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Summary This paper is concerned with the development of a high-order upwind con-

servative discretisation method for the simulation of flows of a Newtonian fluid in two

dimensions. The fluid-flow domain is discretised using a Cartesian grid from which non-

overlapping rectangular control-volumes are formed. Line integrals arising from the inte-

gration of the diffusion and convection terms over control volumes are evaluated using the

middle-point rule. One-dimensional integrated radial basis function schemes using the

multiquadric basis function are employed to represent the variations of the field variables

along the grid lines. The convection term is effectively treated using an upwind scheme

with the deferred-correction strategy. Several highly-nonlinear test problems governed by

the Burgers and the Navier-Stokes equations are simulated, which show that the proposed

technique is stable, accurate and converges well.

Key words: integrated RBF, Cartesian grid, control volume, upwind scheme, deferred

correction technique, high-order approximation

1 Introduction

The control-volume (CV) formulation has been extensively used in the discretisation of

partial differential equations (PDEs) governing heat-transfer and fluid-flow problems (e.g.

[1,2]). As discussed in [1], there are four basic rules that the discretisation equations

should obey to ensure a physically realistic solution: (i) Consistency at CV faces, (ii)

Positive coefficients (physically meaningful solutions), (iii) Negative-slope linearisation of

the source term and (iv) Sum of the neighbour coefficients. It is noted that these rules

are sufficient conditions only. For convection-dominant flows, special attention should be

given to the treatment of the convection term. If a linear profile (i.e. central differencing)

is used, the second rule will be violated. In this case, some of the coefficients may be

negative and the associated coefficient matrix may not be diagonally dominant. As a

result, convergent difficulties are added if one uses iterative methods to solve the linearised
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algebraic system. Recognising these, various schemes that take the influence of the upwind

information of the flow into account, e.g. the upwind differencing [3], power-law [4] and

QUICK [5] schemes, have been developed.

The original upwind (upwind-difference/upstream-difference/donor-cell) scheme, which

simply replaces the face value of the convected property with its value at the grid point

on the upwind side of the face, is able to ensure positive coefficients. However, this

scheme is only first-order accurate and causes a false diffusion/artificial viscosity. The

power-law scheme, which can also guarantee the positivity of all coefficients, has a blended

first/second order accuracy. When the local grid Peclet numbers exceed a value of 6, this

scheme switches to the first-order upwinding scheme and the physical diffusion is therefore

suppressed [6]. Such formulations do not work well for the cases where the flow streamlines

are not closely aligned with the grid lines. On the other hand, the QUICK scheme employs

a quadratic interpolation at three consecutive nodes (the two nodes located on either side

of the face and the adjacent node on the upstream side) to represent the convective term.

The QUICK scheme results in a better accuracy and avoids the stability problems of

central differencing. Unlike upwind differencing, this quadratic interpolation scheme may

produce negative coefficients and as a result its coefficient matrix may not be diagonally

dominant.

It is highly desirable to have upwind numerical schemes that possess the convergence

properties of first-order schemes (the solution evolves in a stable manner, i.e. always

physically meaningful) and the accuracy properties of high-order schemes (accurate solu-

tions are obtained using relatively coarse meshes). A simple, but effective way to achieve

these objectives is to use the deferred correction strategy (e.g. [7,8]). A high-order ap-

proximate expression for computing the convected face value is cast as the upstream

value (the first-order upwinding scheme) and the streamwise correction term which are

then treated implicitly and explicitly, respectively. This strategy can be applied to any

kind of high-order upwind schemes.
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Radial basis functions (RBFs) have been extensively used in solving differential problems

(e.g. [9]). These approximators are able to work well (i.e. providing fast convergence) with

gridded and scattered data points especially for regular node arrangements. The RBF

approximations can be constructed through differentiation (e.g. [10]) or integration (e.g.

[11,12,13]). The latter has the ability to avoid the reduction in convergence rate caused by

differentiation and to provide an effective way of implementing derivative boundary values.

Integrated RBFs (IRBFs) were successfully introduced into the CV formulation [14]. All

of our previous IRBF works treated the diffusion and convection terms implicitly and

explicitly, respectively. In this study, the diffusion term is approximated using global and

local one-dimensional IRBF schemes, namely Scheme 1 and Scheme 2, respectively. The

convection term is effectively treated here by a high-order upwind scheme incorporating

global 1D-IRBFs with the deferred-correction strategy. The proposed schemes achieve

both good accuracy and stability properties.

The remainder of the paper is organised as follows. Brief reviews of the CV formulation

and 1D-IRBFs are given in Sections 2 and 3, respectively. Section 4 describes the two

proposed discretisation schemes. In Section 5, two examples - heat transfer and fluid flow

- are presented to demonstrate the attractiveness of the present implementation. Section

6 concludes the paper.

