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Abstract

The present research is concerned with modelling dispersion of contaminants
and substances in turbulent boundary layers based on centre manifold approach.
The results of this dissertation are as follows. (i) We derived accurate transport
equations involving high-order spatial derivatives to describe the averaged tur-
bulent transport of tracers and contaminants along turbulent channel flows. The
central point of the model is the advection-diffusion equation supplemented by
no-flux boundary conditions on the bottom and the surface. In all realisations of
the flow analysed in this work, the layer has a universal velocity structure and
well-defined turbulent diffusion coefficient. The turbulence is assumed well devel-
oped, which provides the mechanism of fast cross-flow mixing and thereby justifies
the use of the centre manifold method (Mercer and Roberts, 1990). Using the
originally two-dimensional transport equations, we derived the one-dimensional
model in which the advection, diffusion, dispersion and higher-order coefficients
are calculated in terms of the parameters controlling the flow. (ii) We formulated
an analytical framework of the averaged transport of contaminants in turbulent
boundary layers over smooth and rough substrates; (iii) An advection-diffusion
equation is derived for the flow through urban canopies simulated by cubic arrays.
(iv) We justified the centre manifold approach by the direct comparison of the
numerical solutions of the averaged (1-D) and original (2-D) models using the
one-dimensional integrated radial basis network (1D-IRBFN) method.

In the 1D-IRBFN method a Cartesian grid is used to discretise the spatial do-
main. The method uses the integration instead of conventional differentiation,
which provides an effective way to implement derivative boundary conditions.
The numerical solutions of the derived 1-D equations obtained by the centre man-
ifolds are in a good agreement with those of the original 2-D advection-diffusion
equation. In particular, the models yield practically the same value of the velocity
of the point of maximum depth-averaged concentration along the channel.

We also compared the 1D-IRBFN solutions for the 1-D model with the solutions
of the original 2-D model by successively adding higher-order derivatives into
consideration such as the advection, diffusion and dispersion. A good conver-
gence was observed. The numerical results confirm that the effect of longitudinal
diffusion is negligible. We note that our work can be viewed not only as the
confirmation of the centre manifold approach by the 1D-IRBFN method but also
as a confirmation of the numerical method by the centre manifold theory.

In our analysis we considered two types of the velocity profile across the channel:
the classical logarithmic profile and, according to an alternative and more recent
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model, power profile. The power profile is based on a different similarity hypoth-
esis (Barenblatt, 2000) compared to the classical logarithmic theory. Arguably
the power law better fits experimental measurements of the velocity distribution
over the self-similar intermediate region adjacent to the viscous sublayer for a
wide variety of boundary layer flows. We separately investigated the dispersion
for both the logarithmic and power profile.

Further, we derived even higher-order partial differential equations governing the
longitudinal dispersion. From numerical viewpoint, including higher-order spatial
derivatives increases the accuracy of the averaged model derived by the centre
manifold approach, especially for very large Reynolds numbers.

We also constructed an averaged model of shear dispersion in the turbulent flow
above a canopy. The model contains as independent parameters the friction ve-
locity, total thickness of the flow, height of the canopy and frontal area density of
the canopy. The model is reduced by the centre manifold procedure to a univer-
sal one-dimensional model written in terms of the depth-average concentration of
the tracer. The advection and diffusion coefficients, governing the transfer in the
averaged model, are found in terms of the independent parameters. The used ap-
proach required lengthy derivations and produced quite cumbersome expressions.

However, we emphasize the following important aspect of all the derived one-
dimensional centre manifold models: they reveal a hidden property of the trans-
port process, namely the asymptotic one-dimensional law for the averaged con-
centration. This is a remarkable feature of the originally two-dimensional formu-
lation. Whether such a law exists and what form it might have is not obvious
beforehand. At the same time, from practical viewpoint, our results can be used
to calculate the distance travelled by the contaminant spill, and the size of the
spill; of course those can only serve as a tool for rough estimates.
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Chapter 1

Literature review and motivation

This chapter starts with the literature review of the present study in which we
briefly review the dispersion of contaminants in turbulent flows. Then, we review
the previous work on the use of the centre manifold approach in the studies of the
transport processes in an open channel. We continue with the dispersion of the
flow in the urban canopy layer with cube obstacles, followed by the review of the
radial basis function networks. Then, we present the motivation for and descrip-
tion of work proposed in the dissertation. Finally, the outline of the dissertation
is described.

1.1 Literature review

In the 1950s Taylor proposed the advection-diffusion equation describing the dy-
namics of the cross-sectional average concentration along a pipe. The equation
is valid at large times when spatial variations of the concentration along the pipe
become slow. He described the spread of a solute in laminar flow through the
pipe under the assumption that the velocity profile across the pipe is primarily
responsible for the spreading in the direction of the flow. In 1954, Taylor ex-
tended his analysis to turbulent flows. Before the Taylor’s work, we present some
general concepts of the flow following the book of Fischer et al. (1979).

1.1.1 General description of dispersion in laminar shear

flow

We want to derive an equation for longitudinal dispersion following Taylor’s anal-
ysis and apply it to longitudinal dispersion in an open channel. For this we assume
a laminar open channel flow with no-flux boundary conditions, that is, ∂C/∂y=0
at the top and bottom of the channel. Let U(y) represents the flow velocity in the
direction of x-axis decomposed by U(y) = u + u′(y), where u is the depth aver-
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age velocity (constant over the depth) defined by u = (1/h)
∫ h

0
U(y) dy and u′(y)

the deviation of the velocity (variable over the depth). The advection-diffusion
equation is given by

∂

∂t
(C − c′) + (u− u′)

∂

∂x
(C − c′) = D

[
∂2

∂x2
(C − c′) +

∂2c′

∂y2

]
, (1.1)

where c(x, y, t) is the contaminant concentration, the average concentration C =

(1/h)
∫ h

0
c(x, y, t) dy and the deviation from the average c(y) = C + c′(y). The

diffusion coefficient D is assumed to be constant (Fischer et al., 1979).

Let ξ = x− ut, τ = t represents a transformation to a coordinate system whose
origin moves at the mean flow velocity. Using the chain rule, the differential
operators become

∂

∂x
=
∂ξ

∂x

∂

∂ξ
+
∂τ

∂x

∂

∂τ

=
∂

∂ξ
∂

∂t
=
∂ξ

∂t

∂

∂ξ
+
∂τ

∂t

∂

∂τ

= −u ∂
∂ξ

+
∂

∂τ
.

As a result of substituting this transformation, Eq. (1.1) becomes

∂

∂τ
(C − c′) + u′

∂

∂ξ
(C − c′) = D

[
∂2

∂ξ2
(C − c′) +

∂2c′

∂y2

]
. (1.2)

Since the spreading along the flow direction is assumed to be largely due to the
change of the velocity in vertical direction (shear), we neglect the longitudinal
diffusion term in Eq. (1.2)

∂C

∂τ
+
∂c′

∂τ
+ u′

∂C

∂ξ
+ u′

∂c′

∂ξ
= D

∂2c′

∂y2
. (1.3)

A general solution for Eq. (1.3) is not available. Taylor assumed that there exists
a balance between the dominant factors, advection and diffusion, so that

u′
∂C

∂ξ
= D

∂2c′

∂y2
, (1.4)

with ∂c′/∂y = 0 at y = 0, h. This balance can be explained as follows: when
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the contaminant is introduced into the fluid flow with a cross-sectional average
velocity u along the x-axis, it is advected and distorted by the velocity shear and,
at the same time, the diffusion acts to smear out the contaminant cloud to uniform
state. After longer time, the contaminant cloud extends over a long distance in
the direction of x-axis. As a result of this combined action of the advection and
diffusion, the concentration variation becomes slow in x-direction. At this stage,
according to Taylor, the balance between the longitudinal advective transport
and cross-sectional diffusive transport would be reached. Mathematically, this
balance is represented by Eq. (1.4).

The discussion above illustrates that the longitudinal dispersion is due to the
gradients of concentration and velocity in the vertical. This means that we remove
the non-deviating terms from Eq. (1.3), including the term ∂C/∂τ which is the

quantity we want to find (Fischer et al., 1979). Taking the depth average ( 1
h

∫ h

0
dy)

will transfer Eq. (1.3) into

∂C

∂τ
+ u′

∂c′

∂ξ
= 0 , (1.5)

where ∂C/∂τ = −[∂c′/∂τ+u′(∂c′/∂ξ)] and the overbar denoting a cross-sectional
average. In this result, even if c′ is zero, the cross-term u′∂c′/∂ξ, which become
our diffusion term, may not be zero. Subtracting Eq. (1.5) from Eq. (1.4) gives

∂c′

∂τ
+ u′

∂C

∂ξ
+ u′

∂c′

∂ξ
− u′

∂c′

∂ξ
= D

∂2c′

∂y2
, (1.6)

which is a governing equation for the concentration deviations c′. If this equation
is solvable for c′, then we can substitute the solution into (1.5) to obtain the
required equation for C. Assume that the concentration is well mixed across the
flow and varies slowly, then

u′
∂C

∂ξ
≈ −u′∂c

′

∂ξ
.

Now one can neglect the two terms on the left-hand-side of Eq. (1.6), as a result
we have

∂c′

∂τ
+ u′

∂C

∂ξ
= D

∂2c′

∂y2
. (1.7)

Since the average of u′ is zero, then the effect of the source term u′(∂C/∂ξ) is also
zero. The cross-term D∂2c′/∂y2 represents mass transport due to the fluctuating
velocities, while the transport term u′∂C/∂ξ represents the action of the shear
velocity profile. If the source remains constant for a long time, then the solution
to the reduced equation (1.7) is the steady-state solution obtained by solving



4 Literature review and motivation

Eq. (1.4). This justifies Taylor’s discard of the first three terms in Eq. (1.3).

Downstream and after a long time has been elapsed of the dispersion process, the
vertical concentration fluctuations will reach a quasi-equilibrium which represents
the case of a constant dispersion coefficient. At this steady state (1.7) reduces
into

u′
∂C

∂ξ
= D

∂2c′

∂y2
. (1.8)

Solving (1.8) for c′ gives

c′(y) =
1

D

∂C

∂x

∫ y

0

∫ y

0

u′ dy dy + c′(0) . (1.9)

In the moving coordinate system, the advection mass flux is

M = u′(C + c′) . (1.10)

Applying the depth average, we obtain the total mass flux

M =
1

h

∫ h

0

u′(C + c′)dy

=
1

h

∫ h

0

u′c′dy

= u′c′ .

Note that the depth average of u′C is zero. Substituting the solution for c′ from
(1.9), the mass transport in the x-direction (using the moving coordinate axis) is
given by

M(τ) =
1

hD

∫ h

0

u′
∫ y

0

∂C

∂x

∫ y

0

u′ dy dy dy , (1.11)

where M(τ) represents the rate of input of mass at time τ and may vary with

time (mass units per unit time). The term
∫ h

0
u′c′(0) dy = 0 as

∫ h

0
u′ dy = 0.

Since ∂C/∂x is independent of y, then the depth average mass flux becomes

M(τ) = −DL
∂C

∂x
, (1.12)
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where

DL = − 1

hD

∫ h

0

u′
∫ y

0

∫ y

0

u′ dy dy dy .

This is a Fick’s law-type mass flux relationship. The expression for DL above
represents an analytical solution for the longitudinal dispersion coefficient, the
coefficient is only a function of the depth and the velocity profile. In the moving
coordinates system, the one-dimensional diffusion equation (1.5) for the cross-
sectional averages becomes

∂C

∂τ
= DL

∂2C

∂ξ2
. (1.13)

In the fixed coordinate system, the corresponding one-dimensional advection dis-
persion equation to (1.13) is given by

∂C

∂t
+ u

∂C

∂x
= DL

∂2C

∂x2
. (1.14)

Following the steps (1.1)–(1.13), Taylor (1953) analysed the dispersion of a solute
in laminar flow through a pipe. He assumed that the solute has been for long
enough time in the pipe so that the concentration is well distributed over the
cross section. The velocity profile is

u(r) = u0

(
1− r2

a2

)
, (1.15)

where a is the radius of the pipe and u0 the maximum velocity at the centre of
the pipe.

In cylindrical coordinates, the advection-diffusion equation governing the mean
concentration becomes

∂C

∂t
+ u0

(
1− r2

a2

)
∂C

∂x
= D

(
∂2C

∂r2
+

1

r

∂C

∂r
+
∂2C

∂x

)
. (1.16)

Transforming to a coordinate system moving with the mean flow velocity u0/2,
neglecting ∂2C/∂x2 and ∂C/∂t as before and setting z = r/a, the deviation in
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the concentration C can therefore be calculated from the equation

∂2C

∂z2
+

1

z

∂C

∂z
=
a2u0
D

(
1

2
− z2

)
∂C

∂x
. (1.17)

Solving Eq. (1.17) using the boundary condition ∂C/∂z = 0 at z = 1 gives

C = A

(
z2 − 1

2
z2
)
+ C (0) , (1.18)

where A is a constant (in the moving coordinates, x is stationary) calculated by
substituting Eq. (1.18) into Eq. (1.17),

A =
a2u0
8D

∂C

∂x
.

The mass transport of C across the section at x is

M = −2πa2
∫ 1

0

u0

(
1

2
− z2

)
Cz dz (1.19)

and the longitudinal dispersion coefficient is DL = a2u20/192D.

The work of Taylor has been followed by extensive research on dispersion: Aris
(1956) used “concentration moment” method and built a new basis for Taylor’s
analysis by ignoring restrictions on the concentration distribution. He also ar-
gued that the longitudinal dispersion by molecular diffusion is directly linked to
the variations in the velocity profile. The Taylor’s or Aris’s analysis which based
on Reynolds analogy has been extended by Taylor (1954) himself and by El-
der (1959) to describe longitudinal diffusion in the turbulent flow in a pipe or
an open channel. The analysis above of the dispersion in laminar flow, applies
equally well to turbulent flows; turbulent will be treated by allowing u and u′

in Eq. (1.1) to represent the ensemble mean and fluctuations, respectively, and
replacing D by the cross-sectional turbulent mixing coefficient of the turbulent
flow (Fischer et al., 1979). Through this research, the cross-sectional turbulent
mixing coefficient D(y) is regarded as a function of the cross-sectional position
y. For example, Eqs. (1.4) and (1.13) in the analysis of turbulent flow between
parallel plates become

u′
∂C

∂ξ
=

∂

∂y

[
D(y)

∂c′

∂y

]
(1.20)
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and

DL = −1

h

∫ h

0

u′
∫ y

0

1

D(y)

∫ y

0

u′ dy dy dy . (1.21)

According to Taylor (1954) the value of 10.06au∗ is calculated for the longitu-
dinal dispersion coefficient DL using the ‘universal’ distribution of velocity in a
pipe, u/u∗ = u0/u∗ − f(r/a), where a is the pipe radius, r the distance from the
central line, f the universal function, provided the flow is fully turbulent, and
u0 the maximum velocity at the centre of the pipe. Elder used the von Karman
logarithmic velocity profile, u = (u∗/κ) (1 + ln(y/h)), where κ = 0.4 is the von
Karman constant, y the distance from the wall and h the channel depth. The
longitudinal diffusion coefficient was found to be 5.9u∗h. Experimental investi-
gations conducted by Syare and Chang (1968) in laboratory channels confirmed
that the diffusion coefficient D is not constant, even for two-dimensional flow,
and its value varies from 3 to 13. Such a wide variation in the diffusion coefficient
is caused by the significant effect of the velocity shear across the flow. Simi-
lar approximations to those reported by Sayre were derived by Chatwin (1970,
1971) using an asymptotic series analysis for concentration dispersion based on
the assumption that the Fick’s law for diffusion is valid.

The study of Taylor and Aris was followed by extensive research on modelling
the dispersion in shear flows, with a variety of techniques used. For more de-
tails see Gill and Sankarasubramanian (1970), Fischer (1973), Gupta and Bhat-
tacharya (1983), Pagitsas et al. (1986), Smith (1987), Frankel and Brenner
(1989), Stokes and Bartonz (1990), Balakotaiah and Chang (1995), and Bryden
and Brenner (1996). As can be seen from these studies the longitudinal diffusion
is varied as it is sensitive to the distribution of the velocity profile. The authors
used various methods such as the integral moments, asymptotic series analysis,
multiple time scales analysis, probabilistic approach, and an eigenvalue method
employing Laplace transforms and Fourier transforms.

In order to obtain more accurate approximations some authors used two-layer
models. Chatwin (1973) divided the flow into a mean stream layer and a viscous
layer near bottom. Using a model with equal layers, both well mixed, Thacker
(1976) indicated that the bulk concentration satisfies a telegraph function. Smith
(1981, 1982) derived a delay-diffusion equation in a similar way to the two-layer
model and showed that the results depend on the way the layers are chosen. Chik-
wendu and Ojiakor (1985) built a two-zone model with a fast zone in the upper
part of the flow and a slow one near to the bottom. He averaged the concentra-
tion over the fast zone and slow zone separately and described the dynamics in
terms of the average concentrations. A system of coupled equations was derived
using empirical analysis for the averaged concentrations in each zone. In this
model, the Newton’s law was used to approximate the diffusion at the interface
between the zones. The centre manifold theory, which is our approach of choice
in this dissertation, has been used in many different areas of applied mathemat-
ics. For example, modelling thermohaline convection (Coullet and Spiegel, 1983),
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Couette-Taylor problem for the flow between two concentric rotating (Laure and
Demay, 1988; Renardy, 1988), the evolution of slowly varying waves (Lorenz, 1986;
Roberts, 1988) and in tearing mode instability in magnetohydrodynamics (Chen
and Morrison, 1992).

Coullet and Spiegel (1983) described a general centre manifold procedure to de-
rive ordinary differential equations to predict the solution of a system of partial
differential equations when the system is near critical. Roberts (1985) applied
the method of Coullet and Spiegel to some simple examples to show the exis-
tence of the centre manifold and corresponding evolution equation in terms of
the evolution of the amplitudes of some dominant modes. In 1988, Roberts gen-
eralised the method of Coullet and Spiegel for finite-dimensional centre manifolds
to a case of an infinite-dimensional centre manifold. Subsequently, Mercer and
Roberts (1990) applied the theory to describe the dispersion in a channel. In
addition to deriving the differential equations for the average concentration, they
also showed how to derive initial conditions for the model to achieve fast conver-
gence to solution of the averaged (centre manifold) equations. This model is not
only theoretically important because it is firmly supported by the centre mani-
fold theory, but is also practically useful as a tool to estimate the dimensions of
patches of emitted substances. In the model, the spreading appears as a combi-
nation of advection, diffusion and dispersion as leading factors, expressed by the
first, second and third spatial derivatives respectively. In addition to them and
unlike the model of Taylor, the model also includes higher-order derivatives.

Watt and Roberts (1995, 1996) designed a one- and two-zone model for an open
channel flow using the invariant and centre manifold technique. They designed the
appropriate initial conditions for each model based on the given initial conditions
of the real physical system using the geometric picture of the invariant manifold
theory so that the full and approximate systems are identical after a short time.
Using these corrected initial conditions, the authors derived a generalised Taylor
description of dispersion. Roberts and Strunin (2004) constructed a two-zone
model of contaminant dispersion in Poiseuille channel flow based on the centre
manifolds. They validated the analysis by direct computations of the original two-
dimensional equations. The authors also formulated modified initial conditions to
obtain a better agreement between the manifold solution and the real solution.
Yet, this work is best applicable to laminar flows than turbulent flows as the
diffusion coefficient was assumed independent of the velocity shear.

Strunin (2011) studied the turbulent dispersion in turbulent boundary layers in
an open channel using the centre manifold theory and took into account that the
turbulent diffusion coefficient, D(y), depends on the cross-sectional position y,
as it is linked to the shear. For the turbulent boundary layer, the author used
two velocity profiles, namely logarithmic and power. More details about these
two profiles is given in Section 2.1. Mei et al. (2003) and Georgiev et al. (2007)
also studied the case of the shear-dependent diffusion based on k − ε and k − ω
turbulent models using centre manifold approach. However, their approach has
a drawback of involving a number of empirical coefficients whose values were not
precisely known. Also, the boundary conditions in these models are not unique
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as pointed out by Strunin (2011).

1.1.2 A brief review of the flow in the urban canopy layer

In the present research, we plan to model shear dispersion of contaminants in
an urban canopy layer of cube arrays using centre manifold approach. Modelling
shear flow in urban canopies has recently received much attention due to increas-
ing concern worldwide for the health effects of high pollution concentrations in
cities (Sabatino et al., 2008). Several models are available to predict the wind
distribution within urban areas (Bentham and Britter, 2003; Coceal and Belcher,
2004; Sabatino et al., 2008).

In an equilibrium boundary layer flow the mean wind speed can be expressed in
terms of the roughness length, y0, the displacement height, d, and the surface
shear stress, τ0 = ρu2∗, according to the logarithmic velocity profile

u(y) =
u∗
κ

ln

(
y − d

y0

)
. (1.22)

Plate (1995) suggested that the parameters y0 and d are functions of λp and λf ,
respectively. The frontal area density of the obstacle is defined by λf = Af/Ad,
where Af is the frontal area of each obstacle exposed to the wind and Ad the
underlying surface area of an obstacle. The plan area density of the obstacle is
defined by λp = Ap/Ad, where Ap is the plan area of an obstacle as viewed from
above. For cubical obstacles, λ = λf = λp. Wieringa (1993) pointed out that
surface roughness length estimates obtained from wind profile analysis can have
large errors due to the method of analysis, best-fit errors and measurements errors,
quoted in (Plate, 1995). The displacement height d is defined as the main level of
momentum absorption by the rough surface (Thom, 1971; Raupach et al., 1980;
Jackson, 1981) at which the neutral wind profile in the inertial sublayer obeys
the semi-logarithmic profile (1.22) (Raupach and Thom, 1981).

Macdonald (2000) assumed a linear interpolation of the turbulence length scale
at the top of the canopy to the classical Prandtl length scale at the top of the
roughness sublayer and obtained a simple model for the velocity profile within and
above a canopy of cube obstacle arrays. He showed that for cube arrays with low
packing density the predicted exponential velocity profile provides an adequate
fit to the average velocity profile within the canopy. Although there exist more
sophisticated models which can be used as a base for describing turbulent canopy
flow, in the present research we use a more traditional one by Macdonald (2000) to
be analysed using centre manifold approach. The model of Macdonald modifies a
simple model originally derived by Cionco (1965) for mean wind velocity profiles
in vegetative canopy flows to be used for urban-type canopy. The model of
Macdonald for the average velocity profile in the urban canopy layer includes
three parts: the inertial sublayer, governed by semi-logarithmic profile Wooding
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et al. (1973) and defined in Eq. (1.22); the canopy layer in which the velocity
profile is exponential of the form

u(y) = uh exp
[
a(
y

h
− 1)

]
, (1.23)

where uh is the velocity at the top of the canopy, h the canopy height and the
attenuation coefficient a is a constant; and the roughness sublayer (terms like
transition layer and interfacial can also be used) located between the lower part
of the inertial sublayer and the upper part of the canopy layer. A detailed de-
scription of the velocity profile in the roughness sublayer is given in chapter 5.
The exponential velocity profile (1.23) was predicted by several investigators for
vegetative canopy flows (Cionco, 1965; Raupach and Thom, 1981; Yi, 2008). Mac-
donald (2000) used the exponential velocity profile above for modelling urban
canopy of cube arrays.

The estimation of the roughness height is an initial feature of many meteorologi-
cal and wind-engineering activities concerned with the dispersion of contaminants
and one of the reasons behind the large amounts of scatter in roughness data esti-
mated from velocity measurements (Macdonald et al., 1998). In the following we
present several methods that have been developed for estimating surface rough-
ness.

Perry and Joubert (1963) developed graphical procedure for determining y0 from
mean velocity profiles. They reviewed rough-wall boundary layers and showed
that the effect of roughness on the flow away from the wall can be accounted for
by using an equivalent viscosity depend only on the variables at the wall, such as
shear stress, fluid density, viscosity and the roughness size and geometry. Petersen
(1997) tested two analytical methods, those due to Lettau (1969) and Counihan
(1971), to estimate the surface roughness, y0, as a function of wind direction at
refineries. He measured the velocity profile in the wind tunnel over three re-
fineries and two uniform roughness configurations. The methods are statistically
evaluated by comparing their predictions against surface roughness length esti-
mates obtained from wind speed. Based on this evaluation, Petersen argued that
these two methods represent true estimates of the surface roughness length for
the modelled refineries and roughness configurations. The results also showed
that the Lettau method provides a better estimate of the roughness height y0 for
regular arrays of uniform obstacles from

y0 = 0.5hλ , (1.24)

within a factor of 0.5 − 1.5 at the 95% confidence interval, of surface roughness
length, where h is the obstacle height. The factor 0.5 in (1.24) corresponds to
the average drag coefficient of the individual obstacles (Kutzbach, 1961). Let-
tau suggested that the expression above is limited to canopies with low packing
density due to interaction between the obstacles and the development of a finite
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displacement height in the velocity profile.

Counihan (1971) derived an analytical expression for estimating the roughness
length, y0, from velocity profiles over regular arrays of cubic obstacles in a wind
tunnel, which can be expressed by

y0
h

= 1.8λ− 0.08 . (1.25)

Counihan argued that this expression is valid for 0.06 < λ < 0.15 and limited to
Counihan’s type of obstacles. Both Lettau’s and Counihan’s relation do not ac-
count for differences due to varying obstacle geometries and also for the nonlinear
reduction of y0/h with increasing area density of the obstacles.

Theurer, quoted in (Macdonald et al., 1998; Shao and Yang, 2005), approximated
y0 by the expression

y0
h

= 1.6λ (1− 1.67λ) . (1.26)

He suggested that this relation is limited to λ < 0.25. Bottema (1996, 1997)
presented an analytical model for estimating y0 and d regular building groups

y0
h

=
yref − d

h
exp

(
κ√
0.5λp

)
, (1.27)

where yref is a reference height, p the drag coefficient. The displacement height d
is estimated from the circulation zone volume. The roughness model proposed by
Bottema suggests a large sensitivity to obstacle pattern type and drag coefficient
p.

Recently, Macdonald et al. (1998) derived Lettau’s relation for estimating the
roughness height y0 from basic principles by assuming that the logarithmic veloc-
ity profile (1.22) is accurate down to the height of the obstacles with a displace-
ment height d. He proposed the following relationship:

y0
h

=

(
1− d

h

)
exp

[
−
(
0.5

p

κ2
β

(
1− d

h

)
λ

)−0.5
]
, (1.28)

where the displacement height d is given by d/h = 1+A−λ
1 (λ− 1). The numerical

factor 0.5 under the exponential in (1.28) was based on a combination of many
experiments, and corresponds to the average drag coefficient of the individual
obstacles (Macdonald et al., 1998). The best fit to wind-tunnel data is provided
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by the values of A1 = 4.43 and β = 1 for staggered arrays and A1 = 3.59 and
β = 0.55 for the square arrays of roughness obstacles. Macdonald obtained the
correct qualitative behaviour of the roughness height over the entire range of
area density. He suggested that the explicit appearance of the drag coefficient p
in Eq. (1.28) and the inclusion of the effect of the displacement height d which
account for the reduction of y0 with increasing obstacle density above a certain
maximum are the main improvements of correlation presented in his model over
previous models. The reduction of the roughness height y0 occurs at a packing
density of about λ = 0.20 (Macdonald, 2000).

Shao and Yang (2005) compared the estimated y0 and d with several wind data
sets, e.g., (O’Loughlin and Macdonald, 1964; Lettau, 1969; Counihan, 1971;
Theurer, 1973; Raupach et al., 1980; Liedtke, 1992; Hall et al., 1996), and found
that there is a reasonable agreement among the estimates of the relationships and
measurements for λ < 0.15. The relations of Lettau (1969) and that of Theurer
(1973) predict a monotonic increase of y0/h with λ and overestimate y0/h when
λ exceeds about 0.2. The model of Macdonald et al. (1998) fits well to the ob-
servations and reproduces the trend that y0/h drops off after peaking at about
λ = 0.15. In the proposed research we adopt the model of Macdonald et al.
(1998) to estimate the roughness height y0 and the displacement d in the semi-
logarithmic law (1.22).

