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Abstract: Mean sea level rise is a significant emerging risk from climate change. This research paper 
is based on the use of artificial intelligence models to assess and predict the trend on mean sea level 
around northern Australian coastlines. The study uses sea-level times series from four sites (Broom, 
Darwin, Cape Ferguson, Rosslyn Bay) to make the prediction. Multivariate adaptive regression 
splines (MARS) and artificial neural network (ANN) algorithms have been implemented to build 
the prediction model. Both models show high accuracy (R2 > 0.98) and low error values (RMSE < 
27%) overall. The ANN model showed slightly better performance compared to MARS over the 
selected sites. The ANN performance was further assessed for modelling storm surges associated 
with cyclones. The model reproduced the surge profile with the maximum correlation coefficients 
~0.99 and minimum RMS errors ~4 cm at selected validating sites. In addition, the ANN model 
predicted the maximum surge at Rosslyn Bay for cyclone Marcia to within 2 cm of the measured 
peak and the maximum surge at Broome for cyclone Narelle to within 7 cm of the measured peak. 
The results are comparable with a MARS model previously used in this region; however, the ANN 
shows better agreement with the measured peak and arrival time, although it suffers from slightly 
higher predictions than the observed sea level by tide gauge station. 
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1. Introduction 
Estimating regional mean sea-level rise is critical to understanding and characteriz-

ing current and future causes of sea-level change. During the last two decades, the rate of 
sea-level rise around the Australian region has not been consistent, with the sea-level 
trend due the dynamic influence induced by internal climate modes about three times 
greater than the global mean sea-level around the north and north-west of Australia [1,2]. 
Previous studies of sea-level trends employing various approaches to accommodate dif-
ferent spatial and temporal resolutions of the data around Australia (e.g., [3,4]). Ref. [5] 
used the multivariate regression (MR) model to integrate satellite altimetry and tide gauge 
data, leading to a significant improvement of temporal resolution of sea-level data from 
satellite altimetry around northern Australian coastlines. However, the MR model slightly 
underestimates the observed sea-level variability. This is due to the fact that the linear MR 
model may not be able to closely fit the reality of sea-level features, which are naturally 
non-linear and vary greatly over time [6–8] also highlighted the non-linearity of mean sea-
level rise based on analysis of the world’s longest records. 

To overcome this limitation, ref. [9] employed the multivariate adaptive regression 
splines (MARS) by Friedman. The MARS is a non-parametric and multi-stage regression 

Citation: Raj, N.; Gharineiat, Z.  

Evaluation of Multivariate Adaptive 

Regression Splines and Artificial 

Neural Network for Prediction of 

Mean Sea Level trend around  

Northern Australian Coastlines. 

Mathematics 2021, 9, 2696. https:// 

doi.org/10.3390/math9212696 

Academic Editor: Akemi Galvez 

Tomida 

Received: 23 September 2021 

Accepted: 21 October 2021 

Published: 24 October 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Mathematics 2021, 9, 2696 2 of 20 
 

 

model, in which spline functions are used to fit data with an arbitrary regression function 
[10]. Ref. [9] showed that the MARS method outperformed the multivariate regression in 
modelling sea levels during extreme sea-level events, increasing the mean value of R2 from 
the multivariate regression model (0.45) to the MARS model (0.62). It was also found that 
the mean RMSE value over the study region was decreased from 8.21 cm by the multivar-
iate regression model to 6.73 cm by the MARS model. They highlighted that the MARS 
has been successful in modelling the non-linear relationship between number of variables 
with multi-collinearity, and/or a high-level interaction. 

