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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder affect-
ing over 6 million people globally. Although there are symptomatic treatments that can increase the
survivability of the disease, there are no curative treatments. The prevalence of PD and disability-
adjusted life years continue to increase steadily, leading to a growing burden on patients, their fam-
ilies, society and the economy. Dopaminergic medications can significantly slow down the progres-
sion of PD when applied during the early stages. However, these treatments often become less ef-
fective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so
that the patients can remain self-sufficient for the longest period of time possible. Unfortunately,
diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD
diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that
can perform automated diagnosis of PD, are gaining attention from healthcare services. In this re-
view, we have identified 63 studies published between January 2011 and July 2021, that proposed
deep learning models for an automated diagnosis of PD, using various types of modalities like brain
analysis (SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG).
From these studies, we identify the best performing deep learning model reported for each modality
and highlight the current limitations that are hindering the adoption of such CAD tools in
healthcare. Finally, we propose new directions to further the studies on deep learning in the auto-
mated detection of PD, in the hopes of improving the utility, applicability and impact of such tools
to improve early detection of PD globally.

Keywords: Parkinson’s disease (PD); deep learning; computer-aided diagnosis (CAD); SPECT; PET;
MRI; EEG; gait; handwriting; speech
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1. Introduction

The purpose of this systematic review is to provide a comprehensive review of auto-
mated Parkinson’s disease (PD) detection using deep learning models, and to further pro-
mote deep learning models as a potential computer-aided diagnostic (CAD)-based tool
for clinical decision support systems. In Section 1, we introduced the background of PD,
the limitation of the current diagnostic method, and the CAD tool being a possible solu-
tion to alleviate the burden of neurologists. Thereafter, we elaborated on the benefit of
deep learning models over machine learning models as a CAD tool and illustrated the
mechanics of the two most popular types of deep learning models: convolutional neural
network (CNN) and long short-term memory (LSTM). Section 2 describes the adoption of
the PRISMA model for the systematic review of automated PD detection studies using
deep learning models. To build the systematic review, a total of 63 studies were chosen
after a systematic removal of the irrelevant studies. In Section 3, these studies were then
split into two categories: brain analysis and motor symptoms. Subsequently, data analysis
and visualization were performed for each category. In Section 4, we also discussed the
current trend observed from the 63 research studies, the limitations of deep learning mod-
els for CAD detection, and presented the proposed directions for future work which can
increase the adoption of deep learning models as a CAD tool. Finally, Section 5 concludes
the review by summarizing the key findings, limitations, and the potential of deep learn-
ing models as a CAD tool to support clinical decisions.

1.1. Background

PD is an incurable neurological disease that results in progressive deterioration
within the central nervous system and debilitating neurological symptoms [1]. The un-
derlying cause of the neurodegeneration in PD is still partially understood, but key path-
ophysiological features are the gradual loss of dopaminergic neurons in a part of the mid-
brain known as substantia nigra pars compacta (SNpc), and the accumulation of mis-
folded alpha-synuclein protein in ‘Lewy bodies” within the cytoplasm of neuronal cells in
several different brain regions [2]. The dopaminergic pathway between the SNpc and the
dorsal striatum, also known as the nigrostriatal pathway, is critical for movement control.
Hence, disruption to the nigrostriatal pathway results in motor abnormalities in affected
individuals with PD, including tremors, rigidity, and bradykinesia [3]. Affected individ-
uals also experience non-motor symptoms, including constipation, depression, sleeping
disorders, and reduction of smell [1,3].

Between 1990 and 2016, the number of people diagnosed with PD had doubled from
2.5 million to 6.1 million. This means the age-standardized prevalence rate increased by
21.7% [4]. Hence, PD is one of the most prevalent neurological disorders, with immense
societal impacts, yet no curative treatments [5]. The gold standard treatment for PD is the
dopamine precursor amino acid levodopa, which, in the initial stages of PD at least, can
alleviate many motor symptoms by substituting for striatal dopamine loss [6]. However,
its use can be complicated by the development of motor complications, including drug-
induced dyskinesias, and patients also have L-DOPA-resistant motor features including
treatment-resistant tremor, postural instability, swallowing and speech disorders [2]. A
range of modifications of dopaminergic treatments, as well as non-dopaminergic pharma-
cological therapies and non-pharmacological treatments such as deep brain stimulation,
may be required over time. Rehabilitation and psychosocial supports are also key to try
and maintain affected individuals’ quality of life, and thus early diagnosis to allow insti-
gation of expert multidisciplinary care is a key priority. Moreover, novel therapies that
may actually modify the underlying disease processes are the goal of a large body of
global research: it is likely that such advanced therapeutics, such as gene therapy, will
need to be instigated as soon as possible in order to have maximal effect, as has been found
to be the case for other degenerative conditions such as spinal muscular atrophy [7].
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Therefore, early diagnosis is especially crucial in the optimal current and future manage-
ment of PD, to ensure maximal functional outcomes for affected individuals.

At present, the diagnosis of PD is based on core clinical features, and the accuracy of
clinical diagnosis can be improved by following standard clinical criteria, such as the UK
Parkinson’s Disease Society Brain Bank (UKPDSBB) [8], such as the presence of bradyki-
nesia and absence of certain exclusion criteria. This clinical criteria rely on the expertise of
a neurologist, but still are flawed: for example the diagnostic accuracy using the
UKPDSBB, even in specialist neurology centres, is only slightly above 80%, compared to
post-mortem pathological examination as gold standard [9]. Moreover, there is a global
shortage of neurologists, especially in countries experiencing aging populations where
there is a high frequency of neurological disorders [10]. This increases the waiting time
for affected individuals to get diagnosed with PD. As a consequence, 60% of the dopamin-
ergic neurons are typically lost by the time of diagnosis [2].

