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ABSTRACT Prolonged diabetic retinopathy (DR), glaucoma, and age-related macular degeneration (AMD)
may lead to vision loss. Hence, early detection and treatment are crucial to prevent irreversible vision loss.
Fundus retinal images have been widely used to help detect these diseases. Manual screening is susceptible
to human errors, tedious, and expensive. Hence, artificial intelligence (AI) techniques have been widely
employed to overcome these constraints. This paper reviewed the work published on automated retinal health
detection models using various machine learning (ML) and deep learning (DL) techniques. We reviewed
142 papers and 262 studies (124 on glaucoma, 60 on AMD, and 78 on DR) from January 2012 to June
2024 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
We found that Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) models were
widely used in DL and ML techniques, respectively. To the best of our knowledge, this is the first review
developed for detecting AMD, DR, and glaucoma using AI techniques over the last decade. We have
discussed the limitations of the present methods and also suggested future directions for accurately detecting
eye diseases.

INDEX TERMS Retinal health, automated detection, deep learning, machine learning, glaucoma, fundus.

I. INTRODUCTION
2.2 billion people worldwide have near- or far-sightedness,
and 1 billion cases may have been avoidable [1]. It is
estimated that only 36% of people worldwide with distance
vision impairment due to refractive errors and 17% of persons
with cataract-related vision impairment have access to the
right intervention. A large financial burden is associated with
the projected $411 billion yearly global cost of productivity
loss due to eyesight impairment. The US$25 billion cost
gap to address the unmet requirement of vision impairment
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is far higher than the productivity cost [1]. A decline in
eyesight quality harms one’s efficiency and standard of living.
Millions of people globally are impacted by these illnesses,
which have the potential to cause limited vision if they are
not detected and treated on time. While vision loss can affect
persons of any age, most of those who have limited vision
or have impaired vision are over 50. The population in this
age group will increase from 900 million to 2 billion between
2015 and 2050 [2].

The elderly have a higher risk of illness and experience
a quicker decline in health [3]. The hardship of a visual
impairment extends beyond the affected person to include
family members and carers [4]. The elderly must take
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preventative measures, such as going to an annual eye test,
to identify various eye illnesses early on. It is possible to
better limit or control how eye illnesses (glaucoma, DR,
cataract, and AMD) proceed. Ophthalmic diseases such as
Glaucoma, DR, and AMD are the leading sources of vision
loss worldwide [5]. These disorders can proceed more slowly
or have a better chance of responding well to therapy if they
are identified in their early stages.

Between 2004 and 2006, the Singapore Malay Eye Study
looked at 3,280 randomly chosen Malay people. The results
showed that 5.6% of participants had AMD, 12.9% had
DR, and 4.6% had glaucoma [6]. Globally, AMD, DR,
Cataracts, and Glaucoma are the leading causes of limited
vision and visual impairment, contributing to one-third of
all eye diseases. The WHO lists these four eye conditions
as priority conditions that, if caught early enough, can be
treated to avoid vision loss [7]. The elderly are more likely
to get AMD, cataracts, DR, and glaucoma [8]. Artificial
intelligence models can solve or slow down many health-
related problems. AI algorithms can identify eye diseases
from fundus images. By analysing these images, they can
extract characteristics and classify patients’ diseases. Using
digital fundus images, image mining can be used to train
algorithms to identify eye conditions like glaucoma [9]. They
can also identify early signs of disorders like glaucoma
by looking for abnormal enlargements in the eyes’ optic
cups [10].
Recently, deep learning (DL), a branch ofmachine learning

(ML), has demonstrated potential in the identification of
retinal disorders [11]. For retinal image analysis, fundus
cameras and Optical Coherence Tomography (OCT) can
be used to take images of the eye. The most widely
used methods for capturing changes in retinal morphology,
including the optic disc, blood vessels, and macula, are
fundoscopy and OCT imaging [12]. These images can
be analysed for diseases like glaucoma, DR, and AMD.
Numerous studies have been published that identify these
specific eye diseases [13], [14]. Many DL algorithms have
been successfully used to create AI systems for auto-
mated detection, utilising sizable databases [14], [15], [16],
[17], [18].

A. RESEARCH MOTIVATION
The best-performingML andDL algorithms for eye disorders
such as glaucoma, DR, and AMD over the last decade
are examined for the first time in this review. This study
highlights potential research directions to show the role
of ML and DL approaches for automatically detecting
ophthalmic diseases using fundus images. These illnesses
can be slowed down or have a better chance of recovery
if identified in their early stages [19]. Many countries can
benefit from utilising AI in clinical settings to diagnose eye
diseases due to not having enough access to ophthalmol-
ogists [20]. To reduce the burden on the low numbers of
ophthalmologists, particularly in developing nations such as

Bangladesh, where only one ophthalmologist exists for every
162,494 people, automated and accurate detection of retinal
diseases may prove useful [20].

B. RESEARCH QUESTIONS
Our systematic review aims to cover the following research
questions:

1) What are some of the changes that have occurred in the
AI methods used for retinal health detection over the
last decade?

2) How accurate are the current ML and DL systems in
detecting retinal diseases for the following diseases:
Glaucoma, Diabetic Retinopathy (DR), and Age-
related macular degeneration (AMD)?

3) How can the performance of AI models in detecting
Glaucoma, DR, and AMD be further improved and
translated in real-world clinical settings?

C. STRUCTURE OF THE PAPER
The paper is structured as follows: Section II gives a
summary of different ophthalmic diseases such as DR,
AMD, and Glaucoma. Section III explores how different AI
techniques detect these diseases and Section IV discusses
the current publicly available datasets of fundus images.
Section V addresses the progress of AI techniques in
retinal diseases and their evolution over the last decade.
Section VI addresses the methodology of our review includ-
ing following the PRISMA guideline in the design phase.
Section VII addresses the results and analysis of the studies
of the last decade of DR, AMD, and Glaucoma detection
using ML and DL. The different stages (Segmentation,
Classification, Segmentation followed by classification) in
the analysis process of automated retinal health detection
are discussed in Sections VIII, IX, and X respectively.
Section XII addresses the current limitations. Future direc-
tions are discussed in Section XIII and Section XIV is the
conclusion.

D. NOVEL CONTRIBUTION OF THIS REVIEW
This review makes several novel contributions to the field
of AI-based retinal health screening. This is the first review
to comprehensively cover the use of both ML and DL
techniques for the screening of glaucoma, DR, and AMD.
By addressing all three major retinal diseases, this review
provides a holistic view of AI applications in retinal health.
Unlike previous reviews that focus exclusively on either
ML or DL, this review examines both techniques. This
approach highlights how combining ML and DL can enhance
diagnostic accuracy and efficiency. In this review, we will
address the studies done till now onDR,AMD, andGlaucoma
in the last decade. We will also give clear and detailed
discussions on future research directions, emphasising the
potential for multi-modality approaches. We will provide
insights into the challenges and successes of deploying AI
systems in clinical settings, offering valuable guidance for
future implementations.
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II. BACKGROUND
A. RETINAL IMAGING OF THE EYE
Retinal imaging has evolved through decades of ongoing
research to become the cornerstone of clinical management
and treatment for patients with eye diseases [21]. Today’s
most common retinal imaging modalities are fundoscopy and
OCT [22], each offering unique advantages. Advancements
in fundus imaging have greatly increased its accessibility;
one of these advancements is the switch from film-based
to digital imaging. Fundus imaging has become more user-
friendly with the introduction of more standardised imaging
procedures [21]. Color Fundus Photography (CFP) captures
images of the retina using a specialised fundus camera,
resulting in two-dimensional images that detail the retinal
surface, including blood vessels, optic disc, and macula [23].
CFP is non-invasive in nature and provides fast, clear retinal
surface images. It offers a wide field of view, enabling
the detection of peripheral retinal abnormalities, and its
standardised imaging facilitates comparative studies and
longitudinal monitoring [23]. However, CFP is limited in that
it provides only surface views without depth information,
making it challenging to assess the layers of the retina.
Additionally, optimal image quality often requires pupil
dilation, which can be uncomfortable for patients and
time-consuming.

Optical Coherence Tomography (OCT) is the most com-
mon imaging modality in ophthalmology and is widely used
for diagnosing and monitoring various eye conditions [18].
It employs low-coherence interferometry to produce high-
resolution, three-dimensional cross-sectional images of the
retina. Accurate segmentation of retinal layers in OCT data
provides essential information for clinical diagnosis [24].
This modality excels in providing detailed visualisation of
the retinal layers, offering micrometre-scale resolution that
enables precise imaging of these layers [25]. OCT is partic-
ularly valuable for its depth information, which is essential
for assessing retinal thickness and structural changes. It also
allows for quantitative analysis, making it useful for moni-
toring disease progression [25]. Nevertheless, OCT typically
covers a smaller retinal area compared to CFP, which can
result in missing peripheral abnormalities. The high cost and
limited availability of OCT machines also pose challenges,
potentially restricting access in some clinical settings.

Comparing CFP with other imaging modalities, such as
fluorescein angiography (FA) and scanning laser ophthal-
moscopy (SLO), highlights further differences [26]. CFP is
safer than FA as it does not require dye injection, which can
cause allergic reactions, and is simpler and quicker, making
it suitable for routine screening [27]. Compared to SLO,
CFP is generally more cost-effective and widely available,
providing straightforward images that are easier to interpret
for general screening [28]. When evaluating OCT against
other modalities like ultrasound biomicroscopy (UBM) and
magnetic resonance imaging (MRI), the distinctions become
clear. OCT offers much higher resolution than UBM,

providing finer details of retinal structures and being a non-
contact method that reduces the risk of discomfort and
infection [29]. Compared to magnetic resonance imaging
(MRI), OCT is more practical for routine use due to its quick
acquisition time and lower cost [30]. While MRI can provide
a comprehensive view of the entire orbit and surrounding
structures, OCT excels in resolution for retinal imaging.

While CFP is invaluable for wide-field imaging and
detecting surface-level abnormalities, making it ideal for
initial screenings and monitoring conditions like diabetic
retinopathy and age-related macular degeneration, it lacks
depth information andmay require pupil dilation. OCT, on the
other hand, provides high-resolution cross-sectional images
essential for diagnosing and managing conditions that affect
the integrity of retinal layers, such as glaucoma, diabetic
macular edema, and age-related macular degeneration [25].
Its limitations include a limited field of view and higher costs.
The choice of modality depends on clinical requirements,
with CFP preferred for its simplicity and wide coverage, and
OCT for its detailed structural insights.

Our research focuses on papers that only used fundus
images in their studies. The primary use of fundoscopy is
to detect DR, glaucoma, and AMD [22]. The photograph
of a healthy eye captured by a fundus camera is shown in
Figure 1a.

B. DIABETIC RETINOPATHY
Diabetic retinopathy (DR) refers to problems with the retina
caused by damage to the retinal vessel walls [31]. One of
the primary causes of adult vision loss is DR (Figure 1b).
A patient is diagnosed with diabetic mellitus if their plasma
glucose level is above 7mmol/L [32], [33]. Hyperglycemia
(high blood sugar) has been linked to kidney, heart, brain,
and eye damage because it can harm blood vessels and
nerve cells [34]. Diabetic macular edema can result from
hyperglycemia-induced harm to the retinal vessel walls [35].
New blood vessels that emerge during ischemia may later
rupture due to their fragility and cause serious haemorrhages
that can impair vision or even result in permanent limited
vision [31].Microaneurysms appear during the early stages of
DR [31]. Neovascularisation, another name for this condition,
causes proliferative diabetic retinopathy [35]. Proliferative
DR, and diabetic macular edema, are two examples of severe
stages of DR [36], [37]. The current treatment options for
DR include surgery, intravitreal injections of steroid and
anti-VEGF medications, and laser photocoagulation. DR is a
significant public health issue and the leading cause of vision
loss among the working-age population [38]. One-third of
diabetes patients have DR [32]. Early diagnosis of DR is
critical to preventing severe damage to the retina and avoiding
loss of vision [39].

C. GLAUCOMA
Glaucoma arises from injury to the optic nerve, and visual
field loss follows [10]. Glaucoma damages the retina’s axons
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FIGURE 1. Fundus images of an eye with no diseases (a), DR (b),
Glaucoma (c), AMD (d). Images provided by Bangladesh Eye Hospital and
Institute Ltd.

and ganglion cells (Figure 1c). This occurs when the aqueous
humour, or eye fluid, does not properly circulate in the front
of the eye [40]. There are numerous glaucoma types, each

with its own set of pathogenic factors. However, they are all
distinguished by virtually universal modifications to the optic
nerve’s structure and function [41]. The cupping of the optic
disc characterizes glaucoma [42]. Tamim et al. [43] predicted
that 111.8 million people globally will have glaucoma by
2040.

D. AGE-RELATED MACULAR DEGENERATION
AMD is caused by aging-related degeneration to the macula,
the part of the eye that regulates accurate, straight-ahead
vision [44], [45]. AMD, a prevalent condition in individuals
above 50, generally manifests before Drusen, (Figure 1d)
which are microscopic yellow fragments of fatty protein
beneath the retina [46]. The two primary forms of AMD are
wet and dry AMD.With dry AMD, vision loss or impairment
typically occurs gradually [47]. Since it usually exhibits
no symptoms in the intermediate stage, AMD is difficult
to detect. OCT is currently the gold standard for assessing
individuals for initial AMD diagnosis. Grading of AMD
is crucial for detecting the early stages of the disease and
preventing patients from progressing to advanced AMD [48].
Early detection allows for timely intervention, which can
slow the progression and reduce the risk of severe vision
loss [48]. Performing the traditional detection of this disease
can take time and requires specialists with the necessary
skills [49]. AMD affects 6.2 million people worldwide [50].

III. ARTIFICIAL INTELLIGENCE-BASED RETINAL
SCREENING
Initially, traditional image processing techniques for
analysing fundus images were used, yielding encouraging
results, albeit on limited datasets and providing only
partial clinical information [51]. ML methods subsequently
enhanced the performance of automated analysis but
still lacked robustness [52]. Recently, DL methods have
demonstrated excellent performance on large datasets,
showing significant potential for clinical applications [53].
In general, these models based on AI work by getting an input
(e.g., fundus eye images) and if it is an ML model, it extracts
features first, then performs classification and then gives an
output of OD detected or not detected.

However, DLmodels do not need to extract features, which
makes them better for automatic detection, as the user does
not need to define each feature to detect the diseases. Many
DL models can be developed to screen, classify and detect
retinal diseases. Figure 2 shows a diagram of the different
approaches of ML (Figure 2a) and DL (Figure 2b) to detect
eye diseases from fundus images.

Expert ophthalmologists use fundus images from fundus
cameras or OCT to identify whether an ophthalmic illness
is present. Fundus eye imaging, a non-invasive technique
capturing retina images, has emerged as a valuable diagnostic
tool for detecting various retinal pathologies.

In recent years, the application of transformer-based
methods, such as Vision Transformers (ViTs), has shown
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FIGURE 2. Diagram of the different approaches of (a) ML and (b) DL
models to detect eye diseases from fundus images.

significant promise in the diagnosis of retinal diseases like
DR, AMD, and glaucoma [54]. These advanced methodolo-
gies leverage DL techniques to enhance the accuracy and
efficiency of retinal imaging analysis [55].
ViTs represent a breakthrough in image analysis, transfer-

ring the success of transformer models in natural language
processing to the field of computer vision [56]. ViTs
process images as sequences of patches, enabling them to
capture global contextual information more effectively than
traditional convolutional neural networks (CNNs) [57]. The
primary advantages of ViTs include their ability to understand
global context, which is particularly useful in identifying
complex retinal patterns and abnormalities [58]. ViTs are
highly scalable, improving performance with larger datasets
and more extensive training. They also benefit from transfer
learning, where pre-trained transformers can be fine-tuned on
specific retinal disease datasets, enhancing their diagnostic
capabilities [58].
In applications, ViTs can detect subtle changes in the

retinal vasculature, such as microaneurysms and hemor-
rhages in diabetic retinopathy [56], identify early signs of
AMD, including drusen and pigmentary changes [59], and
measure retinal nerve fibre layer (RNFL) thickness and optic
nerve head morphology for early glaucoma detection [54].
However, ViTs require substantial computational power and
resources for training and deployment, whichmay be a barrier
in some clinical settings. ViTs also need large annotated
datasets for effective training, which can be challenging to
obtain in the medical field.

According to Qummar et al., the manual method is
subjective, time-consuming, and arduous, making it difficult
for such diagnoses to be repeated [13]. The growing interest
in leveraging ML and DL to analyse fundus images has

the potential to revolutionize retinal health diagnostics. This
automatic retinal health screening systemmay help clinicians
detect these diseases in their early stages and have a higher
chance of saving patients’ vision. There would also be
no subjective bias on the part of the clinicians. If applied
properly, these systemswould produce results faster andmore
consistently than manual or human processes.

IV. PUBLIC DATASETS OF FUNDUS EYE IMAGES
The main retinal image databases that are publicly available
and have recently been used to gauge algorithm performance
in literature are listed in this section. These databases are
appropriate for assessing algorithm performance because
they have a clearly defined standard. The demand for
validating or training models has increased, thus research
teams have created and made their own datasets public [72].
The databases contain retinal images that show, among other
things, DR, AMD, and glaucoma.

The accessibility of these datasets is critical for the
development and evaluation of ML and DL models. A fully
annotated database, MESSIDOR, displays the DR grade
for all its 1200 fundus photos [60]. MESSIDOR-2 has
1748 photos, one for each eye and two for each subject. There
are 40 photos in DRIVE, 33 of which are DR-free, and 7 of
which show only minor DR symptoms [61].

RIM-ONE contains 159 images, eachwith an optic cup and
disc label. Of the images, 74 exhibit glaucoma symptoms,
and 85 are normal. STARE has 400 images, with 40 that
are manually segmented and annotated. Specialists label
all images [62]. DIARET DB1 contains 89 fundus images,
84 with at least mild DR. The images were acquired from
Kuopio University Hospital in Finland [36]. KAGGLE by
EyePACS has 88,702 images, 35,126 from the training set
and 53,576 for the test set. LAG-DB has 11,760 images,
4878 with glaucoma and the rest as normal [68]. IDRiD has
597 images showing DR and its severity and images with
normal retinal structures [71].

CHASEDB1 (Child Heart and Health Study in England
Database 1) is a public database created as part of the
Child Heart and Health Study in England [72]. It contains
retinal images used for research into the correlation between
retinal vessel characteristics and cardiovascular disease risk
factors in children. The CHASEDB1 database comprises
28 manually segmented monochrome ground-truth images
with a resolution of 1280 × 960 pixels. Retinal imaging was
conducted on over 1000 children. Expert ophthalmologists
performed the image segmentation.

The ACRIMA dataset emerged from a project funded by
Spain’s Ministerio de Economía y Competitividad, which
focused on the development of algorithms for detecting
ocular diseases [73]. This database comprises 705 images,
including 396 glaucomatous and 309 normal ones. Images
were obtained using the Topcon TRC retinal camera from
previously dilated left and right eyes. Two glaucoma experts
performed the image annotation.
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TABLE 1. List of public databases with fundus images. Note: MESSIDOR = methods to evaluate segmentation and indexing techniques in the field of
Retinal Ophthalmology RIM-ONE = retinal image database for optic nerve evaluation; DRIVE = digital retinal image for vessel extraction; STARE =

structured analysis of the retina; DIARET DB1 = standard diabetic retinopathy database calibration level 1; LAG DB = large-scale attention Glaucoma
Database; IDRiD = indian diabetic retinopathy image dataset.

The Online Retinal Fundus Image Dataset for Glaucoma
Analysis and Research (ORIGA) was developed by the
Singapore Malay Eye Research Institute (SERI) for seg-
menting the optic cup and optic disc [74]. This publicly
accessible database contains 650 retinal images intended for
benchmarking segmentation and classification algorithms.
It includes 168 glaucomatous images and 482 healthy images,
each with a resolution of 3072 × 2048 pixels. The images
were collected between 2004 and 2007 and were annotated
by highly trained professionals. The study’s subjects ranged
in age from 40 to 80 years.

The Ocular Disease Intelligence Recognition (ODIR)
dataset is a structured collection of data from 5,000 patients,
curated by the Peking University National Institute of Health
Sciences [76]. It includes multiple label annotations for
retinal diseases including DR, AMD, Glaucoma, and others.
The images are stored in various sizes in JPEG format. The
distribution of image class labels is as follows: Normal: 3098,
DR: 1406, Glaucoma: 224, AMD: 293, and others. Expert
ophthalmologists participated in the annotation process.

