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ABSTRACT

Context. The large-scale magnetic field of solar-type stars reconstructed from their spectropolarimetric observations provide important
insight into their underlying dynamo processes.
Aims. We aim to investigate the temporal variability of the large-scale surface magnetic field and chromospheric activity of a young
solar analogue, the G0 dwarf HN Peg.
Methods. The large-scale surface magnetic field topology is reconstructed using Zeeman Doppler imaging at six observational epochs
covering seven years. We also investigated the chromospheric activity variations by measuring the flux in the line cores of the three
chromospheric activity indicators: Ca II H&K, Hα, and the Ca II IRT lines.
Results. The magnetic topology of HN Peg shows a complex and variable geometry. While the radial field exhibits a stable positive
polarity magnetic region at the poles at each observational epoch, the azimuthal field is strongly variable in strength, where a strong
band of positive polarity magnetic field is present at equatorial latitudes. This field disappears during the middle of our timespan,
reappearing again during the last two epochs of observations. The mean magnetic field derived from the magnetic maps also follow a
similar trend to the toroidal field, with the field strength at a minimum in epoch 2009.54. Summing the line of sight magnetic field over
the visible surface at each observation, HN Peg exhibits a weak longitudinal magnetic field (Bl) ranging from −14 G to 13 G, with
no significant long-term trend, although there is significant rotational variability within each epoch. Those chromospheric activity
indicators exhibit more long-term variations over the time span of observations, where the minimal is observed in Epoch 2008.71.

Key words. stars: magnetic field – stars: solar-type – stars: imaging – stars: individual: HN Peg – techniques: polarimetric –
stars: activity

1. Introduction

Solar dynamo models suggest that the regeneration of the solar
magnetic field results from the interplay between convection and
differential rotation (Parker 1955; Brandenburg & Subramanian
2005; Charbonneau 2010). These cyclic dynamo processes are
responsible for the different manifestations of solar activity, such
as prominences, flares, and solar winds. Observations of the sur-
face activity features as above of young solar-type stars provide
an important insight into the underlying dynamo processes that
operate in stars other than the Sun (see Donati & Landstreet
2009). In general, solar-type stars all have a similar internal
structure to the Sun, with a radiative core surrounded by a con-
vective envelope. This would suggest that, as for the Sun, their
magnetic activity is generated by a α-Ω dynamo. Although the
exact mechanism of the dynamo processes is still not completely
understood, observations of significant azimuthal field in rapidly
rotating solar-type stars indicate the presence of dynamo dis-
tributed throughout the convective zone (Donati et al. 2003; Petit
et al. 2008). The possibility that such a distributed dynamo oper-
ates in rapidly rotating solar-type stars is supported by detailed
numerical modelling (Brown et al. 2010).

� Tables 3 and 4 are available in electronic form at
http://www.aanda.org

The presence of the magnetic field can result in emission in
the line cores of certain chromospheric lines, such as Ca II H&K,
Hα, and Ca II IRT lines. The Mount Wilson survey was the first
long-term monitoring of Ca II H&K to investigate the surface
magnetic variability of stars with an outer convective envelope
(Baliunas et al. 1995; Duncan et al. 1991). This survey observed
a wide range of variability ranging from cyclic and irregular vari-
ability to no variations at all. Since the Mount Wilson project, a
host of other activity surveys have been carried out in the past
few decades (Wright et al. 2004; Hall et al. 2007). While mon-
itoring Ca II H&K can provide a long-term indication of the
magnetic variability, the disadvantage of using this method is
that this tracer does not provide any direct measurement of the
field strength or information about the large-scale geometry of
the star’s magnetic field.

In recent years with the arrival of spectropolarimeters, such
as ESPaDOnS, NARVAL, and HARPSpol, the magnetic field
observations of other solar-type stars have helped in under-
standing the dynamo processes that drive the different mani-
festations of surface activity (Petit et al. 2008; Marsden et al.
2014). For example, magnetic cycles have been observed on
the F7 dwarf τ Bootis (1.42 ± 0.05 M�, Teff = 6360 ± 80 K
(Catala et al. 2007)), where the large-scale magnetic field is
observed to exhibit cycles over a two-year period (Fares et al.
2009). Magnetic cycles have also been observed on HD 78366
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Table 1. Summary of the physical parameters of HN Peg.

Parameters HD 206860 References

Effective temperature, Teff 5974 (K) 1
Radius 1.002± 0.018 (R�) 1
Mass 1.085± 0.091 (M�) 1
Rotational period, P 4.6 (days) this work
Rotational velocity, v sin i 10.6 (km s−1) 1
Age ∼200 (Myr) 2

References. (1) Valenti & Fischer (2005); (2) Zuckerman & Song
(2009) and Eisenbeiss et al. (2013).

(Morgenthaler et al. 2011) with a mass of 1.34 ± 0.13 M� and
Teff of 6014± 50 K, which shows two polarity reversals with
a probable cycle of approximately three years. More complex
variability has been observed on HD 190771 (Petit et al. 2008,
2009), which is similar in mass to the Sun (0.96± 0.13 M�) with
Teff of 5834± 50 K, where polarity reversals are observed in its
radial and azimuthal field, but over the time span of the observa-
tions, they do not return to the initial field configuration. These
results indicate that the 22 year magnetic cycle of the Sun is not
an exception but that cyclic activity is also present in other solar
type stars with ages close to the Sun’s.

In this paper we determine the large-scale magnetic field ge-
ometry of the young solar analogue HN Peg using the technique
of Zeeman-Doppler Imaging. We also measure HN Peg’s chro-
mospheric activity using the core emission in Calcium II H&K,
Hα, and Calcium II IR triplet lines. In Sect. 2 we review the liter-
ature on HN Peg, followed by a description of the observations in
Sect. 3 and the longitudinal magnetic field in Sect. 4. The chro-
mospheric activity measurements are described and presented in
Sect. 5, and the large-scale magnetic field reconstructions are
presented in Sect. 6. The results are discussed in Sect. 7.

2. HN Peg

HN Peg is a G0 dwarf with a mass of 1.085± 0.091 M� and a
radius of 1.002± 0.018 R� (Valenti & Fischer 2005), as shown
in Table 1. It is part of the Her-Lyr association. HN Peg’s as-
sociation with the Her-Lyr moving group was discovered by
Gaidos (1998) when he detected a group of stars (V439 And,
MN UMa, DX Leo, NQ UMa, and HN Peg) with similar kine-
matics (Fuhrmann 2004; López-Santiago et al. 2006). The age
of Her-Lyr was established to be approximately 200 Myr by
gyrochronology and also by comparing the Li and Hα lines
of Her-Lyr with the UMa group (Fuhrmann 2004; Eisenbeiss
et al. 2013). A separate gyrochronology study carried out on
the Mount Wilson sample also provided an age of HN Peg of
237± 33 Myr (Barnes 2007).

The Mount Wilson survey estimated a period of
6.2± 0.2 years for HN Peg, with high chromospheric vari-
ability (Baliunas et al. 1995; Schröder et al. 2013). Photometric
measurements carried out by Messina & Guinan (2002) claimed
there is a solar-type star spot cycle of HN Peg with a period of
5.5± 0.3 years. Both spectroscopic and photometric observa-
tions of HN Peg were observed by Frasca et al. (2000), where
rotational modulation in both Ca II H&K and Hαwere observed.
Power spectrum analysis of the spectra of HN Peg (Baliunas
et al. 1985) suggests the presence of surface differential rota-
tion. Differential rotation of HN Peg was also investigated by
observing variations in the rotational period (Messina & Guinan
2003), where the evolution of the average rotation of HN Peg
along the activity cycle was observed to be anti-solar.

From direct imaging using the Spitzer Space Telescope,
HN Peg also has also been shown to have an early T-dwarf
companion HN Peg b at a distance of approximately 794 AU
(Luhman et al. 2007; Leggett et al. 2008). Photometric observa-
tions of HN Peg have indicated that it also harbours a debris disk
with a steep spectral energy distribution (Ertel et al. 2012).