1.1.3 A brief review on the numerical method of radial
basis function networks

In this dissertation, we use the 1D-IRBFN method for modelling dispersion
in a turbulent open channel flow based on centre manifold theory (see Chap-
ter 5). Kansa (1990a,b) investigated a collocation scheme based on multiquadric
(MQ) radial basis functions (RBF) for the numerical solution of partial differen-
tial equations (PDEs). Their numerical results showed that: (i) the MQ is an
extremely accurate approximation scheme for interpolation and partial deriva-
tive estimates for a variety of two-dimensional functions over both gridded and
scattered data; (ii) the MQ is more efficient than finite difference schemes which
require many operations to achieve the same degree of accuracy. The Kansa’s
approach is referred to as the conventional differentiated radial basis function
network (DRBFN). Radial basis function networks (RBFN) are broad enough for
universal approximation based on meshfree discretisation (Park and Sandberg,
1991).

As an alternative to the (DRBFN), Mai-Duy and Tran-Cong (2001a) used the in-
tegration instead of conventional differentiation to construct the RBF approxima-
tions (the IRBFN method) as a better accuracy procedure than the conventional
differentiated radial basis function network (DRBFN) method for the approxi-
mation of a function and its derivatives and for the solution of PDEs. Numerical
results showed that IRBFN achieves superior accuracy compared to DRBFN in
the approximation of both function and especially its derivatives (Mai-Duy and



1.2 Motivation 13

Tran-Cong, 2001a, 2003).

Mai-Duy and Tanner (2007) presented a one-dimensional integrated radial ba-
sis function network (1D-IRBFN) collocation method for the solution of second-
and fourth-order PDEs. The 1D-IRBFN method is constructed to satisfy the
governing DEs together with boundary conditions in an exact manner based on
a Cartesian grid. This method is much more efficient than the original IRBFN
method reported by Mai-Duy and Tran-Cong (2001a) and was further developed
for the simulation of fluid flow problems. Ngo-Cong et al. (2011) proposed the
one-dimensional integrated radial basis function network (1D-IRBFN) collocation
method for an accurate and efficient solution to fluid mechanics problems. The
significant high level of accuracy and efficiency has been achieved in terms of sev-
eral characteristics: (i) the Radial Basis Function network (RBFN) is a high-order
approximation; (ii) the use of integration instead of conventional differentiation
to construct the RBF approximations significantly improves the stability and
accuracy of the numerical solution as the integration is a smoothing operation
and is more numerically stable; (iii) Cartesian grids are used to discretise the
problem domains as generating a Cartesian grid is much simpler and easier than
generating a finite element mesh.

1.2 Motivation

An asymptotic evolution equation governing the cross-flow averaged concentra-
tion C of contaminants and other substances

∂C

∂t
= g1

∂C

∂x
+ g2

∂2C

∂x2
+ g3

∂3C

∂x3
+ . . . (1.29)

can be effectively used for prediction of the spreading of the substances in environ-
mental and industrial flows. We plan to analytically derive the coefficients g1, g2
and g3 responsible for the advection, diffusion and dispersion respectively. Some-
times all the coefficients n = 2, 3, ... are called dispersion coefficients in the sense
that they lead to stretching the signal in space. However, one can distinguish
between the diffusion mechanism (g2) and dispersion mechanism as such (g3) in
a more strict sense, according to the dissipation of Fourier modes of the signal
(via g2) and their propagation with different speeds (via g3). The coefficients
are deduced from the original non-averaged transfer equation as functions of pa-
rameters controlling the flow such as the Reynolds number R and von Karman
constant κ. Once deduced, the model (1.29) can be solved to get the information
about the size of clouds of contaminants. Even without solving it one can quickly
estimate the size just based on the values of the coefficients g1, g2 and g3. The
characteristic distance over which the substance propagates during some time T
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is

L1 = g1T due to the advection,

L2 = (g2T )
1/2 due to the diffusion,

...

Ln = (gnT )
1/n due to the nth − order transfer process.

(1.30)

One of the first attempts to construct such an equation was made by Taylor (1953,
1954). He designed an advection-diffusion equation for the averaged concentration
along the channel using semi-empirical arguments. The equation was applicable
for large times when spatial variations of the concentration along the channel
become slow.

A more accurate method of constructing such an equation, based on centre man-
ifold theory, was proposed in a series of works originated by Roberts. In one of
the first papers, Mercer and Roberts (1990) applied the centre manifold theory
to describe the dispersion in a laminar flow in a channel.

Roberts (1989) showed how to derive appropriate initial conditions for the centre
manifold model, so that the motion on the centre manifold and the motion along
the actual trajectory converge to each other at the fastest rate. We will discuss
this issue later in the present research.

Because of the viscosity, the flow near the channel bottom is slower. This led
some authors to an idea to divide the flow into two zones in order to obtain
more accurate description. In doing so, Chatwin (1973) divided the flow into the
mean stream layer and the viscous layer near the bottom. Smith (1981) derived
a delay-diffusion equation similarly to the two-zone model and showed that the
results depend on the way the zones are chosen. Chikwendu and Ojiakor (1985)
built a two-zone model with the fast zone in the upper part of the flow and a slow
zone near the bottom. They averaged the concentration over each zone separately
and described the dynamics in terms of the average concentration in each zone.
A system of coupled equations was derived using approximate arguments about
how coupling occurs. Namely, the Newton’s law was chosen to approximated
the diffusion through the interface between the zones. Watt and Roberts (1995)
designed zonal models using techniques closely related to the centre manifold
approach. Roberts and Strunin (2004) derived a two-zone model based on the
centre manifolds. They validated the analysis using direct computations of the
original two-dimensional equations.

Turbulent flows are more difficult to model than laminar flows because, firstly,
the turbulent diffusion coefficient depends on the velocity shear and, secondly,
the boundary conditions at the bottom may not be easy to formulate. Strunin
(2011) analyzed the transport of contaminants in turbulent boundary layers of
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two types. He considered the classical logarithmic velocity profile and, accord-
ing to an alternative, more recent model, power velocity profile. The flow was
assumed steady and variations of the contaminant concentration in space and
time were supposed slow. The dynamical structure of turbulence was taken into
account through the connection between the turbulent diffusion coefficient and
the velocity shear.

The ensemble-averaged concentration (see Fig. 1.1) of a passive substance, c(x, y, t),
is subject to the 2-D advection-diffusion equation

∂c

∂t
+ u(y)

∂c

∂x
=

∂

∂y

[
D(y)

∂c

∂y

]
, (1.31)

where u(y) is the mean velocity of the flow in the channel as a function of y and
D(y) the coefficient responsible for the turbulent diffusion across the channel.
The boundary conditions describe non-penetration through the bottom (y = 0)
and surface (y = h, the channel height),

D
∂c

∂y

∣∣∣∣
y=0

= D
∂c

∂y

∣∣∣∣
y=h

= 0 . (1.32)

We do not include the along-the-flow component of the diffusion, DL∂c
2/∂x2,

although this can be done without difficulty. Further in the research we show
that this term does not affect the averaged model. The diffusion coefficient can
be determined by taking into account that the turbulent momentum flux, u2∗, is
constant across the flow and proportional to the momentum gradient,

u2∗ = Dm(y)
∂u

∂y
, (1.33)

where Dm(y) is the turbulent diffusion coefficient. Following Barenblatt (2003),
the diffusion coefficient is represented by the Prandtl formula for the stress

D(y) = KDm(y) , (1.34)

where the proportionality coefficient K(Sc) may generally depend on the Schmidt
number. By using Eqs. (1.33) and (1.34) we obtain

D(y) = K
u2∗
∂yu

. (1.35)



16 Literature review and motivation

We will adopt different models for u(y) to be used in Eqs. (1.31) and (1.35).
Equations (1.31)–(1.35) form a self-consistent model which we will convert into
the equation for the depth-averaged concentration of contaminant, C, using centre
manifolds. We plan to analytically derive the coefficients g1, g2, g3 and some
higher-order coefficients responsible for the advection, diffusion, dispersion etc.
respectively.

In this research we focus on two types of turbulent flow: an open channel flow over
a smooth bottom and a flow above substantial roughness such as canopies, either
natural or artificial. In both cases, the flow has two dimensions: vertical and
horizontal (downstream). Everything is uniform in lateral direction (z-direction).
The contaminant is released into the flow instantaneously, and after a long time
the contaminant concentration varies slowly in space and time. Thus, all the
derivatives ∂m/∂xn are supposed small.

As we said, for the channel flow, we consider the classical logarithmic velocity
profile and power velocity profile. For the canopy flows, we propose a theoretical
framework of the dispersion near non-smooth objects with agglomerations of bluff
parts sitting on a relatively smooth surface. Examples of such flows can be the
flows through roughness in channels, near surfaces of aircrafts or ships, where
roughness is caused by attached devices, or through urban canopies.

Strunin (2011) used this approach to study the flow near a smooth substrate,
now we extend it to a more complex canopy flow. Using the centre manifold
approach, we transfer the original 2–D equation (1.31) to a 1–D ordinary differ-
ential equation resulting in some benefits. Firstly, we simplified the problem by
reducing the number of independent variables. Secondly, we gained a valuable
knowledge: we revealed a universal law, which governs the behaviour of solutions
evolving from different initial conditions (the universality can be proved).

The outcome of this model provides an accurate description of the cross-flow
averaged dispersion along the turbulent boundary layer. We also derive some
higher-order coefficients describing the averaged dispersion in a smooth chan-
nel. Furthermore, we compare the actual solutions for the average concentration
following from the averaged (1-D) model and the original (2-D) model.

1.2.1 Objectives of the present research

In the present research, (1) use the centre manifold approach to (a) derive an ad-
vection, diffusion, dispersion–and higher-order coefficients for the equation gov-
erning the averaged transport in a smooth channel, (b) formulate an analytical
framework of the averaged transport of contaminants in turbulent boundary lay-
ers near smooth and rough substrates, (c) derive an advection-diffusion equation
for the flow through canopies, and we (2) Justify the centre manifold approach
directly by comparing the numerical solutions of the averaged (1-D) and orig-
inal (2-D) models using the numerical one-dimensional integrated radial basis
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network(1D-IRBFN) method.

1.2.2 Outline of the present dissertation

In this study, each chapter is structured in a self-contend manner as follows.

Chapter 1 presents the literature review and motivation of the present study.
Here, we give a brief review on the transport of contaminants in an open channel
flow, and the use of centre manifold. Also, we discuss the canopy flow and the
numerical method of radial basis function network. We also outline the objectives
of the present research.

Chapter 2 includes some important concepts from fluid mechanics that we use
in the present research such as an advection-diffusion equation for the depth-
averaged concentration along an open channel, the classical logarithmic law and
the power law. Then, we describe the method for modelling of the shear dispersion
using centre manifolds.

Chapter 3 presents modeling dispersion for turbulent flows in an open channel
based on centre manifolds using 1D-IRBFN method. A direct numerical verifi-
cation of the 1D-IRBFN method with examples of the dispersion in laminar and
turbulent flows in an open channel with a smooth bottom are given. The shear
dispersion of contaminant based on centre manifold theory is successfully sim-
ulated by using the 1D-IRBFN method. The numerical solution of the derived
model obtained by centre manifolds for both laminar and turbulent flows are in
a good agreement with that of the original advection-diffusion equation.

Chapter 4 reports higher-order transport equations for turbulent channel flows.
The derived partial differential equations governs the longitudinal dispersion of
contaminants in a turbulent open channel flow. As a velocity profile we used the
classical logarithmic profile and power profile and a recent alternative model.

Chapter 5 presents an averaged model of shear dispersion in the turbulent flow
above the canopy using centre manifold method. We derive an advection-diffusion
equation for the averaged concentration, involving first and second derivatives
with respect to spatial coordinate. The coefficients of the equation are derived and
analysed against the parameters characterising the turbulent flow. In the limit
of large flow depths, the values of the coefficients coincide with those obtained
earlier for the flow over a smooth bottom.

Chapter 6 gives some concluding remarks from the present research.
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Figure 1.1 A sketch of the spreading of contaminant along the channel: under the velocity shear (left) and under
the shear plus cross-flow diffusion (right). The two factors make the picture look as if there is the along-the-flow
diffusion.



Chapter 2

Basic concepts: fluid mechanics
and centre manifold theory

In the present chapter we describe some important concepts from fluid mechanics
that we use in the present research. For example, an advection-diffusion equa-
tion for the depth-averaged concentration along an open channel, the classical
logarithmic law and the power law. Then, we give a framework of modelling the
shear dispersion using centre manifold theory.

2.1 Concepts from fluid mechanics

In the following subsections, the transport using diffusion and dispersion processes
in an open channel are described (Fischer et al., 1979). We also separately anal-
yse the dispersion for the logarithmic and power velocity profiles (Tennekes and
Lumley, 1972; Monin and Yaglom, 1975; Landau and Lifshitz, 1981; Barenblatt,
2000); of our particular interest is the case of very large Reynolds number.

2.1.1 Transport via diffusion

Consider an open channel flow in which the flow is assumed steady and the
contaminant concentration is transferred by diffusion alone, in the direction of
x-axis. Fick’s law states that the mass flux of a contaminant passing through
a cross-sectional area in a given direction is proportional to the gradient of the
contaminant concentration in that direction. Mathematically, the Fick’s law can
be expressed by (Fischer et al., 1979)

M = −D ∂c

∂x
, (2.1)
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where M is the contaminant mass flux, D the diffusion coefficient (hereafter
assumed constant) and c(x, t) the concentration of diffusing contaminant. In
addition to the Fick’s law, conservation of mass leads to a second relation between
the mass flux M(x, t) and concentration c(x, t),

∂c

∂t
+
∂M

∂x
= 0 . (2.2)

Substituting Eq. (2.1) into Eq. (2.2) gives

∂c

∂t
= D

(
∂2c

∂x2

)
. (2.3)

Eq. (2.3) is known as diffusion equation and describes how mass is transferred by
Fickian diffusion processes. Higher order diffusion equations can also be derived
for some processes. Consider an arbitrary control volume, V , located entirely
within the fluid. The fluid moves in or out of this volume through its surface, S.
The concentration flux of contaminant in the volume can be related to the mass
flux M across the surface by

∂

∂t

∫

V

c(x, t) dV +

∫

S

M(x, t) · n dS = 0 , (2.4)

where c(x, t) is the contaminant concentration per unit volume at the point x at
time t, M(x, t) the mass flux across the unit surface located at x and n the unit
vector normal to the surface element dS. Applying Green’s theorem to Eq. (2.4)
gives

∫

V

(
∂c

∂t
+∇ ·M

)
dV = 0 . (2.5)

Since the volume is arbitrary Eq. (2.5) becomes

∂c

∂t
= −∇ ·M . (2.6)

Eq. (2.6) is called the continuity equation. Substituting Eq. (2.1) into Eq. (2.6)
gives

∂c

∂t
= D∇2c . (2.7)
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In cartesian coordinates, Eq. (2.7) can be written as

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

)
. (2.8)

2.1.2 Transport via both advection and diffusion

Now suppose that the fluid itself moves with an average velocity u in the x
direction (the transport by the mean motion of the fluid is called advection) and
consider the transport via the advection and diffusion. The total rate of mass
transport is

M = uc+

(
−D ∂c

∂x

)
, (2.9)

where M is the mass flux, uc the advective flux and −D(∂c/∂x) the diffusive
flux. Substituting Eq. (2.9) into Eq. (2.2), we have

∂c

∂t
+

∂

∂x
(uc) = D

∂2c

∂x2
. (2.10)

In three dimensions the equation takes the form

∂c

∂t
+∇ · (cu) = D∇2c . (2.11)

Using the conservation of mass ∇ · u = 0, Eq. (2.11) becomes

∂c

∂t
+ u∇c = D∇2c . (2.12)

In cartesian coordinates, Eq. (2.12) is written as

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
= D

[
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

]
, (2.13)
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where u, v and w are the components of u in the x, y and z directions. The
advection-diffusion equation in the x direction is simply

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂x2
. (2.14)

Eq. (2.14) means that there is an advection transport in the same direction as the
diffusion and differs from (2.10) as the fluid is moving with a constant velocity
u in the x direction only (the gradients in the y direction are small). If the
diffusive transport in the x direction is smaller than the advection transport,
then Eq. (2.14) can be written as

∂c

∂t
+ u

∂c

∂x
= D

∂2c

∂y2
, (2.15)

where y is a transverse direction.

2.1.3 Illustrative example on an advection-diffusion equa-
tion

In the following, Burger’s equation is analytically solved as an example on an
advection-diffusion equation.

2.1.4 Analytical solution of Burger’s equation

Burger’s equation is a nonlinear advection-diffusion equation which has the form (Lo-
gan, 1994)

∂u

∂t
+ u

∂u

∂x
= D

∂

∂x

(
∂u

∂x

)
, (2.16)

where the term u∂u/∂x represents a nonlinear advection which is responsible
about the transport process and D∂/∂x(∂u/∂x) represents the diffusion or a
dissipative term that tends to smear out concentrations. Eq. (2.16) is analysed as
an illustrative example on solving an advection-diffusion equation. This equation
incorporates an advection and diffusion in the same direction. Consider

u(x, t) = U(y) such that y = x− ct (2.17)
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as twice continuously differentiable solutions of Eq. (2.16), where c is to be de-
termined. Substituting (2.17) into (2.16) gives an ordinary differential equation
for u = U(y) of the form

−cdU
dy

+ U
dU

dy
−D

d

dy

(
dU

dy

)
= 0 . (2.18)

Integrating Eq. (2.18), one obtains

−cU +
U2

2
−D

dU

dy
= A , (2.19)

where A is a constant of integration. Rewriting Eq. (2.19) as

dU

dy
= D−1

(
1

2
U2 − cU − A

)
. (2.20)

The constants A and c can be evaluated using the continuity of dU/dy. As a
result,

A = −u1u2
2

and c =
u1 + u2

2
. (2.21)

Eq. (2.20) therefore becomes

−2D
dU

dy
= (U − u1) (u2 − U) . (2.22)

Integrating (2.22) gives

y

D
=

2

u2 − u1
ln

(
u2 − U

U − u1

)
, (2.23)

where the constant of integration was chosen so that U(0) = c. Solving (2.23) for
U , one has

U(y) = u1 +
u2 − u1

1 + exp[(u2 − u1) y/2D]
. (2.24)

This is a traveling wave solution of Burger’s equation.
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2.1.5 Initial value problem for Burger’s equation

The initial value problem for Burger’s equation (Logan, 1994) can be written as

∂u

∂t
+ u

∂u

∂x
−D

∂

∂x

(
∂u

∂x

)
= 0, x ∈ R, t > 0, (2.25)

u(x, 0) = u0(x), x ∈ R . (2.26)

Using Cole-Hopf transformation, this problem can be reduced to the initial value
problem for the linear diffusion equation and then can be solved analytically.
Substituting u = dw/dx into (2.25) and integrating once, one obtains

∂w

∂t
+

1

2

(
∂w

∂x

)
−D

∂2w

∂x2
= 0 . (2.27)

By substituting w = −2D ln v, where v is a function, into (2.27), one deduces the
Cole-Hopf transformation

u = −2D

v

(
∂v

∂x

)
. (2.28)

Using Cole-Hopf transformation, Eq. (2.25) can be reduced into

∂v

∂t
−D

∂2v

∂x2
= 0 . (2.29)

Also, using (2.28) the initial condition (2.26) can be rewritten as

u(x, 0) = u0(x) = − 2D

v(x, 0)

(
∂v(x, 0)

∂x

)
.

Integrating yields

v(x, 0) = v0(x) = − exp

(
− 1

2D

∫ x

0

u0(y)dy

)
. (2.30)

The initial value problem (2.29)–(2.30) has the solution

v(x, t) =

(
1

4ΠDt

)1/2 ∫

R

v0(ξ) exp

[
−(x− ξ)2

4Dt

]
dξ . (2.31)
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Substituting (2.31) into (2.28), one gets

u(x, t) =

∫
R
[(x− ξ)/t] exp [−G(ξ, x, t)/2D]dξ∫

R
exp [−G(ξ, x, t)/2D] dξ

, (2.32)

where

G(ξ, x, t) =
(x− ξ)2

2t
+

∫ ξ

0

u0(y)dy .

Equation (2.32) represents the solution of the initial value problem (2.25)–(2.26)
associated with Burger’s equation.

2.1.6 Logarithmic velocity profile

Consider a steady turbulent flow in an open channel flow of depth h, driven by
horizontal pressure gradient. The coordinates x and y are directed along and
across the channel respectively. The y-component of the mean velocity is zero
everywhere if it is zero at both walls. Corresponding equations of motion for the
mean flow are

0 = −1

ρ

∂P

∂x
− d

dy
v1v2 + ν

d2u

dy2
, (2.33)

0 = −1

ρ

∂P

∂y
− d

dy
v22 . (2.34)

In Eq. (2.33) and Eq. (2.34), ρ is the fluid density, v1 and v2 are the longitudinal
and vertical components of the velocity fluctuations respectively, ν is the kine-
matic viscosity, overbar means ensemble-averaging, and u is the x-component of
the mean velocity. Integrating Eq. (2.34), we get

P

ρ
+ v22 =

P0

ρ
, (2.35)

where P0 is a function of x only. By assumption, v22 is independent of x, that is,
∂P/∂x is equal to dP0/dx. These gradients should be independent of x. Then,
integrating Eq. (2.33) from y = 0 to infinity, we obtain

0 = −y
ρ

dP0

dx
− v1v2 + ν

du

dy
− u2∗ , (2.36)



26 Basic concepts: fluid mechanics and centre manifold theory

where ρu2∗ is the stress at the surface and u∗ is the friction velocity. On the surface
y = h, the shear stress is zero: −ρv1v2 + µ(du/dy) = 0. Hence, when y = h,
Eq. (2.36) becomes

u2∗ = −h
ρ

(
dP0

dx

)
. (2.37)

Substituting the value of dP0/dx from Eq. (2.37) into Eq. (2.36), we obtain

−v1v2 + ν
du

dy
= u2∗

(
1− y

h

)
. (2.38)

Now, we non-dimensionalise Eq. (2.38) using h/u∗ as the time scale and h as the
length scale. Therefore, we have

−v1v2
u2∗

+
ν

hu∗

d(u/u∗)

d(y/h)
= 1− y

h
. (2.39)

Re-write Eq. (2.39) as

−v1v2
u2∗

+
d(u/u∗)

d(yu∗/ν)
= 1− ν

hu∗

yu∗
ν

. (2.40)

Let y+ ≡ yu∗/ν, η = y/h. Equations (2.39) and (2.40) become

−v1v2
u2∗

+R−1
∗

d

dη

(
u

u∗

)
= 1− η , (2.41)

−v1v2
u2∗

+
d

dy+

(
u

u∗

)
= 1−R−1

∗ y+ , (2.42)

where R∗ = hu∗/ν. When R∗ → ∞ , Eq. (2.41) reduces to

−v1v2
u2∗

= 1− η . (2.43)

The flow governed by Eq. (2.43) is called the core region (outer layer). As R∗ →
∞, but with y+ of order one, (2.42) becomes

−v1v2
u2∗

+
d(u/u∗)

d(yu∗/ν)
= 1 . (2.44)
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The flow governed by Eq. (2.44) is called the surface layer. Denote

u

u∗
= f(y+) (2.45)

and

−v1v2
u2∗

= g(y+) . (2.46)

The relations above are called the law of the wall. The system Eq. (2.44)-
Eq. (2.46) completed with the boundary conditions f(0) = 0 and g(0) = 0.
In the core region, we use the turbulent energy budget, which is

−v1v2
du

dy
= ε+

d

dy

(
−Pv2

ρ
+

1

2
q2v2

)
, (2.47)

where ε is the viscous dissipation of the turbulent energy q2, q is the mean energy
flux density. Under the flow circumstances considered the viscous transport of q2

is neglected. Referring back to Eq. (2.43), −v1v2 = u2∗ for all finite values of η
and q2 and P/ρ are of order u2∗, too. Then the right-hand side of Eq. (2.47) must
be of order u3∗/h, that is du/dy = u∗/h, since the Reynolds stress is of order u2∗.
If we stay above the surface layer to ensure that no other characteristic lengths
can complicate the picture, without any loss of generality, we state that

du

dy
=
u∗
h

(
dF

dη

)
, (2.48)

where dF/dη is the derivative of some unknown function of order one (Tennekes
and Lumley, 1972). Integrating Eq. (2.48) from η = 1 toward the wall, we have

u− u0
u∗

= F (η) , (2.49)

where u0 is the velocity of the main stream at infinity. Equation Eq. (2.49) is not
applicable at η → 0. We assume that the surface layer and the wall layer can be
matched. According to Eq. (2.45), the velocity gradient in the surface layer is

du

dy
=
u2∗
ν

(
df

dy+

)
. (2.50)
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Equating Eq. (2.48) and Eq. (2.50), and considering y+ → 0 and η → 0, we get

u∗
h

(
dF

dη

)
=
u2∗
ν

(
df

dy+

)
. (2.51)

Multiplying the above equation by y/h, we have

η

(
dF

dη

)
= y+

(
df

dy+

)
=

1

κ
, (2.52)

where κ is the von Karman constant. The inertial sublayer represents the part
of the flow where Eq. (2.52) is satisfied, since the left-hand side is a function of η
and the (RHS) is a function of y+. Thus, Eq. (2.52) can be integrated as

F (η) =
1

κ
ln η + const , (2.53)

f(y+) =
1

κ
ln y+ + const , (2.54)

such that the equations above are valid only if η � 1 and y+ � 1. Substituting
Eq. (2.45) into Eq. (2.54), one obtains the classical logarithmic profile (Tennekes
and Lumley, 1972; Monin and Yaglom, 1975)

u

u∗
=

1

κ
ln y+ +B . (2.55)

The logarithmic law (2.55) is not applicable at very short distances from the wall
and gives negative infinity on the wall, y = 0, since the effect of the viscosity then
becomes important, and cannot be neglected (Landau and Lifshitz, 1981).

In our analysis, we adopt a modelling assumption that, the entire flow from the
bottom to the surface is one inertial boundary layer. Using B = 5.5 and κ = 0.4
provides an agreement between the inner and outer regions of the developed
boundary flow and ensures that the layer has universal velocity structure (Niku-
radse, 1932; Keulegan, 1938). The constants B = 5.5 and κ = 0.4 were firstly
established by Nikuradse (1932) for hydraulically smooth pipe flow. Keulegan
(1938) adopted the same values of the constants for smooth open channels. Coles
(1956) showed that the law of the wall is well represented by equation (2.55)
when using κ = 0.4 and B = 5.1. Huffman and Bradshaw (1972) used the values
B = 5.0 and κ = 0.41. More recently, Steffler et al. (1985) adopted the values
B = 5.5 and κ = 0.4 and presented some turbulence measurements for uniform
flow in a smooth rectangular channel. They found that the velocity measure-
ments in the viscous sublayer agree well with the linear form of the law of the
wall.
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2.1.7 Power velocity profile

Barenblatt (1993, 2000, 2003) put forward an alternative theory of the bound-
ary layer. Again, consider stationary homogeneous shear in the direction of
the mean flow bounded by a rigid wall, e.g. channel flow. The mean veloc-
ity gradient, ∂u/∂y, in the inertial layer, suggested by dimensional analysis, is
∂u/∂y = u∗/yΦ(y+,Re), where Re is the Reynolds number, y+ = u∗y/ν the di-
mensionless coordinate, y the distance from the bottom, u∗ the friction velocity,
ν the kinematic molecular viscosity and Φ the dimensionless function. In the
1930s, von Karman neglected the viscous sub-layer by assuming that at y+ → ∞
and Re → ∞, the function Φ tends to a finite limit, so that Φ(y+,Re) = 1/κ.
This assumption leads to the classical logarithmic law of the form (2.55). This
law is Reynolds-number independent for the mean velocity over the cross-section
of a channel. Barenblatt argued that the assumption of von Karman is inade-
quate and showed that the influence of the viscosity and the Reynolds number
should be taken into account in the inertial layer. Hereby, an alternative theory
can be put forward based on the assumption that at large y+, the finite limit of
the function Φ does not exist. Instead, the function can be written in the form
Φ = γ(Re)y

α(Re)
+ . For the functions γ(Re) and α(Re), Barenblatt (2000) obtained

the Reynolds-number-dependent scaling law

Φ =
u

u∗
= (γ0 ln Re + γ1) y

ζ

lnRe
+ , (2.56)

where the constants γ0, γ1, and α are universal. By comparing Eq. (2.56) with
the most reliable data for turbulent pipe flows, he found

ζ =
3

2
, γ0 =

1√
3
, γ1 =

5

2
, (2.57)

with the Reynolds number defined as

Re =
ud

ν
. (2.58)

Here u is the average velocity across the pipe and d the pipe diameter. Substi-
tuting Eq. (2.57) and Eq. (2.58) into Eq. (2.56), we have

Φ =

(
1√
3
lnRe +

5

2

)
y

3
2 lnRe
+ .

