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Abstract

Meta-analysis combines results from several independent studies. Different

methods are available to carry out meta-analyses for binary and continuous

outcomes. The effect measures used for binary outcomes are odds ratio (OR),

relative risk (RR), risk difference (RD), arcsine difference (AS), hazard ratio

(HR) etc. For continuous outcomes mean difference (MD) and standardised

mean difference (SMD) are used in meta-analysis. However, there are many

medical and health studies in which the outcome variables are measured on an

ordinal categorical scale with more than two categories. These categories are

non-numerically valued, usually levels. In a typical ordinal categorical data

there may be L categories C1, C2, . . . , CL (C1 is the best and CL the worst or

vice versa) and J comparison groups G1, G2, . . . , GJ . Hence the count data

for such studies are represented by a J × L contingency table. As a special

case when there are two comparison groups in randomised controlled trials

(RCTs), we set a 2 × L contingency table. As a result, the ordinary OR,

log OR or RR can not be used directly without splitting the 2 × L (L > 2)

contingency table into 2× 2 tables.

Among other effect measures for ordinal data there are local and global

odds ratios (Dale, 1984), cumulative odds ratios, continuation odds ratio

(Agresti, 2010) etc. The local odds ratio measures local association for a

specific outcome category not for the whole study. The global odds ratio is
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a measure of ratios of the quadrant probabilities (J = L ≥ 4). Whereas in

RCTs there are only two comparison groups (J = 2) namely the treatment

and control groups. The cumulative odds ratios provide a comparison of pairs

of levels of the explanatory variable with respect to their entire conditional

distribution of the dependent variable. As a result, these measures are not

appropriate in meta-analysis with RCTs.

The data from studies with several ordered categories are analysed by

various methods in meta-analysis. Some methods require specific model as-

sumptions while others collapse the 2 × L (L > 2) contingency table into

2 × 2 tables for measuring the effect size. For example, the proportional

odds model (Whitehead et al., 2001) requires a proportionality assumption

and there is no well defined variance estimate of the pooled estimator for the

sample size weight method (Edwardes and Baltzan, 2000) that uses general

odds ratio (ORG) as an effect measure.

Therefore we need a method in meta-analysis that can be used for esti-

mating the effect size without any loss of information by merging categories

and is not restricted to any model assumptions.

We propose generalised odds ratio (GOR) as an effect measure for or-

dinal categorical outcomes in meta-analysis (Agresti, 1980). For confidence

intervals (CI) of the individual study effects and meta-analysis we employ

independent multinomial distribution approach. A general fixed and a ran-

dom effects models are developed using GOR in meta-analysis for ordinal

categorical outcomes.

Heterogeneity is one of the most problematic aspects in many meta-

analyses. We have demonstrated a method to remedy the problem of het-

erogeneity in meta-analysis for ordinal data. Following Saleh (2006) a quasi-

empirical Bayes method (QEBM) is developed using predicted generalised
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odds ratio (PGOR) for heterogeneous ordinal categorical outcomes. This

method identifies the extreme studies and improves the meta-analysis in the

presence of heterogeneity. Three different meta-analyses on several studies

with different degree of heterogeneity are presented. The first example is of

individual patients data (IPD) on tacrine trials with Alzheimer’s disease, the

second example is of misoprostol trials with insignificant heterogeneity and

the third example is from simulation studies with significant heterogeneity.

The three examples clearly illustrate detailed implementation process and

usefulness of the proposed method.

We apply and compare GOR with OR as an effect measure for binary

outcomes in meta-analysis. Three alternative methods for combining results

from binary outcomes are presented for meta-analysis. The first method is

a sample size weight method (Edwardes and Baltzan, 2000) for binary out-

comes using ORG. The other two methods employ GOR as an effect measure

for binary outcomes in meta-analysis. We present results by analysing six

RCTs from meta-analysis of D1 versus D2 gastrectomy for gastric adenocar-

cinoma (Memon et al., 2011).

This study also proposes GOR as an effect measure and presents method

in meta-analysis for latent continuous outcomes. GOR is simple and it has

straightforward interpretation. It can be used for more than two treatment

groups as well. Hence GOR is a very useful effect measure in meta-analysis

not only for multilevel ordinal categorical outcomes but also for binary and

latent continuous outcomes.
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1.1 Background and Motivation

There has been an increasing interest in the development of appropriate

measures to ensure that public policy and decision making are based on

results of reliable research. The evidence based scientific research has been

helping decision makers to determine which interventions are doing good

and which are actually harmful, particularly in the health care area. Meta-

analysis is a statistical technique which concerns with the analysis of the

data extracted from independent studies. It also estimates overall measures

of association or effect size and assesses the sensitivity of the results.

History of meta-analysis goes as early as in the beginning of the 20th cen-

tury when Pearson (1904) developed a statistical technique for making sense

of the divergent results from small studies of the effectiveness of inoculation

against typhoid fever. Statistical techniques were also used for combining

study results in agriculture (Yates and Cochran, 1938) and in the medical

area (Beecher, 1995).

Chalmers et al. (1977) conducted one of the first meta-analyses in medicine

in the modern era. Then in the mid-1980s meta-analysis started to be used

more frequently when Yusuf et al. (1985) published their meta-analysis of

beta blockers in myocardial infarction.

Different methods are available to carry out meta-analyses for binary

and continuous outcomes. The effect measures used for binary outcomes are

odds ratio (OR), relative risk (RR), risk difference (RD), arcsine difference

(AS), hazard ratio (HR) etc. For continuous outcomes mean difference (MD)

and standardised mean difference (SMD) are widely used in meta-analysis.

However, there are many medical and health studies in which the outcome

variables are measured on an ordinal categorical scale with more than two

categories. These categories are usually levels. For example, study on pain
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relief, dementia, head injury, tonsil size etc are measured on ordinal scales

with more than two outcomes. In a typical ordinal categorical data there

may be L categories C1, C2, . . . , CL (C1 is the best and CL the worst or vice

versa) and J comparison groups G1, G2, . . . , GJ . Hence the count data for

such studies are represented in a J×L contingency table. As a special case in

randomised controlled trials (RCTs) when there are two comparison groups

(treatment and placebo), a 2× L contingency table is used. As a result, the

ordinary OR, log OR or RR can not be used directly without splitting the

2× L (L > 2) contingency table into a number of 2× 2 tables.

Clayton (1974) introduced some odds ratio statistics for the analysis of

ordered categorical data assuming a logit model. Later Clayton (1976) gen-

eralised the estimators for the case in which some observations are subject

to censorship. McCullagh (1977) used paired comparisons on the ordinal

variables.

Dale (1984) introduced the local and global odds ratios for measuring

local and global associations for bivariate ordered responses. Unfortunately,

neither of these can be used in meta-analysis for ordinal categorical data

produced by RCTs, because the local odds ratio measures local relationship

for a specific outcome category not for the whole study and the global odds

ratio is a measure of ratios of the quadrant probabilities that incur loss of

information because of merging quadrant rows and columns.

Among other ordinal measures there are cumulative odds ratios, contin-

uation odds ratio etc (Agresti, 2010). The cumulative odds ratios provide a

comparison of pairs of levels of the explanatory variable with respect to their

entire conditional distribution of the dependent variable. As a result, these

measures are not appropriate in meta-analysis for the data produced by the

RCTs.
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The data from such studies with several categories are analysed by various

methods in meta-analysis. Some methods require a specific model assump-

tion while others collapse the 2 × L (L > 2) contingency table into 2 × 2

tables for measuring the effect size. These methods inherently loss valuable

information due to obvious restrictions. Therefore, we need a method that

can be used for estimating the effect size without any loss of information and

is not restricted to any model assumption. The generalised odds ratio (GOR)

is an effect measure free from the above weaknesses. More importantly, or-

dinal categorical data are naturally in ascending or descending order which

makes GOR more suitable effect measure over its competitors.

There are several methods used for combining findings from repeated

studies. Hedges and Ingram (1985) demonstrated on various parametric and

non-parametric statistical methods for meta-analysis. Sutton et al. (2000)

presented various methods and discussed different important issues for meta-

analysis in medical research. A more recent comprehensive update of meta-

analysis methods and issues are covered in Borenstein et al. (2009). In most

cases, they concentrated on the methodologies and issues for binary out-

comes in meta-analysis. Now-a-days, a general fixed (Birge, 1932; Cochran,

1937) and standard random effects models (DerSimonian and Laird, 1986)

are widely used for binary outcomes in meta-analysis. Some other mixed

effects models and Bayesian methods are potential area of research for meta-

analysis.

Recently, there has been a sharp increase in the publication of research

articles on ordinal categorical data. Many authors have published books

on methods for ordinal categorical data analysis. Researchers of diverse

disciplines such as sociology, education, public health and wildlife ecology

are using these methods frequently. However, meta-analysis with ordinal
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categorical outcomes has not been paid much attention so far.

Edwardes and Baltzan (2000) proposed pooling γ’s (γ is also known as

Goodman and Kruskal’s γ) instead of general odds ratio (ORG = (1+γ)/(1−

γ)) using sample size weights. This method is useful to calculate the pooled

effect when the individual variance estimates are not provided. However,

a well defined variance estimate for the pooled effect is unavailable under

this method. As a result, we can not find the CI for pooled ORG for meta-

analysis.

Whitehead et al. (2001) developed a proportional odds model on individ-

ual patient data (IPD) using the log odds ratio with a general framework for

fixed and random effects models. However, this method needs a ‘proportional

odds’ assumption for computing the effect measures.

1.2 Generalised Odds Ratio (GOR)

In this study, we attempt to measure the effect size for the 2 × L table as

a whole without any loss of information or under any model assumption in

meta-analysis with RCTs. We propose using GOR (Agresti, 1980) as an effect

measure for ordinal categorical outcomes. These outcomes are naturally in

an ascending or descending order which makes GOR suitable as an effect

measure for these outcomes. We also develop a new meta-analysis method

for ordinal categorical outcomes under both the fixed and random effects

models. An application is presented using the individual patients data (IPD)

of five RCTs of anti-cholinesterase drug tacrine in patients with Alzheimer’s

disease (Whitehead et al., 2001) and compared with other methods.

Issues of heterogeneity are addressed by computing the value of the chi-

square test (Cochran, 1954) and I2 statistic (Higgins and Thompson, 2002).
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Funnel plots are used to check the publication bias.

Heterogeneity is one of the most common issues of meta-analysis. Use

of random effects model is not always a cure (cf. Shuster, 2010; Doi SA et

al., 2011). To deal with this issue with ordinal categorical outcomes a quasi-

empirical Bayes method (QEBM) (cf. Saleh, 2006, p.157) is developed using

GOR. This method demonstrates a remedy to the problem of heterogeneity

in meta-analysis for ordinal data. This method identifies the extreme studies

and improves the meta-analysis in terms of better statistical agreement in

the presence of heterogeneity.

Three different meta-analyses on several studies with different degree of

heterogeneity are presented. The first example is of IPD of tacrine trials

with insignificant heterogeneity, the second example is of misoprostol trials

with moderately insignificant heterogeneity and the third example is from

simulation studies with significant heterogeneity. The three examples clearly

illustrate detailed implementation process and usefulness of the proposed

method.

We apply and compare GOR as an effect measure for binary outcomes

with OR and ORG in meta-analysis. Three alternative methods are also pre-

sented for combining estimates from binary outcomes. The first method is

the sample size weight method adopted from Edwardes and Baltzan, (2000).

The other two methods use GOR as an effect measure and independent bi-

nomial distribution approach for estimating the variance for individual study

and meta-analysis. We present results by analysing six RCTs from a meta-

analysis of D1 versus D2 gastrectomy for gastric adenocarcinoma (Memon et

al., 2011).

This study also shows GOR as an effective outcome measure and presents

methods in meta-analysis for latent continuous outcomes. The concept of
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GOR is straightforward and it has mathematically amenable variance es-

timates for both individual study and meta-analysis. It can be well used

for more than two treatment groups as well. These properties make GOR

a useful outcome measure in meta-analysis not only for multilevel ordinal

categorical outcomes but also for binary and latent continuous outcomes.

1.3 Contribution

Main contributions of this thesis are as follows:

• Propose GOR as an effect measure for ordinal categorical outcomes

for data produced by RCTs and apply it in meta-analysis. The GOR

has never been used as an effect measure in meta-analysis. Employing

GOR as an effect measure for multilevel ordinal categorical outcomes

we can estimate the effect size without any loss of information or un-

der the restriction of model assumption or merging multilevel outcome

categories into dichotomies.

• Develop general fixed and a random effects models using GOR for ordi-

nal categorical outcomes under independent multinomial distribution.

• Propose a quasi-empirical Bayes method (QEBM) using GOR for het-

erogeneous ordinal categorical outcomes in meta-analysis.

• Apply and compare GOR as an effect measure with OR for binary

outcomes and derive a general fixed and random effects model using

GOR for binary outcomes.

• Use GOR for continuous or latent continuous outcomes in meta-analysis.
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• Write computer programs (R-codes) for all computations and plotting

in this thesis.

1.4 Thesis Outlines

The remaining chapters of the thesis are organised as below. Chapter 2

reviews some effect measures and meta-analysis methods used for ordinal

categorical outcomes. This covers a new meta-analysis method using GOR

for ordered categorical outcomes under both fixed and random effects models.

A QEBM is presented using GOR for heterogeneous ordinal categori-

cal outcomes in Chapter 3. Here the predicted GOR is used for improved

meta-analysis in the presence of heterogeneity. We generate ten heteroge-

neous studies by simulation using multinomial distribution as there are no

significant heterogeneous studies available for ordinal categorical outcomes.

Chapter 4 contains a comparison of meta-analysis methods for binary out-

comes. This chapter derives a meta-analysis method using GOR for binary

outcomes under general fixed and random effects models and then compare

with the existing methods currently in use.

Chapter 5 deals with the continuous outcomes in meta-analysis.

In Chapter 6, we rap up by summarising the main concepts proposed and

results found in this thesis.

The three appendices contain some related additional topics, R-codes

used for computations in the main four chapters and list of publications.
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2.1 Introduction

There are many medical and biological studies in which the response variables

are measured on an ordinal categorical scale. Often these outcome categories

are more than two. As a result, the ordinary odds ratio (OR) or log odds

ratio (LOR) can not be used directly without splitting the J × L (J > 2,

L > 2) contingency table into 2× 2 tables. Clayton (1974) introduced some

odds ratio statistics for the analysis of ordered categorical data assuming a

logit model. Clayton (1976) generalised the estimators for the case in which

some observations are subject to censorship. McCullagh (1977) used paired

comparisons on the ordinal variables.

Dale (1984) introduced the local and global odds ratios for measuring local

and global associations for bivariate ordered responses. However, neither of

these can be used in meta-analysis for ordinal categorical data produced by

RCTs. Because the local odds ratio measures only the local relationship for

a specific outcome category not for the whole study and the global odds ratio

incurs loss of information by merging categories.

Edwardes and Baltzan (2000) proposed pooling γ’s (also known as Good-

man and Kruskal’s γ) instead of general odds ratio (ORG = (1+ γ)/(1− γ))

using sample size weights. This method is useful to calculate individual study

effect and associated confidence intervals (CI). However, a well defined vari-

ance estimate for the pooled effect is unavailable and hence no CI can be

found under this method.

Whitehead et al. (2001) developed a proportional odds model on indi-

vidual patient data using the LOR with a general framework for fixed and

random effects models. However, this method needs a ‘proportional odds’

assumption for computing the effect measures.

To overcome these issues, we propose GOR (Agresti, 1980) in meta-



CHAPTER 2. METHODS FOR ORDINAL CATEGORICAL DATA 11

analysis as an effect measure for ordinal categorical outcomes. There are

several advantages of GOR over other effect measures. The GOR has simple

and straightforward interpretation and can be used for continuous outcomes

in meta-analysis. The GOR can also be used with multiple treatment groups

for ordinal categorical outcomes. For binary outcomes with two comparison

groups GOR reduces to ordinary OR. So GOR is a universal effect measure in

meta-analysis and is applicable for binary, ordinal and continuous outcomes.

The rest of this chapter is organised as follows. Section 2.2 reviews the

effect measures and methods usually used in meta-analysis for ordinal cat-

egorical outcomes. Section 2.3 presents the proposed meta-analysis method

using GOR for ordinal categorical outcomes. Section 2.4 contains application

of an individual patient data set. Finally, a chapter summary is presented in

Section 2.5.

2.2 Review

In this section we review the effect measures and important methods normally

used for ordinal data in meta-analysis.

2.2.1 Effect Measures

There are some indices that are used for measuring the effect size in meta-

analysis with ordinal categorical outcomes. Some of these measures are dis-

cussed below.

(a) Odds Ratio (Cornfield, 1951; Edwards, 1963; Mosteller, 1968)

The odds ratio (OR) is one of the most frequently used indices in

epidemiology and meta-analysis. The OR can be calculated from the
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Table 2.1: Data of a single RCT

Intervention Failure/Dead Success/Alive

New treatment a b

Control c d

data (see Table 2.1) as

OR =
a/c

b/d
=

odds of treated in failure

odds of treated in success
=
a× d

b× c
. (2.1)

In a RCT setting for an undesirable outcome OR < 1 indicates an im-

provement on the new treatment, OR > 1 indicates the new treatment

is not effective, and OR = 1 indicates the two comparison groups are

very comparable. The converse is true for desirable outcomes. The cell

with zero frequency is analysed adding 1
2
to each entry before calcula-

tion of OR for 2× 2 tables.

Despite its frequent use with binary outcomes in meta-analysis, it can

not be directly used as an effect measure for more than two outcome

categories.

(b) Local Odds Ratio (Dale, 1984)

The data for RCT with ordinal categorical outcomes can be presented

in a 2× L contingency table. Then the local odds ratio is defined as

Ψl =
πl|1π(l+1)|2

πl|2π(l+1)|1
; l = 1, . . . , L− 1. (2.2)

Local odds ratio measures the association between the row variable with

the preferred category in the column variable in a 2 × L contingency

table.

(c) Global Odds Ratio (Dale, 1984)

Global odds ratio is defined as the odds ratio of a (2× 2) contingency
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table when the adjacent rows and columns of a (J×L) contingency table

is collapsed into a 2×2 table. That is, a global odds ratio is a function

of the quadrant probabilities of the original (J×L) contingency table .

A (J ×L) table has (J − 1)(L− 1) ways of merging rows and columns

into 2× 2 table.

The global cross ratio Ψjl may be expressed as an odds ratio of cumu-

lative events:

Ψjl = odds(Z1 ≤ j|Z2 ≤ l)/odds(Z1 ≤ j|Z2 > l) (2.3)

= odds(Z2 ≤ l|Z1 ≤ j)/odds(Z2 ≤ l|Z1 > j). (2.4)

(d) Cumulative Odds Ratio (Agresti, 2010, p.18)

The cumulative odds ratios use the sample conditional cumulative dis-

tribution functions of Y given x as

θ̂Cjl =
F̂l|j/(1− Fl|j)

F̂l|j+1/(1− F̂l|j+1)
. (2.5)

These odds ratios are natural when x is an explanatory variable. They

provide a comparison of pairs of levels of x with respect to their entire

conditional distribution on Y . For a 2×L tables, global and cumulative

odds ratios are identical. These (local, global and cumulative) odds

ratios are the regular odds ratios computed for the 2×2 tables obtained

by collapsing the row and column classifications into dichotomies. As

a result, none of these can be used as an effect measure for the whole

table 2× L or J × L as in meta-analysis.

(e) General Odds Ratio (Edwardes and Baltzan, 2000)

Edwardes and Baltzan proposed the general odds ratio (ORG) for J×L

tables as

ORG =
1 + γ

1− γ
, (2.6)
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where γ = (P −Q)/(P +Q), is also known as Goodman and Kruskal’s

γ, P =
∑

j<j′
∑

l<l′ njlnj′l′ and Q =
∑

j<j′
∑

l>l′ njlnj′l′ considering njl

be the number of observations with exposure j and severity l. It is

important that the authors showed after few simple algebraic manipu-

lation ORG = P/Q, which is exactly the same as Agresti’s α (Agresti,

1980).

2.2.2 Issues of Meta-Analysis

Two of the most common issues of meta-analysis are heterogeneity and pub-

lication bias. We discuss these issues here briefly.

Heterogeneity

Heterogeneity refers to the between study effect size variation. Random ef-

fects model accounts for heterogeneity to an extent but they do not explain

why the study results vary. Subgroup analysis and regression methods can

be used to identify the associations between study or patient characteristics

and the outcome measures in meta-analysis of RCTs. It has now become

common practice reporting Q statistic (Cochran, 1954) with associated de-

grees of freedom (df) and p-value for identifying heterogeneity and I2 statistic

(Higgins and Thompson, 2002) for quantifying heterogeneity.

Graphically heterogeneity can be explored using plot of normalised (Z)

scores, forest plot, radial plot (Galbraith, 1988) and L’Abbe plot (L’Abbe et

al, 1987). Among these graphical tests, plot of Z scores and forest plot are

now widely used for meta-analysis data representation.

• Plot of normalised (Z) scores: The Z-scores or standardised residuals
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for each study can be calculated by

Zi =
Γi − Γ̄

se(Γi)
, (2.7)

where Γi is the observed effect size estimate from the ith study, Γ̄ is

the weighted average of these effect sizes, that is, Γ̄ =
∑k

i ωiΓi/
∑k

i ωi,

where ωi = is the weight for the ith study and se(Γi) = 1/ωi =√
var(Γi). Under the null hypothesis that all the effect sizes are equal,

the distribution of these Z-scores should be normal with mean zero and

variance one. Large absolute Z values indicate significant deviations of

individual study effect from the pooled or average effect (Greenland,

1987).

• Forest plot: A forest plot is a graphical display of representing the re-

sults of a meta-analysis. This plot is usually drawn using the effect

estimate on a natural logarithmic scale along with their 95% CIs. A

vertical line at the pooled effect estimate representing the meta-analysis

estimate and a vertical line representing no effect are also drawn. Some-

times a body of text consisting of study names, publication years, effect

estimates and CI values are also included. The forest plot was named

after a breast cancer researcher Pat Forrest and hence sometimes spelt

‘forrest plot’ (Lewis and Clarke, 2001).

Q statistic

A very common statistical test, the Cochran’s (1954) Q test examines the

existence of homogeneity (heterogeneity) citing a p-value. This is defined as

Q =
k∑

i=1

ωi(Γ̂i − Γ̄)2, (2.8)
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where Γ̂i = Treatment effect estimate in the ith study, k = number of studies

combined, Γ̄ =
∑

i
ωiΓ̂i∑
i
ωi

is the weighted estimator of treatment effect and ωi

is the attached weight (inversely proportional to the conditional variance) of

the ith study in the meta-analysis.

The following computation friendly form is available

Q =
k∑

i=1

ωiΓ̂
2
i −

(
∑k

i=1 ωiΓ̂i)
2∑k

i=1 ωi

∼ χ2
k−1 (2.9)

under H0 : Γ1 = Γ2 =, · · · ,= Γk = Γ0. For homogeneous studies the null hy-

pothesis is not rejected which does not indicate statistical significance to use

the common value whether the treatment is in favour or not. However, Fleiss

(1986) recommended using a cut-off significance level of 0.10 rather than the

usual 0.05. This test is of low in power with few studies and excessive power

with many studies.