2 Control-volume formulation

Consider the following convection-diffusion equation

∂

∂t
(ρφ) + ∇. (ρv̂φ) −∇. (κ∇φ) +R = 0, x̂ ∈ Ω, (1)

where φ is the field variable; t the time; ρ the density; v̂ the convection velocity vector;

κ the diffusion coefficient; R the source term; x̂ the position vector and Ω the domain of
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interest.

The above equation presents the conservation principle for φ over an infinitesimal control

volume (i.e. there is a balance between the rate of change of φ, the convective flux rate,

the diffusion flux rate and the generation rate). By directly integrating (1) over a control

volume of the grid point P , ΩP , the following equation is obtained

∫

ΩP

(
∂

∂t
(ρφ) + ∇. (ρv̂φ) −∇. (κ∇φ) +R

)
dΩP = 0, (2)

which possesses the conservative property for φ for a finite control volume.

Applying the Gauss divergence theorem to (2) results in

∂

∂t

∫

ΩP

(ρφ)dΩP +

∫

ΓP

(ρv̂φ) .n̂dΓP −
∫

ΓP

(κ∇φ) .n̂dΓP +

∫

ΩP

RdΩP = 0, (3)

where ΓP is the boundary of ΩP ; n̂ the unit outward vector normal to ΓP and dΓP a

differential element of ΓP . The governing differential equation (1) is thus transformed

into a CV form (2)/(3). It is noted that no approximation is made at this stage.

3 One-dimensional IRBF scheme

The basic idea of the integral RBF scheme is to decompose the highest-order derivatives

of φ in a given differential equation (e.g. second-order derivatives for the convection-

diffusion equation (1)) into RBFs. Consider a univariate function φ(x). The present

1D-IRBF scheme starts with

d2φ(x)

dx2
=

N∑

i=1

wiI
(2)
i (x), (4)
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where N is the number of RBFs, {wi}N

i=1 the set of network weights, and
{
I

(2)
i (x)

}N

i=1

the set of RBFs. Expressions for the first-order derivative and function itself are then

obtained through integration

dφ(x)

dx
=

N∑

i=1

wiI
(1)
i (x) + c1, (5)

φ(x) =
N∑

i=1

wiI
(0)
i (x) + c1x+ c2, (6)

where I
(1)
i (x) =

∫
I

(2)
i (x)dx, I

(0)
i (x) =

∫
I

(1)
i (x)dx; and (c1, c2) are the constants of inte-

gration. It is noted that the superscript (.) is used to indicate the derivative order of

φ. In the present work, 1D-IRBFs are implemented with the multiquadric (MQ) function

and one has

I
(2)
i (x) =

√
(x− ci)2 + a2

i , (7)

I
(1)
i (x) =

(x− ci)

2
A+

a2
i

2
B, (8)

I
(0)
i (x) =

(−a2
i

3
+

(x− ci)
2

6

)
A+

a2
i (x− ci)

2
B, (9)

where ci and ai are the centre and the width of the ith MQ, respectively; A =
√

(x− ci)2 + a2
i ;

and B = ln
(
(x− ci) +

√
(x− ci)2 + a2

i

)
.

Evaluation of (4)-(6) at a set of collocation points {xi}N

i=1 (also a set of the MQ centres

here, {xi}N

i=1 ≡ {ci}N

i=1) leads to

d̂2φ

dx2
= Î(2)α̂, (10)

d̂φ

dx
= Î(1)α̂, (11)

φ̂ = Î(0)α̂, (12)
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where

Î(2) =




I
(2)
1 (x1), I

(2)
2 (x1), · · · , I

(2)
N (x1), 0, 0

I
(2)
1 (x2), I

(2)
2 (x2), · · · , I

(2)
N (x2), 0, 0

...
...

. . .
...

...
...

I
(2)
1 (xN), I

(2)
2 (xN), · · · , I

(2)
N (xN), 0, 0



,

Î(1) =




I
(1)
1 (x1), I

(1)
2 (x1), · · · , I

(1)
N (x1), 1, 0

I
(1)
1 (x2), I

(1)
2 (x2), · · · , I

(1)
N (x2), 1, 0

...
...

. . .
...

...
...

I
(1)
1 (xN), I

(1)
2 (xN), · · · , I

(1)
N (xN), 1, 0



,

Î(0) =




I
(0)
1 (x1), I

(0)
2 (x1), · · · , I

(0)
N (x1), x1, 1

I
(0)
1 (x2), I

(0)
2 (x2), · · · , I

(0)
N (x2), x2, 1

...
...

. . .
...

...
...

