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A numerical procedure based on 1D-IRBFN and local
MLS-1D-IRBFN methods for fluid-structure interaction
analysis

D. Ngo-Congd-?, N. Mai-Duy?!, W. Karunasena and T. Tran-Cong':3

Abstract: The partition of unity method is employed to incorporate thev-
ing least square (MLS) and one dimensional-integratedatddisis function (1D-
IRBFN) techniques in a new approach, namely local MLS-1B#Rl or LMLS-
1D-IRBFN. This approach leads to sparse system matricesffers a high level
of accuracy as in the case of 1D-IRBFN method. A new numepicadedure based
on the 1D-IRBFN method and LMLS-1D-IRBFN approach is présérior a so-
lution of fluid-structure interaction (FSI) problems. A cbmation of Chorin’s
method and pseudo-time subiterative technique is predéotea transient solution
of 2-D incompressible viscous Navier-Stokes equationgrims of primitive vari-
ables. Fluid domains are discretised by using Cartesiats.giihe fluid solver is
first verified through a solution of mixed convection in a didven cavity with a
hot lid and a cold bottom wall. The structural solver is vedfiwith an analytical
solution of forced vibration of a beam. The Newmark’s mettogimployed for the
forced vibration analysis of the beam based on the Eulenddli theory. The FSI
numerical procedure is then applied to simulate flows in alfiden open-cavity
with a flexible bottom wall.

Keywords: Fluid-structure interaction; moving boundary; transiemalysis; pseudo-
time subiterative technique; integrated radial basistiong Cartesian grid.
1 Introduction

Fluid-structure interaction (FSI) plays a central role @veral engineering prob-
lems such as aircraft wing flutter [Dubcova, Feistauer, Eekaand Svacek (2008)],
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bridge flutter [Ge and Xiang (2008)], blood flows [Fernandeerbeau, and Grand-
mont (2007)], design of helicopter rotors [Xiong and Yu (2J0 Therefore, FSl is

a very attractive topic and FSI analysis is the key for sg\imose kinds of prob-

lems. FSlis also a challenge for numerical modelling. Tee®lS| problems, one
needs to consider the governing equations for fluid andtsitreicand geometrical
compatibility and equilibrium conditions at the interfadeetween fluid and struc-
tural domains. Some FSI behaviours can converge to a statysolution, others
can be oscillatory or even unstable.

There are two main approaches for solving FSI problems, lyamenolithic meth-

ods [Rugonyi and Bathe (2001); Heil (2004); Liew, Wang, Zinaand He (2007)]
and partitioned methods [Farhat and Lesoinne (1998); Ripgr997)]. Partitioned
procedures are usually appropriate for weak interactidgwdxn the fluid and the
structure while the monolithic procedure is chosen to bectiffe for solving FSI

problems with a strong interaction. In the monolithic agmto, the fluid and struc-
tural equations are solved simultaneously. This approaah lead to two draw-
backs (i) an increase in the number of degrees of freedom @p@rd (i) an

ill-conditioned system matrix. Liew, Wang, Zhang, and H8Q?2) developed a
monolithic approach based on the fluid pressure Poissortiequa solve the hy-
droelasticity problem of an incompressible viscous fluithvé elastic body that is
vibrating due to flow excitation. The flow was modelled withvtorder velocity-

pressure finite elements while the structure was represéyteneans of a Galerkin
finite element formulation.

In the partitioned approach, the fluid and structural fieldssalved separately and
the solution variables are transferred at the interfacéiseofiuid and structural do-
mains. The major advantage of this approach is the flexilititchoose different
solvers for each field. However, the approach introducesa dielay which results
in non-physical energy dissipation [Farhat and Lesoinf@®8)]. Piperno (1997)
introduced coupling staggered procedures with a strucpredictor for a tran-
sient solution of a supersonic panel flutter using dynamishrand finite volume
methods (FVM) based on the arbitrary-Lagrangian-Eule(&bE) formulation.
Their procedures do not satisfy continuity of the strudtaral fluid grid displace-
ments/velocities at the moving interface, but allow an eramerical exchange of
momentum through the interface.

Recently, a problem of FSI in a lid-driven cavity with a flelgtbottom has been
studied by several researchers to verify their numericadguaiures for the FSI anal-
ysis [Forster, Wall, and Ramm (2007); Kittler and Wall (2p@athe and Zhang
(2009); Al-Amiri and Khanafer (2011)]. Forster, Wall, aném®m (2007) studied
this FSI problem and investigated the influence of mass tjersio, structural

stiffness, structural predictor and time step size on te&bilities of sequentially
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staggered FSI simulations where incompressible flows ansidered. Bathe and
Zhang (2009) presented a numerical procedure to adapt pad tke fluid mesh

for solving this FSI problem using the ALE formulation. Thdl§ adaptive solu-

tion of transient flow are too expensive and may lead to lacyepeitational errors
during the time integration. Therefore, they first solveteady flow in a lid-driven

cavity at the maximum velocity of the lid to obtain an adaptimesh. This mesh is
then employed for the transient solution of the FSI systetrAmiri and Khanafer

(2011) investigated a steady laminar mixed convection tneasfer in a lid-driven

cavity with a flexible bottom wall using a finite element foration based on the
Gelerkin method of weighted residuals.

