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Abstract 

With increasing demand being placed on water resources the efficient use of water is 

inevitable to increase rice productivity.  The availability of water through a catchment can 

vary significantly with some water being used in upstream irrigation activities, for 

environmental flows, groundwater and infiltration movements, all resulting in challenges and 

costs for irrigators accessing water for their production systems. The use of tubewells, dams 

and groundwater extraction to access available water requires substantial capital investments. 

In addition, the production, transportation and application of pumps and pipes, and the 

associated fuels and oils needed to run them emit significant quantities of greenhouse gases 

(GHG). In this study, we analysed the GHG and water productivity implications of water 

reuse through pumping groundwater and creek water and compare this with canal irrigation 

systems under gravity-fed irrigation in the Upper Pumpanga River Integrated Irrigation 

System, in the Philippines. The results show that around 30% of total surface water applied 

was reused by internal check dams and pumping from shallow groundwater. The analysis 

indicates water reuse contributes significantly to water productivity; however, it does increase 

GHGs through pumping. The total amount of GHG emissions from pump irrigation system 

(with water reuse) is around 1.47 times higher than that of canal irrigation systems (without 

water reuse). Based on the finds, high priority on water reuse should be given only to the 

areas where water scarcity is a serious issue.  
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1. Introduction 

 

Rice, grown under flooded or submerged conditions, is one of the largest users of the 

world‟s developed freshwater resources (Tuong and Bouman, 2003). Bouman (2007a) 

estimated that 34-43% of the total world‟s irrigation water is used for rice. Given these large 

water inputs, the water productivity of rice compared to other cereal crops is quite low 

(Tuong et al., 2005). Additionally, increasing water scarcity and malfunctioning irrigation 

systems, now threatens the viability and sustainability of rice production (Rijsberman, 2006). 

The strong interdependence between water use in rice production and the operation of 

irrigation facilities for water services highlights the need for improving the performance of 

rice production systems (Bhuyan, 1996). Rijsberman (2006) advocates that water scarcity 

problems can be addressed through improved water productivity.  

Irrigated rice receives at the field level 2-3 times more water than other cereals and is 

thus a major target for the development of water-saving irrigation technologies (Tuong et al., 

2005). Rice water requirements varies from as little as 400 mm in heavy clay soils with 

shallow groundwater tables to more than 2000 mm in coarse textured soils with deep 

groundwater tables (Bouman and Tuong, 2001; Cabangon et al., 2004). However, between 25 

and 85% of all water inputs to rice fields is lost through percolation (Cabangon et al., 2004; 

Dong et al., 2004; Singh et al., 2002). Though percolation flows are losses at the field level, 

they can be re-captured and reused downstream and do not necessarily lead to true water 

depletion at the irrigation system level. The increased use of recycled water for the last few 

decades has considerably enhanced the availability of irrigation water at the farm gate in 

semi-arid countries, such as large parts of India and Pakistan‟s Punjab.  Therefore, it has been 

argued that the efficiency of water use and the water productivity of rice may be much higher 

at the irrigation system level than at the individual field level (Tuong et al., 2005). 
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 The effective recycling of drainage water and conjunctive use of groundwater poses a 

challenging question: should investment focus on the development and applicability of water 

saving irrigation practices such as alternate wetting and drying and aerobic rice or should 

investment be made in recycling outlets to increase water productivity (Tuong et al., 2005).  

The recapture and reuse of water involves additional investments and operation costs, 

such as pumping or the building of dams (Guerra et al., 1998). Moreover, the production, 

transportation and application of pumps and pipes, and also fuels and oils to run them emit 

significant amounts of greenhouse gas (GHG) emissions (Maraseni et al., 2007). For 

example, delivering the 10 million litres of water needed by 1 hectare of irrigated corn from 

surface water sources requires the expenditure of ~ 880 kWh of fossil fuel (Batty and Keller, 

1980). In contrast, when groundwater is pumped from a depth of 100 m, the energy required 

increases to 28,500 kWh, or more than 32 times the cost of surface water (Gleick et al., 

2002). The choice obviously depends on the relative cost-effectiveness of the strategies. 

