
Integration of Blockchains with Management
Information Systems

Ka Ching Chan∗, Xujuan Zhou∗, Raj Gururajan∗, Xiong Zhou†, Mustafa Ally∗, Michael Gardiner∗
∗School of Management and Enterprise

University of Southern Queensland, Springfield, Australia
Email: kc.chan@usq.edu.au, xujuan.zhou@usq.edu.au, raj.gururajan@usq.edu.au

mustafa.ally@usq.edu.au, michael.gardiner@usq.edu.au
†Fujian Vocational College of Agriculture

Fujian, P R China
Email: 328475505@qq.com

Abstract—In the era of the fourth industrial revolution (In-
dustry 4.0), many Management Information Systems (MIS)
integrate real-time data collection and use technologies such as
big data, machine learning, and cloud computing, to foster a
wide range of creative innovations, business improvements, and
new business models and processes. However, the integration of
blockchain with MIS offers the blockchain trilemma of security,
decentralisation and scalability. MIS are usually Web 2.0 client-
server applications that include the front end web systems and
back end databases; while blockchain systems are Web 3.0
decentralised applications. MIS are usually private systems that
a single party controls and manages; while blockchain systems
are usually public, and any party can join and participate. This
paper clarifies the key concepts and illustrates with figures, the
implementation of public, private and consortium blockchains
on the Ethereum platform. Ultimately, the paper presents a
framework for building a private blockchain system on the public
Ethereum blockchain. Then, integrating the Web 2.0 client-server
applications that are commonly used in MIS with Web 3.0
decentralised blockchain applications.

Index Terms—blockchain, distributed ledger technology,
private blockchain, consortium blockchain, permissioned
blockchain, smart contract, Ethereum

I. INTRODUCTION

In the era of the fourth industrial revolution, IoT [1],
RFID, and QR Codes are inputs or sensors for real-time data
collection. The integration of these input technologies with
traditional client-server Web 2.0 systems, and key technologies
such as big data, machine learning, and cloud computing
fosters a wide range of creative innovations, business improve-
ments, and new business models and processes.

In this environment, blockchain offers the trilemma of
security, decentralisation and scalability, where balancing the
three alternatives depends on the needs for the blockchain.

The focus of this paper is on the integration of traditional
Web 2.0 client-server systems with Web 3.0 blockchain tech-
nology and the need for a single source of immutable truth,
all of which are ideal characteristics for many applications.

Blockchain technology allows digital information to be
distributed, but not copied, meaning that a blockchain is a
linking of a series of time-stamped immutable records of data
that is not owned by a single entity. This makes the data

stored on the block secure and yet transparent. This technology
addresses the issues of trust as the immutable ledger is shared
and replicated across all nodes.

Benefits of this technology include the development and use
of smart contracts, and yet remains secure to participants who
hold accounts to access the blockchain in real-time.

While the concept of integrating blockchain and MIS sound
alluring, there are three significant obstacles to the integration
of blockchain with MIS. The first is the many differing
blockchain frameworks. Developing a suitable framework for
a given application can draw upon the work of [2], which
explored many blockchain applications to develop recog-
nisable blockchain frameworks. The second obstacle, even
with the blockchain framework, is the many configurations
and variations, which makes the process of designing and
implementing a blockchain for a given situation complicated
[3]. The third obstacle is the multiple IT systems speaking
different languages, often leading to a painful reconciliation
process and with a high risk of error [4], a problem that can
be solved using blockchain with the MIS existing software.

Thus, this paper explores and explains how Web 2.0 and
Web 3.0 systems can be interfaced while maintaining the
benefits of both systems and addressing the weaknesses of
each system.

II. TYPES OF BLOCKCHAINS

In this section, we will first provide an overview and discuss
the differences between the three types of blockchains - public,
private, and consortium. In the next section, we will then
describe how client-server management information systems
can be integrated with Ethereum based blockchains.

A. Public, Private and Consortium Blockchains

Systems can be categorised into centralised, decentralised,
and distributed systems. In a centralised system, there is a
single point of authority controlling and commanding the
operations of all systems. The client-server architecture is a
typical centralised system architecture. Most of the current
web applications and TCP/IP applications fall into this cat-
egory. In a decentralised system, there is no single system



that is in control and command of any other systems. All
systems are run independently and in parallel. And there is
no single point of failure. The peer-to-peer and master-slave
architectures are typical decentralised system architectures.
Typical decentralised applications include blockchains and
cryptocurrencies. In a distributed system, the computation
is shared among a number of servers. Typical distributed
architectures include peer-to-peer, client-server, and n-tier ar-
chitecture. Typical applications include cluster computing and
grid computing [5], [6].

