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A B S T R A C T   

Variable-rate irrigation technology can reduce water use in centre pivot and lateral move irrigation systems 
through application of irrigation according to spatially varied soil-water profiles. However, filling the profile may 
not maximise yield because of variations in crop response and water requirements with crop stage. For example, 
cotton crops produce optimal yield under slight water stress during early stages. An irrigation strategy ‘Model 
Predictive Control’ has been implemented that accounts for changes in crop water requirements at different 
growth stages using biophysical crop models. This strategy involves automatically and iteratively executing the 
biophysical crop model APSIM parameterised with local soil and weather information, with different irrigation 
depths, to identify which combination maximises yield with the minimum depth of water application. This 
strategy has potential to address spatial and temporal variations in crop water requirements but has not previ-
ously been evaluated for variable-rate irrigation in the field. This paper reports field trials conducted over four 
cotton (Gossypium hirsutum L.) seasons and two perennial ryegrass (Lolium. perenne L.) seasons to evaluate the 
accuracy of the yield prediction of the biophysical model and compare field performance of irrigation strategies: 
uniform irrigation and variable-rate irrigation using a fixed underlying map, soil-water sensors and Model 
Predictive Control. Yield was most accurately predicted using on-site weather data and field soil core informa-
tion, with R2 = 0.733 and RMSE = 153.9 kg/ha for cotton, and R2 = 0.336 and RMSE = 295.3 kg/ha for ryegrass. 
For cotton, Model Predictive Control led to 4.9% more yield with 5.6% reduction in water application, mainly 
through reduced water after peak bloom and/or open boll physiological stages. For grazed ryegrass, the Model 
Predictive Control strategy led to 8.5% more yield with 5.4% reduction in water application, potentially caused 
by reduced applications after grazing events. Further work includes evaluating the Model Predictive Control 
strategy with control of irrigation event timing under a broader range of field conditions to identify parameters to 
provide greatest economic return, and to refine biophysical models for improved performance of optimisation in 
the strategy.   

1. Introduction 

Irrigation is traditionally considered as uniform applications over 
entire fields; however, fields often have spatial variability in crop water 
requirements. This can lead to overwatering in some areas of a field and 
under-watering in other areas, and reduced yield over the field. 
Variable-rate irrigation (VRI) hardware is commercially available and 
enables site-specific application of irrigation by centre pivot and lateral 
move irrigation machines and costs $500-$1500/ha ($AU) depending 
on manufacturer and configuration. The commercial feasibility of VRI 
depends on field variability, crop type and potential water savings and 

yield improvements (El Chami et al., 2019; Sharma and Irmak, 2020). 
VRI can achieve water savings of up to 25% while maintaining yield 
(Hedley and Yule, 2009) through irrigation according to spatially vari-
able water holding capacities, crop water use, or crop types; leaving 
capacity in the soil for capture of rainfall in soils with high water holding 
capacities and in regions with high in-season rainfall; and reducing or 
stopping irrigation in areas of fields that are uncropped or susceptible to 
overwatering or ponding (e.g. inner spans of the machine, areas in field 
prone to run-off, around water troughs, laneways, ditches) (Peters and 
Flury, 2017). In dairy (cattle) pastures, the reduced water in laneways 
would also reduce maintenance costs and cow lameness due to the drier 
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laneways. 
Approaches have been developed to automate development of VRI 

prescription maps aiming to match the spatial irrigation requirements 
over the field’s cropped areas. Existing irrigation prescription map 
development processes available both commercially, and those devel-
oped in research, typically aim to fill the spatially variable soil-water 
profile. Commercial prescription map development processes may be: 
manual using software available with VRI hardware (e.g. Valley365, 
FieldNET); semi-automated using yield, elevation, or electrical con-
ductivity maps through precision agriculture software (e.g. Precision 
Cropping Technologies); or automated using soil-water balance ap-
proaches from satellite imagery (e.g. Prospera). Research tools that 
automate prescription map development are based on soil-water sensors 
(El-Naggar et al., 2020); soil-water balance models using ETc from 
FAO56 (Barker et al., 2019) or biophysical models (Thorp et al., 2017); 
crop water stress indices from canopy thermometers (O’Shaughnessy 
et al., 2020; Vories et al., 2020) or satellite imagery (Veysi et al., 2017). 

Irrigating to fill the soil-profile may not maximise key grower targets 
(i.e. yield or profit, Cammarano et al., 2012). At the same time, irri-
gating to fill the soil-profile may not minimise environmental impacts, e. 
g. reduce runoff and drainage (Gillies and Smith, 2015), nutrient 
leaching (Vogeler et al., 2019), or greenhouse gas emissions (Li et al., 
2022a). However, optimising yield is a consideration to improve effi-
ciency and positively impact the environment through production on 
less land. Thorp et al. (2017) found that reducing early season irrigation 
led to increased yield, possibly by encouraging cotton root growth and 
increasing capacity for water uptake and resilience to water shortage 
during reproductive development. A yield-driven strategy for irrigation 
management may provide yield improvements in addition to reported 
water savings. Automated irrigation strategies are reported that 
combine control systems with yield predictions from biophysical models 
to determine irrigation requirements that maximise yield. For example, 
a ‘Model Predictive Control’ (MPC) approach is reported that uses 
iterative execution of a biophysical model for cotton (Gossypium hirsu-
tum L.) with different irrigation depths and timings to identify the irri-
gation management that maximises yield using the software ‘VARIwise’ 
over a prediction horizon (McCarthy et al., 2010, 2014). This strategy 
has potential to be automatically parameterised from online weather 
and soil data sources based on geo-referenced information. This would 
enable the strategy to be implemented autonomously in the background 
without the need for a skilled model operator. 

The MPC strategy has potential to adapt irrigation application depths 
throughout the season to the temporal variations in crop water re-
quirements caused by different crop growth stages. Simulation studies 
have reported little value in temporally adapting irrigation strategies for 
soybean crops (Kelly et al., 2023). However, there is potential for 
adaptive strategies to benefit other crops including cotton and grazed 
pasture. For example, cotton crops produce optimal yield under slight 
water stress during early stages, while grazed crops may require lower 
irrigation depths initially after grazing events. There is also potential to 
extend the strategies from cotton (Gossypium hirsutum L.) to grazed 
pasture. In Australia, VRI is most widely adopted in the pasture industry 
(e.g. perennial ryegrass (Lolium. perenne L.)) for reducing irrigation in 
laneways and existing water bodies in the field. Implementation of MPC 
would require use of a biophysical model that enabled ryegrass simu-
lation. This may be achieved using the Agricultural Production Systems 
sIMulator (APSIM, Holzworth et al., 2014) which is modular in design 
and embeds models to simulate multiple crop types including cotton 
(OZCOT, Wells and Hearn, 1992) and pasture (AgPasture, Thornley, 
Johnson, 2000 as implemented in SGS/DairyMod/EcoMod, Johnson, 
2008). The models predict final yield and daily values of crop height, 
cover, and fruiting or development parameters (e.g. open boll counts, 
dry matter). 

No studies have been reported on the performance of yield-driven 
model-based strategies in the field. The use of biophysical models for 
guiding management decisions requires that the model accurately 

reflect field conditions, particularly yield for cotton and pasture growth 
for ryegrass. The cotton model OZCOT in APSIM is generally reported to 
predict yield and fruiting parameters with strong correlations 
(R2=0.7–0.9; Yang et al., 2014, Shukr et al., 2021, Li et al., 2022b). 
Similarly, the pasture growth model AgPasture integrated in APSIM is 
reported to predict pasture growth with strong correlations 
(R2=0.7–0.8; Li et al., 2011). However, the models can have lower 
correlations if they do not adequately capture the complexity of the 
physiological or soil processes. For example, for newer cotton varieties 
not captured in biophysical models, the fruiting development predicted 
by OZCOT is reported to be delayed compared with field assessments 
(Richards et al., 2001; Yeates et al., 2009). The model accuracy may also 
be reduced if row configurations are not standard (Milroy et al., 2004). 
For example, 1 m row spacing is most common in Australian cotton but 
growers may use 1.5 m row spacing in seasons with limited water. In 
addition, low accuracies have been reported for the daily simulated 
soil-water from AgPasture model because the temporal dynamics 
simulated were not present in sensor measurements (R2=0.1 for APSIM; 
Harrison et al., 2018). This suggested that APSIM may be better suited 
for predicting parameters which have smaller fluctuations over time (e. 
g. yield). 

