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Abstract
We formalise and present a new generic multifaceted complex system approach for model-

ling complex business enterprises. Our method has a strong focus on integrating the vari-

ous data types available in an enterprise which represent the diverse perspectives of

various stakeholders. We explain the challenges faced and define a novel approach to con-

verting diverse data types into usable Bayesian probability forms. The data types that can

be integrated include historic data, survey data, and management planning data, expert

knowledge and incomplete data. The structural complexities of the complex system model-

ling process, based on various decision contexts, are also explained along with a solution.

This new application of complex system models as a management tool for decision making

is demonstrated using a railway transport case study. The case study demonstrates how

the new approach can be utilised to develop a customised decision support model for a spe-

cific enterprise. Various decision scenarios are also provided to illustrate the versatility of

the decision model at different phases of enterprise operations such as planning and

control.

Introduction
A complex system can be defined as a set of interconnected subsystems with dynamic interactions
and a common purpose. The emergent behaviour of a complex system is dictated by various
underlying factors. Complex system behaviours and features are well explained by Kauffman [1].
Complex systems sometimes can also be represented by graphs and the complexity measure can
be achieved by graph entropies [2–5] based on Shannon’s Entropy theory [6]. Complex systems
can be considered as multifaceted due to their prism-like ability to present certain aspects relevant
to particular stakeholders, while preserving less significant features in the background.

A complex business enterprise can be considered similar to other kinds of complex system
such as machines, ecology, the human body, etc. As shown on the left of Fig 1, a business
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system often interacts with multiple stakeholders such as management, customers, regulatory
bodies, etc. Different stakeholders have different concerns, perspectives and expectations rele-
vant to the business operation and performance. For example, management may be interested
in better profit performance but the government may be interested in the system’s confor-
mance to mandated regulations. The various perspectives of the different stakeholders often
define the Key Performance Indicators (KPIs) of a business. KPIs such as profit, customer satis-
faction, efficiency, etc. are measurable business performance indicators. There are various
internal and external factors affecting the overall business goals. These factors are often orga-
nised in a multilevel structure with multidimensional interactions between them.

The multifaceted nature of business systems highlights the necessity of extensive analysis to
understand various stakeholders’ perspectives, KPIs, factors affecting these KPIs, and the relation-
ships between them in a business enterprise. Complex systemmodelling approaches have the
capacity to accurately represent the multifaceted nature of a complex enterprise. Such models can
provide a dynamic view of a complex business enterprise and highlight information appropriate
to particular stakeholders. In such an enterprise it is understandably easy for stakeholders to lose
sight of the overall objectives and interests of other stakeholders, and the implications of their
actions on other processes and outcomes in the system. Complex systemmodels can overcome
this problem by providing an interactive, dynamic view of the whole system in order to bridge the
gap between different stakeholders. In practice, complex systemmodels can help decision makers
to (i) identify various decision scenarios, (ii) assess plans, and (iii) assess performance.

Modelling complex systems is a challenging task. Key challenges include deciding the objec-
tives, identifying various influencing factors, identifying relationships between factors, analys-
ing available data, quantifying the model, developing the complex model, and communicating
information and feedback. In this article we present a novel, generic complex system modelling
approach which serves as a guideline for practitioners to develop specific models according to
their requirements. Our approach is comprised of Conceptualisation, Quantification and Inter-
rogation stages as shown in Fig 1. It is based on a standard Bayesian Network modelling tech-
nique but with a particular focus on integrating multiple data types representing the specific
interests and concerns of different stakeholders. The resultant “multifaceted”models allow
stakeholders to see not only the factors of interest to them, but also to see how their segment of
the business is affected by, and affects, the rest of the enterprise.

In the remainder of this article we discuss related research in this area, present our new
model development approach, and describe its application to a real-life case study from the
transport sector.

RelatedWork
Our work concerns modelling of business processes. In this section we review some of the large
number of related approaches for assessing business performance. For example, Cost Benefit
Analysis (CBA) has been used widely to assess projects for decision making in a wide range of
business and non-business sectors. Early applications of the CBA method were presented by
Prest and Turvey [7]. Recent applications of CBA include economic analysis of IT systems [8],
the transport sector [9, 10], medical fields [11, 12] and ecological systems [13, 14] among oth-
ers. The CBA method aims to assess decision scenarios and quantify monetary gains against
costs for each scenario [15]. Although CBA was highly successful in these application domains,
it has been criticised for its limited ability to handle complex situations with multiple stake-
holders [16]. The monetary conversion process in CBA often fails to distinguish between direct
and indirect impacts by treating them equally and it provides the decision maker with a false
sense of certainty [16].
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Fig 1. Complex System development approach for Business Enterprises.

doi:10.1371/journal.pone.0134052.g001
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Considering the problems with the CBA method for benefits that are not directly financial
in nature (such as social and environmental benefits), the Decision Rule method has been sug-
gested as an alternative [17]. The Decision Rule method works by applying a set of rules to
evaluate alternatives and find the best one [18]. However, the Non-Compensatory Decision
Rule approach suffers from disadvantages including (a) limited applicability and (b) missing
important information. The compensatory approach has been criticised because (a) overly
complex judgements are required for rule development, (b) overview arguments may be diffi-
cult to define based on rules, (c) overall preference measures may be too abstract, and (d) the
trade-off principle may not be well accepted by decision makers [19].