However, Dawe (2005) argued that while greater water productivity will almost certainly be 

necessary to reduce the negative impacts of future water scarcity, increasing water 

productivity in some instances does not necessarily result in increased benefits to society. For 

example, interventions may raise water productivity only at the expense of using more fossil 

fuels resources and increasing GHG, with the net effect being a reduction in economic 

efficiency.  

With increasing concerns about climate change and the need to reduce carbon 

emissions, there is an urgent requirement to analyse GHG emission implications on water 

resources from increases in water productivity through to water reuse at the system level. 

This study builds upon the work of Hafeez at al. (2008), who estimated the water reuse and 

cost-benefit of pumping in a rice irrigation system. We analysed GHGs and water 

productivity implications of water reuse through pumping groundwater and creek water and 
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compared these with canal gravity-fed irrigation systems of the Upper Pumpanga River 

Integrated Irrigation System (UPRIIS), Philippines 

 

2. GHG emissions from farm inputs 

 

Farm inputs include agrochemicals (fertilisers, herbicides, pesticides, insecticides and 

fungicides), fuels and oils, machinery, labour and farm yard manure. Energy consumption in 

agriculture is directly related to the development of technology and the level of production 

from a system (Hatirli et al., 2006; Ozkan et al., 2004). However, reuse technologies increase 

the use of farm input; resulting in increases in GHG emissions.   

Compared to the 1950s, the global use of fertilisers in 1999 has increased 

substantially with 23 times more nitrogen (N), almost eight times more phosphorus (P) and 

>4 times more potassium (K) since the 1950s (Smil, 1999). Nitrogen fertiliser is a significant 

concern as >50% of applied N is either lost through leaching or released to the atmosphere as 

N gases including nitrous oxide (N2O) (Verge et al., 2007), which has 296 times more global 

warming potential than CO2. From 1990 to 2002, N2O emissions from N fertilizer increased 

by 18.7% to 444 Mt CO2e (Verge et al., 2007). The worldwide use of agricultural pesticides 

has increased by an average of 3%/yr from an equivalent value of US$20.5 billion in 1993 to 

US$27.5 billion in 2003, resulting in substantially increased GHG emissions (Vlek et al., 

2003).  

Water reuse has some benefits but it may also increase soil salinity. Salt-affected soils 

have relatively low fertility and the higher amount of fertiliser is needed (Stephens et al., 

1995). Therefore, there may be some discrepancies in the amount of agrochemicals used in 

canal (without water reuse) and pump (with water reuse) irrigations systems based on soil 
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type. However, GHG emissions from agrochemicals at the farm level and due to water reuse 

technologies have been largely ignored.  

Emission associated with farm machinery is another area of concern. Of the total 

energy used in world agriculture, about 51% goes into farm machinery manufacture and 45% 

into the production of chemical fertiliser (Helsel, 1992). Around 83.7 MJ of energy is 

required to produce 1 kg of farm machinery (Stout, 1990), yet the GHG emissions from the 

production of farm machinery has not been reflected in the literature. More importantly, 

water pumping and reuse may exacerbate the salinity problem. Sodic soils which are less 

permeable to water and air, require more energy for tillage (Guarnieri et al., 2005), and thus 

more tractor hrs/ha is needed to till the farm. Some differences in GHG emissions in pumping 

and canal irrigation systems may be presented, but they have not been researched.  

Similarly, many land use activities such as the production, transportation and 

utilisation of different land use products need fuels and oils. The production, transportation 

and combustion of fuels emit significant amounts of GHGs, but the emissions associated with 

these activities are again not properly accounted for (Gower, 2003). This study considers all 

these factors and compares the GHG emissions from farm inputs for pump and canal 

irrigation systems in the Upper Pumpanga River Integrated Irrigation System, Philippines. 