In efforts to meet the healthcare demands, there are interest in the possibility of using
CAD tools based on artificial intelligence methods, namely machine learning (which po-
tentially involves the more conventional pattern recognition approaches) or deep learning
(which may involve sophisticated multi-layered neuronal systems), to perform an auto-
mated diagnosis of PD [11-13]. These CAD tools can perform automated detection using
the biomarkers of PD, such as Electroencephalogram (EEG) signals, posture analysis in
the gait cycle, voice aberration, or brain imaging such as Magnetic Resonance Imaging
(MRI) and Positron Emission Tomography (PET) [14]. In a conventional machine learning
model, it is mandatory to extract the features from the biomarkers and then select the most
salient features in order to train the model [15-19]. This is a required step because machine
learning models by itself are not capable of learning the high dimensional data in their
raw forms, otherwise, the model is likely to overfit the dataset [20]. Also, the selection of
the most relevant features must be carried out by an experienced expert system that is
knowledgeable in terms of various feature selection tools [15,16]. This has led to the some-
what poor adoption of machine learning models as the future CAD tools as feature ex-
traction and selection can be complicated procedures comprehensible by machine learn-
ing experts, but not so by the end-user of the CAD tool [21,22]. Such end-users may in-
volve healthcare experts such as practicing clinicians, health researchers, or other domain
applications.

Deep learning models, which are of increasing interest with big data and can resolve
some of the limitations of machine learning models by eliminating the need for feature
selection, feature extraction tools. Such models are capable of learning the high-dimen-
sional data, and they may function analogously to the neurons in the human brain [23].
The conventional forms of machine learning models known as artificial neural networks
(ANN) consist of three main layers: the input, the hidden, and the output layer as shown
in Figure 1. All three layers within a neural network contain artificial neurons that are
interconnected, as denoted by the black lines. As the neural network learns via a learning
algorithm (e.g., backpropagation), the weights of the connection (black lines) between the
neurons update iteratively [23]. The neurons, which act as an individual classifier, deter-
mines the output signal after processing the weights from its previous connections [23].

When an ANN model has been constructed into an architecture that has more than
one hidden layer, the system is then known as deep neural networks (DNN), and such
systems are then capable of learning the data with a higher degree of complexity [23] (Fig-
ure 1). In deep learning algorithms, there are often other classes of model, such as CNN,
recurrent neural network (RNN), and LSTM, that utilize DNN as their basic principal ar-
chitecture.
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Figure 1. Basic architecture of ANN and DNN models.

1.2. Convolutional Neural Network (CNN)

In any CNN model, the input layer of a typical DNN model is replaced by a series of
convolutional and pooling layers, as also shown in Figure 2. If DNN is described as the
neurons in our brain, then the CNN may be considered as the human visual system [24].
The first convolutional layer contain numerous filters which extract features from the in-
put image to generate multiple feature maps. The subsequent pooling and convolutional
layers reduce the dimension of the feature maps and further enhance the features, thereby
reducing the complexity of the feature map and the likelihood of overfitting [25]. This
could be considered as analogous to the human visual system, where the visual cortex
attempts to break down images into simpler representations for the brain to perceive the
image with ease [24].

Fully-connected
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Pooling Pooling
layer Convolutional layer

layer @

Output

» o
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Figure 2. Basic architecture of the CNN model.

After the final pooling layer, the feature maps are converted into single-list vectors
at the flatten layer (Figure 2). The neurons in the neural networks, also known as the fully
connected layers, will then learn to recognize the features from the single-list vectors and
perform image classifications [25]. Hence, CNN models are known for their exemplary
image recognition ability, which many studies have successfully demonstrated the suc-
cess of CNN in medical imaging, including the recognition of breast tumors, and eye dis-
eases using mammogram and color fundus images, respectively [26]. Apart from medical
images, CNN has also demonstrated success in biometric face recognition systems for hu-
man tracking purposes [27,28].
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1.3. Long Short-Term Memory (LSTM)

The LSTM model is an improvement from its predecessor methods known as RNN
[16]. Just like its name suggests, the LSTM model attempts to mimic how the brain stores
memories and makes predictions based on immediate past events stored in the memories
[24]. Both the RNN and the LSTM models are known for their ability to recognize patterns
in sequential data [16]. However, the vanishing gradient has often been a very common
problem in RNN models, where a large information gap exists between the new and old
data, causing erroneous signals to vanish during the model’s training phase. As a result,
the RNN model is not able to learn the data that has long-term dependencies. Hence, the
LSTM model has been developed to resolve the problems of vanishing gradient in RNN
models [29].

The neurons in a typical LSTM model adopt a unique gate structure [30] denoted as
the forget gate, input gate, and output gates (Figure 3). The input gate decides if the new
information (x:) should be stored in the cell, the output gate decides what information
should output as the hidden state (h:), and the key to eliminating the vanishing gradient
problem lies in the forget gate [30,31]. The sigmoid (o) function in the forget gate is used
to deduce if the information brought from the previous cell state (Ct1) should be kept or
forgotten, thereby removing irrelevant data, and reset the information in the cell appro-
priately [30,31]. This prevents large discrepancies between the old and new information
that will eventually lead to vanishing gradient problems. In addition, useful information
continuously gets backpropagated in the LSTM model, allowing it to memorize patterns
in long-term dependencies [30,31]. Hence, the strong pattern recognition ability of LSTM
models is widely implemented in applications such as speech and handwriting recogni-
tion [32,33]. LSTM models are also suitable in forecasting stock prices in financial markets
which are dynamic and non-linear in nature [34,35].
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Figure 3. Basic architecture of the LSTM model.

2. Materials and Methods

This systematic review applied the PRISMA model [36] to analyze the most relevant
studies on PD detection using deep learning models from the period January 2011 to July
2021. All the resources were systematically searched through PubMed, Google Scholar,
IEEE, and Science Direct using the Boolean search strings, as shown in Table 1. A total
number of 794 studies that contained these Boolean search strings were identified, which
also included 178 studies from PubMed, 248 studies from Google Scholar, 135 studies
from IEEE, and 233 studies from Science Direct. From the 794 articles initially identified,
a total of 110 duplicate studies were removed. After this, a total of 612 articles (61 tradi-
tional Machine Learning studies, one non-human study, 104 conference papers, 402 Non-
CAD for PD studies, 14 irrelevant studies, 14 non-English articles, and 16 books) were also
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excluded according to their relevance with this review. Eight studies were further re-
moved from the list as they did not provide model-accuracy results. The final number of
research studies that qualified for inclusion in this review was set to 63. Figure 4 shows a
detailed process of the PRISMA method in the selection of the most relevant articles.

Table 1. Summary of the Boolean search string across the respective journal article databases.