Subsequently he extended this theory to turbulent boundary layers near walls or
other forms of rigid boundaries.
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2.2 Centre manifold theory

This section describes the basics of the centre manifold approach and mainly
follows Roberts (1989) and Mercer and Roberts (1990).

2.2.1 An introduction to centre manifolds

In this section we elaborate in more detail on the mathematical concept of centre
manifold and the associated approach to dynamical systems in general as de-
scribed in Carr (1981). In our dissertation it will be coupled with the theories of
turbulent boundary layer to study dispersion. Let

dx/dt = Ax+ f(x, y) ,

dy/dt = By + g(x, y) ,
(2.59)

be a dynamical system, where x ∈ Rn; y ∈ Rm; A and B are constant matrices;
and f and g are sufficiently smooth. Note that the notations in this section are
independent of those in other sections, for example, x and y have nothing to do
with the coordinates x and y in a channel.

Definition 1 A curve y = h(x), defined for |x| small, is called an invariant
manifold for the system Eq. (2.59) , if the solution x(t) of Eq. (2.59) evaluated
at x0 belongs to h(x), that is, y(t) = h(x(t)).

Definition 2 A smooth invariant manifold y = h(x) of the system above is said
to be a centre manifold of the origin, h(0) = 0 (h′(0) = 0), and the requirement
that the spectrum of A is pure imaginary and the spectrum of B has real-part
negative and bounded away from zero.

The smooth functions, f and g, satisfy f(0, 0) = 0, f ′(0, 0) = 0, g(0, 0) = 0 and
g′(0, 0) = 0, where g′ is defined to be the Jacobian matrix of g. In case that f
and g are both zero, the system Eq. (2.59) has two invariant manifolds, stable
manifold, x = 0, and centre manifold, y = 0. As t → ∞, the solutions of the
system tend exponentially fast to solutions of dx/dt = Ax. This illustrates how
the centre manifold reduces the dimension of the dynamical system, that is, we
only need to study the evolution of a first order equation on an invariant manifold.
The situation is more complex, if f and g are non-zero. Below we present some
results of the centre manifold theory (Carr, 1981; Watt and Roberts, 1995) which
enable us to solve the system for the centre manifold.
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Theorem 1 The system Eq. (2.59) has a centre manifold y = h(x) such that |x|
is small, h is C2, and the evolution on the centre manifold is governed by the
n-dimensional system

du/dt = Au+ f(u, h(u)) , (2.60)

where u is a new variable to parameterise the location of the system on the
centre manifold. The following result includes what is needed to determine the
asymptotic behaviour of small solutions of (2.59).

Theorem 2 (1) If the zero solution of Eq. (2.60) is stable, asymptotically sta-
ble, or unstable, then the zero solution of Eq. (2.59) is stable, asymptotically
stable, or unstable.

(2) If the zero solution of Eq. (2.60) is stable and Eq. (2.59) has the solution
(x(t), y(t)) with small (x(0), y(0)), then as t → ∞, there exists a solution
u(t) of Eq. (2.60) such that

x(t) = u(t) + O(exp(−γt)) and y(t) = h (u(t)) + O(exp(−γt)) , where γ > 0
is a constant.

Now, we substitute y(t) = h(x(t)) into the second equation in Eq. (2.59), to get

h′(x)[Ax+ f(x, h(x))] = Bh(x) + g(x, h(x)) . (2.61)

The equation Eq. (2.61) together with the conditions h(0) = 0, h′(0) = 0 form a
system to solve. Define M(φ(x)) = φ′(x)[Ax+f(x, φ(x))]−Bφ(x)−g(x, φ(x)) in
a neighborhood of the origin for C1-functions, φ : Rn → Rm. The centre manifold
can be approximated to any degree of accuracy according to the next result.

Theorem 3 Let φ be a C1-function defined in a neighborhood of the origin Rn

into Rm such that φ(0) = 0 and φ′(0) = 0. If M(φ(x)) = O(|x|q), as x → 0 and
q > 1, then |h(x)− φ(x)| = O(|x|q), as x→ 0.

As an illustration of the theorems above, consider the following example (Carr,
1981).

dx/dt = xy + ax3 + by2x ,

dy/dt = −y + cx2 + dx2y .
(2.62)
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The system Eq. (2.62) has a centre manifold y = h(x) [by theorem(1)]. Using the
second equation of the system above we have

M(φ(x)) = φ′(x)[xφ(x) + ax3 + bxφ2(x)] + φ(x)− cx2 − dx2φ(x) .

If φ(x) = cx2 and M(φ(x)) = O(x4), then h(x) = cx2 + O(x4), [by theorem (3)].
Therefore, the equation which governs the flow [by theorem (2)] is

du/dt = uh(u) + au3 + buh2(u) = (a+ c)u3 +O(u5) .

Then the zero solution of Eq. (2.62) is asymptotically stable if a + c < 0 and
unstable if a+ c > 0. If a+ c = 0, then we have to find a better approximation to
h. Let a+ c = 0. Put φ(x) = cx2+ψ(x), where ψ(x) = O(x4). Thus, M(φ(x)) =
ψ(x) − cdx4 + O(x6). Therefore, φ(x) = cx2 + cdx4, then M(φ(x)) = O(x6).
Hence, h(x) = cx2 + cdx4 + O(x6), [by theorem (3)]. The solution on the centre
manifold is governed by

du/dt = uh(u) + au3 + buh2(u) = (cd+ bc2)u5 +O(u7) .

The zero solution of Eq. (2.62) is asymptotically stable if cd+bc2 < 0, and unstable
if cd+ bc2 > 0. If cd+ bc2 = 0, then we have to obtain a better approximation to
h and so on.

2.2.2 Initial conditions for the averaged centre manifold
model

The centre manifold theory states that if the linearised state of a continuous-time
dynamical system has n zero eigenvalues and m eigenvalues with negative real
parts only, then there is a locally defined smooth n-dimensional invariant manifold
such that all nearby trajectories of the system are exponentially quickly attracted
to the manifold. The theory applies in the locale of a fixed point, when linearised
about the fixed point. This manifold is called the centre manifold. We refer to
the book of Carr (1981) for a detailed description. Below is a simple illustrative
example of a centre manifold. Let c0(x, y) be a given initial concentration, we
want to find out the appropriate initial values of the depth-averaged concentration
C for the centre manifold model (1.29) in order to ensure a long term agreement
between the manifold model and the physical system. We consider the following
dynamical system from Roberts (1989) to explain the mechanism of the centre
manifolds and to demonstrate how the initial conditions for the centre manifold
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are derived.

dx/dt = −xy ,

dy/dt = −y + x2 − 2y2 .
(2.63)

The linearised state of the system (2.63), dx/dt = 0, dy/dt = −y, is characterised
by the zero eigenvalue for the slow variable x and the negative eigenvalue, −1,
for the fast variable y. It can be shown (Mercer and Roberts, 1990) that all
trajectories of (2.63) are attracted to the parabola

y = x2 (2.64)

called the centre manifold (see Fig. 2.1). If it was not for the nonlinear perturba-
tive terms x2 − 2y2, the variable y would quickly fall onto the equilibrium state
y = 0 (the analogue to quickly decaying vertical non-uniformities under diffusion)
while x would stay in the neutral state x =const (analogue of the neutral state of
constant concentration). For the full system (2.63) the trajectories drop onto the
manifold or attractor, (2.64), on which the perturbation, x2 − 2y2, is comparable
to the linear term, −y. On the manifold the motion is slow and described by
dx/dt = −xy, where

y = x2 (2.65)

so that

dx/dt = −x3 . (2.66)

On the manifold the variable y depends on t via x to which it is connected by
(2.64).

For the dynamical system (2.63), Roberts (1989) described a procedure to es-
timate the starting point on the manifold to best match the long term behavior
of a trajectory of the system (2.63) which is initially at the point (x0, y0) off the
centre manifold. Following Roberts, the evolution on a particular trajectory may
be written as

x =
[
1/x20 + 2(t+ τ)− τe−t/x20

]−1/2
+O(ψ2) , (2.67)

where τ = (y0/x
2
0 − 1) exp (y0/x

2
0 − 1) and ψ has a constant value, which charac-

terises the trajectory. Following Roberts (1985), the equations for the trajectories
can be written in the form

ψ(x, y) =
( y
x2

− 1
)
exp

(
1 + 2y

2x2

)
, (2.68)
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Figure 2.1 Attraction of the trajectories to parabola b = a2 is system (2.63) (Strunin, 2011).

where ψ has a constant value, which characterizes the trajectory. The trajectories
off the centre manifold, ψ is small, are given as

y = x2 + ψx2 exp

[
−
(

1

2x2
+ 1

)]
+O(ψ2) ,

such that the evolution of the system on this trajectory is governed by

x = [C + 2t− 2ψ exp (−1 − C − t)]−1/2 +O(ψ2) , (2.69)

where C is a constant. The constant C is found to be C = 1/x2 + 2τ where
τ = (y0/x

2
0 − 1) exp (y0/x

2
0 − 1), taking into account that the system is initially

at the point (x0, y0) with t = 0. Eq. (2.67) is found by substituting the value of C
into Eq. (2.69). If the trajectory is on the centre manifold, that is y0 = x20, then

τ = 0 and ψ = 0 and the evolution on the real trajectory, x = [1/x20 + 2t]
−1/2

, is
identical to the centre manifold solution. If the trajectory (2.67) is initially off
the centre manifold, then there are two effects on the long term evolution of the
system: the effect of the exponential term −τe−t/x20, which is negligible as time
increases, and the effect of the time shift τ . Roberts argues that the time shift τ
is a significant long term effect of initially being off the centre manifold. In order
to obtain quick convergence, he calculated an initial point different to x0, say s0,
on the centre manifold which best corresponds to the full system initially being
at a point (x0, y0) off the centre manifold. Since the values of x0 and y0 are small
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then τ ≈ (y0/x
2
0 − 1). Eq. (2.67) can be rewritten

x ≈
[
1/x20 + 2t+ 2τ

]−1/2
+O(ψ2) . (2.70)

Now denote 1/x20 + 2τ as 1/s20. This defines the point on the centre manifold,
which is initially at x = s0 and moves so that the actual motion approaches
it exponentially quickly. As a result, the solution on the centre manifold, x ≈
[1/s20 + 2t]

−1/2
, converges exponentially quickly to a solution off the centre mani-

fold x = [1/x20 + 2t− τe−t/x20]
−1/2

+O(ψ2), where s0 = x0 −x0(y0−x20) +O(ψ2).

If the trajectory off the centre manifold starts at (x0, y0), then the x-solution will
converge to the x-solution for the trajectory that starts at y = x20 on the manifold
after a sufficiently large time. Rewrite Eq. (2.70)

x ≈ 1√
2t

[
1 +

2τ + 1/x20
2t

]−1/2

+O(ψ2)

and expand into the Taylor’s series

x ≈ 1√
2t

[
1− 2τ + 1/x20

4t
+ . . .

]
+O(ψ2) . (2.71)

In the limit t → ∞, x → 1/
√
2t asymptotically. See that (2τ + 1/x20)/t is the

relative discrepancy between 1/
√
2t and the (RHS) of Eq. (2.71); it decreases

with time. Therefore, the long term evolution of the system (2.63) started off the
centre manifold still converges to the centre manifold only not as fast as when it
started from x = s0. It is a matter of how long we are willing to wait until the
motion approaches the centre manifold. In our problem of dispersion we wait for
long enough time for the approach to occur. Thus, we choose not to construct a
special initial condition that is similar to x = s0 in the example above, although it
undoubtedly makes the convergence faster. Note that Chatwin (1970) and more
recently Roberts and Strunin (2004) did construct such an initial condition in
their dispersion problem.

In the next sub-section, the mechanism of centre manifolds is formalized in the
case of dispersion.

2.2.3 Dispersion in shear flows with longitudinal diffusion
neglected

Consider the flow in a channel. There are two competing factors that govern the
distribution of contaminants: (i) the cross-flow diffusion which tends to quickly
spread the contaminant in the vertical direction and ensure smooth distribution
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in this direction; and (ii) the velocity shear which creates non-uniformity of the
concentration across the channel, thus acting as an opposite factor to the diffusion.
As a result of simultaneous action of these competing factors, the contaminant
evolves relatively slowly in space and time reaching a regime when the centre
manifold approach can be applied. Let us show, following Mercer and Roberts
(1990), how this problem is formulated mathematically. Performing the Fourier
transformation of Eq. (1.31) one gets

∂ĉ

∂t
= L[ĉ]− iku(y)ĉ , (2.72)

where ĉ(y, k, t) is the Fourier transform defined by ĉ = 1
2π

∫∞
−∞ exp(−ikx)c dx.

The linear operator L[ĉ] = ∂
∂y
[D(y) ∂ĉ

∂y
] expresses the cross-flow turbulent diffu-

sion and has a discrete spectrum of eigenvalues. One of the eigenvalues is equal
to zero; it corresponds to the neutral eigenmode ĉ = const, that is an arbitrary
constant level of concentration across the channel. All the other eigenvalues
are negative; they correspond to decaying non-uniformities of the concentration
across the channel due to the diffusion provided that there is no flux through the
boundaries. Consider a simple case for which the diffusion coefficient D(y) is con-
stant (Strunin, 2011). The diffusion equation for this case, ∂ĉ/∂t = D(∂2ĉ/∂y),
complemented by the boundary conditions (1.32) gives ĉ = eλt cos(ky), where the
spectrum of eigenvalues λm is discrete, λm = −Dk2m, km = πm/h, m = 0, 1, ...
. All λm are negative except for λ0 = 0 corresponding to the neutral eigenmode
ĉ = const. The negative eigenvalues, λm, correspond to decaying non-uniformities
of the concentration across the channel due to the diffusion. The case of non-
constant diffusion coefficient, D(y), is just a generalization of this case. After
sufficiently long time, variations of the concentration along the channel, that is
in x direction, become slow; accordingly we suppose that the wave number k is
small. We add to Eq. (2.72) the trivial equation ∂tk = 0, just in order to pre-
tend that k is a variable and, consequently, the shear-associated advection term
−iku(y)ĉ in Eq. (2.72) is nonlinear. This is just a little trick aimed at treat-
ing the advection term as a nonlinear perturbation in similarity to x2 − 2y2 in
Eq. (2.63). Then the dynamics exponentially quickly evolve to a low-dimensional
state, where each of the fast modes depends on t via the slow neutral mode.

Now, we need to explain how slow the variations should be (in other words, how
small the wave number “k” should be, as “k” is the inverse of the typical length
of the variation). Let us treat the advection (shear) term in the basic equation
(2.72) as a perturbation with respect to the vertical diffusion. formally, we can
even treat the wave number k as a variable satisfying the trivial equation ∂tk = 0.
Thus, formally the term kĉ becomes “nonlinear perturbation”. We suppose that
it is small compared to the vertical diffusion, giving kU � D/h2, where U is
the characteristic mean velocity of the flow. From here we evaluate how small
the wave number should be: k � D/(h2U). One can obtain the same relation
realising that the characteristic time of vertical mixing, h2/D, should be much
smaller than the characteristic time required for the substance particles to pass
the horizontal distance 1/k with the velocity U , that is the time 1/(Uk). This
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yields h2/D � 1/(Uk), from where k � D/(h2U) as before.

As a measure of the “amplitude” of the neutral mode we choose the depth-
averaged concentration, Ĉ. As a result, we have

ĉ = ĉ(Ĉ, k, y) such that
∂Ĉ

∂t
= G(Ĉ, k) . (2.73)

The first part of Eq. (2.73) is analogous to (2.65) and the second part analogous
to (2.66). With Eq. (2.73) taken into account, equation (2.72) becomes

L[ĉ] =
∂ĉ

∂Ĉ
G+ ikuĉ . (2.74)

Taking into account that the original problem is linear in ĉ, we assume asymptotic
expansion for ĉ and G which is also linear in Ĉ, that is,

ĉ =
∞∑

n=0

cn(y)(ik)
nĈ , G =

∞∑

n=1

gn(ik)
nĈ . (2.75)

The definition of Ĉ as the depth-averaged implies the conditions

1

h

∫ h

0

c0 dy = 1 ,

∫ h

0

cn dy = 0 for n = 1, 2, . . . (2.76)

Substituting Eq. (2.75) into Eq. (2.74) and collecting similar terms in powers
of the small parameter k we obtain a sequence of equations for the unknown
functions cn(y) and coefficients gn,

L[c0] = 0 , (2.77)

L[cn] =

n∑

m=1

cn−mgm + u(y)cn−1 for n = 1, 2, . . . (2.78)

Integrating Eq. (2.78) over the depth we get D ∂c
∂y

∣∣∣
y=h

−D ∂c
∂y

∣∣∣
y=0

= gn+u(y)cn−1 ,

where the over-line means depth-averaged. Once the fluxes through the bound-

aries are zero, D ∂c
∂y

∣∣∣
y=h

= D ∂c
∂y

∣∣∣
y=0

= 0, then

gn = −u(y)cn−1 for n = 1, 2, . . . (2.79)

Successively we can calculate gn and cn for any desired n. Considering only three
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leading terms in the G series in Eq. (2.75) gives a relatively short approximate
version of the averaged model

∂Ĉ

∂t
= g1(ik)Ĉ + g2(ik)

2Ĉ + g3(ik)
3Ĉ + . . . (2.80)

Now, applying the inverse Fourier transform to (2.80), we obtain the (1-D)
advection-diffusion equation (1.29) for the averaged concentration. In applying
the inverse Fourier transform to Eq. (2.80), we are band-limited to small enough
wave number for which the centre manifold approach is useful. Further terms in
this equation will also be of interest to us in the proposed research.



Chapter 3

Modeling dispersion in laminar
and turbulent flows in an open
channel based on centre
manifolds using 1D-IRBFN
method

This chapter presents a direct numerical verification of the centre manifold method
with examples of the dispersion in laminar and turbulent flows in an open chan-
nel with a smooth bottom. The one-dimensional integrated radial basis function
network (1D-IRBFN) method is used as a numerical approach to compute solu-
tion of the original two-dimensional (2-D) advection-diffusion equation. The 2-D
solution is depth-averaged and compared with the solution of the 1-D equation
derived using the centre manifolds. The numerical results will show that the 2-D
and 1-D solutions are in good agreement both for the laminar flow and turbulent
flow. The maximum depth-averaged concentrations for the 1-D and 2-D models
gradually converge to each other, with their velocities becoming practically equal.
The obtained numerical results also demonstrate that the longitudinal diffusion
is relatively small compared to the advection.

3.1 Introduction

An asymptotic evolution equation governing the cross-flow averaged concentra-
tion of contaminants and other substances can be effectively used for predic-
tion of the spreading of the substances in environmental and industrial flows.
As was mentioned in Chapter 2, Taylor (1953, 1954) constructed an advection-
diffusion equation describing the averaged concentration along a channel using
half-empirical arguments. The equation was proposed for both laminar and tur-
bulent pipe flows and it is applicable asymptotically at large times when spatial
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variations of the concentration along the channel become slow. The work of Tay-
lor was followed by an extensive research on modelling the dispersion in shear
flows, with a variety of techniques used (Aris, 1956; Elder, 1959; Smith, 1987).

Such an equation can be analytically constructed using a more accurate method
based on centre manifold theory. The method was proposed in a series of works
originated by Roberts. In 1985, Roberts applied the method of Coullet and
Spiegel (1983) to some simple examples to show the existence of the centre man-
ifold and corresponding evolution equation in terms of the evolution of the am-
plitudes of some dominant modes. The centre manifold theory has been applied
to describe the dispersion in a laminar channel flow and showed how to derive
appropriate initial conditions for the asymptotic model (Mercer and Roberts,
1990).

Roberts and Strunin (2004) used two-zone model of contaminant dispersion in
Poiseuille channel flow based on the centre manifolds in order to obtain more
accurate approximations. They validated the analysis by direct computations of
the original two-dimensional equations; and formulated modified initial conditions
to obtain a better agreement between the manifold solution and the real solution.
Strunin (2011) analysed the transport of contaminants in turbulent boundary
layers of two types, namely the classical logarithmic velocity profile and according
to an alternative model, power velocity profile. Strunin assumed steady flow with
slow variation in the contaminant concentration in space and time.

In this chapter, by following Mohammed, Ngo-Cong, Strunin, Mai-Duy and Tran-
Cong (2014), the one-dimensional integrated radial basis function network (1D-
IRBFN) is used as numerical method for modelling dispersion of contaminants
in an open channel. This numerical method with the use of integration instead
of conventional differentiation to construct the RBF approximations significantly
improved the accuracy and stability of numerical solution. The method was
developed by Mai-Duy and Tanner (2007) and applied to several engineering
problems such as structural analysis (Le et al., 2010; Ngo-Cong et al., 2011),
viscous and viscoelastic flows (Ngo-Cong et al., 2012b; Ho-Minh et al., 2012;
Tran et al., 2012), and fluid-structure interaction (Ngo-Cong et al., 2012a).

The chapter is organised as follows. In Section 3.2, we briefly describe the mod-
elling of dispersion based on centre manifold theory, followed by a discussion of
the numerical approach in Section 4.4. Section 3.4 discusses the modelling of
turbulent dispersion in an open channel. In section 3.5, the numerical approach
is verified, followed by the discussion on numerical results in Section 4.5. Section
3.7 concludes the chapter.

In the next section, the mechanism of centre manifolds is formalized in the case
of shear dispersion.
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3.2 Modelling dispersion based on centre man-

ifold theory

We consider the 2-D advection-diffusion equation

∂tc + u(y)∂xc = ∂y[D(y)∂yc] , (3.1)

where u(y) is the velocity of the flow in the channel supposed known; c the
contaminant concentration; and D(y) the diffusion coefficient which is responsible
for the turbulent diffusion across the channel and defined by

D(y) = K
u2∗
∂yu

, (3.2)

in which u∗ is the friction velocity and the (non-dimensional and positive) propor-
tionality coefficient K may generally depend on the Schmidt number (Barenblatt,
2003). The boundary conditions describe non-penetration through the bottom
(y = 0) and surface (y = h, h is the channel height),

D∂yc|y=0 = D∂yc|y=h = 0 . (3.3)

We then convert the model (3.1)–(3.3) into the equation for the averaged concen-
tration C1 using the centre manifolds (Section 2.2),

∂tC1 = g1∂xC1 + g2∂
2
xC1 + g3∂

3
xC1 . . . . (3.4)

The coefficients g1, g2 and g3 are responsible for the advection, diffusion and
dispersion, respectively, and are analytically derived as shown in Section 2.2. We
do not include the along-the-flow component of the diffusion, DL∂

2
xc, although

this can be done without difficulty. In Sub-section 3.6.3, we show that this term
does not significantly affect the averaged model.

Our plan is to solve the original (2-D) transport equation (3.1) with some ini-
tial conditions to determine c(x, y, t) after a long elapsed time, then compute the

averaged concentration as C2(x, t) =
1
h

∫ h

0
c(x, y, t) dy and compare it with the so-

lution C1(x, t) obtained from (3.4). We expect that the two solutions converge to
each other, which confirms the correctness of the averaged model. Several numer-
ical examples on dispersion modelling using the centre manifolds are investigated
and reported in Section 4.5.
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3.3 Numerical approach: one-dimensional inte-

grated radial basis function networks (1D-

IRBFN)

In this section, we briefly describe the 1D-IRBFN methods developed by Mai-
Duy and Tanner (2007) including 1D-IRBFN-2 and 1D-IRBFN-4 schemes, with
the full details given in Appendix B. The domain of interest is discretised using
a Cartesian grid, i.e. an array of straight lines that run parallel to the x- and
y-axes as shown in Fig. 3.1. The dependent variable u and its derivatives on each
grid line are approximated using an IRBFN interpolation scheme as described in
the remainder of this section.

Figure 3.1 Cartesian grid.

3.3.1 Second-order 1D-IRBFN (1D-IRBFN-2 scheme)

Consider an x-grid line, e.g. [j] (Fig. 3.1). The variation of u along this line
is sought in the IRBF form. The second-order derivative of u is decomposed
into RBFs; the RBF network is then integrated once and twice to obtain the
expressions for the first-order derivative of u and the solution u itself,

∂2u(x)

∂x2
=

N
[j]
x∑

i=1

w(i)G(i)(x) =

N
[j]
x∑

i=1

w(i)H
(i)
[2] (x) , (3.5)

∂u(x)

∂x
=

N
[j]
x∑

i=1

w(i)H
(i)
[1] (x) + p1 , (3.6)
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u(x) =

N
[j]
x∑

i=1

w(i)H
(i)
[0] (x) + p1x+ p2 , (3.7)

where N
[j]
x is the number of nodes on the grid line [j]; {w(i)}N

[j]
x

i=1 RBF weights to

be determined;
{
G(i)(x)

}N [j]
x

i=1
=
{
H

(i)
[2] (x)

}N
[j]
x

i=1
known non-local RBFs; H

(i)
[1] (x) =∫

H
(i)
[2] (x)dx; H

(i)
[0] (x) =

∫
H

(i)
[1] (x)dx; and p1 and p2 integration constants which

are also unknown. An example of RBF, used in this work, is the multiquadrics
G(i)(x) =

√
(x− x(i))2 + a(i)2, a(i) - the RBF width determined as a(i) = βd(i),

β a positive factor, and d(i) the distance from the ith centre to its nearest neigh-
bour. The new basis functions H

(i)
[1] (x) and H

(i)
[0] (x) obtained from integrating the

multiquadrics G(i)(x) are as follows.

H
(i)
[1] (x) =

r

2
A+

(a(i))
2

2
B, (3.8)

H
(i)
[0] (x) =

(
r2

6
− (a(i))

2

3

)
A+

(a(i))
2
r

2
B, (3.9)

in which r = x− x(i), A =
√
r2 + a(i)2, and B = ln(r + A).

3.3.2 Fourth-order 1D-IRBFN (1D-IRBFN-4 scheme)

The 1D-IRBFN-4 scheme is used to solve 1-D third- and fourth-order differential
equations (Eqs. (3.27) and (3.45)). Consider a 1-D computational domain (a line)
with Nx points. The variation of u along this line is sought in the IRBF form.
The fourth-order derivative is decomposed into RBFs. The RBF networks are
then integrated to obtain the lower-order derivatives and the function itself,

∂4u(x)

∂x4
=

Nx∑

i=1

w(i)G(i)(x) =

Nx∑

i=1

w(i)H
(i)
[4] (x) , (3.10)

∂3u(x)

∂x3
=

Nx∑

i=1

w(i)H
(i)
[3] (x) + p1 , (3.11)

∂2u(x)

∂x2
=

Nx∑

i=1

w(i)H
(i)
[2] (x) + p1x+ p2 , (3.12)

∂u(x)

∂x
=

Nx∑

i=1

w(i)H
(i)
[1] (x) +

p1
2
x2 + p2x+ p3 , (3.13)

u(x) =
Nx∑

i=1

w(i)H
(i)
[0] (x) +

p1
6
x3 +

p2
2
x2 + p3x+ p4 , (3.14)
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where
{
G(i)(x)

}Nx

i=1
=
{
H

(i)
[4] (x)

}Nx

i=1
are known RBFs; H

(i)
[3] (x) =

∫
H

(i)
[4] (x)dx;

H
(i)
[2] (x) =

∫
H

(i)
[3] (x)dx; H

(i)
[1] (x) =

∫
H

(i)
[2] (x)dx; H

(i)
[0] (x) =

∫
H

(i)
[1] (x)dx; {w(i)}Nx

i=1

are RBF weights to be determined; and p1, p2, p3 and p4 integration constants
which are also unknown. The new basis functions H

(i)
[3] (x), H

(i)
[2] (x), H

(i)
[1] (x) and

H
(i)
[0] (x) obtained from integrating the multiquadrics G(i)(x) are as follows.