3. Observations

The data were collected as part of the international Bcool col-
laboration1 (Marsden et al. 2014), using the NARVAL spec-
tropolarimeter at the 2 m Telescope Bernard Lyot (TBL) at Pic
du Midi Observatory. NARVAL is a new generation spectropo-
larimeter which is a twin of the ESPaDOnS stellar spectropo-
larimeter. NARVAL is a cross dispersed echelle spectrograph
with minimum instrumental polarisation (Aurière 2003; Petit
et al. 2008). NARVAL has a resolution of approximately 65 000
and covers the full optical domain from 370 nm to 1000 nm,
ranging over 40 grating orders.

The data were extracted using Libre-ESpRIT (Donati et al.
1997), which is a fully automated data reduction package in-
stalled at TBL. The observations were taken to maximise ro-
tational phase coverage. Seven sets of data were obtained for
the observational epochs 2007.67, 2008.71, 2009.54, 2010.62,
2011.67, 2012.61 and 2013.68, Table 3. Each of these seven
epochs contains 8 to 14 polarised Stokes V observations.

Because the signal-to-noise ratio (S/N) in individual spec-
tral lines is not high enough to detect Zeeman signatures in po-
larised light, we apply the technique of least square deconvolu-
tion (LSD) on the spectra (Donati et al. 1997; Kochukhov et al.
2010). LSD is a multi-line technique which considers a similar
local profile for each line and obtains an averaged line profile by
deconvolving the stellar spectra to a line mask. A G2 line mask
consisting of approximately 4800 lines matching a stellar pho-
tosphere model for HN Peg was used to generate the averaged
line profile for Stokes I and Stokes V , resulting in huge multi-
plex gain in the S/N of the polarised Stokes V profile as shown
in Table 3. The mask covers a wavelength range of 370 nm to
900 nm and the LSD profiles are normalised by using a mean
Landé factor of 1.21 and a mean wavelength of 550 nm from the
line list.

The polarised Stokes V spectra from 2012 and part of 2011
were discarded because of instrumental defects of NARVAL be-
cause the reference point for one of the polarisation rhombs was
incorrect. This resulted in incorrect polarisation signatures for
HN Peg in the last two observations in 2011 (Table 3) and sud-
den polarisation changes in 2012. However the unpolarised spec-
tra in 2011 and 2012 are not affected, and can be used to mea-
sure the chromospheric proxies of magnetic activity. Subsequent
tests have confirmed that the polarised data collected in 2013 is
reliable2.

4. Mean longitudinal magnetic field (Bl)

The longitudinal magnetic field is measured using the LSD
Stokes V and Stokes I profiles, where the field measured is the
mean magnetic field (line of sight component) integrated over
the entire visible stellar surface. The centre-of-gravity method

1 http://bcool.ast.obs-mip.fr/Bcool
2 A detailed description of the polarisation defects and the correction
technique used can be found here: http://spiptbl.bagn.obs-mip.
fr/Actualites/Anomalies-de-mesures
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Fig. 1. Variability of the longitudinal field (Bl) as a function of the ro-
tational phase. Each of the sub plots from top to bottom correspond to
six different epochs (2007.67, 2008.71, 2009.54, 2010.62, 2011.67, and
2013.68).

(Rees & Semel 1979) was used on the LSD profile of HN Peg to
measure its longitudinal magnetic field, as shown in Eq. (1),

Bl(G) = −2.14 × 1011

∫
vV(v)dv

λ0gc
∫

(Ic − I(v))dv
(1)

where Bl is the longitudinal magnetic field in Gauss, λ0 =
550 nm is the central wavelength of the LSD profile, g = 1.21 is
the Landé factor of the line list, c is the speed of light in km s−1,
v is the radial velocity in km s−1 and Ic is the normalised con-
tinuum. The velocity range covered by the integration window
is ±17 km s−1 around the line centre. The uncertainty in each
of the longitudinal magnetic field measurements are obtained
by propagating the errors computed by the reduction pipeline
in Eq. (1) as described by Marsden et al. (2014). The magnetic
field from the LSD null profiles were also calculated for each
observations where the magnetic field is approximately zero, in-
dicating negligible spurious polarisation affect on the longitudi-
nal field measurements. The errors in the longitudinal magnetic
field of HN Peg is higher than the null profiles except in a few
cases where the SN is weak compared to the rest of the observa-
tions. The magnetic field of HN Peg (Bl) and the magnetic field
from the null profile and their related uncertainties are recorded
in Table 4.

The variability of the longitudinal magnetic field of HN Peg
as a function of rotational phase is shown in Fig. 1. The phase de-
pendence of the longitudinal magnetic field indicates a complex
surface magnetic field geometry. No long-term trend in mean
longitudinal field measurements was observed for HN Peg as
shown in Fig. 6, where Bl exhibits no significant long-term varia-
tions through out the observational timespan. The mean Bl value
of 5.3 G with a dispersion of 4.2 G in epoch 2007.67 goes down
to its lowest value of 1.9 G with a dispersion of 6.3 G in epoch
2009.54. The mean value is the highest in epoch 2010.62.

Fig. 2. Variability of S -index as a function of the rotational phase. Each
of the sub plots from top to bottom correspond to seven different epochs
(2007.67, 2008.71, 2009.54, 2010.62, 2011.67, 2012.61, and 2013.68).

5. Chromospheric activity indicators

Chromospheric activity has been widely observed in solar
type stars, which is manifested as emission in the line cores
of the chromospheric lines, such as: Ca II H&K, Hα, and
Ca II IRT lines. The varying flux in these line cores can be used
as a proxy to investigate magnetic cycles.

5.1. S-index

We observe strong emission lines in the Ca II H&K line cores
of HN Peg as a function of its rotational phase. The S -index is
calculated by using two triangular band passes centred at Ca II H
and K lines (Duncan et al. 1991; Morgenthaler et al. 2012)
at 396.8469 and 393.3663 nm respectively with a FWHM of
0.1 nm. The flux in the continuum at the red and blue sides of the
line is measured by using two 2 nm wide rectangular band passes
R and V at 400.107 and 390.107 nm respectively. Equation (2)
is used to calibrate our index with the Mount Wilson values,

S -index =
αFH + βFK

γFR + δFV
+ Φ (2)

where FH , FK , FR and FV are the flux in the band passes H,K,R
and V . The NARVAL coefficients used to match our S -index
values to the Mt Wilson values (Marsden et al. 2014) are α =
12.873, β = 2.502, γ = 8.877, δ = 4.271 and Φ = 1.183e-03.
We do not carry out the renormalisation procedure used by
Morgenthaler et al. (2012) and carry out the continumm check
following the procedure in Waite et al. (2014), where it was de-
termined that removal of the overlapping orders is as efficient as
renormalisation of the spectra.

The variability of HN Peg’s S -index for each of the seven
epochs is shown as a function of rotational phase in Fig. 2. The
error in the S -index for each measurement was calculated using
error propagation. The S -index and related uncertainty for each
observation is shown in Table 4.
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Fig. 3. S -index measurements of HN Peg from the combined data sets.
The red circles represent data from the Mount Wilson survey, the black
hexagons represent data from the CPS survey and the magenta squares
are our measurements.

We also included S -index measurements of HN Peg from the
Mount Wilson survey, where the data was collected from 1966
to 1991 (Baliunas et al. 1995). There are no published S -index
measurements of HN Peg from 1991 to 2004. Additional
S -index values were obtained from the California planet search
program Isaacson & Fischer (2010), two in 2004 and one in
2006. No error bars are available for the S -index measurements
taken from literature. The long term S -index measurements from
the combined data are shown in Fig. 3.

5.2. Hα-index

The rotational variation of the Hα line was also determined. A
rectangular band pass of 0.36 nm width, centred at the Hα line at
656.285 nm (Gizis et al. 2002) and two 0.22 nm wide rectangular
band passes Hblue and Hred at 655.77 and 656.0 nm respectively
were used to measure the Hα-index. We corrected the order over-
lap in the NARVAL spectra and used the order containing the
complete Hα line core. We then calculated the Hα-index using
Eq. (3),

Hα-index =
FHα

Fblue + Fred
(3)

where FHα represents the flux in the Hα line core and Fblue and
Fred represent the flux in the continuum band pass filters Hblue
and Hred respectively. The variability of Hα as a function of
HN Peg’s rotational phase is shown in Fig. 4. The uncertainty
in Hα-index measurements were calculated using error propaga-
tion. The Hα-index and related uncertainty for each observations
are shown in Table 4.

