
A Cartesian grid technique based on

one-dimensional integrated radial basis function

networks for natural convection in concentric annuli

N. Mai-Duy∗, K. Le-Cao and T. Tran-Cong

Computational Engineering and Science Research Centre

Faculty of Engineering and Surveying,

The University of Southern Queensland, Toowoomba, QLD 4350, Australia

Submitted to International Journal for Numerical Methods in Fluids,

15-May-2007; revised, 5-Oct-2007

∗Corresponding author: Telephone +61 7 4631 1324, Fax +61 7 4631 2526, E-mail

maiduy@usq.edu.au

1



Abstract This paper reports a radial-basis-function (RBF)-based Cartesian grid

technique for the simulation of two-dimensional buoyancy-driven flow in concentric

annuli. The continuity and momentum equations are represented in the equivalent

stream function formulation that reduces the number of equations from three to one,

but involves higher-order derivatives. The present technique uses a Cartesian grid

to discretize the problem domain. Along a grid line, one-dimensional integrated

RBF networks (1D-IRBFNs) are employed to represent the field variables. The

capability of 1D-IRBFNs to handle unstructured points with accuracy is exploited to

describe non-rectangular boundaries in a Cartesian grid, while the method’s ability

to avoid the reduction of convergence rate caused by differentiation is instrumental

in improving the quality of the approximation of high-order derivatives. The method

is applied to simulate thermally-driven flows in annuli between two circular cylinders

and between an outer square cylinder and an inner circular cylinder. High Rayleigh-

number solutions are achieved and they are in good agreement with previously

published numerical data.

Keywords: Natural convection; Cartesian grid method; Multiply-connected domain;

Integral collocation formulation; Radial basis functions

1 Introduction

Natural convection has been of great interest in many fields of science and en-

gineering such as meteorology, nuclear reactors and solar energy systems. The

problem has been extensively studied by both experimental and numerical simu-

lations. For the latter, one needs to find a numerical solution of a set of partial

differential equations (PDEs), namely the continuity, conservation of momentum

and conservation of energy. Such a numerical solution can be achieved by means of

2



discretization schemes, followed by algebraic equations solution. Numerical simula-

tions of buoyancy-driven flow have been conducted by a variety of numerical tech-

niques such as finite-difference methods (FDMs) (e.g. [1,2]), finite-element methods

(FEMs) (e.g. [3,4]), finite-volume methods (FVMs) (e.g. [5,6]), boundary-element

methods (BEMs) (e.g. [7-9]) and spectral techniques (e.g. [10,11]). It is noted that

natural convection heat transfer in a square slot is considered as a benchmark test

problem for the assessment of new numerical solvers in CFD.

The objective of discretization techniques is to reduce the PDEs to sets of algebraic

equations. To do so, the problem domain needs to be discretized into a set of finite

elements (e.g. [3,4]), a Cartesian grid (e.g. [1,2]) or a set of unstructured points

(e.g. [12,13]). Among these typical types of domain discretization, generating a

Cartesian grid can be seen to be the most straightforward task. There has been a

renewed interest in the development of Cartesian-grid-based techniques for dealing

with problems defined in geometrically-complicated domains (e.g. [14-19]).

Over the last fifteen years, the RBF collocation methods have emerged as an at-

tractive solver for PDEs. The methods are extremely easy to use and capable of

achieving a high degree of accuracy using relatively low numbers of nodal points.

They have been successful to solve different types of differential problems encoun-

tered in applied mathematics, science and engineering (e.g. [20-25]). However,

there is still a lack of mathematical theories for specifying optimal values of the

free parameters of the RBF. The obtained system matrix is fully populated and its

condition number grows rapidly as the number of nodes is increased. As a result,

in practice, one has great difficulty making full use of the capabilities of the RBF

method. Very recently, an efficient RBF technique based on 1D-IRBF approxima-

tion schemes and Cartesian grids for linear elliptic problems in irregular domains

has been reported in [26]. The problem domain is simply embedded in a Cartesian

grid. The RBF approximations at a grid node involve only points that lie on the
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grid lines intersected at that point rather than the whole set of nodes, leading to a

significant improvement in the matrix condition number and computational effort.

Moreover, the construction of the RBF approximations is based on integration (the

integral collocation approach), and therefore avoids the reduction of convergence

rate caused by differentiation. The 1D-IRBF technique allows a larger number of

nodes to be employed. Numerical results have shown that it yields a fast rate of

convergence with grid refinement.

