
crystals

Article

The Curled Up Dimension in Quasicrystals

Fang Fang 1,* , Richard Clawson 1,2 and Klee Irwin 1

����������
�������

Citation: Fang, F.; Clawson, R.;

Irwin, K. The Curled Up Dimension

in Quasicrystals. Crystals 2021, 11,

1238. https://doi.org/10.3390/cryst

11101238

Academic Editor: Enrique Maciá

Barber

Received: 11 August 2021

Accepted: 11 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Quantum Gravity Research, Los Angeles, CA 90290, USA; Richard@QuantumgravityResearch.org (R.C.);
Klee@QuantumGravityResearch.org (K.I.)

2 Faculty of Health, Engineering and Sciences, University of Southern Queensland,
Toowoomba, QLD 4350, Australia

* Correspondence: Fang@QuantumGravityResearch.org; Tel.: +1-310-574-6934

Abstract: Most quasicrystals can be generated by the cut-and-project method from higher dimen-
sional parent lattices. In doing so they lose the periodic order their parent lattice possess, replaced
with aperiodic order, due to the irrationality of the projection. However, perfect periodic order is
discovered in the perpendicular space when gluing the cut window boundaries together to form
a curved loop. In the case of a 1D quasicrystal projected from a 2D lattice, the irrationally sloped
cut region is bounded by two parallel lines. When it is extrinsically curved into a cylinder, a line
defect is found on the cylinder. Resolving this geometrical frustration removes the line defect to
preserve helical paths on the cylinder. The degree of frustration is determined by the thickness of the
cut window or the selected pitch of the helical paths. The frustration can be resolved by applying a
shear strain to the cut-region before curving into a cylinder. This demonstrates that resolving the
geometrical frustration of a topological change to a cut window can lead to preserved periodic order.

Keywords: quasicrystals; aperiodic order; periodic order; perpendicular space; geometric frustration;
curled-up dimensions

1. Introduction

With the announcement by Shechtman et al. [1] in 1984 of a physical material exhibit-
ing crystallographically forbidden symmetries in its diffraction patterns, and the following
theoretical description by Levine et al. [2], the study of aperiodically ordered structures
(dubbed quasicrystals) moved from what was something of a niche specialty to a bur-
geoning field in both mathematics and material science. Like crystals, quasicrystals have
long range order, usually the symmetry of some regular polyhedron, and they have sharp
diffraction patterns, generally because they are built up from a finite number of primitive
structural units. But unlike crystals, these structural units are not periodically repeated,
so quasicrystals lack symmetry under any translation group. This allows for rotational
symmetries incompatible with periodicity, e.g. icosahedral, while undermining the main
theoretical tools (such as the Bloch theorem and standard Brillouin zones) that are used to
understand crystalline materials [3–5].

In time, theory was adapted to the new structures and great progress was made in
understanding their properties, in particular, with hydrodynamic [6] and effective field
theory [7] models. The foundation of this, of course, is having tractable models of their
basic geometry, and a key to this work was the cut-and-project description (also known
variously as the superspace, or model set, description) where points of a quasicrystal are
identified with projections of points belonging to a periodic lattice in a higher dimensional
space [3,8].

In other work, the rotational symmetry’s incompatibility with periodicity is identified
as a type of geometric frustration. This may be relieved locally by curving into a higher
dimension [9,10], or globally with the idea of distortion (nonmetricity) and disclination [11]
when focusing only on the quasicrystal space. In all these cases, the quasicrystal, which
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lacks translational periodicity itself, is seen as a distortion of some periodic structure, and
this connection provides a useful tool for modeling and analysis. This paper introduces
a method to see directly the periodicity in the quasicrystal by looking at its dual space,
the perpendicular space of the cut-and-project description. The periodicity in the per-
pendicular space not only gives a straightforward solution for the geometric frustration
in the quasicrystal space, but also defines a new kind of “closeness” for the point set in
the quasicrystal.