Lately, artificial neural networks (ANN) have become popular for forecasting of the 
sea due to its ability to handle data with a non-linear relationship, working based on un-
certainties, and learning from experience levels [11]. Also, ANN does not depend on the 
assumptions of the functional model, the probability distribution, or the smoothness of 
the underlying data [12]. Several studies have used ANN models to predict sea level and 
associated tidal signals (e.g., [13–15]) and the modelling results have been considerably 
improved compared to other existing models. Since the ANN and MARS models can 
model out the non-linearity in a given set of data, this study aims to compare the perfor-
mance of ANN model to the previously used model (MARS) in order to select the best 
method for predicting sea level at the northern Australian region. The paper is organised 
as follows. The data and study area are presented in Section 2. Section 3 explains the the-
oretical background of the MARS and ANN model, as well as the interpretation of the 
results. Section 4 demonstrates the modelling outcomes for four selected tide gauges lo-
cated around the northern Australian coastal region using both the ANN model and 
MARS model. Finally, the last section presents the conclusion and recommendations for 
future studies. 

2. Data and Study Area 
The 26 years (1993–2019) of hourly sea surface heights (SSHs) from four tide gauges 

(Figure 1) were extracted from the Australian National Tidal Centre (NTC, 
http://www.bom.gov.au/oceanography/, accessed on 23 January 2020). The tide gauge da-
tasets have been checked and corrected for apparent errors including datum and time 
shifts. We carefully chose tide gauges that had a complete time series for more than 20 
years. The mean sea surface (MSS) was then removed from individual tide gauge time 
series. The inverse barometric was also corrected using the two-dimensional gravity 
waves model (MOG2D-IB) to decrease the noise in estimating the part of sea level varia-
tions that are not associated with atmospheric pressure [16]. 
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Figure 1. The location of tide gauges (red squares) used for this study. 

3. Methodology 
3.1. Theoretical Background 
3.1.1. Multivariate Adaptive Regression Splines (MARS) Model 

MARS is a non-linear and non-parametric regression approach which was initially 
developed by Jerome H. Friedman in 1991 [17]. It is a stepwise linear regression that is 
capable of taking higher-dimensional inputs. This is done over an equivalent interval to 
explore complex and non-linear relationships between the response and input variables 
[17]. MARS predictive modelling has been widely used in many machine-learning appli-
cations [18–21]. 

The MARS method generates forecasts by learning the relationships between the re-
sponse and predictor variables. The training data sets are divided into splines which are 
separate piecewise linear segments of different gradients. 

The model is a weighted sum of basis functions (BFs) defined in pairs which form 
based on a knot and subgroups to define an inflection region [17,19]. MARS characterises 
data either globally or using linear regression between any two knots. 

The linear combination of the basis functions can be given as follows [22]: 

 𝑓(𝑥) = 𝐶 +  𝐶
ୀଵ 𝐵𝐹(𝑥) (1)

where, 𝐶…  are unknown coefficients estimated by the least squares method, 𝑘  is the 
number of terms considered in the model, 𝐵𝐹(𝑥) is the basis function based on knots from 
a piecewise linear basis function. During the development of the model, the basis func-
tions are selected based on the following generalized cross validation (GCV). 

𝐺𝐶𝑉(𝑁) = ⎝⎛1𝑛 ∑ (𝑦 − 𝑦పෝ)ଶୀଵ൬1 − 𝐶(𝑀)𝑛 ൰ଶ ⎠⎞ (2)

where, n is the number of data points, 𝑦 is the actual value of data point I, 𝑦పෝ  is the pre-
dicted value for data point i and 𝐶(𝑀) is the penalty factor defined as follows: 



Mathematics 2021, 9, 2696 4 of 20 
 

 

𝐶(𝑀) = 𝑀 + 𝑑𝑀 (3)

where, d is the cost penalty factor of each basis function in the optimisation. Over fitting 
can result when several basis functions are selected in the forward phase, therefore, delet-
ing some basis functions in the backward phase is important to select the optimised 
model. 