As an alternative to the ALE formulation, Eulerian formigats (e.g. Cartesian-
based methods) can be used to describe the fluid motion infeiShaving bound-
ary problems. Udaykumar, Mittal, Rampunggoon, and Khar2@®1) presented
a Cartesian grid method for computing fluid flows with compiexnersed and
moving boundaries. The flow is computed on a fixed Cartesisshrard the solid
boundaries are allowed to move freely through the mesh. Téihad significantly
reduces the grid generation cost and has a great potentaltioe conventional
body-fitted methods when solving problems with moving bauies and compli-
cated geometry. Sarler and Vertnik (2006) proposed anaikfical radial basis
function collocation method for diffusion problems. Thethaal appeared efficient,
because it does not deal with a large system of equationshiéeriginal colloca-
tion multiquadric radial basis function method proposedklaynsa (1990). Divo
and Kassab (2007) developed a localized radial basis fimetieshless method
(LCMM) for a solution of coupled viscous fluid flow and conjigéaneat transfer
problem. The LCMM was applied to simulate steady and ungteéabd flows in
arterial bypass graft geometries [Zahab, Divo, and Kas2ab9)]. Mai-Duy and
Tanner (2007) presented a one-dimensional integratedlrbdsis function net-
work (1D-IRBFN) collocation method for the solution of secds and fourth-order
PDEs. Along grid lines, 1D-IRBF networks are constructedsatisfy the gov-
erning differential equations with boundary conditionsamexact manner. In the
1D-IRBFN method, the Cartesian grids are used to discrbtgie rectangular and
non-rectangular problem domains. The 1D-IRBFN method ishmmaore efficient
than the original IRBFN method reported in [Mai-Duy and H@ong (2001)].
Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2011) eledrthis method to
investigate free vibration of composite laminated plataselol on first-order shear
deformation theory. Ngo-Cong, Mai-Duy, Karunasena, arahiCong (2012) pro-
posed a local moving least square - one dimensional ineyratial basis function
network method (LMLS-1D-IRBFN) for simulating 2-D incomgssible viscous
flows in terms of stream function and vorticity. The methodésed on the par-
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tition of unity framework to incorporate the moving leasuace and 1D-IRBFN
techniques in an approach that produces a very sparse sys&ir and offers as
a high level of accuracy as that of the 1D-IRBFN.

The present work is concerned with the development of a nawenigal proce-
dure based on the 1D-IRBFN and local MLS-1D-IRBFN methodsstiving FSI

and moving boundary problems such as flows in a lid-drivemegaity with a

flexible bottom wall. The fluid flow is governed by 2-D incomsgsible viscous
Navier-Stokes equations in terms of primitive variabled #re motion of the bot-
tom wall is described by using the Euler-Bernoulli theorizeTpresent fluid solver
is first verified through a benchmark solution of mixed cotieecin a lid-driven

cavity with a hot moving lid and a cold stationary bottom walbrrance, Davis,
Eike, Gill, Gutman, Hsui, Lyons, and Zien (1972) first nuroaty studied this
kind of problem and found that the interaction of the shearedrflow due to the
lid motion and natural convection due to the buoyancy effeakes the flow be-
haviour complicated and different from those driven by thie effects separately.
Iwatsu, Hyun, and Kuwahara (1993) studied mixed convedéti@lid-driven cavity

with a hot moving top wall and a cold stationary bottom walhgsfinite different

method (FDM). Sharif (2007) investigated the mixed coneecheat transfer in in-
clined cavities using the FVM with a second-order upwindedéncing scheme to
discretise convection terms and central differencing sehe discretise diffusion
terms. Recently, Cheng (2011) employed a fourth-order ratewcompact form
and pseudo time iteration methods for simulations of mixeavection in a 2-D

lid-driven cavity using the stream function, vorticity atamperature formulation.

The present paper is organised as follows. Section 2 briefiyoduces the 1D-
IRBFN and local MLS-1D-IRBFN techniques. The governing &tipns for struc-

ture, 2-D incompressible viscous flows and FSI are present&stction 3. Sec-
tion 4 describes the discretisation of the governing equatithe details of deter-
mination of variable values at “freshly cleared" nodes (uilater in section 4.3)
and a sequentially staggered algorithm for FSI analysisei@&numerical exam-
ples are investigated using the present numerical proeddiBection 5. Section 6
concludes the paper.

2 1D-IRBFN and local MLS-1D-IRBFN methods

The domain of interest is discretised using a Cartesian peidan array of straight
lines that run parallel to the- and y-axes. The dependent variableand its
derivatives on each grid line are approximated using 1DHAREnd local MLS-
1D-IRBFN methods as described in the remainder of this@ecti
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2.1 1D-IRBFN methods

The 1D-IRBFN methods [Mai-Duy and Tanner (2007)] includirig-IRBFN-2 and
1D-IRBFN-4 schemes are briefly described here.

2.1.1 Second-order 1D-IRBFN (1D-1RBFN-2 scheme)

Consider ax-grid line, e.g.[j], as shown in Fig. 1. The variation oflong this line
is sought in the IRBF form. The second-order derivativel @ decomposed into
RBFs; the RBF network is then integrated once and twice taiolhe expressions
for the first-order derivative af and the solutionu itself,

NI

e wa = 3 WOH 9 )

0;@ —_; WOH{ () + ¢, 2
le H[' )+ C1X+Cp, 3)

whereN{ is the number of nodes on the grid ling; {wl }Ile RBF weights to

N 0 VY ()
be determlned{G X}, = {H[z] (X)}.: known RBFsHj/ (x) = fH[2 (x)dx

( X) = fH ( x)dx; andc; andc; integration constants which are also unknown.
An example of RBF, used in this work, is the multiquadi@8 (x) = /(x— x)2 4+ a2,

al) is the RBF width determined @ = Bd®¥), B a positive factor, and¥ the
distance from th&" center to its nearest neighbour.

2.1.2 Fourth-order 1D-IRBFN (1D-IRBFN-4 scheme)

In the 1D-IRBFN-4 scheme, the fourth-order derivative isataposed into RBFs.
The RBF networks are then integrated to obtain the loweerdérivatives and the
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function itself,

NG N
_ -ZW(I)G(I)(X) — -ZW(I)H[(‘:]) (X), (4)
=
d%u (i)
|
0X3 le H X) +C1, (5)
2?u(x) O
EYe ZW g )+ e+ ©)
oux) ¥ c
— 5 wig® e
X _i;w Hyj (X) + 5> X + Cox+Cg, (7)
i) Cl
le H[ x3+§x + CaX+ C, (8)

_ i , Ny
where{G(') }:\'xlz {H[ﬂ])(x)} are known RBFsH ( X) = fH (x)dx; H[(zl])( X) =
i1

JHE 090 HY () = [HE ()dx; Hg (09 = [HE( )dx, andcy, ¢, cz andcy in-
tegratlon constants which are also unknown.