Business Process Modelling (BPM) has been widely used to model business systems [20,
21]. In the BPM approach, a business enterprise is viewed as a set of interacting processes rep-
resenting various functions where the processes may be further decomposed [22]. An early
BPM framework was proposed by Curtis et. al [23] in which processes are categorised as func-
tional, behavioural, organizational and informational. Two distinct varieties of BPM
approaches (i) static BPM [24] and (ii) dynamic BPM [25] are commonly used. Static model-
ling has been criticised firstly for assuming that business processes can only be designed in
rational and technical terms, i.e., it neglects human and organizational issues; and secondly
business processes are assumed to be static, i.e., models are simplified representations of busi-
ness processes at a particular point in time [22]. Dynamic BPM overcomes some of these issues
by introducing concepts such as interdependent, interactive, boundary-crossing, and super-
ordinate goals in the modelling process [25]. BPM has been used for complex system modelling
in diverse areas including education [26], manufacturing [27], information technology [28]
and business management [29] among others. Simulation based Business Process Modelling
approaches are also used to model complex systems [30]. Dynamic BPM suffers from a few dis-
advantages for modelling real world complex systems: (i) it may lead to the neglect of the
socio-political dimension of a business process, as there is an implied belief that a business pro-
cess can only be approached in logical and rational terms; (ii) such approaches obviously have
a cost, so the time and skills required to build a dynamic computer model of simple systems
may not add any value over simple flowcharts or spreadsheets; and (iii) it ignores the feedback
loops that may determine the behaviour of many real-world business processes [22].

Multi Criteria Decision Making (MCDM) methods have been applied in many practical
decision making situations, by practitioners and academics [31], including portfolio manage-
ment [32], energy management [33], ecology [34], etc. MCDMmethods generally compare
several decision options against multiple and often conflicting criteria to provide decision out-
comes in terms of ranks or overall scores. Complex systems are also modelled using MCDM
approaches including object-oriented modelling [35], modelling socio-economic processes
[36], modelling production-inventory-supply chain systems [37], maintenance process model-
ling [38], etc. MCDMmethods have the ability to incorporate the performances of decision
alternatives under various criteria in easy-to-use processes for finding the best decision.
MCDMmethods may be able to quantify system performances from diverse measurements of
subsystem performances but are unable to maintain the interrelationships for decision pur-
poses as the overall decision outcome is obtained by combining the available information and
the individual information is lost in this process [31].

The multi-agent technique is a relatively new complex system modelling paradigm that uti-
lises the autonomy and characteristics of various entities in a system along with their relation-
ships with each other [39]. The multi-agent technique has been widely used in supply chain
management [40, 41], manufacturing [42–44], and environment and ecology [45, 46]. Advan-
tages of multi-agent modelling include the ability to model a system in a realistic form, inclu-
sion of heterogeneity while incorporating behaviours of different agents, flexibility and
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scalability of the developed models, and the ability to incorporate local objectives within the
systems [39]. On the other hand some known disadvantages include extensive data require-
ments [47] and effort required for modelling, and resulting models which are developed for
specific contexts and have very limited generic usage [48].

The various decision support and complex system modelling approaches discussed above
each have distinct advantages and disadvantages and have been used in diverse application
domains. These approaches have been used to develop models with specific stakeholder
requirements in mind but they have limitations in some aspects of flexibility in usage and the
extensibility necessary for developing multifaceted models. In a multifaceted modelling
approach the same model incorporates information related to all the stakeholders and can
highlight and show those factors appropriate for a particular stakeholder while also revealing
the interconnections and decision impacts on other stakeholders. For example an organisation
may have multiple units (operations, finance, customer service, etc.). If a complex system
model for the organisation is developed by following the organisational structure it will contain
operational, performance and resource information for each department. To maximise the
value of the modelling effort, the resulting model should also be sufficiently flexible that it can
be used for purposes not anticipated at the time of its construction, and it must be maintainable
as the business grows and evolves.

In our approach we use Bayesian Network modelling. A Bayesian Network modelling for-
malism has the inherent ability to model multifaceted complex systems by virtue of its simplic-
ity and generality. They are used in various research and practical areas [49–52]. The
advantages of this approach include the ability to model complex interrelations between factors
and the sensitivity of factors on decision outcomes [53], the ability to perform scenario analy-
ses, to undertake sophisticated interrogations of the system, and to include other sources of
information in the model, such as observational and experimental data, results from previous
experiments, knowledge from published literature, expert judgements, and so on.

However, such a formal modelling notation alone is not useful without a well-defined strat-
egy for constructing, employing and maintaining models based on the data available from the
business enterprise. In the following section we present a novel, multifaceted approach for
modelling complex business enterprises based on a Bayesian Network notation.

Model Development Approach
Here we describe our development approach for constructing multifaceted complex systemmod-
els from diverse available data in three stages: (i) Conceptualisation, (ii) Quantification, and (iii)
Interrogation. The Conceptualisation stage shows how each small facet of a system is built based
on collected information and how small model structures are joined together to build the large
model of the whole system. In the Quantification stage diverse data related to various facets of
the system are identified, processed and incorporated into the model in probabilistic forms. The
Interrogation stage involves extracting business insights from the model to help a decision maker
to understand how his decision impacts on his area (one facet) as well as impacts on others in
the organisation. This understanding improves the cohesion within an organisation and reduces
decision conflicts. The model stages are described below and are shown in Fig 1.