I2 statistic

The I2 statistic introduced by Higgins and Thompson (2002) is defined as

I2 =
Q− df

Q
× 100%, (2.10)

and represents the proportion of total variation in the estimates of treatment

effect that is due to heterogeneity between studies. The I2 statistic can also

be expressed in the form

I2 =
Between variance

Total variance
× 100% =

τ̂ 2

s2W + τ̂ 2
, (2.11)

that is, the ratio of between variance to total variance across the observed

effect estimates. The important aspects of this statistic are that it is easily

interpretable and does not depend on the number of studies or type of out-

come variable.
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Subgroup Analysis

Subgroup analysis can be carried out in meta-analysis by investigating sub-

sets of studies or patient characteristics. One can also analyse the subsets

of patients being pooled. There are three computational (Borenstein et al.,

2009) models available such as fixed effect, random effects using separate

estimates of τ 2 and random effects using pooled estimate of τ 2. Three meth-

ods namely, Z-test, a Q-test based on analysis of variance and a Q-test for

heterogeneity can be used for comparing the subgroups.

If it is assumed that the between variation is the same within all sub-

groups, a pooled estimate can be calculated. If the between variation does

differ from one subgroup to the next, then we would estimate τ 2 within sub-

groups and use separate estimate of τ 2 for each subgroup. Although when

there are a few studies within subgroups, it may be preferable to pool the

estimates.

Regression models for meta-analysis

Regression models can also be used under fixed effects model (meta-regression

model) (Hedges, 1994) and random effects model (mixed effects model) for

exploring heterogeneity. However, regression models are mostly useful when

the number of studies is large (Raudenbush, 1994).

Publication Bias

It is a well known fact that research with statistically significant results

is more likely to be published or published more quickly than work with

insignificant results. This leads to a dominance of false positive results in
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the literature. This is known as publication bias. The implications of this

for meta-analysis are that combining only the identified published studies.
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Figure 2.1: Funnel plot indicating absence of publication bias

It is now a common practice to report presence or absence of publica-

tion bias and to assess the effects of publication bias in meta-analysis. The

following tools can be used for identifying publication bias.
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Figure 2.2: Funnel plot showing presence of publication bias

• The funnel plot

• Rank correlation test (Begg and Mazumdar, 1994)

• Linear regression test (Egger et al, 1997)

• Trim and fill method (Duval and Tweedie, 2000)

The funnel plot is now widely used reporting publication bias in meta-
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analysis. Therefore, we will only discuss funnel plot here briefly.

The funnel plot

The treatment effects from individual studies are usually plotted against their

standard errors (se) (or inverse of the se) instead of the corresponding sample

sizes. A plot of inverse of se versus logarithm of the treatment effect from

individual studies in a meta-analysis should thus be shaped like a funnel if

there is no publication bias (Light and Pillemar, 1984).

However, plotting treatment effects against standard errors instead of

against the inverse of standard errors are not the same. The visual impression

may be different in those situations. To detect publication bias by a funnel

plot there needs to be a range of studies with varying effect sizes. It is

also possible that an asymmetric funnel plot may be caused by factors other

than publication bias, such as quality of studies, intervention, differences

in underlying risk, poor design of small studies, choice of effect measure,

inadequate analysis, chance and number of studies (Egger et al, 1997).

2.2.3 Proportional Odds Model

Whitehead et al. (2001) used the proportional odds model in meta-analysis

for ordinal outcome categories using individual patient data (IPD). To il-

lustrate this method, let there be k independent studies each comparing a

treatment with a control. Each patient has a response which falls into one

of the L ordered categories C1, . . . , CL; (L > 2) such that C1 is the best and

CL the worst. Suppose that there are ni patients in the ith study and n

=
∑k

i=1 ni is the total number of patients in all of the studies combined. Let

πijr be the probability that the jth subject in the ith study has a response
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in category Cr. Again consider Qijr to be the associated probability of a

response in category Cr or better, so that Qijr= πij1+ πij2+ . . .+ πijr and

QijL=1. Then the proportional odds model is defined by

λijr = log

(
Qijr

1−Qijr

)
= αr + βij; r = 1, . . . , L− 1, (2.12)

where αr is the rth intercept and βij=γ1x1ij+ . . .+γqxqij is a linear combina-

tion of explanatory variables. This model assumes ‘proportional odds’ that

the log odds ratio associated with a unit increase in the explanatory variable

does not depend on the intercept. Whitehead et al. (2001) also developed

several meta-analysis methods for ordinal outcomes using IPD under fixed

and random effects models.

2.2.4 Sample Size Weight Method

Edwardes and Baltzan (2000) proposed a meta-analysis method by pooling

γ (where γ = (P − Q)/(P + Q)) is also known as Goodman and Kruskal’s

γ, P =
∑

j<j′
∑

l<l′ njlnj′l′ and Q =
∑

j<j′
∑

l>l′ njlnj′l′ considering njl be the

number of observations with exposure j and severity l) instead of pooling

general odds ratio, ORG = (1+γ)/(1−γ), using sample size weight to avoid

data change (Agresti, 1980; Goodman and Kruskal, 1972). They proposed

weighting each γi by

TNi =

∑
i<j

ninj

2

/
∑
i<j

(ni + nj)ninj. (2.13)

As a special case when J = 2, then TN =n1n2/(n1 + n2). The sample size

weighted mean effect is given as

γ̄ =
∑
i

TNiγi/
∑
i

TNi (2.14)
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and the pooled ORG is calculated as ORG=(1 + γ̄)/(1 − γ̄). Confidence

intervals (CI) for pooled ORG may be formed using

SE(γ̄) =

(∑
i

T 2
NiSE(γi)

2

)1/2

/
∑
i

TNi. (2.15)

The standard error estimate SE(ORG) is derived from Goodman and Kruskal’s

general formula (Goodman and Kruskal, 1972) as

SE(ORG) =
1

Q

∑
i

∑
j

nijR
2
ij

1/2 , (2.16)

where Rij = ORG(Bij +Cij)−Aij −Dij, n+j =
∑

i nij, Aij =
∑

s<i

∑
t<j nst,

Bij =
∑

s<i

∑
t>j nst, Cij =

∑
s>i

∑
t<j nst, Dij =

∑
s>i

∑
t>j nst.

An asymptotic standard error of log(ORG) is estimated by

SE(logORG) = 2× SE(γ)/(1− γ)2 (2.17)

and a 95% CI for ORG is

{ORG exp[−3.92×SE(γ)/(1−γ2)],ORG exp[3.92×SE(γ)/(1−γ2)]}, (2.18)

where exp(·) is the exponential function, and 3.92 is 2 × 1.96. The sample

size weight method can be used to estimate the effect size of the studies.

Unfortunately, a well defined variance estimate of the estimated pooled ef-

fect is unavailable for this method. Hence this method can not be used for

constructing CI of meta-analysis.

2.3 Proposed Method: Meta-Analysis using

GOR

2.3.1 GOR

Let J be the number of comparison groups with L ordered outcome categories

in each group. For RCTs with two comparison groups the 2×L contingency
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table represents the joint distribution of two ordinal categorical variables:

Table 2.2: Contingency table for the ith study.

Groups Category 1 Category 2 · · · Category L Sample size

Treatment Xi11 Xi12 · · · Xi1L ni1.

Control Xi21 Xi22 · · · Xi2L ni2.

In Table 2.2, Xijl is the count of the lth category in the jth group for

the ith study, nij. is the total count of jth group for the ith study, Xi1L =

ni1. −Xi11 −Xi12 − · · · −Xi1(L−1), Xi2L = ni2. −Xi21 −Xi22 − · · · −Xi2(L−1).

When L = 2, the GOR reduces to the OR for a single 2 × 2 contingency

table.

The GOR is defined as the ratio of the proportions of concordant and

discordant pairs (Agresti, 1980) in a contingency table. A pair is said to be

concordant if the subject ranked higher on groups also ranks higher on cate-

gories or vice versa. Without loss of generality we assume that the response

in category l′ is more severe than the response in category l where l < l′.

Mathematically, the GOR for the ith study is defined as

Γi = (Πdi)
−1Πci, (2.19)

where Πci =
∑L−1

r=1

∑L
s=r+1 Πir|1Πis|2 and Πdi =

∑L
r=2

∑r−1
s=1 Πir|1Πis|2. Here,

Πci denotes the probability that the response of a randomly selected subject

from group 2 (control) is more severe than the response of a randomly selected

subject from group 1 (treatment). Similarly, Πdi denotes the probability that

the response of a randomly selected subject from group 1 is more severe than

the response of a randomly selected subject from group 2. The data with

zero cell count is analysed by adding 1
L
to each entry before calculation of

the GOR. The value of Γi may vary from 0 to ∞. Γi = 1, represents identical

comparison groups as it is in the OR.
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Suppose an independent random sample of size nij. is taken from group

j (j = 1, 2) and Xijl denote the count falling into category l of the ith

study. Then the random vector (Xij1, Xij2, . . . , XijL) follows the multinomial

distribution with parameters nij. and π′
ij = (πi1|j, πi2|j, . . . , πiL|j), where

πil|j is the probability of a subject to be in the lth category within the jth

comparison group for the ith study.

The maximum likelihood estimator (MLE) of πil|j is given by π̂il|j =

Xijl/nij. for the ith study. For large nij.,
√
nij.(π̂ij − πij), where πij

′ =

(πi1|j, πi2|j, . . . , πiL|j), asymptotically follows a L-dimensional multivariate nor-

mal distribution with mean vector 0 and L × L covariance matrix with the

diagonal entries πil|j(1 − πil|j), and off-diagonal entries −πil|jπil′|j for l ̸= l′.

The MLE of Γi, say Γ̂i, is defined as

Γ̂i = (Π̂di)
−1Π̂ci, (2.20)

where Π̂ci =
∑L−1

r=1

∑L
s=r+1 π̂ir|1π̂is|2 and Π̂di =

∑L
r=2

∑r−1
s=1 π̂ir|1π̂is|2 for the ith

study.

Next, we present a general fixed effects model (FEM) (Birge, 1932) (Cochran,

1937) and standard random effects model (REM) (DerSimonian and Laird,

1986) using GOR for multilevel ordinal outcomes. Consider Γ̂i to be an es-

timate of the true effect size Γi in the ith study as Γ̂i=Γi + ei, where ei

is the error with which Γ̂i estimates Γi. In the FEM, var(Γ̂i) = vi, and in

REM var(Γ̂i) = τ 2Γ +vi, where τ
2
Γ is the random effects variance and vi is the

variance due to sampling error in the ith study. If τ 2Γ = 0, the above REM

would reduce to the FEM.
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2.3.2 GOR under Fixed Effects Model

The inverse variance weighted method is most widely used amongst the fixed

effects models. For k independent studies if Γ̂i represents logarithm of GOR

(LGOR) and vi represents the variance of the effect estimator, then assuming

Γ1 = Γ2 =, · · · ,Γk = Γ0, a pooled estimate of the treatment effect is given

by

Γ̂0 =

∑
i ωiΓ̂i∑
i ωi

. (2.21)

For an arbitrary number of outcome categories (L) in RCTs in which each

row is modeled as an independent multinomial distribution, the estimated

variance of the ith study is

ω̂−1
i =

L−1∑
l=1

2∑
j=1

1

nij.π̂ijl(1− π̂ijl)
, (2.22)

where nij. is the total count of the jth group for the ith study, π̂ijl = Xijl/nij.

is the MLE of πijl and Xijl is the count of the lth category in the jth group

for the ith study.

Assuming Γ̂i’s are normally distributed, an approximate 100(1− α)% CI

for the ith GOR is given by the formula

exp[Γ̂i ± zα/2ω
−1/2
i ], (2.23)

where zα/2 is the 100× α/2 percentage point of a standard normal distribu-

tion.

An estimator of the variance of the pooled estimator of Γ0 is given by

ω̂−1 = var(Γ̂0) = 1/
k∑

i=1

ωi. (2.24)

If Γ̂0 is assumed to be normally distributed, an approximate 100(1−α)% CI

for the population effect, Γ0, is given by



CHAPTER 2. METHODS FOR ORDINAL CATEGORICAL DATA 26

exp[Γ̂0 ± zα/2ω
−1/2] (2.25)

for the meta analysis.

2.3.3 GOR under Random Effects Model

The standard random effects model (DerSimonian and Laird, 1986) for the

GOR can be introduced as follows: Let τ̂ 2Γ be the estimate of the between

study variance. Define ω̄ and s2W to be the mean and variance of the weights

from the k studies:

ω̄ =
k∑

i=1

ωi/k and s2W =
1

k − 1

(
k∑
i

ω2
i − kω̄2

)
. (2.26)

Further, define

U = (k − 1)

(
ω̄ − s2W

kω̄

)
and Q =

k∑
i=1

ωi(Γ̂i − Γ̄.)2, (2.27)

where Q is the heterogeneity statistic, also known as Cochran’s χ2 statistic

(Cochran, 1954) for testing the H0 = Γ1 = Γ2 = · · ·Γk = Γ0. The esti-

mated component of variance due to inter-study variation in effect size, τ̂ 2Γ,

is calculated as

τ̂ 2Γ =

 0 if Q ≤ k − 1

(Q− (k − 1))/U if Q > k − 1.
(2.28)

Then adjusted weights ω∗
i for each of the studies can be calculated as

ω∗
i =

1

[1/ωi] + τ̂ 2Γ
. (2.29)

A 100(1− α)% CI for Γi is given by

exp[Γ̂iR ± zα/2/
√
ω∗
i ] (2.30)
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under the assumption of normality of Γ̂iR.

The point estimate for the mean treatment effect of all studies, Γ0, can

be computed by

Γ̂0R =
k∑

i=1

ω∗
i Γ̂i/

k∑
i=1

ω∗
i with var(Γ̂0R) = 1/

k∑
i=1

ω∗
i . (2.31)

If normality of Γ̂0R is assumed, a 100(1− α)% CI for Γ0 is given by

exp[Γ̂0R ± zα/2/

√√√√ k∑
i=1

ω∗
i ]. (2.32)

2.4 Application

We consider the IPD of five RCTs (Table 2.3) of anti-cholinesterase drug

tacrine in patients with Alzheimer’s disease (Whitehead et al., 2001) to ap-

ply the proposed method and compare results from different methods. The

categories of this trials are made by the Clinical Global Impression of Change

scale (CGIC). The CGIC is based on a seven point scale where 1, 2 and 3

represent ‘very much improved’, ‘much improved’ and ‘minimally improved’

respectively, 4 indicates ‘no change’, and 5, 6 and 7 represent ‘minimally

worse’, ‘much worse’ and ‘very much worse’ respectively. For the analysis

purpose they combined categories 1 and 2, and 6 and 7 as there were very

few patients in the two extreme categories.

The second last column of Table 2.3 contains the LOR and standard

errors (SE) from proportional odds model. The last column contains the log

GOR and SE from the proposed method. As ORG values are exactly the

same as GORs, those are not included in the table.

Table 2.4 shows the comparison of meta-analysis estimates (in logarithmic

scale) and their associated SEs for the three methods used. The last three
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Table 2.3: Estimate of LOR and LGOR along with SE for tacrine data

Study Groups C1 C2 C3 C4 C5 T LOR(SE) LGOR(SE)

1 Tacrine 4 23 45 22 2 96 0.284 (0.261) 0.248 (1.033)

Placebo 2 22 54 29 3 110

2 Tacrine 14 119 180 54 6 373 0.224 (0.242) 0.197 (1.167)

Placebo 1 22 35 11 3 72

3 Tacrine 13 20 24 10 1 68 0.360 (0.331) 0.299 (0.901)

Placebo 7 16 17 10 3 53

4 Tacrine 21 106 175 62 17 381 0.785 (0.173) 0.659 (0.569)

Placebo 8 24 73 52 13 170

5 Tacrine 3 14 19 3 0 39 0.492 (0.422) 0.434 (1.358)

Placebo 2 13 18 7 1 41

columns of Table 2.4 contain the heterogeneity statistic Q, p-value, and I2

statistic.

Figure 2.3 represents the forest plot of the five RCTs of tacrine data using

GOR. The horizontal lines represent 95% CIs for the five studies and meta-

analysis. The pooled estimate at 1.54 is obtained by combining all GORs of

the five studies using the proposed method.

In the first meta-analysis of the tacrine trials (Qizilbash et al., 1998)

the OR for improvement on the CGIC scale for patients receiving tacrine

compared with those receiving placebo was reported 1.58 (SE = 0.270).

Meta-analysis using proportional odds model produced the estimated

OR = 1.66 under fixed effects model and OR = 1.62 under random ef-

fects model. The heterogeneity statistic Q = 4.86, df = 4, p = 0.30 and

I2 = 17.69% [0%, 99.69%] suggest there exists insignificant heterogeneity

(Whitehead et al., 2001; Higgins and Thompson, 2002).
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Table 2.4: Comparison of meta-analysis estimates for the tacrine data

Methods MA SE Q p-value I2

Proport. odds model 4.86 0.300 17.69%

FEM 0.504 0.112 [0%, 99.69%]

REM 0.481 0.128

Sample size weight 1.60 0.809 0%

FEM 0.426 - [0%, 97.7%]

REM 0.426 -

Proposed method 0.34 0.987 0%

FEM 0.430 0.391 [0%, 89%]

REM 0.430 0.391

Meta-analysis using sample size weight (Edwardes and Baltzan, 2000)

gives the estimated pooled ORG = 1.53. The authors reported that an

advantage to sample size weighting is that the pooled estimate may be based

on studies for which variance is not reported. However, a variance estimate is

required for the CI of pooled ORG. We did not report the estimated variance

for the pooled estimate as there is no well defined variance expression for the

pooled ORG. The authors also did not find the CI for pooled ORG in their

meta-analysis (Edwardes and Baltzan, 2000). The heterogeneity statistic

Q = 1.60, df = 4, p = 0.809 and I2 = 0% [0%, 97.7%] suggest there exists no

heterogeneity in the data set.

The proposed meta-analysis method using GOR results estimated GOR

= 1.54. The tests of heterogeneity are statistically insignificant Q = 0.341,

df= 4, p = 0.987; and I2 = 0% [0%, 89%].

Although the CI of the pooled effect measure for the proposed method is

wider than the proportional odds model, we believe the true scenario has been
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Figure 2.3: Forest plot of the five RCTs of tacrine using GOR

depicted by the GOR. Regarding the heterogeneity statistic Q, it is observed

that as the number of categories increases the value of Q decreases. For the

tacrine data, with five categories Q = 0.43, with three categories Q = 1.83,

and with two categories Q = 4.86. As proportional odds model is using LOR,

it is unreasonably reducing the SE which entails a higher individual weight.

That results the higher Q value for the proportional odds model.



CHAPTER 2. METHODS FOR ORDINAL CATEGORICAL DATA 31

−3 −2 −1 0 1 2 3 4

1.
5

1.
0

0.
5

0.
0

Improvement with tacrine

log GOR

1/
st

an
da

rd
 e

rr
or

Figure 2.4: The funnel plot suggests that there is no publication bias

2.5 Summary

The main contribution of this chapter is that we develop a meta-analysis

method using GOR for multi-level ordinal categorical outcomes and com-

pare the results with two existing methods for the tacrine trials data. The

currently available proportional odds model is restricted to the proportion-

ality assumption and there is no well defined variance estimate of the pooled

estimate for the sample size weight method. Use of the LOR or similar effect

measures for multi-level ordinal outcomes by collapsing a 2 × L table into
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2 × 2 tables causes loss of information, inflate the estimate and inappropri-

ately reduce the spread.

Here the treatment effect of tacrine over placebo is evident from the meta-

analyses. Of the three meta-analyses the treatment effect produced by the

proportional odds model is the highest. The treatment effects produced by

the other two methods are very close. This also emphasises the point that

use of the proportional odds model may have reduced the SE of the effects

by using LOR.

It is revealed that the use of the proportional odds model actually under-

mines the real variability in the data set of five outcome categories. This is

caused by the reduction of the five categories into only two categories which

in turn unreasonably reduce the spread. As a result, the SE for LOR is less

than what it should be with five categories. Use of the GOR and multino-

mial distribution can produce the true variance taking into account all the

outcome categories in a data set.

It is also observed that the majority of patients from the five tacrine

trials fall in the middle three categories. As a result, the effect measure

in proportional odds model may be inflated because of the proportionality

assumption.

The proposed meta-analysis method using GOR is very simple and has

straightforward interpretation. It has simple variance estimate for individual

study and meta-analysis. It can also be used for binary and latent continuous

outcomes (see Chapter 4 and Chapter 5). Moreover, the ordinal categorical

outcomes are naturally in ascending or descending order. Therefore, GOR

is a preferable and superior effect measure in meta-analysis for the ordinal

categorical data.
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3.1 Introduction

In recent years, there has been growing interest in meta-analysis in various

fields of health science, including analysis of RCTs. The method has im-

pacted significantly on the practice of clinical trials and health care policies.

It allows to combine results of independent studies to increase statistical

power of the effect size estimate through increased sample size.

The development of the meta-analysis for the binary outcomes is primarily

based on the relative risk (RR) and odds ratio (OR). However, in many

clinical and epidemiological studies the outcome variables are ordinal and

have more than two categories. For example, outcomes of the study on pain

relief, dementia, head injury, tonsil size etc are measured on ordinal scales.

The commonly used effect size measures for binary outcomes can not be

directly used if the data is ordinal with more than two categories. The idea

of collapsing the 2 × L; (L > 2) tables into 2 × 2 tables are often arbitrary

and leads to loss of valuable information. The generalised odds ratio (GOR)

(Agresti, 1980) is an appropriate measure to estimate the effect size of ordinal

categorical outcomes in meta-analysis.

There are some advantages of the GOR over its competitors. Using the

GOR in meta-analysis one can overcome the assumption needed in propor-

tional odds model (Whitehead et al., 2001). The GOR can also be used in

multi-arm trials. For binary outcomes with two comparison groups the GOR

reduces to the ordinary OR. So the GOR can be a universal effect measure

in meta-analysis with ordinal data as we can use it for binary, ordinal and

continuous outcomes.

One of the main issues in meta-analysis is the heterogeneity of the effect

size. The use of random effects model is not always a cure (Shuster, 2010;

Doi SA et al., 2011) for the problem. Thompson and Pocock (1987) ar-
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gued that meta-analysis provides simple solution of combining several studies

with respect to qualitative conclusions but fails to provide conclusive quan-

titative results for broad treatment policies when there exists heterogeneity

among the studies. “Doing meta-analysis is easy”, says Ingram Olkin but

“Doing one well is hard” as heterogeneity among studies may lead to incor-

rect meta-analysis (Mann, 1990). In this chapter, a quasi-empirical Bayes

method (QEBM) (Saleh, 2006, p.157) is developed using the predicted GOR

to handle the heterogeneity issue in the light of Stein’s shrinkage estima-

tor (Stein, 1956). This QEBM involves a heterogeneity test based on the

chi-square statistic (Cochran, 1954) and shrink the estimator towards the

common pooled value. This process identifies the extreme studies and finds

a statistical agreement to improve the quality of the estimator and trustwor-

thiness of meta-analysis.

This chapter also implements the above method in two real life and one

simulated ordinal data sets. The main reason to consider three examples

is to illustrate the effectiveness of the method for data sets with varying

degree of heterogeneity. If the effect sizes of individual studies are not sig-

nificantly heterogeneous the meta-analysis produces acceptable results but

studies with high degree of heterogeneity require special attention and the

method proposed adequately deals with the issue.

3.2 Quasi-Empirical Bayes Method for GOR

The use of the empirical Bayes (EB) approaches has received enormous at-

tention in the literature (Van Houwelingen and Stijnen, 1993; Efron, 1996;

Raudenbush, 1985; Zhou, 1996; Morris, 1992; Stijnen and Van Houwelingen,

1990 and Saleh, 2006). But EB is rather difficult to define precisely. Some
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statisticians refer it to a class of models; others, a style of analysis; still oth-

ers, a philosophy for screening statistical procedures. However, all the EB

methods almost exclusively assumed that the ‘prior distribution’ has been at

the second level of the Bayesian analysis and that the hyper-parameters have

then been estimated from data. The quasi-empirical Bayes approach results

in a similar or an approximation of the EB estimation approach, hence, the

name “quasi-empirical Bayes estimation (QEBE)”. Following Saleh et al.

