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Abstract
The access to clean and drinkable water is becoming one of the major health issues because most natural waters are now 
polluted in the context of rapid industrialization and urbanization. Moreover, most pollutants such as antibiotics escape 
conventional wastewater treatments and are thus discharged in ecosystems, requiring advanced techniques for wastewater 
treatment. Here we review the use of artificial intelligence and machine learning to optimize pharmaceutical wastewater 
treatment systems, with focus on water quality, disinfection, renewable energy, biological treatment, blockchain technology, 
machine learning algorithms, big data, cyber-physical systems, and automated smart grid power distribution networks. Arti-
ficial intelligence allows for monitoring contaminants, facilitating data analysis, diagnosing water quality, easing autonomous 
decision-making, and predicting process parameters. We discuss advances in technical reliability, energy resources and 
wastewater management, cyber-resilience, security functionalities, and robust multidimensional performance of automated 
platform and distributed consortium, and stabilization of abnormal fluctuations in water quality parameters.
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Introduction

Rapid urbanization and population growth across the world 
have led to the widespread production of emerging con-
taminants, which puts significant pressure on wastewater 
treatment systems. Water scarcity drives our focus towards 
achieving maximum resource recovery. Zero waste genera-
tion is one of the ideal pathways towards achieving a cir-
cular economy, which brings remarkable transformation of 
wastewater treatment systems through commercialization by 
adding value management processes (Matheri et al. 2022). If 
left untreated and discharged from conventional wastewater 
systems, emerging pharmaceutical contaminants in aquatic 
or marine ecosystems can adversely impact human health 
and the environment (Osman et al. 2023; Priya et al. 2022).

When pharmaceutically active compounds are released 
into the environment through human metabolites, it can 
cause a wide range of side effects on non-target aquatic 

organisms even at minute concentrations (ng/L or μg/L). 
This leads to the development of multi-resistant strains 
and the formation of endocrine-disrupting chemicals from 
breakdown of intermediate by-products from parental com-
pounds, causing significant carcinogenicity, mutagenicity, 
and teratogenicity in humans and aquatic organisms (Zhan 
et al. 2019). Among these pollutants, the types of contami-
nants that have become increasingly challenging to treat are 
pharmaceuticals and personal care products, disinfection 
by-products, and per- and poly-fluoroalkyl substances. In 
addition, wastewater treatment systems are highly complex 
and dependent on different environmental factors. Process 
parameters are optimized to tailor the control systems to 
improve the efficiency of wastewater treatment processes.

Although industrial and anthropogenic activities have 
introduced significant amounts of impurities and hazard-
ous pollutants into our environment, several methods have 
been developed to minimize the effects of water pollution. 
These methods have its own merits in terms of the levels 
of water treatment quality and its varying effects on the 
environment. The treatment methods proposed by other 
researchers include coagulation–flocculation (Kooijman 
et al. 2020), membrane filtration (Ganiyu et al. 2015), ion 
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exchange (Swanckaert et al. 2022), desalination (Shah et al. 
2022), and biological treatment (Singh et al. 2023).

For biological treatment, the parameters used to charac-
terize the levels of water treatment quality include biological 
oxygen demand and chemical oxygen demand. However, the 
conventional wastewater treatment used to purify or disinfect 
the wastewater is time-consuming and requires lengthy or 
arduous procedures (Safeer et al. 2022). To ease the com-
plexity of wastewater treatment systems, artificial intelli-
gence and machine learning algorithms are used to improve 
the intelligent systems and manage complex dynamics of 
mathematical models to effectively optimize the operational 
conditions of the wastewater treatment systems (Oruganti 
et al. 2023).

Currently, artificial intelligence and machine learning 
algorithms have been widely integrated into the existing 
operational management system of wastewater treatment 
plants, improving the water quality monitoring system 
(Chawishborwornworng et al. 2023), accuracy, and preci-
sion of model prediction (Serrano-Luján et al. 2022) and 
maximizing optimization efficiency of the process param-
eters (Zhang et al. 2023a). On the other hand, the theoretical 
or computational models developed for conventional waste-
water treatment systems are overtly simplified based on the 
ideal assumptions rather than the real-world applicability of 
process models to make it practical for industrial purposes 
(Safeer et al. 2022).

Although empirical and statistical regression analyses 
are developed to predict the behaviour of process control 
systems, the complexity of real-world process dynamics and 
deviation in the non-linearity of regression models affect 
the accuracy of prediction (Özdoğan-Sarıkoç et al. 2023). 
Artificial intelligence can be incorporated into pharmaceu-
tical wastewater treatment plants integrated with renewable 

energy technologies to forecast energy efficiency and offer 
advanced analytics for optimal energy management of phar-
maceutical wastewater treatment systems.

Figure 1 depicts the critical components of advanced 
computing and software technology for improving phar-
maceutical wastewater treatment systems. With the ever-
growing issues of antimicrobial-resistant genes and viral 
diseases, future trends are forecasted to rely on developing 
more advanced artificial intelligence and machine learning 
algorithms to optimize the process conditions. This review 
is divided into five main topics encompassing the artificial 
intelligence applications in managing big data, strengthening 
cyber-physical systems, blockchain technology, and internet 
of things to improve the disinfection performance of phar-
maceutical wastewater treatment systems.

Assessment of water quality

In the era of digital health and artificial intelligence, the 
challenges and perspectives for the future of electrochemical 
technologies, epidemiology, and interdisciplinary research 
can be bridged, unleashing the power of artificial intelli-
gence and machine learning algorithms in diagnosing and 
treating infectious diseases (Tang and Cao 2023) and other 
antimicrobial-resistant genes developed from issues asso-
ciated with water sanitation and environmental pollution, 
advancing both health informatics, precision medicine, and 
toxicogenomics related to improvement in water quality 
assessment of pharmaceutical wastewater effluent.

More interestingly, artificial intelligence and machine 
learning algorithms empower sustainable circularity, digi-
tal twin, and intelligent data-driven operations and pro-
cess control systems, improving data mining, analysis, and 

Fig. 1  Advanced comput-
ing and software technology 
allow to enhance technical 
reliability, cyber-resilience, 
energy resources management, 
and water quality in pharmaceu-
tical wastewater treatment sys-
tems
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prediction to support policymaking to achieve a circular 
economy and enhance energy efficiency, life cycle environ-
mental and cost management technologies (Matheri et al. 
2022; Osman et al. 2024). Artificial intelligence/machine 
learning algorithms can also be used to optimize com-
plex process dynamics and non-linearity, using artificial 
neural network and adaptive neuro-fuzzy inference system 
and support vector machine software interfaces and other 
intelligent systems to assess water quality by predicting 
chemical oxygen demand, biochemical oxygen demand, 
total suspended solids, total dissolved solids concentra-
tions in pharmaceutical wastewater (Safeer et al. 2022).