I
(0)
1 (xN), I

(0)
2 (xN), · · · , I

(0)
N (xN), xN , 1




;

α̂ = (w1, w2, · · · , wN , c1, c2)
T ;

and

d̂kφ

dxk
=

(
dkφ1

dxk
,
dkφ2

dxk
, · · · , d

kφN

dxk

)T

, k = (1, 2),

φ̂ = (φ1, φ2, · · · , φN)T ,

in which dkφi/dx
k = dkφ(xi)/dx

k and φi = φ(xi) with i = (1, 2, · · · , N).

Since the constants of integration are unknown, we treat them like the RBF weights.

The present coefficient vector α̂ is thus larger than that of the conventional/differential

approach. As a result, extra equations can be added to the system that represents the
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conversion of the RBF weight space into the physical space




φ̂

ê


 =




Î(0)

K̂


 α̂ = Ĉα̂, (13)

where ê = (e1, e2)
T is a vector representing extra information (e.g. normal derivatives

and differential equations at the boundaries); ê = K̂α̂; φ̂, Î(0) and α̂ defined as before;

and Ĉ the conversion matrix. It can be seen from (13) that the approximate solution φ is

collocated at the whole set of centres. Solving (13) for α̂ yields

α̂ = Ĉ−1




φ̂

ê


 , (14)

where Ĉ−1 is the inverse or pseudo-inverse of Ĉ, depending on its dimensions. The cost for

computing the pseudo inverse is greater than that for the inverse. If there are some extra

values (e.g. nodal boundary derivatives of the stream function used in the derivation of

computational boundary conditions for the vorticity, which will be presented in detail

later), the matrix Ĉ will be square. If there is no extra information (ê a null vector), the

matrix Ĉ will be underdetermined and its pseudo inverse can be computed by the SVD

technique. Fortunately, the present approximations are based on 1D-IRBFs rather than

global 2D-IRBFs so that the conversion matrices here have much smaller sizes than the

final system matrix.
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Substitution of (14) into (4)-(6) leads to

φ(x) =
(
I

(0)
1 (x), I

(0)
2 (x), · · ·

)
Ĉ−1




φ̂

ê


 , (15)

∂φ(x)

∂x
=

(
I

(1)
1 (x), I

(1)
2 (x), · · ·

)
Ĉ−1




φ̂

ê


 , (16)

∂2φ(x)

∂x2
=

(
I

(p)
1 (x), I

(p)
2 (x), · · ·

)
Ĉ−1




φ̂

ê


 . (17)

They can be rewritten in the form

φ(x) =
N∑

i=1

ϕi(x)φi + ϕN+1(x)e1 + ϕN+2(x)e2, (18)

∂φ(x)

∂x
=

N∑

i=1

dϕi(x)

dx
φi +

dϕN+1(x)

dx
e1 +

dϕN+2(x)

dx
e2, (19)

∂2φ(x)

∂x2
=

N∑

i=1

d2ϕi(x)

dx2
φi +

d2ϕN+1(x)

dx2
e1 +

d2ϕN+2(x)

dx2
e2, (20)

where {ϕi(x)}N+2
i=1 is the set of basis functions in the physical space.

4 Proposed method

The problem domain is discretised using a Cartesian grid. Non-overlapping control vol-

umes of rectangular shapes are generated around grid nodes. We employ the middle-point

rule to evaluate integrals of convection and diffusion terms. For integrals involving the

rates of change and generation, the value of the quantity at a grid point is assumed to

prevail over its control volume. The time derivative term is approximated by means of
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the first-order backward Euler implicit formula. Equation (3) thus becomes

ρP ∆AP

∆t

(
φP − φ0

P

)
+ [(ρuφ)e ∆y − (ρuφ)w ∆y + (ρvφ)n ∆x− (ρvφ)s ∆x]−

[(
κ
∂φ

∂x

)

e

∆y −
(
κ
∂φ

∂x

)

w

∆y +

(
κ
∂φ

∂y

)

n

∆x−
(
κ
∂φ

∂y

)

s

∆x

]
+RP ∆AP = 0, (21)

where the superscript 0 represents the value obtained from the previous time level; the

subscripts e, w, n and s denote the values of the property at the middle points of the east,

west, north and south faces of a control volume; ∆AP the area of ΩP ; RP the value of R

at node P ; and u and v the x− and y−component of v̂.

It can be seen that expressions for computing the interface values on the x− and y−grid

lines have similar forms. Thus, in the following, details will be given for an x−grid line

only.

