discussion

In this section, the experimental results and the overall performance assessment at different
forecasting horizons are presented. For each modelling experiment, five GSR forecasting models,
including the proposed LSTM model and the counterpart models (i.e., ARIMA, DNN, MLP, and SVR)
are employed. To demonstrate the merits of the LSTM model over the counterpart models in terms
of their near-real-time solar forecasting capability, a plethora of model evaluation metrics for the
testing phase, as described by Equations (9)—(16), is presented in Tables 5-7.
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Table 5. The model performance in the testing period as measured in terms of correlation coefficient (r), root mean squared error (RMSE), mean absolute error

(MAE).
RMSE MAE
Predictive Model ! Wm? Wm?
1M 5M 10M 15M 30M 1M 5M 10M 15M 30M 1M 5M 10M 15M 30M

LSTM 0.9920 0.9999 0.9999 0.9578 0.9531 40.9125 1400 18.6627 79.7273 731.7482 21.6428 1059 12.3368 43.8383 409.7196
MLP 0.9780 0.9266 0.9062 0.9246 0.8554 65.7511 1852 88.9537 218.7543 1254.3440 34.2960 1326 53.8914 106.8205 778.1039
DNN 0.9910 0.9606 0.9998 0.9568 0.9094 44.4086 1570 61.8762 86.6580 940.4280 25.5140 1134 40.9027 49.0178 576.9220
ARIMA 0.9902 0.9607 0.9989 0.9584 0.9094 52.9785 1589 37.8037 161.1655 937.1356 31.9632 1149 24.9898 100.5221 571.3325
SVR 0.9856 0.9266 0.9358 0.9247 0.8555 56.1271 1619 74.8298 99.9360 1244.6963 31.5000 1136 42.1483 70.2232 773.6047

Table 6. The model performance in the testing period as measured in terms of Willmott's index (WI), Nash-Sutcliffe Efficiency (E\S) and relative root mean square

error (RRMSE).
Predictive WI ENS RR})V[SE
Model %)
1M 5M 10M 15M 30M 1M 5M 10M 15M 30M 1M 5M 10M 15M 30M
LSTM 09984 09409 0.9989  0.9770 0.9811 0.9831 0.6420 0.9920 0.8712 0.8931 9.9278  51.7123 10.1362 421591  41.0858
MLP 09959 0.8816 0.9721  0.9167 0.9347 0.9563 0.3737 0.8188 0.0306 0.6859 15.9581  68.3986 48.3132 115.6755  70.4282
DNN 09981 09227 09844  0.9717 0.9718 0.9800 0.5500 0.9123 0.8479 0.8235 10.7782  57.9785 33.6067 45.8240  52.8026
ARIMA 09972 09202 0.9947  0.9500 0.9700 0.9716 0.5386 0.9673 0.4738 0.8247 12.8582  58.7073 20.5322 85.2231 52.6178
SVR 09969 09179 0.9801  0.9635 0.9364 0.9681 0.5212 0.8718 0.7977 0.6907 13.6223  59.8060 40.6421 52.8454  69.8865

Table 7. The model performance in the testing period as measured in terms of the Legates and McCabe index (LM) and mean absolute percentage error (MAPE).

MAPE
Predictive Model LM (%)
M 5M 10M 15M 30M M 5M 10M 15M 30M
LSTM 0.9204 0.4658 09275 0.7575 0.7741 16 48 100 86 116
MLP 0.8739 0.3311 0.6832 0.4090 05710 47 54 127 143 49
DNN 0.9062 0.4279 0.7596 0.7288 0.6819 49 58 60 62 67
ARIMA 0.8825 0.4203 0.8531 0.4438 0.6850 233 267 151 127 85

SVR 0.8842 0.4272 0.7522 0.6115 0.5734 56 91 143 120 262
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For all of the modelling experiments capturing the highest Pearson’s correlation coefficient (r),
the lowest root mean square error (RMSE), and the lowest mean absolute error (MAE), the proposed
LSTM model achieves better results than the counterpart models executed for multiple time horizons.
In particular, the LSTM model-simulated 1M forecast horizon outperforms all of the other developed
models with the statistics » = 0.9920, RMSE = 40.9125 Wm?, and MAE = 21.6428 Wm?* vs. r =
[0.9920, 0.9780], RMSE = [40.9125, 65.7511], and MAE = [21.6428, 34.2960] where [] represents the
upper and lower bounds of the metrics for the various models.

Figure 6 illustrates scatterplots for the observed and the forecasted GSR values of the developed
models for the IM horizon. In each panel, the coefficient of determination (R ) and a linear fit
= mGSR

0BS FOR

equation (GSR + ¢ ) are shown to demonstrate the coherence between forecasted and
observed GSR [104]. Here the constants—‘m’ (gradient) and ‘¢’ (intercept on the y-axis)—and R’ are
utilized to outline the models’ overall accuracy. Note that R’ and m values close to 1.00 and ¢ value
close to 0 should be attained for a perfect forecasting model. Evidently, the LSTM model achieves a
better degree of agreement than the corresponding counterpart models. Moreover, to demonstrate
the LSTM model’s outstanding performance in predicting the GSR data in the testing phase, Figure
6 also shows a time-series plot for all of the study cases, for which the forecasted values of LSTM (in
red) appear to be closer to the observed GSR values (in blue) compared to those of the counterpart
models.
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Figure 6. Times-series plot and scatter plot of the forecasted (‘ GSR_ *) vs. observed (‘ GSR _ *) data

for each model in the testing period for 1M forecast horizons. A least squares regression line and the

coefficient of determination ( R” ) are shown in each panel.

To further explore the precision of the proposed LSTM model, Table 6 presents the metrics
evaluating the forecasting errors (i.e., RRMSE, LM and MAPE). As can be seen, the proposed LSTM
model is seen to outperform the counterpart models in all of the study cases in terms of the lowest
RRMSE and MAPE and the highest value of the LM index. Evidently, the LM values produced by
LSTM for all of the multiple forecasting horizons outperform those of both of the counterpart models.
For instance, LM in the 1M model is 0.9204, whereas those of counterpart models (i.e., MLP, DNN,
ARIMA, and SVR) are 0.8739, 0.9062, 0.8825, and 0.8842, respectively. While it is argued that RRMSE
is limited in the context of a dataset with the same variance, in our case, the RRMSE value clearly
shows us which model would be better in terms of producing fewer and relatively low-magnitude
errors [125]. Thus, LSTM certainly performs better than the counterpart models as it generated an
RRMSE that is lower than that of the comparative models. Meanwhile, in terms of the MAPE value,
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the results of the proposed LSTM over multiple time horizons yield values of 16%, 48%, 100%, 86%
and 116%, respectively, implying that the LSTM does not perform particularly well. However, the
disadvantage of MAPE, which could perhaps explain this result, is that it generates a substantial
percentage error for near-zero observed values as infinite MAPEs, and this effect can be quite
pronounced if the observed GSR values are less than 1 [126]. This is a reasonable explanation for low
performance in terms of MAPE since GSR time-series data, particularly at the very short-term time-
scales used in this study, are expected to intermittently contain numerous near-zero values in the
morning as observed elsewhere [125].

Figure 7 illustrates the boxplots for the case of the 1M model that depict the different forecasting
skills regarding the absolute prediction error (i.e., forecasted —observed GSR values). The lower and
upper lines of the boxplot denote the first and third quartile values (25th and 75th percentiles),
respectively, and the median value (50th percentile) is represented by the central line. Additionally,
two horizontal lines are also drawn from the first and third quartiles to the smallest and largest non-
outliers, respectively. To concur with earlier results, the boxplot provides further justification that the
distributed errors for the proposed LSTM model also acquire a much smaller spread with a
correspondingly smaller magnitude of the quartile statistics and median values compared to the
MLP, DNN, ARIMA, and SVR models.
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Figure 7. A boxplot of absolute values of the forecasted error in GSR generated by the LSTM model
against the comparative models, i.e., ARIMA, DNN, MLP, and SVR, in the model’s testing phase for
the 1-min forecasting horizon.

Lastly, to consolidate the findings presented so far that demonstrate the efficacy of LSTM model,
a Taylor diagram that determines the angular location to the inverse cosine of the correlation
coefficient is presented in Figure 8 to show the closest model in respect to the observed data in the
testing period. The correlation coefficient (r), on the radial axis, and the standard deviation, on the
polar axis, are used simultaneously to judge the closest fitting model. For all different timescales, the
LSTM generates the highest value of r, with the forecasted results being closest to the observed data
compared to the other comparative approaches.