(2006) a QEBM has been developed using GOR for heterogeneous ordinal

categorical data.

Here the initial objective is to assess the exposure disease association

by the common pooled GOR, say Γ0. However, it is uncertain whether the

GORs, Γi’s of the k independent studies are homogeneous or not. That is,

first we estimate the vector Γ= (Γ1,Γ2, . . . ,Γk)
′ when the hypothesis,

H0 : Γ1 = Γ2 = · · ·Γk = Γ0 (3.1)

is unknown. For J = 2, the ith study is modeled as two multinomial distri-

butions with parameters (ni1., πi1.) and (ni2., πi2.) for a 2 × L contingency

table in RCTs. Then the GOR of the ith study is defined as

Γi = (Πdi)
−1Πci (3.2)

and estimated as Γ = (Γ1, · · · ,Γk)
′ by the vector Γ̃n = (Γ̃1, · · · , Γ̃k)

′, where

Γ̂i = (Π̂di)
−1Π̂ci, (3.3)

in which Π̂ci =
∑L−1

r=1

∑L
s=r+1 π̂ir|1π̂is|2 and Π̂di =

∑L
r=2

∑r−1
s=1 π̂ir|1π̂is|2.

If the null hypothesis is true, there are three choices of efficient estimators

of the pooled GOR, Γ0. These are

(i) weighted arithmetic mean,

Γ̂
(a)
0n = ω̂−1

(
k∑

i=1

ω̂iΓ̃i

)
, with ω̂ =

k∑
i=1

ω̂i, (3.4)
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(ii) weighted geometric mean,

Γ̂
(g)
0n = exp

[
ω̂−1

(
k∑

i=1

ω̂i ln Γ̃i

)]
, (3.5)

(iii) weighted harmonic mean,

Γ̂
(h)
0n = ω̂

(
k∑

i=1

ω̂iΓ̃
−1
i

)−1

, (3.6)

where

ω̂−1
i =

L−1∑
l=1

2∑
j=1

1

nij.π̂ijl(1− π̂ijl)
. (3.7)

We employ the weighted geometric mean, formula (3.5) to obtain Γ̂0n. For

large samples the distributions of lnΓ̂i and lnΓ̂0n are approximately normal,

so the formula exp[lnΓ̂i ± zα/2ω
−1/2
i ] is appropriate to obtain a 100(1− α)%

CI for the GOR of the ith study and exp[lnΓ̂0n ± zα/2ω
−1/2] for the meta-

analysis, where zα/2 is the (1−α/2) level critical value of the standard normal

distribution, N(0, 1).

When the k study effects are homogeneous, i.e., Γ1 = Γ2 = · · · = Γk = Γ0,

a vertical line representing the pooled GOR (Γ̂0n) crosses through the CI

for every trial demonstrating the power of meta-analysis to find statistical

agreement. When there is suspicion about heterogeneity, then whether meta-

analysis is trusted or not depends on the outcome of the test of homogeneity

of the GORs, H0 : Γ1 = Γ2 = · · · = Γk = Γ0 against the alternative, HA:

at least one of the pairs (Γi,Γi′) differ (i, i′ = 1, . . . , k). We can test this

hypothesis using the test statistic, Ln, defined by

Ln = (ψ̃n − ψ̂0n1k)
′Ŵ n(ψ̃n − ψ̂0n1k), (3.8)

where ψ̂0n = ln(Γ̂0n), ψ̃i = ln(Γ̂i), ψ̃n = (ψ̃1, . . . , ψ̃k)
′, 1k = (1, . . . , 1)′-

a k-tuple of 1’s and Ŵ n = diag(ω̂1, . . . , ω̂k) is a consistent estimator of
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W = diag(ω1, . . . , ωk). Note that n =
∑k

i=1(ni1. + ni2.). As n → ∞, Ln

follows approximately a central chi-squared distribution underH0 with (k−1)

degrees of freedom (df). This test statistic measures the departure of the

k GORs from their common GOR. Thus, for the test decision at the α-

level, compare the observed value of Ln to the critical value of the chi-square

distribution with (k−1) df. Then H0 is rejected at the α-level if the observed

Ln > χ2
k−1(α). Now an estimator of Γ = (Γ1, . . . ,Γk)

′ say

Γ̂PT
n = exp(ψ̂PT

n ) is defined as

ψ̂
PT

n =

 ψ̂0n1k ifLn < χ2
k−1(α)

ψ̃n ifLn ≥ χ2
k−1(α),

(3.9)

which is a choice between the two estimators based on the test outcome. This

estimator is known as the preliminary test estimator (PTE) of Γ (cf. Saleh,

2006, p.55). The PTE is a precursor to the Stein’s shrinkage estimator and

was proposed and investigated by many authors (Bancroft, 1944; Han and

Bancroft, 1968; Khan and Saleh, 1997; Khan and Hoque, 2002; Khan, 2003;

and Khan, 2008).

The PTE depends on the choice of α. For a better estimator of Γ, the

estimator is made dependent on the test statistic, Ln instead of the level

of significance to produce a Stein-type shrinkage estimator (SE) defined as

Γ̂S
n = exp(ψ̂S

n), where

ψ̂
S

n = ψ̂0n1k + (1− (k − 3)L−1
n )(ψ̃n − ψ̂0n1k), (k ≥ 4) . (3.10)

Details on the derivation of the SE can be found in Stein (1956). If Ln → ∞,

then ψ̂
S

n → ψ̃n and if (k − 3)L−1
n is near 1, then we choose ψ̂0n1k, which is

similar to PTE of ψ. The estimator Γ̂
S

n is similar to the empirical Bayes type

estimator (Saleh, 2006, p.154) and known as quasi-empirical Bayes estimator

of Γ. Another modification to Γ̂
S

n is given by Γ̂S+
n = exp(ψ̂S+

n )
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ψ̂
S+

n = ψ̂0n1k +
(
1− (k − 3)L−1

n

)
I(·)(Ln > k − 3)(ψ̃n − ψ̂01k), (k ≥ 4)

(3.11)

where I(·) is an indicator function. This estimator is similar to the positive-

rule Stein-type estimator (PRSE). Here ψ̂
S+

n is obtained by adjusting the

common estimate ψ̂0n to an amount (1−(k−3)L−1
n )I(Ln > k−3)(ψ̃n−ψ̂01k).

Then, we obtain k predicted values of the GORs which clusters Γ0n more

closely than the original GORs. Moreover, the 100(1 − α)% CI set has at

least 100(1 − α)% as the coverage probability, which may reach close to 1

near the null hypothesis of the equality of the effect measure (Hwang, 1982).

If the number of studies are greater than 4, one is advised to use Γ̂
S+

n for

statistical inference; otherwise, PTE may be used (Casella, 1985) and details

about the importance of shrinkage estimators in statistical literature can be

found in Efron (1995), Judge and Bock, 1978 and Saleh, 2006, 125− 211.

3.3 Improved Meta-Analysis

Pooling the study effect for homogeneous studies in meta-analysis has an

statistical agreement of using a common study effect of the studies, while

using a common pooled study effect for the heterogeneous studies lacks such

an statistical agreement. To get rid of the problems of interpretation in the

case of single weighted averages of heterogeneous GORs, we apply the fol-

lowing improved meta-analysis methodology (Saleh et al., 2006): Firstly, a

common value of the GOR is computed as if the hypothesis of homogeneous

effect sizes was not rejected. Secondly, a test of significance for homogene-

ity is conducted using the divergent statistic, Ln from equation (3.8) which

measures the departure of each of the log GORs from the sample pooled
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log GOR. Finally, to produce the predicted GOR (PGOR), the treatment

effect is estimated combining the test of homogeneity (heterogeneity) with

the usual estimated GORs to achieve the shrinking towards to pooled GOR.

The process subsumes the effect of heterogeneity, and is computed by the

following formula:

Ln(Γ̂iP ) = pooled ln(Γ̂) + c(observed ln(Γ̂i)− pooled ln(Γ̂)), (3.12)

where Γ̂iP = PGOR, Γ̂i = estimated GOR, c = 1 − [degree of freedom]−2

χ2−value .

The computational formula for 100(1−α)% CIs for individual effect size and

meta-analysis are given by

exp[ln(Γ̂iP )± zα/2ω
− 1

2
i ], (3.13)

and

exp[ln(Γ̂P )± zα/2ω
− 1

2 ], (3.14)

where zα/2 is the 100× α/2 percentage point of a standard normal distribu-

tion.

3.4 Applications

In this section, three different meta-analyses on several studies with different

degree of heterogeneity are investigated. The first example, tacrine trials of

Alzheimer’s disease with insignificant heterogeneity and the second example,

misoprostol trials with moderately insignificant heterogeneity are presented

in subsections 3.4.1 and 3.4.2 respectively. The third example, simulated

trials with significant heterogeneity is provided in subsection 3.4.3. The three

examples clearly illustrate detailed implementation process and usefulness of

the proposed method.
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3.4.1 Tacrine Trials: Insignificant Heterogeneity

The first example uses data from Whitehead et al. (2001) consisting of 5

RCTs of the anti-cholinesterase drug tacrine in patients with Alzheimer’s

disease. The categories of this trials are made by the Clinical Global Im-

pression of Change scale (CGIC). The CGIC is based on a seven point scale

where 1, 2 and 3 represent ‘very much improved’, ‘much improved’ and ‘mini-

mally improved’, 4 indicates ‘no change’, and 5, 6 and 7 represent ‘minimally

worse’, ‘much worse’ and ‘very much worse’. To make the example simple

and illustrate the computations, we combine categories 1, 2, and 3 repre-

senting ‘improvement’ and categories 5, 6 and 7 representing ‘worse’ to make

three ordered categories (improvement, no change and worse).

The display in Figure 3.1 for the GOR and the associated 95% CIs show

that the vertical line at the pooled GOR (1.58) goes through all the CIs of

the effects of these trials. Hence the display suggests that these studies are

homogeneous. This conclusion is also supported by the divergent statistic

in equation (3.8), which is exactly the same as the Q-statistic. For the

given data Ln = 1.83 with 4 degrees of freedom. So the null hypothesis

of equality of the GORs is not rejected at the 5% level of significance (p-

value = 0.7667). The heterogeneity statistic (Higgins and Thompson, 2002)

I2 = 0%[0%, 98.03%] also suggests that these trials are homogeneous.

Table 3.1 shows the GORs, their 95% CIs (CI1), and the predicted GORs

(PGORs) and their 95% CIs (CI2). Meta-analysis of these trials is found to

be 1.58 indicating that there are 1.58 times as many tacrine-placebo pairs in

the sample for which tacrine has improved the alzheimer’s disease as there

are pairs for which placebo has improved the alzheimer’s disease. The forest

plot, divergent statistic, and I2 statistic give the same impression that the

effects of the tacrine trials to be homogeneous and the values of the predicted
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Figure 3.1: 95% CIs for GOR (solid horizontal lines) and predicted GOR

(dashed horizontal lines) for tacrine trials

GOR are still concentrating around the common weighted average. Clearly

both the GOR and PGOR based CIs are crossing the vertical line at the

pooled effect. This is expected for any meta-analysis with homogeneous

study effects. Statistical programming in R has been used for computation

and plots through out this thesis.
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Table 3.1: Five randomised trials of anti-cholinesterase drug tacrine
Study Treat. W NC I Total Weight GOR CI1 PGOR CI2

1 Tacrine 24 45 27 96 15.38 1.27 (0.56, 2.91) 1.62 ( 0.71, 3.69)

Placebo 32 54 24 110

2 Tacrine 60 180 133 373 15.64 1.18 (0.52, 2.69) 1.63 (0.72, 3.69)

Placebo 14 35 23 72

3 Tacrine 11 24 33 68 7.57 1.31 (0.40, 4.26) 1.61 (0.50, 5.23)

Placebo 13 17 23 53

4 Tacrine 79 175 127 381 36.26 2.08 (1.21, 3.56) 1.54 (0.90, 2.65)

Placebo 65 73 32 170

5 Tacrine 3 19 17 39 25.14 1.55 (0.81, 2.95) 1.59 (0.83, 3.03)

Placebo 8 18 15 41

Meta 1.58 ( 1.15, 2.19)

Here W = Worse, NC = No change and I = Improved are the three rearranged ordered categories from

the Clinical Global Impression of Change scale (CGIC), Total = W+NC+I, CI1 = confidence intervals

of GORs and CI2 = confidence intervals of PGORs.

3.4.2 Misoprostol Trials: Moderately Insignificant Het-

erogeneity

This subsection uses 10 randomised trials of misoprostol from Whitehead and

Jones (1994) investigating the prevention of injury to the gastric mucosa.

The subjects had no damage at the initial endoscopy. The results of the final

endoscopy were used as the primary response variable. The extent of the

damage was recorded in the form of the ordered categorical score for these

studies. The data can be fitted into a j × l contingency table, where j = 2,

represents the number of comparison groups and l = 2, 3, 4 and 5 represent

the number of outcome categories. Studies 1 − 6 and 12 used five ordered

categories and studies 7− 8 and 11 used 3 ordered categories. Studies 9− 10

have only two categories. The second category in studies 9 − 10 are the

same as the 5th category of studies 1 − 6 and 12, third category of studies

7−8 and 11 and study 13 had no such outcome category representing ‘ulcer of

any size’. Pooling for meta-analysis of all these studies may be inappropriate.
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Therefore, we have rearranged these categories to three ordered categories

(1 = 1, 2 + 3 + 4 = 2 and 5 = 3 for studies 1 − 6 and 12) namely, ‘1 = no

erosions’, ‘2 = erosions’, and ‘3 = ulcer’ so that we can find the pooled GOR.

We exclude studies 9− 10 and 13 as they do not meet the inclusion criteria.

Table 3.2: Randomised trials of misoprostol by endoscopic classification.
Study Treat. NE E U T W GOR CI1 PGOR CI2

1 Misop. 21 8 0 29 6.94 28.53 (4.35, 187.10) 8.65 (1.32, 56.70)

Placebo 2 15 13 30

2 Misop. 17 13 0 30 1.86 68.64 (1.82, 2583.20) 12.31 (0.33, 463.20)

Placebo 0 17 13 30

3 Misop. 20 10 0 30 10.96 5.45 ( 1.22, 24.30) 4.45 (1.00, 19.90)

Placebo 8 17 5 30

4 Misop. 20 8 2 30 1.84 23.12 (0.60, 894.60) 7.95 (0.21, 307.6)

Placebo 0 12 17 29

5 Misop. 1 9 0 10 1.27 15.71 (0.19, 1277.50) 6.81 (0.08, 553.60)

Placebo 0 4 6 10

6 Misop. 93 9 1 103 19.99 3.13 (0.99, 9.10) 3.49 (1.15, 10.60)

Placebo 85 24 5 114

7 Misop. 61 12 0 73 21.39 3.12 (1.07, 9.10) 3.56 (1.22, 10.40)

Placebo 49 28 3 80

8 Misop. 45 1 0 46 3.79 3.99 (0.31, 50.70) 3.92 (0.31, 49.90)

Placebo 65 6 3 74

11 Misop. 30 1 1 32 4.51 10.72 (0.81, 85.60) 5.27 (0.51, 54.30)

Placebo 20 11 7 38

12 Misop. 56 20 0 76 27.45 1.75 (0.68, 4.50) 2.82 (1.09, 7.30)

Placebo 50 32 0 83

Meta 3.88 (2.36, 6.37)

Here, NE = no erosions, E = erosions, U = ulcer, T = total, W = weight, CI1 = confidence intervals of

GORs, CI2 = confidence intervals of PGORs.

So the rearranged data represents a 2 × 3 contingency table for each of

these studies. Studies with zero cell frequencies are analysed adding 1/3 to

every cell of each of the 2× 3 table.

In Table 3.2, we present the GOR and predicted GOR values of these

trials along with their CIs. The chi-square value Q = 11.71, df = 9, and p-

value = 0.2304 suggest insignificant heterogeneity. I2 = 23.12% [0%, 62.58%]



CHAPTER 3. A QEBM FOR HETEROGENEOUS ORDINAL DATA 45

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 11

Study 12

Pooled

3.880 1 2010

Generalised Odds Ratio (log−scale)

’ ’

Figure 3.2: 95% CIs for GOR (solid horizontal lines) and predicted GOR

(dashed horizontal lines) for the randomised trials of misoprostol by endo-

scopic classification

suggesting 23.12% of the variability is due to the heterogeneity. Thus, there

exists insignificant heterogeneity. Figure 3.2 depicts the CIs of the original

GORs in solid horizontal lines and predicted GORs in dashed horizontal

lines. It is observed that the vertical line at the common pooled GOR = 3.88

is passing through all the CIs of the original GORs except the first study.

The calculated predicted GORs are more concentrated around the pooled

GOR and also the vertical line of the pooled GOR is now crossing all the CIs
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of the predicted GORs suggesting a justification of the use of PGORs. Thus,

we have shown that the use of predicted GORs are improving the estimates of

the GORs with ordinal data in meta-analysis in the presence of insignificant

heterogeneity. This is also discussed elaborately in subsection 3.4.3 in the

context of significant heterogeneity.

3.4.3 Simulated Trials: Significant Heterogeneity

In this section, we generate data for 10 studies using the multinomial sam-

pling procedure. For simulation the cell probabilities are selected in such a

way that the outcomes are heterogeneous in order to show the effectiveness

of the proposed procedure in heterogeneous data. The simulated data is

presented in Table 3.3 along with their weights, GORs, CIs of GORs (CI1),

PGORs, CIs of PGORs (CI2) and the common GOR. For the simulated data

the heterogeneity statistic Ln = 32.24 with p-value = 0.0001 and I2 = 72.09%

[47.06%, 85.28%]. The pooled GOR for these trials is 1.48.

In Figure 3.4 the graphical representation shows rays emitting from the

pooled GOR to the GORs and the predicted GORs on the vertical lines

labeled as the GORs and predicted GORs. The display suggests that the

predicted GORs are shrinking towards the pooled GOR. It is observed from

Figure 3.3 that the CIs of some studies, for example studies 1, 4, 5, 7, 9 and

10, have moved to the right while that for studies 2, 3, 6 and 8 have moved

to the left. The vertical line at the common GOR does not go through all

the CIs of these trials. The CI for the study 2 is away to the right while that

for the study 4 is away to the left from the common GOR at 1.48.

This indicates that study 2 with GOR = 6.28 and study 4 with GOR

= 0.22 may be with extreme effect sizes. We compute the Ln statistic by

excluding one extreme study at a time. After excluding study 2 we find
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Table 3.3: Ten simulated heterogeneous studies.
Study Groups C1 C2 C3 T W GOR CI1 PGOR CI2

1 Treatment 2 24 3 29 3.91 1.18 (0.12, 11.24) 1.24 (0.13,11.81)

Placebo 3 22 5 30

2 Treatment 24 5 1 30 11.51 9.38 (2.52, 34.83) 6.28 (1.69,23.34)

Placebo 7 19 4 30

3 Treatment 26 1 3 30 3.02 8.62 (0.67, 111.55) 5.88 (0.45,76.12)

Placebo 4 21 5 30

4 Treatment 2 24 4 30 6.93 0.13 (0.02, 0.70) 0.22 (0.04,1.19)

Placebo 18 9 2 29

5 Treatment 1 8 1 10 1.30 0.01 (0.00, 0.60) 0.03 (0.00,1.71)

Placebo 9 1 0 10

6 Treatment 8 84 11 103 13.74 4.39 (1.32, 14.60) 3.47 (1.04,11.53)

Placebo 18 10 86 114

7 Treatment 16 50 7 73 35.95 1.46 (0.69, 3.07) 1.46 (0.70,3.08)

Placebo 14 53 13 80

8 Treatment 37 1 8 46 3.91 3.93 (0.41, 37.34) 3.18 (0.33,30.22)

Placebo 14 55 5 74

9 Treatment 7 19 6 32 8.16 0.29 (0.06, 1.37) 0.41 (0.09,1.96)

Placebo 26 6 6 38

10 Treatment 3 64 9 76 11.57 0.78 (0.21, 2.91) 0.90 (0.24,3.34)

Placebo 11 59 13 83

Meta 1.48 (0.95, 2.31)

Here C1=category 1, C2=category 2, C3=category 3, T=total, W=weight, CI1=confidence intervals of

GOR, CI2=confidence intervals of PGOR.

Ln = 23.67 with p-value = 0.0048 and I2 = 66.20% [31.46%, 83.33%]. This

implies rejection of the null hypothesis of the equality of the GORs with a

reduction of 8.67 from the chi-square value of original 10 studies. The pooled

GOR excluding study 2 is 1.17. Dropping study 4 yields the same values for

Ln and I2. This also suggests rejection of the null hypothesis. The pooled

GOR of the remaining 9 study effects is 1.78. This directs us to exclude

study 4 from the meta-analysis as study 2 contains more information than

study 4 in terms of relative weight. Dixon’s test (Dixon, 1950) for outliers

also produces the same result. Thus, we recompute the predicted GORs

excluding study 4 and present the recalculated results in Table 3.4 along
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with the 95% CIs.

Study 1

Study 2

Study 3

Study 4

Study 5

Study 6

Study 7

Study 8

Study 9

Study 10

Pooled

1.480 1 4 6

Generalised Odds Ratio (log−scale)

Figure 3.3: The horizontal solid lines represent CIs of GOR and dashed-lines

CIs of predicted GOR

The graphical display in Figure 3.5 shows that the predicted GOR values

are now more concentrated around the pooled common GOR (= 1.78) and

the vertical line at the new common GOR at 1.78 goes through all the CIs of

the predicted GORs. This suggests a statistical agreement about the power

of the new meta-analysis which was initially rejecting the null hypothesis of

equality at the 5% level of significance. Therefore, the common GOR value

of 1.78 implies that there are 1.78 times as many treatment-placebo pairs in
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Figure 3.4: Display of original GOR and predicted GOR from ten simulated

heterogeneous trials

the sample for which the treatment improve the disease as there are pairs

for which placebo improve the disease. It is evident from this analysis that

the PGORs provides statistically valid meta-analysis for ordinal data from

heterogeneous trails. Figure 3.6 depicts the improvement in the homogeneity

of the predicted GORs after deletion of the extreme trial. In this study, we

have shown that the traditional meta-analysis has been improved using the

quasi-empirical Bayes estimation and the Dixon’s test of outliers. These

improved estimates of the GORs along with their CIs make easier to redress
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Figure 3.5: Display of GOR and predicted GOR values after deleting Study

4

the issue of heterogeneity among diverse studies for ordinal data in order to

ensure the validity and trustworthy meta-analysis.

3.5 Conclusion

Heterogeneity is one of the most problematic aspects in many meta-analyses.

We have demonstrated a method to remedy the problem of heterogeneity in

meta-analysis for ordinal categorical data. To improve the pooled estimator
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Figure 3.6: 95% CIs after deleting Study 4

Table 3.4: Predicted GOR of nine trials deleting Study 4
Study Study 1 Study 2 Study 3 Study 4 Study 5

GOR 1.18 9.38 8.62 deleted 0.012

95%CI (0.12,11.25) (2.52,34.84) (0.67,111.55) deleted (0.00,0.60)

PGOR 1.31 6.15 5.78 deleted 0.043

95%CI (0.14,12.47) (0.48,79.61) (1.06,31.33) deleted (0.00,2.13)

Study Study 6 Study 7 Study 8 Study 9 Study 10

GOR 4.39 1.46 3.93 0.29 0.78

95%CI (1.32,14.60) (0.69,3.07) (0.41,37.34) (0.06,1.37) (0.212,2.91)

PGOR 3.49 1.53 3.21 0.46 0.97

95%CI (1.05,11.61) (0.73,3.22) ( 0.34,30.54) (0.10,2.17) (0.26,3.58)
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a quasi-empirical Bayes method based on the preliminary test approach is

presented. The use of the predicted GOR improves the meta-analysis signif-

icantly in terms of shrinking the CIs of the study effects towards the pooled

effect. Three examples are discussed with different degree of heterogeneity.

