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A numerical procedure based on 1D-IRBFN and local
MLS-1D-IRBFN methods for fluid-structure interaction

analysis

D. Ngo-Cong1,2, N. Mai-Duy1, W. Karunasena2 and T. Tran-Cong1,3

Abstract: The partition of unity method is employed to incorporate themov-
ing least square (MLS) and one dimensional-integrated radial basis function (1D-
IRBFN) techniques in a new approach, namely local MLS-1D-IRBFN or LMLS-
1D-IRBFN. This approach leads to sparse system matrices andoffers a high level
of accuracy as in the case of 1D-IRBFN method. A new numericalprocedure based
on the 1D-IRBFN method and LMLS-1D-IRBFN approach is presented for a so-
lution of fluid-structure interaction (FSI) problems. A combination of Chorin’s
method and pseudo-time subiterative technique is presented for a transient solution
of 2-D incompressible viscous Navier-Stokes equations in terms of primitive vari-
ables. Fluid domains are discretised by using Cartesian grids. The fluid solver is
first verified through a solution of mixed convection in a lid-driven cavity with a
hot lid and a cold bottom wall. The structural solver is verified with an analytical
solution of forced vibration of a beam. The Newmark’s methodis employed for the
forced vibration analysis of the beam based on the Euler-Bernoulli theory. The FSI
numerical procedure is then applied to simulate flows in a lid-driven open-cavity
with a flexible bottom wall.

Keywords: Fluid-structure interaction; moving boundary; transientanalysis; pseudo-
time subiterative technique; integrated radial basis function; Cartesian grid.

1 Introduction

Fluid-structure interaction (FSI) plays a central role in several engineering prob-
lems such as aircraft wing flutter [Dubcova, Feistauer, Horacek, and Svacek (2008)],
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bridge flutter [Ge and Xiang (2008)], blood flows [Fernández,Gerbeau, and Grand-
mont (2007)], design of helicopter rotors [Xiong and Yu (2007)]. Therefore, FSI is
a very attractive topic and FSI analysis is the key for solving those kinds of prob-
lems. FSI is also a challenge for numerical modelling. To solve FSI problems, one
needs to consider the governing equations for fluid and structure, and geometrical
compatibility and equilibrium conditions at the interfaces between fluid and struc-
tural domains. Some FSI behaviours can converge to a steady-state solution, others
can be oscillatory or even unstable.

There are two main approaches for solving FSI problems, namely monolithic meth-
ods [Rugonyi and Bathe (2001); Heil (2004); Liew, Wang, Zhang, and He (2007)]
and partitioned methods [Farhat and Lesoinne (1998); Piperno (1997)]. Partitioned
procedures are usually appropriate for weak interaction between the fluid and the
structure while the monolithic procedure is chosen to be effective for solving FSI
problems with a strong interaction. In the monolithic approach, the fluid and struc-
tural equations are solved simultaneously. This approach may lead to two draw-
backs (i) an increase in the number of degrees of freedom (DOFs) and (ii) an
ill-conditioned system matrix. Liew, Wang, Zhang, and He (2007) developed a
monolithic approach based on the fluid pressure Poisson equation to solve the hy-
droelasticity problem of an incompressible viscous fluid with a elastic body that is
vibrating due to flow excitation. The flow was modelled with low-order velocity-
pressure finite elements while the structure was represented by means of a Galerkin
finite element formulation.

In the partitioned approach, the fluid and structural fields are solved separately and
the solution variables are transferred at the interfaces ofthe fluid and structural do-
mains. The major advantage of this approach is the flexibility to choose different
solvers for each field. However, the approach introduces a time delay which results
in non-physical energy dissipation [Farhat and Lesoinne (1998)]. Piperno (1997)
introduced coupling staggered procedures with a structural predictor for a tran-
sient solution of a supersonic panel flutter using dynamic mesh and finite volume
methods (FVM) based on the arbitrary-Lagrangian-Eulerian(ALE) formulation.
Their procedures do not satisfy continuity of the structural and fluid grid displace-
ments/velocities at the moving interface, but allow an exact numerical exchange of
momentum through the interface.

Recently, a problem of FSI in a lid-driven cavity with a flexible bottom has been
studied by several researchers to verify their numerical procedures for the FSI anal-
ysis [Förster, Wall, and Ramm (2007); Küttler and Wall (2008); Bathe and Zhang
(2009); Al-Amiri and Khanafer (2011)]. Förster, Wall, and Ramm (2007) studied
this FSI problem and investigated the influence of mass density ratio, structural
stiffness, structural predictor and time step size on the instabilities of sequentially
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staggered FSI simulations where incompressible flows are considered. Bathe and
Zhang (2009) presented a numerical procedure to adapt and repair the fluid mesh
for solving this FSI problem using the ALE formulation. The fully adaptive solu-
tion of transient flow are too expensive and may lead to large computational errors
during the time integration. Therefore, they first solved a steady flow in a lid-driven
cavity at the maximum velocity of the lid to obtain an adaptive mesh. This mesh is
then employed for the transient solution of the FSI system. Al-Amiri and Khanafer
(2011) investigated a steady laminar mixed convection heattransfer in a lid-driven
cavity with a flexible bottom wall using a finite element formulation based on the
Gelerkin method of weighted residuals.

As an alternative to the ALE formulation, Eulerian formulations (e.g. Cartesian-
based methods) can be used to describe the fluid motion in FSI and moving bound-
ary problems. Udaykumar, Mittal, Rampunggoon, and Khanna (2001) presented
a Cartesian grid method for computing fluid flows with compleximmersed and
moving boundaries. The flow is computed on a fixed Cartesian mesh and the solid
boundaries are allowed to move freely through the mesh. The method significantly
reduces the grid generation cost and has a great potential over the conventional
body-fitted methods when solving problems with moving boundaries and compli-
cated geometry. Šarler and Vertnik (2006) proposed an explicit local radial basis
function collocation method for diffusion problems. The method appeared efficient,
because it does not deal with a large system of equations likethe original colloca-
tion multiquadric radial basis function method proposed byKansa (1990). Divo
and Kassab (2007) developed a localized radial basis function meshless method
(LCMM) for a solution of coupled viscous fluid flow and conjugate heat transfer
problem. The LCMM was applied to simulate steady and unsteady blood flows in
arterial bypass graft geometries [Zahab, Divo, and Kassab (2009)]. Mai-Duy and
Tanner (2007) presented a one-dimensional integrated radial basis function net-
work (1D-IRBFN) collocation method for the solution of second- and fourth-order
PDEs. Along grid lines, 1D-IRBF networks are constructed tosatisfy the gov-
erning differential equations with boundary conditions inan exact manner. In the
1D-IRBFN method, the Cartesian grids are used to discretiseboth rectangular and
non-rectangular problem domains. The 1D-IRBFN method is much more efficient
than the original IRBFN method reported in [Mai-Duy and Tran-Cong (2001)].
Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2011) extended this method to
investigate free vibration of composite laminated plates based on first-order shear
deformation theory. Ngo-Cong, Mai-Duy, Karunasena, and Tran-Cong (2012) pro-
posed a local moving least square - one dimensional integrated radial basis function
network method (LMLS-1D-IRBFN) for simulating 2-D incompressible viscous
flows in terms of stream function and vorticity. The method isbased on the par-
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tition of unity framework to incorporate the moving least square and 1D-IRBFN
techniques in an approach that produces a very sparse systemmatrix and offers as
a high level of accuracy as that of the 1D-IRBFN.