 

 3. Study area 

The study area was District I, Upper Pampanga River Integrated Irrigation System 

(UPRIIS) in central Luzon, Philippines (Figure 1). District I has a total area of 28,205 ha 

including rice fields (dominant land use), upland crops, vegetables, roads, settlements, and 

water bodies. The District is bounded by the Talavera River on the east and the Ilog Baliwag 

River in the west, and consists of an upper part, called the Talavera River Irrigation System-

Lower (TRISL), and a lower part, called the Santo Domingo Area (SDA). Water is supplied 
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by Diversion Canal No. 1, which gets water from the Pantabangan Reservoir; and the TRIS 

main canal, which gets its water from the Talavera River through a run-off-the-river diversion 

dam. The major direction of water flow is from northeast to southwest. The TRIS main canal 

first supplies water to an irrigation system north of, and contiguous to, District I, called TRIS-

Upper. The area is quite flat with elevations of around 20 m above sea level. Soils are 

Vertisols, Entisols, and Inceptisols, and have typically silty clay, silty clay loam, clay loam, 

and clay textures. The climate is characterized by two pronounced seasons, dry from 

November to April, and wet for the rest of the year. The average annual rainfall is about 1900 

mm, of which 90% falls in the wet season (Tabbal et al., 2002). Our study was conducted in 

the 2000-2001 dry season, which started with the first release of water into the main canals 

on November 19, 2000, and ended with the harvest of the last rice crop on May 18, 2001. 

In the upper part (northeast) of District I, comprising 10,512 ha, canal water is used 

for irrigation. The more southwest we go the more people irrigate rice with reused water. In 

the lower (southwest) part of District I, where only 51% of rice area is grown using canal 

water, 49% area is irrigated using pump water. There are a total of 1,154 pumps in use. The 

survey data of both canal and pump irrigation and detailed information about the different 

farms inputs (machinery, agrochemicals, fuels and oils) are given in Appendix 1 and 2.  

 

4. Water accounting and reuse estimation 

4.1  Estimation of water reuse 

Generally, irrigation water that percolates deeply and recharges an aquifer adds to the 

water supply available to groundwater` users. Water pumped from creeks and the shallow 

groundwater aquifers could, therefore, either be percolated from further upstream within the 

catchment, or be a net gain to the system if water comes from a larger regional aquifer. The 

volume of percolation was calculated by multiplying the catchment area with the average 
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percolation rate within the rice fields. The volumes of extracted water were compared with 

estimates of water that percolated into the shallow aquifers. When the volume of pumped 

water was less than the amount of water percolated from upstream, the pumped water was 

classified as reused within the system. When the pumped water exceeded upstream 

percolation, it was classified as a net output in the system.  

The UPRIIS was designed to reuse surface water by building check dams in creeks 

and drainage ways within the irrigated area. Farmers have contributed to water reuse by 

constructing small dams themselves that have been „sanctioned‟ by the irrigation system 

management. There are a total of 15 formal check dams in District 1, which are operated and 

maintained by either National Irrigation Administration (NIA) or by groups of farmers. These 

check dams have structures for releasing water to supply additional water to the downstream 

canals for irrigation purposes. Water flows at inlets were calculated at nine of the 15 check 

dams to obtain flow volumes from the established rating curves (Hafeez, 2003).  

A total of 50 farmers were selected that use different types of pumps and pumping 

regimes that were monitored during the growing season. The selection of farmers depended 

on the location, pump size and source of the water and the total pump usage by these farmers 

for all farming activities, starting from land preparation through to harvesting in the dry 

season during 2001 (Hafeez et al., 2007b).  Each pump was calibrated 7-9 times with a V-

notch weir to measure the actual discharge for different sizes of pumps. The pumped water 

volumes from groundwater, creeks and canals were obtained by multiplying calibrated flow 

rates by recorded durations of pumping for the dry season in 2001. The total water pumped 

was estimated by multiplying the average water being pumped for each pump size with the 

total number of pumps installed. 
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4.2 Water accounting and balance 

The water accounting focussed on surface water with net flows of water across the 

lower boundary (rootzone) being computed separately. All water flows were aggregated as 

seasonal totals from November 19, 2000 until May 18, 2001. The gross inflow was rainfall 

plus all surface irrigation water. The net inflows being the difference between gross inflows 

and the changes in water stored at the surface (mainly in the canals) and in the rootzone of the 

crops from beginning to end of the cropping season. Since canals were dry before the start of 

the season and after harvest of the last crop, the change in surface water storage was zero. 