Section 2 reviews the cut-and-project method of generating a quasicrystal and the
duality between the quasicrystal and its perpendicular dual space. They both appear aperi-
odic if looked at individually. Section 3 points out that when looking at the perpendicular
space based on the sequential order of the quasicrystal points, if one glues the opposite
boundaries of the perpendicular space together, the order appears to be perfectly periodic.
The reverse can also be said, that the periodic order can be revealed in the quasicrystal if
looking at it according to the order of its perpendicular space. Section 4 suggests a solution
to the geometric frustration in the the P⊥ + P‖ space, by curving the perpendicular space
into a loop, and adding shear to align the frustrated boundary. Section 5 briefly summarizes
and suggests continued research.

2. Quasicrystals and the Perpendicular Space in the Cut-and-Project Approach

The method of cut-and-project from a higher-dimensional parent lattice is one of
the main tools for generating and studying quasicrystals [3,12,13]. Indeed, while other
methods such as inflation rules, matching rules, or generalized dual multigrids are often
used, in nearly all cases the quasicrystal also admits of a cut-and-project construction
(see for example [3–5]). One might even go so far as to say “all” rather than “nearly
all” quasicrystals can be so constructed, but the term “quasicrystal” is used in a variety
of contexts and there does not appear to be consensus on a universal formal definition
whereby one could make such a claim rigorous. (Exceptions to the claim are suggested by
Baake and Grimm’s discussion of aperiodic order beyond cut-and-project sets (or model
sets), such as the Thue–Morse and Rudin–Shapiro chains Chapter 10 of the [14], and by
Burdik et al’s study of quasicrystals based on so-called β-integers [15].) Nevertheless, the
cut-and-project method applies to at least a very general class of quasicrystals, which are
the subject of this note.

To illustrate the cut-and-project, we take a one dimensional quasicrystal, the Fibonacci
chain, as an example. Start with the Z2 lattice (Figure 1a). The 1D quasicrystal space, P‖, is
at an angle θ = arctan(Φ), where Φ is the golden ratio, to the root vectors of the Z2 lattice.
Its perpendicular space P⊥, by definition perpendicular to P‖, contains a finite segment
called the cut window. The cut window is extruded along the direction of P‖ to form the
cut region, an infinite region of fixed width which captures all the points in the Z2 lattice
that project to P‖ as the point set of the Fibonacci chain (points on solid line in Figure 2a).
Note, incidentally, that one obtains the same Fibonacci chain if one sets the positive P‖ at
the angle θ with the −l1 lattice vector, so that it slopes up to the right in Figure 1a instead
of down to the right.

Although the points in the cut region extend without limit in the infinite P‖, they are
bounded in P⊥ within the finite span of the cut window, as mentioned above. Therefore, the
point set in the cut window is dense. There is a dual nature between the points’ projections
in these two spaces. Points that are closer in the quasicrystal space tend to space away
from each other in the perpendicular space, and vice-versa. More importantly, there is a
pattern to the spacing.
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Figure 1. Cut-and-project scheme for Fibonacci chain. (a) Z2 parent lattice with lattice vectors l1 and l2,
showing P⊥, P‖, and cut region bounded by dashed lines. tan θ = Φ, the golden ratio. (b) Detail of
parent lattice (rotated so P‖ is horizontal) showing distances between points as projected in P⊥.

3 Periodic order in the curled up perpendicular space77

The P⊥ distance between points is shown in Figure 1b, with cos θ and sin θ as the short and long78

lengths, respectively. Following a sequence of points from left to right in the quasicrystal space as79

shown in Fig. 2a, and comparing with Figure 1b, we see that when a position increment in P⊥ is80

positive, the displacement is cos θ, while if the increment is negative it is − sin θ.81

Now if we consider the cut window as a loop (gluing the bottom and top boundary together), we82

can take all displacements as positive, as shown by the colored vertical arrows in Figure 2b. Formally,83

with y as the P⊥ coordinate and {yt, yb} as the top and bottom cut window boundaries, we count the84

perpendicular space interval between successive points as85

∆n =

{
yn+1 − yn yn+1 > yn

∆nt + ∆(n+1)b yn+1 < yn
(1)

∆nt = yt − yn, ∆(n+1)b = y(n+1) − yb. (2)

This amounts to using a sort of periodic coordinate for P⊥. When the displacement is undivided,86

it is a short segment of length cos θ, as seen in Figure 1b. When the displacement is divided by87

crossing the cut window boundary, a sum of two terms occurs. This sum is the complement, within88

the cut window, of the long segment sin θ. The total length of the cut window is the P⊥ projection89

of a unit cell, cos θ + sin θ, so this complement has length (sin θ + cos θ)− sin θ = cos θ. Thus, the90

positive displacement in periodic coordinates is always cos θ for both divided and undivided segments,91