The present work is concerned with the development of a new numerical proce-
dure based on the 1D-IRBFN and local MLS-1D-IRBFN methods for solving FSI
and moving boundary problems such as flows in a lid-driven open-cavity with a
flexible bottom wall. The fluid flow is governed by 2-D incompressible viscous
Navier-Stokes equations in terms of primitive variables and the motion of the bot-
tom wall is described by using the Euler-Bernoulli theory. The present fluid solver
is first verified through a benchmark solution of mixed convection in a lid-driven
cavity with a hot moving lid and a cold stationary bottom wall. Torrance, Davis,
Eike, Gill, Gutman, Hsui, Lyons, and Zien (1972) first numerically studied this
kind of problem and found that the interaction of the shear driven flow due to the
lid motion and natural convection due to the buoyancy effectmakes the flow be-
haviour complicated and different from those driven by the two effects separately.
Iwatsu, Hyun, and Kuwahara (1993) studied mixed convectionin a lid-driven cavity
with a hot moving top wall and a cold stationary bottom wall using finite different
method (FDM). Sharif (2007) investigated the mixed convection heat transfer in in-
clined cavities using the FVM with a second-order upwind differencing scheme to
discretise convection terms and central differencing scheme to discretise diffusion
terms. Recently, Cheng (2011) employed a fourth-order accurate compact form
and pseudo time iteration methods for simulations of mixed convection in a 2-D
lid-driven cavity using the stream function, vorticity andtemperature formulation.

The present paper is organised as follows. Section 2 briefly reproduces the 1D-
IRBFN and local MLS-1D-IRBFN techniques. The governing equations for struc-
ture, 2-D incompressible viscous flows and FSI are presentedin Section 3. Sec-
tion 4 describes the discretisation of the governing equations, the details of deter-
mination of variable values at “freshly cleared" nodes (defined later in section 4.3)
and a sequentially staggered algorithm for FSI analysis. Several numerical exam-
ples are investigated using the present numerical procedure in Section 5. Section 6
concludes the paper.

2 1D-IRBFN and local MLS-1D-IRBFN methods

The domain of interest is discretised using a Cartesian grid, i.e. an array of straight
lines that run parallel to thex- and y-axes. The dependent variableu and its
derivatives on each grid line are approximated using 1D-IRBFN and local MLS-
1D-IRBFN methods as described in the remainder of this section.
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2.1 1D-IRBFN methods

The 1D-IRBFN methods [Mai-Duy and Tanner (2007)] including1D-IRBFN-2 and
1D-IRBFN-4 schemes are briefly described here.

2.1.1 Second-order 1D-IRBFN (1D-IRBFN-2 scheme)

Consider anx-grid line, e.g.[ j], as shown in Fig. 1. The variation ofu along this line
is sought in the IRBF form. The second-order derivative ofu is decomposed into
RBFs; the RBF network is then integrated once and twice to obtain the expressions
for the first-order derivative ofu and the solutionu itself,

∂ 2u(x)
∂x2 =

N[ j]
x

∑
i=1

w(i)G(i)(x) =
N[ j]

x

∑
i=1

w(i)H(i)
[2] (x), (1)

∂u(x)
∂x

=
N[ j]

x

∑
i=1

w(i)H(i)
[1] (x)+ c1, (2)

u(x) =
N[ j]

x

∑
i=1

w(i)H(i)
[0] (x)+ c1x+ c2, (3)

whereN [ j]
x is the number of nodes on the grid line[ j]; {w(i)}N[ j]

x
i=1 RBF weights to

be determined;
{

G(i)(x)
}N[ j]

x

i=1 =
{

H(i)
[2] (x)

}N[ j]
x

i=1
known RBFs;H(i)

[1] (x) =
∫

H(i)
[2] (x)dx;

H(i)
[0] (x) =

∫

H(i)
[1] (x)dx; andc1 andc2 integration constants which are also unknown.

An example of RBF, used in this work, is the multiquadricsG(i)(x)=
√

(x− x(i))2+a(i)2,
a(i) is the RBF width determined asa(k) = βd(k), β a positive factor, andd(k) the
distance from thekth center to its nearest neighbour.

2.1.2 Fourth-order 1D-IRBFN (1D-IRBFN-4 scheme)

In the 1D-IRBFN-4 scheme, the fourth-order derivative is decomposed into RBFs.
The RBF networks are then integrated to obtain the lower-order derivatives and the
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function itself,

∂ 4u(x)
∂x4 =

N[ j]
x

∑
i=1

w(i)G(i)(x) =
N[ j]

x

∑
i=1

w(i)H(i)
[4] (x), (4)

∂ 3u(x)
∂x3 =

N[ j]
x

∑
i=1

w(i)H(i)
[3] (x)+ c1, (5)

∂ 2u(x)
∂x2 =

N[ j]
x

∑
i=1

w(i)H(i)
[2] (x)+ c1x+ c2, (6)

∂u(x)
∂x

=
N[ j]

x

∑
i=1

w(i)H(i)
[1] (x)+

c1

2
x2+ c2x+ c3, (7)

u(x) =
N[ j]

x

∑
i=1

w(i)H(i)
[0] (x)+

c1

6
x3+

c2

2
x2+ c3x+ c4, (8)

where
{

G(i)(x)
}N[ j]

x

i=1 =
{

H(i)
[4] (x)

}N[ j]
x

i=1
are known RBFs;H(i)

[3] (x)=
∫

H(i)
[4] (x)dx; H(i)

[2] (x)=
∫

H(i)
[3] (x)dx; H(i)

[1] (x) =
∫

H(i)
[2] (x)dx; H(i)

[0] (x) =
∫

H(i)
[1] (x)dx; andc1, c2, c3 andc4 in-

tegration constants which are also unknown.