The ARIA database consists of 450 images in JPEG
format [77]. These images are divided into three categories:
a healthy control group, a group with AMD, and a group
with DR. Two expert ophthalmologists were responsible for
annotating the images.

The Age-Related Eye Disease Study (AREDS) was a
longitudinal study spanning up to 12 years, during which the
AMD conditions of numerous patients were monitored [78].
The study included cases of geographic atrophy, neovascular
AMD, and control patients. Retinal images of both the left
and right eyes of each patient were taken throughout the study.
These images were graded for AMD severity by various
eye specialists. Over the course of the study, some patients
who initially showed mild AMD symptoms progressed to

more severe stages. The database is divided into training,
validation, and test sets, consisting of 86,770, 21,867, and
12,019 images, respectively.

The IOSTAR database contains 30 retinal photos captured
using a laser fundus camera. These images were edited and
annotated by two specialists [79]. The IOSTAR database
includes annotations for the optic disc and the images have
a resolution of 1024 × 1024 pixels. DIARETDB0 consists of
130 images, with 20 normal images and 110 images showing
signs of diabetic retinopathy (DR), saved in PNG format.

Among other things, the quantity of photos, the pre-
processing tasks, and the quality of the images affect ML
and DL performance. Publicly available datasets such as
these have had an important role in advancing retinal disease
detection systems. Links to these databases are given in
Table 1, which shows the details of the datasets and relevant
links to these public data.

V. RELATED RESEARCH
Despite the considerable progress in AI-based retinal health
screening, many existing reviews in this field have several
limitations. Many reviews focus only on one specific disease
such as DR or AMD, or a particular AI model between ML
or DL, rather than providing a holistic view of the entire
field. This limits the understanding of the broader impact and
potential of AI in retinal health screening.

Few reviews offer a comprehensive longitudinal analysis
that tracks the evolution of AI technologies over an extended
period. This makes it challenging to appreciate the incre-
mental improvements and significant breakthroughs achieved
over the years. The existing reviews often emphasize
theoretical developments and laboratory results, neglecting
the practical challenges and successes of implementing AI
systems in real-world clinical settings. Rapid advancements
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TABLE 2. A table that shows a comparison with other published systematic review articles on detecting eye diseases such as DR, AMD, and Glaucoma
from fundus images.

in AI mean that emerging trends and technologies may
be underrepresented in reviews. This includes the latest
innovations in deep learning architectures, transfer learning,
and federated learning, which are crucial for the future of
retinal health screening.

In Table 2, we compared several reviews related to our
research work to the automated detection of ophthalmic
diseases such as DR, AMD, and Glaucoma. Initially,
many earlier studies used computer-aided diagnosis (CAD)
systems [90], [92]. These systems used image processing
techniques and handcrafted features to assist ophthalmolo-
gists in diagnosing eye diseases from fundus images. CAD
systems primarily served as tools to aid ophthalmologists by
highlighting areas of concern in fundus images, rather than
providing definitive diagnoses [93]. Early ML systems often
used rule-based algorithms to classify images [93]. These
rules were derived from clinical expertise and predefined
criteria, which limited their adaptability and accuracy.

In 2013, a review by Mookiah et al. showed how ML
was used to detect DR by extracting different features
such as microaneurysms, exudates and blood vessels [92].
ML systems relied heavily on the manual extraction of
features such as blood vessel patterns, microaneurysms,
exudates, and other retinal abnormalities. These features were
then used to identify potential signs of diseases like DR and
AMD [92].

Bhuiyan et al. [91] reviewed AMD detection techniques
using ML in 2014. Different techniques, such as drusen
detection techniques, and texture-based segmentation, were
discussed [91]. As the field progressed, ML techniques began
to be employed more frequently for retinal health screening
[94]. ML algorithms improved upon CAD systems by
learning from data, reducing the need for handcrafted features
[95]. MLmodels, particularly supervised learning algorithms
like support vector machines (SVMs) and random forests,
were trained on labelled datasets of fundus images. These

models learned to distinguish between healthy and diseased
retinas based on patterns in the data [96].
In 2016, Mary et al. [90] reviewed detecting glaucoma

using ML models such as SVM. While ML reduced reliance
on manual feature extraction, feature selection remained an
important step. Techniques like principal component analysis
(PCA) were used to identify the most relevant features for
classification [97]. ML algorithms achieved higher accuracy
compared to traditional CAD systems by leveraging larger
datasets and more sophisticated learning techniques [98].
However, they still required significant human intervention
for feature engineering and data pre-processing.

In recent years, deep learning (DL) has emerged as the
dominant approach for retinal health screening [99]. DLmod-
els, particularly convolutional neural networks (CNNs),
have transformed the field by automating feature extraction
and improving diagnostic performance [100]. Unlike ML,
DL models automatically learn relevant features from raw
image data [101]. CNNs, with their multiple layers of
convolutional and pooling operations, can identify complex
patterns in fundus images without manual intervention [102].

In 2019, Pead et al. [87] reviewed DL methods, partic-
ularly CNNs, in detecting AMD. In the review, CNNs are
highlighted for their high performance in detection from
fundus images. Transfer learning from pre-trained networks
and ensemble learning are also discussed [87]. Examples
include a 14-layer CNN achieving a high accuracy of 95.45%,
sensitivity of 96.43%, and specificity of 93.75%.

In 2020, Islam et al. [85] reviewed DL methods for detect-
ing DR. Their findings demonstrated that DL algorithms
exhibited high sensitivity and specificity in detecting DR
from fundus images. They concluded that implementing
a DL-based automated tool to assess DR from colour
fundus images can offer an alternative solution to reduce
misdiagnosis and enhance workflow. It can also have
significant advantages, including lowering screening costs,
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increasing healthcare accessibility, and facilitating earlier
treatments [85].

In 2023, Soofi [81] reviewed DL methods for detect-
ing glaucoma. Using CNNs, Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM) networks
for glaucoma detection are highlighted in their review. Their
review also focused on the different techniques including
U-Net for segmentation of the optic disc, MobileNet V2 for
classification, and attention-based mechanisms to improve
focus on relevant image regions [81].

Bhulakshmi and Rajput [80] reviewed ML and DL
methods to detect DR in 2024. They reviewed different
methods such as CNNs, RNNS, GANs. THe review con-
cluded that CNNs were effective in classifying DR severity,
RNNs were useful for sequential data, tracking disease
progression over time, and GANs were used in many
studies to generate synthetic retinal images for training DL
models [80].

DL enables end-to-end learning, where the entire process
from image input to disease classification is handled by the
model [103]. This reduces the need for intermediate steps like
feature selection and allows for more streamlined workflows.
DL models have achieved state-of-the-art performance in
detecting retinal diseases. Studies have shown that CNNs can
match the accuracy of expert ophthalmologists in detecting
conditions like DR, AMD, and glaucoma [69].
DL models are highly scalable and can be trained on

large datasets, enabling them to generalise well to diverse
populations and varying image quality [69]. This makes them
suitable for widespread clinical use. In general, earlier studies
focused on documenting the performance of different ML
techniques for automatic ophthalmic disease detection. In
contrast, more recent studies have reviewed DL techniques
for automatic ophthalmic disease detection.

VI. MATERIALS AND METHOD
During the design phase of this systematic review, we applied
the PRISMA guideline to evaluate relevant research on AI
in retinal screening using fundus images. We focused on the
following conditions: Glaucoma, AMD, and DR.We targeted
articles that incorporated ML or DL techniques.

We followed the PRISMAguidelines to perform a systemic
search of studies related to AI approaches in retinal health
screening published from January 2012 to June 2024.
We identified, screened, and selected 142 papers that satisfied
the criteria of this review. These particular databases were
picked because they had many excellent research papers. The
database queries were created using the topic-related specific
Boolean strings, as shown in Table 3.
Using the Boolean search queries outlined in Table 3,

a systematic search was performed across four databases:
Institute of Electrical and Electronics Engineers (IEEE)
Xplore Digital Library, PubMed, Science Direct, and Google
Scholar, covering all publications. The initial identifica-
tion phase of the PRISMA method, shown in Figure 3,

FIGURE 3. Flow diagram of PRISMA approach used for this systematic
review.

spanned from January 2012 to June 2024 and resulted in
1601 publications.

The distribution of studies across databases was as follows:
531 studies from Google Scholar, 176 studies from Science
Direct, 429 studies from PubMed, and 465 studies from IEEE
Xplore Digital Library.

In the screening phase, we removed 622 duplicates
and 181 ineligible studies from the initial search results.
After removing the 803 articles, 798 publications remained.
We further examined the titles and abstracts of the remaining
publications. This process led to the systematic elimination
of 507 articles, including 437 non-relevant publications,
21 books, and 49 non-English language publications, which
resulted in 291 articles remaining.

In the inclusion stage, we thoroughly read and assessed
the eligibility of the remaining 291 articles. We checked
for completeness of information and whether they contained
the necessary details pertinent to AI approaches in retinal
health screening. After meticulous review, an additional
149 articles were excluded for not being in our inclusion
criteria, missing or irrelevant information, or no evaluation.
Finally, 142 journal articles met the eligibility criteria for
inclusion in this review. Our detailed inclusion and exclusion
criteria are presented in Table 4. In Figure 3, the PRISMA
workflow diagram of this process is shown.

Figure 4 illustrates the number of ML and DL studies
per year from January 2012 to June 2024 that focused on
detecting AMD, DR, and glaucoma. The graph shows an
exponential increase in research output over this period. Early
on from 2012-2017 there were just a handful of studies
but from 2018-2021 the number of studies rose steadily for
each disease area. There was a sharp increase in the year
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TABLE 3. Boolean search terms and the quantity of chosen papers from the corresponding databases.

TABLE 4. Inclusion and exclusion criteria of our search.

FIGURE 4. Bar graph illustrating the number of annual studies that used
ML and DL methods to identify AMD, DR, and glaucoma from 2012
to 2024 (till June 2024).

2022, which was just after the COVID-19 pandemic period.
Numerous studies followed it in the year 2023 and up until
June 2024. This reflects the steady increase of interest in
applying ML and DL for the detection of AMD, DR, and
glaucoma.

VII. RESULTS, ANALYSIS, SYNTHESIS AND
INTERPRETATION
In this paper, we reviewed 142 papers, which had 262 studies
using different ML and DL models to identify ophthalmic
diseases. Out of 262 studies, 47.33% (124) were on

Glaucoma, 22.90% (60) were on AMD and 29.77% (78)
were on DR. Different studies used different performance
metrics such as F1-Score and precision, but our review
focused only on studies that used accuracy, specificity, and
sensitivity/recall or AUC as metrics. As demonstrated by the
bar charts in Figures 5 to 7, and 11 to 14, the models utilised
in all of these studies had a generally strong performance in
terms of accuracy, specificity, and sensitivity.

A. MACHINE LEARNING
If we consider the 104 ML-based studies that attempted
to identify ODs, we note that around 36.5% (38) utilised
a support vector machine (SVM) as the classifier. The
discussed 3 ODs (Table 14-19) achieved greater performance
with SVM despite the results varying from 73.3% to 100%
accuracy, 53.16% to 100% specificity, and 82.6% to 100%
sensitivity.

With the SVM classifier, the highest accuracy, specificity,
and sensitivity of 100% were achieved in Glaucoma [105].
For AMD, the highest accuracy of 93.7%, specificity of
96.3%, and sensitivity of 91.11% were achieved using
SVM [119]. For DR, the highest accuracy of 100% [120],
specificity of 96.88% [121], and sensitivity of 100% [98]
were achieved using ML classifiers.

SVM was still the most commonly used ML classifier.
For Glaucoma, 37.8% (17 of the 45 classifiers) were SVM
(Figure 10). Two studies used the least-square support vector
machine (LS-SVM), one of the SVM variants [122], [123].
Large data processing and computational time reduction are
common uses for the LS-SVM model [124].

Many models for OD detection have recently been
developed using ML methods. To find patterns and forecast
the presence of ODs, ML algorithms can analyse large
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TABLE 5. Summary of some high-performing ML methods to detect Glaucoma, DR, and AMD on fundus images over the last decade.

TABLE 6. Summary of some high-performing DL methods to detect Glaucoma, DR, and AMD on fundus images over the last decade.

amounts of data. From the literature, we can see that several
studies have employed traditional ML techniques, such as

SVM, decision trees, and random forests, to detect retinal
diseases from fundus images. Reference [21] proposed an
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automated system based on SVM for detecting DR. The
system showed high sensitivity and specificity in identifying
DR-related lesions.

Similar studies have used other ML techniques, such as
KNN and decision trees, to detect and classify ODs such as
glaucoma [110]. Retinal nerve fibre layer thickness was the
basis for Bock et al. [125] application of SVM to distinguish
between retinas in good condition and those with glaucoma.
Their approach demonstrated promising results in detecting
glaucomatous damage.

García-Floriano et al. [126] developed an automated
system using ML techniques, including SVM, to detect
AMD. Their approach achieved high classification accuracy
in distinguishing between different AMD stages. These
methods for medical diagnosis, such as decision trees [127]
and the Gaussian mixture model [128] were able to match
the accuracy levels of human experts, as noted by Jain et al.
[129]. Still, their disadvantage was that they heavily relied on
knowledge of the disease-specific features and required a lot
of work to be able to extract and analyse the features.

TraditionalML algorithms like SVMs do not have the same
feature learning capabilities as deep nets. In traditional ML,
having more fundus images does not meaningfully improve
the model as there are diminishing returns - at some point, the
performancemay plateau or even degradewith toomuch data.
They cannot take full advantage of very large image datasets
in the same way as DL. In DL, the performance typically
continues to improve as more images are added to the dataset
without hitting the same diminishing returns as ML. This is
because DL models have a higher capacity to take advantage
of large datasets.

ML models often need help in capturing complex patterns
in large datasets. If a dataset is too large and diverse, it can
lead to overfitting, where the model memorizes the data
rather than generalising from it, potentially resulting in lower
performance.

B. DEEP LEARNING
Most of the models in our review that used DL have used
CNN. CNN is a subclass of multilayer neural networks.
It is a model based on the biological neural networks
found in the human brain [101]. There have already been
some publications of CNN applications for analysing retinal
images. As an illustration, Van Grinsven et al. [130] used
CNN to find haemorrhages in fundus photographs.

In their work, they used a CNN model with nine layers.
A deep CNN was also used to simultaneously locate
and segment the vasculature, optic disc, and fovea [131].
The proposed CNN model’s high accuracy performance
demonstrates its potential for use in CAD systems. In visual
recognition tasks, CNN models have demonstrated excep-
tional recognition capacity [132], [133].

A Convolutional Neural Network (CNN) or one of
its variants was used as the classifier in about 58.9%

(93 out of 158 DL studies) that attempted to identify ODs
(Appendix A).

The discussed 3 ODs (see Table 14 to Table 19) achieved
superior performance with CNN despite the results varying
from 63.3% to 100% accuracy, 66.6% to 100% specificity,
and 51.5% to 100% sensitivity.

AMD achieved 100% accuracy, specificity, and sensitivity
of 100% with the CNN classifier or one of its variants [134].

CNN achieved the highest accuracy of 99% [135],
specificity of 96.7% [136], and sensitivity of 95.6% [22] for
glaucoma.

For DR, the highest accuracy of 99.62% [137], specificity
of 96.37% [138], and sensitivity of 96.87% [139] were
achieved using CNN or one of its variants.

DL models like CNN are specifically designed to extract
features from image data. The more images they are trained
on, the better they recognise patterns and features, leading
to continued gains in performance. DL models with many
layers can be overfitted on small datasets. More training
images help prevent overfitting and improve generalisation,
so, performance improves with more data.

DL can leverage large image datasets more effectively
to steadily improve performance, while traditional ML sees
diminishing returns after a certain threshold of data size. Due
to the advantages of DL over ML, future work should focus
on DL for image classification tasks. Using deep learning
(DL) over traditional machine learning (ML) for detecting
eye diseases offers several advantages:

• Automatic Feature Extraction: DL models, partic-
ularly Convolutional Neural Networks (CNNs), are
adept at automatically identifying and learning relevant
features from raw data, such as images [140]. This
contrasts with ML, where feature extraction requires
manual intervention and expert knowledge, making
DL more efficient and scalable for complex tasks like
detecting a wide range of retinal diseases [84].

• Handling Complex Patterns: DL models can capture
andmodel complex patterns in data that are often missed
by traditional ML algorithms [141]. This capability
is crucial for detecting eye diseases, where subtle
variations in retinal images can indicate different condi-
tions [9]. DL canmore accurately identify these nuances,
leading to better diagnosis and treatment strategies.

• Versatility and Adaptability: DL models can be
designed to handle multiple tasks simultaneously, such
as screening, categorisation, and detection of various eye
conditions, including AMD, DR, and glaucoma [142].
This multipurpose nature makes DL more versatile than
ML, whichmight require different models or feature sets
for each task.

• Improved Accuracy and Efficiency: Due to their
ability to learn from large datasets and improve over
time, DL models can achieve higher accuracy in disease
detection than ML models [101]. This is particularly
beneficial in medical imaging, where precision is
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TABLE 7. A comparison of ML methods for optic disc and optic segmentation in fundus eye images.

TABLE 8. A comparison of DL methods for optic disc and optic segmentation in fundus eye images.

critical. DL models can also process and analyse
data faster once trained, offering real-time diagnostic
capabilities that are essential in clinical settings.

• Potential for Novel Discoveries: The DL approach
can uncover new patterns or biomarkers for diseases
that were previously unknown [37]. By learning from
comprehensive datasets, DL models might identify new
indicators of eye diseases, leading to breakthroughs in
how these conditions are understood and treated.

In summary, DL offers significant advantages over
traditional ML in the context of detecting eye diseases,
including the ability to automatically learn from data, handle
complex patterns, adapt to various tasks, improve diagnostic
accuracy and efficiency, and potentially lead to new medical
insights.

VIII. SEGMENTATION
In the field of retinal health screening, segmentation involves
partitioning a fundus image into multiple segments (sets of
pixels) to simplify or change the representation of an image
into something more meaningful and easier to analyse [161].
Segmentation is a fundamental process, particularly for
delineating key structures such as retinal lesions, the optic
cup, and the optic disc [161]. Segmentation aims to isolate
and highlight specific structures or regions of interest, such
as blood vessels, the optic disc, or exudates. Although
traditional segmentation techniques involved image process-
ing techniques, it was improved upon my ML techniques.
Recently, DL techniques like U-Net, Fully Convolutional
Networks (FCNs), and Region-Based Convolutional Neural
Networks (R-CNN) have been commonly used for the
segmentation of fundus images [162].

A. OPTIC DISC AND OPTIC CUP SEGMENTATION
The segmentation of the optic disc and optic cup is essential in
detecting glaucoma [163]. The optic cup-to-disc ratio (CDR)
is a key metric analysed in this process. An increased CDR
is indicative of glaucomatous changes, reflecting the loss of
retinal nerve fibres and the associated excavation of the optic
nerve head [164]. Accurate segmentation of the optic disc
and optic cup allows for precise measurement of the CDR,
facilitating early detection andmonitoring of glaucoma [165].
Additionally, the segmentation of the optic cup helps in
assessing the neuroretinal rim, which is crucial for evaluating
glaucomatous damage [118].

Optic disc segmentation was first accomplished using
techniques such as mathematical morphology, thresholding,
and template matching [166], [167], [168]. Later, many
studies incorporated the Hough transform into mathematical
morphology [169]. Another approach involved tracing blood
vessels first and then locating the optic disc by identifying the
point where the vessels converged [170].

Active contours, ellipse fitting, and thresholding were
commonly used techniques in early works for optic disc and
optic cup and segmentation [171]. These algorithms utilised
colour/intensity variations or vessel bends (or a combination
of both) within the optic disc.

ML techniques have significantly enhanced the seg-
mentation of the optic disc and optic cup, aiding in the
estimation of clinically relevant parameters [171]. Image pre-
processing, feature selection, and classification techniques
are commonly emphasized in many ML studies. The results
from these automatedmethods have shown their effectiveness
in detecting glaucoma, often producing results comparable to
those obtained through manual analysis by expert clinicians.
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However, these techniques tend to be computationally
intensive, have been validated on limited datasets, and may
favour specific types of images while struggling with others,
such as those with very large optic discs and optic cups.

DL has also been applied in optic disc and optic cup
segmentation and can be particularly useful in identifying
specific structures in the eye, such as the optic nerve head
in glaucoma [92].

Al-Bander et al. [74] utilised DenseNet for optic disc
and optic cup segmentation, providing precise cup-to-disc
ratio (CDR) measurements crucial for glaucoma detection.
Similarly, Tan et al. developed a CNN model to segment the
optic disc from fundus images, resulting in high classification
accuracy [131].