The standard meta-analysis for homogeneous studies are simple and straight-

forward. We have shown that our method improves the meta-analysis in the

presence of insignificant and significant heterogeneity. With the use of the

predicted GOR the vertical line at the pooled GOR is passing through all

the CIs of the effect measures suggesting an statistical agreement of using

the new pooled effect measure. For insignificant heterogeneity we do not

need to exclude any study whereas for significant heterogeneity the method

suggests to exclude the extreme study. After excluding the extreme study,

the statistical agreement in terms of shrinking the CIs of the study effects

towards the pooled effect is achieved.

Dropping extreme studies without further investigation of the clinical

reasons is unwise and unwarranted. Normally clinicians would search for

any reasonable factors that may have caused it, and explain its reasons and

impact. However, standard meta-analysis leads to invalid and misleading

interpretation and conclusion when the studies are heterogeneous (Saleh et

al., 2006). The proposed method provides a procedure to conduct valid

meta-analysis of ordinal data in the presence of heterogeneity. The graphical

analysis (ray plot) is an integral part of the method that is very useful in un-

derstanding the mechanism that improves the meta-analysis by implementing

the idea of shrinking and using the test of homogeneity.
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4.1 Introduction

For binary outcomes relative risk (RR) and odds ratio (OR) are widely used

as effect measures to analyse data produced by RCTs. In this chapter, we

employ GOR to measure effect size of binary outcomes in meta-analysis of

RCTs. The GOR can be a very useful effect measure in meta-analysis not

only for binary outcomes but also for more than two outcome categories in

RCTs (Hossain and Khan, 2011). It is simple to compute and its interpre-

tation is very straightforward. It can be used for the continuous ordinal

outcomes in RCTs. It can also be used with multi arm trials (more than two

comparison groups).

In this chapter, we cover the fixed effects model (FEM) (Birge, 1932;

Cochran, 1937) and random effects model (REM) (DerSimonian and Laird,

1986) using ordinary OR. Three alternative methods for combining results

from binary outcomes are also presented for meta-analysis. The first alterna-

tive method is based on the sample size weight using ORG. This is a FEM

devised from Edwardes and Baltzan (2000). The other alternative methods

use weights from the estimated variance under independent binomial dis-

tribution using GOR as the effect measure. Of these, the first method is

a FEM approach using GOR and the second method is a REM approach

using GOR. The results from a meta-analysis of six RCTs (Memon et al.,

2011) evaluating the efficacy and drawbacks of limited (D1) versus extended

lymphadenectomy (D2) for proven gastric adenocarcinoma are compared.

4.2 GOR: As Binary Effect Measure

Consider a RCT setting for binary outcomes as in Table 4.1.

The generalised odds ratio (GOR) can be used for such binary outcomes.
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Table 4.1: Data of a single RCT

Groups Failure/Dead Success/Alive Size

Treatment a = X11 b = X12 n1. = a+b

Placebo c = X21 d = X22 n2. = c+d

In fact, GOR can be used as an effect measure for a number of situations

in meta-analysis, such as for binary outcomes, more than two ordinal cate-

gory outcomes and latent continuous outcomes. It has been widely used in

psychology and education disciplines for over 30 years. The GOR for the ith

study is defined as

Γi = (Πd)
−1Πc, (4.1)

where Πc =
∑L−1

r=1

∑L
s=r+1Πr|1Πs|2 and Πd =

∑L
r=2

∑r−1
s=1 Πr|1Πs|2. For binary

outcomes L = 2, so Γi is estimated by its maximum likelihood estimator, say

Γ̂i, as

Γ̂i = (Π̂d)
−1Π̂c = (Π̂2|1Π̂1|2)

−1Π̂1|1Π̂2|2 =
ad

bc
, (4.2)

where Πc denotes the probability that the response of a randomly selected

subject from group 2 is severer than the response of a randomly selected

subject from group 1, and Πd denotes the probability that the response of

a randomly selected subject from group 1 is severer than the response of a

randomly selected subject from group 2.

4.3 Review of Methods using OR and ORG

In this section we discuss the widely used general FEM (Birge, 1932), (Cochran,

1937) and standard REM (DerSimonian and Laird, 1937) for binary outcomes

using OR in meta-analysis. A great debate is going on over which model is
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theoretically and/or practically superior. Although REMs have been crit-

icised for its unrealistic distribution assumptions (Peto, 1987), it has been

argued that they are consistent with the standard specific aims of generali-

sation (Raudenbush, 1994). Greenland (1994) showed that REMs are more

sensitive to publication bias, as those offer greater relative weight to smaller

studies. Now-a-days, many meta-analyses employ both FEM and REM for

the same set of studies as neither FEM nor REM can be considered as ideal

(Thompson, 1993). Although when there is no evidence of heterogeneity, the

REM produces the same pooled estimate as of FEM. However, when there

is evidence of heterogeneity, FEMs can not take into account this extra vari-

ation, whereas REMs do. That indicates a REM may still be worth using as

it can not be assumed that true homogeneity exists (Thompson and Pocock,

1991).

However, Shuster (2010) put into serious question the validity of em-

pirically based weighting in random effects meta-analysis and proposed two

alternative methods. The first method estimates the arithmetic mean of the

population of study effect sizes according to the classical model for random

effects meta-analysis and the second method estimates a patient level ef-

fect size. In response to the criticism of Waksman, (2010), Thompson and

Higgins, (2010), Laird et al, (2010), and Rucker et al (2010), Shuster et al

(2010) wrote “we continue to recommend that past meta-analyses which have

influenced public policy or clinical paradigms be reanalyzed by unweighted

methods”.

Now to discuss the FEM and REM for OR let us consider Γ̂i is an estimate

of the true effect size θi in the ith study as Γ̂i = θi + ei, where ei is the

error with which Γ̂i estimates θi. For the FEM, var(Γ̂i) = vi and for REM

var(Γ̂i) = τ 2θ + vi, where τ 2θ is the between study variance and vi is the
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variance due to sampling error for the ith study. If τ 2θ = 0, the above REM

would reduce to the FEM.

4.3.1 Fixed Effects Model

The inverse variance-weighted method is one of the most widely used method

among the FEMs in meta-analysis. To illustrate this, consider Ti is the

observed estimate for ith study effect with variance vi and θi is the underlying

population effect size, where i = 1, · · · , k.

Assuming Ti to be normally distributed, an approximate 100(1 − α)%

confidence interval (CI) for the ith study effect, θi, is given by

Ti − zα/2
√
1/ωi ≤ θi ≤ Ti + zα/2

√
1/ωi, (4.3)

where zα/2 is the α/2 percentage point of a standard normal distribution and

ωi =
1

vi
. (4.4)

Then assuming θ1 = θ2 =, · · · , θk = θ, a pooled estimate of the treatment

effect is given by

T̄ . =

∑
i ωiΓi∑
i ωi

. (4.5)

An estimator of the variance of the pooled estimate T̄ . is given by

var(T̄ .) = 1/
k∑

i=1

ωi. (4.6)

If T̄ . is assumed to be normally distributed, an approximate 100(1−α)% CI

for the population effect, θ, is given by:

T̄ .− zα/2

√√√√1/
k∑

i=1

ωi ≤ θ ≤ T̄ .+ zα/2

√√√√1/
k∑

i=1

ωi, (4.7)

where zα/2 is the α/2 percentage point of a standard normal distribution.
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4.3.2 Random Effects Model

Consider τ̂ 2θ denote the estimate of the between study variance of the study

effect sizes τ 2θ . Define ω̄ and s2W to be the mean and variance of the weights

from the k studies:

ω̄ =
k∑

i=1

ωi/k (4.8)

and

s2W =
1

k − 1

(
k∑
i

ω2
i − kω̄2

)
. (4.9)

Further, define

U = (k − 1)

(
ω̄ − s2W

kω̄

)
(4.10)

and

Q =
k∑

i=1

ωi(Ti − T̄ .)2, (4.11)

whereQ is the heterogeneity test statistic, (also known as Cochran’s χ2 statis-

tic) for testing the H0 = θ1 = θ2 =, · · · , θk = θ. The estimated component of

variance due to inter-study variation in effect size τ̂ 2θ , is calculated as

τ̂ 2θ =

 0 if Q ≤ k − 1

(Q− (k − 1))/U if Q > k − 1.
(4.12)

Then adjusted weights ω∗
i for each of the studies can be calculated as

ω∗
i =

1

[1/ωi] + τ̂ 2θ
. (4.13)

A 100(1− α)% CI for θi is given by

TiR − zα/2/
√
ω∗
i ≤ θi ≤ TiR + zα/2/

√
ω∗
i (4.14)

under the assumption of normality of TiR, where TiR represents the observed

estimate of the ith study effect size under REM. The point estimate for the

mean treatment of all studies, θ, can be computed by

T̄ .R =
k∑

i=1

ω∗
i Ti/

k∑
i=1

ω∗
i . (4.15)
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The variance of this estimate is

var(T̄ .R) = 1/
k∑

i=1

ω∗
i , (4.16)

and if normality of T̄ .R is assumed, a 100(1− α)% CI for θ is given by

T̄ .R − zα/2/

√√√√ k∑
i=1

ω∗
i ≤ θ ≤ T̄ .R + zα/2/

√√√√ k∑
i=1

ω∗
i . (4.17)

4.3.3 Sample Size Weight Method

Here we adopt the sample size weight method (Edwardes and Baltzan, 2000)

for binary data pooling in meta-analysis. This method does pooling Good-

man and Kruskal’s γ = (ad − bc)/(ad + bc) instead of pooling ORG =

(1 + γ)/(1− γ) using the sample size weights TN =n1n2/(n1 + n2) as

γ̄ =
∑
i

TNiγi/
∑
i

TNi (4.18)

taking γi, TNi as γ, TN for the ith study. Data can be combined for meta-

analysis with ORG=(1 + γ̄)/(1− γ̄).

An asymptotic standard error of log(ORG) is estimated by

SE(logORG) = 2× SE(γ)/(1− γ)2 (4.19)

and a 95% CI for ORG is

{ORG exp[−3.92×SE(γ)/(1−γ2)],ORG exp[3.92×SE(γ)/(1−γ2)]}, (4.20)

where exp(·) is the exponential function. This model is a FEM approach.

Although the formula for the variance estimate of γ̄ is available, there is no

well defined variance estimate for the pooled ORG, and hence the CI for

pooled ORG is unavailable under this method.
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4.4 Proposed Method

The proposed method is to use GOR as an effect measure for binary out-

comes under both FEM and REM. For illustration consider Γ̂i representing

logarithm of GOR, the observed effect size with variance vi, and θi is the

underlying population effect size. Then assuming θ1 = θ2 = · · · = θk = θ, a

pooled estimate of the treatment effect can be obtained by

Γ̂0 =

∑
i ωiΓ̂i∑
i ωi

. (4.21)

For an arbitrary number of ordered outcome categories (L) in RCTs in which

each row is modeled as an independent multinomial distribution, the esti-

mated variance, vi = ω̂−1
i of the ith study effect is given by

ω̂−1
i =

L−1∑
l=1

2∑
j=1

1

nij.π̂ijl(1− π̂ijl)
, (4.22)

where nij. is the total count of jth group for the ith study, π̂ijl = Xijl/nij.

is the maximum likelihood estimator (MLE) of πijl, Xijl is the count of the

lth category in the jth group for the ith study. For binary outcomes the

estimated variance expression reduces to

ω̂−1
i =

2∑
j=1

1

nij.π̂ij1(1− π̂ij1)
. (4.23)

Assuming Γ̂i’s are normally distributed, an approximate 100(1− α)% CI for

the GORs is given by the formula

exp[Γ̂i ± zα/2ω
−1/2
i ]. (4.24)

An estimator of the variance of the pooled estimate Γ̂0 is given by

var(Γ̂0) = 1/
k∑

i=1

ωi. (4.25)
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If Γ̂0 is assumed to be normally distributed, an approximate 100(1−α)% CI

for the population effect, θ, is given by

exp[Γ̂0 ± zα/2ω
−1/2], (4.26)

where zα/2 is the α/2 percentage point of a standard normal distribution.

Furthermore, an asymptotic variance of Γ̂i (Agresti, 1980; Lui, 2004) for

binary outcomes can also be found as

var(Γ̂i) =
π2
i22πi11 + (Γiπi21)

2π12
ni1.Π2

d

+
π2
i11πi22 + (Γiπi12)

2π21
ni2.Π2

d

. (4.27)

Then using the logarithmic transformation a 100(1−α)% percent asymptotic

confidence interval for Γi can be obtained as[
Γ̂i exp(−zα/2

√
var(Γ̂i)/Γ̂i), Γ̂i exp(zα/2

√
var(Γ̂i)/Γ̂i)

]
. (4.28)

The above procedure is a FEM approach. For REM approach, consider τ̂ 2θ

to be the estimate of the between study variance. Define ω̄ and s2W to be the

mean and variance of the weights from the k studies as

ω̄ =
k∑

i=1

ωi/k and s2W =
1

k − 1

(
k∑
i

ω2
i − kω̄2

)
. (4.29)

Further define

U = (k − 1)

(
ω̄ − s2W

kω̄

)
and Q =

k∑
i=1

ωi(Γ̂i − Γ̄.)2, (4.30)

where Q is the heterogeneity statistic. The estimated component of variance

due to inter-study variation in effect size, τ̂ 2θ , is calculated as

τ̂ 2θ =

 0 if Q ≤ k − 1

(Q− (k − 1))/U if Q > k − 1.
(4.31)

Then adjusted weights ω∗
i for each of the studies can be calculated as

ω∗
i =

1

[1/ωi] + τ̂ 2θ
. (4.32)
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A 100(1− α)% CI for θi is given by

exp[Γ̂iR ± zα/2/
√
ω∗
i ] (4.33)

under the assumption of normality of Γ̂iR.

The point estimate for the mean treatment effect of all studies, θ, can be

computed by

Γ̂0R =
k∑

i=1

ω∗
i Γ̂i/

k∑
i=1

ω∗
i with var(Γ̂0R) = 1/

k∑
i=1

ω∗
i . (4.34)

If normality of Γ̂0R is assumed, a 100(1− α)% CI for θ is given by

exp[Γ̂0R ± zα/2/

√√√√ k∑
i=1

ω∗
i ]. (4.35)

4.5 Results

This example uses data from meta-analysis of RCTs evaluating the efficacy

and drawbacks of limited (D1) versus extended lymphadenectomy (D2) for

proven gastric adenocarcinoma (Memon et al, 2011). Six trials totaling 1876

patients (D1 = 946, D2 = 930) were analyzed. The meta-analysis was pre-

pared in accordance with the Preferred Reporting Items for Systematic re-

views and Meta-analyses statement. The six outcome variables analysed

included length of hospital stay; overall complication rate; anastomotic leak

rate; re-operation rate; 30-day mortality rate and 5-year survival rate. The

outcome postoperative complication rate is chosen out of the six outcomes

studied because of its significant heterogeneity.

We apply the above five models for estimation and illustrate using these

six studies. The first two models are a FEM and a REM using OR, the third

model is a FEM using ORG, the proposed last two models are a FEM and

a REM using GOR.
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Table 4.2: OR for total postoperative complications

Study Name e.t n.t e.c n.c OR CI W(f) W(r)

1 Dent 3 22 8 21 0.26 0.06, 1.15 1.98 7.23

2 Robert. 0 25 24 29 0.004 0.00, 0.08 0.52 2.20

3 Bonenk. 128 513 183 483 0.54 0.41, 0.71 60.67 32.62

4 Cusch. 55 200 92 200 0.44 0.29, 0.67 25.78 28.10

5 Degiuli 8 76 14 86 0.60 0.24, 1.53 5.18 14.36

6 Wu 8 110 19 111 0.38 0.16, 0.91 5.88 15.49

Here, e.t = events in the treatment group, n.t = total number of patients

in the treatment group, e.c = events in the control group, and n.c = total

number of patients in the control group. W(f) = weights from FEM and

W(r) = weights from REM

FEM: OR = 0.4894, 95% CI = (0.396, 0.60), z = −6.62, p-value <0.0001.

REM: OR = 0.4210, CI = (0.2683, 0.6606), z = −3.76, p-value = 0.0002.

The homogeneity statistic, Q (Cochran, 1954) using OR for these data

is Q = 11.85 with 5 df, giving p-value = 0.0369. This indicates there exists

significant heterogeneity in the data set. Using REM of DerSimonian and

Laird (1986), we obtain τ̂ 2 = 0.1428. Heterogeneity statistic I2 = 57.8%

[0%, 82.9%] indicates about 58% variation is due to the between study vari-

ation.

Table 4.2 shows the data for the six studies, estimated study specific OR,

95% CI, weights for fixed and random effects models. Using fixed effects

model, there are 51% reduction of relative odds of developing postopera-

tive complications (OR = 0.49, CI = (0.40, 0.60), p-value < 0.0001). Under

random effects model, there are 58% reduction in relative odds of devel-

oping postoperative complications (OR = 0.42, CI = (0.27, 0.66), p-value

= 0.0002).
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Table 4.3: ORG for total postoperative complication

Study Name ORG Wf(S) CI Q/I2

1 Dent 0.256 2.21 0.06 1.15 Q = 302.08, df = 5,

2 Robertson 0.004 3.59 0.00 22.91 p < 0.0001

3 Bonenkamp 0.545 57.64 0.415 0.715

4 Cuschieri 0.445 25.05 0.293 0.675 I2= 98.34%

5 Degiuli 0.605 5.12 0.238 1.533 [97.60%, 98.86%]

6 Wu 0.379 6.39 0.158 0.909

Meta-analysis 0.475 -

Table 4.3 contains study names, estimated ORG, sample size weight, CI

of individual ORG and values of heterogeneity statistics Q and I2. The het-

erogeneity statistic, Q = 302.08, df = 5, p-value < 0.0001 using sample size

weights. The I2 statistic = 98.34% [97.60%, 98.86%] (Higgins and Thomp-

son, 2002). Both the values of the heterogeneity statistics for sample size

weight method are significantly higher than other methods. Under sample

size weight method the pooled estimate ORG = 0.475. As there is no well

defined variance estimate for the pooled ORG (Edwardes and Baltzan, 2000),

we can not find the CI for the pooled ORG.

The proposed method conducts meta-analysis both under FEM and REM

using GOR. The heterogeneity statistic Q = 11.85, df = 5, p-value = 0.0369.

This suggests presence of significant heterogeneity among these studies. The

statistic I2 = 57.80% [0%, 82.93%]. This indicates about 58% of the total

variation is accounted for heterogeneity. Meta-analysis under FEM using

GOR = 0.49, CI = (0.40, 0.60), which means 51% reduction in relative odds

of developing postoperative complications. Under REM the meta-analysis

estimate is GOR = 0.42, CI = (0.27, 0.66). This implies there are 58%
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Table 4.4: GOR for total postoperative complications

Study Name GOR Wf(M) Wr(M) CI

1 Dent et al 0.256 1.98 7.23 (0.06, 1.15)

2 Robertson et al 0.004 0.51 2.18 (0.00, 0.08)

3 Bonenkamp et al 0.545 60.67 32.62 (0.415, 0.715)

4 Cuschieri et al 0.445 25.78 28.10 (0.293, 0.675)

5 Degiuli et al 0.605 5.18 14.36 (0.238, 1.533)

6 Chew-Wun et al 0.379 5.87 15.49 (0.158, 0.909)

Meta-analysis 0.49 0.42

95% CI (0.40, 0.60) (0.27, 0.66)

Heterogeneity test: Q = 11.85, df = 5, p-value = 0.0369,

I2 = 57.80% [0%, 82.93%]

reduction of relative odds of developing postoperative complications.

It is interesting that the meta-analysis estimates under both FEM and

REM using GOR are exactly the same using ordinary OR for both FEM and

REMs. This tells us that use of GOR for binary outcomes in meta-analysis

is as efficient as OR. The sample size weight method produces a lower pooled

estimate than the rests under FEM. This method produces extraordinarily

higher Q value and too sensitive to zero cell counts (Edwardes and Baltzan,

2000).

Standard meta-analysis works fine with homogeneous studies but how

trustworthy is meta-analysis that use a single common effect measure for

all the studies when there exists significant heterogeneity? Because of the

issues (Shuster, 2010; Doi SA et al., 2011) of the REM, when used in a

poorly designed studies, it still results in biased estimates even though there

is statistical adjustment for effect size heterogeneity (Senn, 2007). Now how
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representative is the common meta-analysis value 0.49 under FEM or 0.42

under REM for study Robertson et al?

4.6 Improved Meta-Analysis

To overcome the problem we can apply the improved methodology for meta-

analysis. The first step in the traditional meta-analysis produce the com-

mon effect size = 0.49. In the second step we find the divergent statistic

Ln = 11.85, df = 5, p-value = 0.0369. It shows significant evidence that the

treatment effects are different in the six trials. Thus, the interpretation of

the common weighted average of these trials raise question; to which popu-

lation of patients does the overall GOR apply? Even in meta-analysis with

evidence of homogeneity, the same difficulty arises because of the existence

of buried heterogeneity in clinical trials.

Finally, we estimate the predicted GORs (PGORs), the treatment effects

combining the test of heterogeneity with the usual estimated GORs. This

process subsumes the effect of heterogeneity using the following formula.

Ln(Γ̂iP ) = pooled ln(Γ) + c(observed ln(Γ̂i)− pooled ln(Γ)), (4.36)

where Γ̂iP = PGORs, Γ̂i = estimated GORs, c = 1− [degree of freedom]−2

χ2−value .

The computational formula for the 100(1− α)% CIs is given by

ΓL = exp(ln(Γ̂iP )− zα/2ω
− 1

2
i ) ≤ θ ≤ exp(ln(Γ̂iP ) + zα/2ω

− 1
2

i ) = ΓU . (4.37)

For these six studies c = 0.7468. The six PGOR values and their 95% CI

are presented in Table 4.5. The first two rows of the table show the original

GOR and their 95% CIs. The graphical display in Figure 4.1 shows the rays

emitting from the estimated common GOR toward the sample GORs and

the PGORs on the vertical line labeled as the predicted GOR. It is evident
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0.49

0.26 Dent

0.004 Robertson

0.54 Bonenkamp

0.44 Cuschieri

0.60 Degiuli

0.38 Chew− Wun

0.30 Dent

0.01 Robertson

0.53 Bonenkamp

0.46 Cuschieri

0.57 Degiuli

0.40 Chew− Wun

GOR PGOR
0

0.65

Figure 4.1: Ray plot for GOR of the six studies of gastric carcinoma

Table 4.5: Predicted GOR of six studies of gastric carcinoma

Study Dent Robert. Bonenk. Cusch. Degiuli Wu

GOR 0.26 0.00 0.54 0.44 0.60 0.38

95%CI 0.06,1.15 0.00,0.08 0.41,0.71 0.29,0.67 0.24,1.53 0.16,0.91

PGOR 0.30 0.01 0.53 0.46 0.57 0.40

95%CI 0.07, 1.36 0.00,0.28 0.40,0.69 0.30,0.69 0.23,1.45 0.17,0.97

from the display that the PGORs are more concentrated around the common

GOR at 0.49. Figure 4.2 shows the CIs for GOR (solid horizontal lines) and

CIs for PGOR (dashed horizontal lines) of the six studies. The vertical line

at common pooled value (GOR = 0.49) is passing through the CIs of all

the studies except the Robertson et al. The estimated PGOR values are
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more concentrated around the common GOR = 0.49 which corresponds to

an estimated 51% reduction of the odds of overall complications attributed

to D1. From Figure 4.2 we see that the study Robertson is away from

Dent

Robertson

Bonenkamp

Cuschieri

Degiuili

Chew−Wun

MA

0.490 1

GOR(log−scale)

Figure 4.2: 95% CI for GOR of the six studies of gastric carcinoma

the common GOR, therefore may be considered as an outlier although it

is difficult to identify the clinical reason initially. Now we compute the Ln

with the five studies excluding Robertson. In this case Ln = 1.98, df = 4 with

p-value = 0.7389. When we apply the Dixon’s test (Dixon, 1950) for outlier,

we also obtain the same result. So the null hypothesis of equality of the GORs

is accepted. The recomputed weighted average becomes 0.50. Thus using the

formula lnPGOR=ln(0.50)+c(lnGOR-ln(0.50)), where c = −0.0088, we find
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the PGOR values. Figure 4.3 shows the ray plot and Figure 4.4 shows the

0.49

0.26 Dent

0.004 Robertson

0.54 Bonenkamp

0.44 Cuschieri

0.60 Degiuli

0.38 Chew− Wun

0.500.500.500.500.50

GOR PGOR
0

0.65

All 5 studies

converge

to 0.50

Figure 4.3: Display of GOR and PGOR values of five studies for gastric

carcinoma

CI plot of the five studies excluding Robertson. The display of the PGORs

shows that these predicted values are more concentrated toward estimated

common value 0.50. The vertical dashed line at the common value 0.50 goes

through the CIs of every study, demonstrating the power of the new meta-

analysis. It is therefore statistically valid and trustworthy to combine the

GORs for a common value 0.50 for these five studies. Figures 4.3 and Figure

4.4 show sharp improvement in the homogeneity of the PGORs after deleting

the outlier study.