The change in stored soil water in the rootzone was negligible since the dry season crop 

followed straight after a wet season crop. Consequently, we assumed that the amount of soil 

water available was the same after a harvested wet–season crop as after a harvested dry–

season crop. Therefore, the net inflow was the same as the gross inflow. All surface outflows 

were considered “committed” when they flowed into a neighbouring spatial unit or further 

downstream in the irrigated area of District I. All water flowing out of District I was 

considered “uncommitted” since there was no immediate major water user downstream of 

District I. The only outflow considered “depletion” was evapotranspiration (ET) since no 

water percolated to irretrievably deep or saline groundwater. As the main purpose of UPRIIS 

is to irrigate rice, only rice ET was considered as “process depletion,” and all non-rice ET as 

non-process depletion (following Loeve et al., 2004). The transpiration from non-rice crops is 

a beneficial water use, but no data on non-rice crops were available for this study, so water 

use for these crops could not be quantified. Further details on the water balance and 

associated measurements are given by Hafeez (2003). 

4.3  Water performance indicators 

Water productivity (WP) is the ratio of crop output to water either diverted or 

consumed, the ratio being expressed in either physical or monetary terms or some 
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combination of the two. The WP indicators were calculated for gross inflow, available water 

and ETrice with and without water reuse following the procedures presented by Molden 

(1997). Rice yield was obtained from the NIA who kept track of the yield of each farmer as 

reported to the Farmer Irrigation Associations (FIA) in the area from which total rice 

production was calculated. 

 

5 GHG estimation 

5.1 Estimation of GHG emissions from farm machinery
2
 

Farm machinery is an essential farm input in modern agriculture. On average, 

approximately 12.8 kgCO2e of GHG is emitted to produce 1 kg of farm machinery (Wells, 

2001). Some GHGs would be emitted while transporting tractors from manufacturing sites to 

the rice farms, however it is negligible on a per ha basis and is thus not considered in this 

study.  The life span of a tractor (12,500 hr), tractor accessories (2000 hr) and pumps (12,000 

hr) were taken from Harris (2004) while the weight of tractor and tractor accessories
3
 was 

obtained from the manufacturing company (Kubota, Philippines, 2008). The lifespan of farm 

machinery used for rice farming was derived from farmers‟ survey data (Appendix 1 & 2). 

From that information, the following equation by Maraseni et al. (2007) was used to estimate 

the GHG emissions attributed to tractor during rice production:  

 

GHGs emission (kgCO2e) = Weight of tractor (kg) x 12.8 kgCO2e/kg x Proportion of lifespan 

of farm machinery used for rice production………………………………(1)  

                                                 
2
 In rice cropping, farm machinery includes tractors and tractors‟ accessories, pumping machines and pipes.    

3
 Various models of Kubota tractor were used; however, the most popular model was M6800DT with 50.7KW 

power and 2090kg weight. Therefore, this model was assumed for this study. Similarly, various tractor 

accessories (disc, cultivar, sprayer etc) of different weights were used for rice farming; however an average 

weight (550kg/accessory) of all accessories was used for this study. Moreover, most of the farmers used Kubota 

Model RK80 pumps with 5.22 KW power and 77kg weight; therefore, this was assumed for this study. Average 

pipe size used in the farm was 10cm diameter and 10m length (2.78kg/pipe). Since emissions from tractors and 

accessories and pumps and pipes were very small, these assumptions do not make a significant difference.  
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5.2 Estimation of GHG emissions from agrochemicals 

Kim and Dale (2003) estimated the global warming impact (GWI) value (gm CO2 

equivalent/kg) of most agrochemicals (Table 1). The GWI value included all three GHGs 

(CO2, CH4 and N2O) and their impact due to their production, packing, transportation and 

application.
 
In addition,

 
GWI also considered the emission of N2O during the process of de-

nitrification after applying nitrogen fertilisers (Kim and Dale, 2003) As it covers broad 

impact, we used these values for the estimation of GHG emissions by agrochemicals. 

However, GWI for insecticides, fungicides, herbicides and molluscides is not available in 

their estimation. These values for insecticides, fungicides and herbicides were taken from 

Barber (2004) and for molluscides, which was not available even in Barber‟s study, on 

average of all three was used. 

 

5.3 Estimation of GHG emissions from   fuels and oils  

Production, transportation and combustion of diesel and oil produce significant 

amount of GHG emissions. For this study 3.8 kgCO2e of GHG emissions per litre of diesel 

(Flessa et al., 2002) and 2.68 kgCO2e/L oil (EIA, 2008) was used.  The amount of fuels and 

oil consumed by pumps and tractors in different phases of rice production is derived from 

farm surveys (Appendix 1 and 2). 