Advanced segmentation techniques have been developed
usingU-Nets. For instance, Sevastopolsky proposed amethod
using U-Net for segmenting the optic disc and optic cup,
achieving high intersection-over-union (IOU) scores across
several databases [159].
Shyamalee and Meedeniya [154] proposed a design of

attention U-Net architectures with different CNN backbones
to detect glaucoma. Two datasets, RIM-ONE and ACRIMA,
were used. The attention U-Net model incorporates attention
gates at each skip connection to enhance feature retention and
spatial data.

The encoder part of the U-Net was replaced with pre-
trained networks (Inception-v3, VGG19, and ResNet50) to
identify the best segmentation performance. The three U-Net
models with different CNN architectures were trained and
evaluated using multiple metrics [154].
The attention U-Net with ResNet50 backbone achieved

the highest accuracy of 99.53% in segmenting the optic disc
on the RIM-ONE dataset [154]. The study demonstrates the
superior performance of the ResNet50-based attention U-Net
in accurately segmenting the optic disc and optic cup, which
is crucial for glaucoma identification.

The study successfully demonstrates the effectiveness of
the attention U-Net model with ResNet50 backbone for optic
disc and optic cup segmentation in fundus images, achieving
high accuracy and sensitivity. This approach can significantly
aid in the early diagnosis of glaucoma, potentially preventing
vision loss.

B. RETINAL BLOOD VESSEL SEGMENTATION
Changes and abnormalities in retinal blood vessels, such as
neovascularisation, are crucial for DR detection. Segmen-
tation of retinal blood vessels allows for the identification
of these changes. Neovascularisation, or the formation of
new, fragile blood vessels, is a severe complication of DR
that can lead to vision loss if not promptly treated [216].
Vessel segmentation also facilitates the assessment of vessel
density and tortuosity, which are important biomarkers for
DR progression [92].

The literature in this retinal blood vessel segmentation
has seen many works published in the last decade [217].

Supervised methods for blood vessel segmentation use a
classifier that requires a training stage with pre-labelled
pixel information to adjust parameters, whereas unsupervised
methods tackle the segmentation problem directly using
various image processing techniques such as vessel tracking,
matched filtering, morphological transformations, or model-
based algorithms, among others [218], [219].

Two main categories of supervised methods can be
distinguished: those based on conventional ML models
and those based on DL using CNNs. Supervised methods
require a set of mathematical descriptors to characterise and
differentiate pixels as either part of the vascular structure or
not. ML Classifiers such as SVM then use this mathematical
representation to determine the class of each pixel. Some
recent ML methods for blood vessel segmentation are given
in Table 9.
Mehidi et al. [172] proposed a vessel segmentation method

that used CLAHE and bottom-hat filtering to increase the
contrast between the vascular and fundus, followed by a
Jerman filter. The proposed segmentation model has been
evaluated on the STARE and DRIVE databases, reaching an
accuracy of 96.18% and 95.86%, and a specificity of 98.10%
and 98.74%, respectively.

In recent years, research on blood vessel segmentation
in retinal images has increasingly focused on DL meth-
ods, as shown in Table 10. Traditional image processing
techniques often fail to detect all vessels accurately. Unlike
conventional methods, DL approaches internally generate the
most appropriate mathematical representation of the vascular
structure.

A study [208] proposed a novel deep learning method
based on a convolutional neural network (CNN) with a dice
loss function for retinal vessel segmentation. The proposed
method was tested on the DRIVE and STARE databases
and showed superior performance compared to existing
methods. Specifically, it achieved a sensitivity of 73.9%
and an accuracy of 94.8% on the DRIVE database, and a
sensitivity of 74.8% and an accuracy of 94.7% on the STARE
database [208].
In Li et al. [214], blood vessel segmentation is treated

as a cross-modality data transformation problem, utilising a
broad and deep NN to model the relationship between the
input image and the output vessel map. The characteristics
are extracted in the intermediate layers of the network.
DL methods typically employ a CNN architecture that uses
a multi-layered cascade (including convolutional, pooling,
and activation layers) to extract hierarchical descriptors for
the classification stage. Although this final stage can be
performed by any trainable classifier (e.g., a Random Forest
ensemble as used by a study by Wang et al. [215]), a typical
CNN architecture ends with a fully connected neural network
structure to make the final classification decision.

In a study by Soomro et al. [220], different DL-based
retinal blood vessel segmentation was reviewed. The study
showed that methods like the self-organising map (SOM)
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TABLE 9. A comparison of ML methods for blood vessel segmentation in fundus eye images.

TABLE 10. A comparison of DL methods for blood vessel segmentation in fundus eye images.

and ensemble learning have shown good results but often
struggle with tiny vessel detection [220]. Sangeethaa and
Maheswari [102] proposed a CNN that learns from pre-
processed retinal images instead of raw image data.

Another study proposed an ICA-based image enhancement
technique that significantly improves retinal vessel segmen-
tation, achieving better performance than existing meth-
ods [221]. The study’s findings suggest that this approach can
be extended to other medical imaging applications requiring
low-contrast feature detection [221].

Jiang et al. [210] used a fully convolutional neural
network (FCN) pre-trained on a natural image dataset,

using transfer learning for vascular tree segmentation.
Feng et al. [192] suggested a cross-connected CNN,
where all convolutional layers of the primary and sec-
ondary paths are connected to facilitate multi-level feature
fusion.

The primary benefit of unsupervised vessel segmentation
methods is that they do not require manual annotation.
These methods utilise or identify image properties to classify
pixels as either vessel or non-vessels. The GMM-expectation
maximisation (EM) algorithm has also been employed
for vessel segmentation. The EM algorithm provides a
maximum-likelihood classification of a vessel and non-vessel
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TABLE 11. A comparison of ML methods for microaneurysm segmentation in fundus eye images.

TABLE 12. A comparison of DL methods for microaneurysm segmentation in fundus eye images.

pixels, with vessel enhancement achieved through high-pass
filtering and the top-hat transform [222].

Recently, many works have adopted the U-Net DL model
such as the one proposed by Ronneberger [223]. It has
proven effective in medical image segmentation, especially
for problems involving class imbalance and limited sample
sizes, as with blood vessel segmentation in retinal images.
The conventional U-Net structure has been used as a network
model in studies by Darmo et al. [189], Chen et al. [195], and
Yin et al. [198] for blood vessel segmentation.

Moreover, BayesianU-Net andweakly supervised learning
approaches have been employed to enhance segmentation
efficiency and reduce manual annotation efforts, as demon-
strated by Xiong et al. [224]. These methods address
inter-subject variability and improve model performance
by optimising the segmentation process through innovative
techniques.

C. MICROANEURYSM AND EXUDATES SEGMENTATION
Microaneurysms, appearing as small red dots on the retina,
are one of the earliest signs of DR. AI algorithms segment
thesemicroaneurysms to detect the onset of DR. The presence
and number of microaneurysms are critical indicators of
the severity of DR, with more advanced stages showing an
increased number of these lesions [32].
Early detection through the segmentation of microa-

neurysms enables timely intervention and can prevent
progression to more severe stages [245]. Exudates are lipid
residues that appear as yellow spots on the retina and are
another hallmark of DR [246]. Their segmentation is vital for
diagnosing DR, as the presence of exudates signifies leakage
from damaged blood vessels in the retina [246]. Detecting
and quantifying exudates help in assessing the extent of

retinal damage and the progression of DR [53]. Advanced
segmentation techniques enable precise localisation and
classification of exudates, contributing to more accurate
diagnosis [247].

Microaneurysm and exudates segmentation from fundus
images have seen significant advancements over the past
decade. The methods for segmentation can be categorized
into traditional image-processing techniques and modern DL
approaches. For microaneurysms segmentation, traditional
methods include morphological processing, wavelet transfor-
mation, and hybrid classifier approaches.

One of the earliest studies by Spencer et al. [248] usedmor-
phological operations to eliminate vasculature in fluorescein
angiograms, isolating small structures like microaneurysms.
This approach relied heavily on manual feature engineering
and traditional image processing techniques.

Quellec et al. [247] introduced an adaptive wavelet method
using local template matching in the wavelet domain to detect
microaneurysms. Akram et al. [249] developed a hybrid
classifier combining a Gaussian mixture model, and support
vector machine (SVM) to identify microaneurysms.

A study by Sreng et al. [250] presented an effective
method for the segmentation of microaneurysms from fundus
images. Initially, they pre-processed the fundus images to
reduce noise and enhance contrast. They then segmented
the images using Canny edge detection and maximum
entropy thresholding. Microaneurysms were distinguished
from other lesions and anatomical structures in the fundus
image using area and eccentricity methods [250]. Finally,
morphological operations were applied to highlight these
symptoms. Ophthalmologists analysed the results to assess
the system’s accuracy and precision. Their comparative
analysis showed a 90% accuracy rate [250].
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In contrast to traditionalmethods, DL utilise deep networks
to perform segmentation tasks, automatically extracting
useful image features. With the advancement of DL, neural
networks have become prevalent in microaneurysms and
exudates segmentation.

Haloi [251] employed a deep neural network with three
convolutional layers and two fully connected layers for
automatic microaneurysms segmentation. Kou et al. [252]
proposed a deep residual U-Net, combining a deep residual
model and recurrent convolutional operations into a U-Net
for microaneurysms segmentation.

Exudates segmentation has seen the development of
traditional methods such as thresholding, and morphological
processing.

A study by Phillips et al. [253] used global threshold
techniques for fundus images for exudates. Walter et al. [51]
applied morphological reconstruction to locate exudates. For
exudates segmentation, Perdomo et al. [254] applied LeNet,
a CNN.

In AMD, particularly the wet form, exudates indicate
fluid leakage and neovascularisation [255]. Segmentation of
exudates in AMD patients helps in identifying the presence
of abnormal blood vessels and fluid accumulation, which are
critical factors in diagnosing and managing wet AMD [18].
Automated exudate segmentation supports early detection
and monitoring, improving patient outcomes [256].
Microaneurysm and exudates segmentation has evolved

from traditional image-processing techniques to sophisti-
cated DL models. Early methods relied on morphological
operations, wavelet transformations, and hybrid classifiers.
The transition to DL introduced CNNs, FCNNs, and U-
Net variants, significantly enhancing segmentation accuracy.
Recent advancements include enhanced residual U-Nets,
attention mechanisms, and transformer-based models.

A study by Kou et al. [257] introduced an enhanced resid-
ual U-Net (ERU-Net), which featured one downsampling
path and three upsampling paths. Unlike the original U-Net,
the three upsampling paths in ERU-Net enhanced the fusion
feature maps and captured more details of fundus images.
Additionally, a residual block in ERU-Net was designed
to extract more representative features. The study showed
that ERU-Net performs well in segmenting microaneurysms
and exudates. Compared to other U-Net variants, ERU-Net
achieved the best performance across three publicly available
fundus image segmentation datasets.

D. HAEMORRHAGE SEGMENTATION
Retinal haemorrhages, which are bleeding spots, play a
significant role in DR detection [258]. Segmentation of
these haemorrhages enables the identification of AMD and
more advanced stages of DR. The presence of retinal
haemorrhages indicates significant vascular damage and
warrants immediate medical attention [258].
Automated segmentation of haemorrhages aids in compre-

hensive retinal screening and monitoring [246]. The initial

attempts at haemorrhage segmentation relied heavily on
traditional ML approaches, which focused on the extraction
of handcrafted features from fundus images.

Kande et al. [259] employed pixel classification and
mathematical morphology to detect haemorrhages. They
utilised the red and green channels of the images to determine
the presence of red lesions. Subsequently, the SVM algorithm
was applied to classify candidate areas for red lesion
containment. This approach achieved a specificity of 91% and
a sensitivity of 100%.

A study by Tan et al. [243] used a 10-layer multiclass neu-
ral network for segmenting haemorrhages in retinal fundus
images. Their method achieved a haemorrhage segmentation
sensitivity of 62.57% and a specificity of 98.93%.

Orlando et al. [70] developed a method that combines
a CNN with an RF for segmenting hemorrhages and
microaneurysms. The RF algorithm generates probability
maps of hemorrhages andmicroaneurysms at the image level,
utilising features from the green layer of patches extracted by
the CNN architecture. This approach achieved a sensitivity of
48.83% for detecting hemorrhages and microaneurysms.

Badar et al. [260] introduced an encoder-decoder model for
the simultaneous segmentation of hemorrhages and exudates,
based on a CNN classifier. When trained and tested on
the Messidor dataset, this model achieved a hemorrhage
segmentation accuracy of 97.86%.

E. DRUSEN SEGMENTATION
Drusen, yellow deposits under the retina, are the main
symptoms of AMD [99]. Segmentation of drusen is important
in detecting AMD, as their presence and size correlate
with the severity of the disease [261]. Early detection
of drusen can help in monitoring AMD progression and
initiating timely interventions. AI-based segmentation of
drusen enables accurate quantification and characterisation,
aiding in personalised treatment plans ( [261].

The literature shows, that drusen segmentation methods
follow two main approaches. The first approach relies on
traditional image processing techniques, where various local
features are extracted and then classified using anML, such as
SVM [262]. The primary objective is either to directly detect
the drusen region or to delineate its boundaries. Traditional
methods relied on handcrafted features and were typically
limited by their inability to generalise across varying image
conditions.

For instance, Kim and Kim [263] applied multiple filters
to candidate regions to detect drusen. They used traditional
image processing techniques for drusen segmentation. How-
ever, by using only local features and handcrafted filters,
it will not work as well in early AMD, where the drusens are
not as prominent in fundus images.

In 2011, Mora et al. [264] used a gradient-based segmen-
tation algorithm to isolate drusen and provide basic drusen
characterisation. The approach had a maximum sensitivity
of 74% and a specificity of 97%. Mohaimin et al. [265]
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introduced a colour normalisationmethod to address the issue
of colour variations in fundus images for detecting drusens.

Ren et al. [262] used SVM to classify drusen from fundus
images from the STARE and DRIVE datasets. The method
achieved sensitivity, specificity, and accuracy of 90.03%,
97.06% and 96.92% on the STARE dataset and a sensitivity,
specificity, and accuracy of 87.41%, 94.93%, and 94.81% on
the DRIVE dataset [262].

Sbeh et al. [266] proposed a method for drusen segmenta-
tion from fundus images using an adaptive algorithm based
on mathematical morphology transforms.

Rapantzikos et al. [267] developed the histogram-teased
adaptive local thresholding technique for drusen detection
in fundus images, efficiently extracting useful information
while ignoring other pathological structures. Various fuzzy
logic-based techniques and texture-based methods have been
proposed for drusen detection and segmentation from fundus
images [268], [269] [270].

Brandon and Hoover [271] employed a multi-level
approach, beginning with pixel-level classification and pro-
gressing to region-level, area-level, and finally image-level
analysis, which enabled the detection of drusen with an
accuracy of 87%.

Recently, DL models such as U-Nets have been utilised in
drusen segmentation. Yan et al. [238] utilised two U-Nets to
capture both global and local information. In this approach,
feature maps are treated as global information and are merged
in the final layer. However, this configuration necessitates
limiting the number of channels in the feature maps to prevent
excessive computational demands [238].

Pham et al. [272] proposed a multi-scale DL model to
make a fine drusen segmentation prediction. Their method
is suitable for high-resolution fundus images. Whereas
previous studies on drusen segmentation analysed a cropped
image to solve the high-resolution problem, the method by
Pham et al. combined both global and local information,
by which the model is able to predict more accurate
drusen segmentation. Additionally, by utilising the pre-
trainedmodel and the combination of different loss functions,
the performance of detecting drusen in the early stages of
AMD is improved [272].

IX. CLASSIFICATION
Classification involves assigning a label to an image based
on its content, such as identifying the presence or absence of
specific eye diseases from retinal images [137]. This process
helps in diagnosing and categorising retinal conditions.

Classification approaches in retinal health screening have
evolved significantly with the advent of ML and DL.
ML techniques such as SVM, KNN, NB, DT, RF and others
have been extensively used to classify eye diseases like
AMD, DR, and Glaucoma. by analysing various features
from fundus images to detect and classify these conditions
with high accuracy. Recently, DL models, particularly CNNs

and their variations have been used in the detection of fundus
images. DL models have automated feature extraction from
raw image data and enhanced classification accuracy [102].
These models enable end-to-end learning, streamlining
workflows by handling the entire process from image input
to disease classification.

In the literature, one of the more popular ML models,
Support Vector Machines (SVM) has been extensively used
for classifying DR, AMD, and glaucoma. SVM is used
due to their ability to handle high-dimensional data and
create decision boundaries that maximize the margin between
classes [273]. It involves extracting relevant features from
fundus images and then selecting important features to
reduce dimensionality and improve classification accuracy.
However, SVM’s performance depends on the choice of
kernel and parameters, and it can be computationally
intensive with large datasets [273]. It requires careful tuning
of parameters and kernel selection to achieve optimal
performance. Additionally, handling imbalanced datasets
can be challenging and may require techniques such as
oversampling or the use of different class weights [274].

A study by Antal and Hajdu [274] used SVM for DR
classification by analysing features such as microaneurysms,
hemorrhages, and exudates in retinal images. By mapping
input data into high-dimensional space, SVMs create a
hyperplane that best separates different classes, such as
different stages of DR. This technique is highly effective for
binary classification tasks, such as distinguishing between
healthy and DR-affected eyes.

Sarni et al. [275] suggested a decision-support system for
microaneurysms for DR screening. In order to classify the
microaneurysms, Antel et al. used ensemble learning [276].
Using local binary patterns, Morales et al. performed

classification to differentiate between Normal, DR, and
AMD [277]. The diameter of blood vessels is another aspect
of DR that changes. As a result, it is another feature used
to categorize DR. Using a Gaussian filter, Nikita et al.
segmented blood vessels, extracted texture and structural
features, and then performed classification using SVM and
ANN [95].

Bowd et al. [278] used SVMs for glaucoma classification
by analysing features extracted from optic nerve head images,
such as the cup-to-disc ratio and neuroretinal rim width.
SVMs excel at distinguishing between glaucomatous and
non-glaucomatous eyes, especially when dealing with high-
dimensional feature spaces [278]. Floriano et al. [126] used
SVM to classify AMD by identifying patterns in retinal
images. SVMs are capable of handling high-dimensional data
and are used to differentiate between healthy and AMD-
affected eyes based on features such as drusen size, shape,
and distribution [126]. SVMs maximize the margin between
different classes, leading to robust classification results [279].

A study that showed potential in quickly and accu-
rately detecting glaucoma has been put forward by some
authors [111]. They acquired their fundus images privately.
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The study showed that Bi-empirical mode decomposition (Bi-
EMD) and the scalogram of continuous wavelet transform
are used. Entropy features are a common feature extraction
in fundus images because they are capable of accurately
measuring pixel variation. To identify normal fundus images
from abnormal ones, such as glaucoma, a retinal risk index
has been established [111]. Both Bi-EMD and CWT have
produced encouraging results with an accuracy of 88.6%
using the SVMclassifier and 92.48%using the RFF classifier.
An accuracy of 96.2%, sensitivity of 95%, and specificity of
97.4% was achieved with a ten-fold cross-validation strategy
using the KNN classifier. This novel algorithm has great
potential in detecting glaucoma quickly and reliably.

DR is classified in a variety of ways using various
databases [280], [281], [282]. Exudates were extracted by Du
and Li [283], who then classified the samples into normal,
NPDR, and PDR using SVM. Exudates were also extracted
by Tjandrasa et al. [279], who also classified DR as mild,
moderate, or severe using SVM as a classifier.

Gupta et al. [284] achieved an accuracy of 92% in detecting
DR on the APTOS2019 and EyePacs datasets. They used
the Life Choice-Based Optimizer (LCBO) algorithm, which
selects the optimal features from the extracted set. These
features are then fed into an optimised hybrid machine
learning classifier, combining a Neural Network (NN) and
a Deep Convolutional Neural Network (DCNN), where the
Social Ski-Driver (SSD) algorithm is used to determine the
best weight values for the hybrid classifier. This classifier
categorises the severity of DR into mild, moderate, severe,
proliferative DR, and normal.