H
(i)
[3] (x) =

r

2
A +

(a(i))
2

2
B, (3.15)

H
(i)
[2] (x) =

(
r2

6
− (a(i))

2

3

)
A+

(a(i))
2
r

2
B, (3.16)

H
(i)
[1] (x) =

(
−13(a(i))

2
r

48
+
r3

24

)
A+

(
−(a(i))

4

16
+

(a(i))
2
r2

4

)
B, (3.17)

H
(i)
[0] (x) =

(
(a(i))

4

45
− 83(a(i))

2
r2

720
+

r4

120

)
A+

(
−3(a(i))

4
r

48
+

4(a(i))
2
r3

48

)
B.

(3.18)

3.4 Application to turbulent dispersion in an

open channel

Original 2-D model: Consider a turbulent shear flow in an open channel as
presented in Strunin (2011). The concentration of contaminant is described
by the 2-D advection-diffusion equation (3.1), (hereafter all quantities are non-
dimensional)

∂c

∂t
+ u(y)

∂c

∂x
=

∂

∂y

(
D(y)

∂c

∂y

)
, (3.19)

where the diffusion coefficient D(y) is represented by (3.2), and the velocity obeys
the classical logarithmic law,

u(y) = (1/κ) ln (Ry) +B . (3.20)

where R = 6000, and B = 5.5, κ = 0.4 and K = 1.

The logarithmic law (3.20) is a classical model for turbulent boundary layer de-
scribed in many books, e.g., Monin and Yaglom (1975). This law is valid in the
region ε < y < 1 (ε = 50/R � 5/R = h1/h, where h1 is the width of the viscous
sublayer). At large Reynolds numbers the value of ε is small. Actually, in the
present computations we use ε = 5/R but the large Reynolds number R = 6000
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ensures that both 5/R and 50/R are small. We note that Eq. (3.4) was derived
under the assumption of smallness of ε.

We use B = 5.5 and κ = 0.4 because of the following reason: In our analysis, it
is convenient that the entire flow from the bottom to the surface is one inertial
boundary layer. Using B = 5.5 and κ = 0.4 provides an agreement between the
inner and outer regions of the developed boundary flow and ensures that the layer
has universal velocity structure (Nikuradse, 1932; Keulegan, 1938). Nikuradse
(1932) first found the constants B = 5.5 and κ = 0.4 for hydraulically smooth
pipe flow. In 1938, Keulegan assumed that the same values for these constants
can be adopted for smooth open channels. In the literature, these empirical
constants can have different values. An extensive survey of mean velocity profile
measurements in various 2-D turbulent boundary layer flows by Coles (1956)
showed that the law of the wall is well represented by equation (3.20) when using
κ = 0.4 and B = 5.1. Huffman and Bradshaw (1972) used the values B = 5.0
and κ = 0.41. More recently, Steffler et al. (1985) adopted the values B = 5.5
and κ = 0.4 and presented some turbulence measurements for uniform flow in a
smooth rectangular channel. They found that the velocity measurements in the
viscous sublayer agree well with the linear form of the law of the wall.

We consider Eq. (3.19) in a rectangular domain xA ≤ x ≤ xB, ε ≤ y ≤ 1 as shown
in Fig. 3.2, subject to the boundary conditions:

c = 0 on x = xA , (3.21)

c = 0 on x = xB , (3.22)

∂c

∂y
= 0 on y = ε , (3.23)

∂c

∂y
= 0 on y = 1 . (3.24)

The initial condition is taken in the form of a cloud of the contaminant arbitrarily
centered at x0 = −11.5, y0 = 1 (note that xA < x0 < xB, and xA and xB are set
to −100 and 100 at the initial moment, respectively),

c(x, y, 0) = exp
[
− (0.1 (x− x0))

4 − (7(y − y0))
4] . (3.25)

The domains of interest are represented by Cartesian grids. Applying the Crank-
Nicolson scheme to Eq. (3.19) in conjunction with the use of the 1D-IRBFN
method for spatial discretisation leads to

c(n+1) − c(n)

∆t
=
F (n)(x, y, t)

2
+
F (n+1)(x, y, t)

2
, (3.26)

where F (x, y, t) = −u(y)∂c/∂x+ κK∂ (y∂c/∂y) /∂y .



46
Modeling dispersion in laminar and turbulent flows in an open channel based

on centre manifolds using 1D-IRBFN method

Figure 3.2 The shear flow in an open channel: the problem geometry and boundary conditions.

Low-dimensional depth-averaged 1-D one-zone model: In the present simulation,
we take into account the first four derivatives in the RHS of (3.4) and ignore the
higher-order derivatives, leading to the following equation

∂C1

∂t
≈ g1

∂C1

∂x
+ g2

∂2C1

∂x2
+ g3

∂3C1

∂x3
+ g4

∂4C1

∂x4
, (3.27)

where as shown in Strunin (2011) g1 ≈ −(1/κ)(lnR − 1) + B; g2 ≈ 1/(4κ3K);
and g3 ≈ 17/(216κ5K2) for the case of logarithmic velocity profile. Note that,
the coefficients gi, i = 1, 2, 3 are obtained at the limit of ε → 0 with assuming a
very large Reynolds number R. In the present chapter we also calculate the next
coefficient, g4, through Eqs. (2.76)–(2.79) as follows: Substitution of n = 3 into
Eq. (2.78) leads to

L [c3] =
3∑

m=1

c3−mgm + u (y) c3−1 = c1g2 + c0g3 + c2[g1 + u (y)] , (3.28)

where u (y) = 1/κ ln (R.y)+A/u∗, c0 = 1; and c1 and c2 were respectively defined
by Strunin (2011) as follows.

c1 = [
1

Kκ2
(y ln y − y)],

c2 =
1

4K2κ4

(
−2y +

y2

2
+ 3y ln y − 2y2 ln y + y2 ln2 y +

139

108

)
.

Substituting these functions and coefficients into (3.28), we have

∂

∂y

(
y
∂c3
∂y

)
=

1

4K3κ6

(
254

108
− 3y +

1

2
y2 +

139

108
ln y + 2y ln y

−3

2
y2 ln y + 3y ln2 y − y2 ln2 y + y2 ln3 y

)
.

(3.29)
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Integrating Eq. (3.29) once, we get

y
∂c3
∂y

=
1

4K3κ6

(
115

108
y − 5

4
y2 +

5

27
y3 +

139

108
y ln y

−1

2
y2 ln y − 1

18
y3 ln y +

3

2
y2 ln2 y − 2

3
y3 ln2 y +

1

3
y3 ln3 y

)
+B1.

(3.30)

Applying the boundary conditions y ∂c
∂y
|y=ε = y ∂c

∂y
|y=1 = 0 to (3.30), we get B1 = 0.

Integrating Eq. (3.30) again, we get

c3 =
1

4K3κ6

(
−2

9
y − 1

8
y2 − 1

162
y3 +

139

108
y ln y − y2 ln y

+
11

54
y3 ln y +

3

4
y2 ln2 y − 1

3
y3 ln2 y +

1

9
y3 ln3 y

)
+B2.

(3.31)

Applying the averages
∫ 1

ε
cn dy = 0 for n = 1, 2, ... to Eq. (3.31), we obtain

1

4K3κ6

(
−187

432
y2 +

1

8
y3 − 283

10368
y4 +

139

216
y2 ln y − 1

2
y3 ln y

+
89

864
y4 ln y +

1

4
y3 ln2 y − 5

48
y4 ln2 y +

1

36
y4 ln3 y

)1

ε

+B2y|1ε = 0.

(3.32)

Taking the limit ε→ 0, we get

B2 =
3475

41472K3κ6
.

Substitution of the value of B2 into Eq. (3.31) yields

c3 =
1

4K3κ6

(
3475

10368
− 2

9
y − 1

8
y2 − 1

162
y3 +

139

108
y ln y

−y2 ln y + 11

54
y3 ln y +

3

4
y2 ln2 y − 1

3
y3 ln2 y +

1

9
y3 ln3 y

)
.

(3.33)

The value of g4 is then calculated through Eq. (2.79) (see Sub-section 2.2.3)

g4 = −u (y) c3 (y) = −
∫ 1

ε

[
1

κ
ln (Ry) +

A

u∗

]
c3 dy

= −
∫ 1

ε

[
1

κ
lnR +

1

κ
ln y +

A

u∗

]
c3 dy = −1

κ

∫ 1

ε

c3 ln y dy,
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or

g4 = − 1

1− ε

1

4K3κ7

(
− 3475

10368
y +

163

432
y2 − 25

216
y3 +

89

5184
y4 +

3475

10368
y ln y

−163

216
y2 ln y +

25

72
y3 ln y − 89

1296
y4 ln y +

139

216
y2 ln2 y

− 7

12
y3 ln2 y +

29

216
y4 ln2 y +

1

4
y3 ln3 y − 1

9
y4 ln3 y +

1

36
y4 ln4 y

)1

ε

.

Taking the limit ε→ 0, we obtain

g4 = − 65

4608K3κ7
.

Eq. (3.27) is subject to the boundary conditions

C1 = 0,
∂C1

∂x
= 0, at x = xA, x = xB . (3.34)

An initial condition (at t = t0) for Eq. (3.27) is taken to be

C1(x, t0) = C2(x, t0), (3.35)

where C2(x, t0) =
1

(1−ε)

∫ 1

ε
c (x, y, t0) dy.

The spatial discretisation of first-order and second-order derivatives in Eq. (3.19)
is carried out by using (3.5)–(3.7), while the first-order, second-order, third-order
and fourth-order derivatives in Eq. (3.27) are discretised through (3.10)−−(3.14).

Note that the peak of depth-averaged concentration C (C can be C1 or C2) moves
along the positive x-axis as time t goes on and the concentration on the inlet and
outlet boundaries of the computational domain is assumed to be zero. In order
to reduce the computational effort, the computational domain is regularly shifted
along the x-axis after a period of time ∆τ . The strategy to shift the computational
domain from time t = τ (k) to time t = τ (k) + ∆τ is described in Fig. 3.3. When
creating a new computational domain, the inlet boundary is set at the position
xA′ where C = εC , presently εC = 10−4. The concentration in the new region
BB’C’C is assigned to be zero at the initial time t = τ (k) +∆τ . The flowchart of
numerical procedure is presented in Fig. 3.4.
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3.5 Verification of the 1D-IRBFN method

Before computing the 1-D and 2-D models using the 1D-IRBFN method and
comparing results, we need to verify the method. We consider an artificially
constructed advection-diffusion equation with a source function,

∂c

∂t
+ u(y)

∂c

∂x
− ∂2c

∂y2
= f(x, y, t) , (3.36)

where f(x, y, t) = 2 (−t/(t2 + 1)− xu(y)− 2y2 + 1) e−(x2+y2)/(t2 + 1); and u(y)
is given by (3.20). It is easy to check that (3.36) has the analytical solution,

c(x, y, t) = e−(x2+y2)/(t2 + 1). (3.37)

We solve Eq. (3.36) numerically in a rectangular domain −0.5 ≤ x ≤ 0.5, ε ≤ y ≤
1 with ε = 5/R using two cases of boundary conditions:

• Case 1: Dirichlet boundary conditions imposed along all four edges of the
rectangular domain.

• Case 2: Dirichlet boundary conditions imposed along two horizontal edges,
and Neumann boundary conditions imposed along two vertical edges.

We intend to demonstrate that the numerical solution by the 1D-IRBFN method
well agrees with the analytical solution (3.37); this will justify the numerical
method.

The boundary and initial conditions must be consistent with (3.37). The initial
time moment is taken at t0 = 0. Table 3.1 and Fig. 3.6 present the numerical
results, namely, the relative error norms (Ne) of the present numerical method
for Case 1 and Case 2. The relative error norm is calculated as

Ne =

√√√√√√√

N∑
i=1

(
c(i) − c

(i)
a

)2

N∑
i=1

(
c
(i)
a

)2 , (3.38)

where the subscript “a” denotes the analytical solution; and N is the total num-
ber of unknown nodal values in the computational domain. Assuming that the
solution is convergent with respect to the grid refinement, the behaviour of the
error of the solution is assumed to be Ne ≈ αhλ = O(hλ), in which h is the
grid spacing; and α and λ the parameters of the exponential model (λ > 0 is
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the convergence rate). The convergence behaviour for Case 1 and Case 2 are
O(h3.54) and O(h2.13), respectively. Fig. 3.7 shows a good agreement between the
1D-IRBFN results of y-average value of the variable c along the x-axis and the
analytical solution at several times t = 1.0, 2.0 and 3.0.

Table 3.1 Two-dimensional advection-diffusion equation with source: Grid convergence study for 1D-IRBFN
method at time t = 2.0, using a time step ∆t = 5.10−3.

Grid Ne

Case 1 Case 2
21x21 9.01E-06 1.15E-03
31x31 2.58E-06 4.96E-04
41x41 9.82E-07 2.70E-04
51x51 4.14E-07 1.66E-04
61x61 1.75E-07 1.09E-04

3.6 Comparison of 1-D and 2-D dispersion mod-

els

3.6.1 Laminar shear flow in an open channel

Consider a shear flow in an open channel Fig. 3.5. Note that the direction of
the y-axis is opposite to that in Fig. 3.2 so that the bottom is at y = 1, we
follow Roberts and Strunin (2004). The concentration of contaminant obeys the
2-D non-dimensional advection-diffusion equation

∂c

∂t
+ u(y)

∂c

∂x
=
∂2c

∂y2
, (3.39)

where u(y) = (3/2)Pe(1 − y2); Pe = Uh/D is the Peclet number, presently set
to be 60; U the constant average downstream velocity; h the channel height; and
D the constant coefficient of diffusion.

Roberts and Strunin (2004) considered two versions of the 2-D model. In the first
version, they studied (3.39) in the entire channel domain xA ≤ x ≤ xB, 0 ≤ y ≤ 1.
They called it a one-zone version. The boundary conditions are

c = 0, on x = xA , (3.40)

c = 0, on x = xB , (3.41)

∂c

∂y
= 0, on y = 0 , (3.42)

∂c

∂y
= 0, on y = 1 . (3.43)
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As in Roberts and Strunin (2004), the initial condition is taken in the form

c(x, y, 0) = 10 exp
[
− (0.1 (x− x0))

4 − (7(y − y0))
4] , (3.44)

with x0 = −11.5, and y0 = 0. The centre manifold theory leads to the following
1-D one-zone model for the flow

∂C1

∂t
= g1

∂C1

∂x
+ g2

∂2C1

∂x2
+ g3

∂3C1

∂x3
, (3.45)

where g1 = −Pe, g2 = Pe2/30 and g3 = −Pe3/1575 (Roberts and Strunin, 2004).

The boundary conditions and the initial condition for (3.45) are taken as (3.34)
and (3.35), respectively, in which c(x, y, t0) is the 2-D concentration from the
problem (3.39)–(5.62) at t = t0.

In the second version, Roberts and Strunin (2004) subdivided the channel into two
zones – slow near the bottom (α < y ≤ 1) and fast near the surface (0 ≤ y ≤ α),
with α = 0.55 as shown in Fig. 3.5. For the cross-zone averaged concentrations
in the fast and slow zones, C1f(x, t) and C1s(x, t) respectively, they derived the
equations

∂C1f

∂t
= a1C1f + a2C1s + a3

∂C1f

∂x
+ a4

∂C1s

∂x
+ a5

∂2C1f

∂x2
+ a6

∂2C1s

∂x2
, (3.46)

∂C1s

∂t
= b1C1f + b2C1s + b3

∂C1f

∂x
+ b4

∂C1s

∂x
+ b5

∂2C1f

∂x2
+ b6

∂2C1s

∂x2
, (3.47)

where a1 = −4.441, a2 = 4.441, a3 = −1.397Pe, a4 = 0.0478Pe, a5 =
9.68 × 10−4Pe2, a6 = −1.85 × 10−3Pe2; and b1 = 5.428, b2 = −5.428, b3 =
−0.0461Pe, b4 = −0.527Pe, b5 = −1.78 × 10−3Pe2, b6 = 3.34 × 10−3Pe2. The
depth-averaged concentration for the whole channel is

C1(x, t) = αC1f(x, t) + (1− α)C1s(x, t) . (3.48)

The system of Eqs. (3.46) and (3.47) is subject to the boundary conditions

C1f = 0,
∂C1f

∂x
= 0, at x = xA, x = xB , (3.49)

C1s = 0,
∂C1s

∂x
= 0, at x = xA, x = xB . (3.50)

In order to achieve the fastest (exponential) convergence of the 1-D and 2-D
models, Roberts and Strunin derived the following initial conditions (Roberts and
Strunin, 2004) for details. A similar derivation is discussed in a simple example
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in Section 2.2).

C1f(x, t0) ≈
∫ 1

0

(
2.159− 5.720y2 + 4.705y4 − 1.548y6

)
c (x, y, t0) dy

+Pe

∫ 1

0

(
−0.010 + 0.174y2 − 0.482y4 + 0.494y6

) ∂c (x, y, t0)
∂x

dy ,

C1s(x, t0) ≈
∫ 1

0

(
−0.417 + 6.991y2 − 5.750y4 + 1.892y6

)
c (x, y, t0) dy

+Pe

∫ 1

0

(
0.020− 0.333y2 + 0.867y4 − 0.786y6

) ∂c (x, y, t0)
∂x

dy ,

(3.51)

where c(x, y, t0) is, by our choice, the 2-D concentration from the problem (3.39)–
(5.62) at t = t0.

In the following we discuss the numerical results. Fig. 3.8 shows the concentra-
tion in the channel at times t = 0.00 and 0.09, obtained using the 1D-IRBFN
method applied to Eqs. (3.1) and (3.4); they are close to those obtained in Roberts
and Strunin (2004) by finite different method (FDM). A good agreement is
also demonstrated in Fig. 3.9 showing our 1D-IRBFN results and FDM results
of Roberts and Strunin (2004) for the original (2-D) model and the centre man-
ifold (1-D) models in the one-zone and two-zone versions. The 1D-IRBFN and
FDM results correlate well for the slow zone and slightly differ for the fast zone.

Figs. 3.10 and 3.11 present the grid convergence study for 2-D analysis of the
position of the maximum depth-averaged concentration (xmax) and the maximum
depth-averaged concentration (Cmax) with respect to time t. The figures show
that the numerical results obtained are indistinguishable for grids denser than or
equal to 81× 47.

Figs. 3.12 and 3.13 present the corresponding grid convergence study for the
1-D one-zone analysis and the converged solution compared with the 2-D and
1-D two-zone results. Fig. 3.13 demonstrates that the 1-D two-zone solution
agrees well with the 2-D model solution while the 1-D one-zone solution is not
in very good agreement with the 2-D solution. This is because only three terms
(the first-order, second-order and third-order derivatives) are considered in the
governing equation of 1-D one-zone model. One can improve the accuracy by
including higher-order terms. The maximum depth-averaged concentrations for
the 1-D one-zone and 2-D models converge to each other and their advection
velocities along the x-axis are almost the same as the two curves in Fig. 3.12
nearly coincide as time increases. The present numerical solutions are obtained
at very large times up to t = 7.0, rather than at short times around t = 0.09, as
reported in the work by Roberts and Strunin (2004).
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3.6.2 Turbulent shear flow in an open channel

In this example we investigate a shear flow in an open channel governed by
Eq. (3.19). Four cases for the 1-D one-zone model are considered here as follows.

• Case 1: Only the advection term (g1∂C1/∂x) on the RHS of (3.27) is taken
into account.

• Case 2: The advection and diffusion terms (g1∂C1/∂x, g2∂
2C1/∂x

2) on the
RHS of (3.27) are taken into account.

• Case 3: The first three leading terms–advection, diffusion and dispersion
terms (g1∂C1/∂x, g2∂

2C1/∂x
2, g3∂

3C1/∂x
3) on the RHS of (3.27) are taken

into account.

• Case 4: The first four leading terms–advection, diffusion and dispersion, and
fourth-order dissipation (g1∂C1/∂x, g2∂

2C1/∂x
2, g3∂

3C1/∂x
3, g4∂

4C1/∂x
4)

on the RHS of (3.27) are taken into account.

Figs. 3.14–3.16 compare the distribution of the depth-averaged concentration
along the channel between the 2-D model and the 1-D model for the four cases
at times t = 10.0, 20.0 and 30.0. It appears that the 1-D Case 1 results are very
different from those of the 2-D model while the results of the 1-D Case 2, Case 3
and Case 4 are in good agreement with those of the 2-D model.

Figs. 3.17 and 3.18 show the grid convergence study for the 2-D analysis of xmax

and Cmax respectively against t. The numerical results are convergent with in-
creasing grid density. The corresponding grid convergence study for the 1-D
(Case 4) analysis is also conducted. We compare the converged 1-D solution with
the 2-D solution on a 101 × 201 grid as shown in Figs. 3.19 and 3.20. Observe
that the values of xmax are almost the same, and the values of Cmax for both the
1-D and 2-D models converge to each other as time increases.

3.6.3 Effect of longitudinal diffusion

It is straightforward to investigate how the longitudinal (along-the-channel) dif-
fusion affects the centre manifold model of Eqs. (2.79), see Sub-section 2.2.3,
and (3.27). In place of (3.19) we have

∂c

∂t
+ u(y)

∂c

∂x
=

∂

∂y

(
D(y)

∂c

∂y

)
+DL

∂2c

∂x2
, (3.52)
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where DL is the diffusion coefficient along the channel assumed constant. Instead
of (2.72), we now get

∂tĉ = L[ĉ]− iku(y)ĉ+ (ik)2DLĉ . (3.53)

Performing the same procedure as in Sub-section (2.2.3), we obtain

L[ĉ] =
∂ĉ

∂Ĉ1

G+ ikuĉ− (ik)2Ĉ1 , (3.54)

and, further, upon substitution of (2.75) into (3.54), we get

L[ĉ] =

∞∑

n=1

n∑

m=1

cn−mgm(ik)
nĈ1 + u(y)

∞∑

n=0

cn(ik)
n+1Ĉ1 −DL

∞∑

n=0

cn(ik)
n+2Ĉ1 ,

and, collecting similar terms,

L[cn] =
n∑

m=1

cn−mgm + u(y)cn−1 −DLcn−2 for n = 2, 3, ... (3.55)

When n = 1, Eq. (3.55) coincides with (2.78). Integrating (3.55) over the depth,
we obtain

D(y)∂yc|y=h −D(y)∂yc|y=0 = gn + u(y)cn−1 −DLcn−2 ,

where, as before, the overbar means depth-averaged. Since the fluxes through the
boundaries are zero, we have

gn = −u(y)cn−1 +DLcn−2 for n = 2, 3, ...

Note that the only effect of DL is the addition to the diffusion coefficient g2,
because cn−2 = 0 for all n except n = 2 for which c0 = 1. For the logarithmic
velocity profile g2 ≈ 1/(4κ3K) +DL. Using K = 1, κ = 0.4 and DL = 0.05, ac-
cording to Taylor (1954), we estimate the ratio between the longitudinal diffusion
coefficient and the diffusion coefficient due to the shear DL/(1/4κ

3K) = 0.0128.

The small influence ofDL on the concentration dynamics is illustrated by Figs. 3.21
and 3.22, showing the maximum concentration Cmax and its position xmax ver-
sus time for the 1-D and 2-D models. Observe that the effect of the turbulent
longitudinal dispersion is indeed small compared to the role of the shear. This
supports the modelling of Roberts and Strunin (2004) and Strunin (2011) who
ignored the longitudinal diffusion from the very beginning.
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Figure 3.3 Shear flow in an open channel: The computational domain is shifted along the x-axis from time
t = τ (k) to time t = τ (k) +∆τ .
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Figure 3.4 Flowchart of the numerical analysis.
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Figure 3.5 Laminar shear flow in an open channel: Problem geometry and boundary conditions.
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Figure 3.6 2-D advection-diffusion equation with source: Convergence study for 1D-IRBFN method, using a
time step ∆t = 5.10−3. The convergence behaviour of 1D-IRBFN for Case 1 and Case 2 are O(h3.54) and
O(h2.13), respectively .
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Figure 3.7 2-D advection-diffusion equation with source (Case 2): Comparison of the y-average value of the
variable c (C2) along the x-axis between the analytical solution and 1D-IRBFN result at several times t = 1, 2.0
and 3.0, using a time step ∆t = 5.10−3 and a grid of 41 × 41.
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Figure 3.8 Laminar shear flow in an open channel: Concentration field in the channel at times t = 0.00 and
0.09, using a time step ∆t = 0.005.
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Figure 3.9 Laminar shear flow in an open channel: Comparison between 1D-IRBFN and FDM Roberts and
Strunin (2004) results of the original (2-D) model, the 1-D two-zone model and the 1-D one-zone model at
time t = 0.09, using a time step ∆t = 0.005. Note that the initial condition is taken at time t = 0.0 for both
1-D and 2-D analyses.
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Figure 3.10 Laminar shear flow in an open channel: The grid convergence study for 2-D analysis of the position
x of the maximum depth-averaged concentration with respect to time t, using the 1D-IRBFN method and a
time step ∆t = 0.005.
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Figure 3.11 Laminar shear flow in an open channel: The grid convergence study for 2-D analysis of the maximum
depth-averaged concentration with respect to time t, using the 1D-IRBFN method and a time step ∆t = 0.005.
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Figure 3.12 Laminar shear flow in an open channel: The grid convergence study for 1-D one-zone analysis of the
position of the maximum depth-averaged concentration (xmax) with respect to time t in comparison with the
original (2-D) model and the 1-D two-zone model, using the 1D-IRBFN method and a time step ∆t = 0.005.
Note that the initial condition is taken at time t = 1.0 for 1-D analyses.
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Figure 3.13 Laminar shear flow in an open channel: The grid convergence study for 1-D one-zone analysis of
the maximum depth-averaged concentration with respect to time t in comparison with the original (2-D) model
and the 1-D two-zone model, using the 1D-IRBFN method and a time step ∆t = 0.005. Note that the initial
condition is taken at time t = 1.0 for 1-D analyses.
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Figure 3.14 Turbulent shear flow in an open channel: Comparison of the depth-averaged concentration along the
channel among the results of the 2-D and 1-D models for Case 1, Case 2, Case 3 and Case 4 at time t = 10.00,
using a time step ∆t = 5.10−3 and grids of 101× 201 and 201 for 2-D and 1-D analyses, respectively.
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Figure 3.15 Turbulent shear flow in an open channel: Comparison of the depth-averaged concentration along
the channel among the results of the 2-D and 1-D models for Case 1, Case 2 and Case 3 at time t = 20.00,
using a time step ∆t = 5.10−3 and grids of 101× 201 and 201 for 2-D and 1-D analyses, respectively.
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Figure 3.16 Turbulent shear flow in an open channel: Comparison of the depth-averaged concentration along
the channel among the results of the 2-D and 1-D models for Case 1, Case 2 and Case 3 at time t = 30.00,
using a time step ∆t = 5.10−3 and grids of 101× 201 and 201 for 2-D and 1-D analyses, respectively.
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Figure 3.17 Turbulent shear flow in an open channel: The grid convergence study for 2-D analysis of the position
x of the maximum depth-averaged concentration with respect to time t.
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Figure 3.18 Turbulent shear flow in an open channel: The grid convergence study for 2-D analysis of the
maximum depth-averaged concentration with respect to time t.
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Figure 3.19 Turbulent shear flow in an open channel: The grid convergence study for 1-D (Case 4) analysis of
the position of the maximum depth-averaged concentration with respect to time t in comparison with the 2-D
result. Note that the initial condition is taken at the time t = 1.0.
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Figure 3.20 Turbulent shear flow in an open channel: The grid convergence study for 1-D (Case 4) analysis of
the maximum depth-averaged concentration with respect to time t in comparison with the 2-D result. Note
that the initial condition is taken at the time t = 1.0 for 1-D analysis.
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Figure 3.21 Turbulent shear flow in an open channel: The influence of longitudinal diffusion on the position x
of the maximum depth-averaged concentration with respect to time t, using a time step ∆t = 5.10−3 and grids
of 101 × 201 and 201 for 2-D and 1-D analyses, respectively.
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Figure 3.22 Turbulent shear flow in an open channel: The influence of longitudinal diffusion on the maximum
depth-averaged concentration with respect to time t, using a time step ∆t = 5.10−3 and grids of 101 × 201
and 201 for 2-D and 1-D analyses, respectively.
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3.7 Concluding remarks

The shear dispersion of contaminant based on centre manifold theory is suc-
cessfully simulated by using the 1D-IRBFN method. The numerical solution of
the derived 1-D (one-zone and two-zone) model equations obtained by centre
manifolds for both laminar and turbulent flows are in a good agreement with
that of the original 2-D advection-diffusion equation. These models yield almost
the same velocities for the point of the maximum depth-averaged concentration
along the channel. We obtain the 1D-IRBFN solution for the maximum depth-
averaged concentration for the 1-D one-zone model taking into account several
leading terms including advection, diffusion and dispersion. The solution con-
verges to that of the original 2-D model. A small gap between the solutions
exists, however, the accuracy of the centre manifold equation can be improved by
including higher-order derivatives. The numerical results confirm that the effect
of longitudinal diffusion is negligible. Note that our work can be viewed not only
as the confirmation of the centre manifold approach by the 1D-IRBFN technique
but also as another confirmation of the numerical technique by the centre mani-
folds. Our results demonstrate that convergence takes place even for unmodified
initial condition as discussed in Sub-section 2.2.2. The convergence in this case
is algebraic, not exponential.