4.1 Diffusion approximations

The diffusion term is treated implicitly. In regions where the convection strength is

relatively large, the role of the diffusion term is less important. For most cases of practical

interest, the actual component grid Peclet numbers are large almost everywhere in the

flow field [6]. We therefore employ not only global 1D-IRBFs (Scheme 1) but also local

1D-IRBFs with three points (Scheme 2) for the approximation of the third term on the

LHS of (21) (i.e. the approximating form of the diffusion term).
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4.1.1 Scheme 1

Using (19), the face value is computed as

(
∂φ

∂x

)

e

=
Nx∑

i=1

dϕi(xe)

dx
φi +

dϕNx+1(xe)

dx
e1 +

dϕNx+2(xe)

dx
e2, (22)

(
∂φ

∂x

)

w

=
Nx∑

i=1

dϕi(xw)

dx
φi +

dϕNx+1(xw)

dx
e1 +

dϕNx+2(xw)

dx
e2, (23)

where Nx is the total number of nodes on the x−grid line. These approximations are

global and hence guarantee that the flux is continuous across the interface between any

two adjoining control volumes (the first CV rule).

4.1.2 Scheme 2

The face value is evaluated as

(
∂φ

∂x

)

e

=
3∑

i=1

dϕi(xe)

dx
φi +

dϕ4(xe)

dx
e1 +

dϕ5(xe)

dx
e2, (24)

(
∂φ

∂x

)

w

=
3∑

i=1

dϕi(xw)

dx
φi +

dϕ4(xw)

dx
e1 +

dϕ5(xw)

dx
e2. (25)

These approximations are local and constructed on overlapping regions that are defined

between the west and east grid points of node P . The resultant matrix of Scheme 2 is

much more sparse than that of Scheme 1.

4.2 Convection approximations

For both Scheme 1 and Scheme 2, the convection term will be handled in the same manner.

In the case that the strength of convection is much greater than the strength of diffusion,

the second term on the LHS of (21) (i.e. convection) is dominant and strongly affects the
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stability of a numerical scheme. From the physical point of view, convection represents the

flow from upstream to downstream. One can thus expect that the upstream nodal value of

φ, denoted by φU , would make quite an impact on the value of φ at the interface, denoted

by φf . It is noted that the subscript f can be e or w. We treat the convection term

here by an upwind scheme incorporating global 1D-IRBFs with the deferred-correction

strategy

φf = φU + ∆φf , (26)

where

∆φf =
U−1∑

i=1

ϕi(xf )φ
0
i + (ϕU(xf ) − 1)φ0

U +
Nx∑

i=U+1

ϕi(xf )φ
0
i + ϕNx+1(xf )e1 + ϕNx+2(xf )e2,

in which {φ0
i }

Nx

i=1 are the nodal values of φ obtained from the previous time level. The

streamwise correction term ∆φf is therefore known at the current time level. Expression

(26) ensures diagonal dominance for the resultant system of algebraic equations and ap-

proximate solutions can therefore evolve in a stable manner (i.e. solution is physically

meaningful at all times). At convergence, the accuracy of φf is determined by the global

1D-IRBF scheme.

It can be seen that Scheme 2 has the same structure of the system matrix (i.e. the

tridiagonal and pentadiagonal forms for 1D and 2D problems, respectively) as the standard

CV techniques.

Scheme 1 and Scheme 2 are both constructed by means of 1D-IRBFs and point collocation

so that all nodal values of the variable are forced to be satisfied in an exact manner.

Numerical experiments show that the present discretisation equations obey the fourth

CV rule, i.e. sum of the neighbour coefficients.
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5 Numerical examples

The performance of the proposed discretisation schemes, i.e. Scheme 1 and Scheme 2,

is studied through the solution of the Burgers and Navier-Stokes equations. The latter

is taken in the stream-function and vorticity formulation. The grid size, h, is chosen as

the MQ width. All PDEs under consideration here are subject to Dirichlet boundary

conditions. The extra information vector ê in (13) is set to null for solving the PDEs and

to derivative boundary values of the stream function for deriving computational boundary

conditions for the vorticity. For comparison purposes, the standard CV techniques, where

the diffusion term is discretised using central differences, are also employed here. If the

convection term is treated using the original upwind version, we name it an UW-CD

technique. If the convection term is treated using the central-difference formulation, it

is then called an CD-CD technique. Scheme 2 can somehow serve as a tool to measure

the relative performance of the upwind scheme based on 1D-IRBFs to those based on

polynomials. Time-dependent equations are solved by the time-marching approach. A

computed solution at a lower Reynolds number is used as the initial condition. For the

special case of Stokes equations, the flow starts from rest. We utilise banded and iterative

solvers to solve the algebraic equation sets.

5.1 Example 1

Consider the following non-linear Burgers equation

dφ

dt
+ φ

dφ

dx
= ε

d2φ

dx2
, (27)

13



on the domain xA ≤ x ≤ xB with Dirichlet boundary conditions, where ε is a given value.

We consider steady flows, for which analytical solutions are given by

φ(x) = − tanh
( x

2ε

)
. (28)

Calculations are carried out on uniformly-distributed nodes.