The artificial neural network was among the first machine 
learning algorithms developed based on perceptron (Park 
et al. 2022). An artificial neural network's model structure 
comprises three layers: input, hidden, and output. The hid-
den layer is a critical structure of an algorithm made up of 
nodes. Each node calculates the output variable for a series 
of steps using a nonlinear function called the activation func-
tion (Park et al. 2022). An increase in the number of hid-
den layers results in more complicated calculations due to 
additional predictions from input parameters. However, the 
problems associated with hidden layers are due to overfit-
ting the training data and diminishing gradients during the 
optimization of the models (Jariwala et al. 2023).

To address this deficiency, a deep learning algorithm is 
used as an alternative function involving a rectified linear 
unit instead of a conventional sigmoidal function to mini-
mize the problems associated with the vanishing effect of 
gradient. However, before the development of neuronal 
networks such as autocoders, feed-forward neural network, 
convolutional neural networks (Muniappan et al. 2023), 
recurrent neural network, and so on, there were various set-
backs in artificial neural network architecture that needed 
to be explored.

The first significant issue associated with artificial neural 
network architecture is the non-existence of rules for defin-
ing neuronal network structures (Jariwala et al. 2023). The 
appropriate artificial neural network architecture design can 
be obtained through trial-and-error experience. This makes 
the process of developing artificial neural network architec-
ture increasingly tedious.

Secondly, the artificial neural network architecture is 
hardware-dependent, which means the parallel processing 
power in computation becomes problematic because it is 
limited by the hardware properties (Jariwala et al. 2023). 
Hence, translating mathematical problems into numerical 
information leads to more issues related to artificial neu-
ral network architecture. This phenomenon involves unex-
plained network behaviour, constituting a probing solution 
and eventually leading to a fourth issue. The underlying 
issue associated with probing solutions is due to artificial 

neural network's justification and reliability, which may 
breach users' trust within the network.

When dealing financially with pharmaceutical companies, 
artificial intelligence and machine learning play a significant 
role in all aspects of drug discovery, wastewater treatment, 
and technological development processes. During wastewa-
ter treatment, the application of artificial intelligence can 
minimize the utilization of manpower and considerably 
reduce the expenditure on capital investment and mainte-
nance costs related to treatment methods used.

On the other hand, the setbacks of wastewater treatment 
infrastructures can be attributed to the setting up of artifi-
cial intelligence infrastructures and computation technolo-
gies involving complex process control systems to improve 
the water quality at the output processes. There are several 
setbacks involved (Jariwala et al. 2023):

• The cost of setting up complex computation infrastruc-
ture to facilitate artificial intelligence systems becomes 
a financial impediment to small wastewater treatment 
industries and pharmaceutical firms. The requirement to 
install compatible hardware and software into the exist-
ing computational systems for proper functioning of arti-
ficial intelligence incurs significant financial expenditure.

• The speed of artificial intelligence algorithms affects 
the data processing power when it comes to accessing 
the data in real time to perform analysis and facilitate 
decision-making processes. Slow processing power and 
prolonged latency lead to undesirable consequences, 
resulting in delayed project timeline.

• Minimization of energy consumption is an important 
agenda when integrating compatible hardware with exist-
ing systems to deploy artificial intelligence technology. 
New integration systems with optimization modes to 
reduce power consumption would ease the financial bur-
den on the business and wastewater treatment industry.

• The complexity of the artificial intelligence infrastructure 
can be managed through optimization and automation. 
Artificial intelligence technology can debug and trouble-
shoot any issues that arise rather than increasing compu-
tational complexity.

• Artificial intelligence systems require enormous com-
putational energy to process and analyse data. Com-
putational power grows immensely as the data grows, 
requiring algorithms to manage the voluminous data and 
minimize power consumption.

• Regular auditing and testing of machine learning mod-
els to improve the integrity of algorithms would help to 
streamline the deployment of artificial intelligence tech-
nology. This requires a diverse team of technical experts 
and personnel.
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The optimization of analytical process conditions is sig-
nificant. The characteristics and trace origins of water pollut-
ants can be identified using unique artificial intelligence sys-
tems called the integrated long short-term memory network 
involving cross-correlation and association rules (Apriori) 
(Wang et al. 2019b).

Firstly, internet monitoring systems can acquire critical 
information about the pollutant sources entering the pharma-
ceutical wastewater treatment systems. The complex infor-
mation on pollution incidents involving flow simulations, 
number of point sources at influent and effluent systems, 
and pollutant release processes can be interpreted using long 
short-term memory (Wang et al. 2019b). This method is 
computationally efficient because it deals with an artificial 
intelligence algorithm using a time-recursive neural network 
to predict critical events such as long intervals and delays of 
water pollutants on influent and effluent systems.

In addition, a convolutional long short-term memory pro-
vides a framework for sequencing learning problems using 
training data temporally to evaluate or predict the water 
quality pollutants in effluent systems (Wang et al. 2019b). 
However, there is currently a lack of robust mathematical 
expressions to correlate the measured parameters such as 
biochemical oxygen demand and chemical oxygen demand, 
total suspended solids, ammonia, organic nitrogen, and 
organic phosphorus content of wastewater, in which the 
data can only be obtained using online sensors. There are 
also uncertainties or perturbations in predicting biochemical 
oxygen demand and chemical oxygen demand values.

For this reason, integrating other artificial intelligence 
methods, such as gene expression programming and Monte 
Carlo simulation technique, can provide insights into esti-
mating the levels of uncertainty or perturbations in wastewa-
ter process conditions. These techniques assess the sensitiv-
ity of target parameters and its influences on the variations 
in input parameters and scrutinize the interactions between 
the process parameters to evaluate the wastewater quality 
parameters (Aghdam et al. 2023). However, the online-based 
optimization technique has not been adequately applied to 
the bio-processing system due to the complexity of the bio-
logical behaviour.

Furthermore, the lack of data visualization techniques, 
low-quality industrial measurement systems, and under-
standing of underlying phenomena in wastewater treatment 
plants are ongoing issues. The data modelling approaches 
can be strengthened using artificial neural network, Gaussian 
process regression (Yao et al.), and polynomial chaos expan-
sion to analyse the meta-models of wastewater treatment 
plants efficiently.