In addition, the forecasting performance of the five models is compared by the DM test (Section
5). The forecasting comparison of every pair of models is summarized in Table 8. The null hypothesis
means that the two forecasts have the same accuracy, otherwise, the two forecasts have different
levels of accuracy in the alternative hypothesis. The statistically significant better performance of
LSTM over the counterparts is indicated as ‘yes’. From Table 8, the conclusions of comparison of the
LSTM model and the counterparts (i.e., DNN, MLP, ARIMA and SVR) can be drawn as follows.
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Firstly, since the absolute value of the DM statistic in most cases is greater than 1.96, the null
hypothesis is rejected at the 5% level of significance; that is to say, the observed differences are
significant and the forecasting accuracy of LSTM models is better than that of the counterparts. The
exceptions are the comparison of LSTM vs. DNN at the 1M forecast horizon and that of LSTM vs.
SVR at the 15M forecast horizon, with corresponding absolute DM statistics of 0.272 and 0.268,
respectively, which are less than 1.96. This shows the performance of LSTM vs. DNN and LSTM vs.
SVR are not significant and might be due to stochastic interference. These clearly prove that the LSTM
models receive more significance than the others. In addition, the p-value at a 5% level of significance
is less than 0.05, which means all models are statistically significant.

In summary, by an evaluation of forecasting based on performance metrics and the DM test, the
LSTM model was demonstrated to outperform the comparative models. Thus, it is found to be a
versatile solar forecasting tool, especially over short-term, multiple timescale horizons.
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Figure 8. Taylor diagram illustrating the degree of statistical correlation and the root mean square
centre difference between the observed and forecasted GSR values by the LSTM model relative to
comparative models (i.e., MLP, DNN, ARIMA, and SVR) for the 1M timescale.
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Table 8. Diebold-Mariano (DM) test adopted to compare the predictive accuracy of any two forecasting models. The objective model (i.e., LSTM) is compared against
counterpart models (ARIMA, MLP, DNN and SVR) in the testing phase. The DM test is used to evaluate if the two forecasts are statistically different with a null hypothesis
of no difference rejected if the test statistic falls outside DM = +1.96 at a 5% level of significance. The statistically significant better performance of LSTM over the other
models is indicated as ‘yes’.

Diebold-Mariano (DM) Test Statistics Forecast Horizon LSTM vs. DNN LSTM vs. ARIMA LSTM vs. MLP LSTM vs. SVR
1 Minute (1IM) - - - -
DM statistic -0.272 -24.381 -25.824 -16.933
p-value 0.785 0.000 0.000 0.000
Reject Null Hypothesis No Yes Yes Yes
5 Minute (5M) - - - -
DM statistic 46.585 46.394 -50.779 43.614
p-value 0.000 0.000 0.000 0.000
Reject Null Hypothesis Yes Yes Yes Yes

10 Minute (10M) - - - -

DM statistic 62.231 27.318 62.231 32.816
p-value 0.000 0.000 0.000 0.000
Reject Null Hypothesis Yes Yes Yes Yes
15 Minute (15M) - - - -
DM statistic -51.638 -29.999 39.581 -0.268
p-value 0.000 0.000 0.000 0.789
Reject Null Hypothesis Yes Yes Yes No
Half Hourly (30M) - - - -
DM statistic -9.209 18.234 -19.558 17.000
p-value 0.000 0.000 0.000 0.000

Reject Null Hypothesis Yes Yes Yes Yes
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8. Further Discussion, Limitations and Future Scope

Despite the excellent performance of the developed LSTM model, as evaluated by several
statistical metrics and visualized model analysis, the proposed model is further evaluated by
comparing the results in this study with those of previous studies. In one such study, an LSTM model
was developed for 1-hourly day-ahead solar irradiance forecasting on the island of Santiago, Cape
Verde. The study employed weather variables (i.e., temperature, dew point, humidity, visibility,
wind speed, weather type) for 30 months (March 2011 to August 2012). In concurrence with the
present study (Table 5), it was concluded that the LSTM model was the best model as it generated
the lowest RMSE in comparison to the persistence, ANN, and linear least squares regression methods
(76.245 Wm?, 209.2509 Wm™, 230.9857 Wm™, and 133.5313 Wm?, respectively).

Another relevant comparative study employed LSTM to estimate hourly and daily GSR in
Atlanta, New York, and Hawaii using hourly meteorological data and cloud type information from
2013 to 2017 as a training and testing population. The proposed LSTM demonstrated excellent
forecasting performance for hourly forecasts on all-weather (i.e., mixed days and cloudy days). The
mean absolute percentage error (MAPE) of LSTM in measured locations (i.e., Atlanta, New York,
Hawaii) on cloudy days was 14.9%, 20.1% and 18.1% respectively. All r-values of LSTM were above
0.85, outperforming comparative models (i.e, ARIMA, SVR, ANN, CNN, and RNN) with one
exceptional case where the r-value of RNN was higher than that of LSTM (0.91 and 0.90, respectively).
Overall, however, LSTM showed its outstanding performance. The study of Ghimire et al. [44]
designed a hybridized framework that integrated a convolutional neural network with LSTM for
half-hourly GSR forecasting in Australia; their model was superior, with over 70% of predictive errors
lying below 10 Wm™ . The results from the last two studies are the only close available comparisons
of solar forecasting studies employing LSTM. Regarding the evaluation in terms of statistical score
metrics, in this study, model-based LSTM outperformed by a noticeable margin, with outstanding r,
RMSE and MAE (Table 5) in all forecasting horizons (i.e., 1M, 5M, 10M, 15M, and 30M). Moreover,
the two compared studies focused solely on a specific forecasting horizon, but this study presented
LSTM performance over multiple time horizons in which the r-value was over 0.9 for all cases.

In terms of optimization of the LSTM model, an epoch can be set to various times for a given
dataset, and is used in the training stage. In this study, the number of epochs (Table 4a) was set to be
2000 in every case. However, the training phase stopped when the evaluation metric MAE did not
increase on the validation set, in other words, the number of epochs did not reach 2000 (Table 4b). To
allow LSTM to perform better, the number of epochs should be set at a higher value to possibly reach
the optimized model. Therefore, the number of training times or epochs does not influence the
performance in the training phase since it demonstrates a random property in practice. Moreover, it
is noticeable that the LSTM performance improved when the drop rate and batch size increased
(Table 4b). This aspect is also a novelty of this study.

To summarize, the newly developed model-based LSTM can be considered to be superior for
near-real-time solar forecasting modelling and future solar energy management to the compared
previous machine learning methods (i.e., MLP, SVR), deep learning method (i.e., DNN) and time-
series method (i.e., ARIMA).

This study supports the significant merits of a deep learning technique to attain better precision
in near-real-time solar forecasting. Further, it also demonstrates the ability of models based on LSTM
architecture in different forecasting horizons that can assist power generation companies in energy
management. Since the r-value in very short-term horizons (i.e., 1M, 5M, 10M, 15M, 30M) is quite
high, this model can be applied elsewhere with similar climatic conditions to Vietnam. However, the
scope of this study could be further improved as it is restricted in terms of the forecasting horizon.

Further studies can study LSTM’s ability in longer-term forecasting horizons, such as medium
term (i.e., hourly, daily) and long term (i.e., weekly, monthly, yearly) to support specific application
purposes. Moreover, further studies can also apply feature extraction and feature selection to develop
a hybrid LSTM model. Since this study focuses on GSR from ground-based measurement, further
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study can apply LSTM in the context of multiple weather variables or satellite-derived variables in
multiple weather conditions (i.e., so that the LSTM capability can be thoroughly explored.

9. Conclusions

For the first time in this study region, this paper developed and demonstrated a forecasting
model-based LSTM algorithm for a near-real-time horizon using only global solar radiation times
series, which is also an alternative approach for those circumstances where there is a lack of available
predictor variables. The model was evaluated over multiple time horizons utilizing antecedent
lagged global solar radiation (GSR) data from 2017 to 2019 in Vietnam. Moreover, several types of
evaluation metrics were employed to assess the performance of the forecasting models, from which
it was shown that the LSTM model yielded the most accurate results.

The LSTM models were optimized by the combination of hyperparameters (Table 3a) and were
then compared to the optimized counterpart models. Evidently, the performance of the LSTM models
were better in all cases, and the LSTM model was found to be superior compared to its counterparts
at a 1 min horizon (Tables 5 and 6) as evidenced by its low relative forecasting errors (i.e., RMSE =
40.9125 Wm? and MAE=21.6428 Wm™)and high performance metrics (i.e., 7 =0.9920, WI=0.9984,

and E,; =0.9831).