2.2 Local moving least square - one dimensional integrated radial basis func-
tion network technique

A schematic outline of the LMLS-1D-IRBFN method is depictedin Fig. 2. The
proposed method with 3-node support domains (n = 3) and 5-node local 1D-IRBF
networks (ns = 5) is presented here. On anx-grid line [l], a global interpolant for
the field variable at a grid pointxi is sought in the form

u(xi) =
n

∑
j=1

φ̄ j(xi)u
[ j](xi), (9)

where
{

φ̄ j
}n

j=1 is a set of the partition of unity functions constructed using MLS

approximants [Liu (2003)];u[ j](xi) the nodal function value obtained from a local
interpolant represented by a 1D-IRBF network[ j]; n the number of nodes in the
support domain ofxi. In (9), MLS approximants are presently based on linear
polynomials, which are defined in terms of 1 andx. It is noted that the MLS shape
functions possess a so-called partition of unity properties as follows.

n

∑
j=1

φ̄ j(x) = 1. (10)
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Relevant derivatives ofu at xi can be obtained by differentiating (9)

∂u(xi)

∂x
=

n

∑
j=1

(

∂ φ̄ j(xi)

∂x
u[ j](xi)+ φ̄ j(xi)

∂u[ j](xi)

∂x

)

, (11)

∂ 2u(xi)

∂x2 =
n

∑
j=1

(

∂ 2φ̄ j(xi)

∂x2 u[ j](xi)+2
∂ φ̄ j(xi)

∂x
∂u[ j](xi)

∂x
+ φ̄ j(xi)

∂ 2u[ j](xi)

∂x2

)

, (12)

where the valuesu[ j](xi),∂u[ j](xi)/∂x and∂ 2u[ j](xi)/∂x2 are calculated from 1D-
IRBFN networks withns nodes.

Full details of the LMLS-1D-IRBFN method can be found in [Ngo-Cong, Mai-Duy,
Karunasena, and Tran-Cong (2012)].

3 Governing equations for fluid, structure and fluid-structure interaction

In this study, the FSI problem of flow in a lid-driven open-cavity with a flexible bot-
tom wall [Förster, Wall, and Ramm (2007); Bathe and Zhang (2009)] is considered.
The bottom wall is modelled as a flexible beam using the Euler-Bernoulli beam the-
ory. The fluid is described by the 2-D Navier-Stokes equations of incompressible
viscous flow in terms of primitive variables.

3.1 Governing equations for forced vibration of a beam

The equation of motion for forced lateral vibration of a beamis based on the Euler-
Bernoulli beam theory. This is a small-deflection theory andtherefore some error
will be incurred due to the neglect of the geometric non-linear term when the de-
flection is actually not small [Spoon and Grant (2011)]. Our purpose here is to
demonstrate our FSI analysis procedure and we will ignore the non-linear term
here for the following reason. As shown later in the numerical results section, the
actual maximum central deflection of the beam is about 14.71%of the beam length
in the worst case of simply-supported boundary conditions and therefore the error
is less than 10% [Spoon and Grant (2011)]. In the case of clamped boundary con-
ditions, the error is less than 1.3% since the maximum deflection is about 4.37% of
the beam length. The equation of motion is given by [Rao (2004)]

EI
∂ 4w
∂x4 +ρsA

∂ 2w
∂ t2 = f (x, t). (13)

wherew is the lateral deflection of the beam;t the time;E Young’s modulus;I the
moment of inertia;A the cross-section area;ρs material density of the beam; and
f (x, t) the external force per unit length of the beam. The boundary conditions for
a simply supported or clamped end of a beam are described as follows.
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• Simply supported case:

w = 0,
∂ 2w
∂x2 = 0. (14)

• Clamped case:

w = 0,
∂w
∂x

= 0. (15)

3.2 Governing equations for 2-D incompressible viscous flows

The dimensional conservative form of the 2-D Navier-Stokesequations of incom-
pressible viscous flow in terms of primitive variables is written in xy-Cartesian
system as [Bathe and Zhang (2009)]

∂u
∂x

+
∂v
∂y

= 0, (16)

ρ f
∂u
∂ t

+ρ f
∂u2

∂x
+ρ f

∂uv
∂y

=−
∂ p
∂x

+µ
[

∂ 2u
∂x2 +

∂ 2u
∂y2

]

, (17)

ρ f
∂v
∂ t

+ρ f
∂uv
∂x

+ρ f
∂v2

∂y
=−

∂ p
∂y

+µ
[

∂ 2v
∂x2 +

∂ 2v
∂y2

]

, (18)

whereu, v and p are velocity components and static pressure of the fluid, respec-
tively; ρ f the fluid density; andµ the dynamic viscosity of the fluid.

3.3 Coupled equations for fluid-structure interaction

The geometrical compatibility conditions at the interfaceΓ between the fluid and
structural domains are given by

rΓ(t) = wΓ(t), (19)

ṙΓ(t) = ẇΓ(t), (20)

whererΓ andwΓ are the displacement vectors of the fluid and structure at theinter-
faceΓ, respectively; anḋrΓ andẇΓ the velocity vectors of the fluid and structure at
the interfaceΓ, respectively.

The equilibrium conditions can be described as follows.

hΓ
f (t)+hΓ

s (t) = 0, (21)

wherehΓ
f andhΓ

s are the traction vectors acting on the fluid and structure at interface
Γ, respectively.
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4 Numerical procedures

In this section, the fractional-step projection method proposed by Chorin (1967) is
described for solving the system of equations (16)-(18) with the use of 1D-IRBFN
and LMLS-1D-IRBFN methods for spatial discretisation. Thecombination of the
fractional-step projection method and the subiterative technique [Jameson (1991);
Melson, Sanetrik, and Atkins (1993)] is presented to solve transient flow problems.
The details of determination of variable values at “freshlycleared" nodes and a
sequentially staggered algorithm for FSI analysis are alsogiven here.

4.1 Fractional-step projection method (Chorin’s method)

• First step: Determine intermediate velocitiesu∗ andv∗ by ignoring the pres-
sure term and incompressibility. Convection and diffusionterms are discre-
tised explicitly at time level(n) using the 1D-IRBFN method.

ρ f
u∗−u(n)

∆t
=−ρ f

∂ (u(n))2

∂x
−ρ f

∂u(n)v(n)

∂y
+µ

[

∂ 2u(n)

∂x2 +
∂ 2u(n)

∂y2

]

, (22)

ρ f
v∗− v(n)

∆t
=−ρ f

∂u(n)v(n)

∂x
−ρ f

∂ (v(n))2

∂y
+µ

[

∂ 2v(n)

∂x2 +
∂ 2v(n)

∂y2

]

. (23)

• Second step: Solve a Poisson equation for the pressure at time level(n+1)

∂ 2p(n+1)

∂x2 +
∂ 2p(n+1)

∂y2 =
ρ f

∆t

(

∂u∗

∂x
+

∂v∗

∂y

)

. (24)

It is noted that the LHS of (24) is discretised using the localMLS-1D-IRBFN
method while the RHS is calculated with the 1D-IRBFN method.The pro-
cess results in a sparse system of equations, which is then economically
solved by the LU decomposition technique.