2.2 Local moving least square - one dimensional integratexdlial basis func-
tion network technique

A schematic outline of the LMLS-1D-IRBFN method is depiciedrig. 2. The
proposed method with 3-node support domaims:-3) and 5-node local 1D-IRBF
networks (s = 5) is presented here. On argrid line [I], a global interpolant for
the field variable at a grid poing is sought in the form

i U[J] 9)

where{(p,} is a set of the partition of unity functions constructed gsviLS
approxmants [Liu (2003)]ull!(x) the nodal function value obtained from a local
interpolant represented by a 1D-IRBF netwojk n the number of nodes in the
support domain ok. In (9), MLS approximants are presently based on linear
polynomials, which are defined in terms of 1 andt is noted that the MLS shape
functions possess a so-called partition of unity propsie follows.

5 000

(10)

‘$ I
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Relevant derivatives af atx; can be obtained by differentiating (9)
0u(%) _ & (OB il i) 4 oy U0

ul(x)+2

02u(x;) _ n (dzfﬁj(xi) i a(Ej(Xi)dU[”(Xi)_i_—_ _)azu[”(xa)> (12)

ax ax G55

where the valuesl!(x),dulll (x) /dx and 8%ulll (x) /@x? are calculated from 1D-
IRBFN networks withng nodes.

Full details of the LMLS-1D-IRBFN method can be found in [NGong, Mai-Duy,
Karunasena, and Tran-Cong (2012)].

3 Governing equations for fluid, structure and fluid-structure interaction

In this study, the FSI problem of flow in a lid-driven open-itawith a flexible bot-
tom wall [Forster, Wall, and Ramm (2007); Bathe and Zhan@@3Pis considered.
The bottom wall is modelled as a flexible beam using the EB&roulli beam the-
ory. The fluid is described by the 2-D Navier-Stokes equatiohincompressible
viscous flow in terms of primitive variables.

3.1 Governing equations for forced vibration of a beam

The equation of motion for forced lateral vibration of a bearbhased on the Euler-
Bernoulli beam theory. This is a small-deflection theory #retefore some error
will be incurred due to the neglect of the geometric nondmtrm when the de-
flection is actually not small [Spoon and Grant (2011)]. Ourpwse here is to
demonstrate our FSI analysis procedure and we will ignoeenttm-linear term
here for the following reason. As shown later in the numérnieaults section, the
actual maximum central deflection of the beam is about 14.@fl#te beam length
in the worst case of simply-supported boundary conditiordstherefore the error
is less than 10% [Spoon and Grant (2011)]. In the case of @drbpundary con-
ditions, the error is less than 1.3% since the maximum déflect about 4.37% of
the beam Iength. The equation of motion is given by [Rao (004
04

Eloa P SA = f(x,t). (13)

wherew is the Iateral deflection of the beatthe time;E Young’s modulusj the
moment of inertia;A the cross-section arep; material density of the beam; and
f(x,t) the external force per unit length of the beam. The boundanglitions for

a simply supported or clamped end of a beam are described@sgo
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e Simply supported case:

e Clamped case:

—0,2—- =0 1
0,57 =0 (15)

3.2 Governing equations for 2-D incompressible viscous fsow

The dimensional conservative form of the 2-D Navier-Stokgsations of incom-
pressible viscous flow in terms of primitive variables is téem in xy-Cartesian
system as [Bathe and Zhang (2009)]

Ju ov
e I 1
@+ 0_Uz+ a_uv__%_'_ 5_2U+0_2U (17)
Pror TP ax TPy T~ Tax TH e T ey |
ov ouv oV ap 0>v 9%
AP b I VM. TS R 18
Pi et PRI+ P ay é‘y+ [dx2+dy2]’ (18)

whereu, v and p are velocity components and static pressure of the fluighees
tively; ps the fluid density; angi the dynamic viscosity of the fluid.

3.3 Coupled equations for fluid-structure interaction

The geometrical compatibility conditions at the interfdcbetween the fluid and
structural domains are given by

i) =w' (1), (19)
() =W (), (20)
wherer” andw' are the displacement vectors of the fluid and structure ahtbe

facel, respectively; and"™ andw' the velocity vectors of the fluid and structure at
the interfacd™, respectively.

The equilibrium conditions can be described as follows.
h'i(t) +hg(t) =0, (21)

whereh’ andhf, are the traction vectors acting on the fluid and structunetatface
I, respectively.
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4 Numerical procedures

In this section, the fractional-step projection methodppsed by Chorin (1967) is
described for solving the system of equations (16)-(18hwie use of 1D-IRBFN

and LMLS-1D-IRBFN methods for spatial discretisation. Tdoenbination of the

fractional-step projection method and the subiteratiehn@ue [Jameson (1991);
Melson, Sanetrik, and Atkins (1993)] is presented to salyedient flow problems.

The details of determination of variable values at “frestligared” nodes and a
sequentially staggered algorithm for FSI analysis are gilgen here.

4.1 Fractional-step projection method (Chorin’s method)

* First step: Determine intermediate velociti€sandv* by ignoring the pres-
sure term and incompressibility. Convection and diffusierms are discre-
tised explicitly at time leve(n) using the 1D-IRBFN method.

5 ut —u™ p d(ulm)2 5 AuMyn y [aZU<n) N 92um 22)
f = —pP¢ — Pt —

At OX ay X2 ay? |’

v — vy AuMy J (V(n))z 2V g2y
Pr—pr = Pt P dy a2 T | (23)

 Second step: Solve a Poisson equation for the pressuraaatavel(n+ 1)

2(n+1) 2n(n+1) *
2°p 04p Pt (du dv*)i (24)

FI a2 At dx+d—y

It is noted that the LHS of (24) is discretised using the |dda5-1D-IRBFN
method while the RHS is calculated with the 1D-IRBFN methdde pro-
cess results in a sparse system of equations, which is thamomically
solved by the LU decomposition technique.