In addition, other artificial intelligence application 
tools such as expert systems (Wu et al. 2021), fuzzy logic 
(Mazhar et al. 2019), artificial neuro-fuzzy inference sys-
tems (Nam et al. 2023), support vector machine (Zhang 

et al. 2023b), knowledge-based systems (Liu et al. 2023), 
ruled-based systems (Victor et al. 2005), fuzzy logic con-
trol (Santín et al. 2018), pattern recognition (Gao et al. 
2023), swarm intelligence (Negi et  al. 2023), genetic 
algorithm (Aparna and Swarnalatha 2023), reinforcement 
learning (Wang et al. 2023a), hybrid systems (Tariq et al. 
2021), and so on have gained its purposes in process con-
trol systems and prediction of water quality characteristics.

In addition, poor wastewater quality often leads to 
membrane fouling of filtration technologies used in the 
pharmaceutical wastewater treatment industry. Membrane 
fouling is a major obstacle hindering the widespread appli-
cation of anaerobic membrane bioreactors to treat pharma-
ceutical wastewater (Niu et al. 2023).

Artificial intelligence algorithms and its modelling 
framework can predict membrane fouling phenomena in 
membrane filtration technologies using hyper-parameter 
optimization of artificial neural network and random forest 
to improve predictive capabilities (Niu et al. 2023; Yuan 
et  al. 2023). In addition, artificial neural network and 
Bootstrap methods enhance the accuracy, robustness, and 
reliability of prediction tools to estimate the water quality 
indexes (Chawishborwornworng et al. 2023).

However, bootstrap programming adds a significant 
number of codes into the network, limiting the perfor-
mance and processing speed of the software management 
system. On the other hand, the combination of artificial 
neural network and bootstrap algorithms improves the esti-
mation of prediction error distributions, making it easier 
to analyse any faults or anomalies within the wastewater 
treatment systems (Mo et al. 2024).

In contrast, the main disadvantages of hybrid artificial 
intelligence models are complicated design constraints and 
uncertainties in predicted data arising from data cluster-
ing, making it challenging to discern exact data patterns 
to achieve optimal forecasting (Tikhamarine et al. 2020). 
For example, seasonal variation influences the wastewater 
streamflow and effluent quality; it is rather challenging 
to forecast the hydrological streamflow due to uncertain-
ties in prediction (Ibrahim et al. 2022). In addition, Fig. 2 
shows the artificial intelligence optimization framework 
applicable to various calculation tools for evaluating and 
predicting pharmaceutical wastewater treatment quality.

Overall, we observed that artificial intelligence appli-
cations in complex biological wastewater treatment sys-
tems are still developing, which could trigger severe and 
undesirable problems. Integrating artificial intelligence 
technologies may lead to system-wide compromise due 
to incompatibility with existing operational systems, 
a cascade of design errors, malfunctions, and possible 
cyber-attacks leading to other critical infrastructure fail-
ures, causing havoc in ecological systems and service 
availability to local communities. Hence, software and 
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hardware functions of artificial intelligence technologies 
must account for the systemic risk and benefits of inte-
grating advanced cyber-physical systems, data security 
infrastructure, blockchain technology, and the internet of 
things to achieve a robust system.

Disinfection

The concentration of disinfection by-products and severe 
acute respiratory syndrome coronavirus 2-related pharma-
ceuticals in wastewater effluents and surface water in aquatic 
environment impact the orchestration of coronavirus dis-
ease-19 pandemic. For example, a significant increase in 
concentrations of disinfection by-products such as trih-
alomethanes and haloacetic acids in hospital and pharma-
ceutical wastewater effluents and surface water ranging from 
5.9 to 21.7 μg/L from wastewater discharge points increased 
ecotoxicities in aquatic environment (Zhang et al. 2022).

Wastewater-based epidemiology is one of the most effec-
tive surveillance tools for examining the sources of transmis-
sion of bacteria, microorganisms, and coronaviruses such as 
severe acute respiratory syndrome coronavirus 2 in waste-
water. However, significant research gaps exist in address-
ing the difficulties and challenges in detecting, monitoring 
strategies, remediation, and disinfection methods of viruses 
in pharmaceutical and general wastewater (Bhattacharya 
et al. 2023).

More critically, there is a lack of regulatory framework 
and compliance related to the integration of artificial intelli-
gence and machine learning technologies into existing phar-
maceutical wastewater treatment systems, the uncertainties 
in technology efficiency for disinfection performance of 
wastewater treatment systems, and the economic viability 
of the wastewater treatment infrastructure, public or socio-
economical resistance which may hinder practical imple-
mentation of artificial intelligence and blockchain-related 
technologies in wastewater treatment systems.

Moreover, these barriers can be minimized through col-
laborative efforts and systematic approaches from regulators, 
policymakers, engineers, and social scientists to translate 
innovative information technology into solutions to improve 
water sustainability in wastewater treatment domains (Rob-
bins et al. 2022). However, method development and valida-
tion are the most significant challenges of implementing arti-
ficial intelligence and machine learning in complex process 
dynamics in pharmaceutical wastewater treatment systems.

Method validation is extremely critical to obtaining high-
quality data (Corominas et al. 2018). A simple installation 
of sensors and cohesive maintenance efforts for optimizing 
process control systems do not guarantee adequate data qual-
ity, regardless of high computational processing power of 
information technology infrastructure. Dynamic wastewa-
ter processes are often characterized by constant changes at 
many different real-time scales, spanning from seconds to 
years in terms of dynamic pH changes, plant configuration, 
layout arrangement, and construction periods, which are also 

Fig. 2  Artificial intelligence 
research optimization frame-
work for predicting pharmaceu-
tical wastewater quality. Many 
data and model parameters can 
be arduous and challenging 
to manage, such as high-
dimensional space and complex 
process control systems that 
require a powerful frame-
work to assist computational 
resources in improving model 
performance, calibration, and 
optimization techniques. Error 
function analysis can determine 
the quality of predictive model 
performance to simulate process 
conditions and behaviour of 
pharmaceutical wastewater 
treatment systems
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critical conditions to how the processes change over time 
(Corominas et al. 2018).

Moreover, it is not practical to obtain voluminous, com-
putationally expensive, and complex datasets, including 
real-time process dynamics over a meaningful period 
that requires uncompromised high-quality data (Ye et al. 
2020). A large dataset of repositories requires continuous 
validation and comparison with predictive models for opti-
mization, monitoring diagnostic purposes and updating 
control algorithms, which may require intensive labour 
and maintenance. There is a lack of standardized informa-
tion technology protocols for selecting and implementing 
specific data analytic techniques equivalent to industry 
standards.