Stage 1: Conceptualisation
In this first stage of our development approach the model of the complex system’s structure is
developed as a set of interconnected nodes where the connections represent causal influences.
The model is constructed through the following three steps.
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Identify objectives. The top level nodes of the model are identified as the objectives of the
complex system. These objectives are typically related to the business’s KPIs, thus representing
the vested interests of different stakeholders. Often system modellers tend to merge top-level
objectives into a single overall system objective node which helps to highlight the whole sys-
tem’s dynamics.

Identify factors and relationships. In this step the key factors influencing the system
objectives are identified. Often a single factor may influence multiple objectives and an objec-
tive may be influenced by multiple factors. The higher level factors may in turn have multiple
lower level factors influencing them. The complete set of factors in a complex system is identi-
fied and the relationships are defined as their influencing pattern.

Formalise model structure. The model structure depends on how the factors are orga-
nized in the model. The model structure is identified based on the decision perspectives. Some-
times the same factors can appear in different structures based on the decision analysis
requirements. In some cases the model structure can be learnt from the data [54] but more
often the appropriate model structure is determined by, or at least requires validation from, the
decision maker (domain expert).

Stage 2: Quantification
In this second stage of our overall development approach the available data is processed into
measurable forms and linked to the relationship model developed earlier in order to support
quantifiable analyses and assessments of the model. This is done in the following three steps.

Determine quantification approach. In this step an appropriate information quantifica-
tion approach is selected. Some commonly applied approaches include summary statistical
evaluations, factor analysis and its variants including customer satisfaction indices [55–57], lin-
ear regression and its variants [58, 59], non-parametric non-linear approaches such as classifi-
cation and regression trees [60–62], latent factor approaches such as structural equation
models [63], multicriteria approaches [64], and so on. While these approaches offer many
insights into the system of interest, they do not focus on modelling the system as a whole [65,
66]. In many ways, a Bayesian Network borrows from all of these approaches to create a more
flexible modelling environment and a whole system approach.

Bayesian Networks are also known as recursive graphical models, belief networks, causal proba-
bilistic networks, causal networks and influence diagrams among others [67]. A BN can be
expressed as two components, the first qualitative and the second quantitative [68, 69]. The quali-
tative expression is depicted as a directed acyclic graph (DAG), which consists of a set of variables
(denoted by nodes) and relationships between the variables (denoted by arcs) [54]. The quantita-
tive expression comprises probabilities of the variables. Fig 2 shows a Bayesian Network with three
variables X, Y and Z. Variables X and Y are parents for variable Z, which indicates that Z is the
dependent node. The probability for Z is a conditional one based on the probabilities of X and Y.

The probabilities in a Bayesian Network are simplified by the DAG structure of the BN, by
applying directional separation (d-separation) [70] and a Markov property assumption [71,
72], so that the probability distribution of any variable is solely dependent on its parents. Thus,
the probability distribution in a BN with n nodes (X1, . . ., Xn) can be formulated as

PðX1; . . . ;Xn ¼
Yn

i¼1

PðXijPaðXiÞÞ

where Pa (Xi) is the set of the probability distributions corresponding to the parents of node Xi

[72, 73].
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For Fig 2 the above equation can be written as

PðZÞ ¼ PðZjX;YÞ � PðXÞ � PðYÞ:

Collate relevant information. Information about complex systems is often available from
different sources and in different forms including historic records, survey results, operational
plans and expert knowledge. In some situations appropriate data is not available in a usable
form, which we classify as incomplete or missing data. These multiple data types often repre-
sent the separate perspectives of different stakeholders in a shared enterprise. Some key infor-
mation types are described below.

Historic data are extant records of past incidents. With thorough investigation into historic
data we can sometimes identify causes and effects of an incident and use this knowledge to
help construct the model. We can also identify the consequential severity of various causes
which can help with the model’s quantification.

Survey data is used to identify five key features of survey questionnaires which can guide
model development. First, the questionnaire itself can provide a clear description of the objec-
tive of the survey. Second, the questions themselves can assist in the definition of key explicit
factors. Third, the grouping or categorisation of questions can assist in the identification of key
latent factors. Fourth, a well-structured questionnaire can provide guidance about the relation-
ships between these factors. Finally, an attitudinal questionnaire typically facilitates quantifica-
tion of the corresponding model.

For example, responses may be categorical (e.g., gender) and hence the proportions of
responses in each category can be used as probabilistic estimates in the Bayesian Network.
Alternatively, responses with an underlying continuous scale (e.g., age) may be treated as con-
tinuous or discretised into a set of ordered categories, such as Young and Old, where these are
appropriately defined. Attitudinal responses measured on a Likert scale can be similarly
assumed to be approximately continuous, depending on the context and scale, or discrete with
the number of categories equalling the number of levels of the scale or a smaller number of cat-
egories representing, for example, High, Medium and Low, or Good and Bad. Finally, qualita-
tive responses can be generally sorted into categories and included in the model.