Neumann boundary conditions for pressure are given by

dp(nJrl) B ut — u(n)
(n+1) _y(n)
ap Vi —V . (26)

ay =P At
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Then, the velocities(™Y andv(™1 are determined as

At dp(n-s—l)
(n+1) _gp_=2vr
u u o ox 27)
At ap(n+l)
(n+1) __
v =V—— . 28
pt 9y (28)

For irregular domain problems, when determining the déviga of pressure w.r.t.
y on the curved boundary through Equation (26), the values @h the curved
boundary are unknown and can be determined by using a 1DNRS8dapolant
from thev* values at the interior points as follows.

V' (ys) = HgH, 1r, (29)
whereys is they-coordinate of nod® on the curved boundary as shown in Fig. 3;
T

U= ((\fk)(l)7 (\fk)(Z)’___’(\fk)(Wn]—l)>

R - [m]fl .
He=| Ho'(ye) HE'(ve) - Hg” “(ve) ve 1]’
- m_, ]
H[(o?(yl) H[g)(yl) H[(o?ly ) yi 1
1 5 [m]fl
H = Ho) (v2) Ho 02) o Hg' ") 2o
e e e [m]_l"'
| Ho Opp_y) g Oy Hig® gy Yy 1|

in which N)[,m] is the number of grid nodes on thyegrid line [m] excluding the
node on the curved boundary. The valuesuofon the curved boundary can be
determined in a similar fashion.

Dirichlet boundary condition for pressure

Making use of Equation (3) for pressure values at interianscof anx-grid line
[j] and Equation (2) for first-order derivatives of pressurehaténds of that grid
line results in

i’ e
opV W
ap™)
X
or
i a0
W d
ap™)
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where
p = (p(z), p@ . ’p(Ni”—l)>T1
i () (2 Ny )
Hig) (x2) Hig (%) H[O]m (X2) v 1
L 2
ao| e HEee e e e a )
i
'H[(Ol])(x’\‘*m*) H[(Ozl)(XNx“Ll) H[%TX)(XNLH,Q Xgig 1
i
¢ | My HTe0 o HETe) 10
- i :
H[(ll])(x'\'x[”) H[(lz})(XNx[”) H[&TX)(XNX[H) 10

anddp® /dx and dp™) /ax are calculated through Equation (25). From Equa-
tion (3), pressure values at the ends oftbgrid line [j] can be defined by

(1) ~
p - W
( p(NXm) ) :HB< e >7 (32)

where
(i
Ag = H[(o? (x1) H[(OZ]) (x) .. H[(OTX ) x 1
o i .
H[(O]}-) (XN[J]) H[(ﬁ) (XN>[(”) [(OTX )(XN[]]) XN)EJ] 1

By substituting Equation (31) into Equation (32), the boanydpressure values
at both ends of the grid linfj] are expressed in terms of the values of pressure at
interior points and derivatives of pressure at both endsegtid line[j] as follows.

p'Y A TR e
nj)y | =Hs RI " : (33)
p . ap<N>[<J])

The boundary pressure values at both endg@fid lines can be determined in a
similar manner.

4.2 Combination of fractional-step projection method andlsterative tech-
nique

In the fractional-step projection method, the RHS of Equreti(22) and (23) are
explicitly calculated at time leveln). This scheme has severe stability-restricted
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time-step limitations which leads to a high computatior@dtavhen solving mov-
ing boundary problems. Jameson (1991) and Melson, SanatrikAtkins (1993)

presented subiterative techniques within the context ofiigmid methodology to

allow a large physical time step with the use of an explicdeeodRumsey, Sanetrik,
Biedron, Melson, and Parlette (1996) combined the subiteraechnique with

an explicit central-difference code and an implicit upwicebe for solving un-

steady Navier-Stokes equations. The combination of traidraal-step projection
method and the subiterative technique are now presented Tlee temporal terms
of Equations (17) and (18) are discretised using the back&ater scheme while
the convection and diffusion terms are treated implicitlizgich results in

2
o UMy p o(umy) _p UMDY gpntD)
LAY f—ox f ay X (34)
92y(n+1) 02u(n+1)
|2+ 2

VD eyt o(vm)? iy
Pt At = —pPt¢ X Pt dy , (35)
92y(n+1) 92y(n+1)
+IJ |: ax2 ayz ] .

Pseudo-time derivative terms are added into Equationsa(3d)35) as

2
u(n D) _y(m ou__ o o(umy) QUMD yn+D)
P At +pfﬁ = —pPf X — Ps ay (36)
apn+h) g2uM+1) | g2y(n+1)
—Tox T X2 o |
2
vt _y(n) v _ Au(n+1)y(n+1) o(vin+L)
P At +pfﬁ = —pPf OX — Ps ay (37)
dpn+h) 22y 52y(n+1)
T oy + X2 AR

wherert is the pseudo time antdthe physical time. The additional terndsi/d1
anddu/dt are designed in such a way that they vanish when the valuesuod
v approach their correct values at time leyel 1) as follows Kk is a pseudo-time
level).

o1 u(+D) _ym ey uLk+D) _y(nidk) o1 0(u(n+1‘k))2 f LYk
Ot AT - ox - d
ap(n+1.k+l) 92y(n+1k) azu(nykl,k) (38)
T ox + 0x2 dy? ’
pf V(1) _y(n) + pf (nHLk+1) _\(n+1K) _ —pf oun+1.K)\(n+1k) o pf z?(v(n+1,k))2
At AT ox ay (39)

- ap(n+1,k+1) + 02y(n+1k) 02y(n+1k)
ay ax2 0y?
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* First step: Determine intermediate velocitiésandv* by the following equa-
tions. The convection and diffusion terms are explicitlicakated at pseudo-
time level(k) using the 1D-IRBFN method.