By assessing the performance of the LSTM model utilizing the Legates—McCabe (LM) metric, the
LSTM model was found to have the highest agreement. The obtained LM performance between
forecasted and observed global solar radiation values for various time horizons (1M, 5M, 10M, 15M,
and 30M) were 0.9204, 0.4658, 0.9275, 0.7575, and 0.7741 respectively, whereas the relative percentage
errors (RRMSE) were approximately 10, 15, 11, 13, and 14%, respectively.

In addition, the DM test was employed to provide an evaluation framework for different models
and to provide a strict criterion to evaluate the forecasting accuracy. A meaningful evaluation
conclusion of superior performance of LSTM over the counterpart models was reached when most
absolute DM statistic values were greater than 1.96 at a 5% level of significance. The only two
exceptions were those of LSTM vs. DNN at a 1M forecast horizon (IDM| = 0.272 < 1.96) and LSTM
vs. SVR at a 15M forecast horizon (IDMI| = 0.268 < 1.96) at a 5% level of significance. Moreover, the
p-values at a 5% level of significance were less than 0.05, which means all models were statistically
significant.

In short, this study provides a baseline investigation that is relevant to other potential models to
be used in near-real-time solar forecasting in future studies. Examples include the hybridization of
LSTM with other methods, such as a convolutional neural network for feature mapping, using a
wrapper-based feature selection method employing several atmospheric predictor variables [42],
other deep learning methods (e.g., deep neural networks), and data decomposition methods such as
wavelets and ensemble mode decompositions [10,127]. While these methods can potentially improve
the proposed LSTM model, the present study, as a first investigation of the near real-time forecasting
of GSR, has set a clear future foundation for adopting these techniques in the context of solar radiation
modelling in Vietnam. Nonetheless, the findings of this study ascertain that the standalone LSTM
model could adequately capture the nonlinear dynamics of global solar radiation time-series data.
The model-based LSTM can be employed in longer time horizon solar forecasting (i.e., long term,
medium term, and short term). Furthermore, the government and electricity generator companies in
Vietnam can use this model prior to generating solar energy to derive an optimal production strategy.
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CHAPTER 5: SHORT-TERM HORIZON SOLAR RADIATION
FORECASTING

Article 2: Novel short-term solar radiation hybrid model based on Long Short-Term

Memory Networks integrated with Robust Local Mean Decomposition

5.1 Foreword

Due to the non-stationary property of solar radiation, traditional methods might find it hard
to obtain an accurate and reliable solar prediction and solar energy generation. Therefore, a
data-driven model tailored for short-term forecasting can generate meaningful information for
various usages. The second paper introduces a new artificial intelligence hybrid model by
employing a robust version of the local mean decomposition (RLMD) and Long Short-Term
Memory (LSTM) networks, denoted as RLMD-LSTM, trained and evaluated on half-hourly
ground-based solar radiation (GSR) from 2017 to 2019 for four solar-rich metropolitan cities

in Vietnam, namely Da-Nang, Central Highlands, Song-Binh and Tri-An.

RLMD is implemented robustly to decompose data inputs from a complex set of predictive
variables, whereas LSTM is employed for prediction with the results benchmarked by classical
approaches (i.e. Support Vector Regression (SVR), Long Short-Term Memory (LSTM),
Multivariate Adaptive Regression Spline (MARS)) as well as other alternative methods (i.e.
RLMD-MARS, and RLMD-SVR). Verified by statistical and visual infographics, the results
demonstrate that the proposed RLMD-LSTM hybrid model can generate a satisfactory GSR
prediction and can outperform the counterpart’s predictive modelling methods. The
outstanding performance of the RLMD-LSTM hybrid model ascertains that this newly
designed approach has the potential to be applied in real-time energy management and

operation systems.
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Abstract

Data-intelligent algorithms tailored for short-term energy forecasts generate meaningful information
on future variability of renewable energy, supply, demand and price management, and the harvesting
of solar energy in solar concentrators and photovoltaic systems. Traditional forecasting methods find
it relatively difficult to obtain reliable prediction of solar energy generation because of the inherent
nonlinearities in solar radiation and related atmospheric variables. This paper proposes a new artificial
intelligence hybrid model by employing robust version of local mean decomposition (RLMD) and
Long Short-term Memory (LSTM) network denoted as RLMD-LSTM. This objective model is
trained and evaluated on near real-time, half-hourly ground-based solar radiation (GSR) dataset for
solar rich, metropolitan sites in Vietnam. The RLMD-based data decomposition algorithm is firstly
implemented robustly to decompose GSR data to reveal historical behaviour of solar radiation,
represented by product functions, whereas LSTM is employed for predictive modelling purposes,
with all results benchmarked through classical modelling approaches (i.e., Support Vector Regression
SVR, Long Short-term Memory LSTM, Multivariate Adaptive Regression Spline MARS) as well as
the other alternative hybrid methods (i.e., RLMD-MARS, and RLMD-SVR). Verified by statistical
metrics and visual infographics, the present results demonstrate that the proposed LSTM-RLMD
hybrid model can generate satisfactory GSR predictions, outperforming several counterpart methods.
The outstanding performance of RLMD-LSTM hybrid model ascertains that the newly designed
approach can be a potential candidate for real-time energy management, renewable energy integration
into a power grid and other decisions to optimise the scheduling and performance of the overall

system.
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1.0 Introduction

Vietnam is a developing nation with an annual average gross domestic product of ~7% in which the
energy sector accounts for a vital part of its economy [1, 2]. In general, both the primary and the
secondary energy demand has experienced a rise of over 5% per year with significant growth coming
from coal and oil where an acceptable portion of renewables were largely negligible. Due to growing
energy demand, Vietnam has a strong reliance on foreign imported energy (e.g., coal and oil) which,
in the current time of economic instability, can put national energy security at severe risk. Moreover,

fossil fuels are causing environmental risks and energy crisis that pose a significant threat to our lives



[3], hence, the exploitation of renewable energy resources have attracted public controversy in pursuit
of environment protection [4]. In fact, renewable energy has been considered because of its inherent
nature that avoids the passage of contaminants (e.g., CO>) into the natural environment [3] In 2017,
the capacity of solar PV power was almost 400 GW, and that for the production volume was ~2% of
global power [5]. There has been an increasing attention on United Nations Sustainable Development
goals (SDG) [6] recommending for cleaner energy resources globally. This places Vietnam a strong
potential advocate of SDGs, particularly, empowering solar energy generation, given its geographic
location being close to the equator. The nation is taking enormous advantage towards developing
essential projects in both wind and solar energy resources [7]. Theoretically, the maximum volume
of energy that Vietnam can generate is estimated to be ~100 GWh year from concentrated solar power
and ~1.2 GWh from photovoltaic power [8], respectively. From these statistics, there appears to be a
continuous growth of solar energy systems that require appropriate energy management technologies
based on latest forecasting systems that can also help power utilities in management of renewable

power that is passed into their grid system.

Considering the foresaid, solar energy generation is a promising option to fulfil the United
Nation’s SDGs [9], however, its principal element, solar irradiance can be heavily depended on the
naturally uncontrolled atmospheric conditions. The global solar radiation (GSR) is highly intermittent
and chaotic in nature [10] that a small variability in solar radiation can possibly lead to a major
influence on the security of power generated. In this respect, reliable and versatile short-term solar
energy forecasting models are vital for management of power systems that are dependent on incoming

solar radiation, and how it is converted into usable electrical power [11].

Forecast models are categorised into three types of data-based systems such as those using
satellite data [12], linear regression data [13] and neural network models adopting meteorological
parameters to produce a viable relationship with solar radiation [14]. In terms of computational
methods, there are two types of models namely the physical and the statistical model. However,
literature reports common challenges in these methods such as a shortage of available measured data
at solar powered sites to build these models, the time-consuming nature of the data collection of such
datasets and the need for enormous computing power in solving the complex nonlinear equations is
purely mathematical models are used in solar farms [15]. Therefore, researchers are continuously
developing new models that can resolve existing problems associated with solar energy prediction

methods.
2.0 Literature review

With increasing in computational techniques, machine learning-based forecast models have been

proven to provide good performance over physically-based models [16-18]. Machine learning models



have also outperformed some of the other time series methods [19] that utilize historical patterns to
predict solar radiation [20]. However, reported weaknesses in such methods include the occurrence
of model bias [21] and possibly, model over-fitting issues [15]. To this end, significant progress has
been made resolving the issues by a recent introduction of advanced machine learning methods such
as deep learning techniques [22, 23] although the newer methods have not been fully explored in solar

energy generation sector.