K-Nearest Neighbors (KNN) is a simple yet effective
ML technique that has been widely used for classifying
DR, AMD, and glaucoma [261]. KNN is a non-parametric
method that classifies a data point based on the majority class
of its k-nearest neighbours [285]. KNN has been used to
classify AMD by analysing features such as the presence and
distribution of drusen, changes in retinal pigmentation, and
other abnormalities [261]. Once these features are extracted,
KNN can classify new retinal images by comparing themwith
previously labelled examples. The simplicity of KNN makes
it a useful baseline model for AMD classification, providing
a straightforward approach to identifying patterns in retinal
images [261]
In a study by Kermany et al. [17], a multi-class comparison

of different ophthalmic diseases using DL achieved an
accuracy of 96.6%, with a sensitivity of 97.8% and a
specificity of 97.4%. This study suggests that DL can be used
to accurately classify eye diseases, which can have important
implications for disease detection and monitoring.

Decision Trees (DT) classify glaucoma by sequentially
splitting data based on features like cup-to-disc ratio, visual
field test results, and intraocular pressure readings [286].
Pathan et al. [286] used decision trees (DT) to classify
optic disc contours in fundus images, which is useful in
detecting glaucoma. While DTs are easy to interpret, they

are prone to overfitting, and their performance improves
significantly when used within an ensemble method like
random forest (RF) [287]. DTs are used in classifying DR
by evaluating features such as blood vessel abnormalities,
microaneurysms, and exudates [288]. They are also used to
classify AMD by recursively splitting the data based on the
most significant features. DTs are straightforward to interpret
and can effectively use features like drusen presence and
retinal pigment epithelium abnormalities [289].

Random Forests (RF) are an ensemble learning method,
that combines multiple decision trees to improve classifi-
cation accuracy [290]. It can be seen from the literature
that RFs are used to classify AMD by analysing various
retinal features including texture, intensity, and colour
information [17]. The ensemble approach of RFs reduces
overfitting and improves generalisation, making it a reliable
choice for AMD classification [17]. RFs have also been
used to classify glaucoma by examining multiple features
such as optic disc size, retinal nerve fibre layer thickness,
and intraocular pressure. The robustness of RFs in handling
feature variability and their resistance to overfitting make
them suitable for glaucoma classification [291]. RFs are also
extensively used for DR classification due to their ability to
handle large datasets with many features. RFs analyse various
retinal characteristics, including the number and severity of
lesions, to classify the disease [53].
Naive Bayes (NB) is a simple yet powerful probabilistic

classifier, that is advantageous in DR classification due
to its simplicity and ability to handle both binary and
multi-class problems [292]. It is particularly useful when
dealing with missing data, as it can handle incomplete data
without requiring imputation. However, the assumption of
feature independence can be a limitation, especially when
dealing with complex fundus images where features are often
interrelated [274].
In glaucoma classification, NB can be applied to features

extracted from optic nerve head images, such as the cup-
to-disc ratio, neuroretinal rim width, and retinal nerve fibre
layer thickness. The classifier calculates the probability of
glaucoma given these features and assigns the diagnosis
based on the highest probability [293]. However, the model’s
accuracy might be compromised due to the unrealistic
assumption of feature independence, which can affect its
performance in more complex cases [294].
El-Khalek et al. [295] achieved an accuracy of 96.85% in

detecting AMD on a private dataset in 2024. Their proposed
system extracted both local and global appearance markers
from fundus images. These markers were obtained from
the entire retina and iso-regions aligned with the optical
disc. Their study used advanced classification schemes to
locate and analyse the data. These algorithms include various
methods, such as AdaBoost, RF, DT, logistic regression,
SVM, KNN, and others. Their system not only achieved a
high level of accuracy but also provided a detailed assessment
of the severity of each retinal region.
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ML techniques have shown great promise in classifying
AMD, DR, and glaucoma. Each method has its strengths
and limitations, but when applied appropriately, they provide
valuable tools for the early detection of these eye diseases.
The continued development and refinement of these tech-
niques will enhance their accuracy and reliability, ultimately
improving patient outcomes.

Recently, DL has been increasingly used by researchers
to classify diseases from fundus images. DL models such
as CNNs receive inputs in the form of pixels, sub-images,
and entire images to perform classification [100]. Studies
have shown that CNN models can match or even surpass
expert ophthalmologists in detecting retinal diseases such
as DR, AMD, and glaucoma [103]. There has been a lot
of research on an automatic CNN-based system [213] for
categorising retinal images into different severity levels.
CNNs can combine the input images using an appropriate
weight matrix and extract unique features of the input images
while preserving the spatial arrangement information [213].
The scalability and generalisability of DL models make them
suitable for widespread clinical use, as they perform well
across diverse populations and varying image qualities by
training on large datasets.

VGGNet is a CNN model known for its simplicity and
use of small convolution filters, that has achieved high
performance in image classification tasks [97]. ResNet is
another DLmodel that introduces residual learning to address
the vanishing gradient problem in deep networks, allowing
for the training of very deep networks [296].
A study by Shyamalee and Meedeniya [297] compared

the performance of three CNN architectures (Inception-
v3, VGG19, ResNet50) using two datasets: RIM-ONE
and ACRIMA. Pre-processing techniques such as dilation
and Contrast Limited Adaptive Histogram Equalisation
(CLAHE), enhanced image quality. The models were eval-
uated using 5-fold cross-validation on the RIM-ONE and
ACRIMA datasets. The Inception-v3 model achieved the
highest accuracy of 96.56% on the RIM-ONE dataset and
98.52% on the ACRIMA dataset [297].

Božić-Štulió and Stipaničev [298] used a DL algorithm to
predict the presence of glaucoma from fundus images, with
an accuracy of 97.3%. According to this study, DL may be
able to identify glaucoma even in its early stages, which could
significantly affect how the condition is managed and treated.

In a study by Ogundokun et al. [299], a DL method was
contrasted with deep CNNs trained for automated evaluation
of AMD. Automated identification was applied to a 2-class
classification problem to distinguish between the AMD stage
and the Normal stage and achieved an accuracy of 96.41%,
a specificity of 94.82%, and an AUC of 0.9633. This study
shows that DL models could perform a task in the current
AMD management independent of skilled ophthalmologists.

Gulshan et al. [53] proposed a DL-based system for DR
detection, which achieved high sensitivity and specificity
comparable to human experts. Other studies obtained similar

results by utilising various CNN architectures. In [246],
an automatic DL-based model for detecting DR severity is
presented. The five modules that comprise the CNN-based
automatic diabetic detection model for retinal images are
pre-processing, exudates segmentation, blood vessel segmen-
tation, texture feature extraction, and DR detection [300].
Adaptive histogram equalisation is used in the pre-processing
stage to improve the quality of the input retinal images.
In the second step, exudate and blood vessel segmentation
are carried out by fuzzy c-means clustering and CNN. After
extracting texture features from the exudates and blood
vessels, an SVM implementation is used to identify DR.

Qomariah et al. [140] proposed a CNN and SVM-based
automated system for the classification of DR and normal
retinal images. Exudates, haemorrhage, and microaneurysms
were characteristics. The proposed system was divided into
two sections by the author: the first section included feature
extraction based on neural networks, and the second section
carried out classification using SVM. Researchers have
proposed several methods for categorising DR, including
pre-processing of the raw images, image enhancement, and
post-processing, which are all fundamental aspects of image
processing. After training, features are extracted, and classes
are determined. Various features are extracted and used as
training algorithm inputs. ANN was used to classify the
disease stages by using features such as area, perimeter, and
exudates count [301].

X. SEGMENTATION FOLLOWED BY CLASSIFICATION
Segmentation followed by classification methods, espe-
cially those based on fundus images, has seen significant
advancements. In detecting ODs from fundus imaging,
segmentation followed by classification involves two main
steps: segmenting (identifying and isolating) specific regions
or structures within a fundus image, and then classifying
these segmented regions to detect a condition or categorise
them into predefined classes. Segmentation ensures that
the classification focuses on relevant regions, improving
accuracy.

A study by Shyamalee et al. [302] performed segmentation
using an attention U-Net with ResNet50 and classification
using a modified InceptionV3. The attention U-Net with
ResNet50 backbone achieved the highest segmentation accu-
racy for optic disc and optic cup on the RIM-ONE dataset.
For classification, the modified Inception V3 model showed
the highest performance. The final model predictions are
based on the segmented images, and the cup-to-disc ratio is
computed to support the classification results [302]. To make
the DL model’s decisions transparent, Grad-CAM and Grad-
CAM++ generate heatmaps that highlight the regions of the
fundus images influencing the predictions. These heatmaps
help ophthalmologists understand the model’s reasoning,
increasing trust in the system.

Sangeetha and Maheswari [102] proposed a method for
retinal image segmentation and blood vessel extraction using
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TABLE 13. Summary of works done using classification and segmentation for automated detection of various eye classes.

morphological processing, thresholding, edge detection, and
adaptive histogram equalization. For the automatic diagnosis
of DR from fundus images, they developed a CNN to accu-
rately classify the severity of the disease. This network was
trained on a high-end graphical processor unit (GPU) using
publicly available datasets such as DRIVE, DIARETDB0,
and DIARETDB1, as well as images collected from the
Aravind Eye Hospital in Coimbatore, India. The proposed
CNN achieved a sensitivity of 98%, a specificity of 93%, and
an accuracy of 96.9% on a database of 854 images [102].

Yin et al. [303] developed a Deep Fusion Network,
incorporating multiscale fusion, feature fusion, and classifier
fusion for multi-source vessel image segmentation for DR
detection. The multiscale fusion module enabled the network
to detect blood vessels of various scales. The feature
fusion module combines deep features with vessel responses
extracted from a Frangi filter to create a compact and domain-
invariant feature representation. The classifier fusion module
enhances network supervision. DF-Net also predicts the
Frangi filter’s parameters, eliminating the need for manual
parameter selection. The learned Frangi filter improves
the feature map of the multiscale network and restores
edge information lost during down-sampling operations.
This proposed end-to-end network is easy to train, and the
inference time for one image is 41ms on a GPU. The model
outperforms state-of-the-art methods, achieving accuracies
of 96.14%, 97.04%, and 98.02% on three publicly available
fundus image datasets: DRIVE, STARE, and CHASEDB1,
respectively [303].
In a study by Hervella et al. [306], a novel multi-task

approach is proposed for the simultaneous classification
of glaucoma and segmentation of the optic disc and cup.
This approach aims to improve overall performance by
leveraging both pixel-level and image-level labels during
network training. Furthermore, the predicted segmentation
maps, alongside the diagnosis, allow for the extraction
of relevant biomarkers such as the cup-to-disc ratio. The
proposed methodology introduces two significant technical
innovations. First, a network architecture that enables simul-
taneous segmentation and classification by increasing the
number of shared parameters between both tasks. Second,
a multi-adaptive optimization strategy ensures that both tasks

contribute equally to the parameter updates during training,
thus avoiding the need for loss-weighting hyperparameters.
To validate this proposal, extensive experiments were con-
ducted on the public REFUGE and DRISHTI-GS datasets.
The results demonstrate that this approach outperforms
comparable multi-task baselines and is highly competitive
with existing state-of-the-art methods. Additionally, the
provided ablation study indicates that both the network
architecture and the optimization strategy independently
contribute to the advantages of multi-task learning [306].
Another study by Shyamalee and Meedeniya [304] pro-

posed a DL model to segment and classify retinal fundus
images for glaucoma detection. Various data augmentation
techniques were applied to prevent overfitting, along with
several data pre-processing approaches to enhance image
quality and achieve high accuracy. The segmentation models
were based on an attention U-Net architecture, utilising three
different convolutional neural network (CNN) backbones:
Inception-v3, Visual Geometry Group 19 (VGG19), and
Residual Neural Network 50 (ResNet50). The classification
models also employ modified versions of these three CNN
architectures. Using the RIM-ONE dataset, the attention U-
Net with the ResNet50 model as the encoder backbone
achieved the highest accuracy of 99.58% in segmenting
the optic disc. Among the evaluated segmentation and
classification architectures, the Inception-v3 model achieved
the highest accuracy of 98.79% for glaucoma classification.

A study by Chowdhury et al. [307] proposed a multiscale
guided attention network named MSGANet-RAV for pixel-
wise retinal artery-vein classification. The proposed architec-
ture integrates multiscale feature exploration with a sequence
of GF and context-learnable SVA modules. As a joint task of
pixel identification in ophthalmic images, the model incorpo-
rates a learnable joint-task lossmethod, balancing the weights
of individual task losses to enhance artery-vein classification.
Multiscale features of these images are refined through
a two-stage GA module. In the first stage, the structural
information of variant vessels is explored, while in the second
stage, more refined feature representations are obtained
by fusing contextual vessel information with the vessel
skeleton (probability map). MSGANet-RAV achieved state-
of-the-art performance on the LEI-CENTRAL dataset and
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demonstrated comparable performance on the AV-DRIVE
dataset, according to several benchmark metrics [307].
A study by Lim et al. [311] introduced the CNN-FEmodel,

which enhances input features by highlighting disc pallor
and vessel obstructions in fundus images. This model refines
pixel-level probability maps by incorporating known retinal
morphology, thereby improving segmentation validity and
classification performance. Such integration of segmentation
and classification processes leads to more accurate and
reliable diagnostic outcomes by focusing on morphological
features and improving confidence in the results [311].

Researchers have utilised transfer learning to adapt pre-
trained models, such as Inception and ResNet, for retinal
disease detection [312]. These pre-trained models have
been fine-tuned to classify retinal images and demonstrated
improved performance compared to models trained from
scratch. The use of ensemble methods has been suggested in
several studies. To improve performance overall, ensemble
approaches aggregate the predictions of several machine
learning models. These methods can help mitigate overfitting
and improve model generalisation. Systems for detecting
retinal diseases have been made more accurate and resilient
through the use of ensemble approaches. For example,
Sahlsten et al. used an ensemble of DL models to detect
DR more effectively than they could with individual mod-
els [313].
Calleja and Medina [314] used a two-stage approach to

detect DR that included LBP for feature extraction and ML,
particularly SVM and RF, for classification. The results
showed that RF outperformed SVM with an accuracy of
97.46%.

A study by Koh et al. [315] has conducted research on
diagnosing retinal health in fundus eye images using a pyra-
mid histogram of oriented gradients (PHOG) and speeded-
up robust features of fundus images (SURF). Canonical
correlation analysis was used to fuse the extracted correlated
features. It achieved an accuracy of 96%, a sensitivity of
95%, and a specificity of 97% using the KNN classifier. The
outcomes show that this method is useful for automatically
classifying eye conditions like glaucoma.

Ren et al. [262] proposed a supervised feature learning
method designed to create discriminative and compact
descriptors for drusen segmentation in retinal images. This
method integrates generalised low-rank approximation of
matrices with supervised manifold regularization to derive
new features from image patches sampled from retinal
images. These learned features are specifically related to
drusen and are potentially free from redundant information
that could interfere with distinguishing drusen from the
background. The features are then vectorised and used to
train a support vector machine (SVM) classifier. Finally,
the trained SVM classifier is utilised to classify the pixels
in the test images as drusen or non-drusen. The proposed
method’s performance is validated on the STARE and
DRIVE databases, achieving average sensitivity, specificity,

and accuracy of 90.03%, 97.06%, and 96.92%, respectively,
on STARE, and 87.41%, 94.93%, and 94.81%, respectively,
on DRIVE.

Overall, the literature suggests that by analysing fundus
images and other imaging modalities, both ML and DL may
be able to increase the accuracy of identifying eye conditions
such as glaucoma, DR, and AMD. The performance of DL
increases over ML as more images are added to the dataset.
Further investigation is required to assess the algorithms’
performance in larger and more varied datasets in order
to validate their generalisability and determine the models’
therapeutic potential. In addition, there is also ongoing
research in developing new algorithms that can improve the
performance of these models.

XI. DISCUSSION
From the literature we reviewed, various methods have been
proposed for image-level classification, microaneurysm,
exudate or blood vessel segmentation (at the pixel or object
level), or segmentation of the optic disc and optic cup,
which are important for estimating clinical parameters and
facilitating the diagnostic process. Methods for image-level
classification have been developed for DR, AMD, and glau-
coma. These classifications are mainly binary, distinguishing
between healthy and pathological conditions. However, more
nuanced classifications have also been proposed, such as
differentiating between no-glaucoma, suspicious glaucoma,
and glaucoma, as well as up to six classes for DR, and AMD.

In our review, it has been shown that current ML and
DL systems have achieved high accuracy in detecting retinal
diseases. DL models, particularly CNNs, have achieved
sensitivity and specificity rates often above 90% for detecting
conditions like DR, AMD, and glaucoma [134]. Studies
report AUC values frequently exceeding 0.90, indicating
excellent diagnostic performance. However, the accuracy can
vary depending on the dataset quality, model architecture, and
the specific disease being detected.

We have found from our review that various features
are extracted to detect retinal diseases. For glaucoma,
features include the cup-to-disc ratio (CDR), optic nerve head
morphology, and retinal nerve fibre layer thickness. Diabetic
retinopathy features include microaneurysms, haemorrhages,
exudates, and neovascularisation. AMD features include
drusen size and distribution, retinal pigment epithelium
changes, and geographic atrophy.

Pixel-level segmentation is a challenging but important
task. Optic disc and optic cup segmentation are essential for
a comprehensive and interpretable assessment of glaucoma.
Segmenting retinal lesions such as drusen, exudates, hemor-
rhages, andmicroaneurysms allows for the estimation of their
areas, locations, and changes over time, which is crucial for
the precise diagnosis and monitoring of DR and AMD. For
these two diseases, automatic segmentation has been used to
provide more detailed image-level classification and disease
grading.
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However, the various retinal pathologies have generally
been treated independently, with specific methods developed
for each. This means that the development of algorithms for
recognising one specific pathology often does not incorporate
the knowledge gained from developing methods for detecting
other pathologies.

The initial methods developed for this purpose relied on
conventional image processing techniques such as thresh-
olding, morphological operations, and model matching to
recognize specific shapes like ellipses for the optic disc and
small circles for drusen. These methods showed promising
results on the datasets they were developed and tested on, but
they failed to perform adequately on new, unseen images.

ML methods improved upon those image-processing
techniques and achieved better results. Various supervised
and unsupervised learning methods have been developed
to assess different pathologies, enabling both image-level
classification and segmentation of the optic disc, and optic
cup. In this context, image pre-processing and feature
selection play crucial roles. Pre-processing aims to reduce
noise using techniques like moving average filters, median
filters, and Gaussian filters, and to improve contrast, often
using CLAHE. Feature selection involves identifying and
extracting various features from the image and selecting
the most significant ones, a process initially done man-
ually and highly dependent on the scientist’s expertise.
To minimize subjectivity, a wide range of features was
generally identified. Once all possible features were derived,
Principal Component Analysis (PCA) was commonly used
to reduce the feature space by selecting the most informative
features.

Despite the promising results of ML, these methods
were not robust against inter-subject anatomical variability
(such as the appearance and shape of the OD), pathological
changes (like the onset or variation of lesions), differences in
acquisition systems (from different vendors), and limitations
of the acquisition systems (such as noise and illumination
drifts in the images).

In recent years, numerous deep learning (DL) techniques
have been introduced, significantly enhancing retinal image
classification and segmentation. DL methods automatically
perform feature extraction and selection, allowing them to be
applied directly to images without extensive pre-processing.
Most proposed DL methods utilise standard and pre-trained
CNNs, which, through transfer learning, achieve impressive
performance even on limited datasets. The literature surveys
indicate that ensemble learning can further enhance these
results.

Key factors in developing a robust and high-performing
DL model include the number of images, class imbalance,
demographics, and clinical variables such as race, sex, and
age. Another critical factor is the accuracy of the manual
annotations made by clinicians, which are used to train and
test the models. Reliable disease annotations require input
from multiple clinical experts. Retrospective or prospective

clinical or laboratory exams are also used to confirm these
annotations.

Despite the exceptional performance of DL methods in
detecting retinal diseases, their clinical applicability is limited
by their lack of interpretability and explainability, which
makes them less trustworthy for automatic clinical decision-
making. Recent research efforts are focused on developing
interpretation techniques, such as class activation mapping,
which highlight the parts of the image that most contribute to
the model’s prediction.

There have been some recent developments in increasing
interpretability and explainability. A web application called
GlaucoCare was developed, which provides a user-friendly
interface for testing fundus images [302]. Users can upload
images, and the system generates segmentation masks,
heatmaps, and CDR values, along with the glaucoma predic-
tion. The application aims to support clinicians by providing
a second opinion and improving diagnostic accuracy [302].

Developing such models that provide interpretable and
explainable results can help ophthalmologists understand the
underlying reasoning behind AI-generated predictions. This
can foster trust in AI systems and facilitate the integration of
AI-generated insights into clinical decision-making.

FIGURE 5. Bar graph displaying the maximum accuracy for each OD for
each year between 2012 and 2024 (till June 2024).