Boolean Search String

Database [Title] AND [Title/Abstract] No. of Studies
PubMed lll\Ieural netvx.zorl,(’ 178
Deep learning
Google Scholar “Prediction” OR “Diagnosis” OR “Detection” 248
[EEE parkinson” AND “disease Ill\Ieural netvx.zorlf, 135
Deep learning
Science direct Neural network 233

“Deep learning”

Pubmed (178); Google scholar
(248); IEEE (135); Science direct
(233);

Total : 794

=
=}
=
©
i
=
=
=
U
e

Duplicates : 110
(Removed)

No. of unique article : 684

Screening

Machine learning studies : 61
Non-human studies : 1
Conference papers : 104
Non-CAD for PD studies : 402
Irrelevant : 14
Non-English article: 14
L Book : 16
No. of studies for qualitative Total : 612 (Removed)
synthesis : 72

Eligibility

No. of Studies that did not
> provide model accuracy result: 9
(Removed)

L
No. of studies for
quantitative synthesis : 63

Included

Figure 4. Flow diagram of the PRISMA model in the article selection process to build the systematic
review.

3. Results

There are two parts to this section. Section 3.1 Brain analysis covers 23 deep learning
studies performed on Single Photon Emission Computed Tomography (SPECT), PET,
MRYI, ultrasound, and EEG. Section 3.2 Motor symptoms covers 40 deep learning studies
performed on gait, handwriting, speech, Electromyogram (EMG), and other movement-
related tests. The details of the deep learning studies under brain analysis and motor
symptoms categories are in Appendix A Tables Al and A2, respectively.
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3.1. Brain Analysis

MRI, PET, and SPECT are the common brain imaging modalities used to diagnose
PD. The public image dataset for these three imaging modalities can be downloaded from
Parkinson’s Progression Markers Initiative (PPMI) database (https://www.ppmi-
info.org/, accessed on 12 October 2021). Numerous studies in Appendix A Table Al had
attempted to develop deep learning models to distinguish the brain of PD patients from
healthy controls. Among them, a majority of the studies had chosen SPECT images to train
their deep learning models; 8 studies used SPECT images, 5 studies used MRI images, and
3 studies used PET images (Figure 5). Studies that had used SPECT images for automated
PD detection also achieved a higher model performance, as compared to MRI and PET
images (Figure 6). This may be because DaTscan is used for SPECT imaging. DaTscan is
the name of the radioactive tracer, ioflupane (I123), that is specifically used to detect do-
pamine transporters in the brain [37]. Hence, it can better represent the loss of dopamin-
ergic neurons in the PD brain [38]. On the other hand, the radioactive tracer used in PET
for PD diagnosis is known as 8F-FDG, which is primarily used to assess neuronal function
via regional cerebral glucose metabolism [39].

N CNN BN DNN Others

[=]

1 2 3 4
No. of studies

w
@
-
[s+]

Figure 5. Stacked bar plot of the number of deep learning models proposed for each modality of brain analysis.
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Figure 6. Box and whiskers plot of the model accuracy of deep learning studies using various mo-
dalities of brain analysis.

A majority of the studies that focused on image analysis proposed CNN models for
an automated detection of PD (Figure 5). For the case of SPECT imaging, the highest per-
forming CNN model was developed by the study of Choi et al. [37], which had evaluated
their proposed model (i.e., PD net) with two datasets: the PPMI dataset, which obtained
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an accuracy of 96%, and a private dataset (SNUH cohort) with an accuracy of 98.8% (Fig-
ure 7, Appendix A Table Al). Both results exceeded the performance of two human raters
whose accuracies were 90.7% and 84% each for the PPMI dataset. There was only one
study by Ozsahin et al. [40] that has proposed a back-propagation neural network
(BPNN), which achieved the highest model accuracy of 99.6% using the binarized image
of SPECT images (Figure 7, Appendix A Table Al). However, the applicability of the CNN
model has been advocated in a majority of studies in SPECT imaging (Figure 5). In any
event, we aver that for practical and ethical purposes, the suitability of the CNN or the
BPNN model for SPECT imaging should still be assessed via clinical trials. As for the PET
and the MRI study cases, we note that the highest performing CNN model was 93% [41]
and 95.3% [42], respectively (Figure 7, Appendix A Table Al).
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Figure 7. Bar plot representation of the model accuracy by various investigators for different
modalities of brain analysis.

To date, only the study of Shen et al. [43] had attempted to use ultrasound, namely
transcranial sonography (TCS) images for automated PD detection (Appendix A Table
A1l). They proposed a deep learning model known as Multiple kernel mapping —broad
learning system (MEKM-BLS) that has a wider feature and enhancement node/neurons
than a typical DNN model. This method has the ability to map the features from the fea-
ture node directly onto the enhancement node. However, their model only achieved an
accuracy of 78.4%, lower than that of MRI, PET and SPECT. Nonetheless, ultrasonography
has several advantages such as low cost, fast, and does not have radiation exposure [44].
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Furthermore, a study by Mehnert et al. [44] demonstrated that interpretation of TCS for
PD diagnosis can reach a sensitivity score of 95% by experienced sonographers. Hence,
there is room for improvement for ultrasonography in automated PD detection, and fu-
ture work to implement CNN models for the interpretation of TCS images should be con-
sidered.

Apart from brain imaging issues, the physiological signals such as the EEG can also
reflect brain abnormalities that are unique to the prevalence of PD [45]. This aspect has
been reported, particularly that the EEG frequency of a PD patient is abnormally slow,
compared to that of a healthy individual [46]. In this review, we have found 6 studies that
had proposed deep learning models to recognize EEG characteristics for automated de-
tection of PD. Nearly half of these studies proposed the use of the CNN model [25,47,48],
and the remaining three studies had proposed the application of an RNN [49], DNN [50],
and a hybrid deep learning model that combines CNN and RNN algorithms [51] (Figure
5). The best-performing model was developed by Khare et al. [47], who has also proposed
a CNN model with smoothed pseudo-Wigner Ville distribution (SPWVD) features from
EEG signals as an input, and further obtained an accuracy near 100% (Figure 7, Appendix
A Table Al). This shows that CNN models are likely to achieve a high classification accu-
racy for one-dimensional data such as EEG signals. Like the data of ultrasound tests, the
EEG data are somewhat cheaper and offer a low-risk alternative to the MRI, PET, and
SPECT datasets, but unlike ultrasound, the overall accuracy of studies that implemented
EEG signals (95.8%) is on par with studies that have used SPECT images (94.1%) (Figure
6).