In this paper, we extend a 1D-IRBFN-based Cartesian grid technique to the simula-

tion of buoyancy-driven flow defined in a multiply-connected domain and governed

by a set of nonlinear PDEs. The motion of a fluid is caused by the combination of

density variations and gravity. The velocity and temperature fields are closely cou-

pled. At high values of the Rayleigh number, very thin boundary layers are formed,

making the numerical simulation difficult. The traditional FDM (e.g. [1]) and

differential-quadrature technique (DQM) (e.g. [11,27]) require the computational

domains be rectangular. Coordinate transformations are thus employed. Subse-

quently, the governing equations are transformed into the new forms that are usu-

ally more complicated. The relationships between the physical and computational

coordinates are given by a set of algebraic equations or a set of PDEs, depending on

the level of complexity of the geometry. In contrast, the present technique succeeds

in retaining the Cartesian form of the governing equations. Furthermore, they are

written in terms of stream function and temperature. This equivalent formulation

reduces the number of dependent variables from four (two velocity components,

pressure and temperature) to two (stream function and temperature). However, the

formulation’s well-known drawback is that the obtained system involves higher-order

derivatives and double boundary conditions. It will be shown that such difficulties

can be handled effectively with the present integral collocation approach.

The remainder of the paper is organized as follows. Section 2 gives a brief review of
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the governing equations, focusing on the stream function-temperature formulation.

The 1D-IRBFN-based Cartesian grid technique is presented in section 3. The present

method is applied to simulate natural convection in annuli between two circular

cylinders and between an outer square cylinder and an inner circular cylinder in

section 4. Section 5 gives some concluding remarks.

2 Governing equations

Using the Boussinesq approximation, the 2D dimensionless forms of the governing

equations for buoyancy-driven flow can be written as (e.g. [28])

∂u

∂x
+
∂v

∂y
= 0, (1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

√
Pr

Ra

(
∂2u

∂x2
+
∂2u

∂y2

)
, (2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

√
Pr

Ra

(
∂2v

∂x2
+
∂2v

∂y2

)
+ T, (3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1√
RaPr

(
∂2T

∂x2
+
∂2T

∂y2

)
, (4)

where u and v are the velocity components, p the dynamic pressure, T the temper-

ature, and Pr and Ra the Prandtl and Rayleigh numbers defined as Pr = ν/α and

Ra = βg∆TL3/αν, respectively in which ν is the kinematic viscosity, α the thermal

diffusivity, β the thermal expansion coefficient, g the gravity, and L and ∆T the

characteristic length and temperature difference, respectively. In this dimensionless

scheme, the velocity scale is taken as U =
√
gLβ∆T for the purpose of balancing

the buoyancy and inertial forces.

5



By writing the velocity components in terms of a stream function ψ defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

the continuity equation is satisfied identically and the momentum equations reduce

to

∂

∂t

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂ψ

∂y

(
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

)
− ∂ψ

∂x

(
∂3ψ

∂x2∂y
+
∂3ψ

∂y3

)
=

√
Pr

Ra

(
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

)
− ∂T

∂x
. (5)

Using the equivalent stream function formulation, the set of four equations (1)-(4)

reduces to a set of two equations: (4) and (5).

The boundary conditions on (u, v) can be converted into the boundary conditions

on stream function and its normal derivative, namely

ψ = f and
∂ψ

∂n
= g,

where f and g are prescribed functions and n is the direction normal to the boundary.

3 The proposed technique

3.1 One-dimensional IRBFNs

RBFNs are known as a universal approximator. The RBFN allows the conversion of

a function to be approximated from a low-dimensional space to a high-dimensional
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space in which the function is expressed as a linear combination of RBFs

f(x) =
m∑

i=1

wigi(x), (6)

where m is the number of RBFs, {gi(x)}mi=1 the set of RBFs, and {wi}mi=1 the set of

weights to be found.

In the traditional/direct approach, a function f is approximated by an RBFN, fol-

lowed by successive differentiations to obtain approximate expressions for its deriva-

tives. There is a reduction in convergence rate for derivative functions and this

reduction is an increasing function of derivative order [29].