Crop biophysical models require parameterisation to accurately 
reflect field conditions. This includes soil properties (drained upper 
limit, lower limit, saturated and starting soil-water content, bulk den-
sity), daily weather data (maximum and minimum temperature, solar 
radiation and rainfall) and crop variety features (e.g. leaf area growth 
rate and fruit size development rate relative to day degrees). The soil 
property drained upper limit is equivalent to the field capacity and crop 
lower limit is equivalent to the wilting point (Wigginton et al., 2012). 
APSIM uses these properties to calculate the plant available water ca-
pacity which is the maximum amount of water that can be stored in the 
soil profile and that is available to plants. This can be a major cause of 
spatial yield variability (He et al., 2022) due to irrigation 
mis-management. Apparent electrical conductivity from electromag-
netic responses have been used to assess spatial variability and identify 
sampling locations for soil properties to parameterise APSIM. In addi-
tion, apparent electrical conductivity has been used to assess the spatial 
variability in soil texture, soil-water and salt content (e.g. Vories et al., 
2020; Rodríguez-Pérez et al., 2011; Hedley et al., 2013). In fields with 
large variations in topography, digital elevation models could be used to 
calculate Topographic Wetness Indices and assess spatial variability 
(Priori et al., 2013). Therefore, in a field trial electrical conductivity or 
elevation mapping could be conducted to identify sampling locations. 
However, some soil properties (i.e. soil texture) influential on crop 
development and productivity are not incorporated into APSIM (Vogeler 
et al., 2022). Soil texture can influence crop development and yield, for 
example due to rapid root penetration in soils with lighter soils with 
higher sand and silt content (Vories et al., 2020; Vories et al., 2021). 
Therefore, the soil properties could be compared with strategy perfor-
mance to identify their influence. 

Soil water holding and texture properties can be estimated from 
online soil databases (e.g. APSoil in Australia) or assessed using infield 
soil sampling. Weather data from onsite weather stations are expected to 
be more accurate than regional weather information (e.g. Bureau of 
Meteorology stations and SILO simulations in Australia), particularly 
with significant spatial variations in rainfall over short distances in 
Australia, but can be expensive (~AU$10 000). Crop variety parameters 
for a range of varieties are often included with the models, but can be 
calibrated if parameters for the planted variety are not available (e.g. 
Thorp et al., 2017). A validation of model performance is required to 
ensure the weather and soil inputs are sufficient for model parameter-
isation, to assess need for parameter calibration, and to provide rec-
ommendations for field data requirements. 

Field trials are required to compare MPC with uniform irrigation, and 
VRI using fixed historical maps and soil-water deficit, to evaluate yield 
and efficiency differences. Field trials that compare VRI strategies 
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commonly involve small plot trials with at least two replicates of each 
strategy (e.g. different deficit treatments) across soil types (e.g. Hedley 
et al., 2011; Barker et al., 2018). Implementing VRI trials require 
catch-can data to ensure accurate applied irrigation depths. Plot-based 
trials provide accurate performance comparison between strategies as 
the replicates are within the same paddock and soil type. These can be 
assessed from yield, irrigation applied, and physiological indicators. 
Cotton physiological features that could be assessed include canopy 
cover and open boll counts, potentially measured at broad spatial scales 
using UAVs and image analysis algorithms. Existing image analysis al-
gorithms involve segmentation to detect plant or open boll pixels based 
on colour thresholds, where canopy cover is estimated from the ratio 
between green and all pixels (Kumar and Miklavcic, 2018), and open 
boll area is estimated from the ratio between white pixels and all pixels 
(Yeom et al., 2018). Ryegrass yield could be assessed using dry matter 
yield assessments. For example, a calibrated C-Dax Rapid Pasture Meter 
(Agricultural Solutions, Ltd, Palmerston North, New Zealand) is 
commonly used to assess paddocks at a commercial scale and as an 
alternative pasture biomass ground truth to cuts and plate meters (e.g. 
Insua et al., 2019; Chen et al., 2021). 

Potential efficiency improvements have been identified for VRI of 
cotton and grazed ryegrass pasture using MPC and biophysical model-
ling to meet temporal and spatial crop water requirements. This has not 

previously been evaluated for grazed pasture or in field trials. In this 
study, the objectives were to: (a) evaluate the ability of biophysical 
model APSIM to accurately predict yield in VRI cotton and grazed 
ryegrass pasture scenarios; and (b) investigate the field performance of 
automated VRI strategies for cotton and ryegrass that aim to maximise 
yield, as well as improve irrigation water use, compared with standard 
grower practices and strategies based on filling the soil-water profile. 
Performance was based on crop development parameters, yield and 
irrigation water use indices. 

2. Materials and methods 

2.1. Irrigation control strategies 

Four irrigation control strategies were selected for evaluation in the 
field. The strategies were implemented on the days the grower was 
irrigating as detailed below:  

• Uniform – Flat irrigation rate with no sprinkler flowrate alterations. 
This represented a standard commercial practice to irrigate the field 
uniformly with the irrigation application depth set by the grower on 
the irrigation machine control panel. 

Fig. 1. Field variability maps for field sites for: (a) 
cotton in 2018/19, 2019/20, 2020/21 and 2021/22 
where the legend is for vertical apparent electrical 
conductivity (dS/m); and (b) ryegrass in 2020/21 and 
2021/22 where the legend is for the Topographic 
Wetness Index, red lines indicate paddock boundaries 
and maroon areas indicate presence of laneways. The 
grey circular outlines indicate the locations of the 
centre pivot irrigation machines which were 404 m 
long at the cotton sites and 280 m long at the ryegrass 
site. The uniform irrigation (‘Uniform’) plots are white, 
variable-rate irrigation using fixed map (‘VRI-Fixed’) 
plots are light grey, variable-rate irrigation using soil- 
water sensors (‘VRI-SW’) plots are dark grey and 
variable-rate irrigation using Model Predictive Control 
(‘VRI-MPC’) plots are black.   
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• VRI from fixed map (‘VRI-Fixed’) – Fixed variable-rate irrigation map 
with variability based on apparent electrical conductivity or eleva-
tion maps (Fig. 1). This represented a standard VRI practice where 
irrigation depths were scaled depending on underlying variability (e. 
g. from apparent electrical conductivity or elevation map) between 
70% and 100%.  

• VRI from soil-water (SW) sensors (‘VRI-SW’) – Apply irrigation depths 
to replenish the soil-water profile. These were calculated as the dif-
ference between the soil-water content at field capacity and averaged 
soil water content over the three sensors. The drained upper limit 
was measured from infield soil sampling.  

• VRI from MPC maximising yield (‘VRI-MPC’) – The MPC strategy of 
McCarthy et al. (2014) was implemented to maximise predicted final 
yield. The model was parameterised from on-site weather data, soil 
properties and management information. The MPC strategy was 
implemented in VARIwise to compare the predicted yield at multiple 
irrigation depths ranging from 0 mm (i.e. no irrigation) to the flat 
rate irrigation depth of the irrigation machine (i.e. the irrigation 
depth configured during commercial operations). Yields were pre-
dicted with multiple irrigation depths at intervals of 5 mm in this 
range. For example, for an irrigation machine with flat rate irrigation 
depth of 15 mm, with four irrigation depths were simulated: 0, 5, 10 
and 15 mm. The irrigation depths implemented were those that 
produced the highest predicted yield (lint yield for cotton and dry 
matter for perennial ryegrass). If two irrigation depths produced the 
same predicted yield, the lower irrigation depth was selected to be 
applied. 

This trial focussed on comparing the performance of the irrigation 
strategies to determine spatial application depths, rather than deter-
mining the timing of the irrigation events, as the trials were conducted 
on commercial farms where the timing was controlled by the grower. 
Further trials may involve using the strategies to irrigate based on soil 
moisture, environmental impacts, rainfall forecast and estimated graz-
ing dates for pasture. 

VARIwise was updated from programmatic execution of the cotton 
model OZCOT (McCarthy et al., 2010) to APSIM version 7.10 build 
r4200. This involved developing software to generate an APSIM simu-
lation file containing the soil and management parameters, calling the 
APSIM executable, and then reading the generated APSIM output file. 

2.2. Field site selection 

Trial sites selected were: (a) a seven-span centre pivot irrigated 
cotton field with a deep epicalcareous self-mulching black vertosol 
(Anon, 2022) over four seasons near Yargullen, Queensland, Australia; 
and (b) a five-span centre pivot irrigated perennial ryegrass pasture field 
with a deep red mesotrophic haplic ferrosol (Masters, 2012) over two 
seasons near Elliott, Tasmania, Australia (Table 1). Some paddocks in 
the ryegrass site were on steep slopes that contained slump features or 
hummocky patterns due to vegetation clearance and subsequent mass 
movement (Moreton, 1999). 

The seven-span centre pivot used for four consecutive cotton seasons 
was towed between cotton fields each season. At the cotton site a flat 
rate application depth of 15 mm was applied until early vegetative 
growth ceased, and 30 mm depth was applied for the rest of the season, 
while the ryegrass machine had a flat rate application depth of 15 mm. 
The irrigation machine at the cotton site always irrigated in a clockwise 
direction, while the irrigation machine at the perennial ryegrass site 
irrigated in both clockwise and anti-clockwise directions, as it was part- 
circle. 