CHAPTER 4. GOR FOR BINARY OUTCOMES: A COMPARISON 70

Dent

Bonenkamp

Cuschieri

Degiuili

Chew−Wun

MA

0.500 1

PGOR(log−scale)

Figure 4.4: 95% CIs for GORs and PGORs of the five studies of gastric

carcinoma

4.7 Summary

In this chapter we have compared results from five meta-analysis methods

for binary outcomes. Meta-analyses using GOR for binary outcomes are as

efficient as OR for both FEM and REMs. This study suggests that GOR can

be used as an effect measure for binary outcomes in meta-analysis.

The sample size weighted method for binary outcomes entails lower meta-

analysis estimate as compared with the other FEMs using OR and GOR.

However, unavailability of a well defined variance estimate for the pooled

estimate, inflated Q-value, sensitivity to the zero cell frequency are important
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issues of concern for this method.

Use of GOR in meta-analysis for binary outcomes along with the im-

proved methodology can facilitate achieving more valid and trustworthy

meta-analysis.



Chapter 5

GOR for Continuous Outcomes

72
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5.1 Introduction

In Chapter 4, we showed GOR as an effective binary outcome measure in

meta-analysis. In this chapter, we discuss methods in meta-analysis for con-

tinuous outcomes as well as mixture of one continuous and one categorical

outcomes.

The weighted mean difference (WMD) is used as an effect measure for con-

tinuous outcomes for a long time. Sometimes standardised weighted mean

difference (SWMD) is also used to pool continuous outcomes in a meta-

analysis combining parallel and cross-over trial designs (Curtin et al, 2002).

In this chapter, three methods for multilevel continuous outcomes are

considered for meta-analysis. The first method is applicable when both the

variables are continuous in multilevel outcomes and comparison groups. The

second method is useful only when the multilevel continuous outcomes are

observed in RCTs with two comparison groups. The third method is for

multilevel continuous outcomes when those are made ordinal from two or

more comparison groups. While the second method uses mean difference

(MD) as an effect measure, the first and third method employ GOR (Agresti,

1980) as an effect measure. Although the first method is moderately complex,

the other two methods are simple and straightforward.

Due to the unavailability of any real data for the multi-level continuous

outcome we present results for the third method (Table 5.2) from simulated

data sets.
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5.2 Review

5.2.1 Method 1: Continuous vs Continuous

Consider RCTs where both the treatment and outcome variables are contin-

uous. The treatment variable is represented along the rows and the outcome

variable in the columns. Let us consider two pairs of variables (Y1, Y
′
1) and

(Y2, Y
′
2) both distributed according to a bivariate distribution. When both

the variables are continuous, πc + πd = 1, where πc is the probability that

(Y2, Y
′
2) is concordant with (Y1, Y

′
1) and πd is the probability that (Y2, Y

′
2) is

discordant with (Y1, Y
′
1). Then the GOR (Agresti, 1980) can be written as

Γ =
(1 + τ)

(1− τ)
, (5.1)

where τ is Kendall’s tau (Kendall and Gibbons, 1990; p.3) and τ̂ is asymp-

totically normally distributed. Then

(Γ̂i − Γi)
√
n√

{lim var(Γ̂i

√
n)}

∼ N(0, 1), where 0 < Γi <∞, (5.2)

where Γ̂i represents the estimated GOR for the ith study. The variance

expression from Noether (1967, p.74) gives

var {n(n− 1)τ̂ /2} = 2N(N − 1) πc(1− πc)

+ 4N(N − 1)(N − 2)(πcc − π2
c ), (5.3)

where πcc is the probability that the first and the second member are both

concordant with the third for a random sample of three members.

Using the above expression, we get

lim
n→∞

var(Γ̂
√
n) = lim

n→∞

var(τ̂
√
n)

4(1− πc)4

= 4
(πcc − π2

c )

(1− πc)4
. (5.4)
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For bivariate normal distribution

Γi =
(π + 2sin−1ρ)

(π − 2sin−1ρ)
(5.5)

and it follows from Esscher (1924) that

var(τ) =
2

n(n− 1)

{
1−

(
2

π
sin−1ρ

)2

+ 2(n− 2)

[
1

9
−
(
2

π
sin−11

2
ρ
)2
]}

.

(5.6)

Then,

lim
n→∞

var(Γ̂i

√
n) =

[
1

9
−
(
2

π
sin−11

2
ρ
)2
]
/

(
π + 2sin−1ρ

2π

)4

. (5.7)

Suppose Y1 and Y2 are two independent continuous random variables, then

the GOR,

Γi =
P (Y2 > Y1)

{1− P (Y2 > Y1)}
(5.8)

is used to compare the two distributions. Let us consider Y1 and Y ′
1 are

independent random variables from the treatment distribution and further

Y2 and Y ′
2 from the outcome distribution. Again, let P21 = P (Y2 > Y1),

P221 = P (Y1 < Y2, Y1 < Y ′
2), P211 = P (Y1 < Y2, Y

′
1 < Y2), and suppose that

random samples of sizes n1 = w1n and n2 = w2n are selected from the two

distribution so that w1 + w2 = 1. Then using the asymptotic normality of

the Mann-Whitney statistic U = number of pairs for which Y2 > Y1, Γ̂i is

asymptotically normally distributed with

lim
n→∞

var(Γ̂i

√
n) = σ2

21/(1− P21)
4, (5.9)

where σ2
21 = limn→∞ var(P̂21

√
n) in which P̂21 = U/n1n2. From Lehmann

(1975, p. 70) we have

var(U) = n1n2P21(1−P21)+n1n2(n2−1)(P221−P 2
21)+n1n2(n1−1)(P211−P 2

21).

(5.10)
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Therefore,

σ2
21 = (P221 − P 2

21)/w1 + (P211 − P 2
21)/w2. (5.11)

The pooled estimate of GOR can be calculated as Γ̂0 =
∑

i
ωiΓ̂i∑
i
ωi

, where ωi =

1/var(Γ̂i). The CIs for individual studies under FEM can be computed using

the estimate of var(Γ̂i) as exp[lnΓ̂i ± zα/2

√
var(Γ̂i)] and for meta-analysis

using formula exp[lnΓ̂0 ± zα/2/
√∑k

i=1 var(Γ̂i)].

The pooled estimate and the CI can also be constructed under REM in a

similar fashion as in Chapter two incorporating the between study variance.

5.2.2 Method 2: Categorical vs Continuous

When data from RCTs with multiple outcome categories are continuous,

Mean difference (MD) or standardised mean difference (SMD) can be used

as an effect measure for multilevel continuous outcome categories for two

comparison groups. Using MD one can estimate the effect measure in the

original unit of measurement while SMD has the advantage of being a unit

free measurement. The treatment effect (Ti) for the ith study is calculated

by

Ti = X̄ti − X̄ci, (5.12)

where X̄ti and X̄ci are the sample mean responses in the treatment and con-

trol groups respectively. Now the standard error of this treatment difference

(Ti) can be found as

se(Ti) =
√
var(Ti) =

√
s2p (1/nt + 1/nc), (5.13)

where s2p =

√
(nt−1)s2t+(nc−1)s2c

nt+nc−2
is the estimate of the assumed common variance

(Hedges and Olkin, 1985), σ2
t = σ2

c = σ2 for the two population variances

and nt and nc are the within study sample sizes in the treatment and con-

trol groups respectively. If the population variances are assumed different
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se(Ti)=
√
var(Ti) =

√
s2t/nt + s2c/nc. An appropriate 95% CI for individual

study can be calculated then by Ti ± 1.96 ∗ se(Ti).

The weighted mean difference (WMD) in meta-analysis under FEM can

be found as

WMD = T̄ =

∑k
i=1 ωiTi∑k
i=1 ωi

, (5.14)

where ωi = 1/var(Ti) is the weight and Ti is the effect size for the ith study.

A 100(1−α)% CI for pooled estimate can be calculated as T̄±zα/2/
√∑k

i=1 ωi.

Under REM the ωi’s are calculated incorporating the between study vari-

ance τ̂ 2 as

ω∗
i =

1

[(1/ωi) + τ̂ 2]
, (5.15)

where τ̂ 2 = (Q−(k−1))/U if Q > k−1, 0 otherwise, U = (k−1)
(
ω̄ − s2W

kω̄

)
,

s2W = 1
k−1

(∑k
i ω

2
i − kω̄2

)
, ω̄ =

∑k
i=1 ωi/k, Q is the heterogeneity statistic and

k is the number of studies. Under normality assumption a 100(1− α)% CIs

for individual effect size estimate and pooled estimate can be calculated by

Ti ± 1.96 ∗ se(Ti) and T̄ ± zα/2/
√∑k

i=1 ω
∗
i respectively.

Standardised Mean Difference

The standardised mean difference (SMD) is estimated by

di =
X̄ti − X̄ci

s∗
, (5.16)

where X̄ti and X̄ci are the sample mean responses in the treatment and

control groups respectively, and s∗ is the pooled estimate of the standard

deviations as before. The estimate di has small sample bias and the bias

can be removed using a simple correction (Hedges, 1981) that produce an

unbiased estimate of the population SMD. The variance of di is difficult to
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compute exactly. However, a very good approximation of the variance of di

is given by

Vdi =
nti + nci

ntinci

+
d2i

2(nti + nci)
. (5.17)

More simpler variance approximation (Fleiss, 1993) is also available if the nti

and nci are large and the population variances are equal as

Vdi =
nti + nci

ntinci

. (5.18)

The use of SMD has been criticised by saying that studies with identical

results may vaguely appear to yield different results. The transformation

can even make a study whose original estimate was smaller in magnitude

than another study appear greater and vise versa (Greenland, 1987). There

are other continuous outcome measures rarely used in medicine, such as

correlation coefficient etc (Rosenthal, 1994).

5.3 Method 3: Categorical vs Latent Contin-

uous

When the continuous outcomes are made ordinal in RCTs or the outcomes are

available in continuous range, GOR is an effective outcome measure. These

data are in counts in multilevel categories. These categories are either in

ascending or descending order. As a result, we can set them as concordant or

discordant pairs with two or more comparison groups as needed. Even when

there are more than two treatment groups (multi-arm trials) with multilevel

outcomes, GOR is still a meaningful effect measure. The effect size can be

estimated using GOR as

Γ̂i = Π̂ci/Π̂di, (5.19)
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where Π̂ci =
∑L−1

r=1

∑L
s=r+1 π̂ir|1π̂is|2 and Π̂di =

∑L
r=2

∑r−1
s=1 π̂ir|1π̂is|2 for the ith

study.

For i = 1, · · · , k independent studies if lnΓ̂i representing logarithm of

GOR be the observed effect size with variance vi and Γi the underlying

population effect size. Then assuming Γ1 = Γ2 = · · · = Γk = Γ0, a pooled

estimate of the treatment effect is given by

Γ̂0 =

∑
i ωilnΓ̂i∑

i ωi

. (5.20)

Then the estimated variance of lnΓ̂i with J different treatment and L-level

outcome categories can be found as

ω̂−1
i =

L−1∑
l=1

J∑
j=1

1

nij.π̂ijl(1− π̂ijl)
, (5.21)

where nij. is the total count of jth group for the ith study, π̂ijl = Xijl/nij.

is the maximum likelihood estimator (MLE) of πijl, Xijl is the count of the

lth category in the jth group for the ith study. Here each row of the J × L

table is modeled as an independent multinomial distribution.

For RCTs with two comparison groups the estimated variance, ω̂−1
i of the

ith study, becomes

ω̂−1
i =

L−1∑
l=1

2∑
j=1

1

nij.π̂ijl(1− π̂ijl)
. (5.22)

An approximate 100(1− α)% CI for the GORs is given by the following

formula under normality assumption

exp[lnΓ̂i ± zα/2ω
−1/2
i ], (5.23)

where zα/2 is the 100(1− α)% percentage point of a standard normal distri-

bution.

An estimator of the variance of lnΓ̂0 is given by
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var(lnΓ̂0) = 1/
k∑

i=1

ωi. (5.24)

Under normality assumption, an approximate 100(1− α)% CI for the popu-

lation effect, Γ0, is given by

exp

lnΓ̂0 ± zα/2

√√√√1/
k∑

i=1

ωi

 (5.25)

for the meta analysis, where zα/2 is the 100(1 − α)% percentage point of a

standard normal distribution.

5.4 Example

Here we consider the data (Table 5.1) for two variables income and job satis-

faction (JS), measured for the black males in U.S.A. The income variable has

four category levels in range and job satisfaction has four categories as well,

such as very dissatisfied (VD), little dissatisfied (LD), moderately satisfied

(MS), and very satisfied (VS).

Table 5.1: Contingency table for Job Satisfaction by Income

Job satisfaction

Income Very Little Moderately Very Total

(dollars) Dissatisfied Dissatisfied satisfied satisfied

<15,000 1 3 10 6 20

15,000-25,000 2 3 10 7 22

25,000-40,000 1 6 14 12 33

> 40,000 0 1 9 11 21

Source: 1996 General Social Survey, National Opinion Research Center,

USA.



CHAPTER 5. GOR FOR CONTINUOUS OUTCOMES 81

As the level of Income increases, responses on job satisfaction tend to

increase towards higher levels. Here, the GOR can be used as an effect

measure considering these two variables as concordant and discordant pairs.

Following this example, we generate data for five studies using simulation

techniques under independent multinomial distribution for meta-analysis.

The data is presented in Table 5.2. This data has four groups in the row

variable and four categories in the column variable for each study. The last

two columns of the table contain the estimated GORs and weights for the

five studies. Meta-analysis using these GORs is found to be 1.30 with CI

(0.16, 10.91).

Figure 1 shows the forest plot for the five simulated studies. The solid

horizontal lines represent the 95% CI for the five studies and meta-analysis.

The dashed vertical line represents the pooled estimate from these five stud-

ies. The heterogeneity statistic Q = 0.004, df = 4, p-value = 0.99 suggests

that these studies are homogeneous. The I2 statistic = 0%[0%, 0%] also

indicates the homogeneity of these simulated studies.

5.5 Summary

The main contribution of this chapter is that we presented three different

meta-analysis methods for continuous outcomes. The first method is appli-

cable when both the variables in a J × L contingency table are continuous.

That is, the outcome categories and the treatment categories are both contin-

uous. The second method is suitable when the multilevel outcome categories

are continuous and there are two comparison groups. The third method is

applicable when there are multiple outcome categories observed for a variable

that is inherently continuous with two or more comparison groups.
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Study 1
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Study 4

Study 5

MA

1.300 1 4

Generalised Odds Ratio (log−scale)

’

Figure 5.1: Forest plot from simulated data using GOR

The first and the third method used GOR as an effect measure while

the second method employed MD as an effect measure. Although the first

situation is not very common in meta-analysis of RCTs, GOR is being used

for long time in such situation in psychology, education and ophthalmology.

However, the mathematical formulation is moderately complex. The other

two methods are simple and straightforward. Using MD and GOR, we can

estimate the effect sizes in two different scenarios. We trust these methods

will facilitate conducting more meta-analyses with continuous outcomes.
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Table 5.2: Five simulated studies

JS

Study Income VD LD MS VS Total GOR Weight

(dollars)

Study 1 <15,000 1 6 5 8 20 1.34 0.17

15,000-25,000 2 4 12 4 22

25,000-40,000 1 8 8 16 33

> 40,000 1 2 7 11 21

Study 2 <15,000 2 6 4 8 20 1.36 0.19

15,000-25,000 2 5 10 5 22

25,000-40,000 1 9 8 15 33

> 40,000 1 3 6 11 21

Study 3 <15,000 1 7 4 8 20 1.24 0.18

15,000-25,000 2 3 12 5 22

25,000-40,000 1 9 9 14 33

> 40,000 1 4 5 11 21

Study 4 <15,000 1 8 8 3 20 1.39 0.18

15,000-25,000 2 4 11 5 22

25,000-40,000 1 11 9 12 33

> 40,000 1 4 7 9 21

Study 5 <15,000 1 6 8 5 20 1.12 0.12

15,000-25,000 3 5 5 9 22

25,000-40,000 1 9 7 16 33

> 40,000 0 5 6 10 21

Meta-analysis=1.30 (0.16, 10.91)

Heterogeneity tests:

Q = 0.004, df = 4, p = 0.99

I2 = 0%[0%, 0%].



Chapter 6

Conclusion and Future Work

In this study, we considered the data from RCTs with multilevel ordinal cat-

egorical outcomes in meta-analysis. We aimed at estimating the effect sizes

without any loss of information by merging or splitting the J × L contin-

gency table into 2 × 2 tables. We employed GOR as an effect measure for

meta-analysis with ordinal outcome categories. GOR has the advantages of

estimating the effect sizes not only with RCTs of two comparison groups but

also any number of comparison groups and outcome categories.

Meta-analysis for ordinal outcomes

We developed a meta-analysis method for multilevel ordinal categorical out-

comes under independent multinomial distribution approach. The proposed

meta-analysis method is much easier than other methods and provide more

realistic results. More importantly, the proposed method estimates the ef-

fect sizes without merging categories and is free from any model assumption.

These properties lead the proposed method preferable and more realistic than

the existing methods for multilevel ordinal categorical outcomes.

84
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Heterogeneous ordinal outcomes

Heterogeneity is one of the most problematic aspects in meta-analysis. Sta-

tistical agreement of results is under serious question in the presence of het-

erogeneity. In this study, we have developed a QEBM using GOR for het-

erogeneous ordinal categorical outcomes. This method provides a remedy to

the issue of heterogeneity for ordinal categorical data in meta-analysis. The

QEBM identifies the extreme study along with the Dixon’s test of outliers.

This method also improves the meta-analysis using the predicted GOR tak-

ing into account the heterogeneity in the data set. The use of the predicted

GOR improves the meta-analysis sharply in terms of shrinking the CIs of

the study effects towards the pooled study effect. The proposed method

demonstrates a methodology for trustworthy meta-analysis with heteroge-

neous ordinal categorical outcomes.

GOR for binary outcomes

We have presented a meta-analysis method for binary outcomes using GOR

under both the fixed and random effects models. A sample size weight

method for binary outcomes using ORG is also covered. We have applied

GOR, ORG for binary outcomes and compared results obtained with the

methods using ordinary OR. It is observed that the meta-analysis estimates

and their associated CIs under both FEM and REMs using GOR are ex-

actly the same as that of using OR under FEM and REMs respectively. It

is observed that the weights computed from the variance estimate of the in-

dividual GORs are the same with that of the ORs. Therefore, this study
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suggests that GOR can also be used for binary outcomes as efficiently as

OR in meta-analysis. The sample size weight method have produced a lower

meta-analysis estimate as compared to other methods. However, a well de-

fined variance estimate for pooled ORG is not available.

Methods for continuous outcomes

We have also presented three methods for multilevel continuous outcomes in

meta-analysis in this thesis. The first method is applicable when both the

variables are continuous in multilevel outcomes and comparison groups. The

second method is useful only when the multilevel continuous outcomes are

observed in RCTs with two comparison groups. The third method is for mul-

tilevel continuous outcomes when those are made ordinal from two or more

comparison groups. While the second method uses MD as an effect measure,

the first and third method employ GOR as an effect measure. Although the

first method is moderately complex, the other two methods are simple and

straightforward. We trust these methods will contribute widely conducting

more meta-analyses with continuous outcomes.

Challenges and future work

This study analyses outcome data in meta-analysis that occur in multilevel

ordinal categories. As in most cases the ordinal outcomes are naturally in

ascending or descending orders, it makes our study table setting easier for the

computation of the GOR as an effect measure. Because GOR is defined as

the proportion of concordant and discordant pairs, we need to set the study

table in such a way that as the level of outcome variable in the columns
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increases, so does the comparison groups in the rows in terms of severity or

vice versa.

Meta-analysis with more than two outcomes has not been carried out as

frequently as with binary outcomes. As a result, we have found insufficient

data in the literature. In particular, we did not find a set of studies with

significant heterogeneity in these situations. Therefore, we used simulated

data along with the real data sets available.

Future research can be carried out using GOR under quality effects model

(Doi SA et al., 2011) for heterogeneous ordinal outcomes. GOR can also be

used under Bayesian meta-analysis of ordinal categorical data. However, the

challenges remain regarding the availability of the quality scores from studies

using GOR and development of softwares for computational purpose. We will

endeavour to resolve these challenges in our future work.
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Appendix A

A.1 Delta Method

Suppose that µ̂′ = (µ̂1, µ̂2, . . . , µ̂S) asymptotically follows the multivariate

normal distribution with mean µ′ = (µ1, µ2, . . . , µS) and covariance matrix

Σ/n and further that g(x) has a continuous non-zero differential δg(x)/δxi at

x= µ. Define δg/δx|x=µ as the vector (δg(x)/δx1, δg(x)/δx2, . . ., δg(x)/δxS)
′

evaluated at x = µ. Then,
√
n(g(µ̂)-g(µ)) asymptotically follows the mul-

tivariate normal distribution with mean 0 and variance-covariance matrix

(δg/δx)′|x=µ Σ(δg/δx)|x=µ. For example, if a random vector (Y1, Y2, . . . , YS)
′

follows a multinomial distribution with parameters n and π= (π1, π2, . . . , πS)
′

then, by the CLT, for large n the random vector (π̂1, π̂2, . . . , π̂S)
′ asymptoti-

cally has the multivariate normal distribution with mean π= (π1, π2,. . . , πS)
′

and co-variance matrix [diag(π)-ππ′]/n, where π̂i = Yi/n, and diag(π) is a

diagonal matrix with diagonal elements equal to πi. Thus using the delta

method, we may claim that
√
n(g(µ̂)-g(µ)) asymptotically follows the mul-

tivariate normal distribution with mean 0 and variance
∑

i πi(δg/δxi)
2|x=π−

(
∑

i πi(δg/δxi)|x=π)
2.
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A.2 The Proportional Hazard Model

The hazard function λ(t;x) is defined to be the instantaneous failure proba-

bility at time t conditional on survival up to time t. The proportional hazard

model for an individual with covariate x is given by

λ(t;x) = λ0(t) exp(−βTx), (A.1)

where λ0(t) is the hazard function at x=0 and β is a vector of unknown

parameters. This model can be used in survival analysis (Cox, 1972). Here

the survival function S(t;x), the probability of surviving beyond time t given

the co-variate x, satisfies

− log {S(t;x)} = Λ0(t) exp(−βTx), (A.2)

where Λ0(t)=
∫ t
0 λ(s)ds. So for any two individuals with covariates x1 and

x2 respectively the survival function satisfy

log S(t; x1)/log {S(t; x2)} = exp{βT (x2 − x1)}. (A.3)

That is, the ratio of log survival functions, like the ratio of the hazard func-

tions depends only on the difference between the covariate values x2 − x1

and is constant for all t. For discrete data, the proportional hazards model

(A.2) becomes (McCullagh, 1980)

− log {1− γj(x)} = exp(θj − βTx), (A.4)

where 1−γj(x) is the probability of survival beyond category j given covariate

values x. Logarithm of the above equation gives us a more appropriate linear

structure analogous to the linear logistic model as follows

log [−log {1− γj(x)}] = θj − βTx, (A.5)

the transformation to linearity being called the complementary log-log trans-

form.
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A.3 Ordered Logistic Regression

The ordered logistic regression model is an extension of the binary model.