To investigate the convergence behaviour of the two present discretisation schemes, a

global 1D-IRBF-based CV technique, where the diffusion and convection terms are re-

spectively treated implicitly and explicitly, is also considered. This technique is referred

to as the original IRBF version. As discussed earlier, the original IRBF version and

Scheme 1 will give the same accuracy when the solutions are converged. For Scheme 2,

the coefficient matrix is tridiagonal. When the discrete relative norm of φ between two

successive time levels, tol, is less than 10−7, the flow is considered to reach a steady state.

Different time steps, namely 0.1, 0.05, 0.01, 0.005 and 0.001, are employed. Results are

presented in Table 1, indicating that much larger time steps can be used with the present

schemes. Scheme 1 works better than Scheme 2.

To assess accuracy of the two present schemes, we employ the UW-CD technique. The

error is measured using the discrete relative norm of φ, denoted by Ne(φ), at a test set

of 501 uniformly distributed points. Table 2 shows that the present schemes especially

Scheme 1 significantly outperform the UW-CD technique regarding accuracy, i.e. up to

two orders of magnitude for Scheme 1. In addition, Scheme 1 gives a very fast convergence,

i.e. up to O(h7.85), as shown in Table 3. A computed solution by Scheme 1 together with

the exact solution at ε = 10−3 are shown in Figure 1.
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5.2 Example 2

Recirculating laminar incompressible flows of a Newtonian/non-Newtonian fluid in en-

closed cavities have received a great deal of attention in fluid mechanics community as

they can produce interesting flow features at different Reynolds/Weissenberg numbers.

Examples of this type include lid-driven flows in square and triangular cavities. The top

wall (lid) slides at a constant velocity. For such problems, at the two top corners, the

velocity is discontinuous and the stress is unbounded, which poses great challenges for

numerical simulation. This study is concerned with a Newtonian fluid and cavities of

square and equilateral triangular shapes. The governing equations are employed in the

form of the stream function (ψ) and vorticity (ω)

ω = ∇. (∇ψ) , (29)

∂ω

∂t
+ ∇.(v̂ω) =

1

Re

∇. (∇ω) , (30)

where v̂ = (u, v)T = (∂ψ/∂y,−∂ψ/∂x)T and Re is the Reynolds number.

Boundary nodes are generated here using grid lines that pass through interior grid nodes.

As a result, the set of RBF centres/collocation-points does not include the two top corners

(the triangular cavity) and the four corners (the square cavity). By this simple treatment,

it can be seen that infinite values of the vorticity do not enter the discrete system. 1D-

IRBFs are employed on each grid line to represent the field variable and its derivatives in

solving (29) and (30).

5.2.1 Square cavity

The stability of the flow in a square cavity has been extensively studied (e.g. [15]).

Values of critical parameters at which the flow becomes unstable were obtained through

hydrodynamic stability analyses. Critical Reynolds numbers were found in the range of
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7704 to 8031. In this study, the time-dependent Navier-Stokes equations are solved for a

wide range of Re, namely (100, 1000, 3200, 5000, 7500), where uniform grids are employed.

Results obtained are compared with the benchmark solutions provided by Ghia et al. [8]

and Botella and Peyret [16]. The former was obtained using a multi-grid based finite-

difference method with fine grids. For the latter, Chebyshev polynomials and analytic

formulations were employed to handle the regular and singular parts of the solution and

the benchmark results were given for Re = 100 and Re = 1000.

Using (20), for the two vertical walls, computational boundary conditions for the vorticity

are obtained as follows

ω1 =
∂2ψ1

∂x2
=

Nx∑

i=1

d2ϕi(x1)

dx2
ψi +

d2ϕNx+1(x1)

dx2

∂ψ1

∂x
+
d2ϕNx+2(x1)

dx2

∂ψNx

∂x
, (31)

ωNx
=
∂2ψNx

∂x2
=

Nx∑

i=1

d2ϕi(xNx
)

dx2
ψi +

d2ϕNx+1(xNx
)

dx2

∂ψ1

∂x
+
d2ϕNx+2(xNx

)

dx2

∂ψNx

∂x
. (32)

By means of point collocation and integration constants, derivative boundary values are

thus incorporated into the 1D-IRBF approximations in an exact manner. They are forced

to be satisfied exactly. Moreover, all grid points on the associated grid lines are used

to compute ω1 and ωNx
. As a result, the present treatment possesses some global ap-

proximation properties. Expressions for ω at the two horizontal walls are obtained in an

analogous manner. They are used for Scheme 1 and Scheme 2 and also for the present

UW-CD and CD-CD techniques.

Original global and local 1D-IRBF versions are also implemented here. They are re-

spectively similar to Scheme 1 and Scheme 2, except that the convection term is treated

explicitly. The flow is considered to reach the steady state when the relative norm of the

stream-function field between the two successive time levels, CM , is less than 10−8. It

can be seen from Figure 2 that the original 1D-IRBF versions diverge using time step of

0.01. In contrast, the present schemes produce converging solutions using the same time

step. Scheme 1 and Scheme 2 require 11869 and 12485 iterations, respectively. Large time
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steps can thus be used with the present schemes, making the convergence much faster as

shown in Figure 3.