3.2. Motor Symptoms

Since PD is characterized by involuntary motor control, an assessment of motor can
be utilized for the diagnosis of PD. Such assessments could include gait, handwriting,
speech, and other movement-related tests as illustrated in Figure 8.

_‘ o
00 e —
. | : ®
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o . *
£ 80
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65
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Figure 8. Box and whiskers plot of the model accuracy of deep learning studies using various mo-
dalities of motor symptoms.

In principle, Gait refers to the walking patterns of an individual. In the case of PD,
the body’s stiffness and postural instability may worsen as the disease progresses, leading
to gait disturbance [52]. In this respect, the gait features can be utilized to train deep learn-
ing models in the detection of PD. The key features of gait include kinetic features such as
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ground reaction force (GRF) and kinematics features such as stance and swing phase of
the foot [52]. There are currently 11 deep learning studies that have attempted to analyze
the gait for PD detection, and a wide variety of deep learning models have thus been pro-
posed (Figure 9, Appendix A Table A2). Among them, two studies while proposing a set
of hybrid models by combining the CNN and LSTM model have achieved a high overall
accuracy [53,54] (Figure 9). The best-performing hybrid CNN-LSTM model was also pro-
posed by Xia et al. [53], using vertical GRF at multiple points of time during the gait cycle.
The idea of implementing a hybrid CNN-LSTM model for gait analysis is to have the CNN
layer extract the salient gait features, and the LSTM layer to analyze the temporal pattern
of the gait features in a walking cycle. As a result, Xia et al. [53] achieved the highest model
accuracy of 99.1% (Figure 9, Appendix A Table A2), using a dataset that came from three
research groups: [55-57]. Similarly, two other studies that had proposed DNN [58] and
LSTM [59] model also achieved high-performance results that are on par with the CNN-
LSTM model (Figure 9, Appendix A Table A2). Hence, future deep learning studies based
on gait analysis could focus on the development and implementation of these three mod-

els.
98.0 98.3 -
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Figure 9. (a) Pie chart representation of various deep learning models proposed for gait analysis and
(b) Bar chart representation of model accuracy for each deep learning study in gait analysis.

The deterioration of handwriting ability is another telltale symptom of PD, and this
is often seen in a majority of PD patients but is not included as a diagnostic criterion of
PD [60]. A PD patient may exhibit abnormally small handwriting, termed micrographia,
due to rigidity and tremors in the writing arm [61]. Thirteen studies on deep learning
algorithms have attempted to diagnose PD using handwritten drawings with one of the
three common PD handwriting datasets: PaHaW dataset [62], HandPD [63], and
NewHandPD [64]. All three datasets involve a series of drawing and writing tests, and
one of the common tests that exist in all three datasets is the spiral drawing test. Similar
to the brain imaging, most studies had proposed using CNN models to differentiate hand-
written drawings of PD patients from healthy controls (Figure 10). The best performance
was achieved by Kamran et al. [65] who has tested the six common transfer learning ar-
chitecture of CNN, namely AlexNet [66], GoogleNet [67], VGGNet-16/19 [68], and ResNet-
50/101 [69]. These transfer learning models have been previously trained using a well-
known image dataset known as ImageNet which consists of more than 1 million images.
Kamran et al. [65] then fine-tuned the transfer learning models to adapt to the handwritten
drawings of PD and healthy controls, and the highest model accuracy was achieved by
AlexNet [66] with 99.22% (Figure 10, Appendix A Table A2).
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Figure 10. (a) Pie chart representation of various deep learning models proposed for handwriting

analysis and, (b) Bar chart representation of model accuracy for each deep learning study in hand-
writing analysis.

Only two studies have to far attempted to use a small-scale movement-related test
like swallowing [70] and finger tapping [71] (Appendix A Table A2). These two studies
had proposed different deep learning models each, and the best performance of 82.3%
was achieved by Jones et al. [70], using an ANN model with video-fluoroscopic and man-
ometric data collected from the boluses which were delivered to the subject’s oral cavity
using a syringe. Videofluoroscopic data includes information like laryngeal, hyoid, and
epiglottic movement, while manometric data includes information such as rise time and
rate of the velopharynx and mesopharynx.

Besides the visible movement disorder, the muscle control of speech is also affected
in PD [72]. As a consequence, people with PD will experience voice abnormalities such as
lower voice volume and slurred speech [72]. There are currently twelve studies that had
attempted to use voice aberration to diagnose PD (Figure 11, Appendix A Table A2). A
wide variety of deep learning models were proposed with half of these studies being on
CNN models (Figure 11). Two of the CNN models were seen to achieve a high model
accuracy of 99.5% [73] and 99.4% [74] (Figure 11, Appendix A Table A2). However, the
best performing model was developed by Ali et al. [75] who proposed a genetically opti-
mized neural network (GONN) with a model accuracy of 100% (Figure 11, Appendix A
Table A2). At present, more studies had supported CNN model for speech analysis. None-
theless, it should be noted that clinical trials are required to further justify if GONN or
CNN is a better alternative for speech analysis.
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Figure 11. (a) Pie chart representation of various deep learning models proposed for speech analysis
and, (b) bar chart representation of model accuracy for each deep learning study in speech analysis.

Like the analysis of the brain, motor symptoms of PD can also be assessed by physi-
ological signals, namely EMG. However, only one deep learning study has attempted to
use EMG for PD diagnosis with the ANN model [76], and the performance of their pro-
posed model was 71%, less than that of the studies that focused on gait, handwriting, and
speech (Appendix A Table A2). Hence, for EMG to be recognized as a potential biomarker
for PD diagnosis, more research in this area is required. Otherwise, datasets such as hand-
writing and speech recordings, which have easier data collection procedures, are better
alternatives than EMG.