Not all systems fall into one of the above three categories.
Some systems are centralised and distributed; some other
systems are decentralised and distributed. Many existing online
services are run by centralised and distributed systems; while
cryptocurrencies such as Bitcoin and Ethereum, are decen-
tralised and distributed systems. Ethereum was designed as
a public blockchain running in a fully decentralised network
that is not controlled by any single entity and is exceptionally
secured by using cryptographic and consensus algorithms such
as proof-of-work and proof-of-stake. Private blockchains and
consortium blockchains can be implemented on Ethereum with
configuration and/or access control.

1) Public Blockchains: Ethereum was initially designed as
a public blockchain [7], [8]. Any individual and organisation
can participate, and any computer can join the Ethereum net-
work and become a node without permission required by any
other node. Therefore, the public Ethereum is a permissionless
blockchain where all nodes are considered equal, and no node
is in control of any other node. These nodes form a peer-
to-peer network [9]. As a decentralised system, every node
contains a copy of the blockchain that is synchronised with
the entire transaction history. Due to a large number of nodes,
the redundancy of Ethereum is very high, and any node can
be taken out without affecting the continuing operation of the
chain.

Blockchain enables trustless transactions without interme-
diaries such as clearing house, agents or central organisations.
The blockchain network allows users to remain anonymous
and perform transactions on a peer-to-peer basis [9], [10].
As a public ledger, the transaction data recorded on the
Ethereum main chain is transparent to the public; and is im-
mutable and cryptographically secured. All records go through
a mining process for verification before being added to the
chain permanently. The computational cost involved in the
mining process is very high, and the processing speed very
slow. The mining process that runs a consensus algorithm
to approve transactions is considered wasteful of energy and
computing resources. Currently, the Ethereum main chain can
only process roughly 15 transactions per second [11]. Due to
this waste, the scalability is still the most challenging problem
among the blockchain trilemma of trade-off among security,
decentralisation, and scalability.

There are three main types of blockchain transactions - send,
approve, and read. The access privileges of these transactions
are critical differentiators of public, private, and consortium
blockchains [12], [13]. Although there are many different

Fig. 1. Public blockchain.

ways to build blockchain applications, these access privileges
fundamentally define whether the blockchain is public, private,
or consortium. In a public blockchain, any node can send
transactions to and read from the blockchain. Further, any
node can participate in the consensus process to approve
transactions. Table I compares the three types of Ethereum
based blockchains.

2) Private Blockchains: The ideology of blockchain, being
a decentralised and permissionless system that supports trust-
less transactions and total transparency, is core to cryptocur-
rencies. But this ideology may have to be compromised with
the reality of practical needs in industry. Business enterprises
would not be interested in total transparency, i.e. to share
the ledger records with other businesses; but want to keep
their data and information private and confidential unless
disclosure is needed to meet regulatory obligations or other
specific purposes. Business enterprises would not want other
businesses or competitors to participate in their blockchain
transactions, but want to be the only party to have full
control of the blockchain. Therefore, private blockchains with
modified characteristics may be required to meet the needs of
various enterprise applications. These private blockchains can
be integrated with the management information systems for
storage of secure and immutable vital records, to enable secure
and trustless transactions among internal departments, and to
improve or lower the cost of a particular business process. The
private blockchains can also play an essential role in being the
single source of truth for key data.

The design and implementation of private blockchains can
take many forms, as a trade-off of a number of factors
such as cost, speed, scalability, decentralisation, transparency,
choice of software, ease of implementation, and so on. One
approach is to set up a blockchain network entirely within
the boundary of the enterprise’s network, as shown in Fig. 2.



Fig. 2. Private blockchain network within an enterprise network.

All nodes are physical computers or virtual machines that
are under the control and administration of the enterprise,
and the ledger data is stored in a distributed database across
a number of nodes in different locations. The Open Linux
Foundation project Hyperledger would be one solution for
such an approach [14].