More advanced data management techniques are required 
to combine existing process systems with artificial intel-
ligence, blockchain-related technologies, the internet of 
things, and cyber-physical systems. A plethora of methods 
have been developed or assessed. Still, challenges related to 
objective comparison between different industry artificial 
intelligence technologies, regulatory guidelines, validation 
limitations at full-scale systems, limited active and real-time 
data optimization, information sharing content, and quality 
affect the implementation of knowledge generation and arti-
ficial intelligence applications (Zhao et al. 2020).

The complexity of operational management systems 
increases with transmission routes of influent connecting 
to the pharmaceutical wastewater treatment plants, which 
involve several point sources discharged from hospitals, 
isolation centres, quarantine centres, and public places. The 
metropolitan and municipal wastewater plumbing systems 
are a significant pathway for spreading severe acute res-
piratory syndrome coronavirus 2. Severe acute respiratory 
syndrome coronavirus 2 is a member of a large family of 
viruses called coronaviruses that can infect people and some 
animals, causing mild to moderate respiratory illness.

The influent wastewater contains substantial viral loads of 
severe acute respiratory syndrome coronavirus 2 ribonucleic 
acid, a molecule present in most infected living organisms. 
Different treatment phases involving primary, secondary, 
and tertiary treatment methods are required to disinfect the 
pharmaceutical wastewater thoroughly. In primary physical 
treatment, the large, suspended solids in wastewater act as 
a physical barrier in removing viral particles (Bhattacharya 
et al. 2023).

Moreover, in the secondary treatment of wastewater treat-
ment plants, diverse biological methods, including activated 
sludge process, membrane bioreactor, moving bed biofilm 
reactor, sequencing batch reactor, treatment ponds, and so 
on, are used to remove organic matter and large suspended 
solids from pharmaceutical wastewater. However, applying 
conventional activated sludge in large-scale hospitals and 

pharmaceutical wastewater treatments poses high energy 
consumption required for aeration, capital, and operational 
costs.

Although membrane bioreactors are progressively replac-
ing the conventional activated sludge treatment systems and 
may achieve better treatment potential, the major drawback 
is due to membrane fouling, energy cost associated with 
aeration, and gradual reduction in membrane permeability 
resulting in the pressure fluctuation and greater energy con-
sumption which lead to reduced performance at sizeable 
industrial-scale operations (Werkneh and Islam 2023).

In the tertiary treatment phase, various organics, turbidity, 
phosphorus, nitrogen, and other pathogenic microorganisms 
are removed using coagulation, advanced oxidation pro-
cesses, filtration technologies, ultraviolet treatment, ozona-
tion, chlorination, adsorbent materials such as titanium diox-
ide, carbon nanotubes, and other nanomaterials to inactivate 
viruses in the conventional wastewater treatment plants. It 
was reported that free residual chlorine species at a concen-
tration of 0.5 mg/L required a contact time of 30 min at pH 
lower than 8, and 2.19 mg/L of chlorine dioxide is recom-
mended for complete inactivation of severe acute respira-
tory syndrome coronavirus 2 in pharmaceutical wastewater 
(Bhattacharya et al. 2023).

More interestingly, artificial neural network can be 
applied to forecast the chlorination behaviour in the second-
ary pharmaceutical wastewater effluent containing ammonia, 
nitrate, and other pharmaceutical constituents. Disinfection 
of hospital wastewater results in changes in microbiome, 
resistome, and mobilome of wastewater and other bacterial 
communities and reduction in specific antibiotic resistance 
genes (Akhil et al. 2021; Rolbiecki et al. 2023).

An advanced control scheme can be developed to opti-
mize the chlorination disinfection quality by integrating an 
artificial neural network model with fuzzy logic control to 
improve the chlorination process and minimize the cost of 
disinfection as well as maximizing disinfection efficiency 
while keeping the plant’s budget within reach (Khawaga 
et al. 2019). However, the degrees of disinfection provided 
by direct chlorination were comparable to those attained by 
combining the conventional activated sludge process and 
chlorine treatment at conventional wastewater treatment 
plants (Azuma and Hayashi 2021).

In addition, the integrated photocatalytic-biological 
wastewater treatment systems are effective alternative pro-
cesses for the removal of emerging pharmaceutical contami-
nants and pathogens, capable of achieving greater than 99% 
removal of chemical oxygen demand and nitrogen from the 
system with total disinfection of  106 colony-forming units/
mL E.coli using hydroxyl radicals generated from photoca-
talysis (Ghosh et al. 2023). Moreover, colony-forming units 
estimate the number of active and viable microorganisms 



Environmental Chemistry Letters 

in a sample. Artificial neural network and adaptive neuro-
fuzzy inference system can be used to model the photocata-
lytic degradation process and mineralization efficiency of 
pharmaceutical and other organic pollutants while optimiz-
ing energy consumption and catalyst dosage for practical 
pharmaceutical wastewater treatment (Tabatabai-Yazdi et al. 
2021).

Overall, we observed that artificial intelligence tech-
niques can monitor complex variations in process condi-
tions and accurately predict the performance of wastewater 
disinfection characteristics. However, extreme fluctuations 
in wastewater quality parameters during complex, full-scale 
disinfection processes, conventional biological wastewater 
treatment system, and predictive disinfection models may 
not handle intricate non-linearity issues, and immediate 
responses to remediate the disinfection level may not be 
effective. However, hybrid artificial intelligence technolo-
gies integrated with robust cyber-security infrastructures, 
blockchain technology, and distributed network design with 
the internet of things can facilitate autonomous wastewater 
treatment processes, reducing undesirable risks caused by 
incomplete disinfection processes.

Renewable energy

Current researchers rarely consider using renewable energy 
technologies for pharmaceutical wastewater treatment. 
Although conventional wastewater treatment plants are 
designed primarily to remove undissolved and dissolved 
wastewater, they are crucial in controlling water pollution 
and offering sanitary engineering. The additional energy 
generation potential of conventional wastewater treatment 
plants involves the utilization of digested sewage sludge for 
incineration, and electricity generation can provide a signifi-
cant amount of energy and resource recovery (Zahmatkesh 
et al. 2022).

In addition, the settling properties of activated sludge 
having a sludge volume index greater than 150 mg/L could 
be susceptible to sludge bulking, which hinders the opera-
tion of the activated sludge process. This process may result 
in a mass proliferation of filamentous bacteria, impacting the 
techno-economic feasibility of the pharmaceutical waste-
water treatment systems. For this reason, artificial neural 
network is very effective at simulating the nonlinear pro-
cesses of sludge bulking, especially in various fluctuating 
environmental conditions (Deepnarain et al. 2020).