Lastly, two studies did not limit themselves to only one type of modality (Appendix
A Table A2). The study of Vasquez-Correa et al. [77] used three input signals—speech,
handwriting, and gait—for multimodel analysis of PD using the CNN model and
achieved 97.6% accuracy. Oung et al. [78] used two input signals based on speech and
motion data derived from wearable sensors to propose an extreme learning machine
(ELM) for the detection of PD. Their ELM model architecture is similar to an ANN model
whereby there is only one hidden layer in its network but the training process of an ELM
differs from the ANN model. Basically, the ELM model only requires a single iteration for
model training through a random selection of the most optimal hidden neurons, which
results in a much faster training time and a lesser overfitting problem compared with the
ANN model [79]. The model accuracy of ELM obtained by the study of Oung et al. [78]
was 95.9%, and this figure is comparable to the accuracy of the CNN model proposed by
Vasquez-Correa et al. [77] (Appendix A Table A2). Based on a synthesis of these infor-
mation, we conclude that deep learning models that are also capable of multimodel anal-
ysis of PD, may be a useful practical tool for neurologists. In the future, as more clinical
information and particularly the detailed and correctly labelled electronic datasets are
available, deep learning models may further aid in the diagnosis of PD. Hence, future
studies on deep learning should perhaps consider using multiple types of input signals
for PD detection, instead of relying on just a single modality.

4. Discussion

There are five parts to this section. Section 4.1 provides the summary of results gath-
ered from the previous section. Section 4.2 discusses the challenges that are affecting the
adoption of CAD in healthcare. Section 4.3 provides solutions to tackle the challenges
highlighted in Sections 4.2 and 4.4 describes the future vision of the CAD tool in the diag-
nosis of PD with Section 4.5 listing down the limitations of this review.
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4.1. Result Summary

The application of deep learning models as a CAD tool for automated diagnosis of
PD have been gaining popularity over many years. From Figure 12, the number of deep
learning studies as of July 2021 has reached 12, which is more than half of the studies in
2020 (18 studies). Hence, it is very likely that the number of studies by the end of 2021 will
exceed that of 2020. Every year, the number of deep learning studies bases on motor symp-
toms exceed that of brain analysis (Figure 12). This might be due to the ease of data acqui-
sition for motor symptoms as the collection of data is less complicated than brain analysis
and most of the datasets are publicly available. The overall model performance achieved
by deep learning studies in each modality is favorable, especially for common modalities
like MRL, PET, SPECT, EEG, gait, handwriting, and speech, which overall model accuracy
had all exceeded 80% (Figure 13).
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Figure 12. Bar chart representation of the number of deep learning studies published between Jan-
uary 2020 and July 2021 for brain analysis and motor symptoms.
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Figure 13. Bar chart representation of the average model accuracy from various deep learning stud-
ies obtained for each modality.
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This review underscores the following key aspects of the current deep learning stud-
ies for automated PD diagnosis:

¢ Deep learning models proposed by various studies have achieved a high predictive
accuracy for the diagnosis of PD (Figure 13).

e About 57% of the deep learning studies for automated PD detection had proposed
using the CNN model (Figure 14).

e  CNN models have demonstrated to have high prediction accuracy for image classi-
fication such as brain imaging (SPECT, PET, and MRI), and handwriting recognition.

e Ourresults have also shown that CNN has good performance in detecting abnormal-
ities from one-dimensional signals like EEG [47] and speech [73].

° Gait analysis, on the other hand, seems to perform better with either hybrid model
(CNN-LSTM), DNN, or LSTM model. However, more research is required to deter-
mine the best-performing model.

e  Apart from CNN model, Ozsahin et al. [40] and Ali et al. [75] proposed BPNN and
GONN for SPECT and speech analysis respectively and obtained the highest predic-
tion accuracy.

¢  However clinical trials are required to prove the suitability of the proposed deep
learning model for each modality.
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2% 2% 2% 2% 2% 2%
EPNN
2%

GONN__ CRNN

2% 2%

RLSFN

CNN-RNN___ 2%
RNN 2%

2% CVANN

2%
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Figure 14. Pie chart representation of various deep learning models proposed for automated PD
detection studies in this review.

4.2. Challenges Faced by CAD Tools in Healthcare Adoption

Despite the high prediction accuracy obtained by many deep learning models pro-
posed in various automated PD detection studies, the adoption of the deep learning model
as a CAD tool in healthcare is currently not supported [21,22]. In their current form, nei-
ther neurologists nor other healthcare workers are comfortable to rely on CAD tools to
diagnose the PD. This is due to several challenges as listed below:

e  Lack of standards

The diagnosis of PD have been reliant on clinical features for several years, and neu-
rologist have been trained to recognize the sets of clinical features to determine a diagnosis
[8]. For instance, the diagnosis criteria provided by UKPDSBB (i.e., presence of bradyki-
nesia and absence of certain exclusion criteria), is not adopted by current deep learning,
and even machine learning studies. Instead, a majority of the deep learning studies in this
review have focused on only one modality instead of adopting a multimodal approach,
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which is not practical for clinical use. Deep learning models also do not recognize the
features of PD the same way as a human neurologist would do. For example, deep learn-
ing models can detect PD from brain imaging by means of a vectorized image instead of
a clinical feature, which does not follow the existing diagnosis criteria [80]. Hence, neu-
rologists may be too hesitant to use the CAD tools which greatly deviates from their com-
fort zone or does not provide a clinically trusted artificial intelligence framework that is
also explainable and interpretable for future clinical practice purposes.

e  Poor interpretability

Deep learning models are also known as the ‘black box” so it is almost impossible to
clearly understand the mechanisms behind a deep learning model when it makes a given
prediction [22,23]. Despite achieving high prediction accuracy, end-users of the CAD tools
(e.g., neurologists and healthcare workers) cannot make a diagnosis without sufficient ev-
idence, and this evidence is not currently provided by deep learning models [21,23].
Hence, neurologists are not able to trust the CAD tools as they cannot afford to make a
diagnosis without concrete evidence, explainability and interpretability of the somewhat
black box style method used to produce an outcome.

e  Psychological barriers

In healthcare industry, human behavior must always be considered when designing
a CAD tool for a target consumer audience. The common psychological barriers that are
affecting the adoption of new technologies are the endowment effect and the status quo
bias. The endowment effect is where an individual values their possessions higher than
their original market value [81] whereas the status quo bias is the preference of an indi-
vidual to remain in their comfort zone and maintain their environment in the same state
[82]. Both of these emotional biases are likely to cause an individual, neurologist, for ex-
ample, to feel a significant sense of loss when they switch from manual diagnosis to rely-
ing on CAD tool for diagnosis.