The VRI hardware on the cotton machine was Valley VRI-iS® (Anon, 
2022) which enabled individual sprinkler control, whilst the VRI hard-
ware on the ryegrass machine was Valley VRI zone control which 
enabled control of 30 zones along the machine. AgSense® (AgSense, 
2017) was installed on both machines to enable remote control of the 

machines and upload of the VRI maps. In this trial, the system was 
implemented to only reduce irrigation application depths such that the 
uniform irrigation strategy would apply the highest irrigation depth. 

The accuracy of the angular position of the irrigation machine was 
verified by monitoring the application from test VRI maps over land-
marks in the field (flags of the cotton site and laneways and fences for 
the ryegrass site), and the angle was offset as required. This was con-
ducted for both directions of machine travel for the ryegrass site. 

The irrigation machine uniformity and VRI performance were veri-
fied in catch can trials for both irrigation machines. This field process 
was used to identify uniformity in irrigation along the machine, and 
ensure the VRI hardware (nozzles and speed control) were accurately 
applying irrigation depths, and these depths were consistent in each 
direction of machine travel for the ryegrass site. At the cotton site, grids 
of catch cans were installed at the centre of Spans 2–7 with three rows of 
five catch cans along the machine at 1.5 m spacing, following the 
methodology of O’Shaughnessy et al., (2013). At the ryegrass site, grids 
of catch cans were installed in Span 5 with two rows of 20 catch cans at 
1.7 m spacing parallel with the machine, and two rows of 31 catch cans 
at 1.7 m spacing perpendicular with the machine. Fixed VRI prescription 
maps were uploaded for the VRI application. For the cotton site, the root 
mean square error (RMSE) between prescribed and measured applied 
depths was 2.6 mm with an average applied irrigation depth of 
28.0 mm, whilst for the ryegrass site the RMSE between prescribed and 
measured applied depths was 2.7 mm with an average applied depth of 
12.3 mm. This is consistent with the reported performance of VRI sys-
tems (e.g. RMSE <3.0 mm,mm, O’Shaughnessy et al., 2013). 

The variability in soil types was assessed in each field to select lo-
cations for replicates of treatments across the fields (four in the cotton 
trials and five in the ryegrass trials). The cotton fields were surveyed 
using a DUALEM-1S that records electromagnetic responses (i.e. elec-
trical conductivity) to 50 cm and 150 cm depths (Fig. 1). The average 
measured electrical conductivity differed for each cotton field, poten-
tially because of a difference in soil-water content each time the survey 
was conducted. The ryegrass field was surveyed using elevation map-
ping to determine a Topographic Wetness Index where smaller indices 
indicated steeper slope and higher indices indicated areas with potential 
for runoff (Fig. 1). Plot locations in ryegrass trials were positioned be-
tween machine towers, were contained within a paddock without 
laneways, and were approximately homogeneous with minimal over-
land flow to ensure water infiltrated where it was applied. 

Table 1 
Cotton and ryegrass field site details for evaluation of VRI strategies.  

Crop Season Variety Planting 
date for 
cotton; start 
of irrigation 
season for 
ryegrass 

Harvest 
date for 
cotton; end 
of 
irrigation 
season for 
ryegrass 

Date of 
variability 
mapping 

Cotton 2018/ 
19 

Sicot 
748B3F 

18 October 
2018 

1 May 2019 21 August 
2018 

2019/ 
20 

Sicot 
748B3F 

21 
November 
2019 

30 June 
2020 

18 
September 
2019 

2020/ 
21 

Sicot 
748B3F 

5 November 
2020 

20 May 
2021 

14 August 
2021 

2021/ 
22 

Sicot 
748B3F 

2 November 
2021 

03 May 
2022 

18 August 
2021 

Perennial 
ryegrass 

2020/ 
21 

Perennial 
ryegrass 
dominant 
pasture* 

1 November 
2020 

20 April 
2021 

2017 

2021/ 
22 

24 
November 
2021 

30 
April2022  

* ~90–95% perennial ryegrass with remainder weeds, clover, fescue and 
cocksfoot and some variation between paddocks in elevation (‘slump’ features) 
and weeds (dock clumps) 
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Soil cores were collected in the sampling locations with results in  
Tables 2 and 3 for cotton and ryegrass, respectively. At the cotton site, 
two replicates of samples were collected using a 35 mm diameter hy-
draulic soil sampling rig. The cores were divided into 30 cm sections to a 
90 cm depth. At the ryegrass site, three replicates of samples were 
collected using a steel ring with 72.5 mm internal diameter and 61 mm 
height which was hammered into the profile at each depth. These 
samples were analysed to characterise parameters required for APSIM 
(bulk density, drained upper limit, lower limit, saturated water content) 
using predicted van Genuchten soil water retention curve parameters 
with RETC (Schaap et al., 2001) a retention curve development software 
that quantifies the hydraulic functions of unsaturated soils (Simunek 
et al., 2007). Soil water characteristics from the online soil database 
APSoil (www.apsim.info) were also obtained for comparison. The plant 
available water capacity was calculated for each sampling location 
(Table 2) as the difference between drained upper limit and crop lower 
limit (Wigginton et al., 2012). Soil texture was assessed using the hy-
drometer analysis method of Gee and Bauder (1986). 

The soil properties were compared with the underlying soil vari-
ability maps to ground truth the soil differences. Electrical conductivity 
and Topogaphic Wetness Indices were extracted from the maps for the 
cotton and ryegrass sites, respectively. This involved averaging mea-
surements within 15 m of each sampling location for comparison with 
soil properties at the same sampling location. From Table 2, for each 
cotton season, the higher electrical conductivity corresponded with 
higher plant available water capacity, silt and clay content, and lower 
sand content and bulk density. Therefore, the electrical conductivity 
map indicated variation in water holding capacity and soil texture. From 
Table 3, for the ryegrass site, the higher Topographic Wetness Index 
corresponded with higher plant available water capacity, slump features 
and clay content, and lower sand and silt content. 

Trial plots were assigned in each site and replicated with dimensions 
of size and spacing to ensure that the irrigation strategies were applied 
independently without overlap from adjacent management zones. The 
plots were positioned to align with the VRI management zones and areas 
irrigated with each strategy were at least 20 m wide and 30 m consid-
ering sprinkler throw distance. If the management zones were larger 
than 20 m wide, the plots were the width of the management zone. 
Higgins et al. (2016) recommended a minimum management zone size 
of 23 m for the Valley section control VRI system used at their ryegrass 
site. VRI prescription maps were generated following the xml file format 
required for AgSense, and uploaded on days of irrigation. 

The dates of irrigation events were determined by the onsite man-
agers and growers. The irrigation events were occasionally stopped 
before the whole field was irrigated because of rainfall. This would have 
led to variations in irrigation applied depths between the replicates of 
the plots in the uniform irrigation plots. 

For the cotton sites, soil nitrate and ammonium nitrogen tests were 
conducted before the initial nitrogen application each season. The 
grower applied approximately 250 N kg/ha before planting and 
60 N kg/ha as a side-dressing before flowering. Nitrogen would not have 
been a limiting factor for the irrigation sites as the average nitrogen 
requirement for cotton over a season to achieve high yields is about 
250 N kg/ha (Smith and Welsh, 2018), with 60–70% applied upfront 
and 30–40% applied as a side dressing prior to flowering (Baird, 2022). 

2.3. Data collection 

Weather data was collected at each site and season to provide min-
imum and maximum daily temperature, rainfall and solar radiation for 
APSIM simulations. Automatic weather stations (AWS) were installed at 
the sites (Environdata Weathermaster 2000 at the cotton site, and 
Environdata Weather Maestro with Middleton solar sensors at the 
ryegrass site). Weather data were obtained from the closest Australian 
Government’s Bureau of Meteorology (BoM through ftp://ftp.bom.gov. 
au/) weather station (Oakey Airport for cotton site, and Wynyard 

Airport for ryegrass site). Interpolated regional weather station datasets 
from ‘SILO’, a Queensland Government database containing continuous 
daily climate data for Australia since 1889 (through https://www. 
longpaddock.qld.gov.au/silo/), were obtained for comparison with the 
onsite AWS data. 

Table 4 provides a summary of the weather data from on-site 
weather stations. There were large variations in rainfall between the 
weather stations, as expected, which were caused by the large spatial 
variation in rainfall. The solar radiation was lower from the SILO station 
than the AWS and BoM, which would lead to underestimation of the 
daily crop water use and yield. The temperature was generally lower 
from the AWS than BoM. At both cotton and ryegrass sites, this may have 
been caused by the BoM stations being located at airports which have 
differences in land use compared with the farm sites and enclosed 
conditions leading to microclimates (Johnston, 2020). 