However, solar radiation phenomenon itself is significantly compounded, which is difficult to be
predicted by a simple approach when high precision is required, for example, in real-time energy
management connected to a grid. Since a single method can result in huge error [24], a compound
approach or more specifically, a hybrid approach is encouraged with the aim of gaining higher
precision [25]. In various types of hybrid methods used in solar forecasting, the decomposition-based
ensemble learning approach is reported to provide promising results [26]. The guiding principle of
this approach is to demodulate original intermittent signal into a more meaningful subset of sub-
signals that can unveil the characteristics (e.g., frequencies, jumps, trends and patterns) in a time
series data. Each component of the sub-signal is then utilised as an input for a separate predictive
model, then, aggregating those from all components to a final forecasted result. Since this approach
can show high predictive accuracy, it has been studied extensively. Examples include discrete wavelet
transform (DWT) [27], maximum overlap discrete wavelet transform [28], ensemble empirical mode
decomposition [29] [30, 31] and its improved versions e.g., complete ensemble empirical mode
decomposition with adaptive noise [32]. In addition to these, another potent method in data
decomposition that can plausibly to improve the predictive accuracy of a machine learning model is
based on the local mean decomposition (LMD) algorithm, particularly, with respect to its application
in EEG datasets [33, 34].

Despite their success, these approaches face significant limitations. With LMD as an example,
we ascertain that while it can possibly analyse time-frequency representations by decomposing an
original subset into a multicomponent subset of amplitude and frequency-modulated signal, this
method can be easily influenced by the end effect and mode mixing problems [35]. In order to resolve
these issues, the robust local mean decomposition (RLMD) [36], adopted in this paper, was
introduced to optimize the moving average algorithm and its sifting process. Hence, the RLMD
algorithm can be a promising tool to address issues of model input decomposition [36]. One study
has applied RLMD with Long Short Term Memory (LSTM) a deep learning model, for forecasting
wind speed [37]. In this study, the authors proposed an RLMD-LSTM model that yielded a greater
accuracy compared to the other benchmark model [37]. However, the RLMD method has not yet been

explored in solar energy forecasting, especially, the fact that solar radiation data are highly



intermittent and stochastic, and therefore, could enable the RLMD method to improve any standalone
LSTM model.

With an aim to address issues of nonstationary properties in short-term solar energy forecasting
with computationally efficient data-processing techniques (RLMD), this paper develops models for
half hourly horizon. To capture the merits of the overall hybrid model, the study proposed a new
model that integrates RLMD and LSTM, to generate the RLMD-LSTM hybrid model where we
analyse the model inputs by RLMD which is then absorbed by LSTM predictive model. Four sites in
the middle and South of Vietnam, the solar-rich metropolitan areas that earmarked as great potential
sites for solar energy, are selected to validate the RLMD-LSTM hybrid model. This paper contributes
to a new comprehension of deep learning models, for the first time, that integrates RLMD scheme
with LSTM model to predict global solar radiation. The hybrid method is also benchmarked with
standalone models namely the LSTM, MARS, SVR and alternative methods such as RLMD-LSTM,
RLMD-MARS, RLMD-SVR algorithms. The application of LSTM and their variant algorithms have
not been so popular in short-term solar energy forecasting studies in spite of their recent attention [23,
38]. Moreover, it appears to be quite rare to find any study that has used MARS and SVR with the
RLMD method.

This paper has six parts. Firstly, Section 1 and 2 present a general background and literature
review. Then, Section 3 provides a theoretical background of RLMD algorithm following by an
overview of the material and model tunning process. After that, Section 5 discusses experimental
results while Section 6 provides future work and limitations. Finally, the ultimate section summarises

content of the paper.

3.0 Theoretical Overviews

Only the RLMD algorithm is comprehensively described here since this method is innovative
and relatively new in short-term GSR forecasting. The conceptual details of LSTM, MARS and SVR
are explained elsewhere because they are well-known approaches. The state-of-art literature of an
LSTM model, as a deep learning method, is clearly described by Hochreiter [39] and its applications
in terms of GSR forecasting are mentioned in other works (e.g., [23], [40]). In this study, to compare
our LSTM-based model, we also use MARS method proposed by Friedman [41] with some of its
applications found elsewhere (e.g., [42]). The SVR method is described in [43] with some of its
applications found in [40], [27].

3.1 Robust Local Mean Decomposition

The original version of RLMD, also known as the Local Mean Decomposition (LMD) algorithm

relies on the idea of decomposing an original signal into a subset of a less complicated sub-signals



which is an adaptive method to analyse time-frequency datasets (e.g., through signal processing [33]).
This decomposes a nonstationary signal into its product functions (PF) with the following content
describing the process of LMD for a given signal x, with t=0, 1, ..., . Firstly, the decomposition
process starts at finding all of the maxima and minima of local extrema in the original signal ( x, ) for

example, the antecedent solar radiation timeseries, or related atmospheric predictor variables, used to

predict the future solar radiation values. Following that, we calculate two serial extrema (i.e., n,and
n,.,) ‘s amplitude (&) and the local mean (m,)as Eq. (1). Then, the algorithm aims to obtain the
remaining sub-series by subtracting the inceptive local mean from the pure signal (2), (3). Next, the

envelope function and products are obtained as per Eq. (4), (5) and (6)

m = M+, _ |ni +ni+1|

i 5 a > (1)

Where n, with (i= 1, 2, ..., K)is the i" extreme point and K denotes its total number. After
this, a moving average method can form a continuous local mean function my(t), where
j= @ 2, ..., K): the number of iterations to produce a normalized signal. Likewise, the relative
envelope function g (t) is also generated. Noticeably, A" is expected to control the performance of

the moving averaging method.

h11 (t) = X(t) —Mmy (t) (2)

_h@® 3
0= 24 3)
a, (1) =a,0a, ). a0 =]T a0 (4)

Lim a, (t)=1

Cl(t) = ai(t)'slN (t) (5)
X(t) = kic (t) (6)

Although the LMD algorithm has a promising merit such as avoiding the existence of negative
frequencies in an extracted subset of signals [34], the end effects and mode mixing issues are two
most common problems. In order to overcome these drawbacks, the proposed RLMD method firstly
needs to determine and further optimise some of the parameters. This process considers envelope

estimation, boundary condition, and the sifting stopping criterion. Consequently, the new RLMD



algorithm was introduced so that it can simultaneously consider all these issues. More details about
the RLMD algorithm can be found in [36]. Regarding the boundary condition problem, the RLMD
algorithm generally uses mirror extension techniques to ascertain commensurate points for two ends
of the original signal. For the estimation of envelope, the RLMD algorithm can achieve the best subset
size based on Eq (7) and (8). Finally, the RLMD method also sifts the stopping criterion by using the
function F as described in Eq. (9), (10) and (11).

A" =odd(u, +3x6.) @)
=3 50160 o, =J§[S(i)—ﬂs] ) ®
F = RMS [z(t)]+ EK [2(1)] ©)
RMS[2(t)] = /%i[z(t)] (10)
1Q -,
Yeo-m
EK[z(t)]= 1”;=1 -3, 2=-)2(1) (11)
(- 2[0 -2y "

In which:

s(i) : the local mean or amplitude signals‘ the step length;

f (i) : Product Function;

4. mean of s(i);

o, s(i) ’s standard deviation;

odd (.) : the process to attract the closest integer equal to or greater than the input.

z(t) = a (t) —1: the zero-baseline envelope signal.

4.0 Materials and method

4.1 Global solar radiation

This paper has obtained and utilized GSR data (Wm2) from World Bank. The GSR data were
measured simultaneously, 24 hours a day with an interval of one minute in four different regions in
Vietnam from July 2017 to May 2019 as shown in Figure 1. In Figure 1, the presented study sites (i.e.
the stations) comprise of Da-Nang (red), Central Highlands (green), Song Binh (blue) and Tri-An



(cyan). All locations are in the equatorial dry winter (September-March) and a dry season (April-
August). To evaluate the versatility of the proposed RLMD-LSTM model, the selected study regions
are representative of a diversity of climatic condition. For instance, Da-Nang is located in the middle
centre of Vietnam with mountains, coastal plains and tropical climate whereas Central Highlands has
many mountains with a cooler climate. Song-Binh and Tri-An are in the South of Vietnam which are
more humid with two different seasons in a year [44]. This study utilises a 30-minute interval time
series of GSR, for near real-time forecasting, albeit, from 6.00 AM to 06:00 PM as the daylight hours
providing solar radiation as input to the solar generating system. There were some missing data
mainly due to technical faults that were filled with the calendar mean values. The details of GSR

dataset used to construct the RLMD-LSTM hybrid model for each location are presented in Table 1.