The second approach is to set up a private blockchain
network on a public platform like Ethereum [15]–[17]. This
setup is similar to that shown in Fig. 1 with one or more
blockchain nodes set up within the enterprise network. The
process of setting up a private Ethereum chain is similar to
setting up a test Ethereum chain (testnet) that is separate from
the main chain. User accounts and access control are put in
place during the setup and configuration stage to control who
is allowed access to the private chain.

A private Ethereum chain has its own genesis block. To pro-
cess transactions on the private chain, a low mining difficulty
can be set in the genesis block to enable fast mining of fake
Ether. Fake Ether does not have any value and cannot be used
on the main chain or traded on cryptocurrency exchanges, but
the processing performance can be significantly improved. The
proof of work (PoW) consensus algorithm used in Ethereum is
highly wasteful of energy and computational power. In a very
recent article, Microsoft suggested using proof of authority
(PoA) as a more efficient consensus algorithm for building
private Ethereum chains [18].

In an Ethereum based private blockchain, the privileges
to send and approve transactions are centralised to a single
organisation; while the permission to read is limited to selected
nodes internal or external to the organisation [13]. How to
integrate private blockchains on Ethereum with management
information systems is the focus of this expository paper.

3) Consortium Blockchains: Consortium blockchains are
controlled and operated by a group of organisations. Prove-
nance of supply chains is a typical application of consor-

tium blockchain. The members of the consortium chain are
suppliers and buyers along the supply chain, and they share
certain information and store the transaction records on the
chain. The information allows users to check the provenance
of the products that they purchase. The immutability and single
source of truth that a consortium blockchain can offer are
fundamental to any supply chain provenance.

Fig. 3. Consortium blockchain.

Each consortium member runs and controls its network of
Ethereum nodes somewhere in the world. The challenge of
building consortium blockchains is to connect these networks
of Ethereum nodes anywhere in the world via the public
Internet, and at the same time to provide mechanisms to
ensure the permission rights of the consortium participants.
The chain database is decentralised and distributed among
all participating parties. All participating organisations are
involved in the consensus and decision-making process. The
governance and control of the chain must be agreed and rules
defined.

The Ethereum network setup for each consortium organi-
sation is similar to that for a private network (Fig. 2). Each
consortium blockchain requires individual Ethereum networks
to be connected peer-to-peer, where permission rights are con-
figured by software. Figure 3 shows a consortium blockchain
network with three parties. Each party runs its own Ethereum
nodes which can be physical servers or virtual machines. These



individual Ethereum networks (marked with a green diamond
in Fig. 3), communicate with one another via peer-to-peer
connections (the orange dotted paths in Fig. 3) through the
Internet.

In a consortium chain, the send, approve and read rights are
limited to a certain number of parties within the consortium
network [12]. A successful example of consortium blockchain
was implemented by Webjet to improve the settlement process
between hotel suppliers and travel partners [4]. The blockchain
enables any two parties to verify that booking data matches.
Microsoft also offers a set of solution templates (Ethereum
consortium blockchain in Azure Marketplace) that allow users
to configure multi-region and multi-member Ethereum con-
sortium blockchain networks with a simple multi-step process
through the Azure portal or command line. In this approach,
all nodes are within the same virtual network, or each mem-
ber’s nodes are put into individual virtual networks commu-
nicating through application gateways [19]. For consortium
blockchains, proof of authority (PoA) can be used as a more
efficient consensus algorithm than the proof-of-work (PoW)
algorithm [18]. Another Open Source project Quorum adds
transaction privacy on top of the Ethereum transactions to
build consortium chains for enterprises [20].

III. INTEGRATION OF MIS AND ETHEREUM BLOCKCHAIN

Blockchain is a Web 3.0 technology, and the integration of
Web 2.0 business applications with Web 3.0 blockchains is a
pragmatic approach during this period of maturing of Web
3.0. There are many practical applications that can benefit
from such an approach. For example, in elections, votes are
collected through web applications and immediately added to
a blockchain to ensure data is immutable once submitted.

There are many approaches using different technologies and
platforms to build a blockchain application. This section aims
to describe a generic approach that uses the most popular
software that are freely available to integrate the traditional
management information systems running on client-server
network architecture (Web 2.0) with private decentralised
Ethereum blockchains (Web 3.0). Although they are in two
different paradigms, the integration that mainly involves data
transfer between database and blockchain, is straightforward.
In the proposed integration approach, the operations of the
two remain highly independent and separate with limited
interaction. In fact, the blockchain component can be simply
integrated as an add-on to any existing management informa-
tion systems or business web systems.