Neumann boundary conditions for pressure are given by

∂ p(n+1)

∂x
= ρ f

u∗−u(n)

∆t
, (25)

∂ p(n+1)

∂y
= ρ f

v∗− v(n)

∆t
. (26)
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Then, the velocitiesu(n+1) andv(n+1) are determined as

u(n+1) = u∗−
∆t
ρ f

∂ p(n+1)

∂x
, (27)

v(n+1) = v∗−
∆t
ρ f

∂ p(n+1)

∂y
. (28)

For irregular domain problems, when determining the derivatives of pressure w.r.t.
y on the curved boundary through Equation (26), the values ofv∗ on the curved
boundary are unknown and can be determined by using a 1D-IRBFN extrapolant
from thev∗ values at the interior points as follows.

v∗(yB) = ĤBĤ−1
I v̂∗I , (29)

whereyB is they-coordinate of nodeB on the curved boundary as shown in Fig. 3;

v̂∗I =
(

(v∗)(1),(v∗)(2), ...,(v∗)(N
[m]
y −1)

)T
;

ĤB =
[

H(1)
[0] (yB) H(2)

[0] (yB) ... H(N[m]
y −1)

[0] (yB) yB 1
]

;

ĤI =

















H(1)
[0] (y1) H(2)

[0] (y1) ... H
(N[m]

y −1)
[0] (y1) y1 1

H(1)
[0] (y2) H(2)

[0] (y2) ... H
(N[m]

y −1)
[0] (y2) y2 1

... ... ... ... ... ...

H(1)
[0] (yN[m]

y −1
) H(2)

[0] (yN[m]
y −1

) ... H(N[m]
y −1)

[0] (y
N[m]

y −1
) y

N[m]
y −1

1

















;

in which N [m]
y is the number of grid nodes on they-grid line [m] excluding the

node on the curved boundary. The values ofu∗ on the curved boundary can be
determined in a similar fashion.

Dirichlet boundary condition for pressure

Making use of Equation (3) for pressure values at interior points of anx-grid line
[ j] and Equation (2) for first-order derivatives of pressure at the ends of that grid
line results in






p̂I
∂ p(1)

∂x

∂ p(N
[ j]
x )

∂x






=

[

ĤI

K̂

](

ŵ
ĉ

)

, (30)

or

(

ŵ
ĉ

)

=

[

ĤI

K̂

]−1







p̂I
∂ p(1)

∂x

∂ p(N
[ j]
x )

∂x






, (31)
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where

p̂I =
(

p(2), p(3), ..., p(N
[ j]
x −1)

)T
;

ĤI =















H(1)
[0] (x2) H(2)

[0] (x2) ... H(N[ j]
x )

[0] (x2) x2 1

H(1)
[0] (x3) H(2)

[0] (x3) ... H(N[ j]
x )

[0] (x3) x3 1

... ... ... ... ... ...

H(1)
[0] (xN[ j]

x −1
) H(2)

[0] (xN[ j]
x −1

) ... H(N[ j]
x )

[0] (x
N[ j]

x −1
) x

N[ j]
x −1

1















;

K̂ =





H(1)
[1] (x1) H(2)

[1] (x1) ... H(N[ j]
x )

[1] (x1) 1 0

H(1)
[1] (xN[ j]

x
) H(2)

[1] (xN[ j]
x
) ... H(N[ j]

x )
[1] (x

N[ j]
x
) 1 0



 ;

and∂ p(1)/∂x and∂ p(N
[ j]
x )/∂x are calculated through Equation (25). From Equa-

tion (3), pressure values at the ends of thex-grid line [ j] can be defined by
(

p(1)

p(N
[ j]
x )

)

= ĤB

(

ŵ
ĉ

)

, (32)

where

ĤB =





H(1)
[0] (x1) H(2)

[0] (x1) ... H(N[ j]
x )

[0] (x1) x1 1

H(1)
[0] (xN[ j]

x
) H(2)

[0] (xN[ j]
x
) ... H(N[ j]

x )
[0] (x

N[ j]
x
) x

N[ j]
x

1



 .

By substituting Equation (31) into Equation (32), the boundary pressure values
at both ends of the grid line[ j] are expressed in terms of the values of pressure at
interior points and derivatives of pressure at both ends of the grid line[ j] as follows.

(

p(1)

p(N
[ j]
x )

)

= ĤB

[

ĤI

K̂

]−1







p̂I
∂ p(1)

∂x

∂ p(N
[ j]
x )

∂x






. (33)

The boundary pressure values at both ends ofy-grid lines can be determined in a
similar manner.

4.2 Combination of fractional-step projection method and subiterative tech-
nique

In the fractional-step projection method, the RHS of Equations (22) and (23) are
explicitly calculated at time level(n). This scheme has severe stability-restricted
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time-step limitations which leads to a high computational cost when solving mov-
ing boundary problems. Jameson (1991) and Melson, Sanetrik, and Atkins (1993)
presented subiterative techniques within the context of a multigrid methodology to
allow a large physical time step with the use of an explicit code. Rumsey, Sanetrik,
Biedron, Melson, and Parlette (1996) combined the subiterative technique with
an explicit central-difference code and an implicit upwindcode for solving un-
steady Navier-Stokes equations. The combination of the fractional-step projection
method and the subiterative technique are now presented here. The temporal terms
of Equations (17) and (18) are discretised using the backward Euler scheme while
the convection and diffusion terms are treated implicitly,which results in

ρ f
u(n+1)−u(n)

∆t =−ρ f
∂(u(n+1))

2

∂x −ρ f
∂u(n+1)v(n+1)

∂y − ∂ p(n+1)

∂x

+µ
[

∂ 2u(n+1)

∂x2 + ∂ 2u(n+1)

∂y2

]

,
(34)

ρ f
v(n+1)−v(n)

∆t =−ρ f
∂u(n+1)v(n+1)

∂x −ρ f
∂(v(n+1))

2

∂y − ∂ p(n+1)

∂y

+µ
[

∂ 2v(n+1)

∂x2 + ∂ 2v(n+1)

∂y2

]

.
(35)

Pseudo-time derivative terms are added into Equations (34)and (35) as

ρ f
u(n+1)−u(n)

∆t +ρ f
∂u
∂τ =−ρ f

∂(u(n+1))
2

∂x −ρ f
∂u(n+1)v(n+1)

∂y

−∂ p(n+1)

∂x +µ
[

∂ 2u(n+1)

∂x2 + ∂ 2u(n+1)

∂y2

]

,
(36)

ρ f
v(n+1)−v(n)

∆t +ρ f
∂v
∂τ =−ρ f

∂u(n+1)v(n+1)

∂x −ρ f
∂(v(n+1))

2

∂y

−∂ p(n+1)

∂y +µ
[

∂ 2v(n+1)

∂x2 + ∂ 2v(n+1)

∂y2

]

,
(37)

whereτ is the pseudo time andt the physical time. The additional terms∂u/∂τ
and∂u/∂τ are designed in such a way that they vanish when the values ofu and
v approach their correct values at time level(n+1) as follows (k is a pseudo-time
level).