2
vouil o (uln+1k) Ut LRtk
Pt AT = — P X f ay (40)
92y(n+1k) 92y(n+1k)
+I'1 axz + ayZ 9
NV USRI AuM+LR(n+1K) a(\,(n+l,k))2
Pt a7 = —Ps X — Ps ay (41)

2,/(n+1k) 2,/n+1k)
| PG+ B

« Second step: Solve a Poisson equation for the pregstirék+1)

2 n(n+1k+1) 2(nHLk+1) «
o°p +dp _ﬁ(du dv*>’ 42)

ox2 ay? “ar\ax ay

The LHS of (42) is discretised using the local MLS-1D-IRBFNtmod while
the RHS is calculated with the 1D-IRBFN method. Neumann damncon-
ditions for pressure are given by

dp(n+1,k+1) u(n+1k) _ () u(mLk) g
—x — P A — ps AT (43)
0 p(n+1,k+1) v(IH+tLK) _y/(n) VLK)
i - . 44
ay Joli A Pi—x7 (44)
Then, velocitiesl(" 1kt andv(nt1k+1) gre determined as follows.
1 ap(n+1,k+1) u(m u*
(n+1,k+1) _ = o
u k‘( o ox Tt Tar) (45)
1 dp(n+1,k+1) V(n) Vv
(M1kt1) _yp (_Loprmmr VPV
v ki < Pt ay + At + AT )’ (46)

wherek = 55
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» Third step: Check convergence criterion tow andp

N; 2
\/. z" (Ui nlk+1) ui(n+1,k))
i=1

CM, = <TOL, (47)

[E ey

Nip
>
R
\/ Nz”’ (Vi(n+1,k+1)) 2
i£1

Nip 2
\/Z < i(n+1,k+1) - pi(n+1,k))
i=1

CM, = <TOL, (49)

JE ey

1k+1
V_(n+ k+1)

i -V

(n+1,k))2

<TOL, (48)

whereTOL is a given tolerance and presently set to be’1@Gnd Nip the
number of interior points of the fluid domain. If not convelgeeturn to
the first step. Otherwise, assigftl) = u(M1ktD) (1) — (nt1k+l) gng
p("tD) = p(t+1k+l) then advance the physical tirhe

4.3 Determine variable values at “freshly cleared" nodes

“Freshly cleared" nodes are the nodes that are not insid8uidedomain at time
level (n), but emerge into the fluid domain at the next time lével 1). We need to
have a “guess" value at these nodes, i.e. at pseudo-timeklev® associated with
the real time leve(n+ 1). For this purpose, the technique presented by Udayku-
mar, Mittal, Rampunggoon, and Khanna (2001) to determiheegaat the “freshly
cleared" nodes is employed here. As shown in Fig. 4, the sadtiehe “freshly
cleared" nodes (e.g., a typical noéeare interpolated from the information at two
interior nodes (node€ andD), and one node on the boundary (nd8ethrough

the following interpolant.

u'(y) = a0 + agy + azy?, (50)

whereap,a; anday are coefficients to be determined through the variable galue
and coordinates of nod&C andD.
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4.4 Sequential staggered fluid-structure interaction akigbm

The sequentially staggered algorithm [Piperno (1997)stedr Wall, and Ramm
(2007)] is used in the present study and described as fallows

» Step 1: At the initial timgt = 0s), set the displacemenivf and velocity ()
of the bottom wall to be zero.

» Step 2: Calculate a predictor of the structural interfaispldcement at the
new time level Wg‘”)) using one of the following two approaches [Piperno

(1997); Forster, Wall, and Ramm (2007)].

— Approach 1: Zeroth order accurate predictor

wp Y = wi. (51)

— Approach 2: First order accurate predictor

(n+1)

wp T = w4 At (52)

Then determine the grid-node system for fluid analysis baeeruf)””).

« Step 3: Solve the fluid problem to obtain pressure distidup’) on the
bottom wall with the use ofv as a Dirichlet boundary condition for the ver-
tical velocity ) of fluid field.

» Step 4: Solve the structural problem for a new displacerf@nand velocity
(W) of the bottom wall with consideration of the fluid lo@dl (the effect of
viscous stress on the displacement of the bottom wall is nsutdller than
that of the pressure stress and hence neglected here). present study, the
displacements are restricted to be small, thus there isstinclion between
the material coordinates and spatial coordinates.

« Step 5: Advance physical time from lev@l) to (n+ 1) and return to Step 2.

Steps 2-5 are repeated until a stable FSI solution is fouhd.flowchart of the FSI
analysis procedure is described in detail as shown in Fig. 5.

5 Numerical results and discussion

Several examples are considered here to study the perfoentdrihe present nu-
merical procedure. The examples are chosen to illustrateugasteps of analysis
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for fluid flow, structural response and ultimately the resmoim a fluid-structure in-
teraction problem. The domains of interest are discretis#ay uniform Cartesian
grids. By using the LMLS-1D-IRBFN method to discretise thd3 of governing
equations and the LU decomposition technique to solve thdtest sparse system
of simultaneous equations, the computational cost is emtluc

5.1 Example 1: Mixed convection in a lid-driven cavity

The fluid solver is first verified through a solution of mixedngection in a lid-

driven cavity with a hot moving lid and a cold stationary battwall. The prob-

lem geometry and boundary conditions are described in FiyViéh the Boussi-

nesq approximation, the dimensionless form of 2-D incosgitde Navier-Stokes
equations in terms of primitive variables and the energyagqo governing the
mixed convection in the cavity are written as follows [lwatslyun, and Kuwahara
(1993)].

ou oV

X v T %
U du?2 guv oP 1 [U o«
W+a—x+W:_a_x+R_e[W+W]’ (54)
oV dUV 9Vv? 0P 1 [93V 9% Gr
W+W+W:_0_Y+R_e[ﬁ+ﬁ}+@e’ 3)
6 o0Uub6 ovo 1 0260 026

av " ax ey :PrRe[dX2+dY2]' (°6)

The variables in the equations above are nondimensiodadise

t X y
H/Uy & H' ' H
T-T,
SV=o =t = O
Uo Uo prUg ThH—Tc

whereH is the side length of the square cavity ddglvelocity of the lid; T the
temperature; andiy andTc the hot and cold temperatures, respectively.