<Figure 1>; <Table 1>

4.2 Predictive Model Development

To fully benchmark the performance of the newly proposed RLMD-LSTM hybrid model in context
of GSR forecasting in Vietnam, this study has compared its performance with the hybrid model
versions namely, the RLMD-MARS and RLMD-SVR model, including their traditional or standalone
versions (i.e., LSTM, MARS and SVR).

The latter three models have used the statistically significant lagged GSR variables generated
from the original GSR datasets (i.e., considering historical behaviour of solar radiation) by means of
the partial autocorrelation function, PACF. Henceforth, the RLMD algorithm has demodulated the
original data series into the different sub-series before applying the PACF method to generate viable
inputs for the first three (i.e., RLMD-LSTM, RLMD-MARS and RLMD-SVR) models.
Consequently, this study has developed a suite of six machine learning models used in half-hourly
forecasting of solar radiation, with a deep learning (i.e., LSTM) against two traditional machine
learning (i.e., MARS & SVR) models to fully evaluate the utility of the objective (i.e., RLMD-LSTM)

model.

It is noteworthy that for the case of the RLMD-based hybrid models, the complex time series
were firstly dissolved by the RLMD scheme that aimed to decompose GSR based on the maximum
to minimum frequencies which are technically known as Product Functions [45], [36]. To summary
the general idea of this paper Figure 2 presents a flowchart whereas Figure 3(a) illustrates the dataset
for all study sites demonstrating the six PFs, while Figure 3(b) illustrates the significant lagged GSR
produced from the PACF function. Beside these, Table 1 also shows the number of PFs obtained for

the various study locations.

<Figure 2>; <Figure 3a>; <Figure 3b>



All data were normalised and converted to [0,1] based on Eq. 12.

GSRACTUAL _GSRMIN
GSRy,a —GSRyn

GSR, =
(12)

GSRcrua. = GSRy (GSRy —GSRyy ) +GSRyyy (13)

Before building the models, partitioning of data into training and testing subsets was necessary
[46]. There is no direct rule for data division, for example, the proportion of training and testing sets
used in [38] was 75:25 whereas it was 80:20 in [23]. This paper has therefore used a 80:20 ratio for

the training and testing sub-sets, respectively (Table 1).

This paper has adopted MATLAB (Ver 2019) with Intel i7, 3.6 GHz processor for the RLMD
process. This process of building an RLMD-based model followed four primary steps. Firstly, it
involved applying the RLMD algorithm to decompose GSR series into its Product Functions, as per
Figure 3(a). Secondly, using PACF, this step reconstructed each subset into statistically significant
lagged input series (Figure3b). After that, the RLMD-based models utilising the LSTM, MARS and
SVR predictive algorithms were constructed using the sub-series, in order to forecast each of the PFs
separately, and finally, the method also obtained the forecasted GSR from RLMD-based models by

aggregating the forecasted PFs. Figure 3b illustrates this process.

To benchmark RLMD-LSTM hybrid models, two other kinds of machine learning models,
namely, the MARS and SVR, were developed with and without RLMD. In the training phase, all
predictive models (i.e., LSTM, MARS and SVR) were constructed under a Python programming
environment (Ver 3.6) with the Keras library [47]. The details of constructing an LSTM, MARS and
the SVR model in Python environment are described in other works (e.g., [40]). For the specific case
of a MARS model, we have used the lowest Generalized Cross-Validation to optimise this algorithm
following an earlier work [41]. Finally, we applied various performance metrics, as per Eq 14-24, to
evaluate the precision of the proposed models. In the training phase, the RLMD-LSTM hybrid model
was seen to generate the smallest value of RMSE and the highest value of LM — which are robust
metrics indicating superior performance of this model over the counterpart models. Table 2 shows

the performance of all models in the training phase.

<Table 2>

4.3 Model Performance Criteria

In respect to the precision and accuracy assessment of the proposed objective model (i.e., RLMD-
LSTM) vs. the RLMD-MARS, RLMD-SVR and the standalone machine learning models (i.e.,



LSTM, MARS, and SVR) applied in GSR forecasting, this study has employed performance metrics
in the testing phase with their mathematical formulations as follows[48, 49]

a. Correlation coefficient (r)
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c. Root mean square error (RMSE):
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d. Nash-Sutcliffe coefficient (Eg)
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e. Willmott’s index (WI)
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f. Legates-McCabe's (LM)
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g. Relative root mean square error (RRMSE %)
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5.0 Results and Discussion

The results presented here demonstrate the efficacy of the hybrid LSTM model integrated with an
RLMD algorithm for half hourly GSR forecasting at four Vietnamese cities (i.e., Da-Nang, Central
Highlands, Song-Binh, Tri-An). The benchmark models, which demonstrate the superiority of
RLMD-LSTM hybrid model are the RLMD-MARS and the RLMD-SVR models, together with
standalone models such as LSTM, MARS and SVR. The efficacy of our objective model is based on
the testing phase where statistical performance metrics (Section 4.3) are adopted to validate the
results, presented and argued in the following.

The predictive capacity of RLMD-LSTM hybrid model for all study sites is summarised in Table
3. As can be seen, in comparison to the standalone models, the RLMD-LSTM hybrid model performs
the best among all the four study sites with the lower RMSE, MAE and the largest magnitude of WI
and E,s . Hence, it this indicates that the RLMD algorithm, which can reveal the concealed patterns
in GSR time-series, can possibly addresses the complex data patterns employed as potential inputs
(Figure 2).

For instance, for the case of Da-Nang, the WI, RMSE, and MAE values were ~4% larger and ~ -
31.5% and 35% lower for the RLMD-LSTM hybrid model compared to the LSTM standalone model.

Moreover, the accuracy statistics of the RLMD-LSTM model in terms of E,5 =0.9248 compares with

the LSTM value of E,s=0.8700 which also indicates a better performance of the objective hybrid

model. Likewise, for the other three study sites, in Table 3 we illustrate the relative advantages of the
RLMD-MARS and RLMD-SVR hybrid models over the standalone MARS and SVR models,
although the overall performance of these do not exceed our RLMD-LSTM hybrid model.

<Table 3>

Taking the Da-Nang study site as an example, the results indicate that the RLMD-LSTM
model yields a value of (r= 0.9628, RMSE=2,602 Wm?, MAE=1,702 Wm2, RRMSE=19%,
LM=0.7988), which unambiguously seem to outperform the metrics of the RLMD-MARS model
with (r= 0.96048, RMSE=2,773 Wm2, MAE=1,958 Wm, RRMSE=20%, LM=0.7685) and the
RLMD-SVR with (r= 0.9512, RMSE=4,874 Wm2, MAE=4,226 Wm, RRMSE=35%, LM=0.5004).

A similar deduction can also be made for the other study sites such as Central Highlands, Song-Binh,



and Tri-An, further emphasising the superior capability of the newly proposed RLMD-LSTM hybrid
model.

When evaluated in respect to the RRMSE and LM values, the more robust metrics providing
an objective evaluation of the newly proposed RLMD-LSTM hybrid model [50], we can clearly see
the benefits of the RLMD-LSTM hybrid model for all four study sites (Table 3). For example, for the
case of Da-Nang, the RRMSE value was ~19% with an LM value of 0.7988 for the RLMD-LSTM
approach compared to a higher value of ~20% and a lower value of ~0.7685 for the case of RLMD-
MARS model, ~35% and ~0.5004 for the case of RLMD-SVR model. As it can be seen in the other
study sites, the performance of the standalone models (without actually utilising the RLMD-based
data decomposition methods) registered a higher value of RRMSE and a lower value of LM that were

largely not satisfactory.

In terms of the predicted and the observed GSR values, the RLMD-LSTM hybrid model has
yielded the highest correlation coefficient with r=0.9628, 0.9639, 0.9597, 0.9714 for all four sites
following by the relatively lower value for the RLMD-MARS, RLMD-SVR, and the LSTM, MARS,
SVR models for Da-Nang (r=0.93-0.96), Central Highlands (r=0.94-0.96), Song-Binh (r=0.92-
0.95), Tri-An (r=0.94-0.96). Consistent with these results, Figure 4 illustrates a scatterplot. This
figure shows correlative relationship between forecasted and observed GSR by linear equation, GSR
= m GSR + ¢ with a coefficient of determination R? [14]. Note that the ‘m’ is a gradient for 1:1
correlation, R? measures the covariance and ‘c’ shows an intercept on the y-axis that should be trivial

for a perfect forecasting model.