 

6. Results and discussions 

Detailed site characteristics about District 1 in the UPRIIS are provided in Table 2. 

Rice is the dominant crop grown in District 1, with over 80% of the area is devoted to rice. 

Rice yields were highest in the upstream area (TRIS) and lowest in the downstream area 

(SDA), with an absolute difference of 1.36 t/ha.  
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6.1 Water accounting  

 Results for water balancing and water accounting for District 1 are shown Table 3. 

Due to limited rainfall during dry seasons, irrigation comprised 88% of all surface water 

inflows. Out of all surface water outflows, only 4.9 x10
7
 m

3
 was uncommitted as it flowed 

directly into the Talavera River. All other outflows were committed and flowed into the 

downstream irrigated area of District I. On a per unit area basis, the average rice ET was 665 

mm for the whole season and 3.7 mm/d. The non-rice ET was 503 mm for the whole season 

and 2.8 mm/d.   

 

6.2 Quantification of water reuse 

The total volume of water derived from check dams, groundwater and creeks in 

District 1 is about 2.71 x 10
7
 m

3
, which is 38% of the percolation volume (7.0 X 10

7
 m

3
) 

(Table 4). As the percolation volume is greater than the pumping volume, groundwater 

pumping represents the reuse of percolated water. Hafeez et al. (2008) reported that the reuse 

of surface water through check dams was well distributed across the area and increased 

linearly with 4.6 x 10
6
 m

3
 per added 1,000 ha.  At the District I level, the reuse of surface 

water was 22% of the applied surface water and 57% of the available water. Also, the water 

reuse by pumping was 7% of the applied surface water and 17% of the available water. The 

total amount of reused water from pumping (2.8 x 10
7
 m

3
) being equivalent to 30% of the 

water consumed through rice evapotranspiration (9.0 x 10
7
 m

3
) during the dry season in 2001 

(Tables 3 and 4). 

 

6.3 Water productivity indicators 

Three performance indicators of water productivity i.e. gross inflow, available water 

and rice ET with and without water reuse are shown in Table 5. Water productivity with 
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respect to gross inflow (WPgross) without water reuse is 0.15 kg grain/m
3
 water but it rose to 

0.19 kg grain/m
3
 with the reuse of water, indicating the critical role of water reuse in 

enhancing water productivity. Similarly, water productivity with respect to 

evapotranspiration of rice (WPETrice) without water reuse was 0.67 kg grain/m
3
 water. 

However, when we consider water reuse, the WPETrice was 0.86 kg grain/m
3
, which was 

considerably higher than WPETrice without water reuse. Also, water productivity with respect 

to available water (WPavailable) without water reuse was 0.38 kg grain/m
3
 water while 

WPavailable with water reuse was 0.49 kg grain/m
3
. This highlights that capturing of water 

reuse plays a very significant factor in improving water productivity at the system level.   

 

6.4 GHG emissions from pump and canal irrigation systems   

The analysis indicated that there are significant differences in GHG emissions in 

pump (with water reuse) and canal (without water reuse) irrigation systems due to the 

application of various farm inputs. The total amount of GHG emissions from pump irrigation 

is around 1.47 times that of the canal irrigation system. In total, for each hectare, 1242.7 

kgCO2e will be emitted into the atmosphere from each season‟s rice crop from pump 

irrigation system, and 844.5 kgCO2e from canal irrigation systems (Table 6). There are two 

seasons of rice farming in the research area. So, if we assume similar emissions in the other 

season, the pump and canal irrigation systems would emit 2485 kgCO2e/ha/yr and 1689 

kgCO2e/ha/yr, respectively. 

Canal irrigation does not need pumps, pipes, fuels and oils, but pump irrigation needs 

these farm machineries to run water pumps. Therefore, pump irrigation involves additional 

GHG emissions (338.7 kgCO2e/ha/season) through the use of these machineries.  Both canal 

and pump irrigation systems used tractors requiring fuels and oils to run them, with ~472 

kgCO2e/ha/season of GHG emissions associated with pump irrigation systems, and ~454 
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kgCO2e/ha/season from canal irrigation systems. The slightly higher GHG emissions from 

pump irrigation systems is probably due to salinity problems emerging from water reuse in 

the pump irrigation systems. Since sodic soils become less permeable to water and air, they 

require more energy for tillage (Guarnieri et al., 2005), more tractor time is required (107.5 

hr/ha in pump irrigation and 103.4 hr/ha in canal irrigation) and thus emit more GHGs.  