Figure 5 shows the highest accuracy reported each year
from 2012–2024 for studies detecting AMD, DR, and
glaucoma. Accuracy levels have improved over time, starting
in the 70-90% range in early years but reaching 95-100%
by 2023. This demonstrates that ML/DL techniques have
become more effective, likely due to larger datasets, better
model architectures, and optimisation of imaging and pre-
processing. Accuracy levels vary across diseases. This may
indicate remaining challenges in detecting certain lesions or
features associated with these diseases.
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Out of all the studies we reviewed, Sivapriya et al. [316]
achieved the highest accuracy of 98.88% in detecting DR on
the MESSIDOR-2 dataset in 2024. They proposed a novel
DL method, ResEAD2Net, for automatically segmenting
the blood vessels and classifying DR [316]. The primary
goal of this novel approach is to identify pathological
changes in the retinal vascular structure indicative of DR.
The proposed system includes three stages: pre-processing,
vessel segmentation, and classification. Initially, the input
images are processed to remove noise, followed by green
channel extraction and enhancement using CLAHE and
gamma correction. Segmenting the retinal vascular structure
is crucial for detecting various stages of DR by identifying
microaneurysms, hemorrhages, and exudates. The U-Net
architecture is used to develop the segmentation model.
The U-Net’s contracting path features four consecutive
downsampling and upsampling layers with skip connec-
tions [316]. However, this four-time downsampling may
overlook information on small blood vessels. To address
this, the study introduced ResEAD2Net, which reduces the
number of downsampling and upsampling layers to two and
incorporates two contracting and expansion paths in the
network. This design retains detailed semantic information
effectively.

Liu et al. [317] achieved the highest accuracy of 99.1% in
classifying AMD on the Ichallenge dataset in 2024. A general
self-supervised machine learning framework is proposed
to handle diverse fundus diseases from unlabeled fundus
images. This method achieved anAUC that surpasses existing
supervised approaches by 15.7%. Additionally, the model
adapts well to various datasets from different regions, races,
and heterogeneous image sources or qualities from multiple
cameras or devices.

Das et al. [113] achieved the highest accuracy of
99.3% in detecting glaucoma in 2024. They proposed
a lightweight multi-scale CNN architecture, CDAM-Net,
which was evaluated on a private dataset of 1426 fundus
images, of which 837 were glaucoma and 589 were normal.
Additionally, an attention module, channel shuffle dual
attention (CSDA), was introduced, consisting of a channel
attention block, a spatial attention block, and a channel
shuffle unit. This module focuses on significant regions in
the fundus images, thereby extracting class-specific features.
The CDAM-Net primarily comprises multi-scale feature
representation blocks, which enable the extraction of multi-
scale features from fundus images. Each MFR block is
followed by a CSDA module, further enriching the feature
representation. The results indicate that CDAM-Net achieves
promising classification performance compared to existing
techniques [113].
In 2023, the highest accuracy of 99% in detecting DR

was achieved by Abramovich et al. [318]. They proposed
a DL model, FundusQ-Net, which obtained an accuracy of
99% on the DRIMDB database. FundusQ-Net utilises in-
domain pre-training and semi-supervised learning to perform

the regression task of fundus image quality estimation. The
model’s high performance has been demonstrated on both
local and external test sets.

Gu et al. [319] proposed the development of an intelligent
model for classifying the severity of DR using fundus images.
This model aimed to detect all five stages of DR, from no DR
to proliferative DR, by integrating a Vision Transformer and
residual attention mechanisms [319]. The proposed model
consisted of two main components: the Feature Extraction
Block (FEB) and the Grading Prediction Block (GPB). The
FEB utilised a Vision Transformer to capture fine-grained
attention on retinal haemorrhage and exudate areas, while
the GPB employed residual attention to effectively identify
spatial regions occupied by different classes of DR lesions.
This combination allowed the model to classify the severity
of DR with high accuracy [319].
The study conducted comprehensive experiments on

the DDR dataset, demonstrating that the proposed model
achieved superior performance compared to benchmark
methods. The model was trained and tested on two public
datasets: the DDR dataset, which included 13,673 fundus
images from various hospitals in China, and the IDRiD
dataset, which contained typical DR images representing the
Indian population. It developed a Vision Transformer-based
model for extracting fundus image features and integrated a
residual attention module to enhance classification accuracy
by focusing on spatial regions specific to each class [319].
It achieved state-of-the-art performance in DR classification
tasks, particularly in distinguishing between different severity
levels of DR. Despite its success, the study acknowledged
limitations due to the imbalance and a limited number of
labelled samples in the datasets [319].

Another study that used a transformer-based model to
achieve high accuracy was a study by Xu et al. [320], which
achieved an accuracy of 97.2% in detecting AMD in 2023.
This study introduced DeepDrAMD, a hierarchical vision
transformer-based deep learning model that incorporates
data augmentation techniques and the SwinTransformer to
detect AMD and distinguish between its subtypes using
fundus images. DeepDrAMD excelled in distinguishing
wet AMD subtypes, achieving an AUC of 0.9936. Com-
parative analysis demonstrated that DeepDrAMD outper-
formed conventional deep learning models and expert-level
diagnosis.

Adak et al. [321] proposed a study in 2023, that focused
on leveraging the capabilities of transformer networks
to capture crucial features in retinal images to improve
the performance of DR severity detection models. The
study employed and fine-tuned various transformer-based
models, including Vision Transformer, Class-attention in
image Transformers (CaiT), Data-efficient image Trans-
former (DeiT), and Bidirectional Encoder representations
for image Transformer (BEiT). These models were used
individually and in ensembles to predict the severity stages of
DR from fundus images. The researchers utilised the publicly
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available APTOS-2019 limited vision detection dataset for
their experiments [321].

The proposed solution architecture involved preprocessing
raw fundus images, applying data augmentation techniques,
and using transformer networks to extract features and
classify the images into five severity stages: negative,
mild, moderate, severe, and proliferative. The ensemble
models showed promising results, achieving high accuracy
and outperforming traditional ML and CNN-based meth-
ods [321]. Additionally, the study explored the impact of
hyper-parameters, conducted ablation studies to assess the
importance of individual transformers. In their study, ViT,
DeiT, BEiT, CaiT achieved accuracies of 82.21%, 85.65%,
86.74%, and 86.91% respectively [321].

Haider et al. [322] achieved the highest accuracy of 99.91%
in detecting glaucoma on the REFUGE dataset in 2023.
Segmentation of optic disc and optic cup is commonly
done for automated glaucoma screening. Their proposed
model, FBSS-Net utilises both internal and external feature
blending to enhance overall segmentation performance [322].
Internal feature blending empowers features at intervals,
while external feature blending improves the network’s
learning capabilities, leading to better performance.

Pham et al. [323] achieved the highest accuracy of
58.2% for detecting AMD by using MuMO-GAN on a
private dataset in 2022. In the study, generative adversarial
networks (GANs) were utilised with additional drusen
masks to preserve pathological information. The dataset
comprised 8,196 fundus images from 1,263 AMD patients.
The proposed GAN-based model, named Multi-Modal GAN
(MuMo-GAN), was trained to generate synthetic predicted
future fundus images. The DL model demonstrates that the
inclusion of drusen masks aids in learning AMD progression.
The model effectively generates future fundus images with
accurate pathological features, accurately depicting drusen
development over time. Both qualitative and quantitative
experiments indicate that the model is more efficient in mon-
itoring AMD progression compared to other studies [323].
Elangovan and Nath [324] achieved the highest accu-

racy of 99.6% for detecting glaucoma on the LAG-R
dataset in 2022. The study developed a deep ensemble
model using the stacking ensemble learning technique to
achieve optimal performance in classifying glaucomatous
and normal images. Thirteen pre-trained models, including
Alexnet, Googlenet, VGG-16, VGG-19, Squeezenet, Resnet-
18, Resnet-50, Resnet-101, Efficientnet-b0, Mobilenet-v2,
Densenet-201, Inception-v3, and Xception, were imple-
mented and compared in 65 different configurations, com-
bining 13 CNN architectures with five different classification
approaches. A two-stage ensemble selection technique was
proposed to identify the optimal configurations, which were
then pooled using a probability averaging technique. The
final classification was performed using an SVM classifier.

Jabbar et al. [325] proposed a transfer learning-based
model in 2022, based on a pre-trained VGGNet architecture,

modified to suit the needs of DR detection. The model
comprises 16 layers with specific configurations designed
for this task. Training the model involved fine-tuning
hyperparameters, including the learning rate, batch size, and
epochs, using Adam’s optimisation function. The model was
evaluated using the EyePACS dataset, split into training
(80%) and testing (20%) sets.

The results demonstrated that the proposedVGGNetmodel
achieved an accuracy of 96.6%, surpassing other models like
ResNet, GoogLeNet, and AlexNet [325]. The model’s
robustness and high performance in detecting and classifying
DR at various severity levels were evident. The authors
conclude that their framework effectively enhances DR
detection using transfer learning and data augmentation.
They suggest that future work could involve integrating
hand-engineered features with CNNs to further improve
classification accuracy [325]. The study presents significant
contributions to the field by developing a VGGNet-based
model for DR detection, employing effective preprocessing
and data augmentation techniques, and achieving high
classification accuracy on a large dataset.

Another study by Chen et al. [326] used ViTs on fundus
images to detect glaucoma in 2022. The study achieved a
specificity and sensitivity of 91.2% and 92.3% on the ORIGA
dataset and a specificity and sensitivity of 95.7%, and 94.1%
on the RIM-ONEv3 dataset [326].

Shinde [105] achieved the highest accuracy of 100% in
glaucoma detection in 2021. The system was developed
utilising image processing, DL, and ML techniques. LeNet
architecture is employed for input image validation, while
the brightest spot algorithm is used for region of interest
(ROI) detection. Optic disc and optic cup segmentation
are performed using the U-Net architecture, followed by
classification using SVM, Neural Network, and Adaboost
classifiers.

Sun et al. [327] proposed a model in 2021 to address the
challenges of DR grading and lesion discovery using a novel
lesion-aware transformer (LAT)model. The authors proposed
a unified deep model that jointly performed DR grading and
lesion discovery using an encoder-decoder structure, incorpo-
rating a pixel relation-based encoder and a lesion filter-based
decoder [327]. This model was the first to formulate lesion
discovery as a weakly supervised lesion localization problem
via a transformer decoder, learning lesion filters with only
image-level labels. The study introduced twomechanisms for
effective lesion filter learning: lesion region importance and
lesion region diversity [327].

Extensive experiments on three challenging benchmarks,
including Messidor-1, Messidor-2, and EyePACS, demon-
strated that the proposed LAT model outperformed state-of-
the-art methods in DR grading and lesion discovery [327].
The LAT model effectively captured the correlation between
pixels for robust feature learning, evaluated the importance
of different lesion regions, and ensured diversity in lesion-
aware features to cover various lesion types [327]. The
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study highlighted the effectiveness of the pixel relation-
based encoder in adapting to pixel appearance variations and
the lesion filter-based decoder in identifying diverse lesion
regions. The proposed mechanisms for learning lesion region
importance and diversity further improved the model’s per-
formance, making it a significant advancement in automated
DR diagnosis. The study concluded that the LAT model,
with its encoder-decoder structure and classification module,
provided an effective solution for joint DR grading and lesion
discovery, setting a new benchmark in the field [327].
In 2021, Wu et al. [56] proposed the application of

transformers, specifically Vision Transformers, for DR grade
recognition, contrasting it with the traditionally dominant
CNNs. In their study, transformers utilised multi-head
attention mechanisms to capture long-range contextual rela-
tions between image pixels, as opposed to the convolution
layers used in CNNs [56]. The study proposed a method
where fundus images were subdivided into non-overlapping
patches, flattened into sequences, and processed through
linear and positional embedding. These sequences were then
input into multiple multi-head attention layers to generate the
final representation, which was classified using a softmax
layer [56].
The study aimed to demonstrate the suitability of the

pure attention mechanism for DR grade recognition and to
establish that transformers could replace traditional CNNs in
this task. A Vision Transformer-based method was proposed.
Fundus images were divided into patches, converted into
sequences through flattening and embedding, and processed
through multi-head attention layers [56]. The first token
sequence was classified using a softmax layer. The method
was tested on a dataset of fundus images with varying
resolutions, achieving impressive performance: an accuracy
of 91.4%, specificity of 97.7%, sensitivity of 92.6%, and an
AUC of 0.986. Comparative experiments indicated that the
proposed Vision Transformer model was competitive with
current methods and highlighted its promise for DR grade
recognition [56].
Balasubramanian [135] achieved the highest accuracy of

99% in detecting glaucoma using a dataset of 1155 fundus
images. in 2020. A 25-layer convolutional neural network
(CNN) was developed and trained to efficiently extract highly
robust features from retinal fundus images. The proposed
DL approach effectively detects and grades glaucoma from
fundus images, demonstrating high accuracy and robustness.

Prabhu et al. [120] achieved the highest accuracy of 100%
using RF and ANN to detect DR on a private dataset in
2019. This paper proposed an automatic DR detection system
based on the identification of bright lesions on the retina,
a key symptom of DR. The optic disc is removed from the
fundus image because its brightness is similar to that of the
bright lesions. Exudates, which are indicative of DR, are
extracted from the image and various features are obtained.
A feature-based hierarchical classification is performed to
detect different stages of the disease. This method mirrors the

logical steps followed by ophthalmologists, ensuring more
accurate classification results.

Floriano et al. [126] achieved the highest accuracy of
83.6% in AMD detection in 2019. This study introduces an
approach that combines mathematical morphology, and an
SVM. The method presented in this study offers a powerful
tool for the non-invasive pre-diagnosis of AMD by detecting
drusen in fundus images.

Rehman et al. [107] achieved the highest accuracy of
99.2% in glaucoma detection in 2019. The study used SVM
on the DRIONS-DB dataset with 110 fundus images.

Lin et al. [328] achieved the highest accuracy of 86.1% in
DR detection by using CNN on the EyePacs dataset in 2018.
The study used entropy images, which quantify the amount
of information in the fundus photographs, and significantly
improved the detection accuracy, sensitivity, and specificity
of referable DR in a deep learning-based system. Entropy
imaging efficiently enhances the feature maps generated
by the CNN, making it a valuable tool for increasing the
performance of automated DR detection systems.

Singh et al. [112] achieved the highest accuracy of 94.8%
in detecting glaucoma using KNN on the VERC dataset in
2016. This study presents a method for detecting glaucoma
using wavelet feature extraction from segmented optic disc
images, followed by optimized genetic feature selection and
various learning algorithms. The focus on the segmented
optic disc with blood vessels removed enhances the accuracy
of glaucoma identification, achieving a high accuracy rate.

Kumari et al. [329] achieved the highest accuracy of
96.32% in detecting AMD in 2015. The study proposed an
automated method for detecting and segmenting drusen using
retinal fundus images. The method begins with gradient-
based segmentation to accurately identify the true edges
of drusen. Following this, connected component labelling
is employed to remove suspicious pixels from the drusen
region. The final step involves edge linking, which connects
all labelled pixels into a coherent boundary, resulting in
a meaningful segmentation of the drusen. In addition to
detecting drusen, the method quantifies them to grade the
severity of AMD. The detected drusen are categorized into
small, intermediate, and large.

Akram et al. [330] achieved the highest accuracy of
97.89% in detecting DR on the STARE dataset in 2014. This
paper proposes a system for detecting retinal lesions using a
novel hybrid classifier. The system comprises several stages:
pre-processing, extraction of candidate lesions, feature set
formulation, and classification. During pre-processing, the
system removes background pixels and extracts the blood
vessels and optic discs from the digital retinal image. In the
candidate lesion detection phase, filter banks are used to
identify all regions that might contain lesions. A feature
set is formulated for each potential candidate region using
various descriptors such as shape, intensity, and statistical
properties. These features assist in the classification process.
This paper extends them-Mediods-basedmodelling approach

176654 VOLUME 12, 2024



S. Islam et al.: Retinal Health Screening Using Artificial Intelligence With Digital Fundus Images

by combining it with a Gaussian Mixture Model to form
an ensemble, creating a hybrid classifier that enhances
classification accuracy.

Noronha et al. [331] achieved the highest accuracy of
92.65% in detecting glaucoma on the KMC database in 2013.
Their proposed system classifies images into three categories:
normal, mild glaucoma, and moderate/severe glaucoma. The
methodology involves extracting 3rd order HOS cumulant
features from the transformed fundus images. These features
are then subjected to linear discriminant analysis (LDA) to
reduce their number while retaining clinically significant
information. The reduced features are fed into SVM and
NB classifiers to automate the detection process. The system
was validated using a dataset of 272 fundus images, which
included 100 normal images, 72 images with mild glaucoma,
and 100 images with moderate/severe glaucoma. The valida-
tion employed a ten-fold cross-validation method to ensure
robustness. For the three-class classification task, the system
achieved an average accuracy of 92.65%, a sensitivity of
100%, and a specificity of 92% using the NB classifier.

Mookiah et al. [332] achieved the highest accuracy of 95%
in the detection of glaucoma on the KMC dataset in 2012.

Hijazi et al. [333] achieved the highest accuracy of 100%
in detecting AMD on the ARIA dataset in 2012. This paper
proposes and compares two datamining techniques to support
the automated screening for AMD. The first technique
employs spatial histograms, which preserve both the colour
and spatial information of the images for representation.
A case-based reasoning (CBR) classification technique is
then applied to these spatial histograms. The second tech-
nique is based on a hierarchical decomposition of the image
set, generating a tree representation. A weighted frequent
sub-graph mining technique is applied to this representation
to identify sub-trees that frequently occur across the dataset.
These identified sub-trees are encoded as feature vectors,
to which standard classification techniques can be applied.
By comparing these two methods, the paper aims to find
effective automated screening approaches that reduce the
need for manual inspection and improve the efficiency of
early AMD detection.

Figure 6 displays the highest specificity reported each year
for detecting the three diseases. Like accuracy, specificity has
increased to high levels of over 90% for all diseases. AMD
and DR detection tend to have slightly lower specificity than
glaucoma detection. Since specificity relates to the ability
to correctly identify negative cases, this suggests ML/DL
models may have more difficulty excluding these diseases
compared to glaucoma. Data imbalances and subtle imaging
features could contribute to this discrepancy.

Among the studies we reviewed, El-Khalek et al. [295]
achieved the highest specificity of 97.89% in detecting AMD
on a private dataset in 2024. Das et al. [113] achieved the
highest specificity of 100% in detecting glaucoma using
MFR-Net and CDAM-Net on a private dataset of 1426 fundus
images in 2024.

FIGURE 6. Bar graph displaying the maximum specificity attained
annually for each of the ODs from 2012 to 2024 (till June 2024).

Sivapriya et al. [316] achieved the highest specificity of
99.01% in the detection of DR on the STARE dataset in
2024. The study proposed ResEAD2Net, for automatically
segmenting the blood vessels and classifying DR [316]. The
primary goal of this novel approach is to identify pathological
changes in the retinal vascular structure indicative of DR.

In 2023, Song et al. [114] achieved the highest specificity
of 94%. A generative adversarial network (GAN) model
was trained using pairs of CF and FAF images to generate
synthetic FAF images. The quality of these synthesized FAF
images was assessed using standard generation metrics. The
clinical effectiveness of the generated FAF images for AMD
classification was evaluated by measuring the area under
the curve (AUC) on the LabelMe dataset. When combined
with CF images, the generated FAF images improved AMD
specificity from 93.2% to 94%.

Abramovich et al. [318] achieved the highest specificity
of 100% in detecting DR in 2023. They achieved this result
using their proposed a DL model, FundusQ-Net, on the
DRIMDB database.

Mahmoud et al. [121] achieved the highest specificity of
96.88% in detecting DR on the CHASE dataset in 2021.
In this study, a hybrid inductive machine learning algorithm
(HIMLA) is proposed as an automated diagnostic tool for DR
detection. HIMLA processes and classifies coloured fundus
images into healthy (no retinopathy) or unhealthy (presence
of DR) categories by accurately identifying the appropriate
medical cases of DR. The algorithm involves four main
stages: pre-processing, segmentation, feature extraction, and
classification. In the pre-processing stage, coloured fundus
images are normalised to a specific brightness level to
enhance their quality. During segmentation, the processed
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images are encoded and decoded to isolate relevant regions,
improving image clarity. Feature extraction and classification
are performed using multiple instance learning (MIL), which
aids in identifying and categorising the images based on
the presence of DR. The proposed method was evaluated
on the CHASE datasets, achieving an accuracy of 96.62%,
sensitivity of 95.31%, and specificity of 96.88%.