In these equations, the nondimensionalised parameterth@f@eynolds number
Re=UpH /v, the Prandtl numbdPr = v/a (Pr is set to be (0’1 presently) and the
Grashof numbeGr = Ra/Pr, whereRa = gB(Ty — Tc)H3/(va), v is the kine-
matic viscosity,a the thermal diffusivity of the fluid3 the thermal expansion
coefficient of the fluid and the gravitational acceleration. The Richardson num-
ber is defined byRi = Gr/Re? that measures the relative strength of the natural
convection and forced convection. B < 1 then the forced convection effect is
dominant while ifRi > 1 then the natural convection effect is dominant.

t/

U=
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The fractional-step projection method is applied to sohis problem with a time
stepAt’ = 1073, Tabs. 1-3 describe the grid convergence study of the agélag-
selt number at the lid for several Grashof numbérs= 10?,10* and 16, and
Reynolds numberRe = 100,400 and 1000. The LHS of pressure Poisson equa-
tion (24) is discretised by using 1D-IRBFN method (Approdgtand LMLS-1D-
IRBFN method (Approach 2). The system matrix of Approach gnisch more
sparse than that of Approach 1. The obtained numericaltseshbwed that both
approaches yield the same level of accuracy. Approach 2 fos all other com-
putations in the present study in order to save the computtcost. It can be seen
that the converged numerical results are in good agreemiémtive published re-
sults of other authors. The isothermal lines and streamliri¢he flow field inside
the cavity at severdbr andRe numbers are depicted in Figs. 7-9.

For the cas&r = 107 (Fig. 7), the forced convection effect is dominaRt & 1),

thus the streamlines of the flow are similar to those of thesital lid-driven cavity
case (readers are referred to the work of Ghia, Ghia, and @BBR) for Re =
100,400 and 1000. ARe = 1000, the temperature gradient is steep at the region
close to the bottom wall and the lid, while the temperatuadgnt is small at the
center region of the cavity. This indicates that the fluid &lwnixed for the bulk

of the cavity due to the flow circulation.

For the casesr = 10* (Fig. 8), the natural convection effect is comparable to the
forced convection effect &e = 100 Ri = 1), while the forced convection effect is
still dominant atRe = 400 and 1000Ki < 1). Therefore, the flow pattern is quite
different atRe = 100, while remains similar &e = 400 and 1000, when compared
to those of the above casér(= 10?).

For the casésr = 10° (Fig. 9), the natural convection effect is stronger than the
forced convection effect. The flow patterns are very difierfeom those of the
classical lid-driven cavity case for several Reynolds nersRe = 100,400 and
1000. It is observed that the heat conduction is almost tmifior the casdre =

100 and mainly occurs at the bottom and middle regions of ahéycfor the cases
Re = 400 and 1000.

5.2 Example 2: Flow in a lid-driven open-cavity with a presbed bottom wall
motion

The problem geometry and boundary conditions are desciibétdg. 10. The
fluid properties and problem geometry used here are: fluiehkatic viscosityw =
0.01m?/s, fluid densityp; = 1.0kg/m?, the side length of the square cavily= 1m
and the height of inlet and outlet= 0.1m. The bottom wall motion is given as:
W = Wocos(wst — 11/2), wherewy = 27/5 rad/s andwy = —0.5(x> — x). The lid
is sliding from the left to the right in two different mannexs follows.
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* Case 1Up=1m/s.
» Case 2Up = 1— cos(wst) m/s.

The combination of the fractional-step projection method aubiterative tech-
nique is applied to compute the transient solutions of the flothe cavity. The
grid convergence study is first conducted for the case oiostaty bottom wall
(w=0) and maximum velocity-loading of the litd§ = 2m/sor Re= 200). Fig. 11
depicts grid-convergence behaviour of vertical and hattialovelocities along the
horizontal and vertical center lines, and static pressistiltltion along the sta-
tionary bottom wall for the casBRe = 200. Grid convergence is observed and the
numerical results obtained are indistinguishable forgddnser than or equal to
61x 61. The contours of stream function, velocity magnitude static pressure
of the flow in the cavity for the cadee = 200 are shown in Fig. 12.

Cartesian grids with a grid spacing of@0 are employed for the case of prescribed
bottom wall motion. As shown in Fig. 13, the fluid domains agpresented by
RegionsA andB for a convex bottom wall, by Regiors B, andB; for a concave
bottom wall. The LHS of pressure Poisson equation (42) isréised through the
following strategy. The LMLS-1D-IRBFN method is employenl discretise the
term d?p/dx? in RegionA, while the 1D-IRBFN is used to discretise that term in
Region B (or Region8; andBy). The discretisation of the tera?p/dy? is carried
out using the LMLS-1D-IRBFN method.

Fig. 14 presents the response of static pressure at theaimtgd the bottom wall
(pwm) with respect to time for Case 1. The physical time st&) &nd pseudo time
step (\1) are taken to be.@s and 10°3s, respectively. It is noted that this response
varies periodically with the same frequency as that of thitobo wall motion &

ws /2m). Fig. 15 shows the contours of stream function, velocitygnitude and
static pressure of the flow inside the cavity for several §itre 51.5,52.0,52.5 and
53.0s (within one time period) for Case 1. The corresponding nicaéresults for
Case 2 are shown in Figs. 16 and 17.

5.3 Example 3: Forced vibration of a simply supported beam

This example deals with the dynamic behaviour of a simplysued beam subject
to a harmonic external forde(t) = fpsinwt applied atx = a, as shown in Fig. 18
(wherefo=0.1N, w=2m/5rad/s, a = Imanda= 0.5m). The problem geometry
and material parameters of the beam used here are: thesmo®EshA aread =
0.00277, the moment of inertid = 6.67 x 10~ 1%n7*, Young’s modulusE = 2.5 x
10°Pa and material densitps = 500kg/m?. The boundary and initial conditions
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for the simply supported beam can be described as
0%w
w:O,W:Q atx=0, x=a_ (57)
ow
=0,— = att=0 58
il (58)

wherevy is the initial velocity of the beam. An analytical solutiamthis problem
can be found in [Rao (2004)].