Mai-Duy and Tran-Cong [24,30] have proposed the use of integration to construct

the RBF approximations. A derivative of f is decomposed into RBFs, and lower-

order derivatives and the function itself are then obtained through integration

dpf(x)

dxp
=

m∑

i=0

wigi(x) =
m∑

i=0

wiI
(p)
i (x), (7)

dp−1f(x)

dxp−1
=

m∑

k=0

wiI
(p−1)
i (x) + c1, (8)

dp−2f(x)

dxp−2
=

m∑

k=0

wiI
(p−2)
i (x) + c1x+ c2, (9)

· · · · · · · · · · · · · · ·

df(x)

dx
=

m∑

k=0

wiI
(1)
i (x) + c1

xp−2

(p− 2)!
+ c2

xp−3

(p− 3)!
+ · · · + cp−2x+ cp−1, (10)

f(x) =
m∑

k=0

wiI
(0)
i (x) + c1

xp−1

(p− 1)!
+ c2

xp−2

(p− 2)!
+ · · · + cp−1x+ cp, (11)

where I
(p−1)
i (x) =

∫
I

(p)
i (x)dx, I

(p−2)
i (x) =

∫
I

(p−1)
i (x)dx, · · · , I(0)

i (x) =
∫
I

(1)
i (x)dx,

and c1, c2, · · · , cp are the constants of integration. Numerical results have shown

that the integral approach significantly improves the quality of the approximation
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of derivative functions over conventional differential approaches. The IRBF approx-

imation scheme is said to be of pth-order, denoted by IRBFN-p, if the pth-order

derivative is taken as the staring point.

It has generally been accepted that, among RBFs, the multiquadric (MQ) scheme

tends to result in the most accurate approximation. The present technique imple-

ments the MQ function whose form is

gi(x) =
√

(x− ci)2 + a2
i , (12)

where ci and ai are the centre and the width of the ith basis function.

3.2 Simulation of buoyancy-driven flow

Consider the process of natural convection between two cylinders, one heated and the

other cooled (e.g. Figure 1). The problem domain is discretized using a Cartesian

grid with a grid spacing h. Grid points outside the domain (external points) together

with internal points that fall very close–within a distance of h/8–to the boundary

are removed. The remaining grid points are taken to be the interior nodes. The

boundary nodes consists of the grid points that lie on the boundaries, and points

that are generated by the intersection of the grid lines with the boundaries.

Along each grid line, 1D-IRBFNs are employed to discretize the solution and its

relevant derivatives. In what follows, the proposed method is presented in detail for

the energy equation (4) and the momentum equation (5). Special attention is given

to the implementation of boundary conditions.
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3.2.1 IRBFN discretization of the energy equation

The energy equation involves the following linear second-order differential operator

L2 =
∂2

∂x2
+

∂2

∂y2
. (13)

As presented earlier, an IRBFN-p scheme permits the approximation of a function

and its derivatives of orders up to p. To use integrated basis functions only, one

needs to employ IRBFNs of at least second order. A line in the grid contains two

sets of points (Figure 2). The first set consists of the interior points that are also the

grid nodes (regular nodes). The values of the temperature at the interior points are

unknown. The second set is formed from the boundary nodes that do not generally

coincide with the grid nodes (irregular nodes). At the boundary nodes, the values

of the temperature are given.

For the classical FDM, the irregular points require changes of ∆x and ∆y in the

formulas, and such changes deteriorate the order of truncation error (e.g. [31]).

Unlike the finite-difference and spectral approximation schemes, the IRBFNs have

the capability to handle unstructured points with high accuracy. This approximation

power will be exploited here to implement the boundary conditions. The boundary

conditions are imposed through the process of converting the network-weight space

into the physical space (conversion process).

Consider a horizontal grid line (Figure 2). An important feature of the present tech-

nique is that, along the grid line, both interior points {xi}qi=1 and boundary points

{xbi}2
i=1 are taken to be the centres of the network. This work employs 1D-IRBFN-

2s to discretize the temperature field T . The conversion system is constructed as
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follows 


T̂

T̂b


 = Ĉ ŵ, (14)

where

T̂ = (T1, T2, · · · , Tq)T ,

T̂b = (Tb1, Tb2)
T ,

ŵ = (w1, w2, · · · , wm, c1, c2)T ,

Ĉ =




I
(0)
1 (x1) · · · I

(0)
m (x1) x1 1

I
(0)
1 (x2) · · · I

(0)
m (x2) x2 1

· · · · · · · · · · · · · · ·

I
(0)
1 (xq) · · · I

(0)
m (xq) xq 1

I
(0)
1 (xb1) · · · I

(0)
m (xb1) xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) xb2 1




,

and m = q + 2.

The obtained system (14) for the unknown vector of network weights can be solved

using the singular value decomposition (SVD) technique

ŵ = Ĉ−1




T̂

T̂b


 , (15)

where Ĉ−1 is the Moore-Penrose pseudoinverse and ŵ is the minimal norm solution.

Taking (15) into account, the values of the first and second derivatives of T at the
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interior points are computed by




∂T1

∂x

∂T2

∂x

...