The model is frequently employed with three or more ordered levels. The

foremost ordered logistic model is the proportional odds model. The pro-

portional odds model assumes that the model coefficients for each level of

response are equal or slopes can be parameterized for any of the binomial

links e.g., logit or logistic, the probit, complementary loglog, loglog and Cau-

chit as found in generalised linear models.

A.4 Odds Ratio

The odds ratio (OR) is defined as the ratio of two odds of interest and is

calculated from Table A.1 as

Table A.1: Data of a single RCT

Intervention Success/Alive Failure/Dead

New treatment a b

Control c d

OR =
(a/n)/(b/n)

(c/n)/(d/n)
=
ad

bc
, (A.6)

where a, b, c, and d are the cell frequencies of the four cells in a RCT setting

for a 2 × 2 table. For desirable outcomes OR greater than one indicates

improvement by the new treatment while an OR less than one means the

new treatment is less effective. For undesirable outcomes the converse is true.

The following large sample variance (Fleiss, 1993) of the log OR is commonly
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used for the purpose of pooling in meta-analysis and for computing the CI.

var(ln OR) =
1

a
+

1

b
+

1

c
+

1

d
. (A.7)

For zero cell count problem, it is recommended adding 0.5 to each cell of all

the studies of 2× 2 tables. This also reduces the bias caused by one or more

small cells in the study table. Under the normality assumption of the ln OR,

a 95% CI for ln OR can be found as

exp[ln OR± 1.96×
√
var(ln OR)]. (A.8)

A.5 Relative Risk

The relative risk or risk ratio (RR) is defined as the probability of an event

in the treatment group divided by the probability of an event in the control

group (Table A.1) as

RR =
a/(a+ b)

c/(c+ d)
. (A.9)

Useful variance expression of the log RR can be found as

var(ln RR) =
1

a
− 1

a+ b
+

1

c
− 1

c+ d
. (A.10)

A 95% CI for ln RR can be calculated under the assumption of normality as

exp[ln RR± 1.96×
√
var(ln RR)]. (A.11)

There are debates on the choice of binary effect measures between OR and

RR. Some researchers prefer OR as an effect measure than RR because OR

can be estimated and interpreted for RCTs and case-control study reasonably

for rare outcomes. Moreover, some study designs select subjects on the basis

of outcome rather than the treatment type (case-control study). RR can not

be used for this study design.
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A.6 Risk Difference

Apart from the OR and RR that measure the association between treatment

and outcome, risk difference (RD) provides an indication of the impact of

the treatment or exposure. The RD is defined for a 2×2 table simply as risk

in the experimental group minus risk in the control group and is calculated

as

RD = a/(a+ b)− c/(c+ d). (A.12)

The variance estimate of RD can be found (Fleiss, 1993) as

var (RD) =
p1(1− p1)

n1

+
p2(1− p2)

n2

, (A.13)

where p1 = a/(a + b), p2 = c/(c + d), n1 = a + b and n2 = c + d. A 95% CI

for RD can be computed as

RD±×
√
var(RD). (A.14)

A.7 Arcsine Difference

The arcsine difference (AS) is defined as

AS = arcsin

√
a

a+ b
− arcsin

√
c

c+ d
. (A.15)

The AS is a measure rarely used in medical science which handles zero fre-

quencies naturally. The asymptotic variance of AS which does not depend

on the event of probability is given as

var(AS) =
1

4(a+ b)
+

1

4(c+ d)
. (A.16)
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A.8 Continuity Corrections for Zero Cells

Consider the cells of binary data for the ith study in the following table as:

Study i Event No Event Total

Treatment ai bi ai + bi

Control ci di ci + di

When any of the four cells is zero, we add 0.5 to all cells of the contingency

table. This is otherwise called the Woolf-Haldane correction for the odds

ratio (Schlesselman, 1982). Alternatively, statistical software Rmeta adds

0.5 to all the cells of all the studies involved in the meta-analysis. As a

result, there is an increase of 1 subject in each row involved in the analysis.

In our analysis with J × L contingency table, we add 1/L to each cell with

zero frequency. For example, in a 2×3 contingency table we add 1/3 to each

cell and for a 2×4 contingency table, we add 1/4 and so on. Therefore, there

is an increase of one subject in each group involved in the analysis as in the

case of OR.

A.9 Peto’s Method

This method was first introduced by Peto et al. (1977) and later more elabo-

rately by Yusuf et al. (1987). This method is considered as a break through

in the field of meta-analysis. Although this method may produce serious un-

der estimates (Fleiss, 1994) for large treatment or exposure effects or in the

meta-analysis of epidemiology (Spector and Thompson, 1991), it is unlikely

to be a problem in clinical trials. For the working formula, let us define the

following:
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ni = number of subjects in the ith trial

nti = number of subjects in the new treatment group

di = total number of events from both treatment and control groups

Oi = observed number of events in the treatment group

Ei = (nti × di)/ni = expected number of subjects in the treatment group.

For k studies, i = 1, 2, . . . , k, the pooled estimate of the OR under this

method is calculated as

T̄Peto(OR) = exp

[
k∑

i=1

(Oi − Ei)/
k∑

i=1

vi

]
, (A.17)

where vi = Ei[(ni − nti)/ni][(ni − di)/(ni − 1)]. An approximate variance

estimate is given by

var(lnT̄Peto(OR)) =

(
k∑

i=1

vi

)
. (A.18)

An asymmetric 100(1− α)% CI is thus found as

exp

∑k
i=1(Oi − Ei)± zα/2

√∑k
i=1 vi∑k

i=1 vi

 , (A.19)

where zα/2 is the (1− α/2)100 percentage point of a standard normal distri-

bution.

A.10 Mantel-Haenszel Method

The Mantel-Haenszel method also known as M-H method was first described

by Mantel and Haenszel (1959) for combining ORs for stratified case-control

studies. This method is a fixed effects model approach and could be used

for a variety of laboratory experiments (Mantel, 1963). In meta-analysis it is
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widely used considering each study as an individual stratum (Dickersin and

Belin, 1992). For the 2×2 table with ai, bi, ci and di, the four cell frequencies

and ni, the total number of subjects in the ith study, i = 1, . . . , k, the pooled

estimate is calculated as

T̄MH(OR) =

∑k
i=1 aidi/ni∑k
i=1 bici/ni

. (A.20)

A variance estimate (Robin et al., 1986) for the log T̄MH(OR) can be computed

as

v
MH(lnOR)

=

∑k
i=1 PiRi

2
(∑k

i=1Ri

) +

∑k
i=1(PiSi +QiRi)

2
(∑k

i=1Ri

) (∑k
i=1 Si

) +

∑k
i=1(QiSi)

2
(∑k

i=1 Si

) , (A.21)

where Pi = (ai + di)/ni, Qi = (bi + ci)/ni, Ri = (aidi)/ni, and Si = (bici)/ni.

A 100(1− α)% CI for the pooled OR, θ can be found as

exp
[
lnT̄MH(OR) ± zα/2(vMH(lnOR)

)1/2
]
, (A.22)

where zα/2 is the (1− α/2)100 percentage point of a standard normal distri-

bution.

A.11 Estimating Mean and SD from Median,

Range and Sample Sizes

Hozo et al. (2005) produced an excellent work on estimating the mean and

standard deviation from the median, range and sample size. The sample

mean, x̄ can be used to estimate the population mean as

x̄ =
a+ 2m+ b

4
, (A.23)

where m is the median and a and b are the low and high end of the range

respectively. The variance can be estimated using the formula as
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S2 ≈ 1

12

(
(a− 2m+ b)2

4
+ (b− a)2

)
. (A.24)

In addition, the well estimators of standard deviation Range/4 for a normal

distribution and Range/6 for any random distribution also useful in meta-

analysis. The best estimating formulae for mean and standard deviation (sd)

depending on the sample sizes for any unknown distribution are listed below:

Table A.2: The best estimating formulas for mean and sd

Sample size n ≤ 15 15< n ≤ 25 25 < n ≤ 70 70 < n

Estimate mean Formula A.23 Formula A.23 Median Median

Estimate sd Formula A.24 Range/4 Range/4 Range/6

A.12 Kendall’s tau

Suppose we take two members xi and xj at random from a continuous pop-

ulation. Then we may consider the probability xi < xj and xi > xj. Again

let us take two members xi, yi and xj, yj from a bivariate continuous popu-

lation. Then we may consider the probabilities of concordance of type 1 as

the conditional probability that yi < yj given that xi < xj. That is,

πc = Prob(yi < yj|xi < xj). (A.25)

and

1− πc = Prob(yi > yj|xi < xj). (A.26)

The probability πc represents a property of the population. Let us draw a

sample of n values at random from the bivariate population and arrange the

x values in ascending order of magnitude. Of the 1/2n(n − 1) pairs of x
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values which we may choose for comparison, some have the corresponding

y values in ascending order and some do not. The number of those which

do divided by 1/2n(n − 1) is clearly as estimator (unbiased) of πc. If pc is

this proportion and qc=1− pc, then the Kendall’s tau coefficient (τ) for this

example is

τ = pc − qc = 2pc − 1. (A.27)

Thus we could therefore define τ in terms of concordance and arrive at a

coefficient which has an analogue in the continuous case.

A.13 Mann-Whitney U Statistic

The Mann-Whitney statistic U is obtained by ordering two samples (n1 +

n2) observations according to their magnitude and counting the number of

observations in sample II that precede each observation in sample I. For

comparing two distributions of independent continuous random variables U

can be written as

U = P̂21/n1n2, (A.28)

where P̂21 is the sample version of P21 = P (Y2 > Y1). The GOR (Γ) for two

independent continuous random variables is written as

Γ = P (Y2 > Y1)/{1− P (Y2 > Y1)}. (A.29)

Therefore, the relationship between Γ and U can be written as

Γ =
U/n1n2

(n1n2 − U)/n1n2

(A.30)

=
U

n1n2 − U
.

As a non-parametric approach the U statistic has the advantage that the

two sample under consideration may not necessarily have the same number

of observations.



Appendix B

B.1 R Code for Chapter 2

Listing B.1: R code for the GOR functions, weights, CIs, PGORs and CIs

# GOR functions for 2× 5 contingency table

tr< −c(f11, f12, f13, f14, f15, n11)# f11 = count in cell (1, 1), f12 = count

in cell (1, 2) and so on

cl< −c(f21, f22, f23, f24, f25, n21)

e1< −cbind(tr, cl)

e< −t(e1)

n11< −e[1,6]

n21< −e[2,6]

p11< −e[1,1]/e[1,6]

p12< −e[1,2]/e[1,6]

p13< −e[1,3]/e[1,6]

p14< −e[1,4]/e[1,6]

p15< −e[1,5]/e[1,6]

p21< −e[2,1]/e[2,6]

p22< −e[2,2]/e[2,6]

105
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p23< −e[2,3]/e[2,6]

p24< −e[2,4]/e[2,6]

p25< −e[2,5]/e[2,6]

pc< −((p11p22)+(p11p23)+(p11p24)+(p11p25)+(p12p23)+(p12p24)+

(p12p25) +(p13p24)+(p13p25)+(p14p25))

pd< −((p12p21)+(p13p21)+(p13p22)+(p14p21)+(p14p22)+(p14p23)+

(p15p21) +(p15p22)+(p15p23)+(p15p24))

gi< −pc/pd

#Weight for the ith study

tr< −c(f11, f12, f13, f14, f15, n1)

cl< −c(f21, f22, f23, f24, f25, n2)

e1< −cbind(tr, cl)

e< −t(e1)

n1< −e[1,6]

n2< −e[2,6]

p11< −e[1,1]/e[1,6]

q11<-1-p11

p12< −e[1,2]/e[1,6]

q12< −1-p12

p13< −e[1,3]/e[1,6]

q13< −1-p13

p14< −e[1,4]/e[1,6]

q14< −1-p14

p21< −e[2,1]/e[2,6]

q21< −1-p21

p22< −e[2,2]/e[2,6]

q22< −1-p22
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p23< −e[2,3]/e[2,6]

q23< −1-p23

p24< −e[2,4]/e[2,6]

q24< −1-p24

w1i< −(1/(n1p11q11)+1/(n1p12q12)+1/(n1p13q13)+ 1/(n1p14q14)

+ 1/(n2p21q21)+1/(n2p22q22)+1/(n2p23q23)+1/(n2p24q24))

wi< −1/w1i; i=1, 2, . . ., k=5. # number of studies.

# pooling GOR

wi< −c(w1,w2,w3,w4,w5)

sei< −sqrt(1/wi)

g1< −log(gi)

t< −sum(g1*wi)/sum(wi).

#calculation of ci for individual GOR

ll< −format(exp(log(g) -1.96wi−1/2),digits=4)

ul< −format(exp(log(g) +1.96wi−1/2),digits=4)

ci< −data.frame(ll,ul)

#CI for pooled GOR

w< −sum(wi)

ll< −format(exp(log(t) -1.96w−1/2),digits=4)

ul< −format(exp(log(t) +1.96w−1/2),digits=4)

ci< −data.frame(ll,ul)

B.2 Sample Size Weight Method

Listing B.2: R code for sample size weights

# CI for ORG

selg1< −(2∗seg1)/((1− ga1)2)
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# selg< −SE(logORG)

ci1< −c(or1∗exp((-3.92∗seg1)/(1−(ga1)2)),or1∗exp((3.92∗seg1)/(1−(ga1)2)))

# weights

n1< −1st col total

n2< −2nd col total

n3< −3rd col total

n4< −4th col total

n5< −5th col total

ga< −gammas

seg< −standard error of gammas

se2< −seg2

tni< −n1∗n2/(n1+n2)+ n1∗n3/(n1+n3)+ n3∗n2/(n3+n2)

+ n1∗n4/(n1+n4)+n1∗n5/(n1+n5)+n4∗n2/(n4+n2)+ n5∗n2/(n5+n2)

+n3∗n4/(n3+n4)+n3∗n5/(n3+n5)+n4∗n5/(n4+n5)

# Pooling by Sample size weighting

ga< − gammas for the studies # easily obtainable from crosstab command

of SPSS

seg< − standard errors of gammas # easily obtainable from crosstab com-

mand of SPSS

se2< −seg2

tn2< −tni2

gb< −sum(tni*ga)/sum(tni)

ORb< −(1+gb)/(1-gb)

segb< −sqrt(sum(tn2∗se2))/sum(tni)

cip< −c(ORb∗exp((-3.92∗segb)/(1−(gb)2)),ORb∗exp((3.92∗segb)/(1−(gb)2)))
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B.3 R Code for Chapter 3

Listing B.3: R code for GORs, weights for three categories of tacrine trials

# GORs for 2× 3 contingency tables

tr< −c(f11, f12, f13, Total)

cl< −c(f21, f22, f23, Total)

e1< −cbind(tr, cl)

e< −t(e1)

n11< −e[1,4]

n21< −e[2,4]

p11< −e[1,1]/e[1,4]

p12< −e[2,1]/e[2,4]

p13< −e[1,3]/e[1,4]

p21< −e[1,2]/e[1,4]

p22< −e[2,2]/e[2,4]

p23< −e[2,3]/e[2,4]

pc< −(p11*p22)+(p11*p23)+(p21*p23)

pd< −(p12*p21)+(p13*p12)+(p13*p22)

gi< −pc/pd

# Weights

p< −c(32,54,24,110)

t< −c(24,45,27,96)

e1< −cbind(p,t)

e< −t(e1)

n1< −e[1,4]

n2< −e[2,4]

p11< −e[1,1]/e[1,4]
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q11< −1-p11

p12< −e[1,2]/e[1,4]

q12< −1-p12

p21< −e[2,1]/e[2,4]

q21< −1-p21

p22< −e[2,2]/e[2,4]

q22< −1-p22

w1i< −1/(n1*p11*q11)+1/(n1*p12*q12)+1/(n2*p21*q21)+1/(n2*p22*q22)

wi< −1/w1i

# Calculation of ci for individual GOR for tacrine trials

g< − gor for the studies

wi< −weights

ll< −format(exp(log(g) -1.96*wi(−1/2)),digits=4)

ul< −format(exp(log(g) +1.96*wi(−1/2)),digits=4)

ci< −data.frame(ll,ul)

# pooling GOR

g2< −c(1.274390, 1.185958, 1.312500, 2.079957, 1.546875 )

g< −log(g2)

wi< −c(5.623291, 5.718636, 2.767237, 13.253025, 9.190350)

t< −sum(g*wi)/sum(wi)

pt< −exp(t)

# CI for pooled GOR

w< −sum(wi)

ll< −format(exp(log(1.583732) -1.96*w(−1/2)),digits=4)

ul< −format(exp(log(1.583732) +1.96*w( − 1/2)),digits=4)

ci< −data.frame(ll,ul)

# calculation of PGOR
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g< −c(1.274390, 1.185958, 1.312500, 2.079957, 1.546875 )

df< −length(g)-1

w< −c(5.623291, 5.718636, 2.767237, 13.253025, 9.190350)

q2< −1.831287# value of the chi-square statistic

k< − 1-((df-2)/q2)

pg< −log(1.583732)+k*(log(g)-log(1.583732))

g1< −exp(pg)

#CI for PGOR

wi< −c(5.623291, 5.718636, 2.767237, 13.253025, 9.190350)

ll< −format(exp(pg-1.96*wi(−1/2)),digits=4)

ul< −format(exp(pg+1.96*wi(−1/2)),digits=4)

cip< −data.frame(ll,ul)

#Standard chisquare test with logGOR

w< −c(5.623291, 5.718636, 2.767237, 13.253025, 9.190350)

t< −c(1.274390, 1.185958, 1.312500, 2.079957, 1.546875 )

T< −log(t)

T2< −T*T

T3< −w% ∗%T

T4< −T3/sum(w)

T5< −T32

T6< −sum(wT2)

T7< −sum(w)

q< −T6-(T5/T7)

q2< −sum(w ∗ ((T − T4) ∗ ∗2))

Q1< −sum(w∗T2)-(T5/T7)

# I2 for tacrine

Q< −1.831287
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df< −4

I2< −(Q-df)/Q ∗ 100

if Q>df+1 then

d1< −2∗df-1

q1< −2 ∗Q

B< −0.5 ∗ (log(Q)-log(df))/(sqrt(q1)-sqrt(d1))

or

if Q < −df+1

p1< −3 ∗ (df − 1)2

p2< −1/2*(df-1)*(1-(1/p1))

B< −sqrt(p2)

L< −exp(0.5*log(Q/df)-1.96*B)

U< −exp(0.5*log(Q/df)+1.96*B)

LL< −(L2 − 1)/L2 ∗ 100

UL< −(U2 − 1)/U2 ∗ 100

#95% CI for GOR tacrine trials

x< −1.58

y< −1

plot(x,y,xlim=c(-1.5,6),ylim=c(-1,7),xaxt=“n”,

yaxt=“n”,frame.plot = NULL,cex=1)

segments(0, 0, 0, 7, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 0, 6, 0, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(1, 0, 1, 7, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(1.58, 0, 1.58, 7, col = “black”, lty = 5, lwd = par(“lwd”))

x5< −c(0.558, 2.91)

y5< −c(6,6)

lines(x5,y5,ty=“l”)
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x6< −c(0.523, 2.69)

y6< −c(5,5)

lines(x6,y6,ty=“l”)

x7< −c(0.404, 4.26)

y7< −c(4,4)

lines(x7,y7,ty=“l”)

x8< −c(1.214, 3.56)

y8< −c(3,3)

lines(x8,y8,ty=“l”)

x9< −c(0.81, 2.95)

y9< −c(2,2)

lines(x9,y9,ty=“l”)

x10< −c(1.145,2.19)

y10< −c(1,1)

lines(x10,y10,ty=“l”)

text(0, 6, labels=“Study 1”, pos=2,adj = c(0,0), cex = .8)

text(0, 5, labels=“Study 2”, pos=2,adj = c(0,0), cex = .8)

text(0, 4, labels=“Study 3”, pos=2,adj = c(0,0), cex = .8)

text(0, 3, labels=“Study 4”, pos=2,adj = c(0,0), cex = .8)

text(0, 2, labels=“Study 5”, pos=2,adj = c(0,0), cex = .8)

text(0, 1, labels=“Meta-analysis”,adj = c(0,0), pos=2, cex =.8)

#PGOR

x5< −c(0.707, 3.69)

y5< −c(5.75,5.75)

lines(x5,y5,ty=“l”,col=“black”,lty=5)

x6< −c(0.717, 3.69)

y6< −c(4.75,4.75)
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lines(x6,y6,ty=“l”,col=“black”,lty=5)

x7< −c(0.496, 5.23)

y7< −c(3.75,3.75)

lines(x7,y7,ty=“l”,col=“black”,lty=5)

x8< −c(0.901, 2.65)

y8< −c(2.75,2.75)

lines(x8,y8,ty=“l”,col=“black”,lty=5)

x9< −c(0.831, 3.03)

y9< −c(1.75,1.75)

lines(x9,y9,ty=“l”,col=“black”,lty=5)

text(1.58, 0, labels=“1.58”, pos=1, adj = c(0,0),cex = .8)

text(0, 0, labels=“0”, pos=1, adj = c(0,0),cex = .8)

text(1, 0, labels=“1”, pos=1, adj = c(0,0),cex = .8)

#text(2, 0, labels=“2”, pos=1, adj = c(0,0),cex = .8)

text(4, 0, labels=“4”, pos=1, adj = c(0,0),cex = .8)

text(6, 0, labels=“6”, pos=1, adj = c(0,0),cex = .8)

text(2.8, -.71, labels=“Generalised Odds Ratio (log-scale)”, pos=1, adj =

c(2.50,-1),cex = .8)

points(6,0,pch=“’”,cex =1)

points(4,0,pch=“’”,cex =1)

B.4 Misoprostol Trials

Listing B.4: R code for GORs, weights, CI, PGORs, Ln and I2

# GORs for 2× 3 contingency table

tr< −c(f11, f12, f13, n11)

cl< −c(f21, f22, f23, n21)

e1< −cbind(nc,ca)
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e< −t(e1)

n11< −e[1,4]

n21< −e[2,4]

p11< −e[1,1]/e[1,4]

p12< −e[2,1]/e[2,4]

p13< −e[1,3]/e[1,4]

p21< −e[1,2]/e[1,4]

p22< −e[2,2]/e[2,4]

p23< −e[2,3]/e[2,4]

pc< −(p11*p22)+(p11*p23)+(p21*p23)

pd< −(p12*p21)+(p13*p12)+(p13*p22)

gi<-pc/pd, i = 1, 2, . . . , 10.