ρ f
u(n+1)−u(n)

∆t +ρ f
u(n+1,k+1)−u(n+1,k)

∆τ =−ρ f
∂(u(n+1,k))

2

∂x −ρ f
∂u(n+1,k)v(n+1,k)

∂y

− ∂ p(n+1,k+1)

∂x +µ
[

∂ 2u(n+1,k)

∂x2 + ∂ 2u(n+1,k)

∂y2

]

,
(38)

ρ f
v(n+1)−v(n)

∆t +ρ f
v(n+1,k+1)−v(n+1,k)

∆τ =−ρ f
∂u(n+1,k)v(n+1,k)

∂x −ρ f
∂(v(n+1,k))

2

∂y

− ∂ p(n+1,k+1)

∂y +µ
[

∂ 2v(n+1,k)

∂x2 + ∂ 2v(n+1,k)

∂y2

]

.
(39)
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• First step: Determine intermediate velocitiesu∗ andv∗ by the following equa-
tions. The convection and diffusion terms are explicitly calculated at pseudo-
time level(k) using the 1D-IRBFN method.

ρ f
u∗−u(n+1,k)

∆τ =−ρ f
∂(u(n+1,k))

2

∂x −ρ f
∂u(n+1,k)v(n+1,k)

∂y

+µ
[

∂ 2u(n+1,k)

∂x2 + ∂ 2u(n+1,k)

∂y2

]

,
(40)

ρ f
v∗−v(n+1,k)

∆τ =−ρ f
∂u(n+1,k)v(n+1,k)

∂x −ρ f
∂(v(n+1,k))

2

∂y

+µ
[

∂ 2v(n+1,k)

∂x2 + ∂ 2v(n+1,k)

∂y2

]

.
(41)

• Second step: Solve a Poisson equation for the pressurep(n+1,k+1)

∂ 2p(n+1,k+1)

∂x2 +
∂ 2p(n+1,k+1)

∂y2 =
ρ f

∆τ

(

∂u∗

∂x
+

∂v∗

∂y

)

, (42)

The LHS of (42) is discretised using the local MLS-1D-IRBFN method while
the RHS is calculated with the 1D-IRBFN method. Neumann boundary con-
ditions for pressure are given by

∂ p(n+1,k+1)

∂x
=−ρ f

u(n+1,k)−u(n)

∆t
−ρ f

u(n+1,k)−u∗

∆τ
, (43)

∂ p(n+1,k+1)

∂y
=−ρ f

v(n+1,k)− v(n)

∆t
−ρ f

v(n+1,k)− v∗

∆τ
. (44)

Then, velocitiesu(n+1,k+1) andv(n+1,k+1) are determined as follows.

u(n+1,k+1) = kt

(

−
1

ρ f

∂ p(n+1,k+1)

∂x
+

u(n)

∆t
+

u∗

∆τ

)

, (45)

v(n+1,k+1) = kt

(

−
1

ρ f

∂ p(n+1,k+1)

∂y
+

v(n)

∆t
+

v∗

∆τ

)

, (46)

wherekt =
∆t∆τ

∆t+∆τ .
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• Third step: Check convergence criterion foru,v andp

CMu =

√

Nip

∑
i=1

(

u(n+1,k+1)
i −u(n+1,k)

i

)2

√

Nip

∑
i=1

(

u(n+1,k+1)
i

)2
< TOL, (47)

CMv =

√

Nip

∑
i=1

(

v(n+1,k+1)
i − v(n+1,k)

i

)2

√

Nip

∑
i=1

(

v(n+1,k+1)
i

)2
< TOL, (48)

CMp =

√

Nip

∑
i=1

(

p(n+1,k+1)
i − p(n+1,k)

i

)2

√

Nip

∑
i=1

(

p(n+1,k+1)
i

)2
< TOL, (49)

whereTOL is a given tolerance and presently set to be 10−7; and Nip the
number of interior points of the fluid domain. If not converged, return to
the first step. Otherwise, assignu(n+1) = u(n+1,k+1), v(n+1) = v(n+1,k+1) and
p(n+1) = p(n+1,k+1), then advance the physical timet.

4.3 Determine variable values at “freshly cleared" nodes

“Freshly cleared" nodes are the nodes that are not inside thefluid domain at time
level(n), but emerge into the fluid domain at the next time level(n+1). We need to
have a “guess" value at these nodes, i.e. at pseudo-time level k = 0 associated with
the real time level(n+1). For this purpose, the technique presented by Udayku-
mar, Mittal, Rampunggoon, and Khanna (2001) to determine values at the “freshly
cleared" nodes is employed here. As shown in Fig. 4, the values at the “freshly
cleared" nodes (e.g., a typical nodeA) are interpolated from the information at two
interior nodes (nodesC andD), and one node on the boundary (nodeB) through
the following interpolant.

uI(y) = a0+a1y+a2y2, (50)

wherea0,a1 anda2 are coefficients to be determined through the variable values
and coordinates of nodesB,C andD.
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4.4 Sequential staggered fluid-structure interaction algorithm

The sequentially staggered algorithm [Piperno (1997); Förster, Wall, and Ramm
(2007)] is used in the present study and described as follows.

• Step 1: At the initial time(t = 0s), set the displacement (w) and velocity (̇w)
of the bottom wall to be zero.

• Step 2: Calculate a predictor of the structural interface displacement at the
new time level (w(n+1)

p ) using one of the following two approaches [Piperno
(1997); Förster, Wall, and Ramm (2007)].

– Approach 1: Zeroth order accurate predictor

w(n+1)
p = w(n). (51)

– Approach 2: First order accurate predictor

w(n+1)
p = w(n)+∆tẇ. (52)

Then determine the grid-node system for fluid analysis basedon w(n+1)
p .

• Step 3: Solve the fluid problem to obtain pressure distribution (pΓ) on the
bottom wall with the use oḟw as a Dirichlet boundary condition for the ver-
tical velocity (v) of fluid field.

• Step 4: Solve the structural problem for a new displacement(w) and velocity
(ẇ) of the bottom wall with consideration of the fluid loadpΓ (the effect of
viscous stress on the displacement of the bottom wall is muchsmaller than
that of the pressure stress and hence neglected here). In thepresent study, the
displacements are restricted to be small, thus there is no distinction between
the material coordinates and spatial coordinates.

• Step 5: Advance physical time from level(n) to (n+1) and return to Step 2.

Steps 2-5 are repeated until a stable FSI solution is found. The flowchart of the FSI
analysis procedure is described in detail as shown in Fig. 5.