5.3. CaIRT-index

Since NARVAL covers a wide wavelength range from 350 nm
up to 1000 nm, we can also observe the Ca II IR triplet lines. We
take 0.2 nm wide rectangular band passes in the cores of each of
the triplet lines at 849.8023 nm, 854.2091 nm and 866.241 nm.
Two continuum band passes of the width of 0.5 nm are defined
as IRred at 870.49 nm and IRblue at 847.58 nm for the flux at the

Fig. 4. Variability of the Hα-index as a function of rotational phase.
Each of the sub plots from top to bottom correspond to seven differ-
ent epochs (2007.67, 2008.71, 2009.54, 2010.62, 2011.67, 2012.61, and
2013.68).

red and blue sides of the IR lines (Petit et al. 2013). We calculate
the CaIRT-index using Eq. (4),

CaIRT-index =
FCa1 + FCa2 + FCa3

FIRTblue + FIRTred

(4)

where the flux in the three line cores are represented by FCa1,
FCa2 and FCa3 respectively and the continuum fluxes are defined
by FIRTblue and FIRTred respectively. The error bars for individual
observations were calculated using error propagation. The vari-
ability of the CaIRT-index as a function of HN Peg’s rotational
phase is shown in Fig. 5.

The long-term variability over the observational epochs of
this analysis for the three activity indicators: Ca II H&K, Hα,
and Ca II IRT lines are shown in Fig. 6, where the mean val-
ues of each index is plotted as a function of the observational
epochs. The error bars represent the standard deviation of the
activity proxies for each epoch of observation. The long-term
S -index variations are prominent than the rotationally induced
variations. The long-term S -index and Hα-index show visible
correlation over the entire time span of our observations. The
two indices show a decreasing trend from 2007.67 to 2008.71
and show an increasing trend from 2008.71 to 2011.67 and then
exhibits a flat trend. The long-term CaIRT-index measurements
show global correlation with the S -index but shows more small-
scale variations on a year-to-year basis.

The correlation between the different activity proxies for in-
dividual epochs is prominent in some epochs but not clearly
visible in other epochs. The correlation between S -index
and Hα-index throughout the entire observational timespan is
shown in Fig. 7, where the correlation is more clearly visi-
ble. Correlation between S -index and CaIRT-index is shown in
Fig. 8. The activity index measurements and their related uncer-
tainties of HN Peg is tabulated in Table 4.
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Fig. 5. Variability of CaIRT-index with the rotational phase. Each of
the sub plots from top to bottom correspond to seven different epochs
(2007.67, 2008.71, 2009.54, 2010.62, 2011.67, 2012.61, and 2013.68).

Fig. 6. Average value of the three different indices with the vertical
bars showing the dispersion in each epoch of observations. Top to bot-
tom: average values of S -index(red full circles), Hα-index (blue stars),
CaIRT-index (black triangle) and Bl (magenta squares) plotted against
the epochs (2007.67-2013.68) in average Julian dates.

6. Large-scale magnetic field topology

The large-scale surface magnetic topology of HN Peg was re-
constructed by using the Zeeman Doppler imaging (ZDI) to-
mographic technique, developed by Semel (1989); Brown et al.
(1991); Donati & Brown (1997). ZDI technique involves solv-
ing an inverse problem and reconstructing the large-scale surface

Fig. 7. Correlation between the S -index and Hα-index for each epoch
of observations.

Fig. 8. Correlation between the S -index and CaIRT-index for each
epoch of observations.

magnetic geometry by iteratively comparing the Stokes V profile
to the synthetically generated profiles, which are generated from
a synthetic stellar model.

The large-scale field geometry of HN Peg was reconstructed
by using the version of ZDI that reconstructs the field into its
toroidal and poloidal components, expressed as spherical har-
monics expansion (Donati et al. 2006). A synthetic stellar model
of HN Peg was constructed using 5000 grid points, where the
local Stokes I profile in each grid cell was assumed to have a
Gaussian shape and was adjusted to match the observed Stokes I
profile. The synthetic local Stokes V profiles were computed
under the weak field assumption and iteratively compared to
the observed Stokes V profile. The maximum entropy approach
adopted by the ZDI code is based on the algorithm of Skilling
& Bryan (1984). In this implementation of the maximum en-
tropy principle, a target value of the reduced χ2 is set by the
user, where we define the reduced χ2 as the χ2 divided by the
number of data points (Skilling & Bryan 1984). In its first se-
ries of iterations, the ZDI code produces magnetic models with
associated synthetic profiles that progressively get closer to the
target χ2 value. When the required reduced χ2 value is reached,
new iterations increase the entropy of the model (at fixed χ2),
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Table 2. Magnetic properties of HN Peg extracted from the ZDI maps.

Dates No of vr Bmean Pol Tor Dipole Quad Oct Axi Ωeq dΩ
(in frac.years) obs (km s−1) (G) (%tot) (%tot) (%pol) (%pol) (%pol) (%tot) (rad d−1) (rad d−1)

2007.67 14 –16.60± 0.17 18± 0.5 57± 4 43± 24 54± 4 22± 4 9± 1 69± 15 1.36± 0.01 0.22± 0.03
2008.71 10 –16.67± 0.04 14± 0.3 49± 12 51± 16 35± 3 15± 2 17± 1 54± 21 – –
2009.54 11 –16.63± 0.20 11± 0.2 89± 23 11± 11 42± 4 11± 3 14± 1 45± 21 – –
2010.62 11 –16.65± 0.02 19± 0.8 65± 13 35± 10 33± 4 13± 3 12± 2 44± 20 – –
2011.67 8 –16.66± 0.08 19± 0.7 61± 22 39± 18 25± 4 19± 3 16± 1 38± 21 – –
2013.68 13 –16.66± 0.03 24± 0.7 62± 4 38± 24 57± 4 17± 4 6± 1 77± 10 1.27± 0.01 0.22± 0.02

Notes. The columns represent fractional dates, number of observations, radial velocity (vr), mean magnetic field strength (Bmean), fraction of
magnetic energy reconstructed as the poloidal component, fraction of the large scale magnetic field energy reconstructed as toroidal component,
fraction of poloidal magnetic field stored as dipole, quadrupole and octopole, fraction of the total magnetic energy in the axisymmetric component
of the magnetic field and finally the differential rotation parameters Ωeq and dΩ.

converging step by step towards the magnetic model that min-
imises the total information of the magnetic map.

6.1. Radial velocity

The radial velocity of HN Peg was determined by fitting a
Gaussian directly to the Stokes I profile to determine the cen-
troid of the profile. This method was applied to each epoch of
HN Peg. Additionally the radial velocity in our ZDI code was
varied in 0.1 km s−1 steps. The radial velocity which results in
the minimum information content was chosen which was com-
parable to the radial velocity obtained by Gaussian fit. The radial
velocity and the associated uncertainty for each observational
epoch is shown in Table 2.

6.2. Inclination angle

The inclination angle of 75◦ was inferred using the stellar param-
eters of HN Peg as shown in Table 1, which was tested within its
error range by using as an input to the ZDI code. The inclination
angle was increased in 5◦ steps and the inclination angle which
resulted in minimum information content was used to generate
the magnetic maps.

6.3. Differential rotation

The data used to reconstruct the magnetic field topology were
collected over a span of several weeks, which might result into
the introduction of latitudinal differential rotation during our
timespan of observation. Differential rotation of HN Peg was
measured by determining the difference in equatorial and polar
shear incorporating a simplified solar-like differential rotation
law into the imaging process:

Ω(l) = Ωeq − dΩ sin2 l (5)

where Ω(l) is the rotation rate at latitude l, Ωeq is the equatorial
rotation and dΩ is the difference in rotation between the equator
and the poles.

For a given set of Ωeq and dΩ the large-scale magnetic
field geometry was reconstructed, following the method of Petit
et al. (2002). Approximately 15 observations with good phase
coverage (Morgenthaler et al. 2012) is required to retrieve
the parameters of the surface differential law. As good phase
coverage is important to perform differential rotation calcula-
tions, the two epochs 2007.67 (14 observations) and 2013.68
(13 observations) were selected and individual differential ro-
tation parameters were calculated. As shown in Fig. 9, the Ω

Fig. 9. Best fit χ2 map obtained by varying the parameters for 2007
data. The Ωeq and dΩ values obtained from this map are 1.36 rad d−1

and 0.22 rad d−1 respectively.

and dΩ values for 2007.67 epoch are 1.36± 0.01 rad d−1 and
0.22± 0.03 rad d−1 and for 2013.68 epoch are 1.27± 0.01 rad d−1

and 0.22± 0.02 rad d−1 respectively. For the other epochs with
less dense phase coverage the differential rotation values mea-
sured for 2007.67 are used for 2008.71, 2009.52 and values from
2013.68 are used for 2010.62 and 2011.67. The rotational period
of HN Peg was also measured from the calculated differential ro-
tational parameters.

