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A B S T R A C T

This study examines the stability of three-dimensional rectangular tunnel headings in drained c-ϕ soils, incor
porating surcharge effects using 3D Finite Element Limit Analysis (FELA). It focuses on the upper and lower 
bound solutions for three stability factors: cohesion, surcharge, and soil unit weight (Nc, Ns, and Nγ). Based on 
Terzaghi’s principle of superposition, the analysis evaluates tunnel stability under varying parameters, such as 
cover-depth ratio (H/D), width-depth ratio (B/D), and friction angle (ϕ). The results align closely with previous 
studies, and practical design charts are provided for calculating minimum support pressures. Additionally, 
machine learning models (ANN and XGBoost) are used to develop accurate correlations between input param
eters and stability results. A relative importance index analysis is conducted to assess the impact of these pa
rameters. This research enhances understanding of tunnel stability and offers practical insights for tunnel design.

1. Introduction

Rectangular tunnels are commonly used in urban areas for trans
portation, utilities, pedestrian passageways, mining, and various other 
purposes. They offer efficient use of space, and therefore are particularly 
well-suited for utility applications, such as for electrical cables, water 
pipes, or sewage systems. Although rectangular tunnels may not always 
be the first choice in terms of tunnel geometry, they have experienced 
increased popularity due to their distinct benefits.

Ensuring the stability of tunnels is one of the central challenges in the 
field of geotechnical engineering. For this purpose, various researchers 
have employed the Finite Element Limit Analysis (FELA) method to 
evaluate safety factors or collapse loads in diverse geotechnical prob
lems (Drucker et al., 1952; Chen and Liu, 2012; Sloan, 2013; Sangjinda 
et al., 2023). Earlier research focused on tunnel stability has presented 

upper bound (UB) and lower bound (LB) solutions for various tunnel 
shape and soil condition including circular tunnel in undrained soil 
(Wilson et al., 2011; Shiau and Keawsawasvong, 2022; Keawsawasvong 
and Ukritchon, 2022), drained soil (Yamamoto et al., 2011a; Xiao et al., 
2019a) and rock masses (Zhang et al., 2019). Furthermore, there were 
several studies on square and rectangular shape tunnel stability for 
drained and undrained (Sloan and Assadi, 1991, Yamamoto et al., 
2011b; Abbo et al., 2013; Wilson et al., 2015; Xiao et al., 2019b; Bhat
tacharya and Dutta, 2023). Recent studies have significantly enhanced 
the understanding of tunnel stability, including research on shield tun
nels such as tail grout performance (Liang et al., 2024), partial blowout 
instability (Liu et al., 2024), and working face stability in inclined 
tunnels (Wu et al., 2024). These studies have contributed to a deeper 
understanding of grout behavior, face stability, and the challenges posed 
by various soil conditions. However, a comprehensive examination of 
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the stability of rectangular tunnels in drained c-ϕ soils under surcharge 
pressure was not found in the literature. This highlights the need for 
thorough investigation and extensive research in this particular area.

As a pioneering work, Atkinson and Mair (1981) introduced a 
drained stability solution to compute the minimum support pressure (σt) 
required for collapse in shield tunnels in cohesionless soil. Conse
quently, Anagnostou and Kovári 1996 extended their proposal by 
introducing a stability equation which accommodates cohesive, fric
tional, and cohesive-frictional soils in their study, despite of the limited 
results produced. Vermeer et al., (2002) utilized the displacement finite 
element method to investigate shield tunnel face stability, employing a 
stepwise-reduced support pressure technique. They concluded that the 
stability factor Fγ remains unaffected by the tunnel depth when friction 
angles are greater than twenty degrees. On the other hand, Qarmout 
et al., (2019) introduced a novel two-block failure mechanism for upper 
bound analysis, enabling them to determine tunnel stability factors for 
shallow circular tunnels. They reported that the shape of the equivalent 
area of the tunnel face has minimal impact on the minimum support 
pressure, and that Fγ increases as the friction angle decreases.

In a recent study by Shiau and Al-Asadi (2020a), an in-depth inves
tigation to tunnel stability have been conducted utilizing a three-factor 
approach. Their research specifically focused on analyzing the stability 
of drained tunnel headings in a two-dimensional (2D) space, utilizing 
the rigorous upper and lower bound finite element limit analysis. 
Expanding upon their previous work, Shiau and Al-Asadi 2020b-c 
further extended the three-factor approach to the problem of 3D circu
lar tunnel heading stability and 3D twin circular tunnel headings. 
However, it is important to note that none of these studies have spe
cifically investigated the 3D tunnel stability in relation to rectangular 
shape using the three-factor approach for studying drained c-ϕ soils with 
surcharge effects.

Various machine learning (ML) methods, such as Artificial Neural 
Network (ANN) and Extreme Gradient Boosting (XGBoost), have been 
incorporated into geotechnical engineering studies for solving complex 
problems (Shahin et al., 2001; Zhu et al., 2021; Lai et al. 2022, 2023, 
Nguyen et al. 2023a-b). On the one hand, ANN, which appeared in 
earlier research, is a basic model whose capacity is not only to produce 

explicit prediction functions but also to investigate the importance of 
each input parameter (Lai et al., 2022, Nguyen et al. 2023a-b, Azim, 
2022). On the other hand, XGBoost is a technique published recently 
that can solve classification and regression problems with highly accu
rate results (Shekar et al., 2024). As a result, it is one of the most popular 
algorithms used in winning models in Kaggle competitions (Chen and 
Guestrin, 2016).

This paper aims to address this research gap by conducting a nu
merical investigation into the three-dimensional drained stability of 
rectangular tunnel headings. To achieve this objective, we employed 
Finite Element Limit Analysis (FELA) framework, incorporating both 
upper bound (UB) and lower bound (LB) methods. The primary focus is 
to determine the three stability factors, namely the cohesion factor Nc, 
surcharge factor Ns, and the unit weight factor Nγ, that can be used with 
the modified Terzaghi’s equation to determine a critical boundary 
pressure at a collapse state. Moreover, the study provides practical 
design charts and equations that enable a quick estimation of minimum 
support pressure. By thoroughly exploring the three-dimensional 
drained stability of rectangular tunnels and accounting for surcharge 
pressure effects, the result of the present study will enhance our un
derstanding on the stability characteristics and provide valuable insights 
for efficient and reliable tunnel design practices. One additional goal in 
the paper is to use Artificial Neural Network (ANN) and Extreme 
Gradient Boosting (XGBoost) to machine learning the dataset produced 
by the rigorous upper and lower bound results of the three factors. The 
optimal technique for this tunnel problem would be chosen based on 
their performance, proposing the prediction model for practical designs 
in future applications.