∂Tq

∂x




=




I
(1)
1 (x1) · · · I

(1)
m (x1) 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) 1 0

· · · · · · · · · · · · · · ·

I
(1)
1 (xq) · · · I

(1)
m (xq) 1 0



Ĉ−1




T̂

T̂b


 , (16)

and 


∂2T1

∂x2

∂2T2

∂x2

...

∂2Tq

∂x2




=




I
(2)
1 (x1) · · · I

(2)
m (x1) 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) 0 0

· · · · · · · · · · · · · · ·

I
(2)
1 (xq) · · · I

(2)
m (xq) 0 0



Ĉ−1




T̂

T̂b


 , (17)

or in compact forms

∂̂T

∂x
= D̂1xT̂ + k̂1x, (18)

and

∂̂2T

∂x2
= D̂2xT̂ + k̂2x, (19)

where the matrices D̂1x and D̂2x consist of all but the last two columns of the product

of two matrices on the right-hand side of (16) and (17), and k̂1x and k̂2x are obtained

from multiplying the vector T̂b by these last two columns. It is noted that k̂1x and

k̂2x are the vectors of known quantities related to boundary conditions.

It can be seen from (18) and (19) that the IRBFN approximations of ∂T/∂x and

∂2T/∂x2 at the interior points include information about the inner and outer bound-

aries (locations and boundary values). Thus it remains only to force these approxi-

mations to satisfy the governing equation.

The incorporation of the boundary points into the set of centres has several advan-

tages:
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• It allows the two sets of centres and collocation points to be the same, i.e.

{ci}mi=1 ≡
{
{xi}qi=1 ∪ {xbi}2

i=1

}
. Numerical investigations [24,32] have indi-

cated that when these two sets coincide, the RBF approximation scheme tends

to result in the most accurate numerical solution.

• It allows the use of IRBFNs with a fixed order (IRBFN-2), regardless of the

shape of the domain.

In the same manner, one can obtain the IRBF expressions for ∂T/∂y and ∂2T/∂y2

at the interior points along a vertical line.

As with FDMs, FVMs, BEMs and FEMs, the IRBF approximations will be gathered

together to form the global matrices for the discretization of the PDE. By collocating

the governing equation at the interior points, a square system of algebraic equations

is obtained, which is solved for the approximate temperature at the interior points.

3.2.2 IRBFN discretization of the momentum equation

The momentum equation involves the following linear fourth-order differential op-

erator

L4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
. (20)

At each boundary node, the solution is required to satisfy two prescribed values, ψ

and ∂ψ/∂n. It is straightforward to obtain the values of ∂ψ/∂x and ∂ψ/∂y at the

boundary nodes from the prescribed conditions. The double boundary conditions

are implemented through the conversion process of the network-weight space into

the physical space.

Along each grid line, the set of centres also consists of the interior points and the

boundary points. The addition of extra equations to the conversion system for rep-
12



resenting derivative boundary conditions is offset by the generation of additional

unknowns of the integral collocation approach. Consider a horizontal grid line (Fig-

ure 2). The present work employs 1D-IRBFN-4s to approximate the variable ψ.

The conversion system is given by




ψ̂

ψ̂b

∂̂ψb

∂x




= Ĉ ŵ, (21)

where

ψ̂ = (ψ1, ψ2, · · · , ψq)T ,

ψ̂b = (ψb1, ψb2)
T ,

∂ψ̂b
∂x

=

(
∂ψb1
∂x

,
∂ψb2
∂x

)T

,

ŵ = (w1, w2, · · · , wm, c1, c2, c3, c4)T ,

Ĉ =




I
(0)
1 (x1) · · · I

(0)
m (x1) x3

1/6 x2
1/2 x1 1

I
(0)
1 (x2) · · · I

(0)
m (x2) x3

2/6 x2
2/2 x2 1

· · · · · · · · · · · · · · ·

I
(0)
1 (xq) · · · I

(0)
m (xq) x3

q/6 x2
q/2 xq 1

I
(0)
1 (xb1) · · · I

(0)
m (xb1) x3

b1/6 x2
b1/2 xb1 1

I
(0)
1 (xb2) · · · I

(0)
m (xb2) x3

b2/6 x2
b2/2 xb2 1

I
(1)
1 (xb1) · · · I

(1)
m (xb1) x2

b1/2 xb1 1 0

I
(1)
1 (xb2) · · · I

(1)
m (xb2) x2

b2/2 xb2 1 0




,

and m = q + 2.
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The minimal norm solution of (21) can be obtained by the SVD technique

ŵ = Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (22)

where Ĉ−1 is the pseudo-inverse.