Fig 2. Example of a Bayesian Network (directed acyclic graph).

doi:10.1371/journal.pone.0134052.g002
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Planning data reflects the future state of a system. For instance, a railway’s operational plan-
ning data provides the capacity and utilisation of rail networks. Maintenance plans provide
indications of planned delays. With proper utilisation of planning data we can identify the
stress points in a complex system thus helping the management plan accordingly.

Expert knowledge is vital in developing complex systemmodels. Context specific behaviours
of any dynamic system are often captured through expert involvement. Often other data forms
cannot express a system’s characteristics completely and experts with working knowledge are
invaluable in filling the gaps. Expert knowledge is highly applied in validation of BNmodels.

Missing data in BN modelling can be classified as data that is required but not available due
to the absence of past records, or data that is not accessible due to data protection regulations
or because it has become corrupted over time. It is important to identify missing data for any
BN model as it provides the decision maker with information regarding the limitations of the
developed model and shows the completeness of it. Often BN models can be used to under-
stand various decision scenarios with simulated or estimated values for missing data.

Quantify model. This step involves Bayesian Network model quantification, including defin-
ing and estimating the probability distributions for each factor. Continuous distributions can be
represented in full, or can be discretised into levels or categories that are meaningful in a business
context. This allows both continuous and discrete distributions to be treated in the same manner
in the network, in that they can be represented as marginal probability tables for the nodes with no
parents (terminal nodes), and conditional probability tables (CPTs) for the nodes with parents.

The CPTs can be estimated in a number of ways, using direct or indirect methods. We describe
a generic BN quantification approach developed for data-type specific quantification approaches.

Historic data quantification identifies nodes (factors) with historic data using the model
structure. The level for these nodes and their possible probability states (such as High, Medium,
and Low) are identified. For the lowest level nodes state probabilities are calculated as propor-
tions of the total records available. The intermediate node states are estimated based on defined
weighted relationships. Indirect approaches are applied for missing information [74].

Survey data quantification defines the levels for nodes with survey data in the model structure
and their possible probability states. For the lowest level nodes state probabilities are calculated
as proportions of total survey respondents. The intermediate node states are estimated based on
defined weighted relationships. Indirect approaches are applied for missing information.

Planning data quantification identifies the levels for nodes with planning data in the model
structure and their possible probability states. For the lowest level nodes state probabilities are
calculated using direct approach. The intermediate node states are estimated based on defined
weighted relationships. Indirect approaches are applied for missing information.

Expert knowledge quantification identifies the levels for nodes requiring expert knowledge
and their possible probability states. For the lowest level nodes state probabilities are calculated
through a standard expert elicitation approach such as that described by [75]. The elicited
knowledge is then added into the BN model and verified with multiple experts where possible.

Missing data quantification identifies the levels for nodes (factors) without available data
and their possible probability states are estimated based on expert inputs. Initial values are set
as equal for all the states and exploratory simulations are conducted by controlled variations of
the states’ values. Based on expert opinion and feedback about the resulting model’s behaviour,
acceptable value ranges for specific decision context are then defined.

Stage 3: Interrogation
The third stage of our overall development approach consists of using a well-structured and
quantified complex system model. It comprises the following three steps.
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Determine assessment baseline. The assessment baseline refers to the initial state of the
model. Once the model’s structure is formalised and quantified, the Conditional Probability
Tables for each node are considered to be the assessment baseline. Any analysis result is com-
pared with this baseline to understand the changes in the results.

Perform analyses. A range of analyses can be performed with a well-structured BN com-
plex system model [54, 76–78]. These analyses help the decision maker assess future plans and
impacts as well as undertake performance assessments of past decisions. Some key analyses are
described below.

Sensitivity analysis is used to understand responsiveness of the model. It helps the decision
maker by identifying the most sensitive factors.

Influence analysis helps to understand the magnitudes of impacts of parent nodes on their
respective child nodes and vice versa.

Scenario analysis, also known as what-if analysis, is used to assess impacts in the system
caused by any change. The decision maker use this analysis to view potential impacts of his
planning decisions. It is also used for performance assessments of past decisions.

Perform validation. Validation of the model is essential to ensure that the results it pro-
duces are meaningful [48, 68]. Validation is performed in two steps (i) Model Validation, and
(ii) Results validation.

Having understood the model’s dynamics, the next step is to independently validate its cor-
rectness within the application domain. The validation process includes: (i) Validation of the
objective which is often based on business objectives defined by domain experts, (ii) Validation
of the structure which is often done by domain experts, and (iii) Validation of quantified data
which is done typically based on expert judgement and past consolidated reports.

Validation of analysis results is often performed through assessments of the outcomes by
domain experts. Past results are sometimes compared with those from the model to assess the
validity of the analysis results. (One strategy when developing a model from historic data is to
divide the historic log in half, use the first part to construct and quantify the model, and then
assess how well the model can predict the behaviours found in the second half of the log.)

An important step of the complex system modelling process is to create the modes by which
the BN results will be communicated to business managers and other stakeholders. Three such
approaches are suggested here based on our experiences. First, the model itself can be used as
an interactive software tool. There are now many software packages for developing a BN in this
manner, including GeNIe [79], BayesiaLab [80], Netica [81] and Hugin [82]. Second, general
information templates can be constructed and then tailored for specific situations. These tem-
plates may be in the form of a report containing the BN model, the conditional probability
tables, the analytic results, and the validations. Alternatively it may represent a more concise
summary of the outcomes; one option is to create a form of “management dashboard” in
which the performances of the key nodes can be depicted numerically and/or visually. For
example, a traffic light colour coding system could be used, with red, orange and green indicat-
ing respectively poor, moderate and good performance.