2. Problem description and FELA modelling

The problem to be investigated is shown in Fig. 1, where the geo
metric arrangement of a three-dimensional (3D) rectangular tunnel is 
presented in a symmetrical domain in 3D. The soil medium surrounding 
the tunnel is simulated as drained soil based on the Mohr-Coulomb yield 
criterion, and it is assumed to be both homogeneous and isotropic. The 
soil profile is influenced by three strength parameters: soil unit weight 

Fig. 1. Problem definition – rectangular tunnel heading.
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(γ), drained cohesion (c), and friction angle (ϕ). It is acknowledgeable 
that, the Mohr-Coulomb yield criterion is a simplifying assumption for 
geotechnical analyses and is a common practice in tunnel stability 
assessments.

The tunnel’s geometry is characterized by its width (B) and height 
(D). The cover-depth is H from the ground surface to the top of the 
rectangular tunnel. A uniform internal pressure (σt) is applied on the 
tunnel’s face, while a vertical surcharge pressure (σs) is imposed 
downward on the ground surface.

For the proposed 3D tunnel face problem, soil stability can be 
expressed by Terzaghi’s modified bearing capacity equation to calculate 
a minimum support pressure, as stated in equation (1). 

σt = − cNc + σsNs + γDNγ (1) 

where Nc is the cohesion factor, Ns is the surcharge factor, and Nγ is the 
unit weight factor. In particular, the negative sign for the cohesion term 
indicates that cNc is a resisting agency acting against the surcharge and 
the soil self-weight. Similar to Terzaghi’s bearing capacity factors, these 
tunnel stability factors are functions of the soil internal friction angle (ϕ) 
as well as two geometric parameters, namely the cover-depth ratio (H/ 
D) and the width-depth ratio (B/D).

The computational strategy adopted for calculating (Nc, Ns, and Nγ) is 
based on the principal of superposition as shown in equation (1). In the 
current analysis, the assumption of a weightless soil (γ = 0) was made for 
the purpose of simplifying the model. This theoretical simplification 
allowed for a focused investigation of the relationships between these 
parameters without the added complexity of soil weight. However, it is 
important to note that this assumption deviates significantly from actual 
conditions, where the unit weight of the soil is always positive. It is 
essential to note the specific assumptions in each type of analysis and the 
reduced equations as shown in Eq. (2). 

• For Nc, the computation involves no surcharge load (σs = 0) and no 
soil unit weight (γ = 0).

• For Ns, it is hypothesized that a cohesionless soil (c = 0) and a 
weightless soil (γ = 0) exist.

• For Nγ, both cohesion and surcharge are assumed to be zero (c =
0 and σs = 0) in the computation.

⎛

⎝
Nc = − σt/c
Ns = σt/σs
Nγ = σt

/
γD

⎞

⎠ = f
(

H
D
,
B
D
,ϕ
)

(2) 

Finite Element Limit Analysis is a powerful and rigorous numerical 
technique for assessing the stability and collapse behavior of soil 
structures subjected to various loading conditions. In this method, upper 
bound (UB) and lower bound (LB) estimates are used to bracket the true 
collapse load for practical uses (Sloan, 2013). The origins of Finite 
Element Limit Analysis can be traced back to the pioneering works of 
Sloan, 1988, 1989. Initially, the technique incorporated linear pro
gramming to develop the Finite Element Limit Analysis (FELA). More 
recent developments have introduced significantly faster and more 
efficient nonlinear programming formulations, as demonstrated by the 
work of Lyamin and Sloan, 2002a, 2002b, as well as the contributions of 
Krabbenhoft et al., (2007). The fundamental principles of bound theo
rems are based on the assumption of a rigid-perfectly plastic material 
with associated plasticity. In recent times, the application of FELA has 
been widely spread to solve diverse stability problems in geotechnical 
engineering, both in drained and undrained soil conditions (Shiau and 
Yu, 2000; Shiau and Al-Asadi, 2020c, 2020d, 2022; Shiau et al., 2022
Huynh et al., 2022; Lai et al., 2022).

This paper utilized OptumG3 in combination with rigorous finite 
element upper and lower bound techniques to compute stability solu
tions of the three stability factors for the tunnel heading problem. Fig. 2
presents a typical numerical model for the analysis. The soil mass is 
represented by using the Mohr-Coulomb constitutive model with asso
ciated flow rule. The numerical models are simulated using the 
following boundary conditions: the model’s side face is fixed along the x- 
direction (normal direction), while the back and front faces are 
restricted in the y-direction (normal direction). The bottom boundary is 
fixed in all directions, i.e., no movement allowed in the x, y, and z-di
rections. In contrast, both the ground surface and the inner tunnel face 
are free surfaces, allowing unrestricted movement in any direction. It 
should be noted that the term "inner tunnel face" refers to the excavation 

Fig. 2. A numerical model, adaptive mesh, and shear dissipation (Nc, H/D = 4, and B/D = 1).
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face of the tunnel, while the side face is fixed in normal direction. The 
assumption of free surfaces at both the ground surface and the excava
tion face was made to simplify the model and focus on the ultimate 
failure conditions, assuming no external restraint on the surrounding 
soil. It is imperative that the model domain be relatively large, encap
sulating potential collapsible areas, so that the accuracy of numerical 
solutions can be sustained.

The present numerical analysis employs adaptive meshing tech
nique. With the use of shear dissipation function to identify sensitive 
zones, the technique dynamically modified the mesh during the inter
active analysis, with more refined meshes along the potential slip sur
face. This approach would greatly improve the upper and lower bound 
solutions. In this paper, the adaptive meshing function is iteratively 
applied five repetitions, gradually increasing the number of discretiza
tion elements from 5,000 to 10,000. It should be emphasized that the 
initial number of 5,000 elements and the number of optimization iter
ations of 5 were selected to balance mesh refinement and computational 
efficiency. Further iterations could theoretically improve mesh quality, 
it was observed that further iterations beyond the fifth had minimal 
impact on the results, while significantly increasing computational 
costs, particularly given the need to run multiple cases. This approach 
aligns with similar studies in this field, where 5 iterations have proven to 
be adequate for obtaining reliable results without excessive computa
tional demand. More importantly, the resulting final adaptive mesh 
would exhibit a meshing pattern that resembles a failure mechanism. 
This can be viewed in Fig. 2 with non-zero shear power dissipation. This 
figure showcases the numerical model of the three-dimensional rect
angular tunnel, with particular focus on the Nc parameter, while 
adopting specific parameter values of H/D = 4 and B/D = 1. As discussed 
by Shiau and Al-Asadi 2020a-b, the actual values of these non-zero shear 
power dissipation are not important, and therefore they are not typical 
shown in a technical report.