∆1 = ∆2t + ∆2b = ∆3 = ∆4 = ∆5t + ∆5b = . . . . As a fraction of the cut window, this increment is92

∆n

|cut window| =
cos θ

cos θ + sin θ
=

1
1 + tan θ

=
1

1 + Φ
=

1
Φ2 . (3)

When the cut window is curved into a loop, the angular distance between these successive points is93

therefore always the same, 2π/Φ2, a periodicity incommensurate with the full circle. This is shown94

in Figure 2c for the first few points; repeated for many points, it becomes like a phyllotaxis pattern95

as in Figure 2d. (One should remember, however, that the disk-like nature of this representation is96

just for illustrative purposes, to exhibit the structure of the pattern; the actual perpendicular space,97

when curved into a loop, is just a circle, not a disk or annulus.) Incidentally, if one uses the alternate98

construction mentioned for the Fibonacci chain, making P‖ slope up to the right in Figure 1a, then99
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Figure 1. Cut-and-project scheme for Fibonacci chain. (a) Z2 parent lattice with lattice vectors l1 and l2, showing P⊥, P‖,
and cut region bounded by dashed lines. tan θ = Φ, golden ratio. (b) Detail of parent lattice (rotated so P‖ is horizontal)
showing distances between points as projected in P⊥.

3. Periodic Order in the Curled Up Perpendicular Space

The P⊥ distance between points is shown in Figure 1b, with cos θ and sin θ as the short
and long lengths, respectively. Following a sequence of points from left to right in the
quasicrystal space as shown in Figure 2a, and comparing with Figure 1b, we see that when
a position increment in P⊥ is positive, the displacement is cos θ, while if the increment is
negative, it is − sin θ.

Figure 2. a. Cut region in Z2 parent lattice (the region bounded by the top and bottom dashed lines)
and projection in P‖ (on solid line). b. The periodicity after identifying top and bottom boundaries of
P⊥, showing equal increments in P⊥ (examples ∆1, ∆2b, and ∆2t labeled). c. Same periodicity illustrated
after wrapping P⊥ into a loop. Dashed circle is P⊥; colors match the points and increments in a and b
with the points and arcs in c.

Figure 1b becomes inverted, with sin θ above and cos θ below. In that case, the positive increment ∆n100

would be the larger sin θ instead of the smaller cos θ, and Eq. (3) would yield 1/Φ instead of 1/Φ2.101

The points on the circle would still make the same pattern, but in the reverse direction, because an102

angle on the circle of +2π/Φ is equivalent to an angle of −2π/Φ2, since Φ−1 + Φ−2 = 1.103

Another interesting pattern, in addition to this periodic angular advancement, is that every104

new added point will land in the longest empty section of the circle, to maximize the uniformity of105

distribution of the points on the circle. In a way, the adjacency in the quasicrystal space results in a106

periodic repulsion in P⊥, or, alternatively, a new “closeness” can be defined in the looped P⊥ in terms107

of the periodicity. Specifically, we may define a “periodic distance” in P⊥ as the number of integral108

2π
Φ2 periods separating points. Then points that are periodically close in P⊥ are physically close in P‖,109

and vice versa. This contrasts with the ordinary Euclidean closeness in P⊥ which induces a sort of110

“repulsion” in P‖ (resembling the same-sign charge distribution), and vice versa.111

This periodicity in P⊥ can be extended to many higher dimensional quasicrystals, where P⊥ is112

also higher dimensional. In this case, the cut window is often a polytope and the cut region is the113

prism formed by extruding that polytope in the directions of P‖. The cut window usually has matching114

opposite faces (i.e., congruent and parallel). (Exceptional cases include cut windows with fractal115

boundaries [14,16], to which this analysis would not be apply.) By focusing on the one-dimensional116

subspace normal (within P⊥) to a pair of opposite faces, we can see the same periodicity as described117

above. This corresponds to the quasiperiodic structure along a one-dimensional line in the quasicrystal118

space. Perhaps it is even possible to wrap the entire cut window polytope into a closed manifold by119