Results concerning the extreme values of the velocity profiles on the vertical and horizontal

centreline for Re = 1000 are presented in Table 4. Both Scheme 1 and Scheme 2 produce

results that are much closer to the spectral benchmark results than the UW-CD and CD-

CD techniques. It can be seen that the UW-CD technique suffers from serious inaccuracy.

Again, Scheme 1 is more accurate than Scheme 2.

At Re = 5000, the flow is simulated with the present schemes and the UW-CD technique.

Contour plots for the stream function and the vorticity are shown in Figures 4 and 5,

respectively. It can be seen that a secondary vortex in the region close to the top left corner

by the UW-CD technique has a much smaller size than those produced by the present

schemes. Figure 6 shows the velocity profiles on the vertical and horizontal centrelines,

where results by Ghia et al. [8] are also included for comparison purposes. It can be

seen that the UW-CD technique produces lower velocity extreme values than the present

schemes. The present results are in very good agreement with those produced by Ghia et

al. [8]. For the vorticity field, Scheme 1 produces a smoother solution than Scheme 2.

At Re = 7500, simulations are carried out with Scheme 1 and Scheme 2. A uniform grid

of 131× 131 is found to be sufficient for obtaining accurate results including the vorticity

field as shown in Figure 7.

5.2.2 Triangular cavity

In contrast to the square cavity problem, the triangular-cavity flow presents a severe

test for structured-grid-based numerical methods (e.g. [17]). Figure 8 shows the cavity

geometry and boundary conditions. We take P =
√

3 and Q = 3. The velocity vectors

imposed are v = (1, 0)T for the lid and v = (0, 0)T for the left and right walls. The
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reference length and velocity are presently chosen as L = Q/3 and U = 1 (the velocity of

the lid), respectively. It is noted that this problem was numerically studied by different

techniques, including the finite-difference method (e.g. [18]) and the finite-element method

(e.g. [19]). In early numerical studies, e.g. [18,20], finite differences were constructed on

a transformed geometry and the flows were considered for Re ≤ 500 only. Later on,

solutions for higher Re numbers were achieved by means of, for example, the so-called

computational boundary method in which the computational region under consideration

is one-grid inside the physical domain [21] and the flow-condition-based interpolation [19].

At the lid, the imposition of boundary conditions for ω is similar to that used in the

square cavity flow. At the left and right walls, analytic formulae for computing the

vorticity boundary condition on a non-rectangular boundary [22] are utilised here:

ωb =

[
1 +

(
tx
ty

)]
∂2ψb

∂x2
, (33)

for a x−grid line, and

ωb =

[
1 +

(
ty
tx

)]
∂2ψb

∂y2
, (34)

for a y−grid line. In (33) and (34), tx and ty are the x− and y−components of the

unit vector tangential to the boundary. The two formulae (33) and (34) require the

approximations be conducted in one direction only. No exterior/fictitious points are used

here.

Two Cartesian grids, namely Grid 1 (9702 points) and Grid 2 (15252 points), are employed

to study the convergence of the solution. Unlike FDMs ([18,20]), the present schemes do

not involve any coordinate transformations, making the processing simple. The flow is

simulated at the Reynolds number of 0, 100, 200, 500, 1000, 1500 and 2000. If one

takes a side of the triangular cavity as the length scale L, the actual Re will become

2
√

3 times larger. For example, Re of 2000 is equivalent to a conventional Re of 6928.

The advantage of Scheme 2 is its lower storage cost. Only Scheme 2 is employed here.
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Its computer codes are run on a PC with the total physical memory of 1024 MB. To

investigate the upwinding effects, an original local 1D-IRBF version is also employed.

This version is similar to Scheme 2 except that the convection term is treated explicitly.

As shown in Figure 9, a much larger time step can be used with Scheme 2 that converges

much faster than the original local 1D-IRBF version.

Figures 10 and 11 present contour plots of the stream-function and vorticity fields, which

look reasonable when compared with those available in the literature (e.g. [18,19]).

Figure 12 presents variations of the x component of the velocity vector on the vertical

centreline x = 0 and the y component of velocity on the horizontal line y = 2. Results

obtained in [19] are also included for comparison purposes. It can be seen that the velocity

profiles using Grid 1 are almost identical to those using Grid 2. The present results agree

well with those by the flow-conditioned-based interpolation FEM for all values of Re.