3.1.2. Artificial Neural Network (ANN) Model 
ANNs are based on a series of parallel architectures that are connected by nodes 

called artificial neurons [23–25]. These networks use learning capabilities obtained from 
inputs, which can be effectively used for the prediction of mean sea level as available data 
are fairly large. One of the main strengths of the neural network architecture is that it 
improves its own problem-solving ability by continually learning from trial and error. 
Once this is done over time, the network is able to detect patterns and processes in the 
data. An artificial neuron contains five main components: inputs, weights, sum function, 
activation function and outputs [26]. In this network, units are placed as layers that are 
connected to allow the information to flow unidirectionally. It passes from the input units 
through the units located on the hidden layers and then to the units on the output layer 
[27]. A set of weighted inputs allows each artificial neuron in the system to give related 
outputs. The effect of the weights is calculated by the sum function which is calculated by 
Equation (4). 

(𝑛𝑒𝑡) =  𝑤
ୀଵ 𝑥 + 𝑏 (4)

where “(net)j is the weighted sum of the jth neuron for the input received from the pre-
ceding layer with n neurons, wij is the weight between the jth neuron in the preceding 
layer, xi is the output of the ith neuron in the preceding layer, b is a fixed value as internal 
addition and Σ represents the sum function” [26,28,29]. The weights provide an important 
link for the ANN memory and significant information is fed through the network for op-
timization by backward propagation [30]. These weights are changed as the input values 
are read by the network to reduce the difference between the predicted and target values. 
The activation function processes the net input obtained through the sum function and 
provides the output values. The output is created using a sigmoid function as follows: 

(𝑜𝑢𝑡) = 𝑓(𝑛𝑒𝑡) = 11 + 𝑒ିఈ(௧)ೕ (5)

where α is a constant used to control the slope of the semi-linear region [26]. 
The sigmoid function is used in the ANN algorithm to convert the linear inputs into 

non-linear signals. This is extremely important for the learning of higher order polynomi-
als beyond one degree for deeper networks [31,32]. The differentiable nature of the acti-
vation function enables the much needed backpropagation process which otherwise will 
not be possible. 

3.2. Data Preparation 
The first step in data preparation is to identify and remove inconsistent and incorrect 

values from the dataset. These values have a value of −9999 in the set as recording may 
not have been available at the particular observation point. This study uses the visualisa-
tion method of the boxplot, a data filtering technique in Excel and regression comparison 
using Cook’s distance method [33] to remove the outliers. Cook’s distance 𝐷 of observa-
tion 𝑘 is given as: 
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𝐷 = ∑ (𝑦ො − (𝑦ො())ଶୀଵ 𝑝𝑀𝑆𝐸   (6)

where, 𝑦ො is the 𝑖th fitted response value, 𝑦ො() is the 𝑖th fitted response value when the fit 
excludes observation 𝑘, 𝑀𝑆𝐸 is the mean squared error, 𝑝 is the number of coefficients in 
the regression model. 

The next step is to determine if the dataset is stationary. In order to fit a stationary 
model, it is very important to determine that the data is a realisation of a stationary pro-
cess [34]. This study uses the augmented Dickey Fuller (ADF) test to confirm the station-
arity. The augmented Dickey Fuller test is for larger datasets and tests the null hypothesis 
that unit root is present in the data. A greater negative value of the ADF statistic than the 
critical value confirms that null hypothesis can be rejected, and no unit root is present. 
The following results in Table 1 confirm the Broome dataset’s stationarity criteria, and the 
same procedure was used for all study area locations to confirm stationarity. 

Table 1. Augmented Dickey Fuller (ADF) results to determine stationarity. 

ADF Statistic: −16.195319  
Results of the Test:  

Test Statistic −16.19532 
p-value 4.130155 × 10− 29 

#Lags Used 74.00000 
Observations Used 1.373840 × 105 
Critical Value (1%) −3.430398 
Critical Value (5%) −2.861561 
Critical Value (10%) −2.566781 

The next step is to consider the number of lags that can be used as inputs for the 
modelling process. The autocorrelation (ACF) and partial autocorrelation (PACF) func-
tion analysis is used to determine the input of the sea level prediction model. Autocorre-
lations measure the association between current and past values and indicate which past 
time series values are most useful in predicting future values [35–37]. The partial autocor-
relation function (PACF) provides the partial correlation of a stationary time series with 
its own lagged values, which regresses the time series values at all shorter lags [38,39]. 
Cross-correlation is a measure of similarities between two time series which helps to iden-
tify important patterns [40,41]. 