With this computational procedure, a bulk of parametric studies are 
performed, aiming to produce rigorous solutions of the three stability 
factors (Nc, Ns, and Nγ). The chosen ranges of parameters are for H/D =
1–10, B/D = 0.5–5, and the drained friction angle (ϕ = 0–40◦). Specif
ically, the study examined the influence of variations in cohesion, fric
tion angle, surcharge, and unit weight on the three stability factors. By 
understanding the interrelationships among Nc, Ns, and Nγ, it provides 
critical design parameters that can be utilized to estimate the critical 
minimum support pressure (σt) required to prevent tunnel collapse 
particularly when these parameters exhibit significant variability due to 

changes in local soil properties or external loading conditions.

3. Results and discussion

A comprehensive set of 1080 Finite Element Limit Analysis (FELA) 
analyses is simulated in this study. The cohesion, surcharge, and unit 
weight factors (Nc, Ns, and Nγ) are systematically varied, using different 
cover depth ratios (H/D = 1–10), width-depth ratios (B/D = 0.5–5), and 
the soil’s internal friction angle (ϕ = 0–40◦). The upper and lower bound 
solutions are employed to provide a range of potential collapse load 
outcomes. The upper bound provides an overestimate, assuming an 
idealized, most efficient failure mechanism, which ensures that the 
collapse load is not underestimated. In contrast, the lower bound pro
vides a more conservative estimate, based on a less efficient failure 
mechanism, offering a safeguard against overestimating the collapse 
load. This dual approach enhances the reliability of the results by 
establishing a bracket within which the true collapse load is likely to lie 
and allows for validation against previous studies. The obtained results 
provide a thorough understanding of the tunnel’s behavior under the 
effects of these varying parameters. In the subsequent sections, detailed 
numerical results of (Nc, Ns, and Nγ) will be discussed respectively.

3.1. The cohesion factor Nc

3D numerical analyses for the cohesion factors (Nc) requires certain 
specific assumptions, such as surcharge pressure (σs = 0) and weightless 
soil (γ = 0). Under these conditions, the tunnel heading stability equa
tion (1) reduces to σt = − cNc, and therefore Nc = − σt/c.

Fig. 3 presents upper and lower bound results of Nc for the various 
values of ϕ = 0–40◦ and H/D = 1–10 with a fixed B/D value of 1. The 
data used to prepare the figure is shown in Table 1. In general, the 
greater the H/D, the larger the Nc, and the value of Nc decreases with 
increasing ϕ. Noting the different rates of decrease for the H/D curves, 
they all merge into a single line after ϕ > 20◦. In other words, the effect 
of H/D on Nc is literally the same after ϕ > 20◦, even though when ϕ 
reaches 40◦, the Nc value is practically negligibly small. This suggests 
that the soil strength reaches its ultimate state, rendering the negligible 
cohesion effects. For such a 3D problem, the development of strong soil 
arching for large values of ϕ cannot be underestimated.

Using the same data as in Table 1, presented in Fig. 4 is for upper and 
lower bound results of Nc for ϕ = 0–40◦, H/D = 5, and B/D = 0.5–5. 
These results show that Nc decreases at various gradients as ϕ increases. 
Indeed, wider tunnels would create a more susceptible collapse area, 
and thus smaller values of Nc are expected. The smaller the B/D, the 
larger the Nc, and thus the larger the rate of decrease. Nevertheless, they 
all merge into a single curve at approximate ϕ = 19◦, owing to the 
development of soil arches for large soil internal friction angles ϕ.

3.2. The surcharge factor Ns

The computational strategy for the surcharge factors (Ns) requires 
specific assumptions in the input, namely c = 0 and γ = 0. With these 
conditions, the tunnel heading stability equation (1) is simplified to σt =

σsNs, and thus Ns = σt/σs. Fig. 5 shows the results of upper and lower 
bound solution of Ns for the various values of ϕ = 0–40◦ and H/D = 1–10 
with a fixed B/D value of 1.

Numerical results in Fig. 5 show a maximum value of Ns = 1 at ϕ =
0 for all values of H/D. The value of Ns exhibits a dramatic linear decline 
(nearly by half) for the range of ϕ value between 0 and 5. However, once 
ϕ exceeds 5, the rate of reduction starts to decrease, and the curves 
become nonlinear. Subsequently, when ϕ surpasses 15◦, Ns reaches its 
minimum value and eventually drops to 0 at ϕ = 20◦ for deep tunnels 
(H/D > 4). For shallow tunnels (H/D = 1 and 2), they are more sus
ceptible to the influence of surcharge. Therefore, it is conservative to 
state that Ns approaches zero at ϕ = 30◦. Practically, that means the 
effect of H/D on Ns is none for ϕ > 30◦ due to the soil arching 

Fig. 3. Nc vs ϕ for various depth ratios (H/D = 1–10, UB and LB, and B/D = 1).
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development at large internal friction angles of soils, and therefore the 
larger the H/D the smaller the Ns. The data used to prepare Fig. 5 is 
shown in Table 2.

Shown in Fig. 6 are for upper and lower bound results of Ns for (B/D 
= 0.5–5, ϕ = 0–40◦, and H/D = 5). Similarly, Ns shows a decreasing 
trend as ϕ increases. As B/D increases (wider tunnel), Ns also increases. 
Similar observation made earlier in Fig. 5 is repeated here in this sce
nario. Specifically, as ϕ > 20◦ a variation of B/D ratio has no effect on 
the value of Ns. It can therefore be concluded that the surcharge factor Ns 
has a more pronounced impact on wider tunnels, as compared to nar
rower ones.

3.3. The unit weight factor Nγ

To reach a solution for the unit weight factors (Nγ), equation (1) is 

reduced to σt = γDNγ, and thus Nγ = σt/γD. For this purpose, (c = 0 and 
σs = 0) are the two important inputs for the solutions. Fig. 7 presents the 
numerical results of the upper and lower bound solutions of Nγ for the 
various values of ϕ = 0–40◦ and H/D = 1–10 with a fixed B/D value of 1. 
The data used to prepare the figure is shown in Table 3. These results 
show the non-linear decreasing relationship between Nγ and ϕ. An in
crease in ϕ leads to a nonlinear reduction in Nγ. The variation of H/D 
plays a significant role on Nγ, in particular, for the lower values of ϕ <
20◦, where the larger the H/D, the greater the Nγ. Interestingly, all H/D 
curves merge into one as ϕ is approximately greater than 20◦. As 
commonly known, the larger the soil internal friction angle ϕ, the 
greater the soil arching, and therefore resulting in smaller values Nγ. 
Besides, Nγ is negligibly small owing to the development of strong soil 
arching with large values of ϕ in such a 3D tunnel heading problem.