Most business web applications are centralised applications
that consist of front end and back end systems. The func-
tionalities and user interfaces are provided by the front end
applications while data is stored in a central database server.
The programming languages commonly used include HTML,
CSS, JS for front end development and Python, Perl, PhP, and
Ruby for back end development.

As an example, a developer may design a front end web
page using HTML with PhP code embedded in the HTML
page to access a MySQL database. When a visitor opens the

TABLE I
COMPARISON OF PUBLIC, PRIVATE AND CONSORTIUM ETHEREUM

BLOCKCHAINS

Management Information Systems (Web 2.0)
Network Archi-
tecture

Client-server

System
Architecture

Centralised or distributed

Front End HTML, CSS, JS, and Apache web server
Back End Python, PhP, Perl, Ruby
Database MariaDB, MySQL
Ethereum API web3.js, web3.py, web3.php

Blockchains (Web 3.0)
Public Private Consortium

Network Archi-
tecture

Peer-to-peer

System
Architecture

Decentralised and distributed

Ethereum Client Go Ethereum (geth)
Control of
Chain

No one Centrally con-
trolled

All
participating
parties

Node Any computer
connected to
the Internet

Computers of a
single organisa-
tion

Computers
of a selected
numbers of
organisations

Permission Permissionless Permissioned Permissioned
Send
Permission

Any node Centralised Limited

Approve
Permission

Any node Centralised Limited

Read
Permission

Any node Limited Limited

Blockchain
Platform

Ethereum
(main chain)

Ethereum (test-
net)

Ethereum
(Vnet) or
Ethereum with
Access Control

Consensus Al-
gorithm

Proof of Work Proof of Work
or Proof of Au-
thority

Proof of Work
or Proof of Au-
thority

Gas Cost [21] Ether Fake Ether
(Free)

Fake Ether
(Free)

Performance Processing≈15
transactions/sec
[11]

Processing in-
stantly

Processing in-
stantly

page, the server processes the PhP code retrieving the relevant
data from the database table, generates a dynamic page, and
sends it back to the visitor’s web browser via the Internet or
any TCP/IP network for display.

There are two main steps to integrate such a web application
with an Ethereum blockchain:

1) Setting up nodes of the private or consortium blockchain
on the Ethereum platform.

2) Programming the web application - using the Web3.js
API and Ethereum client Geth to read/write data from/to
the Ethereum blockchain.

These two steps will be explained in more details in the
following sections.

Fig. 4 shows the integration framework with the web
applications at the top and the blockchain at the bottom. It
should be noted that this framework applies to all types of
Ethereum blockchains - public, private and consortium. For



example, if the blockchain is a consortium blockchain to
support supply chain provenance, each of the companies along
the supply chain can have its own web servers and databases,
and connects to the same blockchain via the web3.js API and
Geth client.

Fig. 4. Integration with blockchain.

A. Setting up Ethereum Nodes Using Geth

To set up an Ethereum node, access the chain, and par-
ticipate in chain transactions, an Ethereum client is needed.
Go Ethereum (Geth) is one of the original Ethereum clients
that are available for download and can be installed on most
operating systems [22]. As shown in Fig. 4, Geth is required
on each Ethereum node connected to the blockchain.

Once installed, Geth provides a Command Line Interface
(CLI) for running an Ethereum node. Geth can be used to
perform all the main tasks, such as:

• creating Ethereum nodes (private or public),
• creating Ethereum accounts to store Ether,
• mining, i.e. creating blocks on the blockchain and miner

receiving Ether as a reward,
• performing transactions, i.e. transferring Ether between

accounts,
• creating and executing smart contracts, and
• providing a HTTP-RPC server to communicate with

web3.js clients.

If the application involves smart contracts, then the Remix
Integrated Development Environment (IDE) would be an eas-
ier option for development. Remix is a web based browser
IDE that supports coding, testing, debugging, compiling and
deploying of smart contracts [23], [24]. Smart contracts enable
business transactions to take place in a trustable or trustless,
secure, and automated manner. The Ethereum smart con-
tracts that define programmatically rules of business contracts
are coded in Solidity, a simple programming language with
Javascript like syntax [25], [26]. Remix has a built-in Solidity

compiler to generate machine-level bytecode that can be
executed by an Ethereum node.