identifying each face with its opposite, just as we wrapped the 1D cut window of the Fibonacci chain120

into a circle.121
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Figure 2. (a) Cut region in Z2 parent lattice (region bounded by top and bottom dashed lines) and projection in P‖ (on solid
line). (b) Periodicity after identifying top and bottom boundaries of P⊥, showing equal increments in P⊥ (examples ∆1, ∆2b,
and ∆2t labeled). (c) Same periodicity illustrated after wrapping P⊥ into a loop. Dashed circle is P⊥; colors match points and
increments in (a,b) with points and arcs in (c). (d) Displaying the successive arc segments and arrow tips with increasing
radius spreads the circle into an annulus, making the self-similarity of the structure more visually apparent.
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Now, if we consider the cut window as a loop (gluing the bottom and top boundary
together), we can take all displacements as positive, as shown by the colored vertical arrows
in Figure 2b. Formally, with y as the P⊥ coordinate and {yt, yb} as the top and bottom
cut window boundaries, we count the perpendicular space interval between successive
points as

∆n =

{
yn+1 − yn yn+1 > yn

∆nt + ∆(n+1)b yn+1 < yn
(1)

∆nt = yt − yn, ∆(n+1)b = y(n+1) − yb. (2)

This amounts to using a sort of periodic coordinate for P⊥. When the displacement is
undivided, it is a short segment of length cos θ, as seen in Figure 1b. When the displacement
is divided by crossing the cut window boundary, a sum of two terms occurs. This sum is
the complement, within the cut window, of the long segment sin θ. The total length of the
cut window is the P⊥ projection of a unit cell, cos θ + sin θ, so this complement has length
(sin θ + cos θ)− sin θ = cos θ. Thus, the positive displacement in periodic coordinates is
always cos θ for both divided and undivided segments, ∆1 = ∆2t + ∆2b = ∆3 = ∆4 =
∆5t + ∆5b = . . . . As a fraction of the cut window, this increment is

∆n

|cut window| =
cos θ

cos θ + sin θ
=

1
1 + tan θ

=
1

1 + Φ
=

1
Φ2 . (3)

When the cut window is curved into a loop, the angular distance between these
successive points is therefore always the same, 2π/Φ2, a periodicity incommensurate with
the full circle. This is shown in Figure 2c for the first few points; repeated for many points,
it becomes like a phyllotaxis pattern as in Figure 2d. (One should remember, however,
that the disk-like nature of this representation is just for illustrative purposes, to exhibit
the structure of the pattern; the actual perpendicular space, when curved into a loop, is
just a circle, not a disk or annulus.) Incidentally, if one uses the alternate construction
mentioned for the Fibonacci chain, making P‖ slope up to the right in Figure 1a, then
Figure 1b becomes inverted, with sin θ above and cos θ below. In that case, the positive
increment ∆n would be the larger sin θ instead of the smaller cos θ, and Equation (3) would
yield 1/Φ instead of 1/Φ2. The points on the circle would still make the same pattern, but
in the reverse direction, because an angle on the circle of +2π/Φ is equivalent to an angle
of −2π/Φ2, since Φ−1 + Φ−2 = 1.

Another interesting pattern, in addition to this periodic angular advancement, is
that every new added point lands in the longest empty section of the circle to maximize
the uniformity of distribution of the points on the circle. In a way, the adjacency in the
quasicrystal space results in a periodic repulsion in P⊥, or, alternatively, a new “closeness”
can be defined in the looped P⊥ in terms of the periodicity. Specifically, we may define a
“periodic distance” in P⊥ as the number of integral 2π

Φ2 periods separating points. Then,
points that are periodically close in P⊥ are physically close in P‖, and vice versa. This
contrasts with the ordinary Euclidean closeness in P⊥ which induces a sort of “repulsion”
in P‖ (resembling the same-sign charge distribution), and vice versa.