The values of the lth-order derivative (l = {1, 2, 3, 4}) of ψ at the interior points on

the line are evaluated as




∂4ψ1

∂x4

∂4ψ2

∂x4

...

∂4ψq

∂x4




=




I
(4)
1 (x1) · · · I

(4)
m (x1) 0 0 0 0

I
(4)
1 (x2) · · · I

(4)
m (x2) 0 0 0 0

· · · · · · · · · · · · · · ·

I
(4)
1 (xq) · · · I

(4)
m (xq) 0 0 0 0



Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (23)




∂3ψ1

∂x3

∂3ψ2

∂x3

...

∂3ψq

∂x3




=




I
(3)
1 (x1) · · · I

(3)
m (x1) 1 0 0 0

I
(3)
1 (x2) · · · I

(3)
m (x2) 1 0 0 0

· · · · · · · · · · · · · · ·

I
(3)
1 (xq) · · · I

(3)
m (xq) 1 0 0 0



Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (24)




∂2ψ1

∂x2

∂2ψ2

∂x2

...

∂2ψq

∂x2




=




I
(2)
1 (x1) · · · I

(2)
m (x1) x1 1 0 0

I
(2)
1 (x2) · · · I

(2)
m (x2) x2 1 0 0

· · · · · · · · · · · · · · ·

I
(2)
1 (xq) · · · I

(2)
m (xq) xq 1 0 0



Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (25)
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and




∂ψ1

∂x

∂ψ2

∂x

...

∂ψq

∂x




=




I
(1)
1 (x1) · · · I

(1)
m (x1) x2

1/2 x1 1 0

I
(1)
1 (x2) · · · I

(1)
m (x2) x2

2/2 x2 1 0

· · · · · · · · · · · · · · ·

I
(1)
1 (xq) · · · I

(1)
m (xq) x2

q/2 xq 1 0



Ĉ−1




ψ̂

ψ̂b

∂̂ψb

∂x



, (26)

Equations (23)-(26) can be rewritten in a compact form

∂̂lψ

∂xl
= D̂lxψ̂ + k̂lx, (27)

where the matrices D̂lx (l = {1, 2, 3, 4}) consist of all but the last four columns of

the product of two matrices on the right-hand side of (23) to (26), and k̂lx come

from multiplying the vector
(
ψ̂b,

∂̂ψb

∂x

)T
by these last four columns. It is noted that

k̂lx are the vectors of known quantities related to boundary conditions.

Since the discretization used has a structured form, the process of joining “local” 1D-

IRBF approximations together (assemblage process) is quite straightforward. For a

special case of rectangular domain, the IRBF approximations over a 2D domain can

simply be constructed using the tensor direct product.

The fourth- and also third-order mixed derivatives are computed using the following

relations

∂4ψ

∂2x∂2y
=

1

2

[
∂2

∂x2

(
∂2ψ

∂y2

)
+

∂2

∂y2

(
∂2ψ

∂x2

)]
, (28)

∂3ψ

∂2x∂y
=

∂2

∂x2

(
∂ψ

∂y

)
, (29)

∂3ψ

∂x∂y2
=

∂2

∂y2

(
∂ψ

∂x

)
. (30)

Expressions (28)-(30) reduce the computation of mixed derivatives to that of lower-
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order pure derivatives for which IRBFNs involve integration with respect to x or

y only. The additional work here is the computation of ∂2(F )/∂x2 and ∂2(F )/∂y2

where F is a derivative function of ψ (i.e. ∂2ψ/∂y2, ∂2ψ/∂x2, ∂ψ/∂y and ∂ψ/∂x). It

can be seen that the discretization of (5) requires the values of the mixed derivatives

at the interior points. IRBFN-2s can be employed here to construct the approxima-

tions for ∂2(F )/∂x2 and ∂2(F )/∂y2. Both sets of centres and collocation points of

these second-order networks consist of the interior nodes only.

The IRBF expressions for derivatives are now written in terms of the values of ψ at

the interior points, and they already satisfy the boundary conditions. These nodal

variable values are determined by forcing the approximate solution to satisfy the

momentum equation at the interior points. Like the energy equation, the resultant

system of algebraic equations here is of size nip × nip, where nip is the number of

interior points of the domain.

3.2.3 Solution procedures

An important feature of natural convection is that the temperature and velocity

fields are closely coupled. The energy and momentum equations must be solved

simultaneously to find the values of the temperature and stream function at discrete

points within the domain. Due to the presence of convective terms, the obtained

algebraic equations for the discrete solution are nonlinear. Two basic approaches

are adopted here to handle this nonlinearity.