# weights

x11< −f11

x12< −f12

x13< −f13

x21< −f21

x22< −f22

x23< −f23

n1< −1st column total

n2< −2nd column total

p11< −x11/n1

q11< −1-p11

p12< −x12/n1

q12< −1-p12

p21< −x21/n2

q21< −1-p21
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p22< −x22/n2

q22< −1-p22

w1i< −1/(n1*p11*q11)+1/(n1*p12*q12)+1/(n2*p21*q21)+

1/(n2*p22*q22)

w1< −1/w1i, i = 1, 2, . . . , 10.

# Pooling GOR

g< −c(28.526316, 68.645161, 5.450704, 23.123711, 15.714286, 2.990099, 3.126642

, 3.987988, 8.307692, 1.757374)

sn< −log(g)

w< −c(1.0858756, 0.2918908, 1.7150532, 0.2874851, 0.1986054, 3.1277129,

3.3480683, 0.5934123, 0.7058769, 4.2951792)

t< −sum(sn*w)/sum(w)

pt< −exp(t)

# Calculation of the Ln statistic

sn< −c(28.526316, 68.645161, 5.450704, 23.123711, 15.714286, 2.990099,

3.126642 , 3.987988, 8.307692, 1.757374)

w< −c(1.0858756, 0.2918908, 1.7150532, 0.2874851, 0.1986054, 3.1277129,

3.3480683, 0.5934123, 0.7058769, 4.2951792)

wd< −diag(w)

pi< −log(sn)

s0< −rep(log(3.878293),10)

x< −(pi-s0)

p2< −t(x)% ∗%wd

ln< −p2% ∗%x

p3< −(t(x)%*%wd%*%x)

# CI for individual GOR for misoprostol trials

g< −c(28.526316, 68.645161, 5.450704, 23.123711, 15.714286, 2.990099, 3.126642
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, 3.987988, 8.307692, 1.757374)

wi< −c(1.0858756, 0.2918908, 1.7150532, 0.2874851, 0.1986054, 3.1277129,

3.3480683, 0.5934123, 0.7058769, 4.2951792)

ll< −format(exp(log(g) -1.96*wi(−1/2)),digits=4)

ul< −format(exp(log(g) +1.96*wi(−1/2)),digits=4)

ci< −data.frame(ll,ul)

# ci for pooled GOR

w< −sum(wi)

ll< −format(exp(log(3.878293) -1.96*w(−1/2)),digits=3)

ul< −format(exp(log(3.878293) +1.96*w(−1/2)),digits=3)

cip< −data.frame(ll,ul)

# Calculation of PGOR

g< −c(28.526316, 68.645161, 5.450704, 23.123711, 15.714286, 2.990099, 3.126642

, 3.987988, 8.307692, 1.757374)

df< −length(g)-1

q2< − 11.70625

k< − 1-((df-2)/q2)

pg< −log(3.878293)+k∗(log(g)-log(3.878293))

g1< −format(exp(pg),digits=3)

g1< −c(8.65,12.31, 4.45, 7.95,6.81, 3.49, 3.56, 3.92,5.27,2.82)

wi< −c(1.0858756, 0.2918908, 1.7150532, 0.2874851, 0.1986054, 3.1277129,

3.3480683, 0.5934123, 0.7058769, 4.2951792)

ll< −format(exp(log(g1) -1.96*wi(−1/2)),digits=3) ul< −format(exp(log(g1)

+1.96*wi(−1/2)),digits=3) pci< −data.frame(ll,ul)

# Standard chisquare test

w< −c(1.0858756, 0.2918908, 1.7150532, 0.2874851, 0.1986054, 3.1277129,

3.3480683, 0.5934123, 0.7058769, 4.2951792)



APPENDIX B. 118

t< −c(28.526316, 68.645161, 5.450704, 23.123711, 15.714286, 2.990099, 3.126642

, 3.987988, 8.307692, 1.757374)

T< −log(t)

T2< −T*T

T3< −w%*%T

T4< −T3/sum(w)

T5< −T32

T6< −sum(w*T2)

T7< −sum(w)

q< −T6-(T5/T7)

q2< −sum(w*((T-T4)**2))

Q1< −sum(w*T2)-(T5/T7)

p< −1-pchisq(11.70625, df= 9)

# I2 for misoprostol Q< −11.70625

df< −9

I2< −(Q-df)/Q*100

if Q>df+1 then

d1< −2*df-1

q1< −2 ∗Q

B< −0.5*(log(Q)-log(df))/(sqrt(q1)-sqrt(d1))

or

if Q< −df+1 then

p1< −3 ∗ (df − 1)2

p2 < −1/2*(df-1)*(1-(1/p1))

B< −sqrt(p2)

L< −exp(0.5*log(Q/df)-1.96*B)

U< −exp(0.5*log(Q/df)+1.96*B)
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LL< −(L2 − 1)/L2 ∗ 100

UL< −(U2 − 1)/U2 ∗ 100

B.5 Simulation Studies

Listing B.5: R code for GORs and weights from simulated studies

set.seed(1000)

# Study 1

x1< −rmultinom(1, size = 29, prob=c(0.1099476,0.8089005,0.08115183))

x2< −rmultinom(1, size = 30, prob=c(0.1797753,0.6910112,0.1292135))

x11< −data.frame(x1,x2)

x0< −t(x11)

s< −c(29,30)

e1< −cbind(x0,s)

n11< −e1[1,4]

n21< −e1[2,4]

p11< −e1[1,1]/e1[1,4]

p12< −e1[2,1]/e1[2,4]

p13< −e1[1,3]/e1[1,4]

p21< −e1[1,2]/e1[1,4]

p22< −e1[2,2]/e1[2,4]

p23< −e1[2,3]/e1[2,4]

pc< −(p11*p22)+(p11*p23)+(p21*p23)

pd< −(p12*p21)+(p13*p12)+(p13*p22)

g1<-pc/pd

# Weight

n1< −e1[1,4]
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n2< −e1[2,4]

p11< −e1[1,1]/e1[1,4]

q11< −1-p11

p12< −e1[1,2]/e1[1,4]

q12< −1-p12

p21< −e1[2,1]/e1[2,4]

q21< −1-p21

p22< −e1[2,2]/e1[2,4]

q22< −1-p22

w11< −1/(n1*p11*q11)+1/(n1*p12*q12)+1/(n2*p21*q21)+1/(n2*p22*q22)

w1< −1/w11

# Study 2

x1< −rmultinom(1, size = 30, prob=c(0.8089005,0.1099476,0.08115183))

x2< −rmultinom(1, size = 30, prob=c(0.1797753,0.6910112,0.1292135))

# Study 3

x1< −rmultinom(1, size = 30, prob=c(0.8089005,0.08115183,0.1099476))

x2< −rmultinom(1, size = 30, prob=c(0.1797753,0.6910112,0.1292135))

# Study 4

x1< −rmultinom(1, size = 30, prob=c(0.1099476,0.8089005,0.08115183))

x2< −rmultinom(1, size = 29, prob=c(0.6910112,0.1797753,0.1292135))

# Study 5

x1< −rmultinom(1, size = 10, prob=c(0.1099476,0.8089005,0.08115183))

x2< −rmultinom(1, size = 10, prob=c(0.6910112,0.1292135,0.1797753))

# Study 6

x1< −rmultinom(1, size = 103, prob=c(0.1099476,0.8089005,0.08115183))

x2< −rmultinom(1, size = 114, prob=c(0.1797753,0.1292135,0.6910112))

x11< −data.frame(x1,x2)
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x6< −t(x11)

s< −c(103,114)

e6< −cbind(x6,s)

# Study 7

x1< −rmultinom(1, size = 73, prob=c(0.2099476,0.7089005,0.08115183))

x2< −rmultinom(1, size = 80, prob=c(0.1797753,0.6910112,0.1292135))

x11< −data.frame(x1,x2)

x7< −t(x11)

s< −c(73,80)

e7< −cbind(x7,s)

# Study 8

x1< −rmultinom(1, size = 46, prob=c(0.7089005,0.08115183,0.2099476))

x2< −rmultinom(1, size = 74, prob=c(0.1797753,0.6910112,0.1292135))

x11< −data.frame(x1,x2)

x8< −t(x11)

s< −c(46,74)

e8< −cbind(x8,s)

# Study 9

x1< −rmultinom(1, size = 32, prob=c(0.2099476,0.7089005,0.08115183))

x2< −rmultinom(1, size = 38, prob=c(0.6910112,0.1292135,0.1797753))

x11< −data.frame(x1,x2)

x9< −t(x11)

s< −c(32,38)

e9< −cbind(x9,s)

# Study 10

x1< −rmultinom(1, size = 76, prob=c(0.1099476,0.8089005,0.08115183))

x2< −rmultinom(1, size = 83, prob=c(0.1292135,0.6910112,0.1797753))
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x11< −data.frame(x1,x2)

x10< −t(x11)

s< −c(76,83)

e10< −cbind(x10,s)

# Q Statistic

w< −c(0.7578464, 2.2304833, 0.5860116, 1.3440000, 0.2526316, 2.6620506,

6.9675671, 0.7579955, 1.5819698, 2.2422012)

g< −c(1.18367347, 9.37704918, 8.62025316, 0.12962963, 0.01219512, 4.39120879,

1.45936698, 3.93109541, 0.28862974, 0.78560720)

T< −log(g)

T2< −T*T

T3< −w%*%T

T4< −T3/sum(w)

T5< −T3*T3

T6< −sum(w*T2)

T7< −sum(w)

q< −T6-(T5/T7)

q2< −sum(w*((T-T4)**2))

Q1< −sum(w*T2)-(T5/T7)

p< −1-pchisq(32.24718, df= 9)

#I2 statistic

Q< −32.24718

df< −9

I2< −(Q− df)/Q ∗ 100

if Q > df + 1 then

d1< −2 ∗ df − 1

q1< −2 ∗Q
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B< −0.5*(log(Q)-log(df))/(sqrt(q1)-sqrt(d1))

or

if Q <= df + 1

p1< −3 ∗ (df − 1)2

p2< −1/2 ∗ (df − 1) ∗ (1− (1/p1))

B< −sqrt(p2)

L< −exp(0.5*log(Q/df)-1.96*B)

U< −exp(0.5*log(Q/df)+1.96*B)

LL< −(L2 − 1)/L2 ∗ 100

UL< −(U2 − 1)/U2 ∗ 100

# Pooling GOR

w< −c(0.7578464, 2.2304833, 0.5860116, 1.3440000, 0.2526316, 2.6620506,

6.9675671, 0.7579955, 1.5819698, 2.2422012)

g< −c(1.18367347, 9.37704918, 8.62025316, 0.12962963, 0.01219512, 4.39120879,

1.45936698, 3.93109541, 0.28862974, 0.78560720)

sn< −log(g)

t< −sum(sn*w)/sum(w)

pt< −exp(t)

# Calculation of the divergent statistic Ln

w< −c(0.7578464, 2.2304833, 0.5860116, 1.3440000, 0.2526316, 2.6620506,

6.9675671, 0.7579955, 1.5819698, 2.2422012)

sn< −c(1.18367347, 9.37704918, 8.62025316, 0.12962963, 0.01219512, 4.39120879,

1.45936698, 3.93109541, 0.28862974, 0.78560720)

wd< −diag(w)

pi< −log(sn)

s0< −rep(log( 1.482130),10)

x< −(pi-s0)
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p2< −t(x)%*%wd

ln< −p2%*%x

p3< −(t(x)%*%wd%*%x)

# Calculation of CI for individual study

wi< −c(0.7578464, 2.2304833, 0.5860116, 1.3440000, 0.2526316, 2.6620506,

6.9675671, 0.7579955, 1.5819698, 2.2422012)

g< −c(1.18367347, 9.37704918, 8.62025316, 0.12962963, 0.01219512, 4.39120879,

1.45936698, 3.93109541, 0.28862974, 0.78560720)

ll< −format(exp(log(g) -1.96*wi(−1/2)),digits=3)

ul< −format(exp(log(g) +1.96*wi(−1/2)),digits=3)

ci< −data.frame(ll,ul)

# CI for pooled GOR

w< −sum(wi)

ll< −format(exp(log(1.482130) -1.96*w(−1/2)),digits=4)

ul< −format(exp(log(1.482130) +1.96*w(−1/2)),digits=4)

cip< −data.frame(ll,ul)

# Calculation of predicted GOR

g< −c(1.18367347, 9.37704918, 8.62025316, 0.12962963, 0.01219512, 4.39120879,

1.45936698, 3.93109541, 0.28862974, 0.78560720)

df< −length(g)-1

q2< −32.24718

k< −1-((df-2)/q2)

pg< −log(1.482130)+k*(log(g)-log(1.482130))

g1< −format(exp(pg),digits=3)

g1< −c(1.2429,6.2828,5.8822,0.2200,0.0346,3.4689, 1.4643,3.1809 ,0.4117,0.9017)

wi< −c(0.7578464, 2.2304833, 0.5860116, 1.3440000, 0.2526316, 2.6620506,

6.9675671, 0.7579955, 1.5819698, 2.2422012)
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ll< −format(exp(pg -1.96*wi(−1/2)),digits=3)

ul< −format(exp(pg +1.96*wi(−1/2)),digits=3)

pci< −data.frame(ll,ul)

# Q statistic deleting 4th study

wi< −c(0.7578464, 2.2304833, 0.5860116, 0.2526316, 2.6620506, 6.9675671,

0.7579955, 1.5819698, 2.2422012)

ti< −c(1.18367347, 9.37704918, 8.62025316, 0.01219512, 4.39120879, 1.45936698,

3.93109541, 0.28862974, 0.78560720)

lt< −log(ti)

tb< −sum(lt*wi)/sum(wi)

t< −exp(tb)

q< −(wi*(lt-tb)2)

Q< −sum(wi∗(lt− tb)2)

# Pooling GOR deleting 4th study

w< −c(0.7578464, 2.2304833, 0.5860116, 0.2526316, 2.6620506, 6.9675671,

0.7579955, 1.5819698, 2.2422012)

g< −c(1.18367347, 9.37704918, 8.62025316, 0.01219512, 4.39120879, 1.45936698,

3.93109541, 0.28862974, 0.78560720)

sn< −log(g)

t< −sum(sn*w)/sum(w)

pt< −exp(t)

# CI of pooled

wi< −c(0.7578464, 2.2304833, 0.5860116, 0.2526316, 2.6620506, 6.9675671,

0.7579955, 1.5819698, 2.2422012)

w< −sum(wi)

ll< −format(exp(log(1.777164) -1.96*w(−1/2)),digits=3)

ul< −format(exp(log(1.777164) +1.96*w(−1/2)),digits=4)
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cip< −data.frame(ll,ul)

# Calculation of the Ln statistic deleting 4th study

w< −c(0.7578464, 2.2304833, 0.5860116, 0.2526316, 2.6620506, 6.9675671,

0.7579955, 1.5819698, 2.2422012)

sn< −c(1.18367347, 9.37704918, 8.62025316, 0.01219512, 4.39120879, 1.45936698,

3.93109541, 0.28862974, 0.78560720)

wd< −diag(w)

pi< −log(sn)

s0< −rep(log(1.777164),9)

x< −(pi-s0)

p2< −t(x)%*%wd

ln< −p2%*%x

p3< −(t(x)%*%wd%*%x)

# Calculation of predicted GOR deleting study 4

g< −c(1.18367347, 9.37704918, 8.62025316, 0.01219512, 4.39120879, 1.45936698,

3.93109541, 0.28862974, 0.78560720)

df< −length(g)-1

q2< −23.67364

k< − 1-((df-2)/q2)

pg< −log(1.777164)+k*(log(g)-log(1.777164))

g1< −format(exp(pg),digits=3)

g1< −c(1.3121,6.1517,5.7771,0.0431,3.4915, 1.5341,3.2146,0.4575,0.9662)

w< −c(0.7578464, 2.2304833, 0.5860116, 0.2526316, 2.6620506, 6.9675671,

0.7579955, 1.5819698, 2.2422012)

ll< −format(exp(pg -1.96*wi(−1/2)),digits=3)

ul< −format(exp(pg +1.96*wi(−1/2)),digits=3)

pci< −data.frame(ll,ul)
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# R code for forest plot of simulation studies

x< −1.48

y< −1

plot(x,y,xlim=c(-1.5,6),ylim=c(-1,12),xaxt=“n”,

yaxt=“n”,frame.plot = NULL,cex=1)

segments(-0.5, 0, -0.5, 12, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(-0.5, 0, 7, 0, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(1, 0, 1, 12, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(1.48, 0, 1.48, 12, col = “black”, lty = 5, lwd = par(“lwd”))

# GOR

x1< −c(0.124,11.247)

y1< −c(11,11)

lines(x1,y1,ty=“l”)

x2< −c(2.524,34.835)

y2< −c(10,10)

lines(x2,y2,ty=“l”)

x3< −c(0.666,111.55)

y3< −c(9,9)

lines(x3,y3,ty=“l”)

x4< −c(0.023,0.703)

y4< −c(8,8)

lines(x4,y4,ty=“l”)

x5< −c(0.0002,0.602)

y5< −c(7,7)

lines(x5,y5,ty=“l”)

x6< −c(1.32,14.598)

y6< −c(6,6)
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lines(x6,y6,ty=“l”)

x7< −c(0.694,3.066)

y7< −c(5,5)

lines(x7,y7,ty=“l”)

x8< −c(0.41,37.344)

y8< −c(4,4)

lines(x8,y8,ty=“l”)

x9< −c(0.06,1.371)

y9< −c(3,3)

lines(x9,y9,ty=“l”)

x10< −c(0.212,2.909)

y10< −c(2,2)

lines(x10,y10,ty=“l”)

x11< −c(0.95,2.313)

y11< −c(1,1)

lines(x11,y11,ty=“l”)

# PGOR

x1< −c(0.13,11.81)

y1< −c(10.75,10.75)

lines(x1,y1,ty=“l”,col=“black”, lty=5)

x2< −c(1.69,23.34)

y2< −c(9.75,9.75)

lines(x2,y2,ty=“l”,col=“black”, lty=5)

x3< −c(0.454,76.12)

y3< −c(8.75,8.75)

lines(x3,y3,ty=“l”,col=“black”, lty=5)

x4< −c(0.04,1.19)
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y4< −c(7.75,7.75)

lines(x4,y4,ty=“l”,col=“black”, lty=5)

x5< −c(0.0007,1.71)

y5< −c(6.75,6.75)

lines(x5,y5,ty=“l”,col=“black”, lty=5)

x6< −c(1.04,11.53)

y6< −c(5.75,5.75)

lines(x6,y6,ty=“l”,col=“black”, lty=5)

x7< −c(0.696,3.08)

y7< −c(4.75,4.75)

lines(x7,y7,ty=“l”,col=“black”, lty=5)

x8< −c(0.3349,30.22)

y8< −c(3.75,3.75)

lines(x8,y8,ty=“l”,col=“black”, lty=5)

x9< −c(0.086,1.96)

y9< −c(2.75,2.75)

lines(x9,y9,ty=“l”,col=“black”, lty=5)

x10< −c(0.243,3.34)

y10< −c(1.75,1.75)

lines(x10,y10,ty=“l”,col=“black”, lty=5)

text(-2, 11, labels=“Study 1”, pos=4,adj = c(0,0), cex = 1)

text(-2, 9.75, labels=“Study 2”, pos=4,adj = c(0,0), cex = 1)

text(-2, 8.75, labels=“Study 3”, pos=4,adj = c(0,0), cex = 1)

text(-2, 7.75, labels=“Study 4”, pos=4,adj = c(0,0), cex = 1) text(-2, 6.75,

labels=“Study 5”, pos=4,adj = c(0,0), cex = 1)

text(-2,5.75, labels=“Study 6”, pos=4,adj = c(0,0), cex = 1) text(-2,4.75,

labels=“Study 7”, pos=4,adj = c(0,0), cex = 1)
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text(-2, 3.75, labels=“Study 8”, pos=4,adj = c(0,0), cex = 1)

text(-2,2.75, labels=“Study 9”, pos=4,adj = c(0,0), cex = 1)

text(-2, 2, labels=“Study 10”, pos=4,adj = c(0,0), cex = 1)

text(-2, 1, labels=“Pooled”,adj = c(0,0), pos=4, cex =1)

text(1.48, 0, labels=“1.48”, pos=1, adj = c(0,0),cex = 1)

text(-0.5, 0, labels=“0”, pos=1, adj = c(0,0),cex = 1)

text(1, 0, labels=“1”, pos=1, adj = c(0,0),cex = 1)

text(4, 0, labels=“4”, pos=1, adj = c(0,0),cex = 1)

text(6, 0, labels=“6”, pos=1, adj = c(0,0),cex = 1)

text(2.8, -.71, labels=“Generalised Odds Ratio (log-scale)”, pos=1, adj =

c(2.50,-1),cex = 1)

points(6,0,pch=“’”,cex =1)

points(4,0,pch=“’”,cex =1)

# R code for rayplot for 10 simulated studies

x1< −c(0,0,0,0,0,0,0,0,0,0)

y1< −c(1.48,1.48,1.48,1.48,1.48,1.48,1.48,1.48,1.48,1.48)

plot(x,y,xlim=c(-.1,1),ylim=c(0,10), type = “n”,xaxt=“n”,

yaxt=“n”,frame.plot = NULL,cex=1)

segments(0, 0, 1, 0, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 0, 0, 10, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

text(0,1.48, “1.48”,adj = c(0,0), pos=2,cex=.6)

segments(0, 1.48, .45, 1.18, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 9.38, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, 0.45, 8.62, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, 0.45, 0.13, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 0.012, col = “black”, lty = 1, lwd = par(“lwd”))



APPENDIX B. 131

segments(0, 1.48, 0.45, 4.39, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 1.46, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 3.93, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 0.29, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 1.48, .45, 0.78, col = “black”, lty = 1, lwd = par(“lwd”))

segments(.45, 0, .45, 10, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

# Predicted OR

segments(0, 1.48, .75, 1.24, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 6.28, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 5.88, col = “black”, lty = par(“lty”), lwd = par(”lwd”))

segments(0, 1.48, .75, .22, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 0.0346, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 3.4689, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 1.46, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 3.18, col = “black”, lty = par(“lty”), lwd = par(”lwd”))

segments(0, 1.48, .75, 0.41, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 1.48, .75, 0.90, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(.75, 0, .75, 10, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 10, 1, 10, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 0, 0, 1, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

text(.45,1.18, “1.18 Study 1”,adj = c(0,0), pos=4,cex=.6)

text(.45,9.38, “9.38 Study 2”,adj = c(0,0),pos=4, cex=.6)

text(.45,8.62, “8.62 Study 3”,adj = c(0,0), pos=4,cex=.6)

text(.45,0.13, “0.13 Study 4”,adj = c(0,0),pos=4, cex=.6)

text(.45,0.012, “0.012 Study 5”,adj = c(0,0), pos=4,cex=.6)

text(.45, 4.39, “4.39 Study 6”,adj = c(0,0),pos=4, cex=.6)

text(.45,1.46, “1.46 Study 7”,adj = c(0,0), pos=4,cex=.6)
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text(.45,3.93, “3.93 Study 8”,adj = c(0,0), pos=4,cex=.6)

text(.45,0.29, “0.29 Study 9”,adj = c(0,0), pos=4,cex=.6)

text(.45, 0.78, “0.78 Study 10”,adj = c(0,0),pos=4, cex=.6)

text(.75,1.24, “1.24 Study 1”,adj = c(0,0),pos=4, cex=.6)

text(.75,6.28, “6.28 Study 2”,adj = c(0,0), pos=4,cex=.6)

text(.75,5.88, “5.88 Study 3”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.22, “0.22 Study 4”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.0346, “0.03 Study 5”,adj = c(0,0), pos=4,cex=.6)

text(.75, 3.4689, “3.47 Study 6”,adj = c(0,0),pos=4, cex=.6)

text(.75,1.46, “1.46 Study 7”,adj = c(0,0),pos=4, cex=.6)

text(.75,3.18, “3.18 Study 8”,adj = c(0,0),pos=4, cex=.6)

text(.75, 0.41, “0.41 Study 9”,adj = c(0,0), pos=4,cex=.6)

text(.75, 0.90, “0.90 Study 10”,adj = c(0,0), pos=4,cex=.6)

text(.45,0, “GOR”, pos=1, cex = .6)

text(.75,0, “Predicted GOR”, pos=1, cex = .6)

text(0,0, “0”, pos=2, cex = .6)

text(0,10, “10”, pos=2, cex = .6)

B.6 R Code for Chapter 4

Listing B.6: R code for GORs, weights, CIs for Gastric carcinoma

# Dent et al

nc< −c(3,19,22)

ca< −c(8,13,21)

e1< −cbind(nc,ca)

e< −t(e1)

n1< −e[1,3]
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n2< −e[2,3]

p11< −e[1,1]/e[1,3]

p12< −e[2,1]/e[2,3]

p21< −e[1,2]/e[1,3]

p22< −e[2,2]/e[2,3]

pc< −(p11*p22)

pd< −(p12*p21)

g1< −pc/pd

v1< −(p11*((p22)2))+(p21*((-g1*p12)2))

v2< −((-g1*(p21))**2)*(p12)+((p11)**2)*(p22)

vg1< −v1/((n1)*(pd**2))+v2/((n2)*(pd**2))

sevg1< −sqrt(vg1)

ll2< −g1*exp(-1.96*sevg1/g1)

ul2< −g1*exp(1.96*sevg1/g1)

ci21< −c(ll2,ul2)

# Robertson et al

nc< −c(0.5,25.5,26)

ca< −c(24.5,5.5,30)

# Bonenkamp et al

nc< −c(128,385,513)

ca< −c(183,300,483)

# Cuschieri et al

nc< −c(55,145,200)

ca< −c(92,108,200)

# Degiuli et al

nc< −c(8,68,76)

ca< −c(14,72,86)
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# Chew et al

nc< −c(8,102,110)

ca< −c(19,92,111)

# R code for weights

# Dent et al

x11< −f11

x12< −f12

x21< −f21

x22< −f22

n1< −first row total

n2< −second row total

p11< −x11/n1

q11< −1-p11

p12< −x12/n1

q12< −1-p12

p21< −x21/n2

q21< −1-p21

p22< −x22/n2

q22< −1-p22

w1i< −1/(n1*p11*q11)+1/(n2*p21*q21)

wi< −1/w1i; i= 1, 2, . . . , 6.