The uncertainty in the differential rotation measurements
were evaluated by obtaining Ωeq and dΩ values by varying the
input stellar parameters, within the error bars of the individual
parameters. The dispersion in the resulting values were consid-
ered as error bars.

6.4. Magnetic topology

The large-scale magnetic field topology of HN Peg was recon-
structed using ZDI, for the epochs 2007.67, 2008.71, 2009.54,
2010.62, 2011.67, and 2013.68. The stellar parameters used
to reconstruct the magnetic field topology are a v sin i of
10.6 km s−1, an inclination angle of 75◦. The number of spherical
harmonics l used in our ZDI code is lmax = 8.

A17, page 6 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424096&pdf_id=9


S. Boro Saikia et al.: Variable magnetic field geometry of the young sun HN Pegasi (HD 206860)

6.4.1. Epoch 2007.67

For the epoch 2007.67, the modelled Stokes V profile and the
corresponding fit to the observed Stokes V profile is shown in
Fig. 10 (Top left). The observed fit was achieved with a re-
duced χ2 of 1.0. The number of degree of freedom is 152. In
the radial field component of the magnetic field as shown in
Fig. 11, a strong positive field region is reconstructed at the
equator along with a cap of positive polarity magnetic field
encircling the pole. The azimuthal component is reconstructed
as a band of positive magnetic field at equatorial latitudes as
shown in Fig. 11. The percentage of the total magnetic energy
distributed into its poloidal and toroidal configuration for the
epoch 2007.67 is shown in Fig. 12. The magnetic energy is 57%
poloidal and 43% toroidal as shown in Table 2. The percentage
of the poloidal field reconstructed into its different components
is shown in Fig. 13. The mean magnetic field strength of HN Peg
is 18± 0.5 G (Table 2).

6.4.2. Epoch 2008.71

The LSD Stokes V profile and the corresponding fit for the epoch
2008.71 is shown in Fig. 10 (top middle). The observed fit was
achieved with a χ2 minimised to 1.0 and the number of degree of
freedom is 68. The radial field geometry is dominated by a pos-
itive magnetic region over the poles as shown in Fig. 11, where
the strong positive field at the equator in epoch 2007.67 is not
visible one year later in epoch 2008.71. The azimuthal field ge-
ometry is dominated by two regions of positive polarity at the
equator. The meridional field geometry is also shown in Fig. 11.
The percentage of the total magnetic energy distributed into the
poloidal and toroidal components is shown in Fig. 12. The ma-
jority of the magnetic energy is reconstructed as toroidal field
component as shown in Table 2. The percentage of fraction of
the poloidal magnetic field reconstructed into its different com-
ponents is shown in Fig. 13. The mean magnetic field strength
decreases to 14± 0.3 G (Table 2).

6.4.3. Epoch 2009.54

The Stokes V profile in 2009.54 is shown in Fig. 10 (top right),
where some of the Stokes V profile have a lower S/N. The
Stokes V profiles are fitted to the reconstructed profile with a
χ2 level of 1.0 and the number of degree of freedom is 40. The
positive polarity magnetic region around the pole in the previ-
ous epochs is also present in 2009.54 as shown in Fig. 11. The
band of positive polarity azimuthal field observed in the previous
epochs is surprisingly absent in this epoch as shown in Fig. 11,
with only 11% of the magnetic energy being toroidal. The per-
centage of magnetic energy reconstructed as poloidal component
is 89% as shown in Fig. 12. The percentage of the fraction of the
poloidal magnetic energy distributed into its different field con-
figurations is shown in Fig. 13. The mean magnetic field strength
is at its lowest at 11± 0.2 G. (Table 2).

6.4.4. Epoch 2010.62

The Stokes V profile and magnetic maps of HN Peg for epoch
2010.62 are shown in Fig. 10 (bottom left) and Fig. 11 respec-
tively. The best fit to the observed Stokes V profiles were ob-
tained with a χ2 level of 1.4, which might be a result of some
intrinsic behaviour that could not be accounted for. The num-
ber of degree of freedom is 40. The radial field component is
still mostly positive around the poles as shown in Fig. 11. The

azimuthal field is stronger than in epoch 2009.54, with the pres-
ence of both positive and negative polarity regions. The merid-
ional field component is also shown in Fig. 11. The percentage
of the magnetic energy distribution into its poloidal and toroidal
component is shown in Fig. 12. 65% of the magnetic energy
is reconstructed in the poloidal component and 35% of the en-
ergy is stored in the toroidal component as shown in Table 2.
The percentage of the fraction of the poloidal component recon-
structed into its different components is shown in Fig. 13, where
the fraction of the different components is minimal. The mean
magnetic field strength of HN Peg has increased from 11± 0.2 G
in 2009.54 to 19± 0.8 G (Table 2).

6.4.5. Epoch 2011.67

For the epoch 2011.67, the reconstructed Stokes V profile and
its fit to the observed Stokes V profile is shown in Fig. 10 (bot-
tom middle). The observed fit was obtained with a χ2 minimised
to 1.1. The formal computation of the number of degree of free-
dom for this epoch results in a negative value, which means for
this particular case the problem is underdetermined. The mag-
netic field geometry in the radial field is more complex than in
the previous epochs, with the presence of both positive and neg-
ative magnetic regions as shown in Fig. 11. However, the phase
coverage is not sufficient to reliably confirm the negative polar-
ity regions. The azimuthal field is mostly positive with regions
of positive polarity around the equator. The meridional field is
also shown in Fig. 11. The percentage of the magnetic energy
distributed into the poloidal and toroidal components is shown
in Fig. 12. The percentage of the fraction of the poloidal compo-
nent reconstructed into its different field configurations is shown
in Fig. 13. 61% of the magnetic energy is reconstructed into its
poloidal component as shown in Table 2, where the mean mag-
netic field strength of HN Peg is 19± 0.7 G.

6.4.6. Epoch 2013.68

The observed and reconstructed Stokes V profiles for the epoch
2013.68 is shown in Fig. 10 (bottom right). The best fit to the ob-
served Stokes V profiles was obtained with a χ2 of 1.0. The num-
ber of degree of freedom is 124. The magnetic field in the radial
component is shown in Fig. 11, where the pole is dominated with
a ring of positive polarity magnetic field. The azimuthal field
component is dominated by a band of positive polarity magnetic
field at the equator as shown in Fig. 11. The percentage of the
magnetic energy distributed into different field configurations is
shown in Fig. 12. The magnetic energy is mostly poloidal (62%)
as shown in Table 2. The percentage of the fraction of poloidal
field reconstructed into its different configurations is shown in
Fig. 13. The mean magnetic field is at its highest at 24± 0.7 G,
where 77% of the total field is axisymmetric (Table 2).

The uncertainties associated with the magnetic maps for each
epoch of observations were obtained by using different values
for the input stellar parameters into our ZDI code (see Petit et al.
2002), where the individual parameters were varied within their
error bars. The dispersion in the resulting values was considered
as error bars.

7. Discussion

HN Peg was observed for seven epochs from 2007.67 to
2013.68, providing new insights into its magnetic field variations
and the associated geometry.