Selected numerical results from Fig. 7 are used to showcase the effect 
B/D on Nγ in Fig. 8, where the relationship between Nγ and ϕ is shown 

Table 1 
3D Nc data.

3D Nc (LB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 6.772 8.891 10.227 11.235 11.997 12.606 13.092 13.616 13.877 14.361
1 6.448 8.363 9.491 10.326 11.005 11.470 11.893 12.264 12.644 12.851
5 5.377 6.505 7.088 7.476 7.764 7.956 8.135 8.263 8.380 8.494
10 4.248 4.764 4.986 5.096 5.195 5.243 5.294 5.326 5.357 5.376
15 3.345 3.548 3.616 3.645 3.666 3.679 3.689 3.693 3.700 3.703
20 2.643 2.714 2.724 2.728 2.732 2.739 2.740 2.741 2.742 2.745
25 2.122 2.133 2.137 2.138 2.140 2.142 2.142 2.143 2.144 2.144
30 1.725 1.728 1.725 1.729 1.730 1.729 1.728 1.730 1.731 1.730
35 1.425 1.424 1.426 1.426 1.425 1.426 1.427 1.427 1.426 1.427
40 1.187 1.190 1.189 1.189 1.190 1.190 1.189 1.191 1.191 1.191

3D Nc (UB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 7.149 9.362 10.803 11.831 12.669 13.356 13.915 14.456 14.941 15.348
1 6.799 8.765 9.991 10.850 11.515 12.094 12.561 12.947 13.349 13.669
5 5.597 6.715 7.331 7.713 7.987 8.207 8.388 8.529 8.657 8.764
10 4.357 4.855 5.055 5.180 5.263 5.320 5.357 5.389 5.413 5.436
15 3.394 3.581 3.639 3.664 3.681 3.693 3.699 3.706 3.708 3.712
20 2.670 2.723 2.735 2.738 2.738 2.739 2.744 2.744 2.744 2.745
25 2.127 2.138 2.142 2.142 2.142 2.143 2.143 2.144 2.144 2.144
30 1.726 1.731 1.731 1.730 1.730 1.730 1.731 1.731 1.729 1.729
35 1.426 1.426 1.423 1.426 1.427 1.426 1.427 1.426 1.428 1.426
40 1.190 1.190 1.190 1.188 1.191 1.190 1.191 1.191 1.191 1.191

Fig. 4. Nc vs ϕ for various width ratios (B/D = 0.5–50, UB and LB, and H/D 
= 5).

Fig. 5. Ns vs ϕ for various depth ratios (H/D = 1–10, UB and LB, and B/D = 1).
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for H/D = 5 and B/D = 0.5–5. The variation of Nγ begins approximately 
from (H/D + 0.5) at ϕ = 0◦, i.e., 5.5 in this case. Thereafter, a nonlinear 
decreasing relationship is observed, in particularly, when ϕ is less than 
25◦. A higher B/D ratio leads to a greater Nγ value. This can be attributed 
to the fact that widening the tunnel would result in larger unsupported 
length, thus increasing the likelihood of collapse, thus leading to greater 
support of σt. On the other hand, in the case of stronger soils (ϕ > 25◦), 
the Nγ values for all B/D scenarios are similarly small. It can therefore be 
concluded that the variation in B/D has insignificant effect on Nγ when 
dealing with soils that possess high internal frictional angles ϕ.

In this section, numerical results of the three factors are compared 
with those in Shiau and Al-Asadi 2020a-b. Shiau and Al-Asadi’s inves
tigation included stability solutions for two types of tunnels: 2D plain 
strain tunnels heading and 3D circular tunnel heading. The comparisons 
are for the three distinct factors, namely Nc, Ns, and Nγ. These factors 
play crucial roles in determining the stability of the tunnel, and the se
ries of comparison are presented in Figs. 9–17, providing a compre
hensive understanding of how the current results deviate or align with 

the findings from Shiau and Al-Asadi’s studies.

4. Comparison with others

4.1. Comparison of Nc

In Fig. 9, the current Nc results are compared to those reported by 
Shiau and Al-Asadi 2020a-b. For shallow tunnel cases where H/D = 1, it 
is evident that the 2D plain strain Nc results give the lowest values. This 
is because the 2D plain strain analysis assumes infinite length, leading to 
conservative solutions when compared to the more realistic three- 
dimensional analysis. Interestingly, both the three-dimensional results 
for rectangular and circular tunnel shapes exhibit the same trend. When 
considering deeper tunnels (H/D = 5 and 10), similar patterns are 
observed, reaffirming the reliability and accuracy of the current Nc re
sults, as shown in Figs. 10 and 11.

Table 2 
3D Ns data.

3D Ns (LB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 0.995 0.991 0.990 0.989 0.988 0.987 0.987 0.986 0.986 0.986
5 0.526 0.428 0.372 0.339 0.319 0.296 0.280 0.269 0.261 0.250
10 0.248 0.172 0.118 0.094 0.079 0.069 0.061 0.056 0.050 0.046
15 0.101 0.046 0.028 0.021 0.014 0.011 0.008 0.007 0.005 0.003
20 0.034 0.011 0.006 0.004 0.002 0.002 0.001 0.000 0.000 0.000
25 0.011 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 0.000
30 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3D Ns (UB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 0.993 0.991 0.990 0.988 0.988 0.987 0.986 0.986 0.985 0.985
5 0.505 0.405 0.351 0.318 0.293 0.273 0.258 0.234 0.230 0.224
10 0.227 0.139 0.102 0.081 0.068 0.057 0.050 0.046 0.035 0.034
15 0.085 0.037 0.022 0.014 0.010 0.007 0.004 0.004 0.003 0.002
20 0.025 0.006 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25 0.005 0.000 0.001 0.001 0.001 0.002 0.002 0.000 0.000 0.000
30 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
35 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
40 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 6. Ns vs ϕ for various width ratios (B/D = 0.5–5, UB and LB, and H/D = 5). Fig. 7. Nγ vs ϕ for various depth ratios (H/D = 1–10, UB and LB, and B/D = 1).
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4.2. Comparison of Ns

Moreover, Figs. 12–14 show the comparison between the current Ns 
results and those presented by Shiau and Al-Asadi 2020a-b for H/D = 1, 
5, and 10. Across all three comparisons, an identical trend is observed, 
with Ns having the most significant impact on the 2D plain strain tunnel. 
This is because the infinite length assumption in the 2D plain strain 
analysis is conservative, and it allows the surcharge pressure to be 
efficiently transmitted along the entire tunnel. However, it is note
worthy that for all H/D ratios, the same pattern emerges, ensuring the 
accuracy and reliability of the present solution. The consistency of the 
results across different H/D ratios indicates that the current analysis 
method effectively captures the surcharge factor’s influence on the 
stability of the rectangular tunnel.