# Pooling logGOR

g2< −c(0.256578947, 0.004401761, 0.545028742, 0.445277361, 0.605042017,

0.379772962)

g< −log(g2)

wi< −c(1.7010043, 0.4421159, 52.0624086, 22.1203730, 4.4439834, 5.0427355)

t< −sum(g*wi)/sum(wi)
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pt< −exp(t)

# Calculation of ci for individual GOR for gastric carcinoma

wi< −c(1.7010043, 0.4421159, 52.0624086, 22.1203730, 4.4439834, 5.0427355)

g< −c(0.256578947, 0.004401761, 0.545028742, 0.445277361, 0.605042017,

0.379772962)

ll< −format(exp(log(g) -1.96*wia(−1/2)),digits=2)

ul< −format(exp(log(g) +1.96*wi(−1/2)),digits=2)

ci< −data.frame(ll,ul)

# CI for pooled

w< −sum(wi) ll< −format(exp(log(0.4893854) -1.96*w(−1/2)),digits=4)

ul< −format(exp(log(0.4893854) +1.96*w(−1/2)),digits=4)

ci< −data.frame(ll,ul)

# Ln Statistic

sn< −c(0.2566, 0.0044, 0.545, 0.4453, 0.6050, 0.3798)

w< −c(1.7010043, 0.4421159, 52.0624086, 22.1203730, 4.4439834, 5.0427355)

wd< −diag(w)

pi< −log(sn)

s0< −rep(log(0.4893854),6)

x< −(pi-s0)

p2< −t(x)% ∗%wd

ln< −p2% ∗%x

# Calculation of PGOR g< −c(0.256578947, 0.004401761, 0.545028742,

0.445277361, 0.605042017, 0.379772962)

df< −length(g)-1

w< −c(1.7010043, 0.4421159, 52.0624086, 22.1203730, 4.4439834, 5.0427355)

q2< −11.85

k< −1-((df-2)/q2) pg< −log(0.4893854) + k ∗ (log(g)− log(0.4893854))
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g1< −exp(pg) # CI for PGOR

wi< −c(1.7010043, 0.4421159, 52.0624086, 22.1203730, 4.4439834, 5.0427355)

ll< −format(exp(pg-1.96*wi(−1/2)),digits=4)

ul< −format(exp(pg+1.96*wi(−1/2)),digits=4)

cip< −data.frame(ll,ul)

# ray plot of gastric carcinoma with 6 studies x1< −c(0,0,0,0,0,0)

y1< −c(0.4893854,0.4893854,0.4893854,0.4893854,0.4893854,0.4893854)

plot(x,y,xlim=c(-.1,1),ylim=c(-.10,1), type = “n”,xaxt=“n”,

yaxt=“n”,

frame.plot = NULL,cex=1)

segments(0, 0, 1, 0, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 0, 0, 1, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

text(0,0.4893854, “0.49”,adj = c(0,0), pos=2,cex=.6)

segments(0, 0.4893854, .45, 0.26, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 0.4893854, .45, 0.004, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 0.4893854, 0.45, 0.54, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 0.4893854, 0.45, 0.44, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 0.4893854, .45, 0.60, col = “black”, lty = 1, lwd = par(“lwd”))

segments(0, 0.4893854, 0.45, 0.38, col = “black”, lty = 1, lwd = par(“lwd”))

segments(.45, 0, .45, 1, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

# PGOR

segments(0, 0.4893854, .75, 0.30, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))

segments(0, 0.4893854, .75, 0.01, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))

segments(0, 0.4893854, .75, 0.53, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))
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segments(0, 0.4893854, .75, 0.46, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))

segments(0, 0.4893854, .75, 0.57, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))

segments(0,0.4893854, .75, 0.40, col = “black”, lty = par(“lty”), lwd =

par(“lwd”))

segments(.75, 0, .75, 1, col = “black”, lty = par(“lty”), lwd = par(”lwd”))

segments(0, 1, 1, 1, col = ”black”, lty = par(”lty”), lwd = par(“lwd”))

segments(0, 0, 0, 1, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

text(.45,0.26, “0.26 Dent”,adj = c(0,0), pos=4,cex=.6)

text(.45,0.02, “0.004 Robertson”,adj = c(0,0),pos=4, cex=.6)

text(.45, 0.54, “0.54 Bonenkamp”,adj = c(0,0), pos=4,cex=.6)

text(.45,0.44, “0.44 Cuschieri”,adj = c(0,0),pos=4, cex=.6)

text(.45,0.60,“0.60 Degiuli”,adj = c(0,0), pos=4,cex=.6)

text(.45, 0.38, “0.38 Chew- Wun”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.30, “0.30 Dent”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.03, “0.01 Robertson”,adj = c(0,0), pos=4,cex=.6)

text(.75,0.53, “0.53 Bonenkamp”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.46, “0.46 Cuschieri”,adj = c(0,0),pos=4, cex=.6)

text(.75,0.57, “0.57 Degiuli”,adj = c(0,0), pos=4,cex=.6)

text(.75, 0.40, “0.40 Chew- Wun”,adj = c(0,0),pos=4, cex=.6)

text(.45,0, “GOR”, pos=1, cex = .6)

text(.75,0, “PGOR”, pos=1, cex = .6)

text(0,0, “0”, pos=2, cex = .6)

text(0,1, “1”, pos=2, cex = .6)

# Forest plot gastric carcinoma

x< −0.4893854
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y< −1

plot(x,y,xlim=c(-.5,1.6),ylim=c(-1,8),xaxt=“n”,

yaxt=“n”,frame.plot = NULL,cex=1)

segments(0, 0, 0, 8, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0, 0, 1.6, 0, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(1, 0, 1, 8, col = “black”, lty = par(“lty”), lwd = par(“lwd”))

segments(0.4893854, 0, 0.4893854, 8, col = “black”, lty = 5, lwd = par(“lwd”))

# GOR

x5< −c(0.057,1.1532)

y5< −c(7,7)

lines(x5,y5,ty=“l”)

x6< −c(0.00023,0.083)

y6< −c(6,6)

lines(x6,y6,ty=“l”)

x7< −c(0.4153,0.7151)

y7< −c(5,5)

lines(x7,y7,ty=“l”)

x8< −c(0.2935,0.6755)

y8< −c(4,4)

lines(x8,y8,ty=“l”)

x9< −c(0.2387,1.533)

y9< −c(3,3)

lines(x9,y9,ty=“l”)

x10< −c(0.1586,0.9091)

y10¡-c(2,2)

lines(x10,y10,ty=“l”)

x11< −c(0.3961, 0.6047)
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y11< −c(1,1)

lines(x11,y11,ty=“l”)

text(0, 7, labels=“Dent”, pos=2,adj = c(0,0), cex = .6)

text(0, 6, labels=“Robertson”, pos=2,adj = c(0,0), cex = .6)

text(0, 5, labels=“Bonenkamp”, pos=2,adj = c(0,0), cex = .6)

text(0, 4, labels=“Cuschieri”, pos=2,adj = c(0,0), cex = .6)

text(0, 3, labels=“Degiuili”, pos=2,adj = c(0,0), cex = .6)

text(0, 2, labels=“Chew-Wun”, pos=2,adj = c(0,0), cex = .6)

text(0, 1, labels=“MA”,adj = c(0,0), pos=2, cex =.6)

# PGOR

x5< −c(0.067229, 1.3579)

y5< −c(6.75,6.75)

lines(x5,y5,ty=“l”,col=“black”,lty=5)

x6< −c(0.000761, 0.2766)

y6< −c(5.75,5.75)

lines(x6,y6,ty=“l”,col=“black”,lty=5)

x7< −c(0.404210, 0.6959)

y7< −c(4.75,4.75)

lines(x7,y7,ty=“l”,col=“black”,lty=5)

x8< −c(0.300628, 0.6918)

y8< −c(3.75,3.75)

lines(x8,y8,ty=“l”,col=“black”,lty=5)

x9< −c(0.226293, 1.4529)

y9< −c(2.75,2.75)

lines(x9,y9,ty=“l”,col=“black”,lty=5)

x10< −c(0.169178, 0.9693)

y10< −c(1.75,1.75)
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lines(x10,y10,ty=“l”,col=“black”,lty=5)

text(0.4893854, 0, labels=“0.49”, pos=1, adj = c(0,0),cex = .7)

text(0, 0, labels=“0”, pos=1, adj = c(0,0),cex = .7)

text(1, 0, labels=“1”, pos=1, adj = c(0,0),cex = .7)

text(6, 0, labels=“6”, pos=1, adj = c(0,0),cex = .7)

text(.8, -.71, labels=”GOR(log-scale)”, pos=1, adj = c(2.50,-1),cex = .7)

text(-0.25, 8, labels=”(b)”,adj = c(0,0), pos=2, cex =.6)

# Sample size weighting for gastric carcinoma

# Dent et al

cl< −c(8,13,21)

tr< −c(3,19,22)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]

n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)

or1< −p1/q1

ga1< −(p1-q1)/(p1+q1)

seg1< −0.249#From SPSS

#seg=se(gamma)

selg1< −(2*seg1)/((1-ga1)2)

# selg< −SE(log ORG)

ci1< −c(or1*exp((-3.92*seg1)/(1-(ga1)2)),or1*exp((3.92*seg1)/(1-(ga1)2)))
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# Robertson et al

cl< −c(24.5,5.5,30)

tr< −c(0.5,25.5,26)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]

n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)

or2< −p1/q1

ga2< −(p1-q1)/(p1+q1)

seg2< −0.020 # From SPSS

selg2< −(2*seg2)/((1-ga2)2)

ci2< −c(or2*exp((-3.92*seg2)/(1-(ga2)2)),or2*exp((3.92*seg2)/(1-(ga2)2)))

# Bonenkamp et al

tr< −c(128,385,513)

cl< −c(183,300,483)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]

n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)
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or3< −p1/q1

ga3< −(p1-q1)/(p1+q1)

seg3< − 0.063

selg3< −(2*seg3)/((1-ga3)2)

ci3< −c(or3*exp((-3.92*seg3)/(1-(ga3)2)),or3*exp((3.92*seg3)/(1-(ga3)2)))

# Cuschiei et al

cl< −c(92,108,200)

tr< −c(55,145,200)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]

n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)

or4< −p1/q1

ga4< −(p1-q1)/(p1+q1)

seg4< − 0.091

selg4< −(2*seg4)/((1-ga4)2)

ci4< −c(or4*exp((-3.92*seg4)/(1-(ga4)2)),or4*exp((3.92*seg4)/(1-(ga4)2)))

# Degiuli et al

cl< −c(14,72,86)

tr< −c(8,68,76)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]
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n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)

or5< −p1/q1

ga5< −(p1-q1)/(p1+q1) seg5< − 0.223 selg5< −(2*seg5)/((1-ga5)2)

ci5< −c(or5*exp((-3.92*seg5)/(1-(ga5)2)),or5*exp((3.92*seg5)/(1-(ga5)2)))

# Chew et al

cl< −c(19,92,111)

tr< −c(8,102,110)

e1< −cbind(tr,cl)

e< −t(e1)

n11< −e[1,1]

n12< −e[1,2]

n21< −e[2,1]

n22< −e[2,2]

p1< −n11*n22

q1< −n12*(n21)

or6< −p1/q1

ga6< −(p1-q1)/(p1+q1)

seg6< − 0.178

selg6< −(2*seg6)/((1-ga6)2)

ci6< −c(or6*exp((-3.92*seg6)/(1-(ga6)2)),or6*exp((3.92*seg6)/(1-(ga6)2)))

# Sample size weights

#n1< −n11+n21

#n2< −n12+n22
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#n3< −n13+n23

# Dent et al

n1< −11

n2< −32

ga< −-0.592

seg< −0.249

se2< −seg2

tn1< −n1*n2/(n1+n2)

# Robertson et al

n1< −24

n2< −30

tn2< −n1*n2/(n1+n2)

# Bonenkamp et al

n1< −311

n2< −685

tn3< −n1*n2/(n1+n2)

# Cuschieri et al

n1< −147

n2< −253

tn4< −n1*n2/(n1+n2)

# Degiuli et al

n1< −22

n2< −140

tn5< −n1*n2/(n1+n2)

# Chew et al

n1< −27

n2< −194
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tn6< −n1*n2/(n1+n2)

tn< −c(tn1,tn2,tn3,tn4,tn5,tn6)

tn< −c(8.186047, 13.333333, 213.890562, 92.977500, 19.012346, 23.701357)

# Pooling by Edwardes

ga< −c(-0.591623, -0.9912351, -0.2944743, -0.3838174, -0.246073, -0.449513)

seg< −c(0.249, 0.020, 0.063, 0.091, 0.223,0.178)

se2< −seg2

tn< −c(8.186047, 13.333333, 213.890562, 92.977500, 19.012346, 23.701357)

tn2< −tn2

gb< −sum(tn*ga)/sum(tn)

ORb< −(1+gb)/(1-gb)

segb< −sqrt(sum(tn2*se2))/sum(tn)

cip< −c(ORb*exp((-3.92*segb)/(1-(gb)2)),ORb*exp((3.92*segb)/(1-(gb)2)))

B.7 R Code for Chapter 5

# R code for continuous outcomes from simulated data

set.seed(12100)

x1< −rmultinom(1, size = 20, prob=c(0.1,0.15,0.45,0.3))

x2< −rmultinom(1, size = 22, prob=c(0.0909091, 0.1363636, 0.4545455,

0.3181818))

x3< −rmultinom(1, size = 33, prob=c(0.03030303, 0.1818182, 0.4242424

,0.3636364))

x4< −rmultinom(1, size = 21, prob=c(0.03, 0.04761905, 0.3285714 , 0.5938095))

x11< −data.frame(x1,x2,x3,x4)

x0< −t(x11)

s< −c(20,22,33,21)
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e< −cbind(x0,s)

p11< −e[1,1]/e[1,5]

p12< −e[1,2]/e[1,5]

p13< −e[1,3]/e[1,5]

p14< −e[1,4]/e[1,5]

p21< −e[2,1]/e[2,5]

p22< −e[2,2]/e[2,5]

p23< −e[2,3]/e[2,5]

p24< −e[2,4]/e[2,5]

p31< −e[3,1]/e[3,5]

p32< −e[3,2]/e[3,5]

p33< −e[3,3]/e[3,5]

p34< −e[3,4]/e[3,5]

p41< −e[4,1]/e[4,5]

p42< −e[4,2]/e[4,5]

p43< −e[4,3]/e[4,5]

p44< −e[4,4]/e[4,5]

pc< −p11*(p22+p23+p24+p32+p33+p34+p42+p43+p44)+

p12*(p23+p24+p33+p34+p43+p44)+p21*(p32+p33+p34+p42+p43+p44)+

p22*(p33+p34+p43+p44)+p23*(p34+p44)+p31*(p42+p43+p44)+

p32*(p43+p44)+p33*p44

pd< −p12*(p21+p31+p41)+p13*(p21+p22+p31+p32+p41+p42)+

p14*(p21+p22+p23+p31+p32+p33+p41+p42+p43)+

p22*(p31+p41)+p23*(p31+p32+p41+p42)+p24*(p31+p32+p33+p41+p42+p43)+

p32*p41+p33*(p41+p42)+p34*(p41+p42+p43)

g1< −pc/pd

# weight 1
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n1< −e[1,5]

n2< −e[2,5]

n3< −e[3,5]

n4< −e[4,5]

p11< −e[1,1]/e[1,5]

q11< −1-p11

p12< −e[1,2]/e[1,5]

q12< −1-p12

p13< −e[1,3]/e[1,5]

q13< −1-p13

p21< −e[2,1]/e[2,5]

q21< −1-p21

p22< −e[2,2]/e[2,5]

q22< −1-p22

p23< −e[2,3]/e[2,5]

q23< −1-p23

p31< −e[3,1]/e[3,5]

q31< −1-p31

p32< −e[3,2]/e[3,5]

q32< −1-p32

p33< −e[3,3]/e[3,5]

q33< −1-p33

p41< −e[4,1]/e[4,5]

q41< −1-p41

p42< −e[4,2]/e[4,5]

q42< −1-p42

p43< −e[4,3]/e[4,5]
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q43< −1-p43

w11< −(1/(n1*p11*q11)+1/(n2*p21*q21)+1/(n3*p31*q31)

+1/(n4*p41*q41)

+1/(n1*p12*q12)+1/(n2*p22*q22)+1/(n3*p32*q32)+1/(n4*p42*q42)

+1/(n1*p13*q13)+1/(n2*p23*q23)+1/(n3*p33*q33)+1/(n4*p43*q43))

w1< −1/w11

# Study 2

set.seed(12100)

x1< −rmultinom(1, size = 20, prob=c(0.15,0.15,0.45,0.3))

x2< −rmultinom(1, size = 22, prob=c(0.0909091, 0.1863636, 0.4045455,

0.3181818))

x3< −rmultinom(1, size = 33, prob=c(0.03030303, 0.21818182, 0.4242424

,0.336364))

x4< −rmultinom(1, size = 21, prob=c(0.02, 0.09761905, 0.285714 , 0.6038095))

x11< −data.frame(x1,x2,x3,x4)

x0< −t(x11)

s< −c(20,22,33,21)

e< −cbind(x0,s)

# Study 3

set.seed(12100)

x1< −rmultinom(1, size = 20, prob=c(0.1,0.20,0.4,0.3))

x2< −rmultinom(1, size = 22, prob=c(0.0909091, 0.1063636, 0.4845455,

0.3181818))

x3< −rmultinom(1, size = 33, prob=c(0.03030303, 0.21818182, 0.4542424

,0.306364))

x4< −rmultinom(1, size = 21, prob=c(0.01, 0.14761905, 0.245714 , 0.6038095))

x11< −data.frame(x1,x2,x3,x4)
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x0< −t(x11)

s< −c(20,22,33,21)

e< −cbind(x0,s)

# Study 4

set.seed(12100)

x1< −rmultinom(1, size = 20, prob=c(0.07,0.25,0.33,0.35))

x2< −rmultinom(1, size = 22, prob=c(0.0909091, 0.1463636, 0.4045455,

0.3581818))

x3< −rmultinom(1, size = 33, prob=c(0.05030303, 0.26818182, 0.4342424

,0.256364))

x4< −rmultinom(1, size = 21, prob=c(0.01, 0.1761905, 0.355714 , 0.5838095))

x11< −data.frame(x1,x2,x3,x4)

x0< −t(x11)

s< −c(20,22,33,21)

e< −cbind(x0,s)

# Study 5

set.seed(12100)

x1< −rmultinom(1, size = 20, prob=c(0.10,0.15,0.3,0.45))

x2< −rmultinom(1, size = 22, prob=c(0.1109091, 0.1863636, 0.3445455,

0.3581818))

x3< −rmultinom(1, size = 33, prob=c(0.03030303, 0.20818182, 0.3942424

,0.376364))

x4< −rmultinom(1, size = 21, prob=c(0.00, 0.1761905, 0.285714 , 0.6838095))

x11< −data.frame(x1,x2,x3,x4)

x0< −t(x11)

s< −c(20,22,33,21)

e< −cbind(x0,s)
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g< −c(g1,g2,g3,g4,g5)

w< −c(w1,w2,w3,w4,w5)

# Pooling log GOR

g< −c(1.344747, 1.355527, 1.240727, 1.391849, 1.118055)

g1< −log(g)

w< −c(0.1731767, 0.1953294, 0.1766055, 0.1851793, 0.1206612)

t< −sum(g1*w)/sum(w)

T< −exp(t)

# calculation of ci for individual GOR

g< −c(1.344747, 1.355527, 1.240727, 1.391849, 1.118055)

wi< −c(0.1731767, 0.1953294, 0.1766055, 0.1851793, 0.1206612)

ll< −format(exp(log(g) -1.96*wi( − 1/2)),digits=5)

ul< −format(exp(log(g) +1.96*wi( − 1/2)),digits=5)

ci< −data.frame(ll,ul)

# CI for pooled GOR

w< −sum(wi)

ll< −format(exp(log(1.303739) -1.96*w( − 1/2)),digits=4)

ul< −format(exp(log(1.303739) +1.96*w( − 1/2)),digits=4)

cip< −data.frame(ll,ul)

# Q value

g< −c(1.344747, 1.355527, 1.240727, 1.391849, 1.118055)

w< −c(0.1731767, 0.1953294, 0.1766055, 0.1851793, 0.1206612)

T< −log(g)

T2< −T*T

T3< −w%*%T

T4< −T3/sum(w)

T5< −T32
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T6< −sum(w*T2)

T7< −sum(w)

q< −T6− (T5/T7)

q2< −sum(w*((T-T4)**2))

Q1< −sum(w*T2)-(T5/T7)

p< −1-pchisq(0.004530595, df= 4)

# I2

Q< −0.004530595

df< −4

I2< −(Q-df)/Q*100

#if Q>df+1 then

# d1< −2*df-1

#q1< −2*Q

#B< −0.5*(log(Q)-log(df))/(sqrt(q1)-sqrt(d1))

#or if Q<=df+1, compute

p1< −3*(df-1)2

p2< −1/2*(df-1)*(1-(1/p1))

B< −sqrt(p2)

L< −exp(0.5*log(Q/df)-1.96*B)

U< −exp(0.5*log(Q/df)+1.96*B)

LL< −(L2-1)/L2 ∗ 100

UL< −(U2-1)/U2 ∗ 100
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