A17, page 7 of 16



A&A 573, A17 (2015)

-20 0 20 40
Velocity (km.s−1)

-1

0

V
/I

c
(%

)

-1.000

-0.780

-0.572

-0.357

-0.139

0.298

0.515

0.734

1.599

1.821

2.039

2.909

3.560

3.768

-20 0 20 40
Velocity (km.s−1)

-2.225

-1.794

-0.698

-0.248

-0.038

0.164

0.169

0.372

0.607

0.818

1.048

-20 0 20 40
Velocity (km.s−1)

-2.933

-2.715

-2.498

-0.540

0.989

1.644

1.855

2.717

3.378

4.480

-20 0 20 40
Velocity (km.s−1)

-1

0

V
/I

c
(%

)

-1.226

-0.797

-0.591

0.068

0.505

0.719

0.942

1.795

2.901

5.069

-20 0 20 40
Velocity (km.s−1)

-5.186

-3.002

-2.792

0.897

1.333

1.563

2.439

2.644

-20 0 20 40
Velocity (km.s−1)

-1.125

-0.711

-0.470

0.165

0.384

0.603

0.825

1.265

1.679

2.339

2.554

2.760

2.993

Fig. 10. Top row: time series of the LSD Stokes V profiles from 2007.67 (top left), 2008.71 (top centre) and 2009.54 (top right). Bottom row:
time series of the LSD Stokes V profiles for the epochs 2010.62 (bottom left), 2011.67 (bottom centre) and 2013.68 (bottom right). The black line
represents the observed Stokes V spectra and the red line represents the fit to the spectra. Rotational cycle is shown to the right and 1σ error bars
for each observations is shown to the left for each plot.
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(a) 2007.67 (b) 2008.71 (c) 2009.54

(d) 2010.62 (e) 2011.67 (f) 2013.68

Fig. 11. Surface magnetic field geometry of HN Peg for six epochs as reconstructed using Zeeman Doppler Imaging. Top row: a) 2007.67;
b) 2008.71; c) 2009.54; bottom row: d) 2010.62; e) 2011.67; f) 2013.68. For each epoch, the magnetic field components are shown as projection
onto one axis of the spherical coordinate frame, where from top to bottom: radial, azimuthal and meridional magnetic field components are shown.
the field strength is shown in Gauss, where red represents positive polarity and blue represents negative polarity.

7.1. Long-term magnetic variability

The longitudinal magnetic field (Bl) for each observation of
HN Peg was derived using Stokes V profile and Stokes I profile
integrated over the entire visible stellar surface. The longitudinal
field varies as a function of the rotational phase during each ob-
servational epoch, which indicates a non-axisymmetric magnetic
geometry. Over the epochs of this analysis no significant long-
term Bl variations are apparent as shown in Fig. 6, where the
mean Bl values exhibit variability over the observational times-
pan but the overall trend with dispersion is flat. HN Peg exhibits
a strong longitudinal magnetic field strength when compared
to the other solar type stars included in Marsden et al. (2014).
Bl ranges from −14 G up to 13 G (Table 4) throughout the entire
time span.

The long term chromospheric variability of HN Peg was
monitored using three different chromospheric lines: Ca II H&K,
Hα and Ca II IRT. The three chromospheric tracers exhibit
weak rotational dependence during each observational epoch.
Periodic analysis of HN Peg carried out by the Mount Wilson
survey categorised HN Peg as a variable star with a period of
6.2± 0.2 years. The chromospheric activity of HN Peg was also
measured as part of the Bcool snapshot survey (Marsden et al.
2014), where the measured S -index are compatible with our
S -index measurements.

Correlations were observed for the three chromospheric trac-
ers for individual epochs with visible scatter, which might be
due to the effect of different temperature and pressure condi-
tions during emissions in the line cores of Ca II H&K, Hα, and
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Fig. 12. Magnetic energy distribution throughout the six epochs
(2007.67, 2008.71, 2009.54, 2010.62, 2011.67, and 2013.68). The frac-
tion of magnetic field stored in poloidal component is shown in blue and
toroidal component in green.The red line represents the fraction of the
energy stored in the axisymmetric component. The error bars associated
with each epoch are shown in Table 2.

Ca II IRT. Correlations between S -index and Hα-index were also
observed for ξ Bootis A by Morgenthaler et al. (2012). The ob-
served scatter in the correlation between S -index and Hα-index
for each epoch might be also be explained by the contribution of
plage variation in Ca II H&K and filament variation in Hα flux
(Meunier & Delfosse 2009), where increase in filament contri-
bution might result in decrease in correlation between the two
chromospheric tracers. Apart from the contribution of filament
and plage, Meunier & Delfosse (2009) also concluded that stel-
lar inclination angle, phase coverage might also effect the corre-
lation between these two tracers.

In their long-term evolution, the chromospheric tracers ex-
hibit a similar trend, with visible correlation between the
S -index and Hα-index. In the long-term mean S -index and
Hα-index exhibit correlation in cool stars, which might be due
to the effect of stellar colour (Cincunegui et al. 2007). The long-
term Ca II H&K and Hα correlation is clearly observed in the
Sun (Livingston et al. 2007), where the two activity proxies fol-
low the solar magnetic cycle. This long-term correlation between
these two tracers have also been observed in other cool stars with
high activity index (Gomes da Silva et al. 2014).

For each observational epoch no visible correlation is ob-
served between the variability of the longitudinal magnetic field
and the chromospheric tracers. Correlations between the direct
field measurements and the magnetic activity proxies were also
not observed for the solar analogue ξ Bootis A (Morgenthaler
et al. 2012). This lack of correlation can be explained by the
contribution of small scale magnetic features in chromospheric
activity measurements which are lost in the polarised Stokes V
magnetic field calculations due to magnetic flux cancellations.

7.2. Large scale magnetic topology

The large-scale magnetic topology of HN Peg was reconstructed
for six observational epochs (2007.67, 2008.71, 2009.54,
2010.62, 2011.67, and 2013.68), where the mean magnetic field
strength (Bmean) changes with the geometry of the field from
epoch-to-epoch. The mean magnetic field strength of HN Peg
is of a few G, which is considerably smaller when compared

Fig. 13. Poloidal magnetic field distributed into different configura-
tions throughout the six epochs (2007.67, 2008.71, 2009.54, 2010.62,
2011.67, and 2013.68). The fraction of the poloidal magnetic energy
stored as dipole is shown in black, quadrupole in green and octopole in
blue. The red line represents the fraction of the poloidal energy stored
in the axisymmetric component. The error bars associated with each
epoch are shown in Table 2.

to the mean magnetic field of other solar analogues HD 189733
(1.34±0.13 M�, Teff = 6014 K; Fares et al. 2010) and ξ Bootis A
(0.86± 0.07 M�, Teff = 5551 ± 20; Morgenthaler et al. 2012).
The mean magnetic field strength of HN Peg is higher than
HD 190771, which has a mass of 0.96± 0.13 M� and Teff of
5834± 50 (Petit et al. 2009; Morgenthaler et al. 2011). When
compared to solar-type stars of similar spectral type HN Peg ex-
hibits higher mean field strength than the mean field strength
of τ Boo(F7) with a mass of 1.33± 0.11 M� (Fares et al. 2009),
HD 179949(F8) (Fares et al. 2012), where τ Boo and HD 179949
are both planet hosting stars.

The radial field component of HN Peg exhibits a variable
field geometry, where the field strength varies from epoch-to-
epoch as shown in Fig. 11. A positive polarity region at the pole
is observed in epoch 2007.67, where a strong positive polarity
magnetic region is also observed near the equator. The positive
region at the pole is present throughout our observational epoch,
without exhibiting any polarity switch. The magnetic field en-
ergy is stored into its poloidal and toroidal components. The
poloidal field of HN Peg is not a simple dipole. The fraction of
energy stored into the different components of the poloidal field
exhibits variations from epoch-to-epoch as shown in Fig. 13.

The azimuthal field component of HN Peg exhibits a more
variable geometry compared to the radial field geometry. The
azimuthal field component exhibits the presence of a significant
positive polarity magnetic regions, which undergoes variations
from epoch-to-epoch as shown in Fig. 11. A strong positive po-
larity band of magnetic field encircling the star is observed in
epoch 2007.67. In 2008.71 two strong positive polarity magnetic
regions were observed near the equator. The azimuthal compo-
nent becomes negligible in the epoch 2009.54. The toroidal field
percentage is minimum in epoch 2009.54. The azimuthal field
reappears in 2010.62, where opposite polarity magnetic field re-
gions are observed. In 2011.67 stronger positive polarity re-
gions are observed, which finally appears as a toroidal ring in
epoch 2013.68.