4.3. Comparison of Nγ

Lastly, the comparison between the current Nγ results and those 

presented by Shiau and Al-Asadi 2020a-b are demonstrated in 
Figs. 15–17 for H/D = 1, 5, and 10. The present study demonstrates a 
striking similarity between the Nγ results and those obtained from the 3D 
circular tunnel analysis, across all values of H/D. Notably, the Nγ factor 
continues to exert the most profound influence on the 2D plain strain 
tunnel as mentioned previously, owing to its conservative solutions.

Overall, a notable level of comparability and excellent agreement is 
evident between the three stability factors presented in this study and 
the findings from the preceding research conducted by Shiau and Al- 
Asadi 2020a-b. Among these factors, the 3D circular stability analysis 
exhibits the closest resemblance, underscoring the reliability of the 
computed FELA solutions in practice.

Table 3 
3D Nγ data.

3D Nγ (LB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 1.675 2.601 3.586 4.709 5.574 6.576 7.554 8.727 9.665 10.102
5 1.121 1.478 1.824 2.139 2.432 2.712 2.961 3.212 3.457 3.692
10 0.689 0.835 0.929 1.001 1.062 1.109 1.161 1.196 1.240 1.272
15 0.454 0.489 0.505 0.515 0.521 0.527 0.532 0.540 0.535 0.539
20 0.306 0.312 0.313 0.313 0.313 0.313 0.314 0.315 0.319 0.320
25 0.216 0.216 0.215 0.215 0.215 0.213 0.214 0.218 0.219 0.216
30 0.156 0.157 0.156 0.155 0.159 0.156 0.157 0.168 0.151 0.156
35 0.117 0.117 0.116 0.115 0.118 0.116 0.116 0.117 0.116 0.117
40 0.087 0.086 0.088 0.087 0.087 0.087 0.086 0.087 0.088 0.088

3D Nγ (UB) for (B/D = 1)

ϕ H/D = 1 2 3 4 5 6 7 8 9 10

0 1.889 2.513 3.577 4.606 5.372 6.514 7.281 8.569 9.395 9.780
5 1.064 1.431 1.767 2.060 2.328 2.570 2.814 3.112 3.337 3.466
10 0.659 0.812 0.872 0.935 0.980 1.011 1.121 1.154 1.222 1.252
15 0.429 0.432 0.466 0.472 0.478 0.476 0.512 0.481 0.474 0.516
20 0.287 0.288 0.284 0.283 0.286 0.289 0.289 0.286 0.289 0.296
25 0.201 0.199 0.200 0.197 0.195 0.193 0.194 0.187 0.189 0.186
30 0.142 0.144 0.144 0.143 0.142 0.133 0.134 0.130 0.131 0.130
35 0.102 0.107 0.105 0.105 0.104 0.106 0.099 0.099 0.107 0.108
40 0.078 0.079 0.077 0.076 0.077 0.065 0.071 0.069 0.068 0.070

Fig. 8. Nγ vs ϕ for various width ratios (B/D = 0.5–5, UB and LB, and H/D = 5). Fig. 9. Comparison of Nc (H/D = 1).
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5. Machine learning methods

5.1. Artificial Neural Networks (ANN)

The ANN models in this study have three neural layers: an input 
layer, a hidden layer, and an output layer. The details are conceptually 
illustrated in Fig. 18, where (ϕ, H/D, and B/D) are input parameters in 
the input layer. Combining these with the weight and bias matrices in 
the hidden layer, a predictive model can be developed. As shown in the 
output layer, it has six outputs (Nc,LB, Nc,UB, Ns,LB, Ns,UB, Nγ,LB, and Nγ,UB).

Note that the speed and performance of the training process are 
affected by the parameters related to the algorithm and the ANN ar
chitecture. Since the last decade, various algorithms for training ANN 
models have been invented, including Levenberg Marquardt, Stochastic 
Gradient Descent, Bayesian Regularization, and Adaptive Moment 
Estimation (Adam). Notably, Adam is the method published by Kingma 
and Ba (2014), which has been successfully applied in a wide range of 
studies (Pandey et al., 2022; Zhang et al., 2019; Rozante et al., 2023). 

Therefore, we have decided to employ this algorithm in this study. The 
properties and procedures are described in Table 4 and Fig. 18, 
respectively.

The structure of each ANN model is presented by the number of 
hidden neurons, archiving its optimal value through a process of varying 
and testing the prediction’s accuracy of each model (Lai et al., 2022; 
Nguyen et al., 2023a). In order to introduce non-linearity and enable the 
network to approximate complex functions, activation functions are 
used in the hidden layers of neural networks. These functions may 
include hyperbolic tangent, linear transfer function, sigmoid function, 
and rectified linear unit function. Note that the choice of activation 
function can affect the performance of the network, and different 
functions may be more suitable for different types of problems and ar
chitectures. In this paper, the first two functions (i.e., hyperbolic tangent 
and linear transfer function) are selected for the hidden nodes and the 
six output nodes, respectively, as recommended by previous geotech
nical studies (Lai et al., 2022; Nguyen et al., 2023a) with significant 
accuracy in their ANN models’ predictions. The hyperbolic tangent, also 
called tansig, is described in Eq. (3), while the final prediction is 

Fig. 10. Comparison of Nc (H/D = 5).

Fig. 11. Comparison of Nc (H/D = 10).

Fig. 12. Comparison of Ns (H/D = 1).

Fig. 13. Comparison of Ns (H/D = 5).
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indicated in Eq. (4). 

tansig(x)= tanh(x) =
2

1 + e− 2x − 1 (3) 

Prediction=
∑Nh

i=1
W2,itansig

(
∑J

j=1
W1,ixj + b1,i

)

+ b2,i (4) 

5.2. Extreme Gradient Boosting (XGBoost)

XGBoost, proposed by Chen and Guestrin (2016), is a method based 
on the gradient boosting technique. In the geotechnical field, it has been 
implemented to solve both classification and regression problems, pro
ducing the prediction with significant accuracy (Zhu et al., 2021; Lai 
et al., 2023).