The total amount of GHG emissions from agrochemical usage under pump irrigation 

is 432.2 kgCO2e/ha/season and canal irrigation is 390.4 kgCO2e/ha/season (Table 6). The 

higher amount of emissions associated with agrochemicals in pump irrigation is due to higher 

use of all three fertilisers (N = 112kg/ha vs 100kg/ha; P = 22.9kg/ha vs 20kg/ha; and K = 

15.8kg/ha vs 15.3 kg/ha) than that from canal irrigation. This is because salt-affected soils 

have limited nutrients in the soils and higher amounts of fertiliser are needed to compensate 

them (Stephens et al., 1995).  

 

5. Conclusions  

 

Increasing water productivity is often recommended as a path to address water 

scarcity problems. However, increasing water productivity through the use of energy 

intensive technology and heavy use of energy inputs could increase dependency on fossil 

energy, which not only threaten the environmental sustainability of the practice, but could 

increase competition for energy uses among different sectors. The rice-based surface 

irrigation system was analysed to explore the water productivity and GHG emissions 

implications of water reuse in the Upper Pumpanga River Integrated Irrigation System 

(UPRIIS) in Central Luzon, Philippines. 

In the study area, 22% of applied surface water was reused by internal check dams 

and 7% through pumping from shallow groundwater.  Similarly, the total amount of reused 
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water from pumping is equivalent to 30% of the water lost through rice evapotranspiration 

during the dry season 2001. Water performance indicators with and without water reuse can 

point to possibilities to further increase the general efficiency of water use. We indicate that 

the quantification of the amount of water reuse is crucial for understanding and finding water 

use efficiency at the irrigation system level. 

Results indicate that water reuse contributes significantly to water productivity. 

However, it does increase GHGs due to pumping. Achieving high water productivity would 

require additional use of fossil energies, which in turn could increase the energy use 

competition and can result in a decrease in economic results. Given the increasing concerns 

on climate change and sustainable energy use, an optimal combination of water and energy 

use is essential.  
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Figure 1 Location of the District 1 of the UPRISS, Philippines 

 
Table 1 Global warming impact (GWI) (kgCO2e/kg) of agrochemicals 

Source: 
1
Kim and Dale (2003) and 

2
 Barber (2004) 

 

Table 2 Main characteristics of District I, UPRIIS 

Descriptions District I 

Total area (ha) 18,003 

Rice area (ha) 13,571 

Upland crop (ha) 1,629 

Rest (ha) 2,803 

Canal Rice area (ha) 10512 

Pump Rice area (ha) 3059 

Rice Yield (t ha
-1

) 5.31 

FIA‟s (number) 66 

Farmers (number) 9,910 

Pumps (number) 1,154 

Pump users (number) 1586 

Check Dams (number) 15 

 

Chemicals GWI
1
 Chemicals GWI

2
 Chemicals

2
 GWI 

Nitrogen 3.270 Insecticides 21.7 Molluscides 22.16 

Phosphorus 1.340 Herbicides 30.10   

Potassium 0.642 Fungicides  14.7   
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Table 3 Water accounting components in District I, UPRIIS 

Water flows across boundaries (all in 10
6
 m

3
) 

Gross Inflow  408.4 

        Irrigation 358.4 

        Rainfall 50.0 

Storage Change  0.0 

Net Inflow  408.4 

Total Surface Outflow  368.8 

      Committed outflow  249.7 

      Uncommitted Outflow 49.1 

Total Depletion 112.6 

        Process - ETrice  90.2 

        Non Process ETnon-rice  22.4 

Available Water  158.7 

Balance* -3.0 

* Calculated as net inflow – total surface outflow (committed and uncommitted) – total depletion 

(Rice ET and non-rice ET)  

 

Table 4 Volume of percolation, and water reuse from groundwater, creek and check dams for District 