When preparing the blockchain for integration, multiple
Ethereum nodes running Geth should be deployed, enabling
the decentralisation of the chain, and distribution of data and
processing resources across every device connected to the
blockchain.

B. Programming Web Application Using Web3.js

When the private blockchain is ready, the next step is to
program the web application to communicate and interact with
an Ethereum node using a HTTP or Inter-Process Communi-
cation (IPC) connection such as Named Pipes or Remote Pro-
cedure Calls (RPC). There are multiple Ethereum Application
Programming Interfaces (API) available to support different
programming languages, such as web3.js for JavaScript [27],
web3.py for Python [28], and web3.php for PhP.

The library web3.js, which was the first API developed,
defines the rules and formats of how blockchain data should
be exchanged between web3.js and Geth. The web3.js API
provides a convenient RPC interface to allow communicating
with an Ethereum node running Geth from inside a JavaScript
application. The web3.js RPC or HTTP request causes a
procedure to execute in the remote Ethereum node.

The JavaScript application does not interact with the
blockchain directly. It only interacts with one Ethereum node
and that node, in turn, interacts with the blockchain. Therefore,
the connection between web3.js and Geth is a client-server
connection where web3.js takes the client role and Geth the
server role. At the blockchain level, all nodes are equal and
communicate with the whole Ethereum chain on a peer-to-peer
basis.

IV. DISCUSSION AND CONCLUSION

By integrating management information systems with pri-
vate or consortium blockchains, business enterprises can store
their key records in the blockchain that offers data immutabil-
ity and serves as the single source of truth for the enterprises
and/or across the supply chain.

In this paper, we have discussed the key concepts and
illustrated with figures the implementation of private and
consortium blockchains on the public Ethereum platform. The
access rights (send, read, approve) are the key differentia-
tors of blockchain type (public, private, consortium). The
main issues of running enterprise applications on the global
public Ethereum platform are slow processing performance
(15 transactions/sec) and scalability. However, for private and
consortium blockchains, mining with fake Ether significantly
speeds up the process and performance is not an issue.

Then we have presented a framework for the integration of
traditional Web 2.0 applications with Web 3.0 blockchains. We
have also introduced the leading software libraries (Geth and
web3.js) that are required to connect the web application to an
Ethereum node. Although they are in two different paradigms,
the integration that mainly involves data transfer and initi-
ating remote commands are straightforward. We believe the



integration framework provides a clear blueprint for future
development of innovative applications and improvements of
both intra- and inter-company processes.

REFERENCES

[1] D. Miller, “Blockchain and the Internet of Things in the industrial
sector,” IT professional, vol. 20, no. 3, pp. 15–18, May/June 2018.

[2] B. A. Scriber, “A framework for determining blockchain applicability”,
IEEE Software, vol. 35, no. 4, pp. 70–77, July/August 2018.

[3] X. Xu., et al., “A taxonomy of blockchain-based systems for architecture
design,” Proc. IEEE Int. Conf. Software Architecture (ICSA), 2017.

[4] J. Guscic and L. Oldfield, “Webjet Limited - Introducing
Rezchain and Rezpayments”, Ord Minnett Investor Session,
Melbourne, Australia, 18 June 2019. [Online]. Available:
https://www.asx.com.au/asxpdf/20190618/pdf/445xj8c6v932qx.pdf.
[Accessed: 12-Aug-2019].

[5] P. Hooda, “Comparison Centralized, Decentralized
and Distributed Systems”, 2018. [Online]. Available:
https://www.geeksforgeeks.org/comparison-centralized-decentralized-
and-distributed-systems/. [Accessed: 19-Sep-2019].

[6] A. Drury, “Centralized vs Decentralized: Whats the difference?”,
2018. [Online]. Available: https://blocklr.com/guides/centralized-vs-
decentralized/. [Accessed: 19-Sep-2019].

[7] Ethereum Foundation, “Ethereum blockchain app platform”, 2018. [On-
line]. Available: https://www.ethereum.org/. [Accessed: 27-Feb-2019].

[8] A. M. Antonopoulos and G. Wood, Mastering Ethereum: Building Smart
Contracts and DApps. Sebastopos, CA: O’Reilly Media, 2019.

[9] L. Hu, “Understanding Ethereums P2P Network”, 2018 [Online].
Available: https://medium.com/shyft-network-media/understanding-
ethereums-p2p-network-86eeaa3345. [Accessed: 28-Aug-2019].