Soil moisture was monitored at the centre of the VRI-SW plots using 
soil-water sensors. At the cotton sites, ICT International MP406 standing 
wave sensors which have an accuracy of ± 1% (Anon, 2022) were 
installed at depths of 30, 60 and 90 cm. At the ryegrass site, EnviroPro 
EP100GL-04 capacitance probes which have an accuracy of ± 2% 
(EnviroPro, 2022) were installed with sensors at 10 cm intervals to 
40 cm. The soil-water measurement at each depth was logged every 
15 minutes throughout the season. The soil-water sensor data was 
calibrated using the approach of Pendergast and Hare (2007) by: (i) 
scaling the data such that the change in soil moisture matched the 
known irrigation depth applied; and (ii) adjusting the soil-water curve 
such that the maximum soil-water content measured equalled the soil 
field capacity. 

Manual plant measurements were collected in the VRI-SW plots of 
the cotton site to assess the model accuracy. These measurements were 
for the same five plants in the centre of each plot. Plant stand was 
assessed in each replicate after emergence, and canopy width and 
square, green boll and open boll counts were measured weekly. Yield 
was assessed in all plots at harvest from lint collected by hand from 1 m2 

in the centre of each plot. The lint was weighed and a cotton turnout 
percentage was 40% from the same cultivar in previous commercial gin 
operations. 

For the ryegrass sites, grazing dates were required to record har-
vesting events in APSIM. Grazing dates were manually recorded by 
observing pasture in images collected by oblique cameras in the VRI-SW 
and VRI-MPC plots of each replicate. In the 2021/22 season, the grazing 
events were verified using GPS trackers on the cattle at the ryegrass site. 
The plots were monitored weekly to compare in-season crop growth 
patterns between irrigation strategies. The centre of each ryegrass plot 
was assessed weekly using a C-Dax Pasture Meter pulled by a quadbike 
to measure the height of pasture swards and estimate dry matter yield. 
The calibration provided by the onsite field staff to convert pasture 
height from the C-Dax to dry matter is shown in Eq. 1. This calibration 
was conducted with a rising plate meter at the site. 

Dry matter
(

kg
ha

)

=
Pasture height (cm) − 15.675

4.685
(1) 

The centre of each cotton plot was monitored weekly using a DJI 
Phantom 4 UAV to assess canopy cover and open bolls. The UAV mission 
was developed using Litchi software. Top view images were captured 
approximately 3 m from the ground while the UAV was hovering so 
there was no thrust or propeller wind on the crop canopy (Fig. 2). Image 
analysis algorithms were implemented to extract fractional canopy 
cover using plant segmentation (Kumar and Miklavcic, 2018) and open 
boll area that extracts ratio of white pixels to all pixels (Yeom et al., 
2018). 

The image analysis outputs for canopy cover and open boll area were 
compared with the measured canopy width and open boll counts, 
respectively, to verify accuracy for indicating in-season crop growth 
(Fig. 3). The open boll area analysis was focussed on the images 
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Table 2 
Soil properties in each zone and trial for layers ‘1′, ‘2′ and ‘3′ where layer 1 is 0–30 cm, layer 2 is 30–60 cm and layer 3 is 60–90 cm. ECa1 and ECa2 are the electrical conductivity measured in the vertical (0–50 cm) and 
horizontal (50–150 cm) orientations, respectively. Soil data sources were online database of soil water characteristics (APSoil) and infield core samples. Different fields were used for each cotton season. Entries with ‘-′

indicate soil properties not available from source.  

Source Zone Plant available water 
capacity (mm) 

ECa1 

(dS/m) 
ECa2 

(dS/m) 
Bulk density (Mg/m3) Lower limit (m/m) Drained upper limit (m/ 

m) 
Particle size sand (%) Particle size silt (%) Particle size clay (%)        

1  2  3  1  2  3 1 2  3 1 2 3 1 2 3 1 2 3 
2018/19  

1  154 39.2 108.5  0.95  0.94  0.97  0.26  0.250  0.232 0.424 0.422  0.404 8.70 6.05 12.54 12.73 19.87 20.66 78.57 74.07 66.79 
Cores 2  151 23.9 54.9  1.03  1.00  0.99  0.220  0.236  0.217 0.386 0.406  0.385 20.72 9.90 25.13 14.60 19.21 13.01 64.68 70.89 61.86  

3  152 32.9 89.2  0.96  1.00  1.03  0.240  0.240  0.206 0.413 0.407  0.373 8.93 13.92 25.54 20.65 13.34 15.93 70.42 72.74 58.53  
4  154 47.5 117.1  0.93  0.91  0.97  0.253  0.258  0.241 0.426 0.430  0.411 0.88 5.91 11.68 24.74 16.97 16.40 74.37 77.12 71.92 

Online All  222 - -  1.00  1.05  1.05  0.270  0.280  0.280 0.530 0.520  0.520 - - - - - - - - - 
2019/20  

1  161 85.1 140.6  0.94  1.05  1.10  0.213  0.181  0.170 0.393 0.361  0.345 11.92 11.61 17.45 31.52 39.39 35.38 56.56 49.00 47.17 
Cores 2  170 100.0 185.6  0.92  0.96  0.95  0.211  0.200  0.175 0.396 0.383  0.371 6.54 11.91 9.01 39.74 35.89 48.28 53.72 52.19 42.71  

3  159 36.8 61.9  1.00  1.33  1.06  0.187  0.145  0.172 0.373 0.306  0.354 6.71 18.24 13.09 44.68 38.87 40.59 48.61 42.89 46.31  
4  159 48.8 84.5  0.98  1.21  1.13  0.219  0.158  0.173 0.397 0.333  0.347 6.36 8.02 12.81 34.06 47.01 38.12 59.58 44.97 49.07 

Online All  209 - -  1.04  1.06  1.08  0.254  0.305  0.305 0.529 0.519  0.511 - - - - - - - - - 
2020/21  

1  162 111.5 124.4  0.93  0.96  1.02  0.231  0.240  0.205 0.413 0.416  0.386 0.74 0.82 2.59 38.40 31.19 41.80 60.87 67.99 55.61 
Cores 2  153 127.1 159.3  1.11  1.18  1.20  0.212  0.177  0.169 0.388 0.347  0.339 0.58 10.14 12.18 33.01 38.12 38.39 66.40 51.74 49.43  

3  151 133.2 183.0  1.07  1.11  1.12  0.226  0.224  0.212 0.396 0.389  0.379 1.97 8.08 8.60 29.31 21.61 26.59 68.72 70.30 64.81  
4  149 166.4 219.0  1.15  1.19  1.15  0.217  0.202  0.209 0.384 0.367  0.375 0.80 6.35 6.47 30.80 30.78 28.94 68.39 62.87 64.59 

Online All  222 - -  1.04  1.05  1.05  0.270  0.280  0.280 0.530 0.520  0.520 - - - - - - - - - 
2021/22  

1  151 92.8 117.2  1.01  1.24  1.32  0.194  0.165  0.137 0.377 0.324  0.300 7.79 24.80 19.05 40.39 26.79 41.09 51.82 48.41 39.85 
Cores 2  158 146.5 182.2  1.05  1.07  1.21  0.169  0.185  0.164 0.355 0.360  0.328 9.92 13.12 20.49 45.33 35.46 31.67 44.75 51.41 47.84  

3  146 135.3 188.7  1.04  1.26  1.36  0.199  0.176  0.156 0.375 0.335  0.306 10.61 16.31 24.19 34.23 29.74 29.21 55.16 53.95 46.60  
4  139 51.2 85.4  1.23  1.43  1.45  0.176  0.147  0.127 0.338 0.298  0.275 16.18 16.62 26.89 30.64 38.60 36.46 53.17 44.78 36.64 

Online All  209 - -  1.04  1.06  1.08  0.254  0.305  0.305 0.529 0.519  0.511 - - - - - - - - -  

A
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collected at defoliation as these would be most correlated with the open 
boll counts. There were very strong correlations between the measured 
canopy width and canopy cover detected by UAV image analysis 
(R2=0.897), and the measured open bolls and open boll area detected by 
UAV image analysis (R2=0.718). The lower coefficient of determination 
for open boll area was expected, as not all open bolls were visible from 
the top view of the plant. 

2.4. Model and irrigation performance evaluation 

The accuracy of APSIM with weather and soil data from different 
sources was evaluated to confirm whether on or off-field data sources 
were required. In APSIM, the weather source was programmatically 
updated by referring the APSIM model to a text file containing the 
weather data from the specified source, while the soil data source was 
programmatically updated in the APSIM xml file used to run the model. 
No other parameters were varied for this evaluation. Potential weather 
sources compared include regional weather stations BoM and SILO and 
the on-site automatic weather station (AWS). Potential soil data sources 
include infield core samples and soil-water characteristics obtained from 
online database APSoil. APSIM outputs from parameterised simulations 

were compared with field measurements using coefficients of determi-
nation (R2) and root mean square error (RMSE). Cotton field measure-
ments compared include square counts, green and open boll counts (per 
m2), canopy cover (%), soil moisture (mm) and lint yield (kg/ha), whilst 
ryegrass field measurements compared include height (mm), dry matter 
(kg DM/ha) and soil moisture (mm). For both crops, soil moisture 
measurements were obtained from the infield sensors. For cotton, can-
opy cover was obtained from the daily infield camera images, and square 
and boll counts and lint yield were obtained from manual measure-
ments, whilst for ryegrass, height and dry matter were obtained from 
weekly-fortnightly C-Dax sensor data. 