An XGBoost model contains a sequence of weak models, which are 
binary regression trees in general regression problems. Each weak 
learner has two critical properties: the tree’s maximum depth and the 
number of leaf nodes, also called terminal nodes. At each non-terminal 
node, the binary regression tree separates its data into two groups by 

choosing a value that reduces the largest error. Given the preset values, a 
shallow tree will be grown until it reaches the possible largest size. 
Nevertheless, this growing process has a high risk of overfitting, espe
cially with a large-size tree. Therefore, instead of just minimizing the 
model’s error, the model is provided by a penalizing term, as shown in 
Eq. (5). 

Ra(T)=R(T) + a
⃒
⃒
⃒T̃
⃒
⃒
⃒ (5) 

Here, R(T) is the error of the regression tree; |T̃| is the number of leaf 
nodes, and α is the trade-off factor between the model’s accuracy and its 
size. The right-size tree, with minimum error, can be archived by testing 
or cross-validation.

This machine learning method aims to create a set of regression trees 
in the form of Eq. (6). In that, K represents the number of weak learners; 
fk(x,Θk) denotes the output of the kth tree with its structure Θk, and ŷk 
denotes the prediction by the first k regression trees. Besides, a learning 
rate ν is introduced to reduce every tree’s prediction, and 0 < ν < 1. 

Fig. 14. Comparison of Ns (H/D = 10).

Fig. 15. Comparison of Nγ (H/D = 1).

Fig. 16. Comparison of Nγ (H/D = 5).

Fig. 17. Comparison of Nγ (H/D = 10).
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ŷK = ν
∑K

k=1
fk(x,Θk) (6) 

L=
∑N

n=1
l(yi, ŷi) +

∑K

k=1

Ω(fk) (7) 

Ω(fk)= γTk +
1
2

λ
∑Tk

i=1
wi

k (8) 

Regarding the process described in Fig. 19, XGBoost adds a new weak 
learner at every step, minimizing the first term in Eq. (6) until the preset 
number of weak learners is met. However, this can create an overfitting 
model, given a large number of shallow trees. Therefore, the second 
term Ω(fk) indicated in Eq. (6), also called the regularization function, is 
added to the target function to be minimized. The function Ω(fk) plays a 
role as a trade-off component between the accuracy and complexity of 
the model, decreasing the chance of overfitting. In Eqs. (7) and (8), wi

k is 
the weight of the ith terminal node, and Tk is the number of terminal 

nodes of the kth tree. Besides, γ is the required minimum loss reduction to 
divide the current node, and λ is regarded as the regularization factor.

5.3. Data collection and performance measurements

A set of 540 results from the FELA method is used to train ANN and 
XGBoost models. Specifically, the whole data set is divided into the 
training set and testing set with the proportion of 70 % (378 data points) 
and 30 % (162 data points), respectively. It is reasonable that the data in 
these groups has relatively similar statistical properties (Zhu et al., 2021; 
Nguyen et al., 2023b). Table 5 presents these aspects with the upper and 
lower bounds, mean, and standard deviation (SD) of data in the two sets.

R-squared (R2), Root Mean Square Error (RMSE), and Mean Absolute 
Error (MAE) indicated in Eqs. (9) and (10) are used to evaluate the 
performance of each machine learning model. More specifically, the 
nearer the R2 is to 1.0, the better the ML model performs. By contrast, 
the further RMSE and MAE are from 0.0, the worse the prediction 
becomes. 

Fig. 18. The ANN model: components and training process.

Table 4 
Preset values of four ADAM parameters.

Hyper-parameter Explanation Value

β1 Exponential decay rate of first moment vector 0.9
β2 Exponential decay rate of second moment vector 0.999
α Learning rate 0.0001
ε Numerical stability 10–8

Fig. 19. The tuning and training procedure of XGBoost models.

Table 5 
The statistical values of data in training and testing sets.

Variable Training set (70 % data) Testing set (30 % data)

Max Min Mean SD Max Min Mean SD

ϕ 40 0 21.0 13.1 40 0 17.6 12.2
B/D 10 1 5.4 2.8 10 1 5.6 3.0
H/D 5 0.5 2.6 1.6 5 0.5 2.6 1.6
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R2 =1 −
SSR
SST

(9) 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(yi − f(xi))

2

√
√
√
√ (10) 

MAE=
1
N
∑N

i=1
|yi − f(xi)| (11) 

where SSR is the regression sum of squares and SST is the total sum of 
squares. N is the number of data points in testing group, while yi and f(xi) 
are the actual value and model’s prediction, respectively.

6. Machine learning results

6.1. Results from ANN models

Fig. 20 shows the prediction accuracy from ANN models, which are 
trained from 4 to 20 neurons in their hidden layers. Especially, the 
performance is significantly enhanced when the number of nodes in
creases from 4 to 6. However, the model experiences a fluctuation in its 
accuracy with more than 6 nodes. A considerable fall is observed in the 
ANN performance, bottoming at 10 hidden nodes before being improved 
from 12 to 14 neurons. When the ANN model is trained with over 14 
nodes, its accuracy again decreases, despite that there is an increasing 
tendency towards 20 hidden neurons. Having the highest value of R2 as 
well as the lowest values of RMSE and MAE, the ANN structure with 6 
neurons in the hidden layer is considered optimal. Consequently, the 
equations for practical designs are proposed, as shown in Eqs. (12)–(17), 
utilizing the weight and bias values from the optimal ANN model, which 
are described explicitly in Table 6. 