Figure 2 shows all lags with ACF and PACF for all datasets, and three significant lags 
were selected for inputs in the MARS and ANN model.  
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Figure 2. Autocorrelation (ACF) and partial autocorrelation (PACF) for all data locations. 

Considering, sea level 𝑆𝐿 as the time series variable for the 60-min interval, three sig-
nificant lags of (𝑆𝐿, 𝑆𝐿௧ିଶ , 𝑆𝐿௧ିଵ ) are then used with the other input variables of water 
temperature 𝑊𝑇, air temperature 𝐴𝑇, barometric pressure 𝐵𝑃, residuals 𝑅, adjusted resid-
uals 𝐴𝑅, wind direction 𝑊𝐷, wind gust 𝑊𝐺, and wind speed 𝑊𝑆. Table 2 shows the cross-
correlation results of the inputs and target variable 𝑆𝐿 for the Broome dataset. 
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Table 2. Cross-correlation results of the inputs and target variable sea level for Broome tide gauge station. 

Broome 
Water 
Temp 

Air 
Temp 

Barometric 
Pressure Residuals 

Adjusted 
Residuals 

Wind 
Direction 

Wind 
Gust 

Wind 
Speed Sea Level 

Water Temp 1 0.8 −0.74 0.034 −0.29 0.29 0.13 0.078 0.025 
Air Temp 0.8 1 -0.63 0.028 −0.24 0.33 0.002 −0.021 0.07 

Barometric 
Pressure 

−0.74 −0.63 1 −0.22 0.21 −0.32 −0.24 −0.19 −0.029 

Residuals 0.034 0.028 −0.22 1 0.91 0.0023 −0.089 −0.098 0.066 
Adjusted 
Residuals 

−0.29 −0.24 0.21 0.91 1 −0.13 −0.2 −0.18 0.072 

Wind 
Direction 

0.29 0.33 −0.32 0.0023 −0.13 1 0.031 0.043 0.024 

Wind Gust 0.13 0.002 −0.24 −0.089 −0.2 0.031 1 0.92 −0.03 
Wind Speed 0.078 −0.021 −0.19 −0.098 −0.18 0.043 0.92 1 −0.024 

Sea Level 0.025 0.07 −0.029 0.066 0.072 0.024 −0.03 −0.024 1 

3.3. Data Normalisation 
All of the model input data were normalized [42–44] to make the range of 0–1 for 

modelling by Equation (7): 

actual min

max min
n
x xx
x x

−=
−

 (7)

After the prediction using the then trained model, values are returned to the original 
values using Equation (8): 

( )actual max min minnx x x x x= − +  (8)

where x  is the input data value, minx is the overall minimum and maxx  is the overall max-
imum value. 

3.4. Model Development 
All predictive models were developed in MATLAB, R and the Python programming 

environment under an Intel i7, 3.40 GHz system. The main objective of this study was to 
apply MARS and ANN for forecasting mean sea level around northern Australian coast-
lines. The process of developing the forecasting model was using the 60% training set and 
predicting the last 20% of data after validation (20%). 

3.4.1. MARS Model Development 
To develop the MARS model for the prediction of mean sea level, the following pa-

rameters are selected to obtain optimal results (please refer to Table 3). 