3.2.4 A steady-state solution coupled approach

All time derivative terms in the governing equations are dropped out. We employ

the trust region dogleg techniques (e.g. [33]) to solve the discretized nonlinear
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governing equations for the whole set of the variables. The main advantages of these

techniques over the Gauss-Newton methods are that they are capable of handling

the cases where the starting point is far from the solution and the Jacobian matrix

is singular.

3.2.5 A time dependent decoupled approach

The nonlinear equation set is solved in a marching manner.

1. Guess initial values of T, ψ and their first-order spatial derivatives at time

t = 0.

2. Discretize the governing equations in time using a first-order accurate finite-

difference scheme, where the diffusive and convective terms are treated implic-

itly and explicitly, respectively.

3. Discretize the governing equations in space using 1D-IRBF schemes:

Solve the energy equation (4) for T , and

Solve the momentum equation (5) for ψ.

The two equations are solved separately in order to keep matrix sizes to a

minimum.

4. Check to see whether the solution has reached a steady state

CM =

√
∑nip

i=1

(
ψ

(k)
i − ψ

(k−1)
i

)2

√
∑nip

i=1

(
ψ

(k)
i

)2
< ǫ, (31)

where k is the time level and ǫ is the tolerance.

5. If it is not satisfied, advance time step and repeat from step 2. Otherwise,

stop the computation and output the results.
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Each approach has its own particular strengths. For example, the former can be

seen to be less parametric (no time steps specified here), while the latter allows the

breakup of the problem into the solution of the energy equation and the solution of

the momentum equation (two smaller subproblems at each iteration).

4 Numerical results

The present method is applied to the simulation of buoyancy-driven flow in annuli.

A wide range of the Rayleigh number is considered. The computed solution at the

lower and nearest value of Ra is taken to be the initial solution. The MQ-RBF

width is simply chosen to be the grid size h.

4.1 Natural convection in a concentric annulus between two

circular cylinders

Consider the natural convection between two concentric cylinders which are sep-

arated by a distance L, the inner cylinder heated and the outer cylinder cooled

(Figure 1). A comprehensive review of this problem can be found in [1]. Most

cases have been reported with Pr = 0.7 and L/Di = 0.8, in which Di is the diam-

eter of the inner cylinder. These conditions are also employed in the present work.

Kuehn and Goldstein [1] have also reported finite-difference results for Ra = 102 to

Ra = 7× 104. Using the DQM, Shu [11] has provided the benchmark special results

for values of the Rayleigh number in the range of 102 to 5 × 104.

One typical quantity associated with this type of flow is the average equivalent
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conductivity denoted by k̄eq. This quantity is defined as ([1,11])

k̄eq =
− ln(Do/Di)

2π

∮
∂T

∂n
ds (32)

in which Do is the diameter of the outer cylinder.

The stream function and its normal derivative are set to zero along the inner and

outer cylinders. The temperature is held at T = 1 at the inner cylinder and T = 0

at the outer cylinder. We employ a number of uniform Cartesian grids, namely

11× 11, 21× 21, · · · , 61× 61, to study the behaviour of convergence of the method.

Both coupled and decoupled approaches are applied here to solve the nonlinear

equation set. The codes are written using MATLAB. For the coupled approach,

it takes about 5 to 10 iterations to get a converged solution. For the decoupled

approach, much more iterations are required as shown in Figure 3. However, a

single iteration of the decoupled approach consumes much less CPU time than that

of the coupled approach. Overall, the decoupled approach is more efficient than the

coupled approach. For example, in the case of simulating the flow at Ra = 104 using

a grid of 41× 41, the decoupled approach is about 9.2 times faster than the coupled

approach.

The condition numbers of the system matrix associated with the harmonic (13) and

biharmonic (20) operators in the governing equations (4) and (5) are reported in

Table 1.

Results concerning k̄eq together with those of Kuehn and Goldstein [1] and of Shu

[11] for various Rayleigh numbers from 102 to 7×104 are presented in Tables 2-8. It

can be seen that there is a good agreement between these numerical solutions. For

each Rayleigh number, the convergence of the average equivalent conductivity with

grid refinement is fast, e.g. the solution keqo for the last two Rayleigh numbers (i.e.
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Ra = 104 and Ra = 5 × 104) converges as O(h2.71) and O(h3.36) in which h is the

grid spacing (errors are computed relative to the spectral results). Variations of the

local equivalent conductivity on the inner and outer cylinder surfaces using a grid

of 51×51 for Ra = 103 and Ra = 5×104 are shown in Figures 4 and 5, respectively.