On the contrary, full industrial-scale pharmaceutical 
wastewater treatment systems comprise different physical, 
chemical, and biological processes that are highly complex 
and challenging to model using a linear method. Artificial 
neural network and multivariate statistics involving principal 

component analysis can model and extract valuable informa-
tion by being adaptive and developing self-learning ability 
to discern the influence of process parameters (Guo et al. 
2018; Verma and Suthar 2018). However, traditional princi-
pal component analysis is still limited by linear dimensional-
ity reduction (Wang et al. 2019a).

On the other hand, nonlinear projection of principal com-
ponent analysis can be determined using Gaussian process 
mapping, but the model lacks robustness and is susceptible 
to process noise (Wang et al. 2019a). When combined with 
another artificial intelligence technology, the artificial neural 
network model can optimize the process parameters for more 
accurate and robust results than regression-based mathemati-
cal models (Deepnarain et al. 2020).

The onsite nutrient recovery process of pharmaceutical 
wastewater treatment plants in which waste materials can 
be reused for other industrial purposes is crucial. The con-
trol components, such as energy distribution systems and 
metallurgical phosphorus recycling, can utilize activated 
sludge from wastewater treatment systems and transform it 
into energy and mineral products (Zahmatkesh et al. 2022). 
Artificial intelligence-powered renewable technologies can 
increase the sustainability of energy use at pharmaceutical 
wastewater treatment systems and reduce electricity costs or 
financial expenditure for energy supply.

Onsite renewable energy sources, such as solar, water, 
wind, and so on, can help minimize energy wastage 
and greenhouse gas emissions, saving economic costs 
immensely. Optimization via artificial intelligence can help 
to reduce the environmental impact of the combined energy 
systems using genetic algorithm to lessen the effect of car-
bon dioxide emission on the environment (Hai et al. 2022). 
However, integrating microgrids with renewable energy 
technologies and sharing with external grid networks are 
very challenging due to maintaining optimum power flows 
in the industry (Fan and Li 2023).

Overall, we observed that direct solar energy-assisted 
wastewater treatment with energy storage systems makes it 
convenient during day and night. Still, the installation and 
maintenance costs to achieve robust system efficiency affect 
effective renewable energy utilization. The complexity of 
adapting the existing electricity grid to a distributed energy 
network to utilize renewable energy resources in pharma-
ceutical wastewater treatment systems is still in its infancy.

Biological treatment

Artificial intelligence is one of the popular machine learn-
ing-based approaches in biological wastewater treatment 
simulations due to its high level of adaptability and learn-
ing strategies. Artificial neural network can be used to model 



 Environmental Chemistry Letters

or predict biochemical oxygen demand and total suspended 
solids in removing activated sludge (Li et al. 2023b). It can 
also simulate total nitrogen, total phosphorus, and chemical 
oxygen demand for real-time dynamics of process conditions 
in wastewater treatment plants (Zaghloul and Achari 2022). 
However, the training datasets require high computational 
power and may not apply to small-scale industrial plants.

Unlike artificial neural network, support vector machine 
provides a unique solution to multiple regression systems 
to minimize errors while generating extensive computa-
tional data to improve model accuracy and predictability. 
On the other hand, adaptive neuro-fuzzy inference system is 
a hybrid algorithm that integrates the adaptability and com-
putational power of artificial intelligence with fuzzy logic’s 
learning ability to manage uncertainty or perturbations in 
process dynamics (Zaghloul and Achari 2022).

More interestingly, the complexity of data generated from 
biological processes can be interpreted using the multidi-
mensional non-linearity of adaptive neuro-fuzzy inference 
system, where the number of fuzzy rules increased expo-
nentially in both functions and number of input parameters. 
However, the high sensitivity of biomass combined with an 
array of parameters and frequent changes in influent char-
acteristics can affect the stability of the operation of aerobic 
granular sludge reactors.

Furthermore, the combination of adaptive neuro-fuzzy 
inference system and support vector regression to form a 
two-stage prediction process as separate algorithms can be 
trained for individual output parameters to provide greater 
flexibility in tuning the discrepancies in model prediction 
to minimize errors. Combining machine learning-based 
models such as feed-forward neural network, support vector 

machine, and adaptive neuro-fuzzy inference system for 
benchmarking pharmaceutical wastewater treatment systems 
has yielded efficient performance.

The additional combination of feed-forward neural 
network increases the effectiveness of identifying com-
plex problems or patterns using multilayer non-linearity 
of machine learning tools to examine the input and output 
parameters (Jana et al. 2022). Moreover, the three layers 
of feed-forward neural network are trained with the Leven-
berg–Marquardt algorithm (Jana et al. 2022). The first layer 
consists of a flattened input vector containing various input 
parameters.

When combined with the auto-regressive characteristics 
of predictive modelling, lagged data are integrated into the 
input vector (Negi et al. 2023). The second layer consists of 
hidden neurons with nonlinear activation functions (Jariwala 
et al. 2023). The third layer represents the output vector, 
which compares the predicted values with input parameters 
to produce targeted responses (Nourani et al. 2023). Overall, 
we observed that artificial neural network is prone to com-
putational overload when handling massive datasets, which 
can be a challenge for wastewater treatment industries to 
adopt due to limited computational processing power and is 
primarily hardware dependent.

In addition, Fig. 3 shows the standard feed-forward neu-
ral network architecture, which consists of three layers of 
a computational network. Furthermore, Table 1 shows 1 
shows the equations used by researchers who applied various 
models including the process parameters and criticize each 
model based on their advantages and disadvantages. Table 2 
lists recent work in which error functions were used to cal-
culate and validate the performance of models describing 

Fig. 3  Feed-forward neural 
network architecture involves 
a number of artificial neural 
network connections in which 
the flow of information is 
between nodes or its layers. The 
flow is usually in one direction 
or forward from the input nodes, 
passing through the hidden 
nodes to output nodes without 
any loops or cycles. Feed-for-
ward neural network is trained 
using Marquardt’s backpropaga-
tion method
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pharmaceutical wastewater treatment systems. These error 
functions measure the deviation in a digital communication 
system that uses statistical computations.

Blockchain technology

The convergence of blockchain technologies and artificial 
intelligence in the internet of things network revolutionized 
intelligent network design to create sustainable processes 
(Mao et al. 2023). This means smart grids that use digital 
technologies can be connected to the network to detect and 
respond to local change to improve the industry’s energy 
usage in electricity grids (Chen et al. 2021). When the elec-
tricity supply networks are equipped with internet protocol 
addresses, intelligent meters and energy sensors will relay 
the data to utility providers with information about energy 
usage, offering greater control over their energy consump-
tion (Chen et al. 2021).