Chapter 4

Higher-order transport equations
for turbulent open channel flows

We derive high-order partial differential equations governing the longitudinal dis-
persion of contaminants in a turbulent open channel flow and numerically inves-
tigate the convergence of these high-order equations. The derivation is based on
the centre manifold theory, which provides an accurate approach for modelling
the transport of the depth-averaged concentration of the contaminant. Two types
of the average velocity profile are considered: logarithmic and power. We use the
one-dimensional integrated radial basis function network (1D-IRBFN) method as
a numerical approach to obtain the numerical solutions to both the original 2–D
equation and the approximate 1–D equations. We compare the original models
with their centre manifolds approximations for contaminant transport in an open
channel at very large Reynolds numbers. The numerical results obtained from
the approximate 1–D models are in good agreement with those of the original
2–D model for both the logarithmic and power velocity profiles.

4.1 Introduction

When a cloud of contaminant is introduced into a fluid flow it is stretched by the
velocity shear and at the same time smeared by the vertical diffusion. After a
longer time, the contaminant cloud extends over a long distance along the channel
(in x-direction) and the concentration variation becomes slow. The contaminant
transport is governed by the two-dimensional advection-diffusion equation (Tay-
lor, 1954)

∂c

∂t
+ u(y)

∂c

∂x
=

∂

∂y

[
D(y)

∂c

∂y

]
, (4.1)

in which we neglected the diffusion in x-direction. Here, c is the contaminant con-
centration and D(y) the diffusion coefficient which is responsible for the turbulent
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diffusion across the channel (in y-direction) and defined by

D(y) = K
u2∗
∂yu

, (4.2)

where K is the non-dimensional coefficient of proportionality and u∗ the friction
velocity. The expression (4.2) for the diffusion coefficient D(y) is deduced from
the Prandtl formula for the stress (Strunin, 2011). The velocity u(y) is supposed
known. Eq. (4.1) is complemented by the boundary conditions described as

D
∂c

∂y
|y=0 = D

∂c

∂y
|y=h = 0 . (4.3)

An accurate method to derive an equation for the depth-averaged concentra-
tion, C, is supported by centre manifold theory. Roberts and Strunin (2004)
and Mercer and Roberts (1990) used the method to derive a high-order equation
governing the depth-averaged concentration in laminar open channel flow. They
also derived a corrected initial conditions allowing fast convergence of the original
model to the asymptotic one. Strunin (2011) constructed a similar equation for
a turbulent open channel flow. He used two forms of the velocity profile, namely
logarithmic and power. For a steady two dimensional flow of an incompressible
fluid, the logarithmic velocity profile takes the form (Coles, 1956)

u =
u∗
κ

ln
(u∗y
ν

)
+ A , (4.4)

where κ = 0.4 the von karman constant, ν the kinematic molecular viscosity
and A the empirical constant. The logarithmic law (4.4) is Reynolds number
independent. Alternatively, Barenblatt (1993) took into account the effect of the
viscosity and the Reynolds number in the inertial layer and deduced the power
velocity profile

u(y) = u∗

(
1√
3
lnRe +

5

2

)
y

3
2 lnRe
+ , (4.5)

where Re is the Reynolds number and y+ = u∗y/ν the dimensionless coordinate.
Barenblatt (2000) introduced experimental data in support of the power law (4.5).
He showed that the scaling law (4.5) gives an accurate description of the mean ve-
locity distribution over the self-similar intermediate region adjacent to the viscous
sublayer for a wide variety of boundary layer flows. The accuracy of the scaling
law depends on how the Reynolds number is defined properly. Barenblatt (2003)
studied the universality of the power velocity profile in modelling dispersion us-
ing three different configurations of sources located on the bottom. A self-similar
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asymptotic solutions are obtained describing the concentration transfer at small
times in the lower part of the turbulent boundary layer far from the flow surface.
Barenblatt (2000) emphasized that these solutions clearly demonstrate Reynolds
number dependence. In the present study, we separately investigate the disper-
sion of contaminants for the logarithmic and power velocity profiles, over the
entire cross section of the flow at large times using very large Reynolds number.

In the present research, we assume a steady turbulent flow and fully developed of
the inertial layer in order to ensure fast distribution of contaminants across the
flow. This assumption should be made for the flow to be treated by the centre
manifold approach. The flow is considered in an open channel in which the shear
stress is constant measured by the squared friction velocity u2∗. The mean velocity
profile is taken to be either (4.4) or (4.5) and the flow is investigated over the
entire cross section of the channel from the bottom, except the narrow viscous
sublayer, to the surface with neglecting waves.

Based on the centre manifold theory, the depth-averaged concentration, C, is
governed by the following equation.

∂C

∂t
= g1

∂C

∂x
+ g2

∂2C

∂x2
+ g3

∂3C

∂x3
+ g4

∂4C

∂x4
+ g5

∂5C

∂x5
+ g6

∂6C

∂x6
+ . . . . (4.6)

Throughout the present chapter, we analytically calculate the coefficients g4, g5
and g6 for the power velocity profile, and g5 and g6 for the logarithmic velocity
profile. Similar analysis of the coefficients g4 (for the power velocity profile) and g5
(for the logarithmic velocity profile) can be found in Ngo-Cong et al. (2013). The
rest of the coefficients are previously derived (Strunin, 2011; Mohammed, Ngo-
Cong, Strunin, Mai-Duy and Tran-Cong, 2014). In Eq. (4.6), the coefficients gn
for any n are analytically calculated from the formula

gn = −u(y)cn−1 for n = 1, 2, . . . , (4.7)

where the overline means depth-averaging. For Eq. (4.7), we use c0 = 1 and
calculate cn for any n as follows:

L[cn] =

n∑

m=1

cn−mgm + u(y)cn−1 for n = 1, 2, . . . . (4.8)

A detailed derivation for Eqs. (4.7) and (4.8) is found in Chapter 2. We ignore the
longitudinal diffusion as it does not significantly affect the averaged model (Mo-
hammed, Ngo-Cong, Strunin, Mai-Duy and Tran-Cong, 2014).

The chapter is organised as follows. Sections 4.2 and 4.3 include applying the
centre manifold theory to derive higher-order coefficients for the logarithmic and
power velocity profiles. Section 4.4 presents the numerical approach, followed
by the discussion on numerical results in Section 4.5. Section 4.6 concludes the
chapter.
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4.2 Higher-order coefficients for the logarithmic

velocity profile

Consider the logarithmic velocity profile defined in (4.4). Substituting (4.4)
into (4.2) gives the following form for the diffusion coefficient.

D(y) = κKu∗y .

The velocity profile (4.4) is not applicable at very short distance from the bottom
y = 0 (Monin and Yaglom, 1975; Landau and Lifshitz, 1981). It is valid in the
region ε < y < 1 (ε = 50/R = h1/h, where h is the channel height and h1 the
width of the viscous sublayer). We assume that the Reynolds number is large
so that the value of ε is small. In the present computations we use ε = 5/R
but the large Reynolds number ensures that both 5/R and 50/R are small. The
non-dimensional form of Eq. (4.1) is

∂c

∂t
+ u(y)

∂c

∂x
=

∂

∂y

(
D(y)

∂c

∂y

)
, (4.9)

in which u(y) = (1/κ) ln (Ry)+B and D(y) = κKy, where B = 5.5. In Eq. (4.9),
we keep the old notations for convenience. The associated non-dimensional form
of the boundary conditions (4.3) are given by

y
∂c

∂y
|y=ε = y

∂c

∂y
|y=1 = 0 .

In the following, we calculate the coefficient g5 for the logarithmic velocity profile
based on c0 = 1, c1, c2, g1, g2, g3 and g4 (Strunin, 2011; Mohammed, Ngo-Cong,
Strunin, Mai-Duy and Tran-Cong, 2014). Substituting n = 4 into (4.8) leads to

∂

∂y

(
y
∂c4
∂y

)
=

1

4K4κ8

(
4337

5184
− 28

27
y − 1

162
y3 +

3475

10368
ln y +

230

108
y ln y

−13

8
y2 ln y +

16

81
y3 ln y

+
139

108
y ln2 y − 7

54
y3 ln2 y +

3

4
y2 ln3 y − 2

9
y3 ln3 y +

1

9
y3 ln4 y

)
.

(4.10)
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Integrating (4.10) twice gives

c4 =
1

4K4κ8

(
431

2592
y − 89

288
y2 +

5

108
y3 − 47

41472
y4 +

3475

10368
y ln y

+
1

9
y2 ln y − 1

72
y3 ln y − 29

5184
y4 ln y +

139

432
y2 ln2 y

−1

6
y3 ln2 y +

49

1728
y4 ln2 y +

1

12
y3 ln3 y − 1

36
y4 ln3 y +

1

144
y4 ln4 y

)
+B4 .

(4.11)

The integration constant B4 is found via the condition
∫ 1

ε
c4dy = 0, then

1

4K4κ8

(
− 1

1536
y2 − 4677

69984
y3 +

73

13824
y4 +

33299

43200000
y5 +

3475

20736
y2 ln y

− 211

1944
y3 ln y +

29

1152
y4 ln y − 16159

3240000
y5 ln y +

139

1296
y3 ln2 y − 11

192
y4 ln2 y

+
2089

216000
y5 ln2 y +

1

48
y4 ln3 y − 1

150
y5 ln3 y +

1

720
y5 ln4 y

)1

ε

+B4y|1ε = 0 .

Taking the limit ε → 0, we have all the terms involving products εm ln` ε vanish
and obtain

B4 =
1433

93312K4κ8
. As a result

c4 =
1

4K4κ8

(
1433

23328
+

431

2592
y − 89

288
y2 +

5

108
y3 − 47

41472
y4 +

3475

10368
y ln y

+
1

9
y2 ln y − 1

72
y3 ln y − 29

5184
y4 ln y +

139

432
y2 ln2 y

−1

6
y3 ln2 y +

49

1728
y4 ln2 y +

1

12
y3 ln3 y − 1

36
y4 ln3 y +

1

144
y4 ln4 y

)
.

(4.12)
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Now we calculate g5, based on (4.7) for n=5, we obtain

g5 = − 1

4K4κ9

(
− 1433

23328
y +

1751

41472
y2 +

53

23328
y3 +

105

41472
y4 − 15113

25920000
y5

+
1433

23328
y ln y − 1751

20736
y2 ln y − 53

7776
y3 ln y − 35

3456
y4 ln y

+
15113

5184000
y5 ln y +

3475

20736
y2 ln2 y

− 187

1296
y3 ln2 y +

25

576
y4 ln2 y − 509

64800
y5 ln2 y +

139

1296
y3 ln3 y

− 1

16
y4 ln3 y +

97

8640
y5 ln3 y +

1

48
y4 ln4 y − 1

144
y5 ln4 y +

1

720
y5 ln5 y

)1

ε

.

(4.13)

Taking the limit ε→ 0, we get

g5 =
1165339

311040000K4κ9
.

Similar derivation for g6 can be found in Appendix A.

4.3 Higher-order coefficients for the power ve-

locity profile

Power velocity profile follows from an alternative theory to the logarithmic model.
The mean velocity gradient, ∂u/∂y, in the inertial layer, suggested by dimensional
analysis, is

∂u

∂y
=
u∗
y
Φ(y+,Re) ,

where Φ is the dimensionless function. In the 1930s, von Karman neglected the
viscous sub-layer by assuming that at y+ → ∞ and Re → ∞, the function Φ tends
to a finite limit, we have Φ(y+,Re) = 1/κ. This assumption leads to the classical
logarithmic law of the form (4.4). This law is Reynolds-number independent for
the mean velocity over the cross-section of a channel. Barenblatt (1993, 2000,
2003) argued that the assumption of von Karman is inadequate and showed that
the influence of the viscosity and the Reynolds number should be taken into
account in the inertial layer. Hereby, an alternative theory can be put forward
based on the assumption that at large y+, the finite limit of the function Φ does

not exist. Instead, the function can be written in the form Φ = γ(Re)y
α(Re)
+ . For

the functions γ(Re) and α(Re), he obtained (Barenblatt, 2000) the Reynolds-
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number-dependent scaling law

Φ =
u

u∗
= (γ0 ln Re + γ1) y

ζ

lnRe
+ , (4.14)

where the constants γ0, γ1, and α are universal. By comparing (4.14) with the
most reliable data for turbulent pipe flows, he found

ζ =
3

2
, γ0 =

1√
3
, γ1 =

5

2
, (4.15)

with the Reynolds number defined as Re = ud/ν in which u is the average velocity
across the pipe and d the pipe diameter. Substituting (4.15) into (4.14), we have

u(y) = u∗

(
1√
3
lnRe +

5

2

)
yα+ ,

where α = 3/(2lnRe). Similar theory applies to wall turbulence in channels (Baren-
blatt, 2000). The Reynolds number Re is based on the maximal velocity, which
is the velocity at the surface, u(h), and defined by

Re =
u(h)`

ν
, (4.16)

in which ` has the same order of magnitude as the depth of the channel. As a
simple assumption, we adopt that the length of turbulence equals a fixed portion
of the total depth, ` = βh where β is the empirical constant. Substituting (4.14)
into (4.2) gives the following expression for the diffusion coefficient

D(y) =
u1−αKνα(

1√
3
ln Re + 5

2

)
α
y1−α . (4.17)

Hereafter, all the quantities are non-dimensional. The 2–D advection-diffusion
equation (4.1) becomes

∂c

∂t
+ qyα

∂c

∂x
=
K

qα

∂

∂y
[y1−α ∂c

∂y
] , (4.18)

where u(y) = qyα and q = Rα(1/
√
3 lnRe + 5/2) in which R is defined by

R =

(
Re

β(
√
3

2α
+ 5

2
)

) 1
α+1

. (4.19)
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The boundary conditions associated with (4.18) are

y1−α ∂c

∂y
|y=ε = y1−α ∂c

∂y
|y=1 = 0 .

The coefficient g4 for the power velocity peofile is calculated as follows. Substi-
tuting n = 3 into (4.8) leads to

L [c3] =
3∑

m=1

c3−mgm + u (y) c3−1 = c1g2 + c0g3 + c2[g1 + u (y)] , (4.20)

where c0 = 1 and g1, c1, b, g2, c2, m and g3 are calculated from Eqs. (4.8), (4.10),
(4.11), (4.12), (4.16), (4.17) and (4.18), respectively, found in Strunin (2011).
Substituting these coefficients and functions into (4.20) gives

∂

∂y

(
y1−α∂c3

∂y

)
=

αrq3

2κ(2α+ 1)
y5α+2 +

αrq2g1(4α+ 3)

2κ(2α + 1)
y4α+2

+
αqg21 (2r + qs)

2κ
y3α+2 +

α2bq4

κ2(α+ 1)(2α + 1)
y3α+1

+
αsqg31
2κ

y2α+2 +
2α2q3 (g2 + bg1)

κ2(2α+ 1)
y2α+1

+
α2q2 (2g1g2 + bg21)

κ(α + 1)
yα+1 +

αmq2

κ
yα +

αq

κ
(g3 + bg2 +mg1) ,

(4.21)

where s and r are defined by

s =
α2q2

K2(α + 1)2(α+ 2)
,

r =
α2q3

K2(α + 1)(2α+ 1)(3α + 2)
.

Integrating (4.21) twice, we obtain

c3 =
αrq3

6κ(2α + 1)2(5α+ 3)
y6α+3 +

αrq2g1
2κ(2α + 1)(5α+ 3)

y5α+3

+
αqg21 (2r + qs)

6κ(α + 1)(4α+ 3)
y4α+3 +

rbq

2(2α+ 1)
y4α+2 +

αsqg31
6κ(α + 1)(2α+ 3)

y3α+3

+r (g2 + bg1) y
3α+2 +

s

2

(
2g1g2 + bg21

)
y2α+2

+
αmq2

κ(α+ 1)(2α + 1)
y2α+1 +

αq

κ(α + 1)
(g3 + bg2 +mg1) y

α+1 + A2 .

(4.22)
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The integration constant A2 can be found from the condition
∫ 1

ε
c3dy = 0.

A2 = − αrq3

12κ(2α+ 1)2(3α+ 2)(5α+ 3)
− αrq2g1

2κ(2α+ 1)(5α+ 3)(5α + 4)

− αqg21 (2r + qs)

24κ(α+ 1)2(4α+ 3)
− rqb

2(2α+ 1)(4α+ 3)

− αsqg31
6κ(α + 1)(2α+ 3)(3α+ 4)

− r (g2 + bg1)

3(α+ 1)
− s (2g1g2 + bg21)

2(2α+ 3)

− αmq2

2κ(α + 1)2(2α + 1)
− αq (g3 + bg2 +mg1)

κ(α + 1)(α + 2)
.

(4.23)

Using (4.22) and (4.7) for n=4, we get

g4 = − αrq4

6κ(2α + 1)2(5α + 3)(7α+ 4)
− αrq3g1

4κ(2α+ 1)(3α+ 2)(5α + 3)

− αq2g21 (2r + qs)

6κ(α + 1)(4α+ 3)(5α + 4)
− rbq2

2(2α+ 1)(5α + 3)

− αsq2g31
24κ(α + 1)2(2α + 3)

− rq (g2 + bg1)

(4α+ 3)
− sq (2g1g2 + bg21)

6(α + 1)

− αmq3

κ(α + 1)(2α + 1)(3α+ 2)
− αq2 (g3 + bg2 +mg1)

2κ(α + 1)2
− A2q

α + 1
.

(4.24)

Similar derivation for g5 and g6 can be found in Appendix A.

4.4 Numerical approach: one-dimensional ra-

dial basis function networks

In this section, the 1D-IRBFN method (Mai-Duy and Tanner, 2007) is briefly
described with the full details given in Appendix B.1. We extend the method to
calculate function derivatives up to 6th-order. The domain of interest is discretised
using a Cartesian grid, i.e. an array of straight lines that run parallel to the x-
and y-axes. The dependent variable u and its derivatives on each grid line are
approximated using an IRBFN interpolation scheme. Consider an x-grid line with
Nx points. The variation of u along this line is sought in the IRBF form. The
highest-order derivative (order n) is decomposed into RBFs. The RBF networks
are then integrated to obtain the lower-order derivatives and the function itself,
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∂nu(x)

∂xn
=

Nx∑

i=1

w(i)G(i)(x) =

Nx∑

i=1

w(i)H
(i)
[n](x), (4.25)

∂n−1u(x)

∂xn−1
=

Nx∑

i=1

w(i)H
(i)
[n−1](x) + p1, (4.26)

∂n−2u(x)

∂xn−2
=

Nx∑

i=1

w(i)H
(i)
[n−2](x) + p1x+ p2, (4.27)

... ... ...

∂u(x)

∂x
=

Nx∑

i=1

w(i)H
(i)
[1] (x) + p1

xn−2

(n− 2)!
+ p2

xn−3

(n− 3)!
+ ... + pn−2x+ pn−1,

(4.28)

u(x) =
Nx∑

i=1

w(i)H
(i)
[0] (x) + p1

xn−1

(n− 1)!
+ p2

xn−2

(n− 2)!
+ ... + pn−2

x2

2
+ pn−1x+ pn,

(4.29)

where
{
G(i)(x)

}Nx

i=1
=
{
H

(i)
[n](x)

}Nx

i=1
are known RBFs; H

(i)
[n−1](x) =

∫
H

(i)
[n](x)dx;

H
(i)
[n−2](x) =

∫
H

(i)
[n−1](x)dx; ...; H

(i)
[1] (x) =

∫
H

(i)
[2] (x)dx; H

(i)
[0] (x) =

∫
H

(i)
[1] (x)dx;

{w(i)}Nx

i=1 are RBF weights to be determined; and p1, p2, ..., and pn integration
constants which are also unknown. An example of RBF, used in this work, is the
multiquadrics G(i)(x) =

√
(x− x(i))2 + a(i)2, a(i) - the RBF width determined as

a(i) = βd(i), β a positive factor, and d(i) the distance from the ith centre to its
nearest neighbour. In the present study, the highest order of derivative is 6th-
order (n = 6). The new basis functions H

(i)
[5] (x), H

(i)
[4] (x), ..., H

(i)
[1] (x) and H

(i)
[0] (x)

obtained from integrating the multiquadrics G(i)(x) are as follows.

H
(i)
[5] (x) =

r

2
A+

a2

2
B, (4.30)

H
(i)
[4] (x) =

(
r2

6
− a2

3

)
A+

a2r

2
B, (4.31)

H
(i)
[3] (x) =

(
−13a2r

48
+

r3

24

)
A+

(
−a4

16
+

a2r2

4

)
B, (4.32)

H
(i)
[2] (x) =

(
a4

45
− 83a2r2

720
+

r4

120

)
A+

(
−a4r

16
+

1a2r3

12

)
B, (4.33)

H
(i)
[1] (x) =

113a4r − 194a2r3 + 8r5

5760
A+

15a6 + 60a2r2(−3a2 + 2r2)

5760
B, (4.34)

H
(i)
[0] (x) =

−128a6 + 1779a4r2 − 1518a2r4 + 40r6

201600
A+

5a6r − 20a4r3 + 8a2r5

1920
B.

(4.35)

in which r = x− x(i), A =
√
r2 + a(i)2, and B = ln(r + A).
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The discretisation of spatial derivatives in Eqs. (4.1) and (4.6) is carried out by
using (4.25)–(4.28). Note that the peak of depth-averaged concentration C moves
along the positive x-axis as time increases and the concentration on the inlet and
outlet boundaries of the computational domain is assumed to be zero. In order
to reduce the computational effort, an algorithm to regularly shift the computa-
tional domain along the x-axis after a period of time ∆τ is applied (Mohammed,
Ngo-Cong, Strunin, Mai-Duy and Tran-Cong, 2014). In this algorithm, the com-
putational domain is chosen large enough to make sure the value of C on the inlet
and outlet boundaries equal to or less than εC = 10−4 during the computation.

4.5 Numerical results and discussion

In this section, we investigate the performance of the 1–D and 2–D models for
both power and logarithmic velocity profiles using the 1D-IRBFN method in
a simulation of turbulent shear flow in an open channel. The comparison of
numerical solutions between both velocity profiles are also presented.

4.5.1 Power velocity profile

We conduct a grid convergence study of Cmax and xmax (the maximum depth-
averaged concentration and its position along the channel, respectively) for the
2–D model at Re = 105 as shown in Fig. 4.1. The converged solution is obtained
for grids equal or denser than 151 × 151. The corresponding study for the 1–D
model is described in Fig. 4.2 in comparison with the converged 2–D solution. The
grid convergence behaviour is also observed for the 1–D model as the solutions are
indistinguishable when refining the grid. A good agreement between the 1–D and
2–D models is demonstrated in Fig. 4.2 showing that the 1–D and 2–D solutions
of Cmax and xmax are coincide at large times.

Fig. 4.3 compares the solutions of Cmax and xmax w.r.t. time among the 2-D model
and the 1-D models with different orders (from 2nd-order to 6th-order). It appears
that there is a small gap of Cmax among the 1-D models with different orders and
the 2-D model at the beginning time, however all solutions become coincide as
time increases. The same trend is also demonstrated in Fig. 4.4 showing the
variation of Cmax along the channel at different times t = 20.0, 30.0 and 150.0.
Note that the 3rd− 6th-order 1-D models yield more accurate solutions to that of
the 2-D model than the 2nd-order 1-D model at the beginning time (t = 20.0 and
30.0).



4.5 Numerical results and discussion 79

4.5.2 Comparison between logarithmic and power 1–D

models

We compare the performance of the 1-D models associated with the power and
logarithmic velocity profiles. For the purpose of comparison, we need to choose
the value of R for the logarithmic velocity model so that the advection velocity for
both models are the same (i.e., glog1 = gpower

1 ). For the case of the power velocity
model in Section 4.5.1, we have Re = 105 and g1 = −23.6392. For the case of the
logarithmic velocity model, the variation of g1 w.r.t. R is described in Fig. 4.5.
Based on this figure, we take R = 3850.04 in order to satisfy the condition
glog1 = gpower

1 = −23.6392. The obtained logarithmic and power velocity profiles
are depicted in Fig. 4.6.

We conduct a grid convergence study of Cmax and xmax for the 2–D model at
R = 3850.04 (Fig. 4.7). The converged solution is obtained for grids equal or
denser than 151×151. The corresponding study for the 1–D model is described in
Fig. 4.8 in comparison with the converged 2–D solution on a grid of 151×201. The
grid convergence behaviour is also achieved as the solutions are almost coincide
when increasing the grid number. A good agreement between the 1–D and 2–D
models is demonstrated in Fig. 4.8 showing the 1–D and 2–D solutions of Cmax

and xmax w.r.t. time. Fig. 4.9 compares the solutions of Cmax and xmax w.r.t.
time among the 2-D model and the 1-D models with different orders (from 2nd-
order to 6th-order). It can be seen that there is a small gap of Cmax among the 1-D
models with different orders and the 2-D model at the beginning time, however,
all solutions become coincide with increasing time.

In Eq. (4.6), the coefficients gn are analytically derived and responsible for the
effects of advection, diffusion and dispersion. The coefficients are defined as func-
tions of parameters characterising the flow such as Reynolds number and von
Karman constant κ. Even without solving the equation (4.6), we can quickly
estimate the size of the contaminant based on its coefficients gn. The character-
istic distances over which the substance propagates during a period of time T are
defined by (see Chapter 1, Eq. (1.30))

L1 = g1T due to the advection, (4.36)

L2 = (g2T )
1/2 due to the diffusion, (4.37)

L3 = (g3T )
1/3 due to the dispersion. (4.38)

From (4.36)-(4.38), we have g2/g1 = L2
2/L1 and g3/g1 = L3

2/L1. Therefore, with
the same advection effect, the bigger the ratio g2/g1 and g3/g1 are, the larger the
effects of diffusion and dispersion happen.