There are many other factors such as the difficulty of obtaining regulatory approval
and poor interoperability, which refers to the ability to communicate between two sys-
tems [22]. For example, if two hospitals used different electronic health systems, the data
from these two hospitals may not be coherent and might not communicate with each
other. These two concerns, however, should come after a prototype for the CAD tool has
been developed. For instance, a developer must first develop a working prototype before
applying for the necessary International Organization for Standardization certifications.
At present, research on using the deep learning model as a CAD tool has yet to attract
end-users, and to further convince them to support the implementation of CAD tools in
healthcare systems. As such, researchers must tackle the three main challenges listed
above and improve the versatility of existing deep learning models. Only when the end-
users are satisfied with the outcome (i.e., explainability) and the benefits (i.e., accuracy of
feature extraction) of the CAD tool, they may become more willing to support the adop-
tion of the CAD tool in healthcare. In the absence of this perceived requirement, research
into a CAD-based tool for automated detection of PD and even some of the other diseases
may continue to result in the ‘valley of death’, where applied research accumulates with-
out being translated into real clinical practice. This can leading to a widening of the gap
between applied research and translation of its benefits into clinical practice [83].

4.3. Solutions to Promote Adoption of CAD

Moving forward with an aim to translate the potential benefits of deep learning meth-
ods into future clinical practices, researchers and end-users need to better understand that
the CAD-based tool should not position itself to replace an end-user’s role in diagnosing
the disease. This is a common misunderstanding as deep learning and machine learning
studies often claim high success of their proposed models with the absence of end-user
involvement. Consequently, a false notion of CAD tool replacing the end-users is created.
Therefore, the CAD tool should aim to provide alternatives and better opinions in the
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diagnosis of disease for the end-users to consider, thereby increasing the end-user’s con-
fidence and used for reducing errors simultaneously. The adoption of CAD tool, hence,
should improve the efficiency of clinical diagnosis and to further help predict the possible
disease and identify alternative treatment options for end-users like clinicians to consider
in their days to day work. However, it appears too often that both deep learning and ma-
chine learning models do not provide additional information other than their predicted
results so this may not be helpful to the end-users as a futuristic prediction tool that is not
supported by visible clinical features, nor by detailed explanation of how it arrived at the
results. Hence, the authors of future deep learning studies used for automated PD detec-
tion, and also for the other disease should include visual cues, such as segmentation as an
explanatory function in their deep learning architecture. An example of the workflow pro-
cess that we propose for a practical CAD tool is illustrated in Figure 15.
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Figure 15. (a) configure a deep learning model that can perform the diagnosis (i.e., identification of
the ailment) and seg-mentation (i.e., explanation, or detailed information) simultaneously; (b) per-
form diagnosis in the first stage, and in the second stage, segmentation is performed only on the
input image or signal that had been diagnosed as PD in the first stage.

In Figure 15, we present two alternatives. The first alternative is to configure a deep
learning model that can perform the diagnosis (i.e., identification of the ailment) and seg-
mentation (i.e., explanation, or detailed information) simultaneously. The second alterna-
tive is to perform diagnosis in the first stage, and in the second stage, segmentation is
performed only on the input image or signal that had been diagnosed as PD in the first
stage. In either case, it will be useful to provide additional information like the time frame
for abnormal physiological signals, striatal volume, and percentage of dopaminergic neu-
rons lost for image analysis. Also, deep learning models and even machine learning mod-
els are comprised of complicated algorithms that neurologists may not necessarily under-
stand. Hence, visual cues could make up for the poor interpretability of deep learning
models by allowing neurologists to ‘see” what has been identified as abnormalities by the
model.

The provision of visual cues may greatly contribute to the acceptance of CAD tools
in healthcare. Looking at the behavioral trade-off matrix in Figure 16, innovation products
are known to fall in either one of the categories [84]. At present, neurologists rely on clin-
ical features and visual inspection to diagnose PD. However, the deep learning studies
gathered in this review developed models with high prediction accuracy, but not accom-
panied with evidence-based diagnosis. Hence, this results in a large degree of behavioral
and product change, as neurologists will have to forgo evidence-based diagnosis if they
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switch from visual inspection to rely on CAD tools for PD diagnosis. As a consequence,
the current deep learning models developed by various study in this review falls in the
‘Sure failures’ category in Figure 16, discouraging its adoption into healthcare. The inclu-
sion of visual cues in the deep learning model, thus, decreases the degree of behavioral
change to ‘low’ as the deep learning models had segmented the brain abnormalities for
the neurologist to inspect the brain images with greater ease. Also, this will greatly boost
the neurologist’s confidence in deep learning models, especially when their prediction
coincides with the CAD tool. Therefore, the inclusion of visual cues as a function may
allow deep learning-based CAD tools to switch from the ‘Sure failures’ category to ‘Smash
hits’, which greatly encourage the adoption of CAD tools and ensures the long-term and
short-term success of an innovative product [84].

Low

Easy sells Smash hits

Sure failures Long hauls

<«— Degree of behavioral change —»

High

Low <— Degree of product change — High
Figure 16. Behavioral tradeoff matrix.

4.4. Solutions to Promote Adoption of CAD

With the acceptance of the CAD-based tool, the authors hope to alleviate the manu-
alized work burden of neurologists and other healthcare workers. As such, individuals
affected by PD can also play a part by performing self-assessment with the aid of a CAD
tool. This could also encourage individuals to seek professional help when the CAD tool
predicted a positive on PD and urge that medical attention is required. Figure 17 is an
example of a cloud-based CAD tool in which data can be assessed by any electronic device
with access to the internet like smartphones and computers. An individual who suspects
that they may have PD can either use their smartphone to conduct handwriting test, voice
recording to detect speech aberration, or take a video of their walking cycle to perform
gait analysis. These recorded pieces of evidence are useful information for the neurologist
to confirm a diagnosis, which helps to increase efficiency and reduce the waiting time for
diagnosis. In addition, handwriting, speech, and gait analysis are potential telemonitoring
alternatives. Brain imaging like SPECT, PET, and MRl is heavy machinery that is not prac-
tical to be placed at home. Recording devices to monitor physiological signals like EEG
and EMG are not common possessions in today’s households either. Hence, it is more
practical to monitor PD progression thru a smartphone that has built-in handwriting,
speech, and video recording function.
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In this review, the authors have only demonstrated that deep learning models are
promising CAD tools for PD diagnosis. However, a practical CAD tool should ideally be
able to identify multiple diseases instead of PD alone. Hence, we hope deep learning stud-
ies for other neurological diseases could also heed our advice and include visual cues as
a function in their system. As such, we can develop deep learning models into a clinically
trusted CAD tool for clinical decision support. Thereby taking deep learning models a
step further into adoption in healthcare and enter a new phase of application in the health
informatics industry.