Notably, the RLMD-LSTM hybrid model has yielded a superior performance than the
counterpart models so that for the case of Da-Nang site (Fig. 3a), the RLMD-LSTM yielded m =1.02,
¢ = 206 and R? = 0.9628 which exceeds the value for RLMD-MARS (m = 1.04, ¢ = 156 and R? =
0.9604), and RLMD-SVR (m = 0.96, ¢ = -3316 and R? = 0.9512). A similar conclusion can also be
made in Figure 3(b—d) for Central Highlands, Song-Binh, Tri-An, respectively. Importantly, R? for
the case of the RLMD-LSTM hybrid model is also higher than that of the RLMD-MARS and RLMD-
SVR models showing the better capability of the LSTM-based deep learning method even with the
incorporating of RLMD method with MARS and SVR (non-deep learning) models. Additionally, the
standalone models such as LSTM, MARS and SVR also generated poorer results compared to the
RLMD-LSTM hybrid model.

<Figure 4>; <Figure 5>

To further investigate the machine learning models that generate smaller errors for half-hourly
GSR prediction, Figure 5 illustrates a boxplot that has the absolute prediction error in terms of

forecasted and observed solar radiation. Like earlier results, the standalone models such as LSTM,



MARS and SVR show errors that are dramatically larger than their hybrid model counterparts at all
study locations. This concurs with previous results (i.e., Table 3, Figure 3) that the RLMD-LSTM
hybrid model is seen to occupy a magnitude of the forecasted errors compared to their counterpart
models. Overall, the RLMD-LSTM hybrid model has attained a greater precision in forecasting of
half-hourly solar radiation for the sites in Vietnam, further cementing the advanced modelling

capabilities of the proposed RLMD method mainly to improve the deep learning, LSTM-based model.
<Figure 5>

As a complementary visual measure of evaluating the half-hourly forecasting model, we revert
to a Taylor diagram, as per Figure 6 [51] that illustrates the relative distance between observed and
forecasted values in the testing phase of the comparative models. In this figure, the radial axis presents
the r-value whereas the polar axis presents the standard deviation. In all cases, it is evident that the
RLMD-LSTM model yields the highest r-value and has achieved the closest distance between the
forecasted and the observed GSR values whereas those for the comparative models were further away
from the reference (observed) value. It is therefore plausible that the RLMD method integrated with
LSTM has great ability to improve the forecasted values in testing phase, by approximately 50%.
Given the robustness of the newly proposed RLMD-LSTM model and its capability to outperform
the benchmark models, this this study clearly points out the benefits of this data decomposition
approach, and its use in reliable global solar radiation forecasting tools for short-term horizons. Not
only is the RLMD-LSTM method a likely candidate for global solar radiation prediction but also
could offer an effective tool for the monitoring of electricity production, energy supply-demand
systems and operation management of solar farms. While we have tested the benefits of RLMD-
LSTM hybrid model for the specific case of solar radiation forecasting, this method may also be
useful other renewable energy systems such as wind, tidal and wave energy conversion systems [26,
32, 52-55] where model input data also has a significant signature of non-stationary and chaotic

behaviour.

6.0 Limitations and Future Work

Despite good success of the newly designed RLMD-LSTM hybrid model in context of half-hourly
GSR forecasting, ascertained by statistical and visual analysis of results, there remain some degree of
limitations that should be addressed in future studies. First of all, in this paper, only the historical
GSR datasets were used as potential inputs for the RLMD-LSTM model, however, one must also
consider the other climatic factors such as temperature, rainfall, humidity and most importantly, the
cloud cover data that could also affect the ground signature of GSR [56]. Therefore, developing an
alternative forecasting model utilising both atmospheric input data and weather variables could be a

feasible pathway for future work to include more physical variables that drive solar energy generation



process. This is because models can be affected by sky and weather conditions [57], so the inclusion
of numerical weather models such as global forecast system (GFS) as weather forecast model
producing 6-hourly forecasts, made up of separate forecasts, or ensemble members can be used to
address uncertainty in weather observations, or to initialize weather forecast models, should be
integrated to an RLMD-LSTM model. In addition to this, the RLMD-LSTM approach can also be
enhanced by the use of an ensemble algorithm for uncertainty testing perhaps, through a Bayesian
Model Averaging framework [58] and a bootstrapping method [59].

7.0 Conclusion

This study has innovated an RLMD-LSTM hybrid model for predicting half-hourly GSR at
four study sites in Vietnam. To fulfil this aim, the solar radiation datasets in Vietnam from 2017 to
2019 at 30-minute intervals were decomposed by an RLMD algorithm into the product functions
(PFs) that better represented the patterns in historical GSR, capturing the physical influence of
atmospheric variables, and then used to simulate future GSR values. After generating the PACF of
the corresponding PFs, statistically significant lagged inputs were passed into the deep learning,
LSTM predictive model to formulate the RLMD-LSTM hybrid model with the overall aim to achieve
a better accuracy compared to its standalone forms. As a result, the RLMD technique was found to
be a robust version of the LMD method to address nonstationary properties in global solar radiation,
mainly by its capability to demodulate the original series into its respective PFs (see Table 1 and Fig.
2a).With the overall purpose of evaluating the predictive capability of the proposed model, this paper
for the first time, has also developed two other forms of hybrid models (i.e., RLMD-MARS, RLMD-
SVR) and three other forms of standalone models (i.e., LSTM, MARS, and SVR). By assessing the
predictive performance through using various infographics with a combination of statistical score
metrics (e.g., r-values, RMSE, Legates & McCabe’s Index) computed in the independent tested
datasets, the high performance metrics and low forecasting errors were evident for the case of RLMD-
LSTM model, outperforming the counterpart models (see Table 3). Moreover, with a reasonable
variability in the performance of all models considering the diverse locations they were tested for, the
RLMD-LSTM hybrid model achieved a generally stable forecasting capability. As a result, we
conclude that the RLMD-LSTM hybrid model is a considerably superior methodology for short-term
solar radiation forecasting. This conclusion stands valid in respect to the advantages of the proposed
RLMD-LSTM model over the other models, albeit, also suggesting that the utilisation of seasonal
and climate data, cloud cover, and including variables from numerical weather simulation model to
better capture the physical atmospheric conditions could a pathway to further adopt RLMD-LSTM

model in future studies.



This study has generated a novel methodology for very short-term forecasting horizons (i.e.,
half-hourly) to be utilized to forecast future GSR values. Based on the efficacy of this forecast system,
we conclude that the use of the method in solar and other forms of renewable energy managements
can provide stakeholders with key information on solar energy variability to help develop strategic
plans for energy production, grid operation and the integration of renewables into their power
conventional generation systems for better energy security. Moreover, the proposed forecast system
based on RLMD-LSTM model can also be applied in other fields such as oceanic wave based
electricity generation to assist policymakers in a better and optimal management of freely available

energy resources.
Acknowledgements

The solar radiation data was obtained from World Bank solar energy projects for Vietnam. The
authors are also grateful to all reviewers in providing meaningful feedback in order to improve this

research paper.

References

1. Hung, N.N., N.H. Anh, and N.T. Hai, Institute of Energy. ENERGY SECTOR IN VIETNAM AND
RENEWABLE ENERGY ROLE, 2018.

2. Sanseverino, E.R., et al., Review of Potential and Actual Penetration of Solar Power in Vietnam.
Energies, 2020. 13(10): p. 1-25.

3. Luong, N.D., A critical review on energy efficiency and conservation policies and programs in
Vietnam. Renewable and Sustainable Energy Reviews, 2015. 52: p. 623-634.

4, Tan, Z., et al., Photovoltaic power generation in China: Development potential, benefits of energy
conservation and emission reduction. Journal of Energy Engineering, 2012. 138(2): p. 73-86.

5. Hoat, D., et al., Research Overview of New and Renewable Energy in Vietnam and Development

Orientation. Vietnam Academy of Science and Technology: Hanoi, Vietnam, 2007.

I INVALID CITATION ! (Luong, 2015, IEA, 2012, Shem et al., 2019).

Outlook, I.S.A.E., International Energy Agency: Bangkok. 2019, Thailand.