5 Numerical results and discussion

Several examples are considered here to study the performance of the present nu-
merical procedure. The examples are chosen to illustrate various steps of analysis
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for fluid flow, structural response and ultimately the response in a fluid-structure in-
teraction problem. The domains of interest are discretisedusing uniform Cartesian
grids. By using the LMLS-1D-IRBFN method to discretise the LHS of governing
equations and the LU decomposition technique to solve the resultant sparse system
of simultaneous equations, the computational cost is reduced.

5.1 Example 1: Mixed convection in a lid-driven cavity

The fluid solver is first verified through a solution of mixed convection in a lid-
driven cavity with a hot moving lid and a cold stationary bottom wall. The prob-
lem geometry and boundary conditions are described in Fig. 6. With the Boussi-
nesq approximation, the dimensionless form of 2-D incompressible Navier-Stokes
equations in terms of primitive variables and the energy equation governing the
mixed convection in the cavity are written as follows [Iwatsu, Hyun, and Kuwahara
(1993)].

∂U
∂X

+
∂V
∂Y

= 0, (53)

∂U
∂ t ′

+
∂U2

∂X
+

∂UV
∂Y

=−
∂P
∂X

+
1

Re

[

∂ 2U
∂X2 +

∂ 2U
∂Y 2

]

, (54)

∂V
∂ t ′

+
∂UV
∂X

+
∂V 2

∂Y
=−

∂P
∂Y

+
1

Re

[

∂ 2V
∂X2 +

∂ 2V
∂Y 2

]

+
Gr

Re2θ , (55)

∂θ
∂ t ′

+
∂Uθ
∂X

+
∂V θ
∂Y

=
1

Pr Re

[

∂ 2θ
∂X2 +

∂ 2θ
∂Y 2

]

. (56)

The variables in the equations above are nondimensionalised as

t ′ =
t

H/U0
, X =

x
H
, Y =

y
H
,

U =
u

U0
, V =

v
U0

, P =
p

ρ fU2
0

, θ =
T −TC

TH −TC
,

whereH is the side length of the square cavity andU0 velocity of the lid; T the
temperature; andTH andTC the hot and cold temperatures, respectively.

In these equations, the nondimensionalised parameters arethe Reynolds number
Re =U0H/ν , the Prandtl numberPr = ν/α (Pr is set to be 0.71 presently) and the
Grashof numberGr = Ra/Pr, whereRa = gβ (TH − TC)H3/(να), ν is the kine-
matic viscosity,α the thermal diffusivity of the fluid,β the thermal expansion
coefficient of the fluid andg the gravitational acceleration. The Richardson num-
ber is defined byRi = Gr/Re2 that measures the relative strength of the natural
convection and forced convection. IfRi ≪ 1 then the forced convection effect is
dominant while ifRi ≫ 1 then the natural convection effect is dominant.
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The fractional-step projection method is applied to solve this problem with a time
step∆t ′ = 10−3. Tabs. 1-3 describe the grid convergence study of the average Nus-
selt number at the lid for several Grashof numbersGr = 102,104 and 106, and
Reynolds numbersRe = 100,400 and 1000. The LHS of pressure Poisson equa-
tion (24) is discretised by using 1D-IRBFN method (Approach1) and LMLS-1D-
IRBFN method (Approach 2). The system matrix of Approach 2 ismuch more
sparse than that of Approach 1. The obtained numerical results showed that both
approaches yield the same level of accuracy. Approach 2 is used for all other com-
putations in the present study in order to save the computational cost. It can be seen
that the converged numerical results are in good agreement with the published re-
sults of other authors. The isothermal lines and streamlines of the flow field inside
the cavity at severalGr andRe numbers are depicted in Figs. 7-9.

For the caseGr = 102 (Fig. 7), the forced convection effect is dominant (Ri ≪ 1),
thus the streamlines of the flow are similar to those of the classical lid-driven cavity
case (readers are referred to the work of Ghia, Ghia, and Shin(1982) for Re =
100,400 and 1000. AtRe = 1000, the temperature gradient is steep at the region
close to the bottom wall and the lid, while the temperature gradient is small at the
center region of the cavity. This indicates that the fluid is well mixed for the bulk
of the cavity due to the flow circulation.

For the caseGr = 104 (Fig. 8), the natural convection effect is comparable to the
forced convection effect atRe = 100 (Ri = 1), while the forced convection effect is
still dominant atRe = 400 and 1000 (Ri ≪ 1). Therefore, the flow pattern is quite
different atRe = 100, while remains similar atRe = 400 and 1000, when compared
to those of the above case (Gr = 102).

For the caseGr = 106 (Fig. 9), the natural convection effect is stronger than the
forced convection effect. The flow patterns are very different from those of the
classical lid-driven cavity case for several Reynolds numbers Re = 100,400 and
1000. It is observed that the heat conduction is almost uniform for the caseRe =
100 and mainly occurs at the bottom and middle regions of the cavity for the cases
Re = 400 and 1000.

5.2 Example 2: Flow in a lid-driven open-cavity with a prescribed bottom wall
motion

The problem geometry and boundary conditions are describedin Fig. 10. The
fluid properties and problem geometry used here are: fluid kinematic viscosityν =
0.01m2/s, fluid densityρ f = 1.0kg/m3, the side length of the square cavityH = 1m
and the height of inlet and outleth = 0.1m. The bottom wall motion is given as:
w = w0cos(ω f t −π/2), whereω f = 2π/5 rad/s andw0 = −0.5(x2− x). The lid
is sliding from the left to the right in two different mannersas follows.
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• Case 1:U0 = 1 m/s.

• Case 2:U0 = 1− cos(ω f t) m/s.

The combination of the fractional-step projection method and subiterative tech-
nique is applied to compute the transient solutions of the flow in the cavity. The
grid convergence study is first conducted for the case of stationary bottom wall
(w = 0) and maximum velocity-loading of the lid (U0 = 2m/s or Re = 200). Fig. 11
depicts grid-convergence behaviour of vertical and horizontal velocities along the
horizontal and vertical center lines, and static pressure distribution along the sta-
tionary bottom wall for the caseRe = 200. Grid convergence is observed and the
numerical results obtained are indistinguishable for grids denser than or equal to
61× 61. The contours of stream function, velocity magnitude andstatic pressure
of the flow in the cavity for the caseRe = 200 are shown in Fig. 12.

Cartesian grids with a grid spacing of 1/60 are employed for the case of prescribed
bottom wall motion. As shown in Fig. 13, the fluid domains are represented by
RegionsA andB for a convex bottom wall, by RegionsA, B1 andB2 for a concave
bottom wall. The LHS of pressure Poisson equation (42) is discretised through the
following strategy. The LMLS-1D-IRBFN method is employed to discretise the
term∂ 2p/∂x2 in RegionA, while the 1D-IRBFN is used to discretise that term in
Region B (or RegionsB1 andB2). The discretisation of the term∂ 2p/∂y2 is carried
out using the LMLS-1D-IRBFN method.