Zapata et al. [334] achieved the highest specificity of
92.4% in detecting AMD in 2020. Their study developed five
algorithms and evaluated them in the Optretina dataset.

Jiang et al. [335] achieved the highest specificity of
91.5% in detecting DR in 2019. This paper presents an
automatic image-level DR detection system that leverages
multiple well-trained DL models. To enhance the system’s
performance, several DL models are integrated using the
Adaboost algorithm, which helps to reduce the bias inherent
in individual models. To provide clear explanations for
the DR detection results, the system generates weighted
class activation maps (CAMs). These maps highlight the
suspected positions of lesions, offering valuable insights
into the detection process [335]. In the pre-processing
stage, eight different image transformation techniques are
applied to augment the diversity of fundus images. This
augmentation step helps improve the robustness and per-
formance of the detection models. Experimental results
demonstrate that the proposed method exhibits stronger
robustness and superior performance compared to individual
DL models. By combining multiple models and employing
advanced techniques like Adaboost and image augmenta-
tion, this system achieves more accurate and reliable DR
detection.

Lin et al. [328] achieved the highest specificity of 93.81%
in DR detection by using CNN on the EyePacs dataset in
2018.

Maheshwari et al. [123] achieved the highest specificity of
96.7% in detecting glaucoma in 2017. This paper presents
a methodology for the automated detection of glaucoma,
employing the empirical wavelet transform (EWT). The
EWT is utilised to decompose the fundus images, and
correntropy features are extracted from the decomposed EWT
components. These extracted features are then ranked using
the t-value feature selection algorithm, ensuring that the
most significant features are chosen for classification. The
classification of normal and glaucoma images is performed
using the least-squares support vector machine (LS-SVM)
classifier. The LS-SVM is tested with various kernels,
including the radial basis function, Morlet wavelet, and
Mexican-hat wavelet kernels, to determine the most effective
approach. The proposed method achieves a classification
accuracy of 98.33% with threefold cross-validation and
96.67% with tenfold cross-validation. These results highlight
the effectiveness of the EWT-based feature extraction and
the LS-SVM classifier in accurately detecting glaucoma from
fundus images, offering a promising, low-cost alternative to
traditional scanning methods [123].

Imani and Pourreza [336] achieved the highest specificity
of 99.93% in detecting DR in 2016. This paper introduces
an automatic method for the detection of retinal exudates,
featuring an approach that utilises the Morphological Com-
ponent Analysis (MCA) algorithm to distinguish lesions from
normal retinal structures, thereby facilitating the detection
process. In the initial stage, the MCA algorithm, equipped
with appropriate dictionaries, separates blood vessels from
lesions. Following this, the lesion segments of the retinal
images are processed to detect exudate regions. Dynamic
thresholding and mathematical morphology techniques are
then applied to create the final exudate map. The performance
of the proposed method was evaluated using three publicly
available datasets: DiaretDB, HEI-MED, and e-ophtha. The
method achieved Area Under the Curve (AUC) scores of
0.961, 0.948, and 0.937 on these datasets, respectively,
surpassing most state-of-the-art methods. These results
underscore the effectiveness of the MCA-based approach in
accurately detecting retinal exudates, contributing to the early
diagnosis and treatment of diabetic retinopathy.

Mittal et al. [161] achieved the highest specificity of
99% in detecting AMD in 2015. Their proposed method
begins with gradient-based segmentation to identify the
true edges of the drusen. This is followed by connected
component labelling, which removes suspicious pixels from
the drusen region, isolating relevant features. The final step
involves edge linking to connect all labelled pixels into
coherent boundaries, forming a meaningful segmentation of
the drusen. The proposed method significantly outperforms
existing techniques, achieving an accuracy of 96.17%,
sensitivity of 89.81%, and specificity of 99% on two publicly
available retinal image databases. Furthermore, to assess
the severity of AMD, the detected drusen are quantified
into three categories: small, intermediate, and large. The
method achieves classification accuracies of 88.46% for
small drusen, 98.55% for intermediate drusen, and 88.37%
for large drusen. This automated approach enhances the
accuracy and efficiency of drusen detection and provides a
reliable means of grading the severity of AMD.

Akram et al. [330] achieved the highest specificity of
97.43% in detecting DR on the STARE dataset in 2014. This
paper proposes a system for detecting retinal lesions using a
novel hybrid classifier.

Noronha et al. [331] achieved the highest specificity of
92% in detecting glaucoma on the KMC database in 2013.
Their proposed system classifies images into three categories:
normal, mild glaucoma, and moderate/severe glaucoma.

Zheng et al. [9] achieved the highest specificity of 100%
in detecting AMD in 2012. This study aimed to describe and
evaluate an automated grading system for AMD using colour
fundus photography. An automated ‘‘disease/no disease’’
grading system for AMDwas developed using image-mining
techniques. The process began with image pre-processing to
normalise the colour and correct the nonuniform illumination
of the fundus images. This step also defined a region of
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interest and identified and removed pixels belonging to retinal
vessels. To represent images for the prediction task, a graph-
based image representation using quadtrees was adopted.
Following this, a graph-mining technique was applied to the
generated graphs to extract relevant features, in the form of
frequent subgraphs, from images of both AMD patients and
healthy volunteers. Features from the training data were then
used to train a classifier generator, which was subsequently
employed to classify new, unseen images. The algorithm was
evaluated using two publicly available fundus-image datasets
comprising a total of 258 images (160 AMD and 98 normal).
Ten-fold cross-validation was utilised to assess performance.
The experiments yielded a best specificity of 100%, a best
sensitivity of 99.4%, and an overall accuracy of 99.6%.

FIGURE 7. Bar graph displaying the maximum sensitivity attained
annually for each of the different ODs from 2012 to 2024 (till June 2024).

Figure 7 shows sensitivity reported from 2012-2024,
reflecting the ability to correctly detect positive disease cases.
Sensitivity follows a similar trend to accuracy and specificity,
rising from early years. Although the results were slightly
lower for some studies in 2022. Overall, the results indicate
AI methods have become very proficient at identifying true
cases.

Among the reviewed studies, Sivapriya et al. [316]
achieved the highest sensitivity of 98.91% in detecting DR
using a novel DLmethod, ResEAD2Net, on theMESSIDOR-
2 dataset in 2024.

Xu et al. [320] achieved the highest sensitivity of 96.75% in
detectingAMD in 2023. This study introducedDeepDrAMD,
a hierarchical vision transformer-based deep learning model
that incorporates data augmentation techniques and the
SwinTransformer to detect AMD and distinguish between its
subtypes using fundus images.

Pham et al. [323] achieved the highest sensitivity of
56% for detecting AMD by using MuMO-GAN on a

private dataset in 2022. In the study, generative adversarial
networks (GANs) were utilised with additional drusen
masks to preserve pathological information. The dataset
comprised 8,196 fundus images from 1,263 AMD patients.
The proposed GAN-based model, named Multi-Modal GAN
(MuMo-GAN), was trained to generate synthetic predicted
future fundus images. The low number of sensitivity in
this study indicates that there was a high rate of false
positives [323].

Math et al. [138] achieved the highest sensitivity of 96.37%
in detecting DR on the Kaggle and DIARET-DB1 database
in 2021. This paper proposed a segment-based learning
approach for detecting DR that jointly learns classifiers and
features from the data, leading to significant improvements in
recognising DR images and identifying lesions within them.
Specifically, the approach involves adapting a pre-trained
CNN to obtain segment-level diabetic retinopathy estimation
(DRE). The segment-level results are then integrated to clas-
sify diabetic retinopathy images. This end-to-end segment-
based learning approach effectively handles the irregular
lesions characteristic of diabetic retinopathy. The proposed
method was evaluated on the Kaggle dataset and achieved
sensitivity and specificity rates of 96.37%. The segment-
based learning approach proposed in this paper offers a robust
solution for the detection of diabetic retinopathy, leveraging
the strengths of pre-trained CNNs and integrated segment-
level analysis.

Zapata et al. [334] achieved the highest specificity of
97.7% in detecting AMD on the Optretina dataset in 2020.

Rehman et al. [107] achieved the highest sensitivity of
96.9% in glaucoma detection on the DRIONS-DB dataset in
2019.

Soltani et al. [337] achieved the highest sensitivity of
97.8% in detecting glaucoma in 2018. This study introduces
a new Fuzzy Expert System for the early diagnosis of
glaucoma. The process begins with pre-treating original ONH
images using appropriate filters to remove noise. The Canny
detector algorithm is then employed to detect contours within
the images. Key parameters are extracted after identifying the
elliptical forms of both the optic disc and excavation, using
the Randomized Hough Transform. The final stage involves
a classification algorithm based on fuzzy logic approaches
to determine the condition of the patients. This system is
advantageous as it considers both instrumental parameters
and risk factors such as age, race, and family history, which
are crucial for accurately identifying cases suspected of
having glaucoma. The proposed system was tested on a real
dataset comprising ophthalmologic images of both normal
and glaucomatous cases. By combining advanced image pro-
cessing techniques with fuzzy logic and considering essential
risk factors, the system offers a significant improvement in
identifying glaucomatous conditions.

Yang et al. [139] achieved the highest sensitivity of
96.87% in detecting DR using DCNN on the EyePacs dataset
in 2017.
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Abramoff et al. [32] achieved the highest sensitivity of
96.8% in detecting DR in 2016 on the Messidor-2 database.
Their proposed DL-enhanced algorithm demonstrated a
sensitivity of 96.8% and a specificity of 87%. There were
6 false negatives out of 874 cases, resulting in a negative
predictive value of 99%. Notably, no cases of severe NPDR,
PDR, or ME were missed.

Mittal et al. [161] achieved the highest sensitivity of
89.81% in detecting AMD in 2015.

Hijazi et al. [338] achieved the highest sensitivity of
99.5% in detecting AMD in 2014. This paper investigates
three alternative approaches to classifying retinal images,
distinctively not relying on individual lesion segmentation for
feature generation but instead using encodings focused on the
entire image. The three different mechanisms for encoding
retinal image data considered are time series, tabular,
and tree-based representations. The evaluation utilised two
publicly available retinal fundus image datasets, specifically
in the context of screening for AMD. Statistical significance
tests were conducted to assess the performance of these
approaches. The results were impressive, with sensitivity,
specificity, and accuracy rates all exceeding 99%. Notably,
the tree-based approach demonstrated the best performance,
achieving a sensitivity of 99.5%.

Tavakoliet al. [339] achieved the highest sensitivity of
100% in detecting DR in 2013. This study presents an
algorithm using the Radon transform (RT) and multi-
overlapping windows. This method focuses on detecting
retinal landmarks and lesions to detect DR effectively.
The proposed method begins by detecting and masking
the optic nerve head (ONH). In the pre-processing stage,
top-hat transformation and averaging filters are applied to
remove the background. In the main processing section, the
preprocessed image is divided into sub-images. Each sub-
image is then segmented, and the vascular tree is masked
by applying the RT. After detecting and masking the retinal
vessels and ONH, MAs are identified and counted using
RT and appropriate thresholding techniques. The algorithm
was evaluated on three different retinal image databases: the
Mashhad Database with 120 FA fundus images, the Second
Local Database from Tehran with 50 FA retinal images, and a
subset of the Retinopathy Online Challenge (ROC) database
with 22 images. The performance of the automated DR
detection method demonstrated a sensitivity and specificity
of 94% and 75%, respectively, for the Mashhad database. For
the Second Local Database, the method achieved a sensitivity
and specificity of 100% and 70%, respectively.

Mookiah et al. [332] achieved the highest sensitivity of
96.6% in the detection of glaucoma on the KMC dataset
in 2012. The system automates the identification of normal
and glaucoma-affected eyes using features extracted from
Higher Order Spectra (HOS) andDiscreteWavelet Transform
(DWT). These features are input into an SVM classifier,
which is tested with various kernel functions, including
linear, polynomial (orders 1, 2, and 3), and Radial Basis

Function (RBF), to determine the best kernel for automated
decision-making. In this study, the SVM classifier with a
polynomial order 2 kernel function demonstrated the ability
to distinguish between glaucoma and normal images with
an accuracy of 95%. The system also achieved sensitivity
and specificity rates of 93.33% and 96.67%, respectively.
Additionally, the paper introduced a novel integrated index
called the Glaucoma Risk Index (GRI), which combines
HOS and DWT features to detect unknown cases using a
single metric. This GRI aims to help clinicians make quicker
glaucoma diagnoses during mass screenings of normal and
glaucoma images [332].

The proposed automated system offers a cost-effective and
efficient solution for glaucoma screening. It could potentially
improve early detection and management of the disease
while making the screening process accessible to a broader
population.

FIGURE 8. Pie chart diagram displaying the percentage of ML models
used to automatically identify glaucoma.

The pie chart in Figure 8 represents the distribution
of machine learning (ML) algorithms used for glaucoma
detection from fundus eye images, with support vector
machines (SVM) being most common at 40%, followed by
KNN at 14%. Neural networks (NN), random forests (RF),
Naive Bayes (NB) make up 23% combined, whereas others
contribute 9% and hybrid models are 14% of the total.

The SVM algorithm is used in 40% of the cases, making
it the most frequently employed technique for detecting these
eye conditions. It is particularly effective in high-dimensional
spaces and is well-suited for cases where the number of
dimensions exceeds the number of samples. Medical images,
including fundus eye images, have high-dimensional data that
SVM can handle efficiently [340].
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SVM also uses regularisation parameters to control over-
fitting, making it robust for small to medium-sized datasets
[340]. This is crucial in medical imaging, where the number
of labelled images can be limited.

KNN is utilised in 14% of the cases, showing its role as
a common technique. KNN is one of the simplest machine
learning algorithms. It is easy to understand and implement,
which makes it a popular choice for initial exploratory
analysis and in situations where interpretability is crucial.
This may be the case as KNN can be effective with relatively
small datasets, which is common in medical imaging where
acquiring large amounts of labelled data can be challenging.
Since KNN makes predictions based on the closest data
points, it can perform well even with limited training data.

By considering the majority vote of its neighbours, KNN
can be resilient to noise in the data. This can help in making
robust predictions in medical images that may contain some
level of noise or variability. Hybrid methods, which combine
multiple algorithms, account for 14% of the usage, indicating
a significant reliance on integrated approaches. Other ML
approaches collectively make up 9% of the total.

FIGURE 9. Pie chart diagram displaying the percentage contribution (%)
of different ML and DL classifiers to the automated detection of
glaucoma, DR, and AMD.

Figure 9 summarizes all models used for the three diseases,
showing convolutional neural networks (CNN) and their
variations are now the most widely used (42%), followed
by other models and SVM. The chart clearly shows that
CNN and its variations are the predominant choice for
the automated detection of glaucoma, DR, and AMD from
fundus eye images, followed by a mix of other methods that
collectively contribute a significant portion.

This distribution reflects the effectiveness and versatility
of CNNs in handling complex image data. CNNs and their
variations, such as Deep Convolutional Neural Networks
(DCNN) and Multi-Channel Convolutional Neural Networks
(MCNN), constitute the largest segment, representing 39%
of the classifiers used. This indicates a strong preference
for CNN-based methods due to their effectiveness in image
processing and feature extraction.

Support Vector Machines contribute 17% to automated
detection, highlighting their role as a significant yet less
dominant technique compared to CNNs. This segment
includes K-Nearest Neighbours (KNN), Artificial Neural
Networks (ANN), Deep Neural Networks (DNN), Neural
Networks (NN), and other miscellaneous methods (MM),
together making up 11% of the classifiers used.

Naive Bayes (NB) and Generative Adversarial Networks
(GAN) together contribute 5% to the automated detection.
NB is a probabilistic classifier that is simple and efficient.
It assumes independence between features, which can be a
limitation, but it performs well in certain diagnostic tasks
where this assumption holds approximately true. GANs are
used for generating synthetic data that can augment training
datasets, thereby improving the robustness and accuracy of
diagnostic models. They can also help in enhancing image
quality and creating realistic variations of fundus images for
training purposes.

Random Forest (RF) classifiers account for 4% of the
usage, indicating their utility in eye disease detection. RF is an
ensemble learning method that constructs multiple decision
trees and combines their outputs. It is robust to overfitting
and can handle a large number of features. RFs are useful
in medical imaging for their ability to provide important
scores for different features, helping in the interpretability of
the diagnostic process. Other ML and DL (21%) classifiers
include a variety of other techniques that are applied to detect
eye diseases from fundus images. These methods include
decision trees, logistic regression, ensemble methods, etc.

FIGURE 10. A sunburst graphic showing the prevalence of ML and DL
procedures for AMD, DR, and glaucoma, along with their most common
classifiers.

VOLUME 12, 2024 176659



S. Islam et al.: Retinal Health Screening Using Artificial Intelligence With Digital Fundus Images

The sunburst chart in Figure 10 shows the distribution
of various machine learning (ML) and deep learning (DL)
algorithms used in the automated detection of three specific
eye diseases: glaucoma, diabetic retinopathy (DR), and
age-related macular degeneration (AMD). Each segment
represents a different algorithm and its contribution to
detecting these conditions.

Glaucoma:
SVM (19): Support Vector Machines are extensively used for
glaucoma detection, accounting for a significant portion.
CNN, DCNN (14): Convolutional Neural Networks andDeep
Convolutional Neural Networks are also widely used.
U-Net, ResNet-50, GoogleNet (20): Effectively, variations
of CNN architectures, such as ResNet and GoogleNet, are
employed.
RF (8): Random Forest is another method used for glaucoma
detection.
NB (7): Naive Bayes classifiers contribute to the diagnostic
process.
KNN (7): K-Nearest Neighbours are used as well.
NN (3): General Neural Networks are applied in some cases.
Others (21): This category includes various other methods.

Diabetic Retinopathy (DR):
CNN, DCNN (9): CNNs and their deep variations are
predominantly used.
ResNet (6): ResNet, a type of CNN architecture, is also
employed.
DenseNet (4): Another variation of CNNs used for DR
detection.
RF, ANN, NN (4): Random Forest, Artificial Neural
Networks, and general Neural Networks contribute to the
process.
SVM, KNN (9): Support Vector Machines and K-Nearest
Neighbors are used.
Others (24): Various other methods are included in this
category.

Age-related Macular Degeneration (AMD):
CNN, DCNN (14): Convolutional Neural Networks and their
deep variations are significantly employed.
SVM (12): Support Vector Machines are used.
NN, DNN (3): Neural Networks and Deep Neural Networks
are also utilised.
RF, RT (3): Random Forest and Regression Trees are used.
GAN (3): Generative Adversarial Networks are employed in
some cases.
Others (27): A large variety of other methods are used.

The reason why most studies that used ML used
SVMs is that they are effective for classification in high-
dimensional spaces, robust to overfitting, and suitable for
small datasets [279]. Most DL studies used CNN as it
is excellent at extracting spatial hierarchies of features
from images, widely used in image-processing tasks [102].
DCNNs are deeper versions of CNNs capable of cap-
turing more complex patterns. MCNN (Multi-Channel
Convolutional Neural Networks): These process different

aspects of input images simultaneously, improving feature
capture.

The chart highlights the diversity ofML andDL techniques
applied to detect glaucoma, DR, and AMD from fundus
images. CNN-based methods dominate due to their effective-
ness in image processing. At the same time, other techniques
like SVM, RF, and various neural network architectures also
play significant roles in the automated detection process.
It further indicates that CNNs account for themajority of deep
learning approaches. This shift from conventionalML to deep
learning reflects the power of CNNs for medical imaging
tasks.

FIGURE 11. Bar graph illustrating the maximum accuracy in automated
glaucoma detection using SVM classifiers that different authors have
achieved.

The bar graph in Figure 11 illustrates the maximum
accuracy achieved in automated glaucoma detection using
SVM classifiers by different authors. Each bar represents
a different study, with the height of the bar indicating the
reported accuracy. The graph highlights the effectiveness
of SVM classifiers in automated glaucoma detection, with
reported accuracies ranging from 93.10% to 99.20%.

Out of these studies that used SVM as a classifier to detect
glaucoma, Rehman et al. [107] achieved the highest accuracy
of 99.20% on the DRIONS-DB database. They presented a
multi-parametric optic disk detection and localisationmethod
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for retinal fundus images. The method utilised region-based
statistical and textural features to accurately identify the optic
disc. Highly discriminative features are selected based on
the mutual information criterion. The study then conducts
a comparative analysis of four benchmark classifiers: SVM,
RF, AdaBoost, and RusBoost. SVM achieved an accuracy of
99.20%, a specificity of 99.30%, and a sensitivity of 96.9%
in their study.