4.5. Limitation of This Study

In spite of major contributions made through a detailed synthesis of the most relevant
information on deep learning methods for clinical diagnosis purposes, this review comes
with some limitations, as follows.

° Deep learning studies for each modality (MRI, EEG, speech, etc.,), may use different
datasets to train their model. For example, studies interested in MRI may use a pri-
vate dataset instead of the public dataset, PPMI. Hence, it could become rather diffi-
cult to compare the performance of two deep learning models that do not train with
the same dataset.

e  There is a potential lack of studies for ultrasound imaging, small movement-related
tests, and multi-model analysis which involves more than one modality. This makes
it difficult to determine the best-performing model for these three categories.

e  The wide variety of deep learning models proposed for gait analysis also makes it
challenging to determine the best performing model, hence, it is difficult to decide
between the top three best performing models: CNN-LSTM, DNN, and LSTM.

5. Conclusions

PD requires early diagnosis and intervention to minimize the impact of this degen-
erative condition and ensure that affected individuals can remain self-sufficient as long as
possible. However, the imprecise nature of clinical diagnoses, and a lack of neurologists
expert in PD diagnosis worldwide, often results in delayed diagnosis and suboptimal
management of PD. Moreover, the likely success of advanced therapeutics such as gene
therapy, currently under development, will be heavily influenced by early diagnosis.
Thus, a CAD tools based on deep learning models should be considered to alleviate the
work burden of neurologists if they can perform fast and accurate PD diagnoses. In this
study, we have reviewed 63 studies on deep learning for various modalities such as brain
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analysis (SPECT, PET, MRI, and EEG) and motion symptoms (gait, handwriting, speech,
EMG). We show that deep learning models can achieve high prediction accuracy for PD,
especially the CNN model that is widely proposed by studies that had focused on image
classification for brain imaging and handwriting analysis. The CNN model also per-
formed well in one-dimensional signals like EEG and speech analysis. However, deep
learning models have yet to be supported by end-users such as neurologists and other
clinicians due to a lack of evidence regarding disease prediction. Hence, this review aims
to propose new solutions for future deep learning studies, and perhaps the inclusion of
visual cues, such as the segmentation of abnormal areas, as a function in the deep learning
model architecture. We also urge that researchers continue to build deep learning models
with specific applications to some of the other disease detection problems and include
visual cues in their model. It is hoped that researchers will be encouraged to adopt more
explainable and interpretable methods in deep learning-based CAD tools, which can then
be taken up by the end-users, and improve the health care outcomes for a growing num-
ber of individuals affected by PD worldwide.
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Appendix A
Table A1. List of deep learning studies for various modalities in brain analysis.
Year Author Input Feature Approach Dataset Accuracy (%)
MRI
I o 7 PD:
2019 Xiao et al. [85] Quantlfatlve susce.ptlblhty CNN 8 PP, 53 HC 890
mapping (QSM) images (private)
. _ 115PD; 115
2021  Yasaka etal. [86] radial kurtosis (RK) CNN HC 81.0
Connectrome matrix .
(private)
203 PD; 203
2020 Chakra[kg]ty etal Normalized MRI images CNN HC 95.3
(PPMI)
2020  Tremblay et al. [87] T2-weighted imaging CNN 15 PD.; 15 HC 88.3
(private)
a boxed region around the
. brain-stem on CNN 45 PD; 35 HC
2019 Shinde et al. [88] the axial slices of the NMS- (ResNet50) (private) 80.0
MRI as input
PET/CT
43PD; 55 H
2021 Piccardo et al. [41] [18F]DOPA PET/CT images CNN (3D) 3 PD; S5 HC 93.0

(private)
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2019

2019

2015

2020

2017

2020

2020

2020

2019

2018

2018

2020

2021

2021

2021

2018

Shen et al. [89]

Dai et al. [90]

Hirschauer et al. [91]

Ozsahin et al. [40]

Choi et al. [37]

Magesh et al. [92]

Chien et al. [93]

Hsu et al. [94]

Ortiz et al. [95]

Martinez-Murcia at
al. [96]

Shen et al. [43]

Xu et al. [49]

Lee et al. [51]
Loh et al. [25]
Khare et al. [47]

Oh et al. [48]

Group Lasso Sparse

laconic representation of PET Deep Belief 125PD; 225
. HC
images Network (GLS- (private)

DBN) p
214 PD; 127
Enhanced Pet images ([le\r?e\i) HC
(PPMI)
SPECT/DaTscan
. . Enhanced 189 PD; 415
Inputs from all 8 diagnostic e
test in database probabilistic neural HC
network (EPNN) (PPMI)
back propagation 1,334 PD; 212
Binarized images neural network HC
(BPNN) (PPMI)
431 PD; 193
. . HC
Normalized SPECT images CNN N
(combination
of 2 database)
430 PD; 212
Normalized SPECT images CNN (VGG16) HC
(PPMI)
segmented striatal region 234 PD; 145
grenied striatal 1eg CNN HC
images .
(private)
Grayscale‘ + colour SPECT CNN (VGG) 196 PP; 6 HC
images (private)
158 PD; 111
Voxel feiaturer(fextracted via CNN (3D) %8 u C’
sosurfaces (PPMI)
Normalized DaTSCAN CNN 448 I;I% 194
i ALEXNET
images ( ) (PPMI)
Ultrasound
73 features extracted from
76 PD; 77H
Transcranial sonography MEKM-BLS 6 . ¢
(private)