The emergence of blockchain technologies offers one of 
the most feasible solutions for decentralizing autonomous 
energy management in distributed energy systems using 
a simplified model inversion process of blockchain SM2 
encryption by sending verification data of nodes with high 
energy distribution to improve the computational ability of 
the distributed energy systems (Wang et al. 2023b).

Conventional decentralized management modes have sev-
eral drawbacks with respect to the high cost of communica-
tion from central controller to individual equipment, leading 
to single-point failures (Wang et al. 2023b). However, with 
the advent of new digital technology, the distributed infor-
mation of blockchain provides a new vitality to the energy 
management of distributed energy systems. Distributed 
energy systems improve the permeability and utilization 
efficiency of renewable energy technologies, leading to high 
energy efficiency of pharmaceutical wastewater treatment 
systems.

Overall, we observed that blockchain technology has sev-
eral limitations due to the scalability of software and hard-
ware infrastructures, data security vulnerabilities, integra-
tion complexity, and high energy consumption. Innovative 
solutions should focus on improving energy efficiency and 
interoperability with existing systems.

Artificial intelligence-integrated blockchain distributed 
ledger technology has the potential to become one of the 
most critical research and development areas in the domain 
of renewable energy technologies and power automation 
(Gawusu et  al. 2022). Artificial intelligence-integrated 
blockchain distributed ledger technology can address smart 
grid-based control management systems, decentralized 
energy management systems, power distribution, and related 
mechanical automation to pharmaceutical wastewater treat-
ment plants (Junaidi et al. 2023; Khan et al. 2023).Ta
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Most critically, the purpose of combined technologies is 
to optimize power flow and process conditions to minimize 
energy consumption, perturbations, noise disturbances and 
prevent unstable working conditions (Zhu et al. 2023); pro-
mote stability, production efficiency; and reduce pollution 
of an industrial process using a local outlier factor-based 
abnormality detection logic to measure prediction statistical 
error (Feng et al. 2022).

The purpose of involving network reconfiguration of 
distributed systems is to facilitate the real-time operation 
of process dynamic conditions (Mishra et al. 2023), inte-
gration of cyber-physical security into software and hard-
ware infrastructures to protect privacy and prevent exter-
nal network infiltration and improve auto-generation of 
process control systems (Li et al. 2023a; Liu et al. 2022). 
Artificial intelligence-based data analysis and evolutionary 
learning mechanisms can diagnose water quality, facilitat-
ing autonomous decision-making and process optimization 
with a strong potential to establish predictive model analy-
sis and universal process control (Li et al. 2021).

More interestingly, dynamic monitoring and controlling 
of smart grid technology can optimize the renewable energy 
used to power automation in pharmaceutical wastewater 
treatment plants, enabling machine learning developments 
and customizing executions of operational parameters to 
produce desired responses by screening and adjusting pro-
cess parameters (Johnson et al. 2022). Integrating artificial 
intelligence with a power distribution network can create a 
real-time generation of process conditions, logistical dis-
tribution of pharmaceutical wastes by transportation, and 
monitoring electric power supply to facilitate wastewater 
treatment processes.

In remote regions, the field programmable gate array-
based embedded internet of things system is one of the 
most preferred systems beneficial for optimizing wastewater 
treatment plants and leveraging logistics flow to improve the 
sludge management process in the future (Ding et al. 2021; 
Henriques et al. 2020). In addition, artificial intelligence 
technology in electrical automation provides fault diagno-
sis and troubleshooting of the process conditions, electrical 
control system, and electrical equipment and facilitates daily 
operation (Yang 2020).

In electrical process diagnosis, expert system, artificial 
neural network, and adaptive neuro-fuzzy inference system 
are three common methods of fault diagnosis, producing 
accurate detection results (Yang 2020). However, the main 
disadvantages of using artificial neural network optimiza-
tion are a greater computational burden, susceptibility to 
overfitting, and empirical nature of the model development 
with minimalistic approach (Świetlicka and Kolanowski 

2023). However, the existing ledger management of power 
distribution systems for wastewater treatment plants utilizes 
smart grid technology to deliver cloud scalability, optimize 
management, and minimize redundancy.

Integrating artificial intelligence and machine learning 
technologies improves data distribution efficiency and trans-
mission across different networks, operational management, 
and privacy security (Khan et al. 2023). However, the most 
significant challenges of integrating the internet of things 
and blockchain technology into artificial intelligence and 
machine learning are related to financial, technical, envi-
ronmental, organizational, and legal issues. These identi-
fied challenges are cyber-security, privacy, smart contract, 
trusted oracles, scalability, interoperability, lack of stand-
ardized structure, regulatory constraints, governance, fog 
computing, and so on (Tanha et al. 2022).

The convergence of blockchain technology, internet of 
things, artificial intelligence, and machine learning algo-
rithms into cyber-security systems synergistically enhances 
trust, transparency, privacy, and cyber-security of overall 
operational systems in pharmaceutical wastewater treatment 
systems by providing a shared and decentralized distributed 
ledger (Xia et al. 2022). A blockchain technology, generally 
known as a distributed ledger, can store all information or 
data related to industry assets like a register (Thakur 2022). 
These data are primarily related to money and identities.

Integrating artificial intelligence and machine learning 
algorithms with the internet of things automates process 
dynamics within pharmaceutical wastewater treatment sys-
tems and related industrial networks, improving user-friend-
liness of business processes, which are essential for waste-
water and water treatment industries (Sandner et al. 2020).

By the integration of artificial intelligence and machine 
learning into cyber-physical systems or its related informa-
tion security infrastructure, the overall systems enhance pat-
tern recognition, online transaction networks, supply chain 
management, troubleshoot information security vulnerabil-
ities, and optimize outcomes of the wastewater treatment 
processes (Clark and Burstall 2018; Fernández-Caramés and 
Fraga-Lamas 2022; Sandner et al. 2020). In addition, Fig. 4 
represents an artificial intelligence-enabled smart grid dis-
tribution network that integrates renewable energy technol-
ogy, such as solar power to achieve energy efficiency and 
sustainability.

Overall, we observed that integrating artificial intelli-
gence technologies in automation may help improve data 
analytics. Still, implementation costs are expensive and 
require specialized knowledge, system interoperability, and 
complex computational resources.
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Big data

Water quality in pharmaceutical wastewater treatment plants 
can be optimized before discharging the effluents into the 
environment. The involvement of simulation models for 
examination of wastewater quality can be performed using 
databases, harmonic function, phenomenological methods, 
and benchmark simulation models, traditionally used to 
predict the behaviour and fate of wastewater constituents 
(Ly et al. 2022). Comprehensive knowledge and sophisti-
cated control systems are required to facilitate model cali-
bration and validation, making the control process a major 
disadvantage.

