
Fuzzy Logic Based Robust Control of Queue

Management and Optimal Treatment of Traffic over

TCP/IP Networks

Zhi Li

BSc(Sci), MSc(Eng)

Department of Mathematics and Computing

The University of Southern Queensland

Toowoomba, Australia

Supervised by :

Dr Zhongwei Zhang

A dissertation submitted in partial fulfillment of

the requirements of the degree of Doctor of Philosophy in Computing

2005

Abstract

Improving network performance in terms of efficiency, fairness in the bandwidth, and

system stability has been a research issue for decades. Current Internet traffic control

maintains sophistication in end TCPs but simplicity in routers. In each router, incom-

ing packets queue up in a buffer for transmission until the buffer is full, and then the

packets are dropped. This router queue management strategy is referred to as Drop

Tail. End TCPs eventually detect packet losses and slow down their sending rates to

ease congestion in the network. This way, the aggregate sending rate converges to the

network capacity.

In the past, Drop Tail has been adopted in most routers in the Internet due to

its simplicity of implementation and practicability with light traffic loads. However

Drop Tail, with heavy-loaded traffic, causes not only high loss rate and low network

throughput, but also long packet delay and lengthy congestion conditions. To address

these problems, active queue management (AQM) has been proposed with the idea of

proactively and selectively dropping packets before an output buffer is full. The essence

of AQM is to drop packets in such a way that the congestion avoidance strategy of

TCP works most effectively. Significant efforts in developing AQM have been made

since random early detection (RED), the first prominent AQM other than Drop Tail,

was introduced in 1993.

Although various AQMs also tend to improve fairness in bandwidth among flows,

the vulnerability of short-lived flows persists due to the conservative nature of TCP. It

has been revealed that short-lived flows take up traffic with a relatively small percentage

of bytes but in a large number of flows. From the user’s point of view, there is an

expectation of timely delivery of short-lived flows.

Our approach is to apply artificial intelligence technologies, particularly fuzzy logic

(FL), to address these two issues: an effective AQM scheme, and preferential treatment

i

ii ABSTRACT

for short-lived flows. Inspired by the success of FL in the robust control of nonlinear

complex systems, our hypothesis is that the Internet is one of the most complex systems

and FL can be applied to it. First of all, state of the art AQM schemes outperform

Drop Tail, but their performance is not consistent under different network scenarios.

Research reveals that this inconsistency is due to the selection of congestion indicators.

Most existing AQM schemes are reliant on queue length, input rate, and extreme events

occurring in the routers, such as a full queue and an empty queue. This drawback

might be overcome by introducing an indicator which takes account of not only input

traffic but also queue occupancy for early congestion notification. The congestion

indicator chosen in this research is traffic load factor. Traffic load factor is in fact

dimensionless and thus independent of link capacity, and also it is easy to use in more

complex networks where different traffic classes coexist. The traffic load indicator is a

descriptive measure of the complex communication network, and is well suited for use

in FL control theory. Based on the traffic load indicator, AQM using FL – or FLAQM

– is explored and two FLAQM algorithms are proposed.

Secondly, a mice and elephants (ME) strategy is proposed for addressing the prob-

lem of the vulnerability of short-lived flows. The idea behind ME is to treat short-lived

flows preferably over bulk flows. ME’s operational location is chosen at user premise

gateways, where surplus processing resources are available compared to other places.

By giving absolute priority to short-lived flows, both short and long-lived flows can ben-

efit. One problem with ME is starvation of elephants or long-lived flows. This issue

is addressed by dynamically adjusting the threshold distinguishing between mice and

elephants with the guarantee that minimum capacity is maintained for elephants. The

method used to dynamically adjust the threshold is to apply FL. FLAQM is deployed

to control the elephant queue with consideration of capacity usage of mice packets.

In addition, flow states in a ME router are periodically updated to maintain the data

storage.

The application of the traffic load factor for early congestion notification and the

ME strategy have been evaluated via extensive experimental simulations with a range

of traffic load conditions. The results show that the proposed two FLAQM algorithms

outperform some well-known AQM schemes in all the investigated network circum-

stances in terms of both user-centric measures and network-centric measures. The ME

ABSTRACT iii

strategy, with the use of FLAQM to control long-lived flow queues, improves not only

the performance of short-lived flows but also the overall performance of the network

without disadvantaging long-lived flows.

Certification of Dissertation

I certify that the ideas, experimental work, results, analyses, software, and conclu-

sions reported in this dissertation are entirely my own effort, except where otherwise

acknowledged. I also certify that the work is original and has not been previously

submitted for any other award or degree.