5.3 Discussion

Both the proposed method and the standard CV method employ the middle-point rule to

evaluate line integrals associated with CV surfaces. However, for the proposed technique,

the values at the CV faces are estimated using high-order 1D-IRBFs rather than the

usual linear polynomials, and the convection term is treated using an upwind scheme

with the deferred correction strategy. It can be seen that the construction of the 1D-

IRBF approximations requires more computational effort than that of linear polynomials.

However, the former can give superior accuracy. Given a grid size, the CPU time by

the proposed method is greater than that by the standard CV method. However, for a

prescribed accuracy, the standard CV method requires much more grid nodes than the

proposed method. For instance, to obtain Ne(φ) = 4.2e − 5 in Example 1, the numbers

of nodes required are only 191 for Scheme 1 and up to about 10000 for the standard
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CV method. It is noted that the value 10000 is obtained through extrapolation. For

Scheme 1, the CPU time per iteration is approximately zero. For the standard CV

method, at 4000 nodes (not 10000 nodes), the CPU time per iteration is already up

to 0.359s. The computer codes are written using MATLAB and run on a Dell X86-

based PC (Intel 2992 Mhz). In this regard (accuracy), the proposed method can be

more efficient than the standard CV method. In addition, the employment of upwinding

with 1D-IRBFs and deferred correction maintains the numerical stability or boundedness

(first-order upwinding) and, at the same time, ensures high-order accuracy (1D-IRBFs).

6 Conclusions

This paper reports a new control-volume method, based on Cartesian grids and global/local

1D-IRBFs, for fluid-flow problems. A high-order upwind treatment with the deferred cor-

rection strategy using 1D-IRBFs for the convection term is implemented to enhance the

stability property to the evolving solutions. The present schemes are able to produce

converging solutions of high levels of accuracy at high values of the Reynolds number for

both rectangular and non-rectangular fluid-flow domains.
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Table 1: Burgers equation, xA = −0.1, xB = 0.1, ε = 10−3, tol = 10−7, φ(x, 0) = (φB −
φA)/(xB − xA)x, time-marching solver: convergence study for the original IRBF version
and the two present schemes. Converging and diverging solutions are denoted as X and
x, respectively.

Original IRBF version
N

∆t 51 61 71 81 91 101
0.1 x x x x x x
0.05 x x x x x x
0.01 x x x x x x
0.005 x x x x x x
0.001 X X X X X X

Scheme 2
N

∆t 51 61 71 81 91 101
0.1 x x X X X X

0.05 x X X X X X

0.01 x X X X X X

0.005 x X X X X X

0.001 X X X X X X

Scheme 1
N

∆t 51 61 71 81 91 101
0.1 x X X X X X

0.05 X X X X X X

0.01 X X X X X X

0.005 X X X X X X

0.001 X X X X X X
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Table 2: Burgers equation, xA = −0.1, xB = 0.1, ε = 10−3, tol = 10−7, φ(x, 0) = (φB −
φA)/(xB−xA)x,∆t = 0.001: accuracy by the UW-CD method and by the present schemes.
It is noted that the error Ne(φ) is computed at a test set of 501 uniformly distributed
points.

Ne(φ)
N h UW-CD Scheme 2 Scheme 1
51 4.00e-3 3.74e-2 3.59e-2 2.23e-2
61 3.33e-3 2.81e-2 2.38e-2 1.40e-2
71 2.85e-3 2.21e-2 1.66e-2 8.88e-3
81 2.50e-3 1.81e-2 1.19e-2 5.63e-3
91 2.22e-3 1.54e-2 8.75e-3 3.58e-3
101 2.00e-3 1.33e-2 6.75e-3 2.28e-3
111 1.81e-3 1.19e-2 5.13e-3 1.45e-3
121 1.66e-3 1.08e-2 4.14e-3 9.25e-4
131 1.53e-3 9.93e-3 3.45e-3 5.90e-4
141 1.42e-3 9.22e-3 2.86e-3 3.77e-4
151 1.33e-3 8.61e-3 2.49e-3 2.41e-4
161 1.25e-3 8.03e-3 2.27e-3 1.55e-4
171 1.17e-3 7.49e-3 2.10e-3 1.00e-4
181 1.11e-3 7.20e-3 1.90e-3 6.52e-5
191 1.05e-3 6.82e-3 1.76e-3 4.26e-5
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Table 3: Burgers equation, xA = −0.1, xB = 0.1, ε = 10−3, tol = 10−7, φ(x, 0) = (φB −
φA)/(xB − xA)x,∆t = 0.005: convergence rates by Scheme 1.

h Convergence rates
4.00e-3 -
3.33e-3 O(h2.54)
2.85e-3 O(h2.97)
2.50e-3 O(h3.40)
2.22e-3 O(h3.84)
2.00e-3 O(h4.29)
1.81e-3 O(h4.73)
1.66e-3 O(h5.17)
1.53e-3 O(h5.61)
1.42e-3 O(h6.03)
1.33e-3 O(h6.45)
1.25e-3 O(h6.84)
1.17e-3 O(h7.21)
1.11e-3 O(h7.55)
1.05e-3 O(h7.85)
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Table 4: Square-cavity flow, Re = 1000: Percentage errors relative to the spectral bench-
mark results for the extreme values of the velocity profiles on the centrelines.