Prominent toroidal features have been observed in a wide
range of stars belonging to different spectral class, such as

A17, page 10 of 16

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424096&pdf_id=12
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424096&pdf_id=13


S. Boro Saikia et al.: Variable magnetic field geometry of the young sun HN Pegasi (HD 206860)

HD 190771 (Petit et al. 2009), ξ Bootis A (Morgenthaler et al.
2012), τ Boo (Fares et al. 2009) and HD 189733 (Fares et al.
2010). The sudden disappearance of the toroidal field was also
observed in ξ Boo (Morgenthaler et al. 2012). The toroidal com-
ponent is prominent in solar-type stars with rotation periods as
short as a few days (Petit et al. 2008) and stars with longer rota-
tional periods show more prominent poloidal component, which
is clearly observed in the Sun. Toroidal band was also not ob-
served in the F8 dwarf HD 179949 (Fares et al. 2012), where
only two epochs of observations were available. The presence
of significant global-scale toroidal field has also been observed
in numerical simulations of rapidly rotating suns (Brown et al.
2010), where the surface field topology becomes predominantly
toroidal for stars with rotation periods of a few days.

No polarity switches have been observed for HN Peg, al-
though it showed significant evolution of its magnetic field ge-
ometry over the span of six observational epochs. Magnetic cy-
cles were also not observed for ξ Bootis A and HD 189733,
which are slower rotators when compared to HN Peg. Polarity
switches were observed in HD 190771, τ Boo and HD 78366
over their observational time span. Magnetic cycles shorter than
the magnetic cycle of the Sun were observed for τ Boo and
HD 78366.

The variability of the mean magnetic field of HN Peg follows
a similar trend as that of the toroidal field component (Table 2).
The mean magnetic field (Bmean) of HN Peg show a gradual de-
crease in its field strength from 2007.67 to 2009.54, with min-
imum Bmean in 2009.54. The mean field starts increasing from
2009.54 till it reaches a maximum strength in 2013.68. This
indicates strong dependence of the mean field strength on the
toroidal component of the magnetic field.

7.3. Differential rotation

HN Peg has a low v sin i of 10.6 km s−1, which makes it un-
suitable for differential rotation calculations using other con-
ventional techniques such as line profile studies using Fourier
Transform method (Reiners & Schmitt 2003). Photometric ob-
servations of HN Peg were used to measure its differential ro-
tation by Messina & Guinan (2003), where the evolution of the
rotation of the star along the star spot cycle was measured with
inconclusive results.

The differential rotation of HN Peg was calculated using
Stokes V and I profiles in the ZDI technique. Two epochs with
the best phase coverage were used (2007.67 and 2013.68) in
our differential rotation calculations. The Ω and dΩ values for
2007.67 epoch were 1.36 ± 0.01 rad d−1 and 0.22 ± 0.03 rad d−1

and for 2013.68 epoch were 1.27 ± 0.01 rad d−1 and 0.22 ±
0.02 rad d−1 respectively.

HN Peg exhibits weak differential rotation compared to
other dwarfs of similar spectral types such as HD 171488 (G0)
(Stokes I/Stokes V: Ωeq = 4.93 ± 0.05/4.85 ± 0.05 rad d−1,
dΩ = 0.52 ± 0.04/0.47 ± 0.04 rad d−1; Jeffers & Donati 2008)
and τBoo(F7) (2008 June: Ωeq = 2.05 ± 0.04 rad d−1 and dΩ =
0.42± 0.10 rad d−1 rad d−1, 2008 July: Ωeq = 2.12± 0.12 rad d−1

and dΩ = 0.50 ± 0.15 rad d−1; Fares et al. 2009). HD 171488
is the closest to HN Peg in terms of spectral type, stellar radius
and age. The dΩ values of HN Peg is higher than the other young
early G dwarfs such as LQ Lup (Ωeq = 20.28±0.01 rad d−1, dΩ =
0.12 ± 0.02 rad d−1; Donati et al. 2000) and R58 (2000 January:
Ωeq = 11.14 ± 0.01 and dΩ = 0.03 ± 0.02, 2003 March:
Ωeq = 11.19 ± 0.01 and dΩ = 0.14 ± 0.01; Marsden et al.
2004). When compared to HD 179949(Ωeq = 0.82±0.01 rad d−1,

dΩ = 0.22 ± 0.06 rad d−1; Fares et al. 2012), HN Peg exhibits
comparable dΩ values. Although, when compared to other fast
rotators such as ξ Boo (Prot = 6.43 days; Morgenthaler et al.
2012), HN Peg exhibits weaker differential rotation. No direct
correlation between differential rotation of HN Peg and solar
analogues of similar stellar parameters such as age, spectral type,
Prot have been observed so far.

8. Summary

In this paper we presented the large-scale magnetic topology of
the young solar analogue HN Peg. HN Peg is a variable young
dwarf with a complex magnetic geometry, where the radial field
exhibits stable positive polarity magnetic field region through
out our observational epochs. In contrast, the azimuthal field ex-
hibits a highly variable geometry where a band of positive po-
larity toroidal field is observed in the first epoch of observa-
tion followed by a negligible toroidal field two years later in
epoch 2009.54. The toroidal band emerges again one year later
in epoch 2010.62 which is stable in the later epochs 2011.67
and 2013.68. The long-term longitudinal magnetic field varia-
tions were also calculated where in the long-term the longitu-
dinal field exhibits a flat trend. The chromospheric activity was
also measured, where the chromospheric activity indicators ex-
hibit a long-term correlation.
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Table 3. Journal of observations for seven epochs (2007−2013).

Date Julian date Exposure time S /N σLSD

(2 454 000+) (s) (10−5 Ic)

2007 July 27 309.595010 2400 33 888 2.9509
2007 July 28 310.602470 1200 24 226 4.1279
2007 July 29 311.560380 1200 22 030 4.5393
2007 July 30 312.547230 1200 23 060 4.3366
2007 July 31 313.548380 1200 17 034 5.8706

2007 August 2 315.554720 1200 21 801 4.5871
2007 August 3 316.551130 1200 21 899 4.5664
2007 August 4 317.552700 1200 17 688 5.6536
2007 August 8 321.525450 1200 20 126 4.9688
2007 August 9 322.545370 1200 12 680 7.8868

2007 August 10 323.545440 1200 15 856 6.3068
2007 August 13 326.520920 1200 2225 0.0004
2007 August 14 327.534930 1200 19 289 5.1843
2007 August 17 330.524710 1200 21 711 4.6061
2007 August 18 331.481500 1200 22 426 4.4592
2007 August 26 339.432390 1200 3523 0.0003
2008 August 10 689.532480 1200 20 933 4.7772
2008 August 12 691.512640 1200 22 440 4.4563
2008 August 17 696.541340 1200 14 770 6.7706
2008 August 19 698.608480 1200 19 645 5.0903
2008 August 20 699.569970 1200 22 309 4.4826
2008 August 21 700.499080 1200 16 068 6.2235
2008 August 21 700.51924 1200 4218 0.0002
2008 August 22 701.454560 1200 11 621 8.6048
2008 August 23 702.529090 1200 26 050 3.8388
2008 August 24 703.500480 1200 26 143 3.8251
2008 August 25 704.553140 1200 25 206 3.9673

2009 June 1 984.634140 1200 18 628 5.3684
2009 June 2 985.633550 1200 20178 4.9560
2009 June 3 986.630640 1200 20354 4.9131
2009 June 12 995.615700 1200 6753 0.0001
2009 June 18 1001.610390 1200 2183 0.0005
2009 June 19 1002.632590 1200 7840 0.0001
2009 June 22 1005.639920 1200 18 545 5.3923
2009 June 23 1006.610200 1200 16 505 6.0586
2009 June 27 1010.568540 1200 17 878 5.5936
2009 June 30 1013.598260 1200 18 632 5.3672
2009 July 5 1018.658940 1200 10 351 9.6608

2010 June 21 1369.590720 1200 18 367 5.4444
2010 July 4 1382.615660 1200 23 145 4.3206
2010 July 6 1384.584890 1200 23 052 4.3381
2010 July 7 1385.533040 1200 22 897 4.3674
2010 July 10 1388.555690 1200 19 426 5.1477
2010 July 12 1390.561220 1200 15 164 6.5946
2010 July 13 1391.543670 1200 13 473 7.4222
2010 July 14 1392.566570 1200 19 724 5.0700
2010 July 18 1396.485880 1200 22 411 4.4621
2010 July 23 1401.561040 1200 23 969 4.1721

2010 August 2 1411.510430 1200 19 422 5.1488
2010 August 7 1416.561860 1200 21 276 4.7002

2010 August 20 1429.547050 1200 15 018 6.6587
2011 July 11 1754.590060 1200 15 272 6.5481
2011 July 21 1764.613990 1200 21 317 4.6911
2011 July 22 1765.579850 1200 21 091 4.7414

2011 August 8 1782.512460 1200 17 905 5.5850
2011 August 10 1784.515440 1200 17 964 5.5668
2011 August 11 1785.571320 1200 19 745 5.0646
2011 August 15 1789.590600 1200 18 044 5.5420
2011 August 16 1790.530870 1200 19 198 5.2088
2011 August 17 1791.472450 1200 – –
2011 August 18 1792.535280 1200 – –

Notes. Column 1 represents the year and date of observations, Col. 2 is the Heliocentric Julian date, Col. 3 is the exposure time, Col. 4 is the signal-
to-noise ratio of each Stokes V LSD profile and Col. 5 represents the error bars in Stokes V LSD profile. The spectropolarimetric observations are
not included for 2012.61 and parts of 2011.67 epoch due to instrumental defects at NARVAL. See Sect. 3 for details.
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Table 3. continued.