Mohamed et al. [341] achieved the second-highest accu-
racy of 98.60% among the authors who used SVM to
classify glaucoma. The proposed method was tested on the
RIM-One database. This paper proposed a novel approach
to developing an automatic glaucoma screening system
based on superpixel classification using high-quality input
images. Initially, input images undergo pre-processing to
remove noise and correct illumination using an anisotropic
diffusion filter and illumination correction methods. The
processed images are then divided into superpixels using
the Simple Linear Iterative Clustering (SLIC) approach.
Features based on histogram data and textural information
are extracted from each superpixel using the statistical pixel-
level (SPL) method. These prominent features are then fed
into a Support Vector Machine (SVM) classifier, which
classifies each superpixel into categories such as optic disc,
optic cup, blood vessel, and background regions. The SVM
classifier also determines the boundaries of the optic disc
and optic cup. The segmented optic disc and optic cup are
subsequently used to determine the presence of glaucoma
by measuring the cup-to-disc ratio (CDR). This method
effectively combines preprocessing, feature extraction, and
classification to provide a comprehensive analysis of the
fundus images.

Thakur et al. [106] achieved the third highest accuracy of
97.20% using SVM to classify glaucoma on the DRISHTI-
GS and RIM-ONE datasets. This paper introduces a new
approach that derives reduced hybrid features from both
structural and non-structural aspects to classify retinal fundus
images. The structural features include the Disc Damage
Likelihood Scale (DDLS) and the Cup-to-Disc Ratio (CDR),
while the non-structural features encompass the Grey Level
Run Length Matrix (GLRM), Grey Level Co-occurrence
Matrix (GLCM), First Order Statistical (FoS) features,
Higher Order Spectra (HOS), Higher Order Cumulant
(HOC), and Wavelets. The methodology involved extracting
these features and using them to train and evaluate various
ML classifiers, including SVM, KNN, RF, NB, NN. SVM
achieved an accuracy of 97.20%, a specificity of 96%, and a
sensitivity of 97% in their study.

Mookiah et al. [332] achieved an accuracy of 95%
using SVM to classify glaucoma on the KMC dataset
with 60 images (30 normal and 30 glaucoma). The system
identified normal and glaucoma classes throughHigher Order
Spectra (HOS) and Discrete Wavelet Transform (DWT)
features, which are fed into a Support Vector Machine (SVM)
classifier with various kernel functions (linear, polynomial

order 1, 2, 3, and Radial Basis Function). The SVM classifier
with a polynomial order 2 kernel achieved an accuracy of
95%, with sensitivity and specificity of 93.33% and 96.67%,
respectively

Issac et al. [342] achieved an accuracy of 94.11% using
SVM to classify glaucoma. The fundus images used in this
study were sourced from the Venu Eye Research Centre in
NewDelhi, India. The study involved 67 images from patients
aged 18 to 75, comprising 35 normal images and 32 glaucoma
images, all labelled by doctors. They employed an adaptive
threshold using local features from the fundus image, making
it resilient to image quality and noise, thus enhancing its
applicability. Experimental results demonstrated that these
features are more significant than the statistical or textural
features used in previous studies. The proposed method
achieves an accuracy of 94.11% and a sensitivity of 100%.

Acharya et al. [343] achieved an accuracy of 93.10% using
SVM to classify glaucoma on the KMC dataset. They used
510 fundus images categorised into normal (266), mild (72),
moderate (86), and severe (86) glaucoma classes.

They introduced an automated glaucoma detection method
using various features extracted from the Gabor trans-
form applied to fundus images. Features such as mean,
variance, skewness, kurtosis, energy, and Shannon, Renyi,
and Kapoor entropies were extracted from the Gabor
transform coefficients. These features were then subjected
to principal component analysis (PCA) to reduce dimension-
ality. Various ranking methods, including the Bhattacharyya
space algorithm, t-test, Wilcoxon test, Receiver Operating
Characteristic (ROC) curve, and entropy, were used to rank
the features. The t-test ranking method achieved the highest
performance, with an average accuracy of 93.10%, sensitivity
of 89.75%, and specificity of 96.20% using 23 features with
an SVM classifier.

SVM achieved high accuracy in glaucoma detection in
these studies for several reasons. Glaucoma detection often
involves analysing high-dimensional data, such as pixel
intensity values and texture features from fundus images.
SVMs are particularly effective in such high-dimensional
spaces because they find the optimal hyperplane that
separates the different classes (healthy vs. glaucomatous
eyes) with maximum margin.

Some of the datasets used in the studies by these authors
here are relatively small. SVMs are effective with smaller
datasets because they focus on the support vectors (the most
critical data points) rather than the entire dataset. SVMs
use regularisation techniques to prevent overfitting, which
is crucial when dealing with medical image data where the
number of features can be very high relative to the number
of samples. This robustness ensures that the SVM model
generalises well to new, unseen data.

SVMs can effectively handle feature selection and dimen-
sionality reduction, either inherently through the use of cer-
tain kernel functions or in combination with pre-processing
techniques. This helps focus on the most relevant features for
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glaucoma detection, improving accuracy. These properties
make SVMs highly suitable for glaucoma detection from
fundus images, resulting in high accuracy and reliable
performance from different studies that employed them for
glaucoma detection.

FIGURE 12. Bar graph illustrating the maximum accuracy attained by
different authors for CNN classifier-based automated AMD identification.

The bar graph in Figure 12 shows the highest level of
accuracy that various authors were able to achieve for CNN
classifier-based automated age-related macular degeneration
(AMD) identification. Each bar represents a different study,
with the height of the bar indicating the reported accuracy.

The graph highlights the effectiveness of CNN classifiers
in automated AMD identification, with reported accuracies
ranging from 83.1% to 96.60%.

Out of the studies shown that used CNN for AMD
detection, the highest accuracy was achieved by Zapata et al.
[334] and Le et al. [344], both achieved an accuracy of 96%
using CNN or one of its variants to classify AMD.

In their study, Zapata et al. [334] developed five algorithms
and evaluated them in the Optretina dataset. Three different
retinal specialists classified all the images. The dataset was
split per patient into training (80%) and testing (20%) sets.
Three different CNN architectures were employed, two of
which were custom-designed to minimize the number of

parameters while maintaining accuracy. The main outcome
measure was the area under the curve (AUC), along with
accuracy, sensitivity, and specificity. The models were
effectively used for data cleaning, quality assessment, eye
orientation classification, and disease detection (AMD and
GON). The custom-designed CNN architectures achieved
these tasks with minimized parameters while maintaining
high accuracy, demonstrating the potential for practical
application in automated retinal image analysis and detection.

Le et al. [344] used fundus images from the Department of
Ophthalmology at King Chulalongkorn Memorial Hospital
in Thailand were collected for transfer learning, along with
other publicly available datasets for testing. Seven models
based onCNN—VGG19,Xception, DenseNet201, Efficient-
NetB7, InceptionV3, NASNetLarge, and ResNet152V2—
were selected for training in 2-label (Normal vs. AMD) and
3-label (Normal vs. Dry AMD vs. Wet AMD) classifications.
The experimental results indicated that the DenseNet201
model, with its Dense block structure, showed the best
efficacy in both 2-label and 3-label AMD classifications,
consistently ranking among the Top-3 models in terms of
accuracy and generalisation performance, as measured by
total accuracy and total F1-Score. It received an accuracy and
sensitivity of 96%.

Tan et al. [345] achieved an accuracy of 95.50% in using
CNN to detect AMD. They developed a fourteen-layer deep
CNN model designed to automatically and accurately detect
AMD at an early stage. The performance of the model
was evaluated using blindfold and ten-fold cross-validation
strategies, achieving accuracies of 91.17% and 95.45%,
respectively

Burlina et al. [99] achieved an accuracy of 93.4% in using
CNN to detect AMD. Using 5664 colour fundus images from
theNIHAREDS dataset, this paper details the approach using
deep learning for ARIA and AMD analysis. The researchers
used transfer learning and universal features derived from
deep convolutional neural networks (DCNN) to address
clinically relevant 4-class, 3-class, and 2-class AMD severity
classification problems.

Govindaiah et al. [346] achieved an accuracy of 92.50%
in using CNN to detect AMD. They used the Age-Related
Eye Disease Study (AREDS) dataset, which contained over
150,000 images along with qualitative grading information
provided by expert graders and ophthalmologists. They
employed a modified VGG16 neural network with batch
normalisation in the last fully connected layers. The study
involved two experiments. In the first experiment, the images
were categorised into two classes based on clinical signif-
icance: No or early AMD, and Intermediate or Advanced
AMD. In the second experiment, the images were categorized
into four classes: No AMD, Early AMD, Intermediate
AMD, and Advanced AMD. The modified VGG16 network
achieved the best accuracy of 92.5% for the two-class
problem with over 100,000 images. The results demonstrated
that training a deep neural network with a sufficient
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number of images yielded better performance than using
a pre-trained network, especially for AMD detection and
screening.

Grassmann et al. [347] achieved an accuracy of 83.10%
in using CNN to detect AMD. Their study included
120,656 manually graded colour fundus images from 3,654
participants in the Age-Related Eye Disease Study (AREDS).
Participants were over 55 years old, and those with non-AMD
sight-threatening diseases were excluded from recruitment.
Additionally, the algorithm’s performance was evaluated
using 5,555 fundus images from the population-based
Kooperative Gesundheitsforschung in der Region Augsburg
(KORA; Cooperative Health Research in the Region of Augs-
burg) study. The researchers defined 13 classes (9 AREDS
steps, 3 late AMD stages, and 1 for ungradable images)
and trained several convolutional deep learning architectures.
An ensemble of network architectures was used to improve
prediction accuracy. The performance of the algorithm was
evaluated on an independent dataset. The primary measures
were k statistics and accuracy to evaluate the concordance
between the algorithm’s predictions and expert human grader
classifications.

Most of these studies achieved a high accuracy using CNN
and its variants to detect AMD. CNNs excel at automatically
extracting hierarchical features from images.

In the context of AMD detection, CNNs can identify
intricate patterns, textures, and structures in fundus images
that are indicative of the disease. This ability to learn and
extract relevant features from raw images is crucial for
accurate detection. CNNs use convolutional layers that apply
filters across the input image, capturing spatial hierarchies
and relationships within the image. This spatial invariance
helps in detecting AMD features regardless of their location
within the image, improving the robustness of the model.
Overall, these studies demonstrate the high potential of CNN
classifiers in accurately detecting AMD from fundus images.

The bar graph in Figure 13 illustrates the maximum
accuracy achieved by different authors for CNN classifier-
based automated diabetic retinopathy (DR) detection. Each
bar represents a different study, with the height of the bar
indicating the reported accuracy.

The graph highlights the effectiveness of CNN classifiers
in automated DR detection, with reported accuracies ranging
from 75.70% to 99.62%.

Gayathri et al. [137] achieved the highest accuracy of
99.62% for detecting DR using CNN. In their study, a mul-
tipath convolutional neural network (M-CNN) is employed
for global and local feature extraction from fundus images.
These features are then classified according to the severity
of DR using various ML classifiers. The proposed model is
evaluated using several publicly available databases: IDRiD,
Kaggle (for DR detection), and MESSIDOR. Different
ML classifiers, including SVM, RF, and J48, are used
for categorisation. The experiments demonstrate that the
M-CNN network combined with the J48 classifier produces

FIGURE 13. Bar graph displaying the maximum accuracy attained by
different authors for CNN classifier-based automated DR detection.

the best results. The classifiers are assessed using features
from pre-trained networks and existing DR grading methods.

Yang et al. [139] achieved the second-highest accuracy
of 97.3% in detecting DR using DCNN on the EyePacs
dataset. They proposed an automatic DR analysis algorithm
based on a two-stage deep convolutional neural network. The
algorithm can identify lesions in fundus colour images and
provide DR severity grades. By introducing an imbalanced
weighting scheme, the algorithm focuses more on lesion
patches during DR grading, significantly improving grading
performance under the same implementation setup.

Hossen et al. [348] achieved an accuracy of 94.9% in
detecting DRwith CNN. The study involved developing a DR
classifier using a transfer learning technique with a DenseNet
architecture-based pre-trained model. The classification of
DR from retinal fundus images was based on its severity
level. The identification of DR was achieved by detecting
features such as micro-aneurysms, exudates, and hemor-
rhages in retinal images. Additionally, the preprocessing and
augmentation of image data were conducted to enhance the
model’s ability to detect retinopathy. After the training and
validation procedures, the developed classifier achieved a
validation accuracy of 94.9%. The study demonstrates that
using a DenseNet architecture can effectively detect Diabetic
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Retinopathy by classifying retinal fundus images according
to severity levels. The preprocessing and augmentation of
image data significantly benefit the model, resulting in high
training and validation accuracies.

Abdelmaksoud et al. [349] achieved an accuracy of 91.20%
in detectingDRwith CNN. This paper presents a novel hybrid
deep learning technique named E-DenseNet, which integrates
EyeNet and DenseNet models using transfer learning. The
traditional EyeNet was customized by incorporating dense
blocks and optimising the hyperparameters of the resulting
hybrid E-DenseNet model. This approach aims to accurately
detect healthy and various DR grades from both small
and large ML colour fundus images. The model was
trained and tested on four different datasets (EyePACS,
APTOS, MESSIDOR, IDRiD). These datasets provided a
comprehensive range of images necessary for robust training
and validation of the proposed system. The E-DenseNet
model demonstrates promising results compared to other
systems, showcasing its effectiveness in accurately detecting
various DR grades. By leveraging the strengths of both
EyeNet and DenseNet through transfer learning and dense
block integration, the proposed system provides a robust
solution for the automated analysis of DR.

Alam et al. [350] achieved an accuracy of 87.71% in detect-
ing DR with CNN. This study proposed a segmentation-
assisted DR classification methodology that enhances current
methods by using a fully convolutional network (FCN) to
segment retinal neovascularisations (NV) in retinal images
before classification. The study used the Kaggle EyePacs
dataset, which contains fundus images from patients with
varying degrees of DR (mild, moderate, severe NPDR, and
PDR). The FCN was trained to locate neovascularisation
in 669 retinal fundus photographs labelled with PDR status
according to NV presence. The trained segmentation model
was then used to locate probable NV in images from the
classification dataset. Subsequently, a CNN was trained to
classify the combined images and probability maps into
categories of PDR. The segmentation-assisted classification
achieved an accuracy of 87.71%. The study demonstrates that
segmentation assistance improves the identification of the
most severe stage of diabetic retinopathy.

Jiang et al. [351] achieved an accuracy of 75.7% in
detecting DR with CNN. A total of 10,551 fundus images
from the Kaggle fundus image dataset were collected for
the experiment. The images were first pre-processed using
histogram equalisation and image augmentation techniques.
A CNN was then constructed and trained using the Caffe
framework, with 8,626 images used for training the model.
The performance of the trained CNN model was validated
by classifying 1,925 fundus images into DR and non-DR
categories. The results indicated that the CNN achieved an
accuracy of 75.70% in classifying the 1,925 test fundus
images.

Overall, these studies demonstrate the high potential of
CNN classifiers in accurately detecting DR from fundus

images. CNNs achieve high accuracy in DR detection
for several reasons. CNNs automatically extract features
from fundus images, identifying patterns and structures
associated with DR, such as microaneurysms, hemorrhages,
and exudates [140]. They also capture spatial hierarchies and
relationships within images, essential for detecting varying
stages of DR across different regions of the retina [140]. The
deep layers of CNNs allow them to learn both low-level and
high-level features, crucial for accurate DR detection. Using
pre-trained CNN models on large datasets and fine-tuning
them for DR detection leverages learned features, enhancing
accuracy even with smaller medical datasets [136].

FIGURE 14. Maximum accuracy values attained by several authors for
CNN classifier-based automated glaucoma detection.

Modern CNN architectures like ResNet and DenseNet
include innovations that enhance feature extraction and
model performance [352]. These factors contribute to the
high accuracy of CNNs in DR detection, making them highly
effective tools for automated detection from fundus images.

The bar graph in Figure 14 illustrates the maximum
accuracy achieved by different authors for CNN classifier-
based automated glaucoma detection. Each bar represents
a different study, with the height of the bar indicating the
reported accuracy. The graph highlights the effectiveness
of CNN classifiers in automated glaucoma detection, with
reported accuracies ranging from 88.20% to 98.52%.
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Shyamalee et al. [297] achieved the highest accuracy of
98.52% in classifying glaucoma using CNN architecture
Inception-v3 on the ACRIMA dataset. The study proposed
developing an automated system for classifying glaucoma
using DL, specifically through three various CNN archi-
tectures (Inception-v3, VGG19, ResNet50) on the publicly
available RIM-ONE and ACRIMA databases. RIM-ONE
includes three versions with a total of 942 fundus images
(399 glaucomatous and 543 healthy) and ACRIMA consists
of 705 images (396 glaucomatous and 309 healthy).

To enhance the image quality, they applied pre-processing
techniques like dilation and Contrast Limited Adaptive
HistogramEqualisation (CLAHE), which improve brightness
and contrast. They also used data augmentation techniques
such as rotation, shearing, zooming, flipping, and shifting
to address data imbalance and increase the training dataset
size. The models were trained using the Adam and SGD
optimizers with binary cross-entropy as the loss function,
over 150 epochs with a 70:15:15 split for training, testing,
and validation sets [297].
The results of the study showed that the Inception-

v3 model achieved the highest accuracy of 98.52% on
the ACRIMA dataset and 96.56% on the RIM-ONE
dataset [297]. VGG19 and ResNet50 also demonstrated high
accuracy but slightly less than Inception-v3. The researchers
evaluated model performance using metrics such as accuracy,
precision, recall, F1-score, sensitivity, specificity, and AUC.
Confusion matrices and ROC curves were used to illustrate
the models’ ability to correctly classify fundus images and
their diagnostic performance.

The study provided a comparative analysis of the pro-
posed CNN architectures with existing studies, highlighting
the superior performance of Inception-v3 in classifying
glaucoma. By addressing the class imbalance issue with
augmentation techniques, the researchers improved the
model’s robustness and reduced overfitting [297].

Sanghavi and Kurhekar [353] achieved an accuracy
of 96.33% in classifying glaucoma using CNN. This
study utilised six widely used datasets of fundus images:
DRISHTI-GS, ORIGA, ACRIMA, PAPILA, g1020, and
RIM-ONE. This research investigates various segmentation
and classification techniques for optic disk segmentation and
the classification of normal and glaucomatous eyes. The
approach begins with histogram processing to determine
the type of image, which informs whether segmentation is
necessary. Some datasets contained complete retinal images,
while others included segmented optic disks. Segmented
images are directly used for classification with the proposed
convolutional neural network (CNN).

For complete retinal images, segmentation is performed
using Simple Linear Iterative Clustering (SLIC) and nor-
malised graph cut algorithms [353]. The performance of
the proposed framework is compared with that of pre-
trained neural networks, including VGG19, InceptionV3,
and ResNet50V2, using major metrics. The study trained

and tested these architectures with 3115 images from six
standard datasets. The proposed framework achieved superior
performance, with an accuracy of 96.33%, outperforming all
compared models.

Ovreiu et al. [352] achieved an accuracy of 97% in
classifying glaucoma using CNN architecture DenseNet
on the ACRIMA dataset. This paper proposed a method
utilising densely connected neural networks (DenseNet) with
201 layers, initially pre-trained on the ImageNet dataset,
and applied to the ACRIMA dataset. The method achieved
an accuracy of approximately 97% and an F1-score of
0.969

Natarajan et al. [354] achieved an accuracy of 97.05%
in classifying glaucoma using CNN architecture U-Net on
the DRISHTI-GS1 dataset. This paper presents a two-stage
deep learning framework called UNet-SNet for glaucoma
detection. Initially, each fundus image is segmented into
Gaussian Mixture Model (GMM) superpixels, and the
Region of Interest (RoI) is separated using Cuckoo Search
Optimisation (CSO). In the first stage, a regularised U-Net is
trained with RoIs for optic disc (OD) segmentation. In the
second stage, SqueezeNet is fine-tuned with deep features
extracted from the ODs to classify the fundus images as
either glaucomatous or normal. The U-Net was trained and
tested with the RIGA and RIM-ONEv2 datasets, achieving
accuracies of 97.84% and 99.85%, respectively. The classifier
was trained with ODs segmented from the RIM-ONEv2
dataset and achieved an accuracy of 97.05% on theDRISHTI-
GS1 dataset.

Gobinath [355] achieved an accuracy of 88.2% in clas-
sifying glaucoma using CNN. This study highlights the
potential of using semi-supervised deep learning models over
supervised methods. By utilising both labelled and unlabeled
data on fundus images, the proposed semi-supervised GAN
model comprises a SegNet, a real data generator, and
a classifier to enhance segmentation performance. They
demonstrate an accuracy of 88.2%, specificity of 90.8%, and
sensitivity of 85%.