It can be seen that they are compared well with those of Kuehn and Goldstein [1].

Figure 6 shows the streamlines and isotherms of the flow for Ra = {103, 6× 103, 5×

104, 7×104} using a grid of 51×51. Each plot contains 21 contour lines whose levels

vary linearly from the minimum to maximum values. The plots look reasonable in

comparison with those of the FD and DQ methods.

4.2 Natural convection in a concentric annulus between an

outer square cylinder and an inner circular cylinder

There are relatively few papers on the numerical study of natural convection heat

transfer from a heated inner circular cylinder to its cooled square enclosure. Moukalled

and Acharya [34] have employed a control volume-based numerical technique to solve

the governing equations in a boundary-fitted coordinate system. The curvilinear grid

that maps the physical domain to a uniform computational domain is obtained by

numerically solving a set of Poisson equations related to the two coordinate systems.

Shu and Zhu [27] have introduced a super elliptic function to represent the outer

square boundary in order to compute the geometrical parameters in an analytic

manner. It can be seen that the transformation of the physical into the compu-

tational coordinates for this problem is much more complicated than that for the

previous problem. On the other hand, the present technique solves the governing

equations in the Cartesian coordinate system and therefore does not requires any

extra work when changing the shape of the domain here. A typical discretization is

shown in Figure 7.
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An aspect ratio of R/L = 0.2 (L: the side length of the outer square cylinder),

Pr = 0.71 and Ra = {104, 5 × 104, 105, 5 × 105, 106} are considered here. Boundary

conditions are specified in the same way as those of the previous problem. Calcula-

tions are conducted on three uniform Cartesian grids of 41×41, 51×51 and 61×61.

The obtained results are presented in the forms of streamlines, isotherms (Figure

8) and the average Nusselt number (Table 9). In Figure 8, each plot contains 21

contour lines whose levels vary linearly from the minimum to maximum values. Fol-

lowing the work of Moukalled and Acharya [34], the local heat transfer coefficient is

defined as

h = −k∂T/∂n
∆T

, (33)

where k is the thermal conductivity. The average Nusselt number (the ratio of the

temperature gradient at the wall over a reference temperature gradient) is computed

by

N̄u =
h̄

k
, (34)

where h̄ = −
∮

∂T
∂n
ds. In Moukalled and Acharya [34], the computational domain is

taken as one-half of the physical domain owing to the symmetry about the vertical

axis of the flow. The values of N̄u in the present work (Table 9) are divided by 2 for

comparison purposes. It can be seen that the RBF results are in good agreement

with those of Moukalled and Acharya [34] and of Shu and Zhu [27].

4.3 Discussion

4.3.1 Comparison with other discretization techniques

The present method has several advantages over the FDM [1], FVM [34] and DQM

[11,27]: (i) no difficulties are added when the level of complexity of the geometry

increases; (ii) Given a spatial discretization, the size of the discretized equation set
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for the velocity field is reduced by half; (iii) the governing equations are retained

in their Cartesian form. Numerical results have shown that the proposed method

achieves a fast rate of convergence with grid refinement. On the hand, the present

RBF matrices are unsymmetric and not as sparse as those yielded through the FDM

and FVM.

4.3.2 Comparison with two-dimensional RBF-based approaches

Generally, a two-dimensional RBF approach (i.e. RBFs are defined over the entire

2D domain) is expected to yield more accurate results than a one-dimensional RBF

approach (i.e. RBFs cover single grid lines). However, as shown by theoretical

results, the former leads to the interpolation matrix whose condition number grows

exponentially with decreasing separation distance [35]. As a result, in practice, one is

able to apply a two-dimensional approach with a few hundred collocation points [36].

As shown earlier (Table 1), the condition number of the 1D-IRBF matrix associated

with the harmonic operator is only in the range of O(101) to O(103) for grids with

densities of 11 × 11 to 61 × 61. The proposed approach thus facilitates the use of

much larger numbers of nodes. In the context of fluid flow problems, the solutions

usually have very complex shapes and one would expect to use a sufficiently-large

number of nodes for an accurate simulation. The present approach appears to be

more attractive than the original approach for such classes of problems.

5 Concluding remarks

In this paper, we have successfully implemented a numerical scheme based on Carte-

sian grids and 1D-IRBFNs for the simulation of natural convection in annuli. The

attractiveness of the present technique lies in the simplicity of the preprocessing,
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the ease of implementation and the achievement of high Rayleigh-number solutions.