[10] C. Grundy, “Explained: How do Ethereum transactions work?”,
2018 [Online]. Available: https://thecoinoffering.com/learn/ethereum-
transactions/. [Accessed: 14-May-2019].

[11] A. Hertig, “How Will Ethereum Scale?”, 2018 [Online]. Available:
https://www.coindesk.com/information/will-ethereum-scale. [Accessed:
28-Aug-2019].

[12] J. Poon, “Building a Private Ethereum Consortium”,
Microsoft Developer Blog, 1 June 2018. [Online]. Available:
https://www.microsoft.com/developerblog/2018/06/01/creating-private-
ethereum-consortium-kubernetes/. [Accessed: 14-Aug-2019].

[13] V. Buterin, “On Public and Private Blockchains”, Ethereum
Foundation Blog, 6 August 2015. [Online]. Available:
https://blog.ethereum.org/2015/08/07/on-public-and-private-
blockchains/. [Accessed: 15-Aug-2019].

[14] The Linux Foundation, “Hyperledger”, 2016. [Online]. Available:
http://https://www.hyperledger.org/. [Accessed: 28-Aug-2019].

[15] Mercury Protocol, “How To: Create Your Own Pri-
vate Ethereum Blockchain”, 2017. [Online]. Available:
https://medium.com/mercuryprotocol/how-to-create-your-own-private-
ethereum-blockchain-dad6af82fc9f. [Accessed: 10-Sep-2019].

[16] O. S. Hiremath, “Ethereum Private Network Create your
own Ethereum Blockchain!”, 2019. [Online]. Available:
https://www.edureka.co/blog/ethereum-private-network-tutorial.
[Accessed: 10-Sep-2019].

[17] A. Toluhi, “Ethereum: Setting Up A Private Blockchain”, 2018. [On-
line]. Available: https://medium.com/coinmonks/ethereum-setting-up-a-
private-blockchain-67bbb96cf4f1. [Accessed: 10-Sep-2019].

[18] Microsoft TechNet, “Ethereum proof-of-authority consortium”,
2019. [Online]. Available: https://docs.microsoft.com/en-
us/azure/blockchain/templates/ethereum-poa-deployment. [Accessed:
10-Sep-2019].

[19] Microsoft TechNet, “Ethereum Multi-Member Consortium
Blockchain in Azure Marketplace”, 2017. [Online]. Available:
https://gallery.technet.microsoft.com/Ethereum-Multi-Member-
96bad3bd. [Accessed: 10-Sep-2019].

[20] Quorum, “Evolve with Quorum. The proven blockchain solution for
business”, 2019. [Online]. Available: https://www.goquorum.com/. [Ac-
cessed: 10-Sep-2019].

[21] Aziz, “Guide to Ethereum: What is gas, gas limit and gas price?”, 2018
[Online]. Available: https://masterthecrypto.com/ethereum-what-is-gas-
gas-limit-gas-price/. [Accessed: 15-May-2019].

[22] Ethereum Foundation, “Go Ethereum”, 2013–2016. [Online]. Available:
https://geth.ethereum.org/. [Accessed: 28-Feb-2019].

[23] Ethereum Foundation, “Remix”, 2019. [Online]. Available:
https://remix.ethereum.org/. [Accessed: 30-Aug-2019].

[24] Remix, “Remix, Ethereum-IDE”, 2019. [Online]. Available:
https://remix-ide.readthedocs.io/en/latest/settings.html. [Accessed:
30-Aug-2019].

[25] Ethereum Foundation, “Solidity”, 2016–2019. [Online]. Available:
https://solidity.readthedocs.io/en/v0.5.4/. [Accessed: 27-Feb-2019].

[26] R. Modi, Solidity Programming Essentials: A beginner’s guide to build
smart contracts for Ethereum and blockchain. Birmingham, UK: Packt
Publishing, 2018.

[27] Ethereum Community, “web3.js - Ethereum JavaScript API”, 2016. [On-
line]. Available: https://web3js.readthedocs.io/en/1.0/. [Accessed: 28-
Feb-2019].

[28] P. Merriam and J. Carver, “Web3.py”, 2018. [Online]. Available:
https://web3py.readthedocs.io/en/stable/. [Accessed: 28-Feb-2019].