Case Study
Having presented our model development approach, in this section we illustrate its practical
application to a real-life case study from the transport sector. Railways are one of the major
modes of mass transport worldwide. “On time service” is vital to any railway transport system.
Any delay in the service generally causes significant effects on the public and businesses. In
order to minimize transport interruptions and maximize operational efficiency, it is necessary
to obtain a detailed understanding of the causes and effects of rail delays. In this industrial case
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study we identified various perspectives and factors causing delays, the relationships between
them, and their significance. The outcomes will provide railway management with the capacity
to identify key decision areas for performance improvements.

A variety of data regarding the causes and effects of delays in railway transport are available
from multiple sources and in multiple formats such as incident records, surveys, operational
plans and expert evaluations. We applied our BN-based modelling approach to integrate these
multiple data types into a single complex system model.

Queensland Rail is one of the major passenger railway providers in Australia with a large
number of scheduled trains operating every year. Timely operation is a key performance indi-
cator for the organization. In order to better understand the causes of operational delays and to
improve performance, Queensland Rail engaged us to conduct a delay analysis study. The
study focused on understanding the key factors behind delays and their relationships to the
overall operations of Queensland Rail. In this context we note three recent incidents each of
which highlights the interconnectedness of events in a complex rail system.

Incident 1: During evening peak hour a pigeon was electrocuted on an overhead power line
in the Brisbane city center which brought down the whole city network for an hour.

Incident 2: A slight delay on the Gold Coast-Airport line due to bad weather resulted in a
ripple effect which caused several airport-bound trains to be late and hundreds of passengers to
miss their flights.

Incident 3: A foot bridge over a fenced rail line was closed suddenly due to maintenance
work on the rail line, forcing residents to walk via a much longer alternative path. Unhappy
residents took this seemingly minor issue up to the ministerial level, resulting in considerable
political pressure on Queensland Rail.

These incidents highlight three major aspects of Queensland Rail operation. Incident 1 shows
the significance of key physical locations in the rail network and the need for understanding
them better. Incident 2 shows the significance of priority services and Incident 3 shows the inter-
action of Queensland Rail’s operation with the broader society, beyond its passengers.

To try to understand such relationships, we applied our modelling approach using data
made available to us by Queensland Rail. In the following sections we describe the complex sys-
tem model we developed and its application.

Study Objective and Available Data
We developed a BN based complex system model for Queensland Rail’s enterprise-level Key
Performance Indicators to understand how they are affected by any delay in the system. We
used diverse data sources made available from Queensland Rail to construct the Bayesian Net-
work. As per the Conceptualisation stage we defined the objective as “Impact of Delay”, which
translates into the topmost node for our model. The data available for this model are described
below, as per the Quantification stage.

Historic data. We obtained Queensland passenger rail delay records for a period of one
year (2010). There are 29,735 records, one for each affected train. The key data components of
each delay incident record include an (a) incident number, (b) incident date, (c) train directly
involved in the incident, (d) other delayed train due to the incident, (e) incident category, (f)
incident sub category, (g) amount of time lost, (h) time of the day, and (i) line affected.

We also obtained the passenger load survey data for 3 years (2008–2010). The 2008 data is
in a yearly format but 2009 and 2010 data was in a quarterly format. This load data provides
information about the number of passengers at each station and on various rail segments.
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Survey data. Queensland Rail’s customer experience survey consists of a set of question-
naires. Passengers were asked about their experiences regarding various attributes (factors) of
QR customer service. These factors are currently divided into two levels as shown in Table 1.

The survey was conducted with a large number of passengers (1000+) travelling during
peak and off-peak times. The off-peak time was defined as 9:00 am to 3:30 pm and after 7:00
pm until 2:00 am the following day on weekdays and all day on weekends and gazetted public
holidays. All other times are considered as peak time. For each service factor, the survey
respondents said whether they had had Positive or Negative experiences. The relative impor-
tance of each factor was provided by experts at Queensland Rail.

Planning data. Relevant (2011) passenger train load planning data was obtained for each
rail line. This loading plan includes loads at various times of the day (AM, PM) and weekends.
Relevant (2011) freight train load plans for each line were also obtained. The plans provide
total loads for each line during weekdays and weekends.

Expert knowledge. The interrelationships between factors were identified through several
workshops and interviews with domain experts at Queensland Rail. The significance of factors
in terms of weights were also elicited through expert involvement.

Missing data. Usable safety incident data was not available to us, although this is obvi-
ously a very important consideration. Similarly, Level 2 attributes from Table 1 for customer
survey data was not available for all the factors.

Model structure development. As per our Conceptualisation stage, we identified five key
factors affecting the model objective as Safety Incidents, Customer Service Impact, Social
Impact, Cost of Disruption, and Operational Disruption. The remaining sub-factors for each of
the key factors were then identified. Relationships and node states for each node were then

Table 1. Customer service attributes considered in the survey.