We study a shear flow in an open channel with the logarithmic velocity profile
for the 2–D model and 1–D model including high-order terms for R = 3742.64.
For both the logarithmic and power velocity profiles, the results of Cmax and
xmax for 3rd − 6th–order 1–D models are almost the same and in good agreement
with those of the 2–D model. Table 4.1 gives the ratios of power coefficients to
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logarithmic coefficients for the case of glog1 = gpower
1 . The ratios demonstrate that

the effects of diffusion and dispersion for the power model are larger than those
for the logarithmic model as confirmed by the following numerical results.

Fig. 4.10 presents the results of xmax and Cmax with respect to time, respectively,
for the 1–D and 2–D models and the logarithmic and power velocity profiles.
For both velocity profiles, the 1–D and 2–D solutions converge to each other
with increasing time. The figure also shows that the power model has larger
diffusion and dispersion effects than the logarithmic model since the values of
Cmax obtained by the power model is less than those by the logarithmic model.
This agrees well with the analytic results obtained from the centre manifolds
theory where the ratios of g2/g1 and g3/g1 of the power theory are larger than
those of the logarithmic theory (Table 4.1). Fig. 4.11 describes the relative error
(δ/∆ = (C2D

max −C1D
max)/C

2D
max) between the 1–D and 2–D solutions reduces as the

time goes on for both profiles. The figure demonstrates that the logarithmic–
1–D model performs better than the power–1–D model at the beginning time,
however, the latter is superior to the former at large times.

Table 4.1 Comparison of coefficients between the power velocity model (Re = 105) and the logarithmic velocity

model (R = 3850.04) when glog1 = gpower
1 , and κ = 0.4.

g1 g2 g3 g4 g5 g6
Power -23.6392 5.7362 11.5455 -74.6714 76.0521 343.9028
Logarithmic -23.6392 3.9538 2.9509 -8.6096 14.2921 -10.6065
Power/Logarithmic 1.00 1.45 3.91 8.67 5.32 -32.42
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Figure 4.1 Turbulent shear flow in an open channel with power velocity profile: grid convergence study for 2–D
analysis of Cmax and xmax with respect to time t, for Re = 105 and β = 1.0.
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Figure 4.2 Turbulent shear flow in an open channel with power velocity profile: grid convergence study for 1–D
analysis of Cmax and xmax with respect to time t, for Re = 105 and β = 1.0.
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Figure 4.3 Turbulent shear flow in an open channel with power velocity profile: comparison of Cmax and xmax

among the 2–D and 1–D models with different orders, using grids of 151 × 201 for 2–D analysis and 301 for
1–D analysis, for Re = 105 and β = 1.0.
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Figure 4.7 Turbulent shear flow in an open channel with logarithmic velocity profile: grid convergence study for
2–D analysis of Cmax and xmax with respect to time t, for R = 3850.04.
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Figure 4.8 Turbulent shear flow in an open channel with logarithmic velocity profile: grid convergence study for
1–D analysis of Cmax and xmax with respect to time t, for R = 3850.04.
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Figure 4.9 Turbulent shear flow in an open channel with logarithmic velocity profile: comparison of Cmax and
xmax among the 2–D and 1–D models with different orders, using grids of 151× 201 for 2–D analysis and 301
for 1–D analysis, for R = 3850.04.
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4.6 Conclusion

The centre manifolds theory is applied to derive 1–D the high-order partial dif-
ferential equation governing the dispersion of contaminant in turbulent channel
flows based on both the power and logarithmic velocity profiles. The high-order
equations (up to sixth-order) are then successfully verified through the solution of
the original 2–D equation using the 1D-IRBFN method as a numerical approach.
The numerical solution of 1–D models are in good agreement with that of the 2–D
model for both the power and logarithmic velocity profiles. It is noted that the
solutions of 3rd − 6th-order 1–D equations are almost coincide and more accurate
than that of the 2nd-order 1–D equation, compared to the 2–D solution. For the
same advection velocity (glog1 = gpower

1 ), both 1–D and 2–D results show that the
power model produces larger diffusion and dispersion effects than the logarithmic
model. It is worth pointing out that one can estimate the advection, diffusion
and dispersion of contaminants in a channel flow based on the analytically derived
coefficients without the need of solving the 1–D or 2–D governing equations.



Chapter 5

Asymptotics of averaged
turbulent transfer in urban
canopy flows

We formulate and analyse a long-time asymptotic model of dispersion in tur-
bulent canopy flows, of urban or industrial nature. The model is formulated in
terms of the concentration averaged across the flow, for example over the river
depth. The general approach laying a firm base into the averaging procedure was
proposed by Roberts and co-authors in the late 1980s. We derive an evolution
partial differential equation for the averaged concentration, involving first, sec-
ond and higher derivatives with respect to spatial coordinate. The coefficients of
the equation are derived and analysed against the parameters characterising the
turbulent flow. In particular we show that, in the limit of large flow depths, the
values of the coefficients coincide with those obtained earlier for the flow over a
smooth bottom.

5.1 Introduction

Centre manifold approach developed in a series of works originated by Roberts (Mer-
cer and Roberts, 1990) allows to derive a relatively simple one-dimensional par-
tial differential equation describing the spreading of the depth-averaged amount
of tracer, such as heat or concentration of a contaminant, in environmental and
industrial flows,

∂tC =
∞∑

i=1

gi∂
i
xC ≈ g1∂xC + g2∂

2
xC , (5.1)
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where C(x, t) is the depth-averaged concentration of the tracer, axis x is directed
along the flow, for example, along the river or atmospheric wind. In the model
(5.1) the spreading results from the advection, diffusion and dispersion, expressed
by the first, second and third x-derivatives respectively. It is assumed that suffi-
ciently long time has passed since the tracer had been discharged into the flow.
As a result, the x-variations of the concentration are assumed slow. Further
below we show how the coefficients gi of the model are deduced using the origi-
nal non-averaged transfer equation. In the end, they emerge as combinations of
fundamental input parameters such as the Reynolds number. It is important to
note that the model is not only theoretically sound because it is supported by
the centre manifold theory, but can also provide, using the coefficients gi, simple
practical estimates of the sizes of clouds of emitted tracers. For example, the
typical distance travelled by the tracer during the time T is

L1 = g1T due to the advection,

L2 = (g2T )
1/2 due to the diffusion.

(5.2)

Once gi are tabulated against the physical parameters characterizing the canopy
and the flow, one can use (5.2) to calculate how far the patch of the substance
has drifted and what its size approximately became. The use of (5.2) is a simple
alternative (of course at the expense of accuracy) to numerically solving equation
(5.1) or solving the original advection-diffusion equation, from which (5.1) is
derived.

Previously, equations of the type (5.1) were derived by different approaches in
application to flows, both laminar and turbulent, near smooth substrates. In
his pioneering paper published several decades ago Taylor (1953) constructed an
approximate advection-diffusion equation which controls the long term evolution
of the average concentration of a contaminant in a straight channel or pipe. Ini-
tially the equation was intended for laminar flows, but later it was extended in
straightforward manner to describe turbulent flows as well (Taylor, 1954; Aris,
1956). Researchers used a variety of techniques analysing the downstream trans-
port of tracers in channels. For example, Aris (1956) analysed the concentration
moment, Pagitsas et al. (1986) considered multiple time scales, and Chatwin
(1970) resorted to the asymptotic series approach. Roberts and co-authors (Mer-
cer and Roberts, 1990; Roberts and Strunin, 2004; Strunin and Roberts, 2009;
Strunin, 2011) based their analysis on a rigorous procedure supported by the cen-
tre manifold theory. In brief, if the normalised state of the system has a number
of zero eigenvalues, say n, and that if all the other eigenvalues are negative, then
the system evolves exponentially quickly towards an n-dimensional centre man-
ifold. On the centre manifold, the system then evolves slowly according to the
evolution of n amplitude functions reaching a relatively constant state for which
differential equations can be derived. Based on the centre manifold theory and its
generalisation for finite dimensions by Coullet and Spiegel (1983), Roberts (1988)
developed a procedure to calculate a sequence of successively more accurate ap-
proximations to the evolution of the concentration in space and time. Strunin



5.1 Introduction 95

and Roberts (2009); Strunin (2011) used the centre manifolds to derive asymp-
totic models of shear dispersion in log- and power- turbulent flows in smooth
open channels. The flows near rough surfaces, such as agricultural fields or urban
canopies, are not less important and can be treated with the same approach.

The canopy flows are extremely complicated, and any transfer model would in-
evitably depend on adopted approximations for turbulence through the canopy
and adjacent roughness layer (using the terminology of Raupach et al. (1980)).
The roughness layer is the layer above the canopy and beneath the lower edge
of the inertial layer. We call it matching layer in Section 5.3, we also refer to
Fig. 5.2. We consider the layered model described in Macdonald (2000). There
are different models based on various versions of the flow structure, particularly
for agricultural canopies, e.g. (Harman and Finnigan, 2007). We analyse a steady
inertial turbulent layer of constant width H above the canopy turbulent layer of
width h. It can be, for example, a flow in an open channel subject to a constant
shear stress applied to the fluid surface and measured by the friction velocity u2∗.
Hereafter we refer to the channel flow, however, our analysis can be generalised to
the cases of turbulent boundary layers of varying depth, for example near a semi-
plane. The ensemble-averaged concentration, assumed to be passive, c(x, y, t), is
subject to the advection-diffusion equation

∂tc + u(y)∂xc = ∂y[D(y)∂yc] , (5.3)

where D(y) is the turbulent diffusion coefficient across the flow. The model
(5.3) is more applicable to channel fluid flows than atmospheric flows because
atmospheric wind may rapidly change direction and strength (Legg, 1983; Flesh
et al., 1995; Arya, 1999). Similarly to Mercer and Roberts (1990) we neglect the
downstream turbulent diffusion to explore the situation, where the downstream
diffusion and dispersion emerge in the averaged equation (5.1) as “pure” effects
of the cross-flow diffusion and advection in the original equation (5.3). Yet, our
analysis can be generalised to include the downstream diffusion in (5.3) without
difficulty. The boundary conditions express non-penetration through the surface,
y = H , and the bottom, y = 0,

D∂yc|y=0 = D∂yc|y=H = 0 . (5.4)

Turbulent diffusion tends to spread the substance uniformly over the depth of
the channel. The concentration would quickly become constant along vertical if
it was not for the velocity shear. Because of it, near the bottom the substance
particles move slowly, while the particles near the surface move fast. This effect
creates non-uniformity in vertical direction and acts against the diffusion. An
ongoing competition of the two factors – advection and diffusion – controls the
distribution of the substances in the flow. Such a competition can be effectively
modelled using the centre manifold theory, a tool frequently used in nonlinear
science. We utilise this approach in our work.
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The present chapter is structured as follows. In Section 5.2 we explain the basic
principles of the centre manifolds. Then, in Section 5.3 we specify the velocity
u(y) and turbulent diffusion coefficient D(y); we need them to derive equation
(5.1)– our ultimate goal. Clearly, u(y) and D(y) depend on the structure of
turbulence in the flow. This structure is viewed as three-layered, namely, canopy
layer, matching layer (roughness layer) and inertial layer. In Section 5.4 the
mathematical method described in the introduction is applied to the structure
described in Section 5.3 and, as a result, equation (5.1) is derived (the leading
coefficients gi are numerically calculated). Section 5.5 presents the verification
of the derived 1–D model by direct computations using the original 2–D model.
Section 5.6 summarizes the chapter.

5.2 Centre manifold approach

In the following we briefly describe the 1–D model based on the centre manifold
theory. Taking the Fourier transform to (5.3), we obtain

∂tĉ = L[ĉ]− iku(y)ĉ , (5.5)

where ĉ(y, k, t) is the Fourier transform defined by 1/(2π)
∫∞
−∞ exp(−ikx)c dx.

The linear operator L[ĉ] = ∂y[D(y)∂yĉ] expresses the cross-flow turbulent diffusion
and has a discrete spectrum of eigenvalues. One of the eigenvalues is equal to zero;
it corresponds to the neutral eigenmode ĉ =const that is an arbitrary constant
level of concentration across the channel. Based on centre manifold theory, see
Chapter 2 for more details, we assume that the concentration field is dependent
only on the neutral mode ĉ =const and how it evolves. As a result, we have

ĉ = ĉ(Ĉ, k, y) such that ∂tĈ = G(Ĉ, k) , (5.6)

where Ĉ is the depth-average of ĉ chosen as a measure of the “amplitude” of
the neutral mode. Equation (5.6) effectively says that the concentration ĉ(y, k, t)
depends on the time through Ĉ.

With (5.6) taken into account, equation (5.5) becomes

L[ĉ] =
∂ĉ

∂Ĉ
G + ikuĉ . (5.7)

Since the original problem (5.5) is linear in ĉ, we assume asymptotic expansion
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for ĉ and G which is also linear in Ĉ, that is,

ĉ =
∞∑

n=0

cn(y)(ik)
nĈ , G =

∞∑

n=1

gn(ik)
nĈ . (5.8)

The definition of Ĉ as the depth-averaged implies the conditions

1

h

∫ h

0

c0 dy = 1 ,

∫ h

0

cn dy = 0 for n = 1, 2, . . . . (5.9)

Substituting (5.8) into (5.7) and collecting similar terms in powers of the small
parameter k we obtain a sequence of equations for the unknown functions cn(y)
and coefficients gn,

L[c0] = 0 , (5.10)

L[cn] =

n∑

m=1

cn−mgm + u(y)cn−1 for n = 1, 2, . . . . (5.11)

Integrating (5.11) over the depth we get

D∂yc|y=H − D∂yc|y=0 = gnc0 + u(y)cn−1 = gn + u(y)cn−1 ,

where the overline means depth-averaging. Once the fluxes through the bound-
aries are zero, D∂yc|y=H = D∂yc|y=0 = 0, then

gn = −u(y)cn−1 for n = 1, 2, . . . . (5.12)

Successively we can calculate gn and cn for any n. Considering only two leading
terms in the G series in (5.8) gives

∂tĈ = g1(ik)Ĉ + g2(ik)
2Ĉ + . . . . (5.13)

Applying the inverse Fourier transform to (5.13), we obtain the advection-diffusion-
dispersion equation for the averaged concentration in the form,

∂C

∂t
= g1

∂C

∂x
+ g2

∂2C

∂x2
+ . . . . (5.14)

Applying the inverse Fourier transform is band-limited to a low wave number for
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which the centre manifold theory is applicable.

5.3 Layered structure of canopy turbulence

The aim of this section is to specify the velocity u(y) and diffusion coefficient
D(y). They are part of the original transport equation (5.3), which we intend to
treat with the centre manifold technique in the next section.

The inertial layer is described by the classical semi-logarithmic velocity pro-
file (Tennekes and Lumley, 1972),

u(y)

u∗
=

1

κ
ln

(
y − d

y0

)
, (5.15)

where y0 is the roughness height, d is the displacement height and κ is the von
Karman constant. Eq. (5.15) is for the range yw < y < H , where yw is the
matching layer height and H the inertial layer height. They are written out
further in this section.

For the canopy layer, we adopt the model of Macdonald (2000). A parameter
that characterizes geometry of obstacles is the frontal area density λ = Af/Ad,
where Af is the frontal area of an obstacle exposed to the flow and Ad is the
total surface area per obstacle (total area divided by the number of obstacles).
Following Cionco (1965), Macdonald considered cylindrically shaped obstacles
and assumed that within the canopy layer there is a balance between the local
shear stress and obstacle drag force. This assumption leads to the exponential
velocity profile

u(y) = uh exp
[
a
(y
h
− 1
)]

, (5.16)

where a is the so-called attenuation coefficient and uh is the velocity at y =
h. Macdonald (2000) showed that for cube arrays with low packing density the
predicted exponential velocity profile (5.16) provides an adequate fit to the aver-
age velocity profile within the canopy.

Typically 2 < a < 3 (Cionco, 1972). Note that the exponential profile (5.16)
does not give precisely zero at y = 0, however, the velocity there is small so it is
regarded as a virtual zero. Thus, Eq. (5.16) is for the range 0 < y < h, where h is
the canopy height. The analysis of Macdonald (2000) showed that the parameter
a linearly depends on the frontal area density as

a = mλ ,
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with m = 9.6. Although this flow model is intended for the urban canopy or fluid
flows with roughness in the first place, we will also consider the velocity profile
(5.16) in application to vegetation canopies. Of course, we realise that vegetation
is not a set of cylindrically shaped obstacles. However, there are certain physical
arguments to support the same formula in application to plants (Yi et al., 2005;
Yi, 2008). In this case the attenuation coefficient is written as

a = LAI/2 ,

where LAI stands for the so-called leaf area index. Accordingly, on our plots we
will indicate the both values of λ and LAI, corresponding to the same value of
the attenuation coefficient.

For the mixing length `c in the canopy the following expression in terms of λ, a
and h, was obtained

`c
h

=

√
pλ(1− e−2a)

4a3
, (5.17)

where p = 1.2. At the top of the canopy the shear stress must be continuous
(Fig. 5.2). Using the Prandtl expression for the shear stress, `2(∂u/∂y)2, substi-
tuting in it the velocity Eq. (5.16) and equating to the shear stress in the inertial
layer u2∗, gives

u∗
uh

=
a`c
h
. (5.18)

The two velocity profiles the semi-logarithmic one expressed by Eq. (5.15) and the
canopy one expressed by Eq. (5.16) must match each other. Macdonald (2000)
achieved this by assuming that the mixing length ` changes linearly against y
when moving from the top of the canopy to some yet-to-be-determined contact
point with the semi-logarithmic layer, y = yw. At this point the length ` must
coincide with the mixing length on the lower edge of the semi- logarithmic law.
The latter one equals

` = κ(y − d) , (5.19)

(this is precisely the expression that eventually leads to Eq. (5.15)). At the point
y = yw formula (5.19) becomes `w = κ(yw−d). Macdonald adopted the following
linear interpolation of the length connecting the point ` = `c at y = h with the
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point ` = `w at y = yw,

`(y) = `c +
y − h

yw − h
[κ (yw − d)− `c] = A +By , (5.20)

where A and B are introduced for convenience and defined by the left-hand side
of Eq. (5.20),

A = `c −
h

yw − h
(κ (yw − d)− `c) , B =

1

yw − h
(κ (yw − d)− `c) .

Further, it was assumed that within the layer connecting the canopy and inertial
layer, the friction velocity is constant, giving

∂u

∂y
=
u∗
`
, (5.21)

where ` is represented by Eq. (5.20). Integrating (5.21) gives the velocity in the
connecting layer of the form

u(y) =
u∗
B

ln

(
A+By

A +Bh

)
+ uh . (5.22)

Here the constant of integration is chosen such that the boundary condition u =
uh at y = h are met. At the matching point y = yw formula (5.22) should give
the same value as the semi-logarithmic law (5.15), that is

u∗/uh
B

ln

(
A+Byw
A+Bh

)
+ 1 =

u∗/uh
κ

ln

(
yw − d

y0

)
. (5.23)

Relation (5.23) presents an implicit equation with respect to the coordinate yw
to be found. Calculations of Macdonald (2000) based on available experimental
data showed that roughly yw/h ≈ 2.

Lastly, we adopted the following empirical expressions for the ratios d/h and y0/h
as functions of λ (Macdonald et al., 1998),

d

h
= 1 + A−λ

1 (λ− 1) , (5.24)

where A1 is an empirical parameter. A1 = 3.59 is used for the square arrays and
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Figure 5.1 The square (left) and staggered (right) cube arrays (the packing density is 0.16 (s/h=1.5)), these
patterns have been tested in the hydraulic flume by Macdonald et al. (2002).

A1 = 4.43 for the staggered arrays. The square and staggered patterns are shown
in Fig. 5.1.

y0
h

=

(
1− d

h

)
exp

[
−
(
0.5

p

κ2
β

(
1− d

h

)
λ

)−0.5
]
, (5.25)

where β is a constant introduced for higher precision; we use β = 0.55 for square
obstacles and β = 1 for staggered obstacles. Note that the ratio of the mixing
length to the canopy height, `c/h, is a function of λ as well, via Eq. (5.17).

As for the ratio uh/u∗, we need to make a few comments on how it is determined.
At the top of the canopy the velocity variation is large, which makes this task
difficult. Macdonald (2000) determined uh using the velocity measurements at a
fixed point at the top of the canopy. The mean velocity profile was determined
as an average of five measured profiles for each kind of obstacles. As can be seen
from Table 2 in Macdonald (2000), the shear stress uh/u∗ at the top of the canopy
is roughly constant for all λ ≥ 0.16. With this in mind we used uh/u∗ = 4.2
for square obstacles and uh/u∗ = 3.05 for staggered ones. We calculated these
values as the average of those with λ ≥ 0.16 (Table 2 in Macdonald (2000)).
Bentham and Britter (2003) argued that this range of packing densities is useful
for practical applications. The layered structure of the canopy is illustrated in
Fig. 5.2. Regarding the surface of the canopy shown in Fig. 5.2, we emphasize
that the surface as such exists only for a fluid flow. As for the atmospheric flow,
the top boundary is roughly where the intensive turbulence, generated by the
friction against land, significantly decays. The release is supposed to be of a
fixed amount of substance. However, continuous release is also acceptable by
the model, but in this case we need to go sufficiently far downstream from the
discharge point to ensure that particles have travelled for long time.

The above model identifies the velocity profiles in the three successive layers
of interest: canopy layer Eq. (5.16), connecting layer Eq. (5.22) and inertial
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Figure 5.2 A wind profile within and above a canopy. The profile is plotted for square cubes of 0.16 packing
density or using LAI = 3.072.

(semi-logarithmic) layer Eq. (5.15). The same model is used by Strunin and
Mohammed (2012) and Mohammed, Strunin, Ngo-Cong and Tran-Cong (2014).
Using the profiles, it is easy to get expressions for the turbulent diffusion coef-
ficient for momentum in each layer. Re-arranging the Prandtl formula for the
stress, `2(∂u/∂y)2 as (`2∂u/∂y)∂u/∂y = Dmom∂u/∂y, we have

Dmom = `2
∂u

∂y
. (5.26)

Finally, we assume that the diffusion coefficient for the passive substance in each
layer is proportional to Dmom (Barenblatt, 2003),

D = KDmom . (5.27)

where K is the coefficient of proportionality between the turbulent diffusion co-
efficient for momentum and the one for passive substance; strictly speaking it is
not exactly 1 and may vary (Monin and Yaglom, 1975). The diffusion coefficient
is continuous through the layers.

Coupled with the diffusion equations Eq. (5.3) and boundary conditions Eq. (5.4)
the diffusion coefficient represented by Eq. (5.27) constitute a self-consistent
model with the following independent dimensional parameters: the friction ve-
locity u∗, width of the inertial layer H , height of the canopy h and frontal area
density of the canopy λ. Choosing the canopy height, h, as the length scale and
the friction velocity, u∗, as the velocity scale, we come to a short list of just
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two non-dimensional input parameters: H/h and λ. Of course, implicitly the
model also depends on the shape of obstacles – square or staggered. The model
is reducible to the averaged form (5.1) by the centre manifold procedure similar
to Strunin (2011). This will lead to the advection, diffusion and other coefficients,
gn, of the averaged model as functions of the independent parameters.

5.4 Analysis and numerical results

Now that we specified the velocity field u(y), we are practically ready to apply
the centre manifold technique and calculate the leading coefficients gi of the
transport equation (5.1) of interest. This is the aim of the present section. Yet,
before doing so, we need to write down the diffusion coefficient D(y) in each layer,
using the respective velocity u(y). Also, it is useful to convert the problem into
non-dimensional form.

Substituting the velocity in each layer of the canopy flow into the expression for
the diffusion coefficient (5.26)–(5.27), we get

(1) For the canopy layer,

D(y) = Ku∗`c exp
[
a
(y
h
− 1
)]
.

(2) For the matching layer,

D(y) = Ku∗ (A+By) .

(3) For the inertial layer,

D(y) = Kκu∗ (y − d) .

Now we insert the velocity and corresponding diffusion coefficient in each layer
into the advection-diffusion equation (5.3) and non-dimensionalyze it using h/u∗
as the time scale and h as the length scale. Thus, we transfer to the non-
dimensional variables via x = x1h, u = u1u∗, t = t1h/u∗, y = y1h, D = D1hu∗.
As a result, equation (5.3) assumes the non-dimensional form given below.

(1) For the canopy layer,

∂t1c+ u1(y1)∂x1c = K∂y1

[
`c
h
e[a(y1−1)]∂y1c

]
, (5.28)

where

u1(y1) =
uh
u∗

exp [a (y1 − 1)] . (5.29)
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(2) For the matching layer,

∂t1c+ u1(y1)∂x1c = K∂y1

[
A+Bhy1

h
∂y1c

]
, (5.30)

where

u1(y1) =
1

B
ln

(
A+Bhy1
A+Bh

)
+
uh
u∗
. (5.31)

(3) For the inertial layer,

∂t1c+ u1(y1)∂x1c = K∂y1

[
κ
hy1 − d

h
∂y1c

]
, (5.32)

where

u1(y1) =
1

κ
ln

(
hy1 − d

y0

)
. (5.33)

As we now work with non-dimensional quantities, we also need to transform the
transport equation for the average concentration, which is our target, from the
dimensional form (5.14) into the following non-dimensional form,

∂C

∂t
=
g1
u∗

∂C

∂x
+

g2
hu∗

∂2C

∂x2
+

g3
h2u∗

∂3C

∂x3
+ . . . .

As we see, the non-dimensional advection coefficient equals g1/u∗, the diffusion
coefficient equals g2/(hu∗) and the dispersion coefficient equals g3/(h

2u∗). Here-
after, we denote these three non-dimensional coefficients just by g1, g2 and g3
for convenience remembering the connection between the dimensional and non-
dimensional representations.

Firstly, we calculate c0 using (5.10) and the boundary conditions

∂c

∂y1
|y1=0 =

∂c

∂y1
|y1=H/h = 0 .

This leads to

h

H

∫ H
h

0

c0 dy1 = 1 and c0 = 1 . (5.34)
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Now we can calculate g1 using (5.34) and (5.12) at n = 1,

g1 = −u1(y1)c0 = − h

H

∫ H
h

0

u1(y1) dy1 .

Breaking down the integral into three according to the layered structure of the
flow and using the velocity expressions for the layers, (5.29), (5.31) and (5.33),
gives

g1 = − h

H

{∫ 1

0

uh
u∗
e[a(y1−1)] dy1 +

∫ yw
h

1

[
1

B
ln

(
A+Bhy1
A+Bh

)
+
uh
u∗

]
dy1

+

∫ H
h

yw
h

1

κ
ln

(
hy1 − d

y0

)
dy1

}
,

= − h

H

{
uh
u∗

(
1− e−a

a
− 1

)
+

A

hB2
ln

(
A +Byw
A +Bh

)

+
H − d

hκ
ln

(
H − d

y0

)
+

d

hκ
ln

(
yw − d

y0

)
− yw (κ− B)

hκB
− H

hκ
+

1

B

}
.

(5.35)

In order to determine c1, we use (5.34), (5.35) and (5.11) at n = 1, that is

L[c1] = c0g1 + u(y1)c0 , (5.36)

which is an ordinary differential equation

∂

∂y1

[
D(y1)

∂c1
∂y1

]
= g1 + u1(y1) . (5.37)

For each layer, we calculate c1 using (5.35), (5.37) and the respective expression
for the velocity. The concentration in each layer will be labeled by a respective
subscript: “c” will mean canopy, “m” – matching and “i” – inertial. For the
canopy layer,

∂

∂y1

[
K
`c
h
e[a(y1−1)]∂c1c

∂y1

]
= g1 +

uh
u∗
e[a(y1−1)] .