The fully discrete scheme with Newmark’s method for tempdiscretisation is
employed here. The spatial term is discretised by using BIRBFN-4 scheme
based on a uniform grid. Tab. 4 describes the grid convesgsturly of deflection

u and velocityv of the beam at timé= 14s. For a given time step, the accuracy is
not improved further when refining the grid to a certain gimesHowever, the ac-
curacy is greatly improved by reducing the time step. Thiliciates that the major
numerical error is not due to the 1D-IRBFN approximatiort, due to the temporal
discretisation. The steady-state responses of the folibedtion system obtained
by the 1D-IRBFN method are in good agreement with the artallygolution as
shown in Fig. 19, using a uniform grid of 61 and time sfép= 0.1s.

5.4 Example 4: Fluid-structure interaction in a lid-driveropen-cavity flow with
a flexible bottom wall

This example is concerned with a FSI problem of flow in a lidkein open-cavity
with a flexible bottom wall. The problem configuration is dianito that in Exam-
ple 2 except that the bottom wall motion is now caused by ttexaiction with the
fluid. The lid is sliding from the left to the right at a veloglt)p = 1 — cos(wst) m/s.
The bottom wall is modelled as a flexible beam with two différeases of bound-
ary conditions as follows.

» Case 1: Simply supported at both ends.

e Case 2: Clamped at both ends.

The forced vibration of the bottom wall is governed by Equia{{13), wheref (x,t)

is the fluid static pressure acting on the flexible bottom witle geometry and ma-
terial properties of the bottom wall are taken to be the sasritb@se in Example 3.
In Case 1, the predictor of the structural interface diggtaent at the new time level
(wl(o””)) is computed through Approach 1 (Equation (51)) and Apgnda¢Equa-
tion (52)). Fig. 20 presents the comparison of deflectiorhefrid-point of the
bottom wall {wy) with respect to time between the two approaches. It applats

both approaches yield almost the same results.
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In Case 2, the first order accurate predictor of the bottonhdigplacement is used.
Fig. 21 shows the deflection of the mid-point of the clampettdno wall with
respect to time in comparison with that in Case 1. The defleatif the bottom
wall is downward for both cases. When the amplitude of théobotvall vibration

is stable, the deflection of its mid-point is equaH0.1342+ 0.0129n for Case 1
and —0.0275+ 0.0162n for Case 2. As expected, the deflection of the clamped
bottom wall is much smaller than that of the simply suppotiettom wall of the
same geometry and material properties. It is noted thatafieadion of the bottom
wall varies periodically with the same frequency as thathef lid motion. The
contours of stream function, velocity magnitude and stptiessure of the flow
inside the cavity at timé = 92.5s for Cases 1 and 2 are described in Figs. 22
and 23, respectively.

6 Conclusions

A numerical procedure for FSI analysis based on the 1D-IRBRN LMLS-1D-
IRBF methods is devised and demonstrated with the analysiedlow inside a
lid-driven open-cavity with a flexible bottom wall. A comlaition of the fractional-
step projection method and subiterative technique is pteddor solving unsteady
incompressible 2-D Navier-Stokes equations in terms ohipikie variables, while
the Newmark’s method is employed for a solution of forcedration of a beam
based on the Euler-Bernoulli theory. The fluid solver isfiedi through a solution
of mixed convection in a lid-driven cavity with a hot movinigl land a cold sta-
tionary bottom wall. The numerical results obtained areadndyagreement with
the published results of other authors. The Cartesian grielsised to discretise
both rectangular and irregular fluid domains. The struttamalysis solver is suc-
cessfully verified by comparing the present numerical teswith the analytical
solution of forced vibration of a simply supported beam.afin the proposed nu-
merical procedure is demonstrated with a solution of a fiiideture interaction
system with two different cases of bottom wall boundary ¢omas. The numeri-
cal results show that the bottom wall vibrations reach adstestate after a certain
time and the deflection of the clamped bottom wall is much En#ian that of the
simply supported bottom wall of the same geometry and nateroperties.
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Table 1: Mixed convection in a lid-driven cavity: grid comgence study and com-
parison of the average Nusselt numbgu) at the top wall for the Grashof number
Gr = 10?, and several Reynolds numbd®e = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basdde 1D-IRBFN

and local MLS-1D-IRBFN methods (Approach 2).

Grid Re=100 Re=400 Re=1000
Approach 1
41x41 1.98 4.13 6.77
61x 61 1.99 4.08 6.87
81x 81 2.00 4.05 6.80
101x 101 2.00 4.04 6.73
Approach 2
41x 41 1.98 4.14 6.89
61x 61 1.99 4.07 6.89
81x 81 2.00 4.04 6.80
101x 101 2.00 4.03 6.72
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.94 3.84 6.33
Sharif (2007) (FVM) - 4.05 6.55
Cheng (2011) (FDM) - 4.14 6.73
Al-Amiri and Khanafer (2011) (FEM) 2.02 4.05 6.45
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Table 2: Mixed convection in a lid-driven cavity: grid comgence study and com-
parison of the average Nusselt numbgu) at the top wall for the Grashof number
Gr = 10%, and several Reynolds numbd®e = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basdde 1D-IRBFN
and local MLS-1D-IRBFN methods (Approach 2).

Grid Re=100 Re=400 Re=1000
Approach 1
41x41 1.36 3.87 6.72
61x 61 1.37 3.83 6.82
81x 81 1.37 3.80 6.75
101x 101 1.38 3.79 6.67
Approach 2
41x 41 1.36 3.87 6.83
61x 61 1.36 3.82 6.83
81x 81 1.37 3.80 6.74
101x 101 1.37 3.78 6.67
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.34 3.62 6.29
Sharif (2007) (FVM) - 3.82 6.50
Cheng (2011) (FDM) - 3.90 6.68
Al-Amiri and Khanafer (2011) (FEM) 1.38 3.76 6.56

Table 3: Mixed convection in a lid-driven cavity: grid comgence study and com-
parison of the average Nusselt numhgu) at the top wall for the Grashof number
Gr = 1%, and several Reynolds numbd®e = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basdde 1D-IRBFN
and local MLS-1D-IRBFN methods (Approach 2).