The irrigation strategies were implemented for each whole ryegrass 
season, and from approximately 40 days after sowing for each cotton 
season. The irrigation strategies were evaluated from measured end of 
season yield, total irrigation applied, irrigation water use index (IWUI), 
gross production water use index (GPWUI) and weekly crop growth 
features. Yield was interpreted as lint yield for cotton and dry matter 
yield for ryegrass. Irrigation applied was calculated from applied irri-
gation depths in the VRI maps. IWUI was calculated as the ratio between 
yield and total irrigation applied. GPWUI was calculated as the ratio 
between yield and total water used by the crop, which was the sum of 

Table 3 
Soil properties in each zone and trial for layers ‘1′ and ‘2′ for perennial ryegrass where layer 1 is 0–10 cm and layer 2 is 10–30 cm. Soil data sources were online 
database of soil water characteristics (APSoil) and infield core samples. The same field was used for both ryegrass seasons. Entries with ‘-′ indicate soil properties not 
available from source. Slump features are described objectively and manually assigned a severity level from 0 to 4 in brackets. Observations of pasture composition are 
noted. Zones 1 and 2 had sand, silt and clay particle sizes (%) of approximately 30.5, 22.5 and 47.5%, whilst zones 3-5 had sand, silt and clay particle sizes (%) of 
approximately 25.0, 20.0 and 55.0%.  

Source Zone Plant available water capacity 
(mm) 

Topographic Wetness 
Index 

Bulk density 
(Mg/m3) 

Lower limit 
(m/m) 

Drained upper 
limit (m/m) 

Slump features Pasture 
composition     

1 2 1 2 1 2    
1 84 5.9 1.04 1.06 0.301 0.220 0.333 0.356 Flat (1) Dock clumps  
2 150 7.1 0.89 1.02 0.257 0.221 0.374 0.333 Flat (0) Uniform 

Cores 3 150 6.7 1.04 1.06 0.257 0.264 0.328 0.321 Slump features 
(3) 

Uniform  

4 156 10.5 1.01 1.02 0.199 0.244 0.352 0.316 Slump features 
(4) 

Cocksfoot clumps  

5 161 9.5 0.94 1.01 0.261 0.236 0.358 0.314 Some slope (2) Uniform 
Online All 90 - 1.45 1.45 0.210 0.210 0.360 0.360 - -  

Table 4 
Summary of weather parameters from the on-site automatic weather station (AWS) and regional weather stations Bureau of Meteorology (BoM) and ‘SILO’ over the 
four cotton and two ryegrass seasons. The interquartile range indicates the spread of the data.    

Solar radiation (MJ/m2) Minimum temperature (◦C) Maximum temperature (◦C) Rainfall (mm)   

AWS BoM SILO AWS BoM SILO AWS BoM SILO AWS BoM SILO 

Cotton 2018/19 Median 25.7 23.6 23.7 15.4 17.0 17.0 30.8 31.0 31.2 0.0 0.0 0.0 
Interquartile range 8.8 9.1 8.8 5.1 4.9 4.7 6.3 6.4 6.3 0.0 0.0 0.0 
Maximum 35.2 31.5 34.5 21.3 22.5 22.3 39.9 40.0 40.3 41.4 22.2 34.0 
Minimum 7.6 4.9 6.5 2.3 5.2 5.4 20.5 21.0 21.2 0.0 0.0 0.0 

Cotton 2019/20 Median 21.3 21.1 19.1 16.1 17.2 17.6 29.3 30.0 30.3 0.0 0.0 0.0 
Interquartile range 11.9 11.4 11.3 8.1 8.6 8.2 7.0 6.4 6.9 0.0 0.0 0.0 
Maximum 35.1 31.5 32.7 22.1 23.1 23.3 38.1 40.7 40.9 97.6 115.2 68.1 
Minimum 4.1 4.6 4.9 -0.4 -0.4 0.4 13.2 13.2 13.3 0.0 0.0 0.0 

Cotton 2020/21 Median 21.0 21.1 18.7 14.3 16.4 16.4 29.0 29.3 29.7 0.0 0.0 0.0 
Interquartile range 10.5 10.9 10.3 6.7 6.4 6.0 6.2 6.6 6.8 0.2 0.2 0.1 
Maximum 32.5 31.5 30.9 22.2 22.8 22.7 40.1 40.3 40.7 41.2 48.8 31.4 
Minimum 3.3 3.9 5.0 2.1 -0.5 0.4 16.1 17.0 16.8 0.0 0.0 0.0 

Cotton 2021/22 Median 21.0 22.1 14.8 14.8 16.5 10.5 27.7 28.1 18.6 0.0 0.0 0.1 
Interquartile range 8.8 9.3 9.9 4.9 4.1 4.4 4.5 4.5 3.2 0.2 0.6 0.7 
Maximum 32.3 31.4 30.3 22.0 23.3 17.4 37.4 38.1 29.0 150.8 88.8 93.2 
Minimum 2.0 1.2 4.4 5.3 6.5 3.7 19.3 20.2 11.7 0.0 0.0 0.0 

Ryegrass 2020/21 Median 19.5 18.6 14.2 10.4 10.3 12.1 19.3 19.7 20.0 0.0 0.0 0.0 
Interquartile range 12.9 12.3 9.4 4.8 5.9 5.1 3.8 3.1 3.7 0.8 0.6 0.7 
Maximum 33.5 32.0 31.7 16.9 18.3 17.9 31.6 32.2 26.5 101.4 99.8 44.6 
Minimum 1.3 1.3 3.1 1.5 -1.2 5.2 11.9 13.3 14.6 0.0 0.0 0.0 

Ryegrass 2021/22 Median 20.7 19.7 14.2 12.3 11.8 12.1 20.9 21.1 20.0 0.0 0.0 0.0 
Interquartile range 14.3 13.6 9.4 5.0 5.6 5.1 4.3 3.8 3.7 0.4 0.2 0.7 
Maximum 33.5 31.9 31.7 18.4 19.2 17.9 28.3 28.3 26.5 33.6 26.4 44.6 
Minimum 2.0 1.9 3.1 5.2 2.6 5.2 15.2 16.0 14.6 0.0 0.0 0.0  
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the soil moisture change, effective irrigation applied and effective 
rainfall. The soil moisture change was the difference between the start 
and end simulated soil moisture over the season. Effective irrigation 
applied was calculated assuming 90% efficiency in the irrigation 
application (Smith et al., 2014). Multiple approaches are reported for 
calculating effective rainfall (e.g. Ali and Mubarak, 2017). For this 
application, effective rainfall was calculated from the rainfall recorded 
by the onsite automatic weather station, where for ryegrass, the first 
2 mm and over 25 mm were ineffective, and for cotton, the first 3 mm 
was ineffective and only 70% of the remaining rainfall was effective. 

The percentage differences in irrigation applied, yield and IWUI were 
compared with the uniform and VRI (fixed) irrigation strategies. Vari-
ations over fields were evaluated using standard deviations. Ryegrass 
yield was assessed from the average daily dry matter growth and dry 
matter yield. The average daily dry matter growth was calculated from a 
weighted average of positive changes in biomass between C-Dax sam-
ples. The dry matter yield was calculated by multiplying the average 
daily dry matter growth with the number of days between the first and 
last C-Dax samples in the irrigation season (155 days in 2020/21 and 
133 days in 2021/22). 

Fig. 2. Sample infield image analysis for evaluation of in-season growth and boll development differences in irrigation strategies using segmented plant and open 
bolls. Black pixels in segmented images indicate presence of detected plant or open boll pixels. 

A. McCarthy et al.                                                                                                                                                                                                                              



Agricultural Water Management 277 (2023) 108098

9

The weekly crop growth was assessed using the UAV for cotton and 
C-Dax for ryegrass to compare with changes in irrigation depths applied. 
The differences for each strategy in irrigation application depths, yield, 
IWUI and growth parameters, were also compared with the plant 
available water capacity, soil texture and/or elevation parameters (for 
ryegrass) to identify impacts from soil or slope properties on the per-
formance in each field and season. 