Attribute
No.

Level 1 attributes Level 2 attributes

1 Carriages Cleanliness, Lack of wear and tear, Entertainment, Air-
conditioning, Feeling safe and at ease.

2 Station—Central Business
District (CBD)

Cleanliness, Ease of Access, Lighting, QR Staff, Greenery.

3 Access to CBD Station

4 Platform—Suburban Condition of surface, Shelter

5 Access to Suburban Station

6 Station—Suburban

7 Ticketing

8 Platform—CBD

9 Signage and Information

10 Bus Connection

11 Entry onto Train

12 Pre-trip information

13 Parking

14 Disembarking and Exit

15 Efficiency of service

16 Services on time

17 Reliability

18 Frequency of service

19 Safe operation

20 Helpfulness of staff

21 Respect for passengers

22 Affordability

doi:10.1371/journal.pone.0134052.t001
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defined. The sub-factors, node states and relationships for Cost of Disruption and Operational
Disruption were defined utilising historic and planning data along with expert knowledge. The
Customer Service Impact node and its sub-factors and relationships were defined using survey
data and expert knowledge. Expert approximations were applied for defining the characteris-
tics of Social Impact. The Safety Incidents factor was identified as a key factor through discus-
sions with domain experts but due to lack of available usable data, we decided to conduct a
simulation study to understand its impacts.

Formalisation of model structure. Based on the initial system model, a set of workshops
were conducted with groups of experts from different operational areas within Queensland
Rail. The model was tested and expert advice regarding nodes, relationships and node states
were considered for model improvements. The final model shown in Fig 3 is the result of sev-
eral such iterative workshops.

Model quantification. With the model’s structure in place, it was then necessary to quan-
tify it, as per our Quantification stage.

With historic data quantification the Conditional Probability Table for parent node Incident
Type was defined based on the historic data which had 22 known causes for an incident. The
probability of each incident type was calculated as the proportion of a particular incident type

Fig 3. Complete delay impact model.

doi:10.1371/journal.pone.0134052.g003
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within the whole data set. For example, the total number of incidents is 11799 and the total
number of incidents due to incident type “Emergency Services” was 1003 so the probability of
an “Emergency Services” incident to occur was 1003/11799 = 0.085007.

The CPTs for intermediate nodes such as Delay Type, Average Delay Time, etc. were then
quantified using cross classification. Ranges for node states were often defined using a certain
percentile of the recorded data. Appropriate weights obtained from experts were also incorpo-
rated into the conditional probability tables.

With survey data quantification using available customer service data we constructed the
CPT for each node and estimated the probabilities. For the parent nodes, the probability tables
were quantified using the proportion of customers with Positive, Neutral and Negative satisfac-
tion responses in the survey data. Weights for these nodes were determined as 0.52, 0.16 and
0.32; these were provided by Queensland Rail experts based on past analytical knowledge.
These weights were used to approximate the CPTs for the intermediate nodes.

With planning data quantification we defined parent nodes Corridors and Segment Loca-
tion as deterministic nodes due to the nature of available data. The states of these nodes and
their child nodes were defined using classification of the planning data available.

With expert knowledge quantification the Social Impact node is dependent on factors Delay
Type, Number of Passengers Disrupted and Average Delay Time. Social Impact was defined as
Critical, Moderate and Minor. The probabilities of the influencing factors were weighted as
Delay Type = 0.4, Average Delay Time = 0.3 and Average Delay Time = 0.3 following expert
advice. The probabilities of Critical, Moderate and Minor for Social Impact were calculated
based on the probabilities of the three influencing factors using defined rules. For example, if
Delay Type is “Peak”, Average Delay Time is “Low” and Average Delay Time is “High” then
the probabilities for a Social Impact incident will be Critical = 0.7 and Minor = 0.3.

With missing data quantification safety data was not available for the development of this
model but it was identified as a key factor affecting delay impacts. In order to keep the impacts
of the node Safety Incidents neutral, the states critical, moderate and minor were given proba-
bilities 0.33, 0.34 and 0.33. Simulations were conducted by changing the values of each state of
the Safety Incidents node from 0 to 100 in steps of 10 and the changes in the states of the top-
most node, Impact of Delay, were noted. The results indicated linear relationships between the
states of these nodes. The five Level 2 nodes (Safety Incidents, Customer Service Impact, Social
Impact, Cost of Disruption and Operational Disruption) impacting the topmost node Impact
of Delay were given equal weights. Simulations were also conducted by varying the weights of
the Level 2 nodes and the results showed a linear relationship between them and the top node.
The simulation results affirm the linear model structure between these nodes as per Fig 3.

For the node Carriage in Fig 3 the overall probability values for its three states were available
from survey data. There are five parent nodes for Carriage namely Cleanliness, Lack of Wear
and tear, Feeling Safe and at ease, Entertainment and Air-conditioning. There was not enough
available data to estimate the probability values for states of these parent nodes so they were
considered to have the same values as the child node Carriage. Simulations were conducted by
systematically varying the states’ probabilities and relative weight. The simulation results con-
firm linearity between Carriage and its parent nodes.