Table 3. Parameters of multivariate adaptive regression splines (MARS) model. 

maxFuncs c maxInteractions Cubic 
20 0 2 piecewise-cubic 

The ‘maxFuncs’ parameter is the maximal number of basis functions in the model, 
which are included in the forward model building phase before pruning in the backward 
phase. The default value of the intercept term is 21 and the recommended value for this 
parameter is two times the number of basis functions in the final model [17]. The ‘c’ pa-
rameter is the generalized cross-validation (GCV) penalty per knot, this is taken to be in 
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the range of about 2–4. A value of 0 penalizes only terms, not knots; hence it can be useful 
with large data and low noise. According to [17], the default value for c is 3. The ‘max-
Interactions’ value is 2 in the model that specifies the maximum degree of interactions 
between input variables. When set to 1 for additive modelling, there will be no interac-
tions. Generally, a low degree interaction is taken with 1 as default value, however, higher 
degrees can be used when needed. The ‘cubic’ condition can be given as piecewise-cubic 
(true) or piecewise-linear (false) type of modelling [17]. The model in this study uses piece-
wise-cubic modelling to obtain higher predictive performance as data is ‘smoother’ and 
less noisy. 

3.4.2. Artificial Neural Network (ANN) Model Development 
To develop the ANN model for predicting mean sea level, Table 4 shows the param-

eters selected to obtain the optimal results. 

Table 4. Parameters of artificial neural network (ANN) model. 

Algorithm Performance Criteria Inputs Hidden Layers Output Layer 
Levenberq-Marquardt 

(trainlm) 
Mean Squared Error 

(mse) 
11 10 1 

Figure 3 shows the ANN network architecture, the hidden layer and output layer has 
the weights, fixed value of b and the sigmoid function. The Levenberg Marquardt algo-
rithm is one of the commonly used training algorithms for a multi-layer neural network 
[45]. 

 
Figure 3. ANN network architecture for data modelling (11–10–1–1). 

This is a gradient descent technique to minimize the error for the training phase in 
modelling. In this study, ANNs inputs are trained (Figure 4) and validated (Figure 5) with 
the Levenberg Marquardt algorithm. The ‘mse’ is the default performance function for 
feed forward neural network, it is the mean magnitude of the squares of the error. A well-
trained ANN has a low ‘mse’ at the end of the training phase, which signifies a smaller 
distance between predicted and actual values. 
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Figure 4. Training performance showing mean squared error (mse) with epochs. 

 
Figure 5. ANN training state. 

3.5. Model Performance Criteria 
Several statistical metrics were used in this study to evaluate the performance of the 

MARS and ANN model. The commonly used model score metrics such as Pearson’s cor-
relation coefficient (R), Nash–Sutcliffe coefficient (ENS), Willmott’s index of agreement 
(d), root mean square error (RMSE; Wm-2), mean absolute error (MAE; Wm-2), including 
the relative root mean square error (RRMSE; %) and Legates and McCabes index (L) have 
been calculated to compare the performance. The mathematical forms are as follows, 
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1. Correlation coefficient (R) 

𝑅ଶ = ቈ ∑ (𝐷𝑂 − 𝑀𝐷𝑂)(𝐷𝑆 − 𝑀𝐷𝑆)ୀଵඥ∑ (𝐷𝑂 − 𝑀𝐷𝑂)ଶୀଵ  ඥ∑ (𝐷𝑆 − 𝑀𝐷𝑆)ଶୀଵ ଶ
 (9)

where: 𝐷𝑂 = Data observed, 𝐷𝑆 = Data simulated, 𝑀𝐷𝑂 −  Mean of observed data, 𝑀𝐷𝑆 −  Mean of simulated data 

2. Nash–Sutcliffe Coefficient (ENS) 𝐸ேௌ = 1 − ቈ ∑ (𝐷𝑂 − 𝐷𝑆)ଶୀଵ∑ (𝐷𝑂 − 𝑀𝐷𝑂)ଶୀଵ  −∞ ≤ 𝐸ேௌ ≤ 1 
(10)

3. Willmott’s Index of agreement (d) 

𝑑 = 1 − ቈ ∑ (𝐷𝑂 − 𝐷𝑆)ଶୀଵ∑ (|𝐷𝑆 − 𝑀𝐷𝑂| + |𝐷𝑂 − 𝑀𝐷𝑆|)ଶୀଵ  (11)

4. Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = ඩ൬1𝑛൰ (𝐷𝑆 − 𝐷𝑂)ଶ
ୀଵ  (12)

5. Mean Absolute Error (MAE) 

𝑀𝐴𝐸 = 1𝑛  |(𝐷𝑆 − 𝐷𝑂)|
ୀଵ  (13)

6. Relative Root Mean Square Error (RRMSE) 𝑅𝑅𝑀𝑆𝐸=1𝑛𝑖=1𝑛D𝑆𝑖−𝐷𝑂𝑖21𝑛𝑖=1𝑛𝐷𝑂𝑖×100 (14)

7. Legates and McCabes index (L) 

L= 1− ∑ |(ௌିை)|సభ         ∑ |ைିெௌ|సభ  ൨ 0 ≤ 𝐿 ≤ 1 

(15)

4. Results and Discussion 
In this section, results obtained from the MARS and ANN model for forecasting mean 

sea level around northern Australian coastlines were assessed to validate the study. The 
forecasted values using all models in this study were analysed in terms of the predictive 
accuracy. The comparison was made based on the eight statistical performance criteria 
(Equations (9)–(15)). Both model metrics show highly accurate results in forecasting the 
mean sea level (SL) at all data locations in this study (Tables 5 and 6). 

Table 5. Training metrics for both models at all locations. 

Location Model R2 RMSE MAE RRMSE d ENS LEGATES 
Broome MARS 0.9944 0.2185 0.0931 4.0375 0.9944 0.9888 0.9455 
Broome ANN 0.9959 0.1873 0.0698 3.4607 0.9959 0.9918 0.9591 

Cape Ferguson MARS 0.9958 0.0621 0.0393 3.5402 0.9955 0.9915 0.9290 
Cape Ferguson ANN 0.9973 0.0489 0.0337 2.9032 0.9972 0.9947 0.9386 
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Darwin MARS 0.9862 0.2663 0.1227 6.4002 0.9862 0.9726 0.9091 
Darwin ANN 0.9892 0.2360 0.1071 5.6718 0.9891 0.9785 0.9206 

Rosslyn Bay MARS 0.9952 0.1032 0.0564 4.2664 0.9951 0.9905 0.9378 
Rosslyn Bay ANN 0.9961 0.0931 0.0502 3.8511 0.9960 0.9923 0.9447 

Table 6. Testing metrics for both models at all locations. 

Location Model R2 RMSE MAE RRMSE d ENS LEGATES 
Broome MARS 0.9918 0.2636 0.0990 4.7889 0.9919 0.9836 0.9417 
Broome ANN 0.9939 0.2278 0.0743 4.1397 0.9940 0.9877 0.9563 

Cape Ferguson MARS 0.9966 0.0558 0.0368 3.1877 0.9964 0.9931 0.9337 
Cape Ferguson ANN 0.9974 0.0488 0.0333 2.7919 0.9973 0.9947 0.9399 

Darwin MARS 0.9960 0.1478 0.0974 3.4788 0.9957 0.9914 0.9270 
Darwin ANN 0.9970 0.1262 0.07 2.9703 0.9968 0.9937 0.9409 

Rosslyn Bay MARS 0.9975 0.0777 0.0503 3.1130 0.9974 0.9948 0.9459 
Rosslyn Bay ANN 0.9980 0.0692 0.0448 2.7736 0.9979 0.9959 0.9519 

The important aspect in evaluation of any prediction model is to find the error values 
such as RMSE, MAE, RRMSE. Figure 6 shows a three-dimensional bar graph of the per-
centage RMSE, RRMSE and MAE generated by MARS and ANN models for all locations 
analyzed using the hourly predicted data in the testing phase. The analysis of the pre-
dicted mean sea level revealed a greater efficacy of the ANN when compared with the 
MARS model. All RMSE metrics at all locations generated by the ANN model were 
slightly lower than those of the MARS model (RMSE = 26.36% vs. 22.78% for Broome, 
5.58% vs. 4.88% for Cape Ferguson, 14.78% vs. 12.62% for Darwin and 7.77% vs. 6.92% for 
Rosslyn Bay). The percentage RRMSE and MAE show the same trend with lower error 
values in ANN model predictions. 