Date Julian date Exposure time S /N σLSD

(2 454 000+) (s) (10−5 Ic)

2012 June 21 2100.610620 1200 – –
2012 June 22 2101.635920 1200 – –
2012 June 23 2102.612400 1200 – –
2012 June 24 2103.529510 1200 – –
2012 July 9 2118.614210 1200 – –
2012 July 15 2124.664630 1200 – –
2012 July 16 2125.639690 1200 – –
2012 July 17 2126.631180 1200 – –
2012 July 18 2127.593570 1200 – –
2012 July 19 2128.578110 1200 – –
2012 July 22 2131.572610 1200 – –
2012 July 23 2132.561810 1200 – –
2012 July 24 2133.592020 1200 – –

2012 August 6 2146.566500 1200 – –
2012 August 7 2147.537680 1200 – –

2013 July 8 2482.556520 1200 21 586 4.6327
2013 July 11 2485.512210 1200 14 989 6.6715

2013 August 2 2507.629120 1200 16 687 5.9928
2013 August 4 2509.533370 1200 21 228 4.7107
2013 August 5 2510.636070 1200 17 799 5.6183
2013 August 8 2513.550070 1200 17 224 5.8058
2013 August 9 2514.559260 1200 20 757 4.8178

2013 August 10 2515.562810 1200 21 317 4.6912
2013 August 11 2516.582590 1200 21 314 4.6917
2013 August 13 2518.601950 1200 21 551 4.6401
2013 August 15 2520.501260 1200 20 952 4.7728
2013 August 18 2523.532240 1200 20 357 4.9122
2013 August 19 2524.518410 1200 22 046 4.5360
2013 August 20 2525.463280 1200 21 075 4.7450
2013 August 21 2526.533220 1200 19 830 5.0429
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Table 4. The chromospheric activity measurements and magnetic field measurements of HN Peg for seven epochs (2007.67, 2008.71, 2009.54,
2010.62, 2011.67, 2012.61 and 2013.68).

Julian date Rot. phase S -index Hα-index CaIRT-index Bl Nl

(2 454 000+) (G) (G)

309.595010 0.000000 0.3092± 0.0032 0.3234± 0.0008 0.9297± 0.0044 1.8± 0.5 –0.4± 0.5
310.602470 0.219490 0.3158± 0.0044 0.3276± 0.0011 0.9384± 0.0062 –1.6± 0.7 0.8± 0.7
311.560380 0.428185 0.3088± 0.0048 0.3263± 0.0012 0.9301± 0.0067 12.7± 0.8 0.0± 0.8
312.547230 0.643185 0.3106± 0.0045 0.3262± 0.0012 0.9312± 0.0065 5.1± 0.7 –1.1± 0.7
313.548380 0.861301 0.3099± 0.0065 0.3248± 0.0015 0.9286± 0.0083 3.6± 1.5 0.7± 1.5
315.554720 0.298412 0.3162± 0.0052 0.3273± 0.0012 0.9341± 0.0068 1.6± 1.9 0.7± 1.9
316.551130 0.515495 0.3104± 0.0051 0.3255± 0.0012 0.9287± 0.0067 11.1± 0.8 0.0± 0.8
317.552700 0.733702 0.3086± .0063 0.3248± 0.0015 0.9237± 0.0084 7.4± 1.3 –0.5± 1.3
321.525450 0.599224 0.3082± 0.0056 0.3254± 0.0013 0.9287± 0.0072 7.9± 0.8 0.7± 0.8
322.545370 0.821429 0.3045± 0.0086 0.3263± 0.0020 0.9241± 0.0112 4.7± 1.3 0.9± 1.3
323.545440 0.039309 0.3097± 0.0072 0.3282± 0.0016 0.9284± 0.0088 2.6± 1.1 –0.4± 1.1
327.534930 0.908479 0.4618± 0.1629 0.3402± 0.0118 0.9293± 0.0633 3.8± 0.9 1.2± 0.9
330.524710 0.559847 0.3102± 0.0062 0.3252± 0.0014 0.9293± 0.0075 12.2± 0.8 0.5± 0.8
331.481500 0.768298 0.3112± 0.0051 0.3252± 0.0012 0.9230± 0.0067 1.8± 1.2 0.7± 1.2
689.532480 0.775048 0.3076± 0.0048 0.3259± 0.0012 0.9220± 0.0065 –2.4± 0.8 –0.7± 0.8
691.512640 0.206455 0.3508± 0.0689 0.3271± 0.0073 0.7714± 0.0437 –2.6± 0.8 1.0± 0.8
696.541340 0.302033 0.3080± 0.0053 0.3216± 0.0012 0.9110± 0.0068 2.3± 1.1 0.6± 1.1
698.608480 0.752390 0.3285± 0.0051 0.3269± 0.0012 0.9254± 0.0065 6.0± 0.9 –1.0± 0.9
699.569970 0.961865 0.3299± 0.0085 0.3265± 0.0017 0.9228± 0.0092 7.0± 0.8 –0.8± 0.8
700.499080 0.164285 0.3145± 0.0062 0.3244± 0.0013 0.9129± 0.0067 4.1± 4.7 1.8± 1.2
700.519240 0.168678 0.3075± 0.0051 0.3233± 0.0012 0.9069± 0.0064 8.4± 1.2 –5.3± 4.7
701.454560 0.372451 0.3122± 0.0692 0.3225± 0.0015 0.9249± 0.0084 –3.7± 3.6 4.5± 3.6
702.529090 0.606553 0.3041± 0.0163 0.3230± 0.0030 0.9304± 0.0165 –1.3± 1.1 –0.2± 1.1
703.500480 0.818185 0.3233± 0.0098 0.3275± 0.0021 0.9201± 0.0117 3.1± 0.6 –0.4± 0.6
704.553140 0.047523 0.3213± 0.0043 0.3243± 0.0010 0.9109± 0.0056 3.7± 0.7 0.9± 0.7
984.634100 0.067340 0.3144± 0.0042 0.3231± 0.0010 0.9077± 0.0056 5.3± 0.9 0.1± 0.9
985.633550 0.285085 0.3075± 0.0043 0.3230± 0.0011 0.9016± 0.0058 1.7± 0.8 0.3± 0.8
986.630640 0.502316 0.3228± 0.0063 0.3306± 0.0013 0.9189± 0.0070 5.1± 1.6 2.6± 1.6
995.615700 0.459845 0.3155± 0.0056 0.3290± 0.0012 0.9158± 0.0065 8.5± 4.4 –10.9± 4.5