I 

Descriptions District I 

Rice irrigated area by pumps (ha) 3,059 

Groundwater pumping (10
6
 m

3
) 25.93 

Pumping from creek (10
6
 m

3
) 1.15 

Total pumping (10
6
 m

3
) 27.07 

Water reuse from check dams (10
6
m

3
) 89.69 

Percolation (10
6
 m

3
) 70.06 

 

Table 5. Water productivity indicators with and without water reuse for District I 

 Descriptions Water Productivity (kg grain m
-3

 water) - 

 Without Water Reuse With Water Reuse 

Rice area (ha) 10512 13571 

WPgross 0.15 0.19 

WPriceET 0.67 0.86 

WPAvailable 0.38 0.49 
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Table 6 GHG emissions (KgCO2e/ha/season) from different farm inputs in rice farming from pump 

and canal irrigation systems  

Sources 

Pump irrigation  

(with water reuse) 

Canal irrigation 

(without water reuse) 

Pumps, pipes, fuels and oils 338.7 NA 

Tractors, accessories, fuels & oils 471.8 454.1 

Agrochemicals 432.2 390.4 

Total  1242.7 844.5 

 

Annex 1 GHG emissions under pump irrigation (water reuse) in District I  

Descriptions District I 

GHG emissions 

(kgCO2e/kg or L) 

Tot GHG 

emissions(kgCO2e) 

No. of pumps (Kubota Model RK80) 1,154   

Pump weight  77kg/pump  26512 

Total pipes wt (4”x10m PVC=2.78kg/pipe) 3208kg  1027 

Pumping hour 336,241   

Diesel (L) 263,246 3.8 1000335 

Oil for pumps (L) 3,116 2.68 8351 

Tractor use (hr) 32,425   

Tractor wt (Kubota M. M6800DT) 2090kg  69395 

Accessories wt (vary, average taken) 550kg  114136 

Diesel for tractor (50.7 KW) 328789 3.8 1249398 

Oil for tractor (L) 3891 2.68 10428 

Fertilizer use  (kg)    

    N 342,608 3.27 1120328 

    P 70,051 1.34 93868 

    K 48,332 0.64 30932 

Pesticides use (L)    

  Insecticides 612 21.7 13280 

  Herbicides 1,835 30.1 55234 

  Molluscicides 367 22.16 8133 

Total GHG emissions 3,059 ha rice (kgCO2e/season) 3801357 

GHG emissions (kgCO2e/ha/season) 1242.7 

GHG emissions associated with pumps: 77kg x 12.8kgCO2e/kg x 336241hr/12500hr=26512kg;  

GHG associated with pipes = 3208kg x 12.8kgCO2e/kg x 6mon/240mon= 1027kg; 

GHG emissions associated with tractors: 2090kg x 12.8kgCO2e/kg x 32425hr/12500hr=69395kg;  

GHG associated with tractor‟s accessories = 550kg x 12.8kgCO2e/kg x 32425hr/2000hr= 114136kg 
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Annex 2 GHG emissions under canal irrigation (without water reuse) in District I  

Descriptions District I 

GHG emissions 

(kgCO2e/kg or L) 

Tot GHG emissions 

(KgCO2e) 

Tractor use (hr) 107,222   

Tractor wt (Kubota M. M6800DT) 2090kg  229472 

Accessories wt (vary, average taken) 550kg  377421 

Diesel for tractor (50.7 KW) 1087231 3.8 4131478 

Oil for tractor (L) 12869 2.68 34489 

Fertilizer use  (kg)    

    N 1,051,200 3.27 3437424 

    P 210,240 1.34 281722 

    K 160,834 0.64 102934 

Pesticides (L)    

  Insecticides 3,048 21.7 66142 

  Herbicides 6,307 30.1 189841 

  Molluscicides 1,156 22.16 25617 

Total GHG emissions10,512 ha rice (kgCO2e/season) 8877781 

GHG emissions (kgCO2e/ha/season) 844.5 

GHG emissions associated with tractor: 2090kg x 12.8kgCO2e/kg x 107222hr/12500hr=229472kg;  

GHG associated with tractor accessories = 550kg x 12.8kgCO2e/kg x 107222hr/2000hr= 377421kg 

 