 
Figure 6. Three-dimensional bar graph of the percentage RMSE, RRMSE, MAE for all study sites generated by MARS and 
ANN in the testing phase. 

Further to error evaluation of the models, dimensionless index such as Willmott’s 
index of agreement (d), Nash–Sutcliffe coefficient (ENS) and Legates and McCabes index 
(L) also provide significant measure of model performances. A radar plot is very useful in 
displaying multivariate data in the form of a two-dimensional chart. Figure 7 is a radar 
plot of the three indices (d, ENS, L) showing the accuracy of the models at each data study 
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location in the testing phase. Each star spans greater than a radius of 0.94 where values 
closer to 1 indicate higher accuracy in the prediction of the mean sea level. 

 
Figure 7. Radar the absolute prediction error distribution of MARS and ANN model. 

The box plot is an exploratory data analysis technique which shows significant pat-
terns in a data set [46]. Even though it is simple, it is not distorted by a few extreme values 
and effectively visualises the measure of dispersion [47]. Figure 8 shows the box plot of 
absolute prediction errors for each study site. Evidently, each ANN plot is narrower than 
the MARS plot indicating a much greater spread of errors in MARS when compared with 
the ANN model. 

 
Figure 8. Boxplots show the absolute prediction error distribution of the MARS and ANN model. 
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To further analyse the result metrics, Figure 9 shows the absolute prediction error 
(PE) presented in the testing phase. This is obtained in error brackets of 0.1 increment; the 
frequency of absolute prediction error is shown in bars of the histogram. Consistent with 
the results presented earlier, the best prediction is shown by the ANN model as a high 
frequency of errors are on the lower bracket of the histogram (Figure 9). 

 
Figure 9. Histograms show the absolute prediction error distribution bars of the MARS and ANN 
model. 

The scatter plot is a powerful analytical tool [48,49]. Figure 10 plots observed and 
predicted data with a correlation coefficient to visualise the accuracy of MARS and ANN 
model. As seen in the graphs, all data sites show a high correlation in both models (>0.99). 
However, ANN has shown better forecasting performance comparatively. 
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Figure 10. Scatterplot shows the line of best fit of the MARS and ANN model. 

A Taylor diagram is used to visualise the degree of correspondence between pre-
dicted and observed data. This diagram shows the correlation coefficient and the standard 
deviation of the two models by a single point on a two-dimensional (2-D) plot. Further-
more, it provides the relative merits of MARS and ANN models on how they have per-
formed with respect to the observed reference point. The close proximity of both models 
with high correlation value on the Taylor plot further confirms the reliable prediction per-
formance. The presence of ANN (in blue) below the MARS (in red) on the plot implies 
greater accuracy in prediction results (Figure 11). 
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. 

Figure 11. Taylor plot shows the observed, predicted MARS and ANN with standard deviation and 
correlation. The horizontal and vertical axes show standard deviation values with correlation values 
on the arc. 

Figure 12 shows an hourly sea surface height time series from 20–31 December 2018, 
both model curves closely follow the observed data points. This confirms the ability of 
both the models to accurately forecast mean sea level at each data site (see Tables 5 and 6 
for RSMSE and R2 values). 

 
Figure 12. Time series plot shows the predicted MARS and ANN data points with observed data. 
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Since the ANN mode outperform MARS model, we have further evaluated the ability 
of the ANN model to predict sea level variations during a storm surge. For this purpose, 
we have selected two tropical cyclones over the study region: severe tropical cyclone Mar-
cia (15 February–1 March 2015) and severe tropical cyclone Narelle (5–15 January 2013) 
and analysed the modelled sea level at nearby tide gauge stations Rosslyn Bay and 
Broome, respectively. Figure 13 shows tropical cyclone tracks near tide gauge stations 
Broome and Cape Ferguson. 