Polo, J., et al., Maps of solar resource and potential in Vietnam. 2015.

Farivar, G. and B. Asaei, A new approach for solar module temperature estimation using the simple

diode model. IEEE transactions on energy conversion, 2011. 26(4): p. 1118-1126.

10. Perez, R., et al., The cost of mitigating short-term PV output variability. Energy Procedia, 2014.
57(1000178044 & 1000177911): p. 755-762.

11. Mostafavi, E.S., et al., A hybrid computational approach to estimate solar global radiation: an
empirical evidence from Iran. Energy, 2013. 49: p. 204-210.

12. Lu, N., et al., A simple and efficient algorithm to estimate daily global solar radiation from
geostationary satellite data. Energy, 2011. 36(5): p. 3179-3188.

13. Benghanem, M. and A. Joraid, A multiple correlation between different solar parameters in Medina,
Saudi Arabia. Renewable Energy, 2007. 32(14): p. 2424-2435.

14. Ghimire, S., et al., Global solar radiation prediction by ANN integrated with European Centre for

medium range weather forecast fields in solar rich cities of Queensland Australia. Journal of cleaner
production, 2019. 216: p. 288-310.

15. Voyant, C., et al., Machine learning methods for solar radiation forecasting: A review. Renewable
Energy, 2017. 105: p. 569-582.

16. Alzahrani, A., et al., Solar irradiance forecasting using deep neural networks. Procedia Computer
Science, 2017. 114: p. 304-313.

17. Paulescu, E. and R. Blaga, Regression models for hourly diffuse solar radiation. Solar Energy, 2016.

125: p. 111-124.



18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Coulibaly, O. and A. Ouedraogo, Correlation of global solar radiation of eight synoptic stations in
Burkina Faso based on linear and multiple linear regression methods. Journal of Solar Energy,
2016. 2016.

Bracale, A., et al., A Bayesian method for short-term probabilistic forecasting of photovoltaic
generation in smart grid operation and control. Energies, 2013. 6(2): p. 733-747.

Ramedani, Z., et al., Potential of radial basis function based support vector regression for global
solar radiation prediction. Renewable and Sustainable Energy Reviews, 2014. 39: p. 1005-1011.
De Leone, R., M. Pietrini, and A. Giovannelli, Photovoltaic energy production forecast using
support vector regression. Neural Computing and Applications, 2015. 26(8): p. 1955-1962.
Ghimire, S., et al., Deep learning neural networks trained with MODIS satellite-derived predictors
for long-term global solar radiation prediction. Energies, 2019. 12(12): p. 2407.

Ghimire, S., et al., Deep solar radiation forecasting with convolutional neural network and long
short-term memory network algorithms. Applied Energy, 2019. 253: p. 113541.

Orjuela-Cafion, A.D., J. Herndndez, and C.R. Rivero. Very short term forecasting in global solar
irradiance using linear and nonlinear models. in 2017 IEEE workshop on power electronics and
power quality applications (PEPQA). 2017. IEEE.

Boroojeni, K.G., et al., A novel multi-time-scale modeling for electric power demand forecasting:
From short-term to medium-term horizon. Electric Power Systems Research, 2017. 142: p. 58-73.
Ali, M, et al., Near real-time significant wave height forecasting with hybridized multiple linear
regression algorithms. Renewable and Sustainable Energy Reviews, 2020. 132: p. 110003.
Ghimire, S., et al., Wavelet-based 3-phase hybrid SVR model trained with satellite-derived
predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar
radiation prediction. Renewable and Sustainable Energy Reviews, 2019. 113: p. 109247.

Deo, R.C., X. Wen, and F. Qi, A wavelet-coupled support vector machine model for forecasting
global incident solar radiation using limited meteorological dataset. Applied Energy, 2016. 168: p.
568-593.

Ali, M. and R. Prasad, Significant wave height forecasting via an extreme learning machine model
integrated with improved complete ensemble empirical mode decomposition. Renewable and
Sustainable Energy Reviews, 2019. 104: p. 281-295.

Prasad, R., et al., Designing a multi-stage multivariate empirical mode decomposition coupled with
ant colony optimization and random forest model to forecast monthly solar radiation. Applied
energy, 2019. 236: p. 778-792.

Prasad, R., et al., A double decomposition-based modelling approach to forecast weekly solar
radiation. Renewable Energy, 2020. 152: p. 9-22.

Al-Musaylh, M.S., et al., Two-phase particle swarm optimized-support vector regression hybrid
model integrated with improved empirical mode decomposition with adaptive noise for multiple-
horizon electricity demand forecasting. Applied Energy, 2018. 17: p. 422-439.

Smith, J.S., The local mean decomposition and its application to EEG perception data. Journal of
the Royal Society Interface, 2005. 2(5): p. 443-454.

Cheng, J., Y. Yang, and Y. Yang, A rotating machinery fault diagnosis method based on local mean
decomposition. Digital Signal Processing, 2012. 22(2): p. 356-366.

Junsheng, C., et al., Comparison between the methods of local mean decomposition and empirical
mode decomposition. Journal of Vibration and Shock, 2009. 28(5): p. 13-16.

Liu, Z., et al., Time-frequency representation based on robust local mean decomposition for
multicomponent AM-FM signal analysis. Mechanical Systems and Signal Processing, 2017. 95: p.
468-487.

Jiang, Y., et al., A novel wind speed prediction method based on robust local mean decomposition,
group method of data handling and conditional kernel density estimation. Energy Conversion and
Management, 2019. 200: p. 112099.

Zhou, H., et al., Short-term photovoltaic power forecasting based on long short term memory neural
network and attention mechanism. IEEE Access, 2019. 7: p. 78063-78074.

Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8): p.
1735-1780.

Huynh, A.N.-L., et al., Near real-time global solar radiation forecasting at multiple time-step
horizons using the long short-term memory network. Energies, 2020. 13(14): p. 3517.

Friedman, J.H., Multivariate adaptive regression splines. The annals of statistics, 1991: p. 1-67.



42.

43.

44,

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

o7.

58.

59.

Srivastava, R., A. Tiwari, and V. Giri, Solar radiation forecasting using MARS, CART, M5, and
random forest model: A case study for India. Heliyon, 2019. 5(10): p. e02692.

Drucker, H., et al. Support vector regression machines. in Advances in neural information
processing systems. 1997.

Yusuf, A.A. and H. Francisco, Climate change vulnerability mapping for Southeast Asia. 20009.
Fare, R., S. Grosskopf, and D. Tyteca, An activity analysis model of the environmental performance
of firms—application to fossil-fuel-fired electric utilities. Ecological economics, 1996. 18(2): p. 161-
175.

Prasad, R., et al., Input selection and performance optimization of ANN-based streamflow forecasts
in the drought-prone Murray Darling Basin region using 1S and MODWT algorithm. Atmospheric
Research, 2017. 197: p. 42-63.

Chollet, F., et al. 2015. Keras.

Dawson, C.W., R.J. Abrahart, and L.M. See, HydroTest: a web-based toolbox of evaluation metrics
for the standardised assessment of hydrological forecasts. Environmental Modelling & Software,
2007. 22(7): p. 1034-1052.

Legates, D.R. and G.J. McCabe Jr, Evaluating the use of “goodness-of-fit” measures in hydrologic
and hydroclimatic model validation. Water resources research, 1999. 35(1): p. 233-241.
Mohammadi, K., et al., A new hybrid support vector machine—wavelet transform approach for
estimation of horizontal global solar radiation. Energy Conversion and Management, 2015. 92: p.
162-171.

Jolliff, J.K., et al., Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment.
Journal of Marine Systems, 2009. 76(1-2): p. 64-82.

Deo, R.C., et al., Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm
for windspeed prediction of target site using a limited set of neighboring reference station data.
Renewable Energy, 2018. 116: p. 309-323.

Al-Musaylh, M.S., et al., Short-term electricity demand forecasting with MARS, SVR and ARIMA
models using aggregated demand data in Queensland, Australia. Advanced Engineering
Informatics, 2018. 35: p. 1-16.

Al-Musaylh, M.S., et al., Short-term electricity demand forecasting using machine learning methods
enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast
Queensland, Australia. Renewable and Sustainable Energy Reviews, 2019. 113: p. 109293.
Mohanad, S.A.-M., C.D. Ravinesh, and L. Yan, Particle Swarm Optimized—-Support Vector
Regression Hybrid Model for Daily Horizon Electricity Demand Forecasting Using Climate
Dataset. E3S Web Conf., 2018. 64: p. 08001.