Nc,LB = − 1.9669 × N1 + 1.467 × N2 − 3.5579 × N3 + 2.0172 × N4

− 1.8743 × N5 + 4.2619 × N6 + 1.8139
(12) 

Nc,UB = − 1.8214 × N1 + 1.647 × N2 − 3.9722 × N3 + 2.0933 × N4

− 2.4403 × N5 + 4.3659 × N6 + 1.6452
(13) 

Ns,LB =0.4056 × N1 + 0.1397 × N2 − 0.465 × N3 − 0.0095 × N4

− 0.4875 × N5 + 0.0748 × N6 + 0.3197 (14) 

Fig. 20. The accuracy of ANN models according to the variation in the number 
of hidden neurons.
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Ns,UB =0.4193 × N1 + 0.1298 × N2 − 0.4738 × N3 − 0.0048 × N4

− 0.5471 × N5 + 0.0612 × N6 + 0.2751 (15) 

Nγ,LB = − 1.4521 × N1 + 2.8948 × N2 − 4.0028 × N3 − 0.7203 × N4

− 0.4942 × N5 + 0.8353 × N6 + 0.8071
(16) 

Nγ,UB = − 1.5722 × N1 + 2.6791 × N2 − 3.7994 × N3 − 0.6473 × N4

− 0.3415 × N5 + 0.8601 × N6 + 0.7754
(17) 

where: 

N1 = tansig
(

− 0.117ϕ − 0.3551
H
D
+0.1278

B
D
+0.6279

)

N2 = tansig
(

0.7804ϕ+0.3291
H
D
− 0.2471

B
D
− 1.7134

)

N3 = tansig
(

0.5968ϕ − 0.0708
H
D
− 0.0317

B
D
− 1.7400

)

N4 = tansig
(

0.0972ϕ − 0.0179
H
D
− 0.3137

B
D
+ 0.7128

)

N5 = tansig
(

− 0.2947ϕ − 0.507
H
D
+0.0193

B
D
+0.4445

)

N6 = tansig
(

− 0.0869ϕ+ 0.0063
H
D
+0.0513

B
D
+ 0.8017

)

The following example illustrates the application of the optimized 
ANN model using the weight and bias values in Table 6 and Eqs. (12)– 
(17). The case under consideration has ϕ = 25◦, H/D = 2, B/D = 5. The 
analysis from FELA provides the stability factors as follows: Nc,LB =

2.107, Nc,UB = 2.120, Ns,LB = 0.015, Ns,UB = 0.009, Nγ,LB = 0.317, and Nγ, 

UB = 0.279. The optimal ANN model, with six hidden nodes, is applied to 
compute stability factors as follows:

The outputs of the hidden layer are: 

N1 = tansig( − 0.117×25 − 0.3551×2+0.1278×5+ 0.6279)

= − 0.9826 

N2 = tansig(0.7804×25+0.3291× 2 − 0.2471×5 − 1.7134) = 1.0000 

N3 = tansig(0.5968×25 − 0.0708× 2 − 0.0317×5 − 1.7400) = 1.0000 

N4 = tansig(0.0972×25 − 0.0179× 2 − 0.3137×5+0.7128) = 0.9119 

N5 = tansig( − 0.2947×25 − 0.507×2+0.0193×5+ 0.4445)

= − 1.0000 

N6 = tansig
(

− 0.0869ϕ+ 0.0063
H
D
+0.0513

B
D
+0.8017

)

= − 0.8011 

The outputs of the ANN model are: 

Nc,LB = − 1.9669 × N1 + 1.467 × N2 − 3.5579 × N3 + 2.0172 × N4

− 1.8743 × N5 + 4.2619 × N6 + 1.8139

= 1.9552 

Nc,UB = − 1.8214 × N1 + 1.647 × N2 − 3.9722 × N3 + 2.0933 × N4

− 2.4403 × N5 + 4.3659 × N6 + 1.6452

= 1.9613 

Ns,LB =0.4056 × N1 + 0.1397 × N2 − 0.465 × N3 − 0.0095 × N4

− 0.4875 × N5 + 0.0748 × N6 + 0.3197

= 0.0148 

Ns,UB =0.4193 × N1 + 0.1298 × N2 − 0.4738 × N3 − 0.0048 × N4

− 0.5471 × N5 + 0.0612 × N6 + 0.2751

= 0.0128 

Nγ,LB = − 1.4521 × N1 + 2.8948 × N2 − 4.0028 × N3 − 0.7203 × N4

− 0.4942 × N5 + 0.8353 × N6 + 0.8071

= 0.2942 

Nγ,UB = − 1.5722 × N1 + 2.6791 × N2 − 3.7994 × N3 − 0.6473 × N4

− 0.3415 × N5 + 0.8601 × N6 + 0.7754

= 0.2622 

Compared to the results from FELA, the prediction formula proposed 
by the optimized ANN model is highly accurate and can be easily applied 
in practical calculations.

6.2. Results from XGBoost

In XGBoost, the architecture of each regression tree is decided during 
the training process, while other XGBoost hyper-parameters need to be 
determined before training models. These parameters can be catego
rized into two groups. The first one belongs to the algorithm-related, i.e., 

Table 7 
Tuning ranges of six XGBoost hyper-parameters.

Hyper- 
parameters

Explanation Tuning values Default 
value

K Maximum number of weak 
learners

50, 200, 400 None

ν Learning rate 0.1, 0.3, 0.5, 
0.7, 0.9

0.3

λ Regularization factor 0.0, 0.5, 1.0, 
5.0

1.0

rs Sub-sample ratio 0.25, 0.5, 
0.75, 1.0

1.0

dmax Maximum depth of each tree 5,6,7 6
γ Minimum loss reduction for 

further division of nodes
0.0, 0.5, 2.0, 
5.0

0.0

Table 8 
Tuning results of six predictive models (Nc,LB, Nc,UB, Ns,LB, Ns,UB, Nγ,LB, Nγ,UB).

Predictive model Kmax K ν λ rs dmax γ R2 RMSE MAE

Nc,LB 400 101 0.1 0.5 0.25 6 0.0 0.9980 0.1386 0.0562
Nc,UB 400 124 0.1 0.5 0.25 7 0.0 0.9989 0.1114 0.0477
Ns,LB 200 134 0.1 2.0 0.25 7 0.0 0.9995 0.0071 0.0038
Ns,UB 400 315 0.1 2.0 0.25 7 0.0 0.9997 0.0058 0.0032
Nγ,LB 400 77 0.1 0.5 0.5 5 0.0 0.9974 0.1031 0.0457
Nγ,UB 400 120 0.1 2.0 0.5 5 0.0 0.9982 0.0834 0.0394
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the number of trees (K), learning rate (ν), regularization factor (λ), and 
sub-sample ratio (rs). The second one is the tree-related, i.e., the 
maximum depth of each tree (dmax) and the minimum loss reduction for 
further division (γ). Table 7 summarizes the tuning ranges of hyper- 
parameters applied in this study. Using a special technique called Grid 
Search from the package scikit-learn (Pedregosa et al., 2011; Lai et al., 
2023), the optimal values of hyper-parameters in six predictive models 
are presented in Table 8.