Signature of Candidate Date

ENDORSEMENT

Signature of Supervisor/s Date

iv

Acknowledgements

I first of all wish to thank my principal supervisor Dr. Zhongwei Zhang at University

of Southern Queensland. Dr. Zhongwei Zhang not only made this thesis possible,

but kept me on the right track through his guidance and encouragement. His wide

knowledge and research style made this study richer both in content and in form.

I also have been very fortunate to be instructed by my associate supervisor Associate

Professor Ron Addie, who has an open mind, insights, and inspiration, especially during

the period when Zhongwei was away for six months Academic Development Leave in

2003.

I want to thank Dr. Fabrice Clérot in R&D of France Telecom. Many discussions

with him have greatly affected my research from its early stage. I also have been very

fortunate to collaborate with him in one paper. I am grateful to the three examiners

for constructive comments that led to the final version of this thesis.

I would like to thank the Australian government for awarding me an International

Postgraduate Research Scholarship for my three-and-a-half-year PhD study. My grat-

itude also goes to the Department of Maths and Computing for its financial support

for my travels to several conferences during my study.

I am indebted to the Queensland Parallel Supercomputing Foundation (QPSF) to

provide our research team an account on the Australian Partnership for Advanced

Computing (APAC) national facility at Australian National University. The large

amount of simulations could not have been completed without the support from the

staff of both QPSF and APAC.

Special thanks go to Mr. Greg Otto for a careful proof-reading of the manuscript.

I am also grateful to him and his wife Pirkko for their care and concern. With them

and other friends in Toowoomba, I have enjoyed the Aussie culture.

Lastly, I would to express my gratitude to my parents Naiyun Li and Chenyan Lai

and my sisters Jun Li and Juan Li. To them I dedicate this thesis.

v

Acronyms and Abbreviations

QoS quality of service
TCP Transmission Control Protocol
UDP User Datagram Protocol
FIFO first in first out
SYN TCP synchronization
ACK acknowledgement
IETF The Internet Engineering Task Force
AQM active queue management
RED random early detection
RTT round-trip time
FL fuzzy logic
Diffserv Differentiated Services
Intserv Integrated Services
ME mice and elephants
ECN Explicit Congestion Notification
FLAQM FL-based AQM
FLC fuzzy logic controller
RTO retransmission timeout
AIMD additive-increase multiplicative-decrease
VoIP voice over IP
ATM asynchronous transfer mode
ITU the International Telecommunication Union
B-ISDN Broadband Integrated Services Digital Networks
VPI virtual path identifier
VCI virtual circuit identifier
CBR Constant Bit Rate
rt-VBR Real-time Variable Bit Rate
nrt-VBR Non-real-time Variable Bit Rate
UBR Unspecified Bit Rate
ABR Available Bit Rate
GFR Guaranteed Frame Rate
CAC Connection Admission Control
UPC Usage Parameter Control
NPC Network Parameter Control
CLP cell loss priority
VP virtual paths
RSVP Resource Reservation Protocol
DSCP Diffserv Codepoint
BA behavior aggregate
PHB per-hop behavior
MF multi-field

vi

ACKNOWLEDGEMENTS vii

SLA service level agreement
AF Assured Forwarding
EF Expedited Forwarding
BE best-effort
BB bandwidth broker
FEC Forwarding Equivalence Class
RIO RED with IN/OUT packets
EPD Early Packet Discard
FBA Fair Buffer Allocation
CE Congestion Experienced
WRED Weighted RED
ARED Adaptive RED
SRED Stabilized RED
ADR Acceptance and Departure Rate
REM Random Exponential Marking
AVQ Adaptive Virtual Queue
PI Proportional Integral
VS variable structure
FEM Fuzzy Explicit Marking
EWAQ exponentially weighted average queue length
AI artificial intelligent
NNs neural networks
GAs genetic algorithms
ISP Internet Service Provider

List of Publications

This appendix lists all publications during my PhD study. Papers related to this thesis
are marked with asterisk.

Book Chapters

1. Zhongwei Zhang, Zhi Li, Shan Suthaharan, Fuzzy Logic Strategy of Prognos-
ticating TCP’s Timeout and Retransmission, in Computational Intelligence for
Modeling and Predictions, Volume 1.

Published Papers

1. *Zhi Li, Zhongwei Zhang, and Ron Addie, A Circumspect Active Queue Manage-
ment Scheme Based on Fuzzy Logic, International Conference on Computational
Intelligence for Modelling, Control and Automation (CIMCA) 2004 pp. 169 - 180

2. *Zhi Li, Zhongwei Zhang, and Hong Zhou, Quantitative Performance Analysis
of Queue Management Schemes in TCP/IP Networks, Australian Telecommuni-
cations, Networks and Applications Conference (ATNAC) 2004.