 
Figure 13. Cyclone track locations have been shown in red line for severe tropical cyclone Marcia 
(15 February–1 March 2015) and blue line for severe tropical cyclone Narelle (5–15 January 2013). 
The locations of tide gauges used for this study are shown in red squares. 

The results indicate good agreement between the modelled sea-level anomalies 
(SLAs) by the ANN model and recorded SLAs by the chosen tide gauge stations during = 
cyclone periods, namely Marcia and Narelle. The maximum correlation coefficients ~0.9 
and minimum RMS errors ~6 cm are calculated between high water levels associated with 
cyclones estimated using the ANN model and measured at chosen tide gauge stations. 
The ANN model can successfully model a storm surge that happened during the cyclones, 
but it has slightly overestimated the surge peak (Figure 14). The modelled peak surge by 
ANN is 2.16 m (no tide) as compared to the measured peak of 2.14 that occurred at Rosslyn 
Bay site on 7 February 2015 during cyclone Marcia (Figure 14, upper panel). The modelled 
peak storm surge by the ANN model is slightly higher at 5.86 m than the 5.95 observed at 
the site observed on 9 January 2013 (Figure 14, lower panel). 
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Figure 14. Comparisons between modelled and measured sea level variations during cyclones at 
selected sites: Upper Panel: Rosslyn Bay gauge, cyclone Marcia, Lower Panel: Broome gauge, cy-
clone Narelle. Sea levels measured at validation sites are shown in blue, modelled by ANN are 
shown in red. 

5. Conclusions 
In this study, the ANN and MARS models are used to predict mean sea level based 

on 26 years of data from four tide gauge stations (Broome, Cape Ferguson, Darwin and 
Rosslyn Bay) located around northern Australian coastlines. The performance of the ANN 
model has been compared with the MARS previously modelled in the study region (c.f. 
[9]). The analysis of the predicted mean sea level revealed a greater efficacy of the ANN 
when compared with the MARS model. All RMSE metrics at all locations generated by 
the ANN model were slightly lower than those of the MARS model (RMSE = 26.36% vs. 
22.78% for Broome, 5.58% vs. 4.88% for Cape Ferguson, 14.78% vs. 12.62% for Darwin and 
7.77% vs. 6.92% for Rosslyn Bay). The percentage RRMSE and MAE show the same trend 
with lower error values in ANN model predictions. Scatter plots of all data sites showed 
a high correlation in both models (>0.99). However, ANN has shown better forecasting 
performance comparatively. 

The ANN model performance was further evaluated for modelling high water levels 
associated with cyclones. The model reproduced the surge profile with the maximum cor-
relation coefficients ~0.99 and minimum RMS errors ~4 cm at the selected validating site. 
In addition, the ANN model predicted the maximum surge at Rosslyn Bay for cyclone 
Marcia to within 2 cm of measured peak and the maximum surge at Broome for cyclone 
Narrel to within 7 cm of the measured peak. The results are comparable with the MARS 
model previously used in this region. However, the ANN model shows better agreement 
with the measured peak and arrival time, although it suffers from slightly higher predic-
tions than the observed sea level by tide gauge station. 

In this study, we have removed the tidal signal from observed sea level, however, 
[50] showed that the inclusion of the tidal variations in the storm surge models, giving 
higher explained variances of the measured peak surge. It is proven that the inclusion of 
tides in the ANN model will probably not have a large effect on the RMS errors due to the 



Mathematics 2021, 9, 2696 18 of 20 
 

 

deterministic nature of the tidal sea level variability [51]. Therefore, it is possible to obtain 
an improvement in the hindcast skill of the ANN model by including the tides. This im-
plies that the surge can be predicted independently of the tide in this region. Future stud-
ies can apply this technique to predict sea levels in other parts of the world. 
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