3. Results and discussion 

3.1. Prediction accuracy 

Table 5 presents the accuracy of APSIM for cotton simulation using 
weather and soil data from different sources. APSIM most accurately 
predicted lint yield using weather data from on-site AWS and soil data 
from infield soil cores, with R2= 0.733 and RMSE= 153.9 kg/ha using 
infield cores and R2= 0.749 and RMSE= 191.9 kg/ha using APSoil. 
Weather data source had a greater influence on simulation accuracy of 
lint yield than soil data source, with input from BoM being slightly more 
accurate than from SILO. From Table 3, the largest difference in weather 
parameters between weather data sources was for rainfall which may 
have caused this variation in simulation performance. 

APSIM most accurately predicted lint yield and canopy cover, and 
least accurately predicted soil-water content and fruiting parameters 
across weather and soil data inputs. The low accuracies in soil-water 
content may have been caused by the model not accurately reflecting 

the differences in water use or evaporation due to the row configuration 
being 1.5 m rather than 1 m which is generally used for Australian 
cotton. In addition, soil-water was measured daily and the model may 
have been unable to accurately reflect daily fluctuations as measured. 
The lower prediction accuracies for square and boll counts may have 
been caused the delay in the APSIM-simulated fruit development 
compared with the field measurements as reported in the literature. The 
soil texture information not being incorporated into APSIM may have 
contributed to inaccurate rate of soil-water extraction which led to 
differences in fruit development. However, APSIM may have repre-
sented soil texture information through the soil water related 
parameters. 

Table 6 presents the accuracy of APSIM for grazed ryegrass pasture 
simulation using weather and soil data from different sources to eval-
uate the most suitable data source for parameterisation. APSIM was 
most accurate using AWS or BoM weather data and soil core informa-
tion, with accuracy of dry matter being R2= 0.336–0.355 and 
RMSE= 295.3–331.1 kg/ha using infield cores and R2= 0.353–0.364 
and RMSE= 301.1–336.4 kg/ha using APSoil. For ryegrass, soil data 
source had a greater influence on simulation accuracy than weather data 
source, with similar performance across the different weather stations. 
This contrasts with cotton simulations where weather data source was 
more influential than soil data source. This may be caused by less 
variation in weather measurements, particularly solar radiation, be-
tween weather stations for the ryegrass site compared with the cotton 
site. APSIM could more accurately simulate height and dry matter than 

Fig. 3. Comparison of field measurements collected manually and estimated using automated analysis of unmanned aerial vehicle (UAV) imagery: (a) canopy cover; 
and (b) open boll area. Trendlines are shown in each figure for all seasons. 

Table 5 
Prediction accuracy (coefficient of determination, R2, and root mean square error, RMSE) for cotton simulations with regional weather stations (‘SILO’ and ‘BoM’) and 
on-site weather station (‘AWS’) and soil data sources (online soil database APSoil and infield soil core) for soil-water content, canopy cover, yield and square, green boll 
and open boll counts.  

Weather data source Soil data 
source 

Soil-water 
content (mm) 

Canopy cover 
(%) 

Square count/ 
m 

Green boll 
count/m 

Open boll count/m Lint yield 
(kg/ha) 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE 

SILO regional station Online 
database 

0.010  46.6  0.368  13.2  0.196  26.0  0.096  25.5  0.048  3.5  
0.554  

338.9 

Infield cores 0.030  40.0  0.427  11.9  0.257  23.2  0.104  24.1  0.039  4.2  
0.393  

361.0 

Closest Bureau of Meteorology (BoM) 
station 

Online 
database 

0.119  52.7  0.838  8.2  0.168  25.2  0.408  25.3  0.543  15.2  
0.469  

329.8 

Infield cores 0.103  47.7  0.864  7.0  0.301  20.6  0.452  21.8  0.546  14.6  
0.477  

221.1 

On-site automatic station (AWS) Online 
database 

0.114  52.0  0.800  9.1  0.223  25.0  0.452  25.4  0.585  13.2  
0.749  

191.9 

Infield cores 0.098  47.4  0.822  8.5  0.243  23.8  0.468  22.8  0.563  13.1  
0.733  

153.9  
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soil moisture. 
APSIM most accurately predicted dry matter and height and least 

accurately predicted soil-water content across weather and soil data 
inputs. As for the cotton simulations, the low accuracies in predicted 
soil-water content may have been caused by the highly fluctuating na-
ture of soil-water data over short time spans that is not well represented 
in the model. Overall, the coefficients of determination were lower for 
ryegrass simulations (overall highest R2=0.366) compared with cotton 
simulations. This may be caused by slight variations in accuracy around 

grazing events. 

3.2. Irrigation strategy performance – cotton 

Table 7 and Fig. 4 compare the performance of the uniform irrigation 
and VRI strategies in field trials for cotton, whilst Fig. 5 compares the 
irrigation applied by each strategy. During the 2018/19 season, the 
irrigation machine had insufficient system capacity to deliver the crop’s 
water requirements because of high temperatures and low rainfall. This 

Table 6 
Prediction accuracy (coefficient of determination, R2, and root mean square error, RMSE) for ryegrass simulations with regional weather stations (‘SILO’ and ‘BoM’) 
and on-site weather station (‘AWS’) and soil data sources (online soil database APSoil and infield soil core) for soil-water content, height and dry matter (‘DM’) 
assessments.  

Weather data source Soil data source Soil-water content (mm) Height (mm) Dry matter (kg DM/ha) 

R2 RMSE R2 RMSE R2 RMSE 

SILO regional weather station Online database 0.223 10.6 0.341 16.0 0.321 283.2 
Infield cores 0.252 4.9 0.351 15.8 0.359 301.5 

Closest Bureau of Meteorology weather station Online database 0.068 12.3 0.366 16.1 0.364 336.4 
Infield cores 0.307 5.4 0.356 16.0 0.355 331.1 

On-site automatic weather station Online database 0.035 8.4 0.356 17.3 0.353 301.1 
Infield cores 0.285 8.5 0.331 17.3 0.336 295.3  

Table 7 
Average and standard deviation of yield of cotton, total irrigation applied, irrigation water use index, gross production water use index and maximum canopy cover and 
open boll area of irrigation strategies over each season. The strategies compared are uniform irrigation (‘Uniform’), variable-rate irrigation using fixed map (‘VRI- 
Fixed’), variable-rate irrigation using soil-water sensors (‘VRI-SW’) and variable-rate irrigation using Model Predictive Control (‘VRI-MPC’). The days after sowing that 
the maximum canopy cover and open boll area occurred are also shown. The average and standard deviation of these values over the four replicates are shown. The 
effective rainfall was 196, 229, 228 and 396 mm for the 2018/19, 2019/20, 2020/21 and 2021/22 seasons, respectively.  

Strategy Season Yield (kg/ 
ha) 

Irrigation 
applied (ML/ 
ha) 

Irrigation water 
use index 
(bales/ ML) 

Gross production 
water use index 
(bales/ ML) 

Maximum 
canopy cover 
(%) 

Days after sowing 
to maximum 
canopy cover 

Maximum 
open boll area 
(%) 