1001.610390 0.765878 0.3303± 0.0059 0.3255± 0.0012 0.9230± 0.0066 –14.0± 7.8 –17.7± 7.8
1002.632590 0.988580 0.3036± 0.0206 0.3245± 0.0031 0.9098± 0.0158 7.9± 2.5 –0.7± 2.5
1005.639920 0.643771 0.3107± 0.0202 0.3250± 0.0033 0.9318± 0.0175 3.5± 2.0 2.6± 2.0
1006.610200 0.855161 0.3209± 0.0180 0.3259± 0.0029 0.9319± 0.0154 5.9± 1.0 –0.1± 1.0
1010.568540 0.717545 0.3326± 0.0080 0.3260± 0.0013 0.9327± 0.0072 –2.0± 2.1 –1.5± 2.1
1013.598260 0.377614 0.3338± 0.0084 0.3271± 0.0015 0.9259± 0.0080 –4.5± 1.8 –0.0± 1.8
1018.658940 0.480159 0.3381± 0.0072 0.3252± 0.0014 0.9332± 0.0072 3.1± 1.7 –3.5± 1.7
1369.590720 0.935885 0.3212± 0.0074 0.3230± 0.0013 0.9292± 0.0068 13.9± 0.9 0.3± 0.9
1382.615660 0.773562 0.3193± 0.0081 0.3251± 0.0019 0.9147± 0.0096 7.3± 0.7 –0.7± 0.7
1384.584890 0.202588 0.3577± 0.0073 0.3291± 0.0013 0.9423± 0.0069 4.7± 0.7 –0.7± 0.7
1385.533000 0.409148 0.3323± 0.0051 0.3255± 0.0011 0.9265± 0.0061 6.1± 0.7 0.5± 0.7
1388.555690 0.067686 0.3493± 0.0057 0.3284± 0.0011 0.9325± 0.0062 9.5± 1.0 –0.8± 1.0
1390.561220 0.504621 0.3474± 0.0056 0.3264± 0.0011 0.9293± 0.0062 3.2± 1.1 0.9± 1.1
1391.543670 0.718662 0.3446± 0.0067 0.3256± 0.0013 0.9293± 0.0068 4.7± 2.8 –0.8± 2.8
1392.566500 0.941501 0.3370± 0.0090 0.3262± 0.0016 0.9263± 0.0080 –4.6± 1.0 2.1± 1.0
1396.485880 0.795397 0.3290± 0.0100 0.3244± 0.0018 0.9133± 0.0096 4.4± 0.9 1.0± 0.9
1401.561040 0.901096 0.3358± 0.0061 0.3248± 0.0013 0.9214± 0.0068 10.0± 0.7 1.1± 0.7
1411.510430 0.068719 0.3314± 0.0062 0.3264± 0.0011 0.9156± 0.0062 8.4± 1.0 –0.3± 1.0
1416.561860 0.169248 0.3302± 0.0052 0.3262± 0.0011 0.9155± 0.0059 5.5± 0.8 0.8± 0.8
1429.547050 0.998266 0.3474± 0.0072 0.3289± 0.0013 0.9177± 0.0069 8.1± 1.5 0.1± 1.5
1754.590060 0.813736 0.3520± 0.0068 0.3287± 0.0012 0.9170± 0.0064 –2.3± 1.1 –0.4± 1.1
1764.613990 0.997599 0.3397± 0.0135 0.3264± 0.0017 0.9093± 0.0095 –2.4± 0.9 –0.1± 0.9
1765.579850 0.208026 0.3392± 0.0075 0.3281± 0.0016 0.9445± 0.0088 6.1± 0.8 0.5± 0.8
1782.512460 0.897048 0.3445± 0.0040 0.3286± 0.0012 0.9421± 0.0068 –6.4± 1.9 0.1± 1.9
1784.515440 0.333427 0.3398± 0.0048 0.3285± 0.0012 0.9415± 0.0068 4.3± 2.1 1.4± 2.1
1785.571320 0.563466 0.3475± 0.0056 0.3289± 0.0014 0.9458± 0.0079 12.8± 0.8 –1.0± 0.8
1789.590600 0.439126 0.3292± 0.0072 0.3278± 0.0014 0.9324± 0.0078 3.7± 1.1 –0.3± 1.1
1790.530870 0.643978 0.3674± 0.0056 0.3344± 0.0013 0.9572± 0.0073 6.1± 0.9 0.1± 0.9
1791.472450 0.849115 0.3313± 0.0070 0.3277± 0.0014 0.9453± 0.0076 – –
1792.535280 0.080669 0.3808± 0.0084 0.3328± 0.0013 0.9579± 0.0073 – –

Notes. From left to right it represents: Julian date, rotational phase, S -index, Hα-index, CaIRT-index, longitudinal magnetic field (Bl) and magnetic
field of the Null profile (Nl). The longitudinal magnetic field measurements are not included for 2012.61 and parts of 2011.67 epochs due to
spectropolarimetric errors at NARVAL. See Sect. 3 for details.
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Table 4. continued.

Julian date Rot. phase S -index Hα-index CaIRT-index Bl Nl

(2 454 000+) (G) (G)

2100.610620 0.199479 0.3737± 0.0071 0.3319± 0.0014 0.9606± 0.0075 – –
2101.635920 0.422856 0.3344± 0.0096 0.3253± 0.0018 0.9335± 0.0110 – –
2102.612400 0.635597 0.3560± 0.0069 0.3281± 0.0015 0.9344± 0.0082 – –
2103.529510 0.835403 0.3419± 0.0054 0.3260± 0.0013 0.9280± 0.0074 – –
2118.614210 0.121830 0.3514± 0.0057 0.3265± 0.0014 0.9339± 0.0081 – –
2124.664630 0.440004 0.3407± 0.0082 0.3278± 0.0017 0.9361± 0.0092 – –
2125.639690 0.652436 0.3459± 0.0051 0.3293± 0.0015 0.9290± 0.0085 – –
2126.631180 0.868447 0.3374± 0.0062 0.3273± 0.0012 0.9252± 0.0069 – –
2127.593570 0.078118 0.3511± 0.0049 0.3288± 0.0012 0.9401± 0.0067 – –
2128.578110 0.292614 0.3490± 0.0058 0.3300± 0.0012 0.9457± 0.0069 – –
2131.572610 0.945011 0.3451± 0.0044 0.3273± 0.0012 0.9412± 0.0070 – –
2132.561810 0.160523 0.3361± 0.0061 0.3270± 0.0013 0.9302± 0.0072 – –
2133.592020 0.384969 0.3523± 0.0055 0.3290± 0.0012 0.9444± 0.0072 – –
2146.566500 0.211654 0.3467± 0.0059 0.3298± 0.0013 0.9401± 0.0075 – –
2147.537680 0.423240 0.3357± 0.0055 0.3283± 0.0013 0.9288± 0.0076 – –
2482.556520 0.412094 0.3507± 0.0064 0.3285± 0.0011 0.9437± 0.0063 2.8± 0.8 –0.2± 0.8
2485.512210 0.056035 0.3385± 0.0083 0.3261± 0.0014 0.9330± 0.0076 12.7± 1.1 –2.4± 1.1
2507.629120 0.874534 0.3404± 0.0054 0.3272± 0.0012 0.9341± 0.0066 4.1± 2.5 –3.3± 2.5
2509.533370 0.289403 0.3384± 0.0068 0.3263± 0.0016 0.9330± 0.0090 6.2± 0.8 0.5± 0.8
2510.636070 0.529643 0.3367± 0.0070 0.3249± 0.0015 0.9287± 0.0083 6.1± 0.9 0.3± 0.9
2513.550070 0.164501 0.3520± 0.0064 0.3293± 0.0012 0.9430± 0.0068 10.3± 1.0 0.3± 1.0
2514.559260 0.384368 0.3520± 0.0080 0.3288± 0.0014 0.9452± 0.0078 5.4± 0.8 0.6± 0.8
2515.562810 0.603007 0.3414± 0.0079 0.3278± 0.0014 0.9384± 0.0079 4.8± 0.8 0.3± 0.8
2516.582590 0.825181 0.3515± 0.0062 0.3278± 0.0012 0.9422± 0.0069 3.4± 0.8 –0.1± 0.8
2518.601950 0.265129 0.3535± 0.0052 0.3275± 0.0012 0.9367± 0.0067 8.4± 0.8 0.2± 0.8
2520.501260 0.678922 0.3498± 0.0060 0.3280± 0.0012 0.9407± 0.0066 2.8± 0.8 0.2± 0.8
2523.532240 0.339266 0.3505± 0.0058 0.3293± 0.0012 0.9390± 0.0065 5.0± 0.8 –0.6± 0.8
2524.518410 0.554118 0.3548± 0.0056 0.3288± 0.0012 0.9402± 0.0067 7.7± 0.9 –0.7± 0.9
2525.463280 0.759972 0.3547± 0.0073 0.3282± 0.0012 0.9402± 0.0068 1.8± 0.8 –0.0± 0.8
2526.533220 0.993074 0.3545± 0.0065 0.3281± 0.0012 0.9412± 0.0065 5.9± 0.8 –0.2± 0.8
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