Kashyap, Y., A. Bansal, and A.K. Sao, Solar radiation forecasting with multiple parameters neural
networks. Renewable and Sustainable Energy Reviews, 2015. 49: p. 825-835.

Zang, H., et al., Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM
model with spatiotemporal correlations. Renewable Energy, 2020. 160: p. 26-41.

Sloughter, J.M., T. Gneiting, and A.E. Raftery, Probabilistic wind speed forecasting using ensembles
and Bayesian model averaging. Journal of the american statistical association, 2010. 105(489): p.
25-35.

Tiwari, M.K. and C. Chatterjee, A new wavelet-bootstrap—ANN hybrid model for daily discharge
forecasting. Journal of Hydroinformatics, 2011. 13(3): p. 500-519.



CHAPTER 6: CONCLUSIONS

6.1 Foreword

This chapter presents the conclusions and the limitations of this study. The key

contributions and findings are mentioned, as well as various future research suggestions.

6.2 Conclusions

This study, within the context of a Master’s Thesis, has conducted an in-depth analysis of
solar radiation forecasting model techniques in the context of Vietnam. Several standalone and
hybridised models were presented at multiple forecast horizons (i.e. 1-minute, 5-minute, 10-
minute, 15-minute, 30-minute). The adopted forecasting models derived from machine
learning, and deep learning techniques, including data decomposition and model parameter
optimisations selected in this work, were: multivariate adaptive regression splines (MARS);
support vector regression (SVR); autoregressive integrated moving average (ARIMA); Long
Short-Term Memory (LSTM); Deep Recurrent Neural Network (RNN); Multilayer Perceptron
(MLP); and, Robust Local Mean Decomposition (RLMD).

The first set of findings is explained in the first paper. In particular, the SVR, ARIMA,
LSTM, RNN, MLP with grid search were developed and evaluated in Chapter 3 for short-term
global solar radiation forecasting in Bac-Ninh, Vietnam, using ground-measured based data
from the World Bank. Moreover, several types of evaluation metrics, visual analysis and
Diebold—Mariano statistic tests were employed to assess the performance of forecasting
models, from which it was shown that the LSTM model yielded the most accurate results. In
short, LSTM was a useful tool to absorb intricate patterns of solar radiation and provided a

highly reliable forecasting result.

Using the same source data for Objective 1, the second paper (Chapter 5) developed the
LSTM model integrated with RLMD for predicting half-hourly GSR at four study sites in
Vietnam. RLMD possibly addresses the non-stationarity problem of solar radiation by
decomposing GSR time-series data into the product functions (PFs). After generating the PACF
of the corresponding PFs, statistically significant lagged inputs were passed into the deep
learning, LSTM predictive model to formulate the RLMD-LSTM hybrid model, with the

overall aim of achieving better accuracy compared to its standalone forms.

85



With the overall purpose of evaluating the predictive capability of the proposed model, this
paper, for the first time, has also developed two other forms of hybrid models (i.e. RLMD-
MARS, RLMD-SVR) and three other forms of standalone models (i.e. LSTM, MARS and
SVR). By assessing the predictive performance through using various infographics with a
combination of statistical score metrics (e.g. r-value, RMSE, Legates & McCabe’s Index),
computed in the independently tested datasets, RLMD-LSTM outperformed the counterparts
with the highest performance metrics and low forecasting errors. Moreover, in terms of
considering the diverse studied locations, the RLMD-LSTM hybrid model achieved a generally
stable forecasting capability. As a result, the RLMD-LSTM hybrid model can be seen as a

superior methodology in terms of short-term solar radiation forecasting.

To sum up, this study provides various novel contributions in terms of a predictive model
for short-term solar radiation forecasting. According to the results, the proposed models
outperformed those relative standalone models. The main contributions of this study are as

follows:

1. The first contribution is to explore novel forecasting approaches that have not been
previously undertaken in terms of short-term solar radiation forecasting in Vietnam. The
study applied LSTM as the main model to be compared with those methods that were
previously developed (i.e. ARIMA, SVR, DNN, MLP).

2. The second contribution is to develop a hybrid two-phase model utilising the RLMD
algorithm to address the non-stationarity and complex patterns of solar radiation, by
decomposing them into different sub-sets, whereas LSTM was an outstanding

forecasting model when comparing with the counterparts (i.e. MARS, SVR).

3. In terms of short-term forecasting, the forecasted error reduced significantly, which
proved the capability of the proposed model in this study. In particular, the proposed
model integrating a pre-processing technique with a deep learning algorithm can

overcome the drawbacks of standalone optimisation algorithms.

4. This study provides robust forecasting models, which are helpful for generators and
authorities in Vietnam specifically and worldwide, by addressing the existing challenges

in sustainable development and security of solar energy.
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6.3 Limitations and Recommendations for future works

Although this study has developed and evaluated many different predictive models for
short-term solar radiation forecasting that performed quite accurately, there are some
limitations and difficulties experienced during research implementation. This section
summarises several challenges in both developments and applications of the proposed
techniques, which could potentially form interesting subjects for further investigation to
address these limitations in the future. In general, the development of hybrid LSTM-based
models includes two separate parts: decomposing time-series data, and fitting the LSTM

model. Two considerable limitations relate to each of those parts.

1. The time-series data used in this study: Since the related parameters of global solar
radiation in short-term time horizons are rare, only the antecedent global solar
radiation datasets were used as potential inputs. However, future study should also
take other climatic factors (e.g. temperature, rainfall, humidity and cloud cover
data) into consideration as these factors might also influence the ground signature
of global solar radiation (Kashyap et al., 2015). Thus, proposing other forecasting
models, applying the atmospheric input data, as well as weather variables possibly,
are feasible pathways for future study. Besides, one can include more physical
variables that drive the solar energy generation process. Since sky and weather
conditions can affect forecasting model performance (Zang et al., 2020), future
study can also consider the inclusion of numerical weather models or ensemble
members can be used to address uncertainty in weather observations or to initialise
weather forecast models. Furthermore, future work can use a low-cost sky imaging
system, together with covering different weather conditions (e.g. cloudy, dusty,

sunny, foggy or rainy), as a potential data source.

2. Methodologies: Based on results from this study and previous studies (Huynh et al.,
2020; Ghimire et al., 2019b), although learning methods are powerful tools which
deserve a place in terms of solar energy, there are some limitations caused by their
black box characteristics. In particular, the black box properties limit the
understanding and verification of the complex relationships between predictor
variables that a learning model performs. Thus, an integration of data-driven and
numerical weather parameter models has become common. It is also a potential
approach to combine learning and physical models for future study. Moreover,
uncertainty as a common issue can be enhanced in the future by the use of an
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ensemble algorithm for uncertainty testing, perhaps through a Bayesian Model
Averaging framework (Sloughter et al., 2010) and a bootstrapping method (Tiwari
and Chatterjee, 2011).

3. Despite effective skill of the proposed method in addressing non-stationarity of
global solar radiation as well as solving the issue from different significant lagged
inputs of each signal (Al-Musaylh et al., 2018b), future study could take the
selection of parameters before applying forecasting technique into consideration.
The main aim of feature selection is important (e.g. to prevent over-fitting and
enhance model performance) since many data-driven methods do not cope with a
large volume of irrelevant features. For this reason, feature selection has been
common in many studies such as (Abedinia et al., 2018; Almaraashi, 2018). In
addition, there are common Multiresolution Analysis techniques (Ruiz-Arias et al.)
(e.g. empirical mode decomposition (EMD)) which can be considered since they
extract relevant information of time-frequency domain without any loss of
information (Guermoui et al., 2020). Furthermore, LSTM is only one of the deep
learning neural networks, and there are other models (e.g. Convolutional Neural
Network (CNN) or Bayesian Deep Learning) (Ghimire et al., 2019a; Qian et al.,
2019) that can be used. For instance, convolutional neural nets can be efficient in
terms of spatial averaging using weather variables, which can be seen as a filter to
learn among geographical regions. Therefore, the proposed method in this study
should be meaningfully compared to other hybridised models formed by the
integration of Multiresolution Analysis techniques (Ruiz-Arias et al.) and deep

learning techniques for future study.

In summary, based on the efficacy of this forecast system, this thesis provides new
contributions in solar and other forms of renewable energy management through predictive
models. The reliable and precise forecasting results provide stakeholders with key information
on solar energy variability to help develop strategic plans for energy production, grid operation
and the integration of renewables into their power conventional generation systems, for better

energy security.
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