Integrating this equation once, we get

∂c1c
∂y1

=
h

K`c

{
g1y1 e

[−a(y1−1)] + r1c e
[−a(y1−1)] +

uh
au∗

}
,
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and

c1c =
h

K`c

{
−g1
a
y1e

[−a(y1−1)] − g1
a2
e[−a(y1−1)]

−r1c
a
e[−a(y1−1)] +

uhy1
au∗

}
+ r2c .

(5.38)

For the matching layer,

∂

∂y1

[
K
A+Bhy1

h

∂c1m
∂y1

]
= g1 +

1

B
ln

(
A +Bhy1
A+Bh

)
+
uh
u∗
.

Integrating once, we get

∂c1m
∂y1

=
1

K

[
g1

h

A+Bhy1
y1 +

(
1

B

)2

ln

(
A+Bhy1
A+Bh

)

+
uh
au∗

h

A+Bhy1
y1 + r1m

h

A+Bhy1
−
(
1

B

)2
]
.

(5.39)

and

c1m =
1

K

{
g1u∗ + uh
B2u∗

[
A+Bhy1

h
− A

h
ln

(
A+Bhy1

h

)]

+
A+Bhy1
hB3

[
ln

(
A +Bhy1
A+Bh

)
− 1

]
−
(
1

B

)2

y1

+
r1m
B

ln

(
A+Bhy1

h

)}
+ r2m .

(5.40)

For the inertial layer,

∂

∂y1

[
Kκ

hy1 − d

h

∂c1i
∂y1

]
= g1 +

1

κ
ln

(
hy1 − d

y0

)
.

Integrating, we get

∂c1i
∂y1

=
1

Kκ

{
g1

h

hy1 − d
y1 +

1

κ

[
ln

(
hy1 − d

y0

)
− 1

]
+ r1i

h

hy1 − d

}
.
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and

c1i =
1

Kκ

{
g1

[
hy1 − d

h
+
d

h
ln

(
hy1 − d

h

)]

+
hy1 − d

hκ

[
ln

(
hy1 − d

y0

)
− 1

]
+ r1i ln

(
hy1 − d

h

)
− y1
κ

}
+ r2i ,

(5.41)

where the value of K = 1 is used for the computations in Section 5.5. The
integration constants r1c, r1m, and r1i can be determined by using the continuity
of flux through the boundaries. From the boundary condition ∂c1c

∂y1
|y1=0 = 0 we

find

r1m =
uh
u∗

(
1− e−a

a
− 1

)
+
A+Bh

h

(
1

B

)2

. (5.42)

From the boundary condition D1c
∂c1c
∂y1

|y1=1 = D1m
∂c1m
∂y1

|y1=1 we get

r1m =
uh
u∗

(
1

a
− 1

)
+
A+Bh

h

(
1

B

)2

. (5.43)

The constant r1i can be calculated in two ways: first, from the condition

∂c1i
∂y1

|y1=H/h = 0 ,

giving

r1i = −H
h
g1 −

H − d

hκ

[
ln

(
H − d

y0

)
− 1

]
, (5.44)

and, second, from the condition

D1m
∂c1m
∂y1

|y1=yw/h = D1i
∂c1i
∂y1

|y1=yw/h ,

Using (5.35) it can be easily shown that the second way leads to the same answer.
In order to find the integration constants r2c, r2m, and r2i, we use the continuity
condition for the concentration between the layers and normalising (5.9) for n = 1.
As a result, we come to the linear system of three equations with respect to the
three unknown constants, In order to simplify the form of the system, let us
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introduce some notations,

s1 = − 1

K

[
uhg1
u∗

(
1

a
+ 1

)
−
(
uh
u∗

)2
]
.

s2 =
1

K

{
u∗g1 + uh
B2u∗

[
A+Bh

h
− A

h
ln

(
A +Bh

h

)]

−A +Bh

hB3
+
r1m
B

ln

(
A+Bh

h

)
−
(
1

B

)2
}
.

s3 =
1

K

{
u∗g1 + uh
B2u∗

[
A+Byw

h
− A

h
ln

(
A+ Byw

h

)]

+
A+Byw
hB3

[
ln

(
A+Byw
A+Bh

)
− 1

]
− yw
hB2

+
r1m
B

ln

(
A+Byw

h

)}
.

s4 =
1

Kκ

{
g1

[
yw − d

h
+
d

h
ln

(
yw − d

h

)]
+
yw − d

hκ

[
ln

(
yw − d

y0

)
− 1

]

−yw
hκ

+ r1i ln

(
yw − d

h

)}
.

s5 =
1

K

{
g1uh
au∗

+
2uhg1 + ar1cuh

u∗a2
(1− ea) +

u2h
2u2∗

+
Bg1u∗ +Buh − u∗

B3u∗

×
[
A

h

(yw
h

− 1
)
+
B

2

((yw
h

)2
− 1

)]
− A (u∗g1 − uh)− hu∗r1m

hB3u∗

×
[
A+Byw

h

(
ln

(
A+Byw

h

)
− 1

)
− A+ Bh

h

(
ln

(
A+B

h

)
− 1

)]

+
1

2B4

[(
A +Byw

h

)2(
ln

(
A+Byw
A+Bh

)
− 1

2

)
+

1

2

(
A+Bh

h

)2
]

− 1

2B2

((yw
h

)2
− 1

)}

+
1

Kκ

{(
g1 −

1

κ

)[
1

2

(
H

h

)2

− dH

h2
− 1

2

(yw
h

)2
+
dyw
h2

]

+
g1d+ hr1i

h

[
H − d

h

(
ln

(
H − d

h

)
− 1

)
− yw − d

h

(
ln

(
yw − d

h

)
− 1

)]

+
1

2κ

[(
H − d

h

)2(
ln

(
H − d

y0

)
− 1

2

)
−
(
yw − d

h

)2(
ln

(
yw − d

y0

)
− 1

2

)

−
((

H

h

)2

−
(yw
h

)2
)]}

.
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In the new notations the system has the form

s1 + r2c = s2 + r2m ,

s3 + r2m = s4 + r2i ,

−s5 = r2c + r2m

(yw
h

− 1
)
+ r2i

(
H

h
− yw

h

)
,

from where

r2i =
h

H

{
s1 − s2 − s5 +

yw
h
s3 −

yw
h
s4

}
.

r2m = −s3 + s4 + r2i ,

r2c = −s1 + s2 + r2m .

(5.45)

System (5.45) was solved numerically and then the concentrations were computed
in each layer, using (5.38), (5.40) and (5.41). We discuss the results further in
the present section.

Now, we use (5.12) for n = 2 to calculate g2,

g2 = − h

H

∫ H/h

0

u1(y1)c1dy1 .

According to the three-layer structure, we have

g2 = − h

H

{∫ 1

0

u1c(y1)c1cdy1 +

∫ yw
h

1

u1m(y1)c1mdy1 +

∫ H
h

yw
h

u1i(y1)c1idy1

}

= − h

H

{∫ 1

0

[
uh
u∗
ea(y1−1)

] [
uh
Ku∗

(
−g1 e−a(y1−1)

(
y1 +

1

a

)
+
uh
u∗
y1

)
+ r2c

]
dy1

+

∫ yw
h

1

[
1

B
ln

(
A +Bhy1
A+Bh

)
+
uh
u∗

] [
1

K

[(
u∗g1 + uh
B2u∗

)

×
(
A+Bhy1

h
− A

h
ln

(
A+Bhy1

h

))
+

(
1

B

)3(
A+Bhy1

h

)

×
(
ln

(
A +Bhy1
A+Bh

)
− 1

)
−
(
1

B

)2

y1 +
r1m
B

ln

(
A +Bhy1

h

)]
+ r2m

]
dy1

+

∫ H
h

yw
h

[
1

κ
ln

(
hy1 − d

y0

)][
1

Kκ

(
g1 (hy1 − d)

h
+
g1d

h
ln

(
hy1 − d

h

)

+
hy1 − d

κh

(
ln

(
hy1 − d

y0

)
− 1

)
+ r1i ln

(
hy1 − d

h

))
− y1
κ

+ r1i

]
dy1

}
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and further,

g2 = − h

HK

{
−u

2
hu∗g1 (a

2 + 2a)− 2u3h (e
−a + a− 1) + 2a2u2hu∗r1c

2a2u3∗

+
2auhu

2
∗r2c (1− e−a)K

2a2u3∗
+
Bu∗g1 + 2Buh − 3u∗

B5u∗

[(
A+Byw

h
√
2

)2

×
(
ln

(
A +Byw
A +Bh

)
− 1

2

)
+

(
A+Bh

2

)2
]
+
A (u∗g1 − Bu∗r1m + uh)

hB4u∗

×
[
A+Bh

h

(
ln

(
A+Bh

h

))2

− A+Byw
h

(
ln

(
A+ Byw

h

))2
]

+

[
A (u∗g1 + uh)

hB4u∗

(
2 + ln

(
A+Bh

h

))
− r1m
B3

(
2 + ln

(
A+Bh

h

))

− Auh
hB3u∗

(
g1 +

uh
u∗

)
+
r1muh
B2u∗

] [
A+Byw

h

(
ln

(
A +Byw

h

)
− 1

)

−A +Bh

h

(
ln

(
A +Bh

h

)
− 1

)]
+

(A+Byw)
2

2h2B5

(
ln

(
A+Byw
A+Bh

))2

+
A+ hKB3r2m

hB5

[
A+Byw

h

(
ln

(
A+Byw
A+Bh

)
− 1

)
+
A+Bh

h

]

+
Auh
hu∗B2

(
Bg1 − 1

B
+
uh
u∗

+
Kr2mB

2h

A

)(yw
h

− 1
)

+
uh (Bu∗g1 +Buh − 2u∗)

2B2u2∗

((yw
h

)2
− 1

)
+
g1κ− 3

2κ3

[(
H − d

h

)2

×
(
ln

(
H − d

y0

)
− 1

2

)
−
(
yw − d

h

)2(
ln

(
yw − d

y0

)
− 1

2

)]

+
g1d+ hr1i

hκ2

[
H − d

h

(
ln

(
H − d

h

))2

− yw − d

h

(
ln

(
yw − d

h

))2
]

+
1

2κ3

[(
H − d

h

)2(
ln

(
H − d

y0

))2

−
(
yw − d

h

)2(
ln

(
yw − d

y0

))2
]

+

[
d− hr2iκ

2

hκ3
+
g1d+ hr1i

hκ2

(
2 + ln

(y0
h

))]

×
[
yw − d

h

(
ln

(
yw − d

y0

)
− 1

)
− H − d

h

(
ln

(
H − d

y0

)
− 1

)]}
.

(5.46)

Computing g3 for the canopy flow requires very extensive algebra (through the
research project, we only managed to calculate g3 and high-order coefficients for
the channel flow). Note, however, that g3 gives just a correction to the effect of
the diffusion expressed through g2. It is the diffusion coefficient g2 that carries
the main responsibility for the stretching of the contaminant cloud along the
channel. Numerically, we have obtained a good agreement between the 2–D
and 1–D solutions for the canopy flow (see Section 5.5) based only on the first
two derivatives, g1 and g2. In addition and according to our experience with
the channel flow (see Chapter 4), adding higher-order derivatives to the 1–D
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equation (5.1) will improve the solution only a little. Fig. 5.3 shows some velocity
profiles using data of Macdonald (2000) for square and staggered cube arrays at
various packing densities. Below the level y/h = 1 lies the canopy layer, the semi-
logarithmic layer is located above y = yw and the matching profile lies between
them.

It is interesting to compare the results for the transfer coefficients g1 and g2 with
those for the flow in a smooth channel analysed by Strunin (2011). In the limit
of very large Reynolds numbers he obtained

g1 → −1

κ
lnR = −1

κ
ln

(
u∗H

ν

)
,

where the Reynolds number was based on the total depth of the channel, R =
u∗H/ν with u∗ being the friction velocity and ν kinematic viscosity. The Reynolds
number R is different to Rh defined in (5.53). R is based on the inertial layer
height, while Rh is based on the canopy height. Taking the limit in our answer
(5.35) as H → ∞, we get

g1 → − h

H

{
H − d

hκ
ln

(
H − d

y0

)
− H

hκ

}
→ −1

κ
ln
H

y0
= −1

κ
ln

(
u∗H

ν
· ν

u∗y0

)

= −1

κ

[
ln

(
u∗H

ν

)
+ ln

(
ν

u∗y0

)]
→ −1

κ
ln

(
u∗H

ν

)
, (5.47)

which is exactly the result above (Strunin and Mohammed, 2012; Mohammed,
Strunin, Ngo-Cong and Tran-Cong, 2014). From (5.47) we see that the advection
coefficient for the canopy flow is less than that for the smooth channel flow,
because the second term in the square brackets is negative (it is, the inverse
Reynolds number based on the roughness height, y0; despite y0 is small, the
velocity is large enough to make such Reynolds number large). From physical
viewpoint, the canopy just slows down the flow relative to the smooth flow with
the same shear stress (friction velocity). The advection coefficient g1 is the depth-
averaged velocity, accordingly, for the canopy flow, it is smaller in absolute value.
Analysing formula for the diffusion coefficient g2, (5.46), in the limit H → ∞, we
find

lim
H→∞

g2 =
1

4Kκ3
H

h
. (5.48)

This result also agrees with the result by Strunin (2011).

In the following, we want to compare the obtained values of g1 and g2 with those
by Strunin (2011) for the one-layer flow that is the flow entirely consisting of the
inertial layer. We need to re-scale the formulae by Strunin using the new spatial
scale, which is h. By contrast, Strunin used as a scale the entire width of the
flow that is H . In what follows we re-do the manipulations from Strunin (2011)
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using the new scale, h. Consider the classical – logarithmic – velocity profile,

u =
u∗
κ

ln
(u∗y
ν

)
+ A . (5.49)

Substituting (5.49) into the expression for the diffusion coefficient (recall that the
shear stress is constant and proportional to u2∗)

D = Ku2∗/(∂u/∂y) ,

we get

D(y) = κKu∗y . (5.50)

Now substitute (5.49) and (5.50) into the advection-diffusion equation (5.3) and
non-dimensionalise using h/u∗ as the time scale and h as the length scale. This
leads to the non-dimensional equation, in which we keep the old notations for
convenience,

∂c

∂t
+ u(y)

∂c

∂x
= κK

∂

∂y

(
y
∂c

∂y

)
, (5.51)

where

u(y) =
1

κ
ln(Rhy) +

A

u∗
for ε < y < 1 , ε = h1/h , (5.52)

where

Rh =
u∗h

ν
(5.53)

is the Reynolds number based on the canopy height h. Near the bottom lies the
narrow viscous sub-layer,

ε = h1/h , (5.54)

which is small at large Reynolds numbers. Later on in our derivation we will take
the limit ε→ 0. In non-dimensional form the boundary conditions become

y
∂c

∂y

∣∣∣∣
y=ε

= y
∂c

∂y

∣∣∣∣
y=H/h

= 0 . (5.55)

Calculating c0 from (5.10) under the boundary conditions (5.55) and satisfying
(5.9) in non-dimensional form, we readily find

c0 = 1 . (5.56)
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Using (5.12) for n = 1, (5.52) and (5.56) and taking the limit ε→ 0 we get

g1 = −1

κ
(lnR− 1)−A/u∗ (5.57)

with

R =
u∗H

ν
.

Using (5.57) and (5.56), we can determine c1 from (5.11) at n = 1, that is

L[c1] = c0g1 + u(y)c0 , (5.58)

or

∂

∂y
(y
∂c1
∂y

) = − 1

Kκ2

[
ln

(
u∗H

ν

)
− 1− ln

(
u∗hy

ν

)]
. (5.59)

Integrating (5.59) once under the boundary conditions

y
∂c

∂y

∣∣∣∣
y=ε

= y
∂c

∂y

∣∣∣∣
y=H/h

= 0 ,

we get
∂c1
∂y

= − 1

Kκ2

[
ln

(
u∗H

ν

)
− ln

(
u∗hy

ν

)]
,

and further

c1 = − 1

Kκ2

[
ln

(
u∗H

ν

)
− (y ln y + y)

]
+B1 .

The integration constant B1 is determined from the condition

∫ H/h

ε

c1 dy = 0 .

As a result,

c1 = − 1

Kκ2

[
ln

(
u∗H

ν

)
− (y ln y + y)

]
+

3H

4hKκ2
. (5.60)

Now we can determine g2,

g2 = −u(y)c1(y) = − h

H

∫ H/h

ε

[
1

κ
ln(Ry) + A/u∗

]
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×
[
− 1

Kκ2

(
ln

(
u∗H

ν

)
− (y ln y + y)

)
+

3H

4hKκ2

]
dy

=
h

H

{
1

Kκ3

[
ln

(
u∗H

ν

)(
y2

2
ln(Ry)− y2

4

)
− y2

2

(
(ln(Ry))2 − ln(Ry) +

1

2

)

+
y2

2

(
ln(Ry)− 1

2

)
− 3H

4h
(ln(Ry)− y)

]

+
A/u∗
Kκ2

[
y2

2
ln

(
u∗H

ν

)
− y2

2

(
ln(Ry)− 1

2

)
+
y2

2
− 3y2

4

]}H
h

ε

(5.61)

Taking the limit ε→ 0 in (5.61), we get the answer

g2 =
H

4hKκ3
.

This differs from the corresponding expression for g2 obtained in Strunin (2011)
by the factor H/h due to the new scaling.

From Fig. 5.4 we see that the diffusion coefficient for the canopy flow is larger
than that for the smooth flow. The reason is the slower velocity through the
canopy itself. Strunin showed that the concentration component c1 is a decreasing
function of y, which is positive near the bottom and negative in the rest of the

flow, with the total integral
∫ H/h

0
c1 dy being zero. Now, the value g2 is represented

by the integral −(h/H)
∫ H/h

0
u(y)c1(y) dy; its value depends on the shape of the

velocity profile. The canopy flow has lower velocity near the bottom because
of the canopy resistance. Consequently, the contribution of the bottom part of
the integral, which makes negative contribution into the value of g2 due to the
negative sign in front of the integral, is reduced. The result is that the value
of g2 for the canopy flow is larger. Comparison of the advection and diffusion
coefficients versus total thickness for different densities of square and staggered
obstacles are demonstrated in Figs. 5.5–5.8.

Lastly, we analysed the dependence of the advection and diffusion coefficients
against the obstacle packing densities for their range that is typical for urban
canopies. Figs. 5.9–5.10 refer to the case when the thickness of the entire flow
is equal to the height of the canopy. Fig. 5.9 shows the decreasing advection
(in absolute value) due to slowing down of the flow caused by denser set of
obstacles; this seems a natural result. The diffusion coefficient increases with the
density as more densely packed obstacles make larger resistance to the flow and,
consequently, create steeper velocity profiles. The latter in turn lead to the larger
diffusion coefficients because the latter is created by the velocity shear. At the
same time there is a relatively short interval of λ where g2 is nearly constant and
even slightly decreases against the density; this should due to fine peculiarities of
the velocity profile. This effect is weak and we leave it for further investigation.
The case when the total thickness is 10 times larger than the canopy height is
illustrated in Fig. 5.11 and Fig. 5.12. We see that the advection coefficient after
an interval of decrease in absolute value goes up (in absolute value) versus density.
This latter effect may be loosely interpreted as a faster slide of the flow above the
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canopy. The behaviour of the diffusion coefficient looks usual as can be explained
as above for the case H/h = 1.

5.5 Comparison of 2–D and 1–D models using

1D-IRBFN method

In this section, we applied the one-dimensional integrated radial basis function
(1D-IRBF) method to simulate the canopy flow governed by the original 2–D
advection-diffusion equations (5.28)–(5.32) and the low-dimensional 1–D equa-
tion (5.1). The 1D-IRBF and IRBF-based methods have been successfully devel-
oped and verified through several engineering problems such as turbulent flows
in an open channel (Mohammed, Ngo-Cong, Strunin, Mai-Duy and Tran-Cong,
2014), viscous flows (Mai-Duy and Tran-Cong, 2001b; Mai-Duy and Tanner, 2007;
Ngo-Cong et al., 2012b), and structural analysis (Ngo-Cong et al., 2011), and
fluid-structure interaction (Ngo-Cong et al., 2012a).

We consider a case of square cube array, λ = 0.16 andH = 4. Based on Eqs. (5.35)
and (5.46), we obtain g1 = −6.4203 and g2 = 41.6907. In the numerical exper-
iments we analyse the 2–D equations in a rectangular domain with the length
L = 1000 and the height H = 4, subject to the boundary conditions: c = 0 on
the left and right boundaries, and ∂c/∂y = 0 on the top and bottom boundaries.
The domain of interest is discretised using uniform Cartesian grids. The Crank-
Nicolson scheme is employed for temporal discretisation. As in Mohammed, Ngo-
Cong, Strunin, Mai-Duy and Tran-Cong (2014), we adopt the initial condition in
the form

c(x, y, 0) = exp
[
− (0.1 (x− x0))

4 − (0.7(y − y0))
4] , (5.62)

with x0 = −11.5 and y0 = 0. We refer the reader to a similar study (Mohammed,
Ngo-Cong, Strunin, Mai-Duy and Tran-Cong, 2014) for technical details.

Figs. 5.13 and 5.14 present the grid convergence study for the 2–D model in
terms of the maximum depth–averaged concentration (Cmax) and its position,
(xmax), versus time, respectively. The depth–averaged concentration is calcu-

lated as C(x, t) = 1
H

∫ H

0
c (x, y, t) dy, where c(x, y, t) is the 2–D solution. The

converged solution is obtained for grids denser than or equal to 201 × 81. The
grid convergence behaviour is also established for the 1D model as shown in
Figs. 5.15 and 5.16.

The main purpose of Figs. 5.15 and 5.16 is to compare indicative characteristics
of the concentration field under the 1–D and 2–D models, namely: (a) the motion
of the position of the maximum depth-averaged concentration along the flow, and
(b) the decay of the maximum averaged concentration in time. The motion of the
maximum concentration reflects the role of the advection coefficient g1, while the
decay of the maximum concentration reflects the dissipative effect of the diffusion
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coefficient g2. Interestingly, as seen in Figs. 5.17 and 5.18, the evolution of the
concentration field may bring about two local maxima. Their evolution causes
a sudden change in the position of the global maximum, xmax, at early times
as visible in Figs. 5.13 and 5.15. But eventually the 2–D and 1–D curves go in
parallel, which indicates that the 1–D and 2–D models yield the same advection
velocities. The 1–D and 2–D concentration profiles as such, although different at
early stages of the dynamics (Figs. 5.16 and 5.17), get very close to each other
at large times. It is important to remind that it is the large time limit when the
centre manifold approach becomes applicable. These comparisons support the
derived 1–D model.
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Figure 5.3 Mean velocity profiles for different λ for the square cube arrays (top) and the staggered cube arrays
(bottom). The parameters A1 = 3.59, β = 0.55, uh/u∗ = 4.2 are used for the square cubes and the values
A1 = 4.43, β = 1, uh/u∗ = 3.05 are used for the staggered cubes.
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Figure 5.4 The diffusion coefficient versus total thickness for different densities of square (top) and staggered
(bottom) obstacles. For the square cubes, we used the parameters A1 = 3.59, β = 0.55, uh/u∗ = 4.2. The
values A1 = 4.43, β = 1, uh/u∗ = 3.05 are used with the staggered cubes.



5.5 Comparison of 2–D and 1–D models using 1D-IRBFN method 119

10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

H/h

g
1

 

 

λ=0.16, LAI=3.0720
λ=0.20, LAI=3.8400
λ=0.33, LAI=6.3360

Figure 5.5 The advection coefficient for square obstacles.
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Figure 5.6 The advection coefficient for staggered obstacles.
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Figure 5.7 The diffusion coefficient for square obstacles.
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Figure 5.8 The diffusion coefficient for staggered obstacles.
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Figure 5.9 The advection coefficient for square and staggered obstacles against density for the case H/h = 1.
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Figure 5.10 The diffusion coefficient for square and staggered obstacles against density for the case H/h = 1.
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Figure 5.11 The advection coefficient for square and staggered obstacles against density for the case H/h = 10.
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Figure 5.12 The diffusion coefficient for square and staggered obstacles against density for the case H/h = 10.
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Figure 5.13 Canopy flow: the grid convergence study for 2–D analysis of the xmax with respect to time for
H = 4, λ = 0.16, and using ∆t = 10−3.
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Figure 5.14 Canopy flow: the grid convergence study for 2–D analysis of the Cmax with respect to time for
H = 4, λ = 0.16, and using ∆t = 10−3.
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Figure 5.15 Canopy flow: the grid convergence study for 1–D analysis of the xmax with respect to time for
H = 4, λ = 0.16, and using ∆t = 10−3.
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Figure 5.16 Canopy flow: the grid convergence study for 1–D analysis of the Cmax with respect to time for
H = 4, λ = 0.16, and using ∆t = 10−3.
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Figure 5.17 Canopy flow: averaged concentration at different times for H = 4, λ = 0.16, using a grid of
201× 101 and ∆t = 10−3.
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Figure 5.18 Canopy flow: concentration field at different times for H = 4, λ = 0.16, using a grid of 201× 101
and ∆t = 10−3.
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5.6 Concluding remarks

We constructed an averaged model of shear dispersion in the turbulent flow within
and above the canopy using centre manifold approach. The core of the model is
the standard advection-diffusion equation (5.3) supplemented by no-flux bound-
ary conditions (5.4). The model contains as independent parameters the friction
velocity u∗, total thickness of the flow H , height of the canopy h and frontal area
density of the canopy λ. The model is reduced to the averaged form (5.1) by the
centre manifold procedure. The advection and diffusion coefficients, governing
the transfer of tracers of the averaged model, are found in terms of the indepen-
dent parameters. The used approach required lengthy derivations and produced
quite cumbersome expressions leading to the coefficients g1 and g2. However, we
would like to put emphasis on the following aspect of the problem: the derived
1–D equation (5.1) reveals a hidden property of the transport process, namely
the asymptotic 1–D law for the averaged concentration. This is an important
theoretical insight into the originally 2-dimensional problem (5.3). Whether such
a law existed and what form it could have was not obvious beforehand. At the
same time, from practical viewpoint, our results can be useful via the simple
estimates (5.2) giving the distance, travelled by the patch of the substance, and
its size; of course those can only serve as a rough tool.



Chapter 6

Conclusions

The one-dimensional integrated radial basis function network 1D-IRBFN method
is successfully used to verify the centre manifold approach. The 1D-RBFN has
major advantages include: (i) the RBFNs have the property of universal ap-
proximation; (ii) the rectangular domain of computation is discretized using a
Cartesian grid which helps reduce the computational cost; (iii) the use of integra-
tion instead of conventional differentiation to construct the RBF approximations
significantly improves the stability and accuracy of the numerical solution and
ensures a high convergence rate; and (iv) the 1D-IRBFN satisfies the govern-
ing differential equations together with boundary conditions in an exact manner.
The centre manifold approach enables us to analytically construct an advection-
diffusion equation for the depth-averaged concentration of substances in channels.
The general approach laying a firm base into the averaging procedure has been
proposed by Roberts and co-authors in the late 1980s. We derive the evolution
partial differential equation for the depth-averaged concentration, involving first-
second-and higher-order derivatives with respect to spatial coordinate. The co-
efficients of the equation are derived in terms of the parameters characterising
the turbulent flow. The advection, diffusion and dispersion coefficients of the
equation, which we calculate, help quickly estimate the dynamics and size of the
clouds of contaminants in the flow. In addition, the equation represents consider-
able theoretical interest as a universal low-dimensional law for starting dynamics
from different initial conditions. We present a direct numerical verification of
this approach with examples of the dispersion in laminar and turbulent flows in
an open channel with a smooth bottom. The 1D-IRBFN method is used as an
approach to obtain a numerical solution for the original two-dimensional (2-D)
advection-diffusion equation. The 2-D solution is depth-averaged and compared
with the solution of the 1-D equation derived using the centre manifolds. The
numerical results show that the 2-D and 1-D solutions are in good agreement.
We also derive high-order partial differential equations governing the longitudinal
dispersion of contaminants in a turbulent open channel flow. Two types of the
average velocity profile are considered: the classical logarithmic profile and power
profile according to a different similarity hypothesis of the flow with respect to
the non-dimensional distance from the wall. The logarithmic model is Reynolds
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number independent and deviates from the universal law of the wall. The power
law is proposed as an alternative to the logarithmic profile based on the deviation
of the later. The most recent experimental data is in support of the power profile
as it gives an accurate description of the mean velocity distribution over the self-
similar intermediate region adjacent to the viscous sublayer for a wide variety of
boundary layer flows. The universality of the power velocity profile is guaranteed
in modelling dispersion. The dispersion of contaminants for the logarithmic and
power velocity profiles are separately investigated over the entire cross section
of the flow. Of particular interest is the case of very large Reynolds numbers.
In the two different versions, which we analyse, the layer has universal velocity
structure and well-defined turbulent diffusion coefficient. We also assume that
the flow is turbulent, well developed and inertial to provide a mechanism of fast
distribution of contaminants across the flow. This assumption is important for
the inertial layer to be treated by the centre manifold approach.