Machine learning can predict various water-related 
variables and wastewater constituents, unlike traditional 
approaches. It does not require expert knowledge to oper-
ate. It can handle and analyse large datasets and requires 
less processing power. In addition, complex, nonlinear 
variables of wastewater quality parameters can be modelled 
using computed autoregressive integrated moving average to 
forecast the levels of nitrogen, biochemical oxygen demand, 
chemical oxygen demand, phosphorus, ammonia, total sus-
pended solids with relatively high accuracy ranging between 
71 and 97% for the training data and low prediction errors 
less than 9% for the testing data (Ly et al. 2022).

Other machine learning algorithms such as random for-
est, support vector machine, long short-term memory, gra-
dient tree boosting, adaptive neuro-fuzzy inference system, 
and so on all forming parts of deep learning architectures 
can be used to forecast and perform extensive data analysis 
of wastewater quality and its constituents. Artificial neural 
network and genetic algorithms can model pharmaceutical 
wastewater treatment systems for advanced oxidation pro-
cesses to predict the operational parameters involving three-
step processes such as acidification, adsorption, and photo-
catalysis to solve wastewater composition (Yang et al. 2021).

Data mining techniques such as artificial neural net-
work and M5 tree model can be used to analyse a range 
of datasets due to its reliability, robustness, and high gen-
eralization ability to achieve a coefficient of determina-
tion greater than 0.90 for forecasting biochemical oxygen 
demand, chemical oxygen demand, and total suspended 
solids (Asami et al. 2021). However, using photocatalytic 
approaches has numerous limitations, such as lengthy pro-
cedures and impractically large amounts of wastewater 
treatment catalysts with limited resource recovery process.

The integration of sonolysis with photocatalysis could 
benefit the environmental remediation, maximizing the 
catalyst surface area and rapidly improving the produc-
tion of free radicals to degrade toxic organic pollutants in 

Fig. 4  Artificial intelligence-enabled smart grid distribution network 
for integrating renewable energy technology in pharmaceutical waste-
water treatment plants to achieve process sustainability and decentral-
ize energy management systems. This smart grid integrates energy 
distribution and digital communication technology to exchange two-
way flow of electricity and energy usage data, offering personalized 
information related to the optimization of distributed energy systems 
and power outages or process equipment failures that impact the over-

all reliability of pharmaceutical wastewater treatment systems. Vari-
ous electronic devices such as data concentrators, gateways, feeder 
meters, and aggregation meters can process data from parts of the 
smart grids such as consumption points, secondary substations, and 
so on. It helps to streamline the energy forecast across the grids to 
connect renewable energy technologies to large-scale pharmaceutical 
wastewater treatment plants



 Environmental Chemistry Letters

pharmaceutical wastewater (Theerthagiri et al. 2021). On 
the other hand, the electrocatalytic reduction of nitrog-
enous compounds, such as nitrate waste into ammonia, 
facilitates rapid removal of toxic nitrate contaminants and 
forming an alternative production of ammonia with sec-
ondary benefit compared to conventional Haber–Bosch 
process (Theerthagiri et al. 2022b).

For the advancement of photo- and electrocatalytic 
technologies, a fabricated electrochemical sensor based 
on novel zinc sulphate/gold/multi-walled carbon nanotube 
nanocomposites can be integrated into the process control 
system using big data mining technique in pharmaceutical 
wastewater treatment systems to improve the sensitivity of 
detection on toxic organic nitrogenous pollutant, which is 
part of human metabolites produced from the breakdown 
of pharmaceutical ingredients and strengthening process 
analytics of wastewater quality (Naik et al. 2021).

The future design and fabrication of innovative pulsed 
laser-assisted technologies can improve structural optimi-
zation of electrochemical sensors with electrocatalytic per-
formance in various renewable energy and environmental 
remediation processes (Theerthagiri et al. 2022a). In addi-
tion, pulsed laser irradiation technologies can dechlorinate 
persistent organic pollutants containing chlorine-based com-
pounds, which are by-products widely generated in industrial 
production (Yu et al. 2021).

Overall, we observed that data analytics processes can 
revolutionize wastewater treatment technologies, but opera-
tion and maintenance costs are high. Compliance concerns 
are also associated with reporting errors in the systems, sta-
bility of operational systems, data security vulnerabilities, 
data acquisition, and interoperability of existing systems.

Cyber‑physical systems

The increasing interconnections and interdependencies 
between cyber-security systems, physical assets, humans, 
and environment resulted in rapid evolution of pharmaceu-
tical wastewater treatment systems (Mohebbi et al. 2020). 
Technological innovation and advancement in pharmaceuti-
cal technology, environmental sustainability, economic and 
regulatory factors all influence wastewater treatment systems 
(Cui 2021).

In addition, cyber-physical framework provides an inte-
grated approach to facilitate efficient management of tech-
nologies, improving precision in detecting wastewater con-
stituents and optimizing output variables. Adaptable digital 
solutions can help various stakeholders understand the effect 
of pharmaceutical wastewater quality on public health and 
improve water governance by promoting social awareness 
and collaboration between wastewater treatment industries 
and citizens (Alexandra et al. 2023; Radini et al. 2021).

On the other hand, maintenance of cyber-physical sys-
tems in modern pharmaceutical wastewater treatment plants 
requires improving the cyber-resilience of information 
security infrastructure to complement a traditional physi-
cal resilience assessment (Colabianchi et al. 2021; Patriarca 
et al. 2022). To address the level of resilience, stochastic 
cyber-resilience metrics must be proposed and computed to 
assess the impact of cyber-attacks on information technology 
infrastructure to uncover the vulnerability of the industrial 
control systems and its distributed networks (Avraam et al. 
2023; Chaves et al. 2017; Li et al. 2023c; Yang et al. 2022).

More critically, challenges arise from ageing informa-
tion technology infrastructure, environmental impact, and 
sustainability of pharmaceutical wastewater treatment sys-
tems require improvement in data management, analytics 
and cyber-security systems, requiring knowledge and skills 
of experts to satisfy regulatory compliance and governmen-
tal requirements as well as supporting the decision-making 
process of various stakeholders (Bhandari et al. 2023).

Understanding the evolutionary process and its influences 
on pharmaceutical wastewater infrastructure and character-
istics affects the quality of water and sanitation services, 
which drive socio-economic changes in industrial wastewa-
ter treatment systems. New strategies must be developed to 
solve health-related problems arising from pharmaceutical 
water pollution (Foglia et al. 2021).