Fig. 14 presents the response of static pressure at the mid-point of the bottom wall
(pM) with respect to time for Case 1. The physical time step (∆t) and pseudo time
step (∆τ) are taken to be 0.1s and 10−3s, respectively. It is noted that this response
varies periodically with the same frequency as that of the bottom wall motion (=
ω f /2π). Fig. 15 shows the contours of stream function, velocity magnitude and
static pressure of the flow inside the cavity for several timest = 51.5,52.0,52.5 and
53.0s (within one time period) for Case 1. The corresponding numerical results for
Case 2 are shown in Figs. 16 and 17.

5.3 Example 3: Forced vibration of a simply supported beam

This example deals with the dynamic behaviour of a simply supported beam subject
to a harmonic external forceF(t) = f0 sinωt applied atx = a, as shown in Fig. 18
(wheref0= 0.1N, ω = 2π/5 rad/s, aL =1m anda= 0.5m). The problem geometry
and material parameters of the beam used here are: the cross-section areaA =
0.002m2, the moment of inertiaI = 6.67×10−10m4, Young’s modulusE = 2.5×
106Pa and material densityρs = 500kg/m3. The boundary and initial conditions
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for the simply supported beam can be described as

w = 0,
∂ 2w
∂x2 = 0, atx = 0, x = aL (57)

w = 0,
∂w
∂ t

= v0, at t = 0 (58)

wherev0 is the initial velocity of the beam. An analytical solution to this problem
can be found in [Rao (2004)].

The fully discrete scheme with Newmark’s method for temporal discretisation is
employed here. The spatial term is discretised by using the 1D-IRBFN-4 scheme
based on a uniform grid. Tab. 4 describes the grid convergence study of deflection
u and velocityv of the beam at timet = 14s. For a given time step, the accuracy is
not improved further when refining the grid to a certain grid size. However, the ac-
curacy is greatly improved by reducing the time step. This indicates that the major
numerical error is not due to the 1D-IRBFN approximation, but due to the temporal
discretisation. The steady-state responses of the forced vibration system obtained
by the 1D-IRBFN method are in good agreement with the analytical solution as
shown in Fig. 19, using a uniform grid of 61 and time step∆t = 0.1s.

5.4 Example 4: Fluid-structure interaction in a lid-drivenopen-cavity flow with
a flexible bottom wall

This example is concerned with a FSI problem of flow in a lid-driven open-cavity
with a flexible bottom wall. The problem configuration is similar to that in Exam-
ple 2 except that the bottom wall motion is now caused by the interaction with the
fluid. The lid is sliding from the left to the right at a velocity U0 = 1−cos(ω f t)m/s.
The bottom wall is modelled as a flexible beam with two different cases of bound-
ary conditions as follows.

• Case 1: Simply supported at both ends.

• Case 2: Clamped at both ends.

The forced vibration of the bottom wall is governed by Equation (13), wheref (x, t)
is the fluid static pressure acting on the flexible bottom wall. The geometry and ma-
terial properties of the bottom wall are taken to be the same as those in Example 3.
In Case 1, the predictor of the structural interface displacement at the new time level
(w(n+1)

p ) is computed through Approach 1 (Equation (51)) and Approach 2 (Equa-
tion (52)). Fig. 20 presents the comparison of deflection of the mid-point of the
bottom wall (wM) with respect to time between the two approaches. It appearsthat
both approaches yield almost the same results.
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In Case 2, the first order accurate predictor of the bottom wall displacement is used.
Fig. 21 shows the deflection of the mid-point of the clamped bottom wall with
respect to time in comparison with that in Case 1. The deflection of the bottom
wall is downward for both cases. When the amplitude of the bottom wall vibration
is stable, the deflection of its mid-point is equal to−0.1342±0.0129m for Case 1
and−0.0275± 0.0162m for Case 2. As expected, the deflection of the clamped
bottom wall is much smaller than that of the simply supportedbottom wall of the
same geometry and material properties. It is noted that the deflection of the bottom
wall varies periodically with the same frequency as that of the lid motion. The
contours of stream function, velocity magnitude and staticpressure of the flow
inside the cavity at timet = 92.5s for Cases 1 and 2 are described in Figs. 22
and 23, respectively.

6 Conclusions

A numerical procedure for FSI analysis based on the 1D-IRBFNand LMLS-1D-
IRBF methods is devised and demonstrated with the analysis of the flow inside a
lid-driven open-cavity with a flexible bottom wall. A combination of the fractional-
step projection method and subiterative technique is presented for solving unsteady
incompressible 2-D Navier-Stokes equations in terms of primitive variables, while
the Newmark’s method is employed for a solution of forced vibration of a beam
based on the Euler-Bernoulli theory. The fluid solver is verified through a solution
of mixed convection in a lid-driven cavity with a hot moving lid and a cold sta-
tionary bottom wall. The numerical results obtained are in good agreement with
the published results of other authors. The Cartesian gridsare used to discretise
both rectangular and irregular fluid domains. The structural analysis solver is suc-
cessfully verified by comparing the present numerical results with the analytical
solution of forced vibration of a simply supported beam. Finally, the proposed nu-
merical procedure is demonstrated with a solution of a fluid-structure interaction
system with two different cases of bottom wall boundary conditions. The numeri-
cal results show that the bottom wall vibrations reach a steady state after a certain
time and the deflection of the clamped bottom wall is much smaller than that of the
simply supported bottom wall of the same geometry and material properties.
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Table 1: Mixed convection in a lid-driven cavity: grid convergence study and com-
parison of the average Nusselt number (Nu) at the top wall for the Grashof number
Gr = 102, and several Reynolds numbersRe = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basedon the 1D-IRBFN
and local MLS-1D-IRBFN methods (Approach 2).

Grid Re = 100 Re = 400 Re = 1000
Approach 1

41×41 1.98 4.13 6.77
61×61 1.99 4.08 6.87
81×81 2.00 4.05 6.80
101×101 2.00 4.04 6.73

Approach 2
41×41 1.98 4.14 6.89
61×61 1.99 4.07 6.89
81×81 2.00 4.04 6.80
101×101 2.00 4.03 6.72
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.94 3.84 6.33
Sharif (2007) (FVM) - 4.05 6.55
Cheng (2011) (FDM) - 4.14 6.73
Al-Amiri and Khanafer (2011) (FEM) 2.02 4.05 6.45
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Table 2: Mixed convection in a lid-driven cavity: grid convergence study and com-
parison of the average Nusselt number (Nu) at the top wall for the Grashof number
Gr = 104, and several Reynolds numbersRe = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basedon the 1D-IRBFN
and local MLS-1D-IRBFN methods (Approach 2).