With the tuned values of hyper-parameters, the performance of each 
XGBoost model is investigated during the training process by 5-fold 
cross-validation and early-stopping technique. The latter helps to 
reduce the risk of over-fitting, given the large number of weak learners. 
Specifically, the decrease of loss function RMSE in the testing phase is 
presented in Fig. 21. If the error of the testing stage is not improved after 
a preset value of the boosting round, the models will stop the boosting 
process. As a result, the number of regression trees can be reduced, as 
described in the second and third columns of Table 8. The high values of 
R2, which are over 0.99 in six predictive models, proved the robust ca
pacity of XGBoost in this regression problem.

6.3. The optimal method and sensitive analysis

To determine the optimal method, Table 9 compares the six pre
dictive models (Nc,LB, Nc,UB, Ns,LB, Ns,UB, Nγ,LB, Nγ,UB) of the ANN models 
and XGBoost models. On average, the R2 from the XGBoost is around 
0.999, compared to about 0.99 from the ANN. In addition, XGBoost 
models have smaller values of RMSE and MAE than those in ANN 
models. Therefore, it can be concluded that the XGBoost technique 
outperforms the ANN technique in regression accuracy.

Despite the fact that the XGBoost method outperforms the ANN 
technique in regression accuracy, it cannot provide explicit predictive 
equations for practical designs. Besides, an ANN model can predict 
multi-targets, while the XGBoost needs tuning and training six models 
with different properties for six outputs (i.e., Nc, LB, Nc. UB, Ns, LB, Ns, UB, 
Nγ, LB, and Nγ, UB). Although the XGBoost models have better accuracy in 
prediction than the ANN models, the difference is just around 1 % (R2 =

0.999 for XGBoost compared to R2 = 0.99 for ANN). Therefore, in this 
paper, the ANN is considered to be the optimal method.

Fig. 22 compares the prediction of the optimal ANN model with six 
hidden nodes using Eqs. (12)–(17) to the results obtained from FELA. 
The example provided in the previous section illustrated the application 
of these prediction formulas. Fig. 22 depicts the relationship between 
the six stability coefficients and the internal friction angle for various 
cases of B/D and H/D. It can be observed that the ANN model effectively 
captures the nonlinear relationship between the internal friction angle 
and the stability coefficients. Additionally, ANN prediction exhibits a 
high degree of consistency with the results from FELA.

Both ANN and XGBoost can address sensitive analysis, although their 
approaches are quite different. The former technique (ANN) is based on 
Garson’s modified equation (Garson, 2013), as shown in Eq. (18). Here, 
Ij is the relative importance of the jth input variable; Ni and Nh are the 
number of input and hidden neurons, respectively. Besides, W represents 
the connection weight; the superscripts i, h, and o denote input, hidden, 
and output layers, and the subscripts k, m, and n refer to input, hidden, 

Fig. 21. The decrease of RMSE during testing phase of six XGBoost models for 
predicting Nc, Ns, Nγ (LB and UB).

Table 9 
Performance comparison between ANN and XGBoost models.

Model R2 RMSE MAE

ANN XGBoost ANN XGBoost ANN XGBoost

Nc, LB 0.9906 0.9980 0.3137 0.1386 0.2048 0.0562
Nc. UB 0.9907 0.9989 0.3323 0.1114 0.2106 0.0477
Ns, LB 0.9883 0.9995 0.0365 0.0071 0.0231 0.0038
Ns, UB 0.9872 0.9997 0.0379 0.0058 0.0224 0.0032
Nγ, LB 0.9945 0.9974 0.1508 0.1031 0.1010 0.0457
Nγ, UB 0.9923 0.9982 0.1713 0.0834 0.1149 0.0394
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and output neurons, respectively. Meanwhile, the latter technique 
(XGBoost) utilizes a term called F-score, representing the frequency of a 
feature that is used to divide non-leaf nodes of regression trees (Zhu 
et al., 2021; Lai et al., 2023). 

Ij =
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Fig. 23 presents the outcome of feature importance analysis for (ϕ, 
H/D, B/D). The relative importance index for both methods of ANN and 
XGBoost are shown in the figure. These results show similar trend in 
prediction between the ANN and XGBoost methods. Notably, ϕ is the 

one contributing most significantly in predicting six targets (i.e., Nc, LB, 
Nc. UB, Ns, LB, Ns, UB, Nγ, LB, and Nγ, UB). This is followed by H/D and B/D, 
respectively. It is also to be noted that each feature’s importance remains 
quite stable with the multi-targets ANN model, whilst the index value 
fluctuates among different XGBoost models.

7. Conclusion

This paper has effectively studied the stability of 3D rectangular 
tunnels heading using a three-stability-factor approach, that is a subtle 
adaptation to Terzaghi’s three bearing capacity factors. This method 
incorporates the principles of superposition and takes into consideration 
the influence of factors like cohesion, surcharge loads, and soil unit 
weight. Through the application of the Finite Element Limit Analysis 
(FELA) with upper and lower bounds, the research has yielded robust 

Fig. 22. Comparison between ANN prediction and FELA results.
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solutions for three crucial factors: the cohesion factor (Nc), surcharge 
factor (Ns), and unit weight factor (Nγ). These factors are dependent on 
the various parameters such as cover-depth ratio (H/D), width-depth 
ratio (B/D), and soil friction angle (ϕ). The comprehensive findings of 
(Nc, Ns, and Nγ) across various values of (ϕ, H/D, and B/D) have been 
presented in both graphical and tabular formats. With the principal of 
superposition, these results can be readily employed by professionals to 
estimate the minimum support pressure required within the inner tun
nel. An example was illustrated to determine the appropriate support 
pressure required to maintain tunnel stability and design effective sup
port systems to prevent tunnel face collapse during construction. Engi
neers can also assess the risk of tunnel collapse under specific soil 
conditions and surcharge loads, enabling them to develop tailored sta
bility solutions for a given site. Additionally, it is useful for planning 
ground improvement techniques, such as the application of pre- 
excavation grouting or pressure control during tunnel boring.

Numerical comparisons of the three stability factors with published 
3D circular tunnel heading results showed an excellent agreement. 
Building on this confidence, the study introduced Artificial Neural 
Networks (ANN) and XGBoost, to analyze the dataset generated by FELA 
results. Both ANN and XGBoost were able to accurately calculate feature 
importance scores, that revealed the contribution of each feature (input 
variable) to the model’s predictions. This information is invaluable for 
engineers as it would help them to recognize which design parameters 
have the most influence on the tunnel stability, and base on this, to 
identify potential areas for further design improvement. In essence, the 
study demonstrates the effectiveness of machine learning in providing 
insights for better tunnel design.
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