Impact of Delay is the final node which represents the overall probabilistic effects of all fac-
tors. It is directly dependent on five key factors Operational Disruption, Cost of Disruption,
Social Impact, Customer Service Interruption and Safety Incident. The Impact of Delay is
defined as High, Medium and Low. The five influencing factors are equally weighted and each
given a probability of 0.2. The probabilities of High, Medium and Low for Impact of Delay are
calculated using defined rules. For example, if Operational Disruption is “Critical”, Cost of Dis-
ruption is “Moderate”, Social Impact is “Minor”, Customer Service Interruption is “Critical”
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Fig 4. Complete model with quantified data.

doi:10.1371/journal.pone.0134052.g004
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and Safety Incident is “Minor” then the probabilities of Impact of Delay will be High = 0.4,
Medium = 0.2 and Low = 0.4. Fig 4 shows the probabilities estimated for the complete model.

Model interrogation. The Bayesian Network model developed in the previous section can
be used as a management tool for decision support as per our Interrogation stage. Various ana-
lytical capabilities of this model are demonstrated in the following sections.

Current status assessment shown in Fig 4 depicts the initial probability settings for the com-
plete model. In Fig 5 we summarise the state probabilities of the topmost node Impact of Delay
and the five Level 2 nodes Safety Incidents, Customer Service Impact, Social Impact, Cost of
Disruption, and Operational Disruption. This table is used as a base state to understand the
changes during various scenario analyses. In the base model we have included higher probabil-
ity values for states being High or Critical for the nodes Impact of Delay, Social Impact, Cost of
Disruption and Operational Disruption.

A sensitivity analysis test was conducted on the base model configuration, as shown in Fig 6
where the most sensitive nodes are shown in red. The nodes Passenger Load, Delay Type, Aver-
age Delay Time, and Average Number of Trains were found to be the most sensitive. This anal-
ysis helps the decision maker identify nodes that are sensitive to changes, thus extra care can be
taken when estimating their probability values. Similar sensitivity assessments can be con-
ducted on the model under changed circumstances to understand the sensitivity of the model.

An influence analysis on the base model identified the level of influence of each node on its
child nodes, as shown in Fig 7 where line thickness corresponds to degree of influence. The
results can be summarised as follows.

1. The top most node Impact of Delay has equal influences on it from its five parent nodes.

2. The Customer Service Impact node is heavily influenced by the Number of Passengers Dis-
rupted and Customer Satisfaction nodes. The Customer Satisfaction node is influenced
most by the Journey Components node which in turn is highly influenced by the node Sta-
tion Facilities. The Station node has a strong influence on CBD (Central Business District)
Facilities. The nodes Ticketing, Bus Connection and Affordability have the strongest influ-
ences on Operation Information, Other, and Passenger Factors respectively.

Fig 5. Initial probability values for top level nodes.

doi:10.1371/journal.pone.0134052.g005
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Fig 6. Sensitivity analysis on the basemodel.

doi:10.1371/journal.pone.0134052.g006
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Fig 7. Influence analysis on the basemodel.

doi:10.1371/journal.pone.0134052.g007
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Fig 8. Analysis results for Scenario 1.

doi:10.1371/journal.pone.0134052.g008
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3. The Social Impact node has its strongest influence from the Delay Type node.

4. The Cost of Disruption node is highly influenced by the Average Delay Time and Average
Number of Trains nodes.

5. The Operational Disruption node is highly influenced by the node Delay Type.

Scenario analyses were conducted on a set of realistic scenarios were created from expert
interviews with Queensland Rail. These scenarios were analysed in the model by setting the
necessary scenario parameters and recording the results. Five such scenarios are presented
below.

Scenario 1: (Assessing a known incident) Assume that there has been an incident on the
railway network and the management received confirmation that the incident was due to prob-
lem with network operations. With this confirmed information we interrogated the model by
setting the evidence in the node Incident Type as Network Operation = 100%. Comparing the
results with the base model probabilities in Fig 5 we observe that the new evidence has
increased the high or critical probability for the top nodes except for Safety Incidents. The
node Cost of Disruption has the highest impact with High probability increasing to 70%.
Among other nodes Average Delay Time and Average Number of Trains were also affected by
the new evidence and their high state probabilities increased significantly. Fig 8 shows the sce-
nario analysis results for the complete model.

Scenario 2: (Assessing time criticality) Assume that a delay has occurred in the network and
the time of the day is a weekday in the morning, i.e., a peak time. We set this evidence into the
network as Peak = 100% for the node Delay type. The changes for the top two level nodes are
shown in Fig 9, and Fig 10 shows the results for the complete model. We observe dramatic rises
in the probabilities of High or Critical states of the nodes Impact of Delay, Customer Service
Impact, Social Impact and Operational Disruption. Further analyses were conducted by setting

Fig 9. Probabilities for top level nodes for Scenario 2.

doi:10.1371/journal.pone.0134052.g009
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Fig 10. Analysis results for Scenario 2.

doi:10.1371/journal.pone.0134052.g010
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the Delay type to Off-peak andWeekend states. These analyses further highlighted the signifi-
cance of having fewer interruptions on the Impact of Delay during peak hours.