Physical assets in wastewater treatment industries that 
involve various water infrastructures, such as hydraulic 
pumps, network analysis of processes, optimization of water 
distribution, and output variables, can influence the progres-
sion of wastewater infrastructure development.

Various stakeholders must be involved in the planning 
and decision-making process when configuring the cyber-
physical systems of industrial wastewater treatment pro-
cesses, with responsibilities assigned to federal and local 
governments to manage water resources and deliver sanitary 
drinking water and clean wastewater for public and agricul-
tural uses (Hasan et al. 2023).

The rapid transformation of digital technology used in 
cyber-physical systems improves the techno-economy of 
wastewater treatment services, enabling the decision-mak-
ing process using internet of things and assisting industry 
professionals to achieve a new paradigm of water resources 
management (Song et al. 2023).

Figure 5 outlines the evaluation criteria for appraising 
the artificial intelligence and machine learning-based opti-
mization technologies recommended for pharmaceutical 
wastewater treatment systems. It shows a specific framework 
related to evolutionary artificial intelligence technologies 
that can be implemented into pharmaceutical wastewater 
treatment systems to satisfy industry standards.

In addition, Fig. 6 shows a structured analysis of various 
artificial intelligence and machine learning approaches and 
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their suitability for addressing specific challenges encoun-
tered in pharmaceutical wastewater treatment systems. 
Additionally, Table 3 critically evaluates the evolutionary 

characteristics of the pharmaceutical wastewater treatment 
systems from multidimensional perspectives. Furthermore, 
Table 4 critically evaluates the findings of different artificial 

Fig. 5  Evaluation criteria for critical appraisal of artificial intel-
ligence and machine learning technologies recommended for use 
in wastewater treatment systems. These evaluation criteria form the 
rubric for artificial intelligence tool evaluation to provide a frame-
work for assessing the artificial intelligence tools based on a set of 
criteria, including interoperability, functionality, compatibility, and so 
on. Critical process involves the rigorous assessment of data quality 

and model performance, including predictive accuracy and process 
control capabilities. The top hierarchy represents the most critical 
component of artificial intelligence tool: autonomous operation, pro-
cess efficiency, and technical efficiency. Last but not least, the bot-
tommost layer in the pyramid is also important for any artificial intel-
ligence integration into the wastewater treatment industries, but the 
regulatory frameworks and industry standards may differ worldwide

Fig. 6  A structured analysis of various artificial intelligence and 
machine learning approaches and their suitability for specific chal-
lenges within pharmaceutical wastewater treatment systems to facili-
tate autonomous process control systems and global optimization of 
wastewater quality characteristics and other operational conditions. 
The top pedigree represents the main category of algorithm in which 
supervised learning involves a formula generation based on input 

and output values. It uses labelled training datasets, whereas unsu-
pervised learning does not. Reinforcement learning trains software 
to make decisions and generate the most optimal solutions. Under all 
subcategory of learning algorithms, clustering is the most common 
one. Clustering is used to detect anomalies and outliers in the dataset. 
Classification algorithms determine the category of an entity, object, 
or event in a given dataset
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intelligence and machine learning optimization techniques, 
supporting the empirical evidence with an interpretation to 
address the research deficiencies and outcomes.

Overall, we observed that data security vulnerabili-
ties are significant issues due to difficulty authenticating 
the information data in automated systems. Coordinated 
cyber-attacks on critical infrastructures and industrial 
control systems can affect community service availability. 
More efficient and robust solutions are required to form a 
new ecosystem that involves cyber-physical systems com-
bined with the internet of things to operate a massive and 
complex wastewater treatment system.

Conclusion

Sustainability of pharmaceutical wastewater treatment 
systems is increasingly critical in the modern world. Inte-
grating artificial intelligence and machine learning-based 
models can potentially revolutionize the wastewater sec-
tors, including public health and environment. In particu-
lar, managing wastewater quality and optimizing process 
parameters using artificial intelligence technologies help 
achieve the best removal rate of pharmaceutical pollutants 
to minimize the likelihood of pathogen transmission and 
spread of viral vectors and antimicrobial resistance genes 
in complex pharmaceutical wastewater environments.

Effective monitoring process dynamic conditions 
demand advanced process control systems to manage 
water resources. The application of blockchain-related 
technologies towards sustainable wastewater and energy 
management should be extended to both metropolitan and 
rural areas, but further technological investigation, cost, 
and carbon footprint assessment should be conducted to 
evaluate the techno-economic and financial viability of 
such technologies.

The technological capabilities of internet of things and 
cutting-edge cyber-physical systems in the digital econ-
omy to integrate decision-making processes should be 
incorporated into wastewater treatment industries to pro-
mote intelligent waste transportation systems, minimize 
carbon footprint, and remove barriers to resource recovery 
and energy management processes. Several points of sum-
mary for future directions are outlined as follows:

(1) Artificial intelligence and machine learning approaches 
are applied to develop predictive models for monitoring 
pharmaceutical wastewater quality and its constituents 
in complex wastewater matrices.

(2) Minimization of operational cost and improvement in 
energy efficiency of pharmaceutical wastewater treat-
ment systems require the integration of artificial intel-
ligence technologies.Ta
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(3) Predictive control of various contaminants, including 
viral vectors, antimicrobial resistance genes, severe 
acute respiratory syndrome coronavirus 2, water qual-
ity parameters, chemical oxygen demand, biochemi-
cal oxygen demand, phosphorus and other organics or 
nutrient removal, is crucial for future research.

(4) Sanitation and disinfection services are critical for 
pharmaceutical wastewater treatment systems, and 
emerging artificial intelligence technologies should 
be used to optimize renewable energy, process control 
systems, and wastewater treatment processes.

(5) Comprehensive models involving socio-economic, 
governmental, environmental, techno-economic, tech-
nological innovation, and so on require thorough inves-
tigation when designing pharmaceutical wastewater 
treatment systems.

(6) Advancements in cyber-physical systems can increase 
sensitivity for fault detection, troubleshoot technical 
issues, improve diagnosis and prognosis of vulnerabil-
ity in information technology infrastructure, and help 
maintain distributed networks of pharmaceutical waste-
water treatment systems.

(7) Different approaches should be implemented to iden-
tify and analyse vulnerabilities and risks in information 
technology infrastructure, but identification of complex 
dynamic behaviours, uncertainties, or perturbations in 
complex process control systems and data management 
processes in pharmaceutical wastewater treatment sys-
tems requires artificial intelligence technologies. Stand-
ardization of frameworks and assessment metrics will 
assist in computing efficiency, improving the reliability 
and performance of pharmaceutical wastewater treat-
ment technologies.
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