This periodicity in P⊥ can be extended to many higher dimensional quasicrystals,
where P⊥ is also higher dimensional. In this case, the cut window is often a polytope and
the cut region is the prism formed by extruding that polytope in the directions of P‖. The
cut window usually has matching opposite faces (i.e., congruent and parallel). (Exceptional
cases include cut windows with fractal boundaries [14,16], to which this analysis would
not be apply.) By focusing on the one-dimensional subspace normal (within P⊥) to a pair of
opposite faces, we can see the same periodicity as described above. This corresponds to the
quasiperiodic structure along a one-dimensional line in the quasicrystal space. Perhaps it is
even possible to wrap the entire cut window polytope into a closed manifold by identifying
each face with its opposite, just as we wrapped the 1D cut window of the Fibonacci chain
into a circle.
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Returning to our 1D case, the distribution of points in P⊥ also has a self-similar nature,
which resembles the self-similar nature of the P-adic numbers [17]. This is in fact the
self-similarity of the inflation/deflation structure of Fibonacci chains under substitution
rules. It can be seen on the circle of P⊥ as illustrated in the sequence of Figure 3. With just
the first two points, the circle is divided into two unequal arcs L and S whose length ratio
is golden. As mentioned above, the next point lands on the largest gap, the single L arc.
It divides that into two arcs related by the golden ratio, so that the longer of them is the
same arc length as the S arc that was not divided. This yields a circle with three arcs of only
two distinct lengths, again in the golden ratio, where the previous S is the new L. Since
there are now two L arcs, adding the next two points will divide each of the L’s, and again
we find the entire circle divided into arcs of only two distinct lengths whose ratio is golden,
the previous S being the new L. With each successive step, where the number of points
added in a step is the number of L arcs on the circle, we get an inflation with S→ L and
L → LS. This proceeds without limit, yielding an endless (approximate) self-similarity
of the Fibonacci structure of the points as projected onto the cut window, which is closed
upon itself into a circle. By displaying successive points on circles of increasing radii
(Figure 2d) one spreads the circle into a thick annulus, and the self-similar structure is
made more visually striking.

Figure 3. Self similarity of point distribution on the P⊥ loop. In a given step, there are n long arcs (L) of
angle 2π

Φn , the short arcs (S) having angle 2π
Φn+1 . In the next step, n new points are added by incrementing

the angle in steps of 2π
Φ2 . These all land in L arcs, dividing them into LS arcs at the new scale, with the

new L having angle 2π
Φn+1 . The number of L arcs in successive steps are the Fibonnaci numbers 1, 2, 3,

5. . . .

Returning to our 1D case, the distribution of points in P⊥ also has a self-similar nature, which122

resembles the self-similar nature of the P-adic numbers [17]. This is in fact the self-similarity of the123

inflation/deflation structure of Fibonacci chains under substitution rules. It can be seen on the circle of124

P⊥ as illustrated in the sequence of Figure 3. With just the first two points, the circle is divided into125

two unequal arcs L and S whose length ratio is golden. As mentioned above, the next point will land126

on the largest gap, the single L arc. It divides that into two arcs related by the golden ratio, so that the127

longer of them is the same arc length as the S arc that was not divided. This yields a circle with three128

arcs of only two distinct lengths, again in the golden ratio, where the previous S is the new L. Since129

there are now two L arcs, adding the next two points will divide each of the L’s, and again we find the130

entire circle divided into arcs of only two distinct lengths whose ratio is golden, the previous S being131

the new L. With each successive step, where the number of points added in a step is the number of L132

arcs on the circle, we get an inflation with S→ L and L→ LS. This proceeds without limit, yielding133

an endless (approximate) self-similarity of the Fibonacci structure of the points as projected onto the134

cut window, which is closed upon itself into a circle. By displaying successive points on circles of135

increasing radii (Fig. 2d) one spreads the circle into a thick annulus, and the self-similar structure is136

made more visually striking.137

The self-similarity is not exact, because the initial point set cannot be partitioned into subsets that138

all reproduce the original at a fixed scale, but rather into two groups of subsets that reproduce it at two139

different scales. Specifically, at any level of inflation, the Fibonnaci word can be partitioned into a set of140

L’s and S’s. Every L, when filled in by inflation, reproduces the pattern of the original circle at a scale141

reduced by some Φn, while each S when filled in reproduces the original pattern at a scale reduced by142

Φn+1. The concept of multifractal analysis suggests that we calculate the similarity dimension of each143

of these subgroups separately. (We refer to Strogatz [18, Ch. 11] for an elementary introduction to the144

analysis of fractal dimension.)145

For a number of partitions N(r) at scale factor r, the similarity dimension is146