This study further demonstrates the great potential of the RBF technique for solving

complex fluid-flow problems.
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Table 1: Circular cylinders: Condition numbers of the RBF matrices associated
with the harmonic and biharmonic operators.

Grid cond(L2T ) cond(L4ψ)
11 × 11 1.3 × 101 7.4 × 101

21 × 21 1.2 × 102 5.0 × 103

31 × 31 3.3 × 102 3.3 × 104

41 × 41 5.1 × 102 7.9 × 104

51 × 51 7.5 × 102 1.6 × 105

61 × 61 1.0 × 103 3.2 × 105
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Table 2: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 102.

Grid Outer cylinder, keqo Inner cylinder, keqi
11 × 11 0.969 0.972
21 × 21 0.994 0.989
31 × 31 0.997 0.997
41 × 41 0.999 0.999
FDM [1] 1.002 1.000
DQM [11] 1.001 1.001
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Table 3: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
11 × 11 1.133 1.046
21 × 21 1.072 1.069
31 × 31 1.078 1.077
41 × 41 1.080 1.079
51 × 51 1.081 1.080
FDM [1] 1.084 1.081
DQM [11] 1.082 1.082
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Table 4: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 3 × 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
11 × 11 1.745 1.200
21 × 21 1.365 1.378
31 × 31 1.387 1.386
41 × 41 1.391 1.390
51 × 51 1.393 1.393
FDM [1] 1.402 1.404
DQM [11] 1.397 1.397
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Table 5: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 6 × 103.

Grid Outer cylinder, keqo Inner cylinder, keqi
31 × 31 1.698 1.702
41 × 41 1.704 1.705
51 × 51 1.709 1.709
61 × 61 1.711 1.711
FDM [1] 1.735 1.736
DQM [11] 1.715 1.715
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Table 6: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41 × 41 1.961 1.967
51 × 51 1.969 1.971
61 × 61 1.973 1.973
FDM [1] 2.005 2.010
DQM [11] 1.979 1.979
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Table 7: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 5 × 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41 × 41 3.089 3.045
51 × 51 2.936 2.946
61 × 61 2.922 2.941
FDM [1] 2.973 3.024
DQM [11] 2.958 2.958
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Table 8: Circular cylinders: Convergence of k̄eq with grid refinement for the flow at
Ra = 7 × 104.

Grid Outer cylinder, keqo Inner cylinder, keqi
41 × 41 3.465 3.254
51 × 51 3.241 3.187
61 × 61 3.167 3.174
FDM [1] 3.226 3.308
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Table 9: Circular and square cylinders: Convergence of the average Nu number on
the outer square cylinder with grid refinement for different Ra values.

Grid Ra
104 5 × 104 105 5 × 105 106

41 × 41 3.223 4.040 4.883 7.129 8.684
51 × 51 3.224 4.045 4.895 7.433 8.700
61 × 61 3.224 4.047 4.901 7.488 8.726

DQM [27] 3.24 4.86 8.90
FVM [34] 3.331 5.08 9.374
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Figure 1: Circular cylinders: Computational domain and discretizations: 11 × 11
(left) and 61 × 61 (right).
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x1 x2 xq

xb1 xb2

Figure 2: Points on a grid line consist of interior points xi (◦) and boundary points
xbi (2).
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Figure 3: Circular cylinders, 61 × 61, decoupled approach: Iterative convergence.
Time steps used are 0.5 for Ra = {102, 103, 3 × 103}, 0.1 for Ra = {6 × 103, 104},
and 0.05 for Ra = {5 × 104, 7 × 104}. The values of CM become less than 10−12

when the numbers of iterations reach 58, 154, 224, 1276, 1541, 5711 and 5867 for
Ra = {102, 103, 3 × 103, 6 × 103, 104, 5 × 104, 7 × 104}, respectively.
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Figure 4: Circular cylinders: Local equivalent conductivities for Ra = 103 by 1D-
IRBFN and FDM.
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Figure 5: Circular cylinders: Local equivalent conductivities for Ra = 5 × 104 by
1D-IRBFN and FDM.
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Ra = 103

Ra = 6 × 103

Ra = 5 × 104

Ra = 7 × 104

Figure 6: Circular cylinders: Contour plots of temperature (left) and stream function
(right) for four different Rayleigh numbers using a grid of 51 × 51.
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Figure 7: Circular and square cylinders: Computational domain and discretization.
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Ra = 5 × 104

Ra = 105

Ra = 5 × 105

Ra = 106

Figure 8: Circular and square cylinders: Contour plots of temperature (left) and
stream function (right) for four different Rayleigh numbers using a grid of 61 × 61.
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