Grid Re = 100 Re = 400 Re = 1000
Approach 1

41×41 1.36 3.87 6.72
61×61 1.37 3.83 6.82
81×81 1.37 3.80 6.75
101×101 1.38 3.79 6.67

Approach 2
41×41 1.36 3.87 6.83
61×61 1.36 3.82 6.83
81×81 1.37 3.80 6.74
101×101 1.37 3.78 6.67
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.34 3.62 6.29
Sharif (2007) (FVM) - 3.82 6.50
Cheng (2011) (FDM) - 3.90 6.68
Al-Amiri and Khanafer (2011) (FEM) 1.38 3.76 6.56

Table 3: Mixed convection in a lid-driven cavity: grid convergence study and com-
parison of the average Nusselt number (Nu) at the top wall for the Grashof number
Gr = 106, and several Reynolds numbersRe = 100,400 and 1000, using the 1D-
IRBFN method (Approach 1) and the numerical procedure basedon the 1D-IRBFN
and local MLS-1D-IRBFN methods (Approach 2).

Grid Re = 100 Re = 400 Re = 1000
Approach 1

41×41 1.01 1.24 -
61×61 1.01 1.21 1.88
81×81 1.01 1.19 1.85
101×101 1.01 1.18 1.82

Approach 2
41×41 1.01 1.25 -
61×61 1.01 1.22 1.89
81×81 1.01 1.19 1.86
101×101 1.01 1.18 1.82
Iwatsu, Hyun, and Kuwahara (1993) (FDM) 1.02 1.22 1.77
Sharif (2007) (FVM) - 1.17 1.81
Cheng (2011) (FDM) - 1.21 1.75
Al-Amiri and Khanafer (2011) (FEM) 1.02 1.17 1.72
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Table 4: Forced vibration of a simply supported beam: Relative error norms of
deflectionNe(u) and velocityNe(v) at timet = 14s, using several time steps.

Ne(u) Ne(v)
Grid ∆t = 10−1s ∆t = 5×10−2s ∆t = 10−2s ∆t = 10−1s ∆t = 5×10−2s ∆t = 10−2s
21 1.56E-03 1.53E-03 2.16E-03 6.65E-03 4.69E-03 3.70E-03
31 3.34E-03 1.09E-03 7.05E-04 3.53E-03 2.45E-03 2.76E-03
41 3.29E-03 1.05E-03 6.93E-04 3.63E-03 2.38E-03 2.40E-03
51 3.30E-03 1.06E-03 6.92E-04 3.61E-03 2.34E-03 2.28E-03
61 3.30E-03 1.06E-03 6.91E-04 3.61E-03 2.33E-03 2.21E-03
71 3.30E-03 1.06E-03 6.91E-04 3.61E-03 2.32E-03 2.17E-03
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Figure 1: Cartesian grid discretisation.
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Figure 2: LMLS-1D-IRBFN scheme,� a typical[ j] node.

Figure 3: Configuration to determinev∗ at nodes on a curved boundary.



Manuscript submitted to CMES

30

Figure 4: Configuration to determine initial values at "freshly cleared" nodes.
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Figure 5: Flowchart of the FSI analysis procedure.
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Figure 6: Mixed convection in a lid-driven cavity: geometryand boundary condi-
tions.
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Figure 7: Mixed convection in a lid-driven cavity: isothermal lines (left) and
streamlines (right) of the flow atGr = 102, and several Reynolds numbersRe =
100,400 and 1000, using grids of 61× 61, 81× 81 and 101× 101, respectively.
The isothermal values are 25 uniformly distributed values in the range[TC,TH ].
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Figure 8: Mixed convection in a lid-driven cavity: isothermal lines (left) and
streamlines (right) of the flow atGr = 104, and several Reynolds numbersRe =
100,400 and 1000, using grids of 61× 61, 81× 81 and 101× 101, respectively.
The isothermal values are 25 uniformly distributed values in the range[TC,TH ].
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Figure 9: Mixed convection in a lid-driven cavity: isothermal lines (left) and
streamlines (right) of the flow atGr = 106, and several Reynolds numbersRe =
100,400 and 1000, using grids of 61× 61, 81× 81 and 101× 101, respectively.
The isothermal values are 25 uniformly distributed values in the range[TC,TH ].
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Figure 10: Flow in a lid-driven open-cavity with a prescribed bottom wall motion:
geometry and boundary conditions.
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Figure 11: Flow in a lid-driven open-cavity with a stationary bottom wall: Grid
convergence study of vertical and horizontal velocity profiles along the horizontal
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Figure 12: Flow in a lid-driven open-cavity with a stationary bottom wall: contours
of stream function (left), velocity magnitude (middle) andstatic pressure (right) of
the flow in the cavity forRe = 200, using a grid of 61×61. Each plot contains 50
contour levels varying linearly from the minimum value to the maximum value.

Figure 13: Strategy for spatial discretisation using 1D-IRBFN and LMLS-1D-
IRBFN methods.
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Figure 14: Flow in a lid-driven open-cavity with a prescribed bottom wall motion
(Case 1): static pressure at the mid-point of the bottom wallwith respect to timet,
using a Cartesian grid with a grid spacing of 1/60.
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Figure 15: Flow in a lid-driven open-cavity with a prescribed bottom wall motion
(Case 1): contours of stream function (left), velocity magnitude (middle) and static
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Figure 16: Flow in a lid-driven open-cavity with a prescribed bottom wall motion
(Case 2): static pressure at the mid-point of the bottom wallwith respect to timet,
using a Cartesian grid with a grid spacing of 1/60.
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Figure 17: Flow in a lid-driven open-cavity with a prescribed bottom wall motion
(Case 2): contours of stream function (left), velocity magnitude (middle) and static
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Figure 18: Forced vibration of a simply supported beam.
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Figure 19: Forced vibration of a simply supported beam: steady state response of
the mid-point of a simply supported beam, using a uniform grid of 61 and∆t = 0.1s.
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Figure 20: Flow in a lid-driven open-cavity with a simply supported flexible bottom
wall: deflection of the mid-point of the bottom wall with respect to timet between
two different approaches of predictors, using a Cartesian grid with a grid spacing
of 1/60.
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Figure 21: Flow in a lid-driven open-cavity with a flexible bottom wall: deflection
of the mid-point of the clamped bottom wall with respect to time t in comparison
with the case of simply supported bottom wall, using a Cartesian grid with a grid
spacing of 1/60.
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Figure 22: Flow in a lid-driven open-cavity with a simply supported flexible bottom
wall (Case 1): contours of stream function (left), velocitymagnitude (middle) and
static pressure (right) of the flow at timet = 92.5s, using a Cartesian grid with a
grid spacing of 1/60. Each plot contains 50 contour levels varying linearly from
the minimum value to the maximum value.
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Figure 23: Flow in a lid-driven open-cavity with a clamped flexible bottom wall
(Case 2): contours of stream function (left), velocity magnitude (middle) and static
pressure (right) of the flow at timet = 92.5s, using a Cartesian grid with a grid
spacing of 1/60. Each plot contains 50 contour levels varying linearly from the
minimum value to the maximum value.