In addition to the flows above a smooth bottom, we formulated and analysed
the averaged model of dispersion in turbulent canopy flows, mainly of urban
or industrial nature. We showed that the coefficient values coincide with those
obtained earlier for the flow over smooth bottom in the limit of large flow depth.



Appendix A

A.1 Calculating g6 for the logarithmic velocity

profile

The coefficient g6 in (4.6) is found as follows. Substituting n = 5 into (4.8) leads
to

∂
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(A.1)

Integrating (A.1) gives
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The boundary condition on the bottom leads to B5 = 0. Integrating (A.2) gives
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3475

41472
y2 ln2 y

− 1

54
y3 ln2 y +

1

2304
y4 ln2 y − 689

810000
y5 ln2 y +

139

3888
y3 ln3 y − 1

72
y4 ln3 y

+
437

216000
y5 ln3 y +

1

192
y4 ln4 y − 5

3600
y5 ln4 y +

1

3600
y5 ln5 y

)
+B6 .

(A.3)

The integration constant B6 is found from the condition
∫ 1

ε
c5 dy = 0,

B6 = − 24941299

279936000000K5κ10
.

Hereafter, (A.3) becomes

c5 =
1

4K5κ10

(
− 24941299

69984000000
+

7490339

77760000
y − 10169

82944
y2 +

1099

34992
y3

− 373

165888
y4 +

33943

648000000
y5 +

1433

23328
y ln y +

431

5184
y2 ln y − 2125

23328
y3 ln y

+
23

2304
y4 ln y − 9611

129600000
y5 ln y +

3475

41472
y2 ln2 y

− 1

54
y3 ln2 y +

1

2304
y4 ln2 y − 689

810000
y5 ln2 y +

139

3888
y3 ln3 y

− 1

72
y4 ln3 y +

437

216000
y5 ln3 y +

1

192
y4 ln4 y − 5

3600
y5 ln4 y +

1

3600
y5 ln5 y

)
.

(A.4)
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The coefficient g6 is given by

g6 = − 1

4K5κ11

(
24941299

69984000000
y − 8141017

933120000
y2 +

30399

2239488
y3 − 15845

4478976
y4

+
51233

518400000
y5 +

71893

5832000000
y6 − 24941299

69984000000
y ln y

+
8141017

466560000
y2 ln y − 10133

248832
y3 ln y +

15845

1119744
y4 ln y − 51233

103680000
y5 ln y

− 71893

972000000
y6 ln y +

1433

46656
y2 ln2 y − 1

4608
y3 ln2 y

− 2351

186624
y4 ln2 y +

1

9000
y5 ln2 y +

64303

259200000
y6 ln2 y +

3475

124416
y3 ln3 y

− 211

15552
y4 ln3 y +

181

57600
y5 ln3 y − 5063

9720000
y6 ln3 y

+
139

15552
y4 ln4 y − 11

2880
y5 ln4 y

+
2211

3888000
y6 ln4 y +

1

960
y5 ln5 y − 1

3600
y6 ln5 y +

1

21600
y6 ln6 y

)1

ε

.

(A.5)

Calculating further, we obtain

g6 = − 6226741

13996800000K5κ11
.
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A.2 Calculating g5 and g6 for the power velocity

profile

The coefficient g5 in (4.6) is calculated as follows. Substituting n = 4 into (4.8)
leads to

∂

∂y

(
y1−α∂c4

∂y

)
=

α2rq5

6κ2(2α + 1)2(5α+ 3)
y7α+3 +

α2rq4g1(3α+ 2)

3κ2(5α+ 3)(2α+ 1)2
y6α+3

+
α2q3g21
2κ2

(
2r + qs

3(α + 1)(4α+ 3)
+

r

(2α + 1)(5α+ 3)

)
y5α+3

+
αrbq3

κ(4α + 2)
y5α+2 +

α2q2g31
κ2(6α + 6)

(
2r + qs

4α+ 3
+

qs

2α + 3

)
y4α+3

+
αrq2(4α+ 3) (g2 + bg1)

κ(4α + 2)
y4α+2 +

α2sq2g41
κ(6α+ 6)(2α + 3)

y3α+3

+
αq (2r + qs) (2g1g2 + bg21)

2κ
y3α+2 +

α2mq4

κ2(α + 1)(2α+ 1)
y3α+1

+
αsq (3g21g2 + bg31)

2κ
y2α+2 +

2α2q3 (g3 + bg2 +mg1)

κ2(2α+ 1)
y2α+1

+
α2q2 (2g1g3 + 2bg1g2 +mg21 + g22)

κ2(α+ 1)
yα+1 +

αA2q
2

κ
yα

+
αq (g4 + bg3 +mg2 + A2g1)

κ
.

(A.6)
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Integrating (A.6) twice gives

c4 =
α2rq5

24κ2(2α+ 1)3(5α + 3)(7α+ 4)
y8α+4

+
α2rq4g1

6κ2(2α + 1)2(5α+ 3)(7α+ 4)
y7α+4

+
α2q3g21

4κ2(3α+ 2)(5α + 4)

(
2r + qs

3(α + 1)(4α+ 3)
+

r

(2α+ 1)(5α+ 3)

)
y6α+4

+
αrbq3

6κ(2α+ 1)2(5α + 3)
y6α+3 +

α2q2g31
24κ2(α + 1)2(5α+ 4)

×
(
2r + qs

4α+ 3
+

qs

2α + 3

)
y5α+4 +

αrq2 (g2 + bg1)

2κ(2α+ 1)(5α+ 3)
y5α+3

+
α2sq2g41

24κ2(α + 1)2(2α + 3)(3α+ 4)
y4α+4 +

αq (2r + qs) (2g1g2 + bg21)

6κ(α + 1)(4α+ 3)
y4α+3

+
rmq

(4α + 2)
y4α+2 +

αsq (3g21g2 + bg31)

6κ(α + 1)(2α+ 3)
y3α+3 + r (g3 + bg2 +mg1) y

3α+2

+
s (2g1g3 + 2bg1g2 +mg21 + g22)

2
y2α+2 +

αA2q
2

κ(α + 1)(2α+ 1)
y2α+1

+
αq (g4 + bg3 +mg2 + A2g1)

κ(α + 1)
yα+1 + A4 .

(A.7)

The Integration constant A4 is found from the condition
∫ 1

ε
c3 dy = 0,

A4 = − α2rq5

24κ2(2α + 1)3(5α+ 3)(7α + 4)(8α+ 5)

− α2rq4g1
6κ2(2α + 1)2(5α + 3)(7α+ 4)(7α+ 5)

− α2q3g21
4κ2(3α+ 2)(5α+ 4)(6α + 5)

(
2r + qs

3(α + 1)(4α+ 3)
+

r

(2α+ 1)(5α + 3)

)

− αrbq3

12κ(2α + 1)2(3α+ 2)(5α + 3)
− α2q2g31

120κ2(α + 1)3(5α+ 4)

×
(
2r + qs

4α+ 3
+

qs

2α + 3

)
− αrq2 (g2 + bg1)

2κ(2α+ 1)(5α+ 3)(5α + 4)

− α2sq2g41
24κ2(α + 1)2(2α + 3)(3α+ 4)(4α+ 5)

− αq (2r + qs) (2g1g2 + bg21)

24κ(α+ 1)2(4α + 3)

− rmq

(4α + 2)(4α + 3)
− αsq (3g21g2 + bg31)

κ(6α + 6)(2α+ 3)(3α+ 4)
− r (g3 + bg2 +mg1)

3(α+ 1)

−s (2g1g3 + 2bg1g2 +mg21 + g22)

2(2α+ 3)
− αA2q

2

κ(α + 1)2(4α+ 2)

−αq (g4 + bg3 +mg2 + A2g1)

κ(α+ 1)(α+ 2)
.

(A.8)
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The coefficient g5 is given by

g5 = − α2rq6

24κ2(2α + 1)3(5α+ 3)(7α + 4)(9α+ 5)

− α2rq5g1
6κ2(2α+ 1)2(5α + 3)(7α+ 4)(8α + 5)

− α2q4g21
4κ2(3α+ 2)(5α + 4)(7α+ 5)

(
2r + qs

3(α + 1)(4α+ 3)
+

r

(2α + 1)(5α+ 3)

)

− αrbq4

6κ(2α+ 1)2(5α+ 3)(7α+ 4)
− α2q3g31

24κ2(α + 1)2(5α+ 4)(6α + 5)

×
(
2r + qs

4α+ 3
+

qs

2α + 3

)
− αrq3 (g2 + bg1)

4κ(2α+ 1)(3α+ 2)(5α + 3)

− α2sq3g41
120κ2(α+ 1)3(2α + 3)(3α+ 4)

− αq2 (2r + qs) (2g1g2 + bg21)

6κ(α+ 1)(4α + 3)(5α+ 4)

− rmq2

(4α + 2)(5α+ 3)
− αsq2 (3g21g2 + bg31)

24κ(α + 1)2(2α + 3)
− rq (g3 + bg2 +mg1)

(4α+ 3)

−sq (2g1g3 + 2bg1g2 +mg21 + g22)

(6α + 6)
− αA2q

3

κ(α + 1)(2α+ 1)(3α + 2)

−αq
2 (g4 + bg3 +mg2 + A2g1)

2κ(α+ 1)2
− A4q

α + 1
.

(A.9)
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We find the coefficient g6 in (4.6) as follows. Substituting n = 5 into (4.8) leads
to

∂

∂y

(
y1−α∂c5

∂y

)
=

α3rq7

24κ3(2α+ 1)3(5α+ 3)(7α+ 4)
y9α+4

+
α3rq6g1(8α + 5)

24κ3(2α + 1)3(5α + 3)(7α+ 4)
y8α+4

+
α3q5g21

12κ3(3α+ 2)(5α + 4)

(
2r + qs

(α + 1)(4α+ 3)
+

3r

(2α + 1)(5α+ 3)

)
y7α+4

+
α3rq5g21

6κ3(2α + 1)2(5α+ 3)(7α+ 4)
y7α+4 +

α2rbq5

6κ2(2α+ 1)2(5α + 3)
y7α+3

+
α3q4g31
12κ3

(
2r + qs

2(α + 1)2(3α+ 2)(4α+ 3)
+

qs

2(α + 1)2(2α+ 3)(5α + 4)

+
3r

(2α + 1)(3α+ 2)(5α+ 3)(5α+ 4)

)
y6α+4

+
α2rq4(3α + 2) (g2 + bg1)

3κ2(2α + 1)2(5α + 3)
y6α+3 +

α3q3g41
κ3(α+ 1)(5α + 4)

×
(

2r + qs

24(α+ 1)(4α+ 3)
+

qs

3(2α + 3)(3α+ 4)

)
y5α+4

+
α2q3 (2g1g2 + bg21)

2κ2

(
2r + qs

3(α+ 1)(4α + 3)
+

r

(2α + 1)(5α+ 3)

)
y5α+3

+
αrmq3

2κ(2α+ 1)
y5α+2 +

α3sq3g51
24κ3(α + 1)2(2α + 3)(3α+ 4)

y4α+4

+
α2q2 (3g21g2 + bg31)

6κ2(α + 1)

(
2r + qs

4α+ 3
+

sq

2α + 3

)
y4α+3

+
αrq2(4α + 3) (g3 + bg2 +mg1)

2κ(2α + 1)
y4α+2 +

α2sq2 (4g31g2 + bg41)

6κ2(α + 1)(2α+ 3)
y3α+3

+
αq(2r + qs) (2g1g3 + 2bg1g2 +mg21 + g22)

2κ
y3α+2

+
α2A2q

4

κ2(α + 1)(2α+ 1)
y3α+1 +

αsq (3g21g3 + 3bg21g2 + 3g1g
2
2 +mg31)

2κ
y2α+2

+
2α2q3 (g4 + bg3 +mg2 + A2g1)

κ2(2α + 1)
y2α+1

+
α2q2 (2g1g4 + 2g2g3 + 2bg1g3 + bg22 + 2mg1g2 + A2g

2
1)

κ2(α + 1)
yα+1 +

αA4q
2

κ
yα

+
αq (g5 + bg4 +mg3 + A2g2 + A4g1)

κ
.

(A.10)
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Integrating (A.10) twice gives

c5 =
α3rq7

120κ3(2α + 1)4(5α+ 3)(7α+ 4)(9α + 5)
y10α+5

+
α3rq6g1

24κ3(2α + 1)3(5α + 3)(7α+ 4)(9α+ 5)
y9α+5

+
α3q5g21

(
2r+qs

(α+1)(4α+3)
+ 3r

(2α+1)(5α+3)

)

12κ3(3α+ 2)(5α+ 4)(7α+ 5)(8α+ 5)
y8α+5

+
α3rq5g21

6κ3(2α+ 1)2(5α + 3)(7α+ 4)(7α+ 5)(8α + 5)
y8α+5

+
α2rbq5

24κ2(2α + 1)3(5α + 3)(7α+ 4)
y8α+4

+
α3q4g31

12κ3(6α + 5)(7α+ 5)

(
2r + qs

2(α+ 1)2(3α + 2)(4α+ 3)

+
qs

2(α+ 1)2(2α+ 3)(5α+ 4)
+

3r

(2α + 1)(3α+ 2)(5α+ 3)(5α+ 4)

)
y7α+5

+
α2rq4 (g2 + bg1)

6κ2(2α + 1)2(5α+ 3)(7α + 4)
y7α+4

+
α3q3g41

(
2r+qs

24(α+1)(4α+3)
+ qs

3(2α+3)(3α+4)

)

5κ3(α+ 1)2(5α+ 4)(6α+ 5)
y6α+5

+
α2q3(2g1g2 + bg21)

(
2r+qs

3(α+1)(4α+3)
+ r

(2α+1)(5α+3)

)

4κ2(3α + 2)(5α+ 4)
y6α+4

+
αrmq3

6κ(2α + 1)2(5α+ 3)
y6α+3 +

α3sq3g51
120κ3(α + 1)3(2α + 3)(3α+ 4)(4α+ 5)

y5α+5

+
α2q2 (3g21g2 + bg31)

(
2r+qs
4α+3

+ qs
2α+3

)

24κ2(α+ 1)2(5α + 4)
y5α+4

+
αrq2 (g3 + bg2 +mg1)

2κ(2α+ 1)(5α + 3)
y5α+3 +

α2sq2 (4g31g2 + bg41)

24κ2(α + 1)2(2α+ 3)(3α + 4)
y4α+4

+
αq(2r + qs) (2g1g3 + 2bg1g2 +mg21 + g22)

6κ(α + 1)(4α+ 3)
y4α+3

+
rA2q

4α+ 2
y4α+2 +

αsq (3g21g3 + 3bg21g2 + 3g1g
2
2 +mg31)

6κ(α + 1)(2α+ 3)
y3α+3

+r (g4 + bg3 +mg2 + A2g1) y
3α+2

+
s (2g1g4 + 2g2g3 + 2bg1g3 + bg22 + 2mg1g2 + A2g

2
1)

2
y2α+2

+
αA4q

2

κ(α + 1)(2α+ 1)
y2α+1 +

αq (g5 + bg4 +mg3 + A2g2 + A4g1)

κ(α + 1)
yα+1 + A6 .

(A.11)
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The Integration constant A6 is found from the condition
∫ 1

ε
c5 dy = 0,

A6 = − α3rq7

240κ3(2α + 1)4(5α + 3)2(7α+ 4)(9α+ 5)

− α3rq6g1
72κ3(2α+ 1)3(3α + 2)(5α+ 3)(7α+ 4)(9α + 5)

−
α3q5g21

(
2r+qs

(α+1)(4α+3)
+ 3r

(2α+1)(5α+3)

)

24κ3(3α + 2)(4α+ 3)(5α+ 4)(7α + 5)(8α+ 5)

− α3rq5g21
12κ3(2α + 1)2(4α + 3)(5α+ 3)(7α+ 4)(7α+ 5)(8α + 5)

− α2rbq5

24κ2(2α + 1)3(5α+ 3)(7α + 4)(8α+ 5)

−
α3q4g31

(
2r+qs

2(α+1)2(3α+2)(4α+3)
+ qs

2(α+1)2(2α+3)(5α+4)
+ 3r

(2α+1)(3α+2)(5α+3)(5α+4)

)

12κ3(6α+ 5)(7α+ 5)(7α + 6)

− α2rq4 (g2 + bg1)

6κ2(2α + 1)2(5α + 3)(7α+ 4)(7α+ 5)

−
α3q3g41

(
2r+qs

24(α+1)(4α+3)
+ qs

3(2α+3)(3α+4)

)

30κ3(α + 1)3(5α + 4)(6α+ 5)

−
α2q3(2g1g2 + bg21)

(
2r+qs

3(α+1)(4α+3)
+ r

(2α+1)(5α+3)

)

4κ2(3α + 2)(5α+ 4)(6α+ 5)

− αrmq3

12κ(2α+ 1)2(3α+ 2)(5α+ 3)

− α3sq3g51
120κ3(α + 1)3(2α + 3)(3α+ 4)(4α+ 5)(5α + 6)

−
α2q2 (3g21g2 + bg31)

(
2r+qs
4α+3

+ qs
2α+3

)

120κ2(α + 1)3(5α + 4)
− αrq2 (g3 + bg2 +mg1)

2κ(2α + 1)(5α+ 3)(5α+ 4)

− α2sq2 (4g31g2 + bg41)

24κ2(α + 1)2(2α + 3)(3α+ 4)(4α+ 5)

−αq(2r + qs) (2g1g3 + 2bg1g2 +mg21 + g22)

24κ(α + 1)2(4α+ 3)
− rA2q

(4α+ 2)(4α + 3)

−αsq (3g
2
1g3 + 3bg21g2 + 3g1g

2
2 +mg31)

6κ(α + 1)(2α+ 3)(3α+ 4)
− r (g4 + bg3 +mg2 + A2g1)

(3α + 3)

−s (2g1g4 + 2g2g3 + 2bg1g3 + bg22 + 2mg1g2 + A2g
2
1)

2(2α + 3)

− αA4q
2

2κ(α + 1)2(2α + 1)
− αq (g5 + bg4 +mg3 + A2g2 + A4g1)

κ(α + 1)(α + 2)
.

(A.12)
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The coefficient g6 is given by

g6 = − α3rq8

120κ3(2α+ 1)4(5α + 3)(7α+ 4)(9α+ 5)(11α+ 6)

− α3rq7g1
48κ3(2α + 1)3(5α + 3)2(7α+ 4)(9α + 5)

−
α3q6g21

(
2r+qs

(α+1)(4α+3)
+ 3r

(2α+1)(5α+3)

)

36κ3(3α + 2)2(5α+ 4)(7α + 5)(8α+ 5)

− α3rq6g21
18κ3(2α+ 1)2(3α+ 2)(5α+ 3)(7α + 4)(7α+ 5)(8α+ 5)

− α2rbq6

24κ2(2α + 1)3(5α+ 3)(7α + 4)(9α+ 5)

−
α3q5g31

(
2r+qs

2(α+1)2(3α+2)(4α+3)
+ qs

2(α+1)2(2α+3)(5α+4)
+ 3r

(2α+1)(3α+2)(5α+3)(5α+4)

)

24κ3(4α+ 3)(6α + 5)(7α+ 5)

− α2rq5 (g2 + bg1)

6κ2(2α+ 1)2(5α + 3)(7α+ 4)(8α+ 5)

−
α3q4g41

(
2r+qs

24(α+1)(4α+3)
+ qs

3(2α+3)(3α+4)

)

5κ3(α + 1)2(5α + 4)(6α+ 5)(7α+ 6)

+
α2q4(2g1g2 + bg21)

(
2r+qs

3(α+1)(4α+3)
+ r

(2α+1)(5α+3)

)

4κ2(3α+ 2)(5α + 4)(7α+ 5)

− αrmq4

6κ(2α + 1)2(5α + 3)(7α+ 4)
− α3sq4g51

720κ3(α + 1)4(2α + 3)(3α+ 4)(4α+ 5)

−
α2q3 (3g21g2 + bg31)

(
2r+qs
4α+3

+ qs
2α+3

)

24κ2(α+ 1)2(5α+ 4)(6α+ 5)

− αrq3 (g3 + bg2 +mg1)

4κ(2α + 1)(3α+ 2)(5α+ 3)
− α2sq3 (4g31g2 + bg41)

120κ2(α + 1)3(2α + 3)(3α+ 4)

−αq
2(2r + qs) (2g1g3 + 2bg1g2 +mg21 + g22)

6κ(α + 1)(4α+ 3)(5α+ 4)
− rA2q

2

(4α+ 2)(5α+ 3)

−αsq
2 (3g21g3 + 3bg21g2 + 3g1g

2
2 +mg31)

24κ(α + 1)2(2α+ 3)
− rq (g4 + bg3 +mg2 + A2g1)

(4α+ 3)

−sq (2g1g4 + 2g2g3 + 2bg1g3 + bg22 + 2mg1g2 + A2g
2
1)

(6α+ 6)

− αA4q
3

κ(α + 1)(2α + 1)(3α+ 2)
− αq2 (g5 + bg4 +mg3 + A2g2 + A4g1)

2κ(α+ 1)2

− A6q

(α + 1)
.

(A.13)



Appendix B

B.1 One-dimensional radial basis function net-

works

In this appendix, we use

• the notation [̂ ] for a vector/matrix [ ] that is associated with a grid line,

• the notation [ ](η,θ) to denote selected rows η and columns θ of the matrix
[ ],

• the notation [ ](η) to pick out selected components η of the vector [ ],

• the notation [ ](:,θ) to denote all rows and selected columns θ of the matrix
[ ], and

• the notation [ ](η,:) to denote all columns and selected rows η of the matrix
[ ].

B.1.1 Second-order 1D-IRBFN (1D-IRBFN-2 scheme)

We discuss in detail the formulation on an x-grid line and similar results can be
obtained for a y-grid line.

Application of (3.7) at boundary and interior points on the grid line [j] results in

û = Ĥ

(
ŵ
p̂

)
, (B.1)

where Ĥ is an N
[j]
x × (N

[j]
x + 2) matrix whose entries are Ĥij = H

[j]
[0](x

(i)), û =

(u(1), u(2), ..., u(N
[j]
x ))T , ŵ = (w(1), w(2), ..., w(N

[j]
x ))T and p̂ = (p1, p2)

T . Due to the



B.1 One-dimensional radial basis function networks 141

presence of p1 and p2, one can add two additional equations of the form

f̂ = K̂

(
ŵ
p̂

)
(B.2)

to equation system (B.1). For example, in the case of Neumann boundary con-
ditions, this subsystem can be used to impose derivative boundary values

f̂ =

(
∂u
∂x
(x(1))

∂u
∂x
(x(N

[j]
x ))

)
, (B.3)

K̂ =


 H

(1)
[1] (x

(1)) H
(2)
[1] (x

(1)) ... H
(N

[j]
x )

[1] (x(1)) 1 0

H
(1)
[1] (x

(N
[j]
x )) H

(2)
[1] (x

(N
[j]
x )) ... H

(N
[j]
x )

[1] (x(N
[j]
x )) 1 0


 . (B.4)

The RBF coefficients including two integration constants can be transformed into
the meaningful nodal variable values through the following relation

(
û

f̂

)
=

[
Ĥ

K̂

](
ŵ
p̂

)
= Ĉ

(
ŵ
p̂

)
, (B.5)

or
(
ŵ
p̂

)
= Ĉ−1

(
û

f̂

)
, (B.6)

where Ĉ is a square conversion matrix of dimension (N
[j]
x + 2)× (N

[j]
x + 2).

By substituting Eq. (B.6) into Eqs. (3.5) and (3.6), the second- and first-order
derivatives of the variable u are expressed in terms of nodal variable values

∂2u(x)

∂x2
=
(
H

(1)
[2] (x), H

(2)
[2] (x), ..., H

(N
[j]
x )

[2] (x), 0, 0
)
Ĉ−1

(
û

f̂

)
, (B.7)

∂u(x)

∂x
=
(
H

(1)
[1] (x), H

(2)
[1] (x), ..., H

(N
[j]
x )

[1] (x), 1, 0
)
Ĉ−1

(
û

f̂

)
, (B.8)

or

∂2u(x)

∂x2
= D̄2xû+ k2x(x), (B.9)

∂u(x)

∂x
= D̄1xû+ k1x(x), (B.10)

where k1x and k2x are scalars whose values depend on x, f1 and f2; and D̄1x and
D̄2x are known vectors of length N

[j]
x . Application of equation (B.9) and (B.10)

to boundary and interior points on the grid line [j] yields

∂̂2u[j]

∂x2
= D̂

[j]
2xû+ k̂

[j]
2x, (B.11)

∂̂u[j]

∂x
= D̂

[j]
1xû+ k̂

[j]
1x, (B.12)
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where D̂
[j]
1x and D̂

[j]
2x are known matrices of dimension N

[j]
x ×N

[j]
x and k̂

[j]
1x and k̂

[j]
2x

are known vectors of length N
[j]
x . Similarly, along a vertical line [j] parallel to the

y− axis, the values of the second- and first-order derivatives of u with respect to
y at the nodal points can be given by

∂̂2u[j]

∂y2
= D̂

[j]
2yû+ k̂

[j]
2y , (B.13)

∂̂u[j]

∂y
= D̂

[j]
1yû+ k̂

[j]
1y . (B.14)

B.1.2 Fourth-order 1D-IRBFN (1D-IRBFN-4 scheme)

Eq. (3.14) can be written as

û = Ĥ

(
ŵ
p̂

)
, (B.15)

where Ĥ is an Nx × (Nx + 4) matrix whose entries are Ĥij = H[0](x
(i)), û =

(u(1), u(2), ..., u(Nx))T , ŵ = (w(1), w(2), ..., w(Nx))T and p̂ = (p1, p2, p3, p4)
T . In order

to impose Neumann boundary conditions at both ends of the 1-D computational
domain (x = {x(1), x(Nx), }), we add two additional equations of the same form
as in (B.2) to equation system (B.15). The RBF coefficients including four inte-
gration constants can be transformed into the meaningful nodal variable values
through the following relation

(
ŵ
p̂

)
= Ĉ−1

(
û

f̂

)
, (B.16)

where Ĉ is a non-square conversion matrix of dimension (Nx+2)×(Nx+4) whose
inverse can be found using the singular value decomposition (SVD) technique. By
substituting Eq. (B.16) into Eqs. (3.10)–(3.13), the values of derivatives of u with
respect to x at the boundary and interior points on the grid line are obtained as

∂̂4u

∂x2
= D̂4xû+ k̂4x, (B.17)

∂̂3u

∂x2
= D̂3xû+ k̂3x, (B.18)

∂̂2u

∂x2
= D̂2xû+ k̂2x, (B.19)

∂̂u

∂x
= D̂1xû+ k̂1x, (B.20)

where D̂1x, D̂2x, D̂3x and D̂4x are known matrices of dimension Nx × Nx; and
k̂1x, k̂2x, k̂3x and k̂4x are known vectors of length Nx.
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