D =
ln N(r)

ln r
. (4)

In the Fibonacci chain at the nth level, the number of L’s (reduction factor Φn) is the Fibonacci147

number Fn, while the number of S’s (reduction factor Φn+1) is Fn−1. Then using Binet’s formula,148

Fn = (Φn −Φ−n)/
√

5, the respective similarity dimensions for these two groups are149

DL =
ln Fn

ln Φn =
ln(Φn −Φ−n)− ln

√
5

ln Φn → 1 for large n

DS =
ln Fn−1

ln Φn+1 =
ln(Φn−1 −Φ−(n−1))− ln

√
5

ln Φn+1 → 1 for large n.

(5)

•fang@quantumgravityresearch.org page 5 of 9
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The self-similarity is not exact because the initial point set cannot be partitioned into
subsets that all reproduce the original at a fixed scale, but rather into two groups of subsets
that reproduce it at two different scales. Specifically, at any level of inflation, the Fibonnaci
word can be partitioned into a set of L’s and S’s. Every L, when filled in by inflation,
reproduces the pattern of the original circle at a scale reduced by some Φn, while each S
when filled in reproduces the original pattern at a scale reduced by Φn+1. The concept
of multifractal analysis suggests that we calculate the similarity dimension of each of
these subgroups separately. (We refer to Strogatz Chapter 11 of the [18] for an elementary
introduction to the analysis of fractal dimension).

For a number of partitions N(r) at scale factor r, the similarity dimension is

D =
ln N(r)

ln r
. (4)

In the Fibonacci chain at the nth level, the number of L’s (reduction factor Φn) is the
Fibonacci number Fn, while the number of S’s (reduction factor Φn+1) is Fn−1. Then, using
Binet’s formula, Fn = (Φn −Φ−n)/

√
5, the respective similarity dimensions for these two

groups are
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DL =
ln Fn

ln Φn =
ln(Φn −Φ−n)− ln

√
5

ln Φn → 1 for large n

DS =
ln Fn−1

ln Φn+1 =
ln(Φn−1 −Φ−(n−1))− ln

√
5

ln Φn+1 → 1 for large n.

(5)

This seems a fairly trivial result for the fractal dimension. It is a reflection of the fact
that unlike, e.g., the Cantor set, for any level of inflation we find that each interval filled by
a copy of the set is in turn completely filled by the reduced copies at their respective scales.
Among other things this means that the full point set is dense on the circle.

A calculation of the Minkowski dimension also yields unity, if the boxes are taken to
cover either the long or short arcs. For box size ε = Φ−n the number of boxes is N(ε) = Fn,
and the Minkowski dimension ln N(ε)/ ln(ε−1) gives the same expressions as DL and DS
above. This reflects the fact that unlike e.g. the Koch curve, the points of the Fibonacci
inflations all lie on the circle or, effectively, on a finite interval in R (where, as mentioned
before, they are dense). The correlation dimension [19] and a numerical calculation of
the pointwise dimension also give the same results. We thus have a set with an inexact,
nontrivial, rigorously structured type of self-similarity, which neither leaves finite gaps in
the topological space it lives in, nor “spreads” itself in the usual fractal sense into a larger
topological space. Consequently, its fractal dimension is trivial, in the sense that it matches
the topological dimension.

4. “Frustration” in the P⊥ + P‖ Space and Shear as a Solution

Geometric frustration refers in general to the conflict between some nontrivial local
order and the global environmental order, or as described by Sadoc et al. [9], the condition
that local order cannot propagate “freely” throughout the space. An example is the local
maximum sphere packing arrangement in a global maximum arrangement, or the breaking
of a periodic pattern due to some incompatible local order. Geometric frustration is a
common phenomenon in quasicrystals due to their aperiodic nature [10]. For example,
the icosahedral symmetry of many 3D quasicrystals is not compatible with a crystalline
propagation to fill flat space, but the frustration can be resolved by curving the space into
the fourth dimension and propagating the order on a 3-sphere in 4D.