3. *Zhi Li, Zhongwei Zhang, Ron Addie, Fabrice Clerot, Improving the Adaptabil-
ity of AQM algorithms to traffic loads Using Fuzzy Logic, Australian Telecom-
munications, Networks and Applications Conference (ATNAC) 2003.

4. Zhi Li and Zhongwei Zhang, Monitoring the Conformance of Connections to
the Traffic Contract of ATM Networks using Fuzzy Logic, in Proceedings of
Knowledge-based Intelligent Information Engineering Systems & Allied Tech-
nologies, 2002, pp. 194 - 198.

5. Zhi Li, Zhongwei Zhang, An Application of Fuzzy Logic to Usage Parameter
control in ATM Networks, in Proceedings of the 1st International Conference
on Fuzzy Systems and Knowledge Discovery: Computational Intelligence for the
E-Age, 2002.

6. Zhongwei Zhang, Zhi Li, Shan Suthaharan, Fuzzy Logic Strategy of Prognosti-
cating TCP’s Timeout ad Retransmission, in Proceedings of the 1st International
Conference on Fuzzy Systems and Knowledge Discovery: Computational Intelli-
gence for the E-Age, 2002.

viii

Contents

Abstract i

1 Introduction 1

1.1 Traffic Control in the Internet . 2

1.2 Drop Tail and Active Queue Management 3

1.3 The vulnerability of short-lived connections 5

1.4 Motivation . 6

1.5 Contributions . 7

1.6 Thesis Organization . 9

2 Traffic Control and QoS 11

2.1 Best-Effort Service . 12

2.1.1 TCP end-to-end congestion avoidance algorithms 12

2.2 Advanced QoS support . 16

2.2.1 ATM . 17

2.2.2 Intserv . 22

2.2.3 Diffserv . 25

2.2.4 Best-effort with Service Differentiation 30

2.3 Summary . 32

3 Queue Management and Internet Traffic Modelling 34

3.1 Drop Tail . 35

3.2 RED . 36

3.2.1 RED Parameters and Dropping Probability 37

3.2.2 Gentle Mode of RED . 39

ix

x CONTENTS

3.2.3 Explicit Congestion Notification 39

3.2.4 Parameter Settings in RED . 41

3.3 RED Variants and Other AQM Schemes 43

3.4 Survey of AQM Schemes . 47

3.4.1 Congestion Indicators and Control Principles 47

3.4.2 Marking Probability . 47

3.5 Traffic Modelling . 52

3.6 Summary . 53

4 Quantitative Analysis of AQM using Network Simulations 54

4.1 Experimental Methodology . 54

4.1.1 Network Simulator NS2 . 54

4.1.2 Network Topology . 55

4.1.3 Traffic Pattern . 56

4.1.4 Performance Metrics . 57

4.1.5 Confidence Level Analysis of Simulation Results 58

4.2 Simulations . 58

4.2.1 Basic Parameters and Configuration 58

4.2.2 Simulation Results . 59

4.2.3 Result Analysis . 82

4.3 Summary . 87

5 Novel AQMs using Fuzzy Logic 89

5.1 Design Rationale . 89

5.1.1 Traffic Load Factor . 90

5.1.2 The Application of Fuzzy Control for AQM 91

5.2 A Generic FLC . 92

5.3 FLAQM . 95

5.3.1 The FLAQM(I) Controller and Traffic Load Factor 97

5.3.2 Design of two FLCs in FLAQM(I) 98

5.3.3 FL Rules in FLAQM(I) . 99

5.3.4 Improving FLAQM(I) . 103

5.3.5 FL Membership Functions of FLAQM(II) 104

CONTENTS xi

5.3.6 FL Rules in FLAQM(II) . 104

5.4 Implementation Complexity of FLAQM 107

5.5 Performance of FLAQM . 108

5.5.1 Simulations of a Congested Network 112

5.5.2 Simulations with Changed Traffic Loads 121

5.6 Configuring the FLAQM Controller . 126

5.6.1 Dropping Probability pr Updating Interval 127

5.6.2 Desired Queue Length . 127

5.6.3 System Stability Parameter δ 127

5.7 Summary . 128

6 Coupling FLAQM with Mice and Elephants Strategy 130

6.1 Mice and Elephants Strategy . 130

6.1.1 A Phenomenon on Today’s Internet Traffic 131

6.1.2 Network Context of the ME Strategy 131

6.1.3 Operation of the ME Strategy 132

6.2 Router Functions of the ME Strategy 133

6.2.1 Adjustment of the Threshold between Mice and Elephants using

FL . 134

6.2.2 Selection of Queue Management in ME 136

6.2.3 Comparison with RIO . 136

6.3 Experiments . 137

6.3.1 Configuration of the ME Strategy in the Gateway 137

6.3.2 Implementation . 138

6.3.3 Results . 139

6.4 Result Analysis . 154