Days after sowing 
to maximum open 
boll area 

Uniform 2018/ 
19 

1958.3 
± 74.9 

3.3 ± 0.0 2.6 ± 0.1 1.8 ± 0.1 58.8 ± 3.4 91 ± 3 5.8 ± 0.4 156 ± 0 

2019/ 
20 

2969.2 
± 139.3 

3.7 ± 0.1 3.6 ± 0.2 2.3 ± 0.1 83.0 ± 3.5 123 ± 10 11.7 ± 0.8 177 ± 0 

2020/ 
21 

1977.6 
± 60.5 

2.9 ± 0.1 3.0 ± 0.2 1.5 ± 0.1 66.5 ± 3.1 114 ± 4 6.3 ± 0.2 156 ± 4 

2021/ 
22 

1640.8 
± 35.2 

2.2 ± 0.1 3.3 ± 0.1 1.0 ± 0.0 54.1 ± 2.5 90 ± 7 6.1 ± 0.4 179 ± 0 

Average 2136.5 
± 77.5 

3.0 ± 0.1 3.1 ± 0.1 1.6 ± 0.1 65.6 ± 3.1 104 ± 6 7.5 ± 0.5 167 ± 1 

VRI- 
Fixed 

2018/ 
19 

1709.7 
± 181.7 

3.2 ± 0.1 2.4 ± 0.2 1.6 ± 0.2 60.4 ± 4.3 97 ± 5 5.5 ± 0.8 156 ± 0 

2019/ 
20 

3010.4 
± 120.8 

3.6 ± 0.1 3.7 ± 0.1 2.3 ± 0.1 81.2 ± 3.9 130 ± 8 11.9 ± 0.7 177 ± 0 

2020/ 
21 

2041.7 
± 16.8 

2.7 ± 0.1 3.3 ± 0.2 1.6 ± 0.0 66.1 ± 3.3 117 ± 0 6.5 ± 0.2 159 ± 0 

2021/ 
22 

1586.2 
± 124.2 

1.9 ± 0.1 3.7 ± 0.3 1.0 ± 0.1 54.1 ± 3.9 95 ± 8 6.1 ± 0.6 179 ± 0 

Average 2087 
± 110.9 

2.9 ± 0.1 3.3 ± 0.2 1.6 ± 0.1 65.4 ± 3.9 110 ± 5 7.5 ± 0.6 168 ± 0 

VRI-SW 2018/ 
19 

1910.2 
± 35.2 

3.3 ± 0.0 2.5 ± 0.1 1.7 ± 0.0 60.6 ± 3.8 90 ± 2 5.5 ± 0.2 156 ± 0 

2019/ 
20 

3020.7 
± 146.0 

3.6 ± 0.1 3.7 ± 0.2 2.3 ± 0.2 82.7 ± 3.6 123 ± 10 12 ± 0.9 177 ± 0 

2020/ 
21 

2010.3 
± 13.4 

2.8 ± 0.1 3.2 ± 0.1 1.6 ± 0.0 65.5 ± 3.2 114 ± 4 6.1 ± 0.1 159 ± 0 

2021/ 
22 

1672.3 
± 60.9 

1.8 ± 0.1 4.1 ± 0.3 1.1 ± 0.1 55.2 ± 2.0 83 ± 2 6.7 ± 0.2 179 ± 0 

Average 2153.4 
± 63.8 

2.9 ± 0.1 3.4 ± 0.2 1.7 ± 0.1 66.0 ± 3.2 102 ± 4 7.6 ± 0.3 168 ± 0 

VRI- 
MPC 

2018/ 
19 

1803.5 
± 73.4 

3.2 ± 0.1 2.5 ± 0.1 1.7 ± 0.1 56.5 ± 2.1 91 ± 3 5.0 ± 0.4 156 ± 0 

2019/ 
20 

3023.3 
± 159.3 

3.3 ± 0.1 4.1 ± 0.2 2.5 ± 0.1 85.1 ± 3.0 116 ± 10 12.0 ± 0.9 177 ± 0 

2020/ 
21 

2055.5 
± 105.4 

2.5 ± 0.1 3.7 ± 0.3 1.7 ± 0.1 69.9 ± 3.2 117 ± 0 6.5 ± 0.5 154 ± 5 

2021/ 
22 

1684.8 
± 56.0 

1.8 ± 0.1 4.1 ± 0.4 1.1 ± 0.1 56.0 ± 2.5 88 ± 7 6.7 ± 0.2 179 ± 0 

Average 2141.8 
± 98.5 

2.7 ± 0.1 3.6 ± 0.2 1.7 ± 0.1 66.9 ± 2.7 103 ± 5 7.5 ± 0.5 166 ± 1  

A. McCarthy et al.                                                                                                                                                                                                                              



Agricultural Water Management 277 (2023) 108098

11

led to the uniform irrigation strategy producing the highest yield in 
2018/19. During the 2021/22 season, the crop yield was significantly 
lower because of two flood events and cooler temperatures, leading to 
similar performance across all strategies. 

From Table 7, during the 2019/20 and 2020/21 cotton-growing 
seasons, the highest IWUI and GPWUI and lowest irrigation applied 
were achieved using the VRI-MPC approach, followed by VRI-SW, VRI- 
Fixed and uniform irrigation. From Fig. 4, over all seasons, compared 
with VRI-Fixed, VRI-MPC produced 4.9 % more yield with 5.6 % less 
water, VRI-SW produced 5.5 % more yield with the same water and 
uniform irrigation produced 4.7 % more yield with 7.2 % more water. 
Over 2019/20 and 2020/21, compared with VRI-Fixed, VRI-MPC pro-
duced 0.5 % more yield with 8.5 % less water, VRI-SW produced 0.5 % 
less yield with 1.7 % more water, and uniform irrigation produced 2.2 % 
less cotton yield with 5.3 % more water. There was no statistical dif-
ference in irrigation or yield between the strategies. 

From Fig. 4, over all cotton-growing seasons, compared with uniform 
irrigation, VRI-MPC produced 0.3 % more yield with 11.7 % less water, 
VRI-SW produced 0.9 % more yield with 6.1 % less water and VRI-Fixed 
produced 2.7 % less yield with 6.4 % less water. Over 2019/20 and 
2020/21, compared with uniform irrigation, VRI-MPC produced 2.8% 
more yield with 13.0 % less water, VRI-SW produced 1.8 % more yield 
with 3.3 % less water and VRI-Fixed produced 2.6 % more yield with 4.9 
% less water. The difference in irrigation application between the Uni-
form and the VRI-Fixed plots was significant at the 0.05 level. 

Overall, the strategies had a larger impact on irrigation applied 
rather than cotton yield. This suggests that with the water available, 
weather and management used from the trial site, the approximate 
maximum yield was achieved with all strategies. However, the VRI-MPC 
strategy reduced the irrigation applied to obtain this yield. This also 
indicates that the model optimisation used in VRI-MPC strategy can 
identify irrigation water savings without impacting yield. There is 

Fig. 4. Percentage differences in total irriga-
tion applied by each strategy for each cotton 
season (2018/19–2021/22) compared with: (a) 
uniform irrigation (‘Uniform’); and (b) variable- 
rate irrigation using fixed map (‘VRI-Fixed’); 
lint yield compared with: (b) uniform irriga-
tion; and (c) variable-rate irrigation using fixed 
map; and irrigation water use index (IWUI) 
compared with: (e) uniform irrigation; and (f) 
variable-rate irrigation using fixed map. The 
strategies compared are uniform irrigation 
(‘Uniform’), variable-rate irrigation using fixed 
map (‘VRI-Fixed’), variable-rate irrigation using 
soil-water sensors (‘VRI-SW’) and variable-rate 
irrigation using Model Predictive Control 
(‘VRI-MPC’).   
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potential for different strategies to be applied depending on the market 
value of cotton and water. There is also potential for a similar model- 
based irrigation strategy to include consideration of environmental 
impacts. 

From Fig. 5, in all seasons, similar irrigation depths were applied by 
all strategies until flowering. In the 2020/21 and 2021/22 seasons, 
irrigation applications were reduced after 80–100 days after sowing 
which was after peak bloom. Water stress during peak bloom to open 
bolls can cause young boll shedding but has less impact on yield than 
loss of early season bolls. In the 2018/19 and 2019/20 seasons, the VRI- 
MPC strategy also reduced irrigation applications at approximately 120 
days after sowing, which coincided with boll opening. Less water 
applied during peak boll opening may hasten boll opening, improving 
defoliation and reducing regrowth leading to increased yield and fibre 
quality. 

From Table 7, the maximum cotton canopy cover and open boll area 
were similar across all strategies. There was less variation in the date of 
maximum boll area than maximum canopy cover. The VRI-Fixed strat-
egy produced the highest maximum canopy cover which occurred 
slightly later than the other strategies. The VRI-SW strategy produced 
the highest maximum open boll area which occurred slightly later than 
the other irrigation strategies. 

Figs. 6 and 7 compare the irrigation, cotton lint yield and maximum 
canopy cover and open boll area in each plot and strategy with the plant 
available water content and silt content, respectively. These show the 
yield and maximum canopy cover and open boll area being positively 
correlated with the plant available water capacity and silt content. This 
is because silty soils hold the most available water to plants, and soils 
with higher capacity store water and enable extraction of water better by 
crops during dry growing seasons. No strong correlations were observed 

between irrigation, yield or cotton development and bulk density, sand 
or clay content. 

The performance of MPC may have been limited by the accuracy of 
APSIM. In particular, the delay in the simulated physiological responses 
may have led to the irrigation strategy inaccurately assessing growth 
stage and corresponding irrigation requirement. In addition, APSIM did 
not consider soil texture which was found to be highly influential on 
yield. There is potential for improvements in the performance of model- 
based management decisions with further development of the crop and 
soil prediction components in APSIM. The benefit of MPC may be larger 
in fields with more variation in soil properties which could be verified in 
further trials. There is potential for further work to identify guidelines 
for field selection with sufficient variability to implement the system. 

3.3. Irrigation strategy performance - ryegrass 

Table 8 and Fig. 8 compare the performance of the uniform irrigation 
and VRI strategies in field trials for ryegrass, while Fig. 9 compares the 
irrigation applied by each strategy. From Table 8, the highest IWUI and 
GPWUI for ryegrass and lowest irrigation applied were achieved using 
the VRI-MPC approach, followed by VRI-SW, VRI-Fixed and uniform 
irrigation. From Fig. 8, compared with VRI-Fixed, VRI-MPC produced 
8.5% more dry matter yield with 5.4% less water, VRI-SW produced 
7.4% less dry matter yield with 2.9% more water and uniform irrigation 
produced 6.2% more yield with 14.4% more water. The VRI-MPC 
strategy resulted in the highest water use efficiency, whilst the uni-
form irrigation strategy applied the most water. Compared with uniform 
irrigation, VRI-MPC produced 9.0% more dry matter yield with 16.9% 
less water, VRI-SW produced 9.2% less dry matter yield with 9.9% less 
water and VRI-Fixed produced 4.5% more dry matter yield with 12.4% 

Fig. 5. Cumulated irrigation depth applied for each cotton season in: (a) 2018/19; (b) 2019/20; (c) 2020/21; and (d) 2021/22.  
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less water. All VRI strategies increased yield and applied less water than 
the uniform strategy, and VRI-MPC and VRI-SW strategies produced the 
largest yield improvements. There was no statistical difference in irri-
gation or yield between the strategies. The difference in irrigation 
application between the Uniform and the VRI-Fixed plots was significant 
at the 0.05 level. 