In curling up a dimension in P⊥, we find a new kind of geometric frustration, as well
as a way to resolve it. To see this, we start by looking at the “parent” space, the projection
space that is the sum of P‖ and P⊥. The 1D Fibonacci chain is the projected image in P‖ of
points in the cut region of the 2D parent space, as shown in Figure 4. Firstly, we identify a
linear trajectory in the cut region connecting points that are adjacent in P‖ (gray segments
shown in Figure 4(a1)). As discussed in the previous section, the step advancement in
P⊥ is periodic. In P‖, however, there is a “frustration” for every cycle in P⊥, as shown
Figure 4(a1) by the intervals labeled d. This frustration breaks the periodicity in P‖.

As we curve P⊥ into a circle leaving P‖ invariant, the cut window trajectory becomes
helical, with the linear axial component as the propagation in P‖ and the angular (phase,
clock) component as the propagation in P⊥. The frustration manifests as a line defect
shown in Figure 4(b1), where the helical path breaks at the line where the top and bottom
boundaries of P⊥ meet. The breaks can be eliminated and the trajectory segments aligned
into a continuous helix by shearing the cut region along the axial direction so that a
rectangle is deformed into a parallelogram (Figure 4(a2)), thereby vertically aligning the
endpoints of the trajectory segments before curving the P⊥ into a cylinder (Figure 4(b2)).

Different choices of discrete shear strain are possible to join one section with the others.
A shear that connects a section with its first, second, third etc., neighbors on either side,
respectively, creates a single, double, triple helix, etc. (Figure 5). The shear may even create
isolated loops, if it connects each section back to itself. For cut windows of different sizes,
the minimum shear needed to produce a single helix increases as the cut window gets
thicker (Figure 6).
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Figure 4. Cut region (a1) wrapped into a cylinder (b1), with an exaggerated view to better see mismatch (c1).
When introducing shear, cut region (a2) becomes a parallelogram and mismatches in cylinder close to form a true helix
(b2, c2).
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Figure 5. When the cut region is curved into a cylinder, different choices of shear connect different
sections to make different helices. n helices are created when the shear connects each sections with its
nth neighbors, rather than just its immediate neighbors.

Figure 6. Comparing cut windows of different thickness: a. thinner window requires a smaller shear
correction d to connect a section with its first neighbors and make a single helix; b. thicker window
requires a larger shear correction d′ for a single helix.

5 Summary and discussion192

In an attempt to resolve the geometric frustration in quasicrystals, which is a natural result of their193
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Figure 5. When the cut region is curved into a cylinder, different choices of shear connect different sections to make
different helices. n helices are created when the shear connects each sections with its nth neighbors, rather than just its
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Figure 6. Comparing cut windows of different thickness: (a) thinner window requires a smaller shear correction d to connect
a section with its first neighbors and make a single helix; (b) thicker window requires a larger shear correction d′ for a
single helix.
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5. Summary and Discussion

In an attempt to resolve the geometric frustration in quasicrystals, which is a natural
result of their aperiodic nature, we discovered the inherent periodicity associated to a
quasicrystal when considering its dual space, the perpendicular space (P⊥) of the cut-and-
project method. The periodicity in P⊥ can be better seen when curving P⊥ and gluing its
upper and lower boundaries together. Using the Z2 lattice projecting to a 1D Fibonacci
chain (in P‖) as an example, P⊥ is a segment, which after being curved becomes a loop.
The periodicity of the points, incommensurate with the period of the P⊥ loop, fills the loop
with a dense point set that exhibits a 2-scale self similarity, but the fractal dimension of this
set is just unity, matching the topological dimension of the loop itself.

After putting P‖ and the curved P⊥ together, the geometric frustration, or the disjoints
in the Z2 to Fibonacci chain case, are clearly shown in this cylindrical space. A shear needs
to be introduced to connect the disjoints, or resolve the geometric frustration. Different
degrees of shear can result in different numbers of helices in the cylindrical space. The
concept generalizes naturally to higher-dimensions when the cut window is a polytope
with parallel opposing facets.

This paper also discussed a new kind of “closeness” based on the periodic nature of P⊥.
Points that are ordinarily close in P⊥ are far apart in P‖, but points that are “periodically”
close in P⊥ (separated by few integral periods) are also close in P‖.

The author will expand the research in higher dimensional quasicrystals and also
study the curved P⊥ as the phase space (in complex plane) of the quasicrystal to under-
stand deeper the interplay between P⊥ and P‖ and the connection between periodicity
and aperiodicity.
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