Scenario 3: (Assessing a policy change) Assume that Queensland Rail has recently upgraded
its signalling system and expects signal related disruptions to reduce to about 5%. They have
also introduced measures to improve customer satisfaction. Major upgrades were undertaken
to improve city stations and experts at Queensland Rail believe that this will improve positive
customer feedback for city stations significantly. Also, a new fare discount policy is introduced
which will boost customer satisfaction in terms of affordability. We set this scenario into the
model by setting the nodes Station (CBD), Affordability and Incident Type as Positive = 61%,
Positive = 64% and Signalling = 5% respectively. Analysis results for top two level nodes are
shown in Fig 11 and complete results are shown in Fig 12. The analysis shows significant
improvement in Customer Satisfaction but only a minor effect on the Impact of Delay. The sig-
nal improvement does not have much effect on the delay impact.

Scenario 4: (Assessing a target) Assume that Queensland Rail management has undertaken
a strategic decision to reduce the High Impact of Delay probability from 45% to 30% and
would like to identify the areas of improvement needed to do this. In this scenario our aim is
not to assess the effect of making changes, but instead to determine what changes must be
made to achieve a desired effect. We set the top node Impact of Delay to High = 31%. The anal-
ysis results are shown in Fig 13 but in this inverted scenario it is actually the changed nodes
seen in Fig 14 that tell us what areas of investment to focus on to achieve the desired changes.
We observe that in order to achieve the desired target objective the management needs to
improve the performances of Cost of Disruption, Operational Disruption and Customer Ser-
vice Impact significantly. Required changes for lower level nodes can be observed in Fig 14.

Scenario 5: (Assessing an action plan) Assume that management has decided to improve
Queensland Rail’s “customer satisfaction” and “operational efficiency” Key Performance Indi-
cators. The target is to double the positive customer satisfaction and reduce operational

Fig 11. Probabilities for top level nodes for Scenario 3.

doi:10.1371/journal.pone.0134052.g011
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Fig 12. Analysis results for Scenario 3.

doi:10.1371/journal.pone.0134052.g012
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disruption by at least 10%. To analyse this scenario we set the Customer Satisfaction and Oper-
ational Disruption nodes as Positive = 60% and Positive = 40% respectively. From this we
observed significant improvements in the Impact of Delay. Probabilities for corresponding par-
ent nodes were also influenced in ways which highlight the level of improvements needed to
achieve this action plan. Fig 15 shows top level results and Fig 16 shows the results for the com-
plete model. Similar plans can be analysed all the way to the bottom node level.

Validation. In order to validate the model’s structure, we conducted a series of interviews
with Queensland Rail experts in their Customer Service department. Confirmation was
obtained that the factors (nodes) and their relationships represent the functional structure in
the Queensland Rail Customer Service department. The Bayesian Network’s structure closely
matched the structure of Queensland Rail’s survey questionnaire. Experience with the ques-
tionnaire by Queensland Rail experts further validates the appropriateness of the developed
BN model.

The conditional probability tables represent the quantified model. CPTs were developed
based on actual survey data, historical data, planning data and expert estimations currently
used at Queensland Rail for performance evaluations. Expert confirmation was also
obtained regarding the conformity of the model data with current practices at Queensland
Rail.

The results of the BN analyses were validated using expert opinion. Experts with many
years of experience in Queensland Rail’s Customer Service department confirmed that the
Sensitivity Analysis and Influence Analysis results were as they expected. The Scenario
Analysis results were also confirmed to be within the expert’s expected ranges.

Information communication. We communicated the results of this study to Queens-
land Rail as a Bayesian Network model developed in GeNIe [79]. The tool showed interac-
tive features of the model and gave Queensland Rail managers an opportunity to use the
models in practice. A detailed report was also provided explaining the model’s development
process along with various analysis results. Throughout the various model development

Fig 13. Probabilities for top level nodes for Scenario 4.

doi:10.1371/journal.pone.0134052.g013
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Fig 14. Analysis results for Scenario 4.

doi:10.1371/journal.pone.0134052.g014
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stages information was freely exchanged between Queensland Rail stakeholders and the
researchers.

Conclusion
In this article we have presented an approach that employs Bayesian Networks to integrate
diverse data types from multiple sources, in order to better describe and understand complex
enterprises and their KPIs. As an example of this approach, we presented the development of a
complex system model for delay analysis at Queensland Rail. The model shows the interactions
and dependencies between various factors influencing delays. Diverse data types were used to
define the probabilistic characteristics of the model. The model can analyse various real life sce-
narios and identify key factors.

The strengths of the resulting model lie in its comprehensive representation of the actual
system in a flexible manner. The model allows better analytical capabilities compared to other
decision models such as CBA or MCDM through a transparent process ability to capture and
assess variations in a complex system. The model can handle a wide variety of realistic scenar-
ios. The analysis results from this model can be used, along with business goals, to make justi-
fied decisions in resource allocation and asset management. Although the current model was
developed specifically for delay analysis at Queensland Rail, the approach can be applied easily
to similar issues in other transport systems.

The study is a step forward to developing a comprehensive decision model capable
of assisting complex decision making in large scale enterprises from disparate data.
Future developments of this model will include devising decision models for operational
decision support such as finding optimal maintenance schedule for large scale transport
infrastructures.

Fig 15. Probabilities for top level nodes for Scenario 5.

doi:10.1371/journal.pone.0134052.g015
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Fig 16. Analysis results for Scenario 5.

doi:10.1371/journal.pone.0134052.g016
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