From Fig. 9, the uniform strategy applied more water across all 
pasture growth stages. The VRI strategies applied lower irrigation 
depths from up to 5 days after grazing, after which the VRI-MPC strategy 
applied slightly less water compared with the other VRI strategies. It is 
expected the water savings using VRI-MPC occurred because water ap-
plications were reduced to coincide with the lower ryegrass water 
requirement after grazing. This reduced irrigation application, while 
still meeting the pasture’s needs, may have led to less water saturation 
resulting in improved growth. It is also noted that the VRI-MPC could 
meet the crop’s water needs despite the lower accuracies of APSIM 
simulations of ryegrass yield compared with cotton lint yield. This in-
dicates that the model could extract relative rather than absolute yield 
responses to different volume water. 

There were larger variations in responses between plots in the 
ryegrass than cotton trials. At the same time, the pasture grown slightly 
increased with higher Topographic Wetness Indices and slump features, 
potentially because in these locations the pasture was more protected 
which led to improved pasture cover. The pasture grown slightly 
decreased with higher sand and silt content, potentially because of the 
reduced water holding capacity of these soils which may have impacted 
the crop during dry periods of the season. However, thess trend were 
only slight because of low spatial variation in plant available water 
capacity between replicates. This suggests that the variations between 

plots were due to pasture compositions between paddocks (e.g. dock 
clumps) and/or slump features rather than water capacity. 

From Table 8, the highest dry matter yield was achieved using the 
VRI-MPC strategy, followed by VRI-SW, Uniform irrigation and VRI- 
Fixed. The uniform irrigation strategy had the highest average daily 
pasture growth rate, possibly caused by rapid growth after grazing from 
the higher irrigation depths, but then a reduction in growth caused by 
overwatering in later stages leading to reduced harvested herbage. 

The reported trial focussed on using the VRI techniques to adjust 
irrigation volumes on days of irrigation events at the commercial sites. 
There is potential for further productivity improvements if the strategies 
were applied to determine when to start irrigating, potentially based on 
soil moisture status, forecast rainfall and grazing events for pasture. In 
addition, the VRI-MPC strategy could be adapted to economic and 
environmental impact optimisation by linking with water, production 
costs, run-off or leaching parameters. 

The performance of MPC may have been limited by the accuracy of 
APSIM for predicting daily soil dynamics over short time spans. This 
may have influenced the ryegrass simulations more than the cotton 
simulations because of the shorter seasons. This is because the grazed 
pasture had a harvest event at each grazing which was optimised, whilst 
the cotton had only one harvest event and target for optimisation. In a 
commercial field implementation, the system may be limited by the 
need for daily grazing information. This would require either cattle 
trackers, infield pasture sensors or manual data input which are not 
standard in current systems. 

Fig. 6. Comparison of strategy performance with plant available water capacity in all cotton seasons for: (a) total irrigation applied; (b) cotton yield; (c) maximum 
canopy cover; and (d) maximum open boll area. Trendlines are shown in each figure for all seasons. 
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4. Conclusions 

Field trials have been conducted over four cotton seasons and two 

perennial ryegrass seasons to evaluate the accuracy of the yield pre-
diction of a biophysical model, and compare field performance of uni-
form and variable-rate irrigation strategies. The predicted yield from the 

Fig. 7. Comparison of strategy performance with silt content in all cotton seasons for: (a) total irrigation applied; (b) cotton yield; (c) maximum canopy cover; and 
(d) maximum open boll area. Trendlines are shown in each figure for all seasons. 

Table 8 
Average and standard deviation of pasture dry matter (‘DM’) grown, total irrigation applied, irrigation water use index and gross production water use index of 
irrigation strategies over each season. The strategies compared are uniform irrigation (‘Uniform’), variable-rate irrigation using fixed map (‘VRI-Fixed’), variable-rate 
irrigation using soil-water sensors (‘VRI-SW’) and variable-rate irrigation using Model Predictive Control (‘VRI-MPC’). The average and standard deviation of these 
values over the five replicates are shown. The effective rainfall was 290 and 187 mm 2020/21 and 2021/22 seasons, respectively. There was an average of 4.6 and 5.2 
grazing events in the 2020/21 and 2021/22 seasons, respectively.  

Strategy Season Pasture grown (t 
DM/ha) 

Average daily growth rate (kg 
DM/ha) 

Irrigation applied 
(ML/ha) 

Irrigation water use index (t 
DM/ML) 

Gross production water use index (t 
DM/ML) 

Uniform 2020/ 
21 

11.3 ± 1 72.7 ± 6.2 4.2 ± 0.1 2.7 ± 0.2 1.3 ± 0.1 

2021/ 
22 

7.5 ± 0.7 56.3 ± 5.6 6.1 ± 0.3 1.2 ± 0.1 1.0 ± 0.1 

Average 9.4 ± 0.8 64.5 ± 5.9 5.2 ± 0.2 2.0 ± 0.2 1.2 ± 0.1 
VRI- 

Fixed 
2020/ 
21 

10.2 ± 1.6 65.6 ± 10.4 3.6 ± 0.0 2.8 ± 0.5 1.3 ± 0.2 

2021/ 
22 

8.4 ± 0.6 75.4 ± 16.7 5.4 ± 0.2 1.6 ± 0.2 1.2 ± 0.1 

Average 9.3 ± 1.1 70.5 ± 13.5 4.5 ± 0.1 2.2 ± 0.3 1.3 ± 0.2 
VRI-SW 2020/ 

21 
9.6 ± 1 61.8 ± 6.3 3.5 ± 0.1 2.8 ± 0.3 1.3 ± 0.1 

2021/ 
22 

8.5 ± 0.8 64.0 ± 5.9 5.2 ± 0.2 1.7 ± 0.2 1.3 ± 0.1 

Average 9.0 ± 0.9 62.9 ± 6.1 4.3 ± 0.2 2.2 ± 0.3 1.3 ± 0.1 
VRI-MPC 2020/ 

21 
11.2 ± 1.2 72.4 ± 7.6 3.5 ± 0.1 3.2 ± 0.3 1.5 ± 0.2 

2021/ 
22 

8.4 ± 0.4 75.7 ± 16.2 4.9 ± 0.2 1.7 ± 0.1 1.3 ± 0.1 

Average 9.8 ± 0.8 74.1 ± 11.9 4.2 ± 0.2 2.4 ± 0.2 1.4 ± 0.1  
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biophysical crop model was most accurate using on-site weather data 
and soil core information with R2 = 0.733 and RMSE = 153.9 kg/ha for 
cotton, and RMSE = 127.4 kg/ha for ryegrass for all season. From the 
cotton field trials, variable-rate irrigation strategies had a larger impact 
on irrigation applied rather than yield, with Model Predictive Control 
led to 4.9% more yield with 5.6% reduced water application compared 
with standard VRI. Water savings occurred through reduced water after 
peak bloom and/or open boll physiological stages. For grazed ryegrass, 
the Model Predictive Control strategy led to 8.5% more yield with 5.4% 
reduced water application compared with standard VRI, potentially 
caused by reduced application after grazing events. The performance of 
all strategies was affected by plant available water capacity for cotton 
and slope for ryegrass. There is potential for the strategy performance to 
improve with more accurate models for new varieties, soil texture and 
short time span dynamics (e.g. soil moisture). Further work includes 

evaluating the Model Predictive Control strategy with economic and/or 
environmental impact optimisation, controlling irrigation event timing, 
and under a broader range of soil properties and weather conditions to 
identify conditions that provide economic return using the strategy. 
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pasture grown compared with: (c) uniform 
irrigation; and (d) variable-rate irrigation using 
fixed map; and irrigation water use index 
(IWUI) compared with: (e) uniform irrigation; 
and (f) variable-rate irrigation using fixed map. 
variable-rate irrigation using fixed map. The 
strategies compared are uniform irrigation 
(‘Uniform’), variable-rate irrigation using fixed 
map (‘VRI-Fixed’), variable-rate irrigation using 
soil-water sensors (‘VRI-SW’) and variable-rate 
irrigation using Model Predictive Control 
(‘VRI-MPC’).   
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