(TCS) image

EEG

end-to-end EEG signals
spatiotemporal features of
EEG signals
Spectrograms images

smoothed pseudo-Wigner
Ville distribution

end-to-end EEG signals

pooling-based deep 10 PD; 10 HC
recurrent neural

network (PDRNN) (private)
CRNN -
CNN 15 PD; 1§ HC
(public)
CNN 15 PD; 1§ HC
(public)
20 PD; 20 HC

13-layer 1D-CNN (private)

90.0

84.2

98.6

99.6

98.8

95.2

86.0

85.0

95.1

94.1

784

88.6

99.2

99.5

100

88.3
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2020 Shah et al. [50] - DNN - 99.2
Table A2. list of deep learning studies for various modalities in motor symptoms.
Year Author Input Feature Approach Dataset Accuracy (%)
Gait
Multi-points Vertical Ground
PD; 73 H
2019 Xia et al. [53] Reaction Force (VGRF) time CNN-LSTM 93 PD; 3 C 99.1
i (public)
series
. ] 93.1 [Ga]
2016 Nancy[]9a7r]1e etal. Temporal seq;f;;e of walking Q-BTDNN 93 f[l)l,b 7h3C§—IC 91.7 [Si]
p p 89.7 [Jul
18 PD; 16 H
2020 Som et al. [98] Reduced feature via PCA Autoencoder 8 PD; 6 C 73.8
(public)
lizati D PD; 214
2020  Zhangetal[o9] T ormalizationand Data CNN 656 PD; 2148 86.0
Augmentation HC (public)
2020 Maachi et al. [58] 18 1D-signals DNN 93 PD; 7,3 HC 98.7
(public)
2021 Balaji et al. [59] the gait kinematic features LSTM - 98.6
2020  Yurdakul et al. [100] NR-LBP ANN 93 PD; 7?’ He 98.3
(public)
PD; 73 H
2018 Zhao et al. [54] 19 features CNN-LSTM 93PD; 3 S 98.0
(public)
2016 Zeng et al. [101] 19 features RBE-NN 93PD; 7? HC 96.4
(public)
PD; 73 H
2020  Alharthi et al. [102] ground reaction force CNN 93 PD; 3 c 95.5
(public)
2020 Butt et al. [103] kinematic features LST™M 64 PD.; S0 HC 82.4
(private)
Handwriting
2021 Foladoretal [104]  [iStograms of oriented CNN 20 PD; 20 HC 83.1
gradients (HOG)
2019 Yangetal [105] <¢Y parameters deviation (cm) ooy 21 PD; 24 HC 98.9
and accumulation angle (rad)
2020  Canturk et al. [106] Fuzzy recurrence plot(FRP) CNN 25PD; 15 HC 94.0
2019 GII'M[TJ;I]‘ etal CNN based features CNN 62 PD; 15 HC 96.5
2019 Naseer et al. [108] CNN based features CNN 37 PD; 38 HC 98.3
2021 Gazda et al. [109] handwriting images CNN - 94.7
PaHaW
dataset[38/37],
HandPD
dataset[18/74],
2020 Kamran et al. [65] CNN based features CNN NewHandPD 99.2
dataset[35/31]
Parkinsons
Drawing
2018 Pereira et al. [110] CNN based features CNN 74 PC; 18 HC 95.0
2018 Afonsoetal. [111] Fecurrence plots to map the CNN 14 PD; 21 HC 87.0
signals onto the image domain
2019 Ribeiro et al. [112] Bags of Sampling RNN 14 PD; 21 HC 97.0
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2019

2021

2020

2018

2017

2018
2019

2015

2019

2016

2017

2020

2020

2021

2011

2021

2021

2018

Diaz et al. [113] Generate enhanced images CNN
Kinematic and pressure

CNN-RNN
features

Diaz et al. [114]

Image of a drawn spiral
enhanced by the velocity CNN
and pressure parameters

Nomm et al. [115]

Movement
touch-screen and
Prince et al. [71] CNN
accelerometer waveforms

Temporal Manometric and

L. [7 A
Jones et al. [70] videofluoroscopic data NN
Speech
Putri et al. [76] Various voice measurements ANN
. dimensionality reduction of
Alietal. [75] all 26 features by LDA CONN
12 features selected by
minimum redundancy
Peker et al. [116] maximum relevance (mRMR) CVANN
attribute selection
algorithm
inski et al.
Wodzinski eta Spectrograms images CNN
[117]
Avei et al. [118] 22 biomedical voice ELM
measurements
Gomez-Vildaetal. absolute kme.ma.tlc Yeloaty RLSEN
[119] (AKV) distribution
Nagasubramanian All 26 features CNN
etal. [73]
Xu et al. [120] Spectrograms images CNN
Karaman et al. [121] CNN based features CNN
Astrém et al. [122] 10 vocal features DNN
Narendra et al. [123] raw speech and voice source CNN
waveforms
A combination of Resonance
based Sparse Signal
Goyal et al. [74] Decomposition (RSSD) + CNN
Time-Frequency (T-F)
algorithm
EMG
Putri et al. [76] 12 EMG features ANN

37 PD; 38 HC
PaHaW
dataset[38/37],
NewHandPD
dataset[35/31]

17 PD; 17 HC

949 PD; 866
HC

31PD; 31 HC

15PD; 8 HC
20 PD; 20 HC
(Sakar, 2013)

23 PD; 8 HC
(Little, 2007)

50 PD; 50 HC
(PC-GITA)
23 PD; 8 HC
(Little, 2007)
53 PD; 26 HC
(Male)

38 PD; 25 HC
(Female)
20 PD; 20 HC
(Sakar, 2013)
20 PD; 20 HC
(Sakar, 2013)
mPower Voice
database
23 PD; 8 HC
(Little, 2007)
50 PD; 50 HC
(PC-GITA)

16 PD; 21 HC
and 20 HC

15PD; 8 HC

86.67

90.0

93

62.1

82.3

944
100

98.1

91.7

96.8

99.4

99.5

91.2

91.17

91.2

68.6

99.4

71.0
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2018

2017 Oung et al. [78]

Mixture of inputs

\Y - t
asquaelz [(71;)]rrea € Spectrograms images CNN 44 PD; 40 HC 97.6
Empirical Wavelet Transform

Based Features ELM 50 PD; 15 HC 95.93
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