Errors (%) for umin

Grid UW-CD CD-CD Scheme 2 Scheme 1
31 × 31 46.10 29.19 12.85 11.86
41 × 41 38.17 18.13 7.92 6.50
51 × 51 32.92 12.11 5.34 4.09
61 × 61 29.12 8.63 3.80 2.80
71 × 71 26.21 6.46 2.81 2.03
81 × 81 23.88 5.02 2.14 1.54
91 × 91 21.95 4.01 1.66 1.19

101 × 101 20.33 3.28 1.32 0.96
111 × 111 18.94 2.73 1.05 0.78
121 × 121 17.74 2.31 0.84 0.65
131 × 131 16.69 1.98 0.65 0.55

Errors (%) for vmax

Grid UW-CD CD-CD Scheme 2 Scheme 1
31 × 31 48.01 29.98 13.05 11.91
41 × 41 39.71 18.45 8.02 6.55
51 × 51 34.43 12.32 5.40 4.13
61 × 61 30.62 8.79 3.84 2.83
71 × 71 27.68 6.58 2.83 2.05
81 × 81 25.31 5.12 2.14 1.56
91 × 91 23.34 4.09 1.66 1.21

101 × 101 21.67 3.35 1.31 0.97
111 × 111 20.23 2.79 1.04 0.79
121 × 121 18.98 2.36 0.82 0.66
131 × 131 17.89 2.02 0.62 0.56

Errors (%) for vmin

Grid UW-CD CD-CD Scheme 2 Scheme 1
31 × 31 40.12 29.83 12.65 11.53
41 × 41 30.42 18.08 7.72 6.25
51 × 51 24.70 11.90 5.13 3.87
61 × 61 20.94 8.40 3.58 2.58
71 × 71 18.24 6.25 2.64 1.85
81 × 81 16.19 4.83 2.00 1.39
91 × 91 14.56 3.85 1.55 1.07

101 × 101 13.24 3.14 1.23 0.85
111 × 111 12.14 2.61 0.99 0.70
121 × 121 11.22 2.20 0.79 0.58
131 × 131 10.42 1.88 0.63 0.49
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Figure 1: Burgers equation, xA = −0.1, xB = 0.1, ε = 10−3, tol = 10−7, φ(x, 0) =
(φB − φA)/(xB − xA)x,N = 81: approximate solution by Scheme 1.
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Figure 2: Square-cavity flow, Re = 1000, 81 × 81, solution at Re = 400 used as initial
guess, time step of 0.01: convergence behaviour. It is noted that CM denotes the relative
norm of the stream-function field between two successive time levels.
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Figure 3: Square-cavity flow, Re = 1000, 81 × 81, solution at Re = 400 used as initial
guess: convergence behaviour. Scheme 1 using time step of 0.01 converges much faster
than the original global 1D-IRBF version using time step of 0.001. It is noted that the
latter diverges for time step of 0.01. CM denotes the relative norm of the stream-function
field between two successive time levels.
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Figure 4: Square-cavity flow: contour plots for the stream function at Re = 5000 using a
grid of 111 × 111. 31
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Figure 5: Square-cavity flow: contour plots for the vorticity at Re = 5000 using a grid of
111 × 111. 32
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Figure 6: Square-cavity flow: velocity profiles by the UW-CD technique, Scheme 2 and
Scheme 1 at Re = 5000 using a grid of 111 × 111. Results by Ghia et al. [8] are also
included for comparison purposes.
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Figure 7: Square-cavity flow: Solutions at Re = 7500 using a uniform grid of 131 × 131
by Scheme 1 and Scheme 2. Velocity profiles by Ghia et al. [8] are also included for
comparison purposes.
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Figure 8: Triangular-cavity flow: geometry and boundary conditions.
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Figure 9: Triangular-cavity flow, Re = 1000, grid of 9702 points, solution at Re = 500
used as initial guess: convergence behaviour. Scheme 2 using time step of 0.01 converges
much faster than the original local 1D-IRBF version using time step of 0.001. It is noted
that the latter diverges for time step of 0.01. CM denotes the relative norm of the
stream-function field between two successive time levels.
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Figure 10: Triangular-cavity flow: Contour plots of the stream-function field using Scheme
2.
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Figure 11: Triangular-cavity flow: Contour plots of the vorticity field using Scheme 2.
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Figure 12: Triangular-cavity flow: Velocity profiles by Scheme 2 and the flow-condition-
based interpolation FEM [19].
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