Perdomo et al. [356] achieved an accuracy of 89.04%
in classifying glaucoma using CNN. This study introduced
a multi-stage deep learning model for glaucoma detection,
utilising a curriculum learning strategy. In curriculum learn-
ing, the model is trained sequentially to handle increasingly
difficult tasks. The proposed model consists of several stages:
segmentation of the optic disc and physiological cup, pre-
diction of morphometric features from these segmentations,
and prediction of the disease level (categorised as healthy,
suspicious, or glaucomatous). The experimental evaluation
demonstrates that the proposed method outperforms con-
ventional convolutional deep learning models. Specifically,
the method achieved an accuracy of 89.4% and an Area
Under the Curve (AUC) of 0.82 on the RIM-ONE-v1 and
DRISHTI-GS1 datasets, respectively. These results highlight
the effectiveness of the multi-stage deep learning approach
for glaucoma detection.
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The figures highlight the top accuracy results achieved
with SVM and CNN classifiers. SVMs still achieve high
accuracy for glaucoma, up to 99.2% (Figure 11). Meanwhile,
CNNs now consistently surpass 95% accuracy for AMD
(Figure 12) and Glaucoma (Figure 14). Continued algorithm
improvements and larger datasets for DLwill be key to further
boosting performance.

A review of the studies listed in Appendix A reveals
that each study used different datasets and involved various
subjects. The difference in datasets, the number of fundus
images and the quality of the images can also make it difficult
to gauge performance. The diversity in data and sample sizes
makes it difficult to compare the performance of the proposed
methods for detecting eye diseases accurately.

XII. CURRENT LIMITATIONS
Although the studies included in our comprehensive review
demonstrate the potential of ML and DL in the detection of
eye diseases, several limitations remain.

From the reviewed literature, we can see that the simul-
taneous occurrence of multiple pathologies has rarely been
considered and evaluated, which could aid in the recognition
and segmentation of retinal structures and lesions. For
instance, in glaucoma detection, retinal lesions caused by DR
andAMDare often ignored and not detected by the developed
algorithms. When these lesions are close to the optic disc,
they complicate the detection of its boundary, making it more
error-prone. An algorithm that simultaneously identifies both
the optic disc boundary and retinal lesions could be more
effective.

Another limitation is the limited availability of high-
quality, well-annotated eye image datasets, which are crucial
for training robust ML and DL models. The scarcity of such
datasets holds back the development of these algorithms.
There is no dataset with images from the same subjects
acquired at different time points, which hinders the validation
of specific methods for disease monitoring. Such monitoring
is crucial in clinical practice and should be considered in the
development of automatic methods to support diagnosis.

Furthermore, comparing the performance of various stud-
ies is challenging due to the use of different datasets,
which vary in terms of the number of subjects, data
collection methods, and image quality. These factors, along
with variations in image resolution and differences between
imaging devices, can significantly impact the performance of
the algorithms.

Some studies did not use enough fundus images; a larger
dataset should allow the model to train itself with more
data, leading to a more accurate diagnosis. A larger dataset
must be used to clarify the performance disparities between
ophthalmologists’ diagnoses and AI models. Imbalanced
datasets can also hinder model performance, as they may lead
to biased predictions.

CNNs and Vision Transformers excel when they have
access to large datasets. However, retinal images are rarely

available in substantial quantities and typically lack anno-
tations. DL models often overfit when trained on limited
data. Additionally, DL models are inherently complex and
computationally intensive, which can hinder their seamless
integration into clinical practice. Most of the included
studies relied on a common reference standard for image
classification decisions made by ophthalmologist graders.
This implies that the algorithm may not perform well for
images with subtle findings that many ophthalmologists
might overlook.

Another limitation of the studies is using different
performance metrics for evaluating ML and DL models in
detecting ODs from fundus images. While some studies
used only accuracy, sensitivity and specificity, others used
precision, mean error, AUC, correlation coefficient, IoU, and
Dice. The lack of standardisation in performance metrics has
several disadvantages. Without standard metrics, comparing
the performance of different models becomes challenging,
as each study may choose different metrics that highlight
its strengths but may not provide a complete picture of the
model’s performance.

Certain metrics might favour models that are good at
handling specific types of data imbalances or particular
aspects of the data. This could lead to the selection of models
that are not necessarily the best overall but perform well on
the chosen metric.

Focusing on a narrow set of metrics might lead to
overlooking important aspects of model performance, such
as how well a model can generalise to unseen data, its
robustness to noise in the data, or its performance across
different subgroups within the data. Different studies might
interpret the same metric differently, especially in the
absence of context or an understanding of what each metric
truly measures. For example, a high accuracy might seem
impressive, but it may not be as relevant in a dataset
where there are only a handful of fundus images. It is
crucial to consider all metrics to assess the success of
classification fully. While various metrics offer valuable
insights into different aspects of model performance, the lack
of standardisation in their use across studies can complicate
the evaluation and make it difficult to compare performance.

Addressing these limitations is essential for the successful
implementation of ML and DL in ophthalmology and for
realising their potential to revolutionize eye disease detection
and management.

XIII. FUTURE DIRECTIONS
Our study identified several challenges in developing and
deploying AI-based diagnostic tools for retinal diseases. One
major challenge is the limited size and lack of diversity in cur-
rent datasets, which hampers the model’s ability to generalise
across different populations and conditions, making it less
reliable. Additionally, in real-world scenarios, images often
contain noise due to varying quality, lighting conditions, and
patient movement, which can obscure important diagnostic
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features and reduce the accuracy of AI models. Another
challenge is the variation in imaging devices used by different
hospitals and clinics, noise present in images, resulting in
inconsistencies in image quality and characteristics that pose
a challenge for AI models trained on data from a single type
of device. Moreover, gaining the trust of clinicians for the
widespread adoption of AImodels in clinical settings requires
transparent, interpretable models and consistent performance
across diverse clinical environments.

To address these challenges, several AI solutions are pro-
posed, structured in a clear roadmap for future work. Firstly,
collaboration with multiple hospitals and clinics globally to
collect a large, diverse set of annotated images should be
done, ensuring the inclusion of varied demographics (age,
sex, race) and multiple pathologies. It would be beneficial
for future research to associate each image with information
not only on the presence or grading of a specific pathology
but also on any additional pathologies present. This approach
would facilitate the development of algorithms capable of
screening and analysingmultiple pathologies simultaneously,
effectively managing signs related to other conditions that
currently represent noise in images. Establishing standardised
protocols for image annotation and data collection will ensure
consistency and reliability across different sources. Secondly,
to handle real-world image noise, the development and
integration of advanced preprocessing algorithms to clean
and enhance images by reducing noise and correcting lighting
variations should be done. Training models using techniques
such as data augmentation, adversarial training, and noise-
robust algorithms like uncertainty quantificationwill improve
their resilience to real-world noise [357].

Managing variation in imaging devices will involve
creating calibration procedures to standardise images from
different devices, ensuring that the AI model can handle
variations in image quality and settings. Training AI models
on datasets collected from various types of imaging devices
will enhance their generalisability and robustness across dif-
ferent clinical environments. To build clinician trust through
explainable AI (XAI), the development of interpretable
models that provide clear, understandable insights into their
decision-making processes should be done, integrating XAI
techniques to highlight which parts of an image contributed
to the diagnosis [357], [358]. Additionally, designing user-
friendly interfaces that present AI findings in an easy-
to-interpret manner should include visual aids, confidence
scores, and clear explanations of the AI’s reasoning [359].
Elsharkawy et al. proposed an automated, explainable
artificial intelligence (XAI) system for diagnosing age-
related macular degeneration [360]. This system mimicked
physician perceptions by deriving clinically meaningful
features from optical coherence tomography (OCT) B-
scan images, enabling differentiation between a normal
retina, various AMD grades (early, intermediate, geographic
atrophy, inactive wet, active neovascular disease), and non-
AMD diseases [360]. The XAI system extracted retinal

OCT-based clinical markers related to AMD progression,
including subretinal tissue, sub-retinal pigment epithelial
tissue, intraretinal fluid, subretinal fluid, and choroidal hyper
transmission using a DeepLabV3+ network; merged retina
layers using a novel convolutional neural network model;
drusen detection via 2D curvature analysis; and retinal layer
thickness and reflectivity features. These clinical features
were utilised in a hierarchical decision tree process to grade
the OCT images. Severe cases indicating advanced AMD
were further analysed to diagnose specific conditions, while
less severe cases were assessed for intermediate or early-
stage AMD. The system was evaluated on 1285 OCT images
and achieved 90.82% accuracy, demonstrating its capability
to automatically distinguish between normal eyes, various
AMD grades, and non-AMD diseases [360].
Model explainability is a continuing area of research,

particularly with CNNs. Vision Transformers (ViTs) can be
computationally demanding and require substantial training
data, which can restrict their use in certain contexts [361].
Despite this, ViTs have inherent interpretability features,
such as self-attention mechanisms, that enable the model
to concentrate on important aspects of the input image.
This characteristic makes ViTs potentially more suitable
for developing explainable models compared to traditional
CNNs [361]. Future work should be done to comprehend
the balance between interpretability and computational
complexity in ViTs and to discover the best methods for
creating lightweight, explainable models using ViTs.

Combining modalities for comprehensive analysis is
another key solution. For example, fundus imaging offers a
colour photograph of the retina, providing a view of the retinal
surface, while OCT offers a cross-sectional image, giving
insight into the layers of the retina. Using both will allow for
a more complete analysis of the retina’s health. Each imaging
modality may capture different aspects of retinal diseases.
For instance, OCT can show subretinal fluid or macular
edema not visible on fundus photography. AI models can
learn to identify disease markers from both types of images,
potentially improving diagnostic accuracy. Some changes
may be more apparent or only visible in one type of imaging.
By analysing both fundus and OCT images, AI can help
in the early detection of diseases by picking up on these
subtle changes, which is crucial for conditions like glaucoma
and AMD, where early intervention can prevent progression.
AI systems can cross-verify findings across both types of
images to reduce false positives and negatives. For example,
what appears to be an abnormality in a fundus image may
be clarified as a normal variation in the OCT, leading to
more confident diagnoses. Monitoring these diseases over
time can be more effective when both types of images are
available. AI models can track changes in both the retinal
surface and sub-retinal structures, giving a clearer picture of
how a disease is responding to treatment. The development
of models that simultaneously analyse fundus and OCT
images to provide a more comprehensive assessment of
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TABLE 14. List of research papers that have used machine learning to classify Glaucoma cases. Note: AEH = Aravind eye hospital, Madurai, India; NOI =

NIO hospital, Pune; OHT = Ophthalmology Hospital, Tunisia; KMC = Kasturba Medical College, India; BEVC = Biobank Eye Vision Consortium, UK; S1 -
DRISHTI-GS, AEH (101); S2 - RIM-One; S3 - NOI (118); S4 - DRIONS-DB (110); S5 JSIEC (124); S6 - DRIVE (44); HCECE = Homogeneity, Contrast, Entropy,
Correlation and Energy; PHOVW = Pyramid histogram of visual words; KRYE = Kapoor/Renyi/Yager entropy; SRKE = Shannon/Rényi/Kapoor entropy;
LCP = Local configuration pattern; BV = Blood Vessels, SFEM = Superpixel feature extraction module, RHT = Randomized Hough transform, SFTMH =

Statistical features/texton map histogram, HOCF = Higher order cumulant features, DCGGFHHW = DDLS/CDR/GLRM/GLCM/FoS/HOS/HOC/Wavelet;
CHRF = corneal hysteresis + corneal resistance factor, VERC = Venu Eye Research Centre, India; IOP = Intraocular Pressure; CCT = Central Corneal
Thickness; ACRIMA = A1.
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TABLE 15. List of papers that used DL to classify Glaucoma. Note: LALES = Los Angeles Latino Eye Study. S = SVM, k = KNN, C/R-18/G =

ResNet-18/GlaucomaNet; R = ResNet, G2 = GoogleNet, A = AlexNet, V = VGGNet.

retinal health, capturing both surface and sub-surface retinal
features, should be done. Future work should focus on
creating algorithms capable of detecting and grading multiple

retinal pathologies simultaneously will involve associating
each image with information about the presence and grading
of various conditions, facilitating more holistic patient care.
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TABLE 16. List of research papers which have used machine learning to classify AMD.

TABLE 17. List of research papers that used deep learning to classify AMD.

Uncertainty quantification in retinal health screening refers
to the process of identifying, characterising, and managing
the uncertainties inherent in predictive models [362]. Uncer-
tainty quantification is crucial for providing reliable and
robust diagnostic outcomes from ML and DL models [363].
Aleatoric uncertainty or data uncertainty, arises from inherent
variability in the data due to noise or insufficient data.
In retinal imaging, it might result from variations in image
quality, patient demographics, or differences in imaging
devices. Epistemic uncertainty or model uncertainty arises
from the model’s lack of knowledge, often due to insufficient
training data or limitations in the model architecture.
Uncertainty quantification provides a measure of confidence
in the model’s predictions and can help clinicians make more

informed decisions [363]. For instance, if a model predicts
the presence of DR with high uncertainty, a clinician might
decide to perform additional tests before confirming the
diagnosis. Incorporating uncertainty quantification methods
will provide measures of confidence in the model’s pre-
dictions, helping clinicians make more informed decisions
by highlighting cases that may require additional review
or testing. Developing training programs for clinicians to
understand and effectively use AI tools, including how to
interpret uncertainty measures and integrate AI findings into
their diagnostic workflow, will be crucial.

Our study found that ML and DL are the two emerging
tools that are used for screening retinal diseases. ML algo-
rithms, however, may not be as potent as DL for automatic
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TABLE 18. List of research papers that have used machine learning to classify DR. Note: THDJ = Tsukazaki Hospital Database, Japan; MDKEH = Mashhad
Database, Khatam-Al-Anbia Eye Hospital.

detection, as the user has to define each of the features to
detect the disease. Future work should focus on developing
a novel DL model to detect multi-retinal classes such as
AMD, DR, glaucoma, cataract, comorbid, and high blood
pressure subjects, from a combination of data from multiple
imaging modalities such as fundus and OCT. However,
DL models demand substantial computational resources for
both training and testing, which can impede their scalability
and practicality in clinical settings. Future work should focus
on developing an efficient, lightweight DL model that can be
trained and deployed on devices with limited resources.

The roadmap for these solutions includes short-term,
medium-term, and long-term phases. In the short term (1-
2 years), the aim should be to collect and standardise
a large, diverse dataset from multiple sources, develop
and implement advanced image preprocessing techniques,
train and validate models on multi-device datasets, and
begin integrating explainable AI techniques into model
development. In the medium term (2-3 years), the plan should
be to enhance model robustness against real-world noise
through extensive testing and refinement, develop calibration
procedures for cross-device standardization, launch user-
friendly interfaces with integrated XAI for clinical trials, and
start combining fundus and OCT images for dual-modality
analysis. In the long term (3-4 years), the focus will be on
establishing standardised evaluation metrics and protocols
for clinical adoption, fully implementing multi-pathology
detection algorithms, integrating uncertainty quantification
into AI models and interfaces, and conducting large-scale
clinical trials to validate model performance and gain
regulatory approval.

A proposed model, like the one shown in Figure 15, can
be created in the future, which takes different modalities
such as fundus and OCT eye images as input, and with

the help of xAI makes the results more understandable for
clinicians. Combining different methods, analysing images
and data acquired through various modalities, and conducting
simultaneous analyses of multiple pathologies or retinal
lesions could lead to improved performance and predictions
that are as intuitive as those of expert clinicians. Future
work should also focus on establishing a standardised set
of performance metrics that reflect the needs and priorities
of both the medical and patient communities. The lack
of standardised evaluation metrics can be a barrier to the
clinical adoption of ML and DL models, as clinicians and
regulatory bodies may find it difficult to assess the efficacy
and safety of these models without a common framework
for evaluation. Future work should focus on developing
user-friendly interfaces that present uncertainty information
clearly to clinicians, as that will be crucial for the integration
of AI models in clinical settings. Models incorporating
uncertainty quantificationmayfind it easier to gain regulatory
approval, as they can provide evidence of their reliability
and limitations, aligning with the requirements for safety and
efficacy.

By addressing these challenges through a structured and
phased approach, the aim should be to develop AI solutions
that are reliable, interpretable, and broadly applicable in
clinical settings, ultimately improving the diagnosis and
management of retinal diseases.

XIV. CONCLUSION
Over the last decade, AI has significantly transformed retinal
health detection by automating and improving the accuracy
of diagnoses. In recent years, numerous automatic diagnostic
support methods have been proposed with the goal of
facilitating widespread screening and providing quantitative,
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TABLE 19. List of papers that used DL to classify DR. E = EyePACS, A = APTOS, M = MESSIDOR, I = IDRiD, R = ResNet, G2 = GoogleNet, A2 = AlexNet, V =

VGGNet.

FIGURE 15. Proposed AI model which takes fundus and OCT eye images
of the same patient as input and with the help of xAI makes the results
more understandable for clinicians.

objective, and reproducible information on various retinal
diseases such as DR, AMD, and glaucoma.

This paper presents an overview of traditional, ML, and
modern DL techniques for detecting ophthalmic diseases
using retinal fundus images. Traditional computer-aided
diagnosis (CAD) systems have evolved into sophisti-
cated ML and DL models, reducing the need for man-
ual feature extraction and enabling real-time, large-scale
screenings.

Our review details the main features and clinical parame-
ters of each disease and describes various publicly available
image datasets used for algorithm development. The paper
also provides important critical insights and discusses
research trends. Additionally, it reviews methods based on
traditional image processing techniques, highlighting their
crucial role in implementing pre-processing steps that are still
necessary to enhance the performance ofML and DLmodels.
We have seen from the literature, the recent trend of using DL
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TABLE 20. List of acronyms used in this paper.

over ML due to its robustness and other advantages, such as
no need for manual feature extractions.

Ophthalmologists have historically performed retinal
screening using a labour-intensive, time-consuming manual
procedure that can lead to subjective bias in the diagno-
sis [86]. By utilising an automated system with DL, analysis
time will be shortened. Additionally, it will reduce the
subjective variations in how observers interpret images [364].

Clinicians would have a better chance of diagnosing and
treating these disorders if ML and DL algorithms were
utilised to identify them in their early stages. Since AI models
and approaches would be used, there would not be any
physician subjectivity that could reduce diagnosis accuracy.

The performance of DL models in detecting glaucoma,
DR, and AMD can be translated into real-world clinical set-
tings, though challenges remain. Successful implementation
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depends on integrating these models into clinical workflows,
ensuring they are trained on diverse and representative
datasets, and addressing regulatory and ethical considera-
tions. However, continuous evaluation and adaptation are
needed to ensure these models perform reliably across
different populations and healthcare environments.

This review is useful for identifying the current main
challenges and findings related to the automatic detection
of each specific disease, as well as common aspects
and discrepancies between various solutions developed for
different diseases. While many review papers focus on the
automatic detection of a single ophthalmic disease from
fundus images, this comprehensive overview of the literature
on all pathologies can facilitate the migration of the best
solutions across different conditions, potentially leading
to the development of more precise and clinically useful
automatic analysis tools for all retinal diseases.

The continued development and integration of AI-based
diagnostic tools in ophthalmology hold the potential to
significantly improve patient outcomes and revolutionise
the field of retinal health diagnostics. An automated retinal
health screening system in clinical settings can be utilised
to distinguish healthy eyes from ODs, hence cutting down
on the amount of time needed for retinal screening sessions.
Additionally, there would be less human error and no bias
on the part of the clinicians. When effectively implemented,
these methods would result in a faster and more consistent
OD diagnosis than a human process. By addressing current
limitations, such as the need for diverse datasets, explainabil-
ity, and uncertainty quantification integration, researchers can
continue to advance the capabilities of ML and DL systems
in detecting and monitoring retinal diseases.

By overcoming existing challenges and capitalising on the
promising results, researchers and clinicians can collaborate
to develop more accurate, efficient, and accessible diagnostic
tools for retinal diseases, explore the potential of personalised
medicine in retinal health diagnostics, and ultimately improve
patient outcomes and quality of life for millions of people
worldwide.

APPENDIX A
The complete set of findings from the systematic review is
displayed in Tables 14 to 19. In addition, the type of ML
or DL in the study, the authors, the year that the article was
published, and the performance are all displayed. The results
presented here are based on 1601 significant research articles
found in the Google Scholar, IEEE, PubMed, and Science
Direct databases between January 2012 and June 2024.
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