Grid Re=100 Re=400 Re=1000
Approach 1
41x 41 1.01 1.24 -
61x61 1.01 1.21 1.88
81x81 1.01 1.19 1.85
101x 101 1.01 1.18 1.82
Approach 2
41x 41 1.01 1.25 -
61x61 1.01 1.22 1.89
81x81 1.01 1.19 1.86
101x 101 1.01 1.18 1.82
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.02 1.22 1.77
Sharif (2007) (FVM) - 1.17 1.81
Cheng (2011) (FDM) - 1.21 1.75
Al-Amiri and Khanafer (2011) (FEM) 1.02 1.17 1.72




Manuscript submitted to CMES

27

Table 4: Forced vibration of a simply supported beam: Redagirror norms of
deflectionNe(u) and velocityNe(v) at timet = 14s, using several time steps.

Ne(u) Ne(v)

Grid At=1071s At=5x107%s At=10"%s AM=10Ts At=5x107%s At=10"7s

21 1.56E-03 1.53E-03 2.16E-03 6.65E-03 4.69E-03 3.70E-03
31 3.34E-03 1.09E-03 7.05E-04 3.53E-03 2.45E-03 2.76E-03
41 3.29E-03 1.05E-03 6.93E-04 3.63E-03 2.38E-03 2.40E-03
51 3.30E-03 1.06E-03 6.92E-04 3.61E-03 2.34E-03 2.28E-03
61 3.30E-03 1.06E-03 6.91E-04 3.61E-03 2.33E-03 2.21E-03
71 3.30E-03 1.06E-03 6.91E-04 3.61E-03 2.32E-03 2.17E-03
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Figure 6: Mixed convection in a lid-driven cavity: geomeémyd boundary condi-
tions.
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Figure 7: Mixed convection in a lid-driven cavity: isothehlines (left) and
streamlines (right) of the flow &r = 10?, and several Reynolds numbé®s =

100400 and 1000, using grids of 6461, 81x 81 and 101x 101, respectively.
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Figure 8: Mixed convection in a lid-driven cavity: isothehlines (left) and
streamlines (right) of the flow &r = 10%, and several Reynolds numbé®s =
100400 and 1000, using grids of 6461, 81x 81 and 101x 101, respectively.
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Figure 9: Mixed convection in a lid-driven cavity: isothehlines (left) and
streamlines (right) of the flow &r = 10°, and several Reynolds numbé®s =
100400 and 1000, using grids of 6461, 81x 81 and 101x 101, respectively.
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Figure 10: Flow in a lid-driven open-cavity with a prescddgottom wall motion:
geometry and boundary conditions.
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Figure 11: Flow in a lid-driven open-cavity with a statiopdrottom wall: Grid
convergence study of vertical and horizontal velocity pesfalong the horizontal
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Figure 12: Flow in a lid-driven open-cavity with a statiop&ottom wall: contours

of stream function (left), velocity magnitude (middle) astdtic pressure (right) of
the flow in the cavity folRe = 200, using a grid of 6% 61. Each plot contains 50
contour levels varying linearly from the minimum value te tmaximum value.
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Figure 13: Strategy for spatial discretisation using 1BHR and LMLS-1D-
IRBFN methods.
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Figure 14: Flow in a lid-driven open-cavity with a prescdbleottom wall motion

(Case 1): static pressure at the mid-point of the bottom wisiii respect to time,
using a Cartesian grid with a grid spacing ¢g60.
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Figure 15: Flow in a lid-driven open-cavity with a prescdbleottom wall motion
(Cace 1) contoiire of etream fiinetion (lefty velocitvy mbaade (middle) and <tatie
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Figure 16: Flow in a lid-driven open-cavity with a prescdbleottom wall motion

(Case 2): static pressure at the mid-point of the bottom wislii respect to time,
using a Cartesian grid with a grid spacing ¢g60.
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Figure 17: Flow in a lid-driven open-cavity with a prescdoeottom wall motion
(Case 2): contours of stream function (left), velocity miagge (middle) and static
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Figure 18: Forced vibration of a simply supported beam.
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Figure 19: Forced vibration of a simply supported beam:dstestate response of
the mid-point of a simply supported beam, using a uniforrd gfi61 andAt = 0.1s.
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Figure 20: Flow in a lid-driven open-cavity with a simply gquted flexible bottom
wall: deflection of the mid-point of the bottom wall with resg to timet between
two different approaches of predictors, using a Cartesiahwith a grid spacing
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Figure 21: Flow in a lid-driven open-cavity with a flexibletbmm wall: deflection
of the mid-point of the clamped bottom wall with respect tadit in comparison
with the case of simply supported bottom wall, using a Categrid with a grid
spacing of ¥60.

120



Manuscript submitted to CMES

47

osfp
0.6
0.4

0.2

-0.2 . .
0 0.5 1 0 0.5 1 0 0.5 1

Figure 22: Flow in a lid-driven open-cavity with a simply ggoted flexible bottom
wall (Case 1): contours of stream function (left), veloaitagnitude (middle) and
static pressure (right) of the flow at tinte= 92.5s, using a Cartesian grid with a
grid spacing of 160. Each plot contains 50 contour levels varying linearbyndr
the minimum value to the maximum value.
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Figure 23: Flow in a lid-driven open-cavity with a clampedxitdée bottom wall
(Case 2): contours of stream function (left), velocity miagge (middle) and static
pressure (right) of the flow at time= 92.5s, using a Cartesian grid with a grid
spacing of ¥60. Each plot contains 50 contour levels varying linearbnfrthe
minimum value to the maximum value.