6.4.1 Quantitative Approach . 154

6.4.2 Qualitative Approach . 154

6.5 Summary . 157

7 Conclusions and Future Work 158

7.1 Introduction . 158

7.2 Our Approach of Using FL . 159

xii CONTENTS

7.3 Experiment Results and Analysis . 160

7.4 Confidence Level Analysis . 160

7.5 Future Work . 162

A Computer Programs for FLAQM(I) and FLAQM(II) A2

A.1 The .h and .cc Source Code for Implementing FLAQM(I) and FLAQM(II)

Builtin NS2 (2.26) . A2

A.1.1 FLAQM.h . A2

A.1.2 FLAQM.cc . A11

A.2 The .tcl Source Code for Testing FLAQM(I) and FLAQM(II) A40

A.2.1 FLAQM experiment1.tcl . A40

List of Figures

2.1 TCP window flow control . 13

3.1 Block diagram of a generic queue management control system 35

3.2 RED dropping probability . 38

3.3 RED dropping probability with gentle mode 39

4.1 Network topology . 55

4.2 Drop Tail queue length with 50% traffic load 59

4.3 Weighted average TCP goodput versus traffic loads 60

4.4 TCP goodput of traffic http1 relative to Drop Tail with 50% traffic load

versus file lengths . 60

4.5 TCP goodput of traffic http2 relative to Drop Tail with 50% traffic load

versus file lengths . 61

4.6 Weighted average response time versus traffic loads 61

4.7 Response time of traffic http1 relative to Drop Tail with 50% traffic load

versus file lengths . 62

4.8 Response time of traffic http2 relative to Drop Tail with 50% traffic load

versus file lengths . 62

4.9 Weighted average TCP goodput comparison between traffic http1 and

http2 with Drop Tail versus traffic loads 63

4.10 Weighted Average TCP goodput comparison between traffic http1 and

http2 with RED versus traffic loads . 63

4.11 Weighted average response time comparison between traffic http1 and

http2 with Drop Tail versus traffic loads 64

xiii

xiv LIST OF FIGURES

4.12 Weighted average response time comparison between traffic http1 and

http2 with RED versus traffic loads . 64

4.13 TCP goodput relative to traffic http1 with 50% traffic load with Drop

Tail versus file lengths . 65

4.14 TCP goodput relative to traffic http1 with 50% traffic load with RED

versus file lengths . 65

4.15 TCP goodput of traffic http1 with 50% traffic load 66

4.16 TCP goodput of traffic http2 with 50% traffic load 66

4.17 Average network throughput versus traffic loads 67

4.18 Average network loss rate versus traffic loads 67

4.19 Average network link utilization versus traffic loads 68

4.20 Average relative network throughput versus traffic loads 68

4.21 TCP goodput relative to Drop Tail with 80% traffic load 69

4.22 Response time relative to Drop Tail with 80% traffic load 70

4.23 Response time relative to Drop Tail with 90% traffic load 71

4.24 Response time relative to Drop Tail with 100% traffic load 72

4.25 Queue dynamics of Drop Tail with heavy-loaded traffic 73

4.26 Queue dynamics of RED with heavy-loaded traffic 74

4.27 TCP goodput relative to Drop Tail with 90% traffic load 75

4.28 TCP goodput relative to Drop Tail with 100% traffic load 76

4.29 TCP goodput relative to traffic http1 with 90% traffic load 77

4.30 TCP goodput relative to traffic http1 with 100% traffic load 78

4.31 TCP goodput with 90% traffic load . 79

4.32 TCP goodput with 100% traffic load 80

4.33 Queue dynamics of Drop Tail with very heavy-loaded traffic 81

4.34 Active connection number with different queuing strategies under the

heavy-loaded traffic condition . 83

4.35 Active connection number with different queuing strategies under the

very heavy-loaded traffic condition . 84

4.36 Queue dynamics of RED with 100% traffic load 85

4.37 Queue dynamics of ARED with 100% traffic load 85

4.38 Queue dynamics of BLUE with 100% traffic load 86

LIST OF FIGURES xv

4.39 Queue dynamics of REM with 100% traffic load 86

4.40 Queue dynamics of PI with 100% traffic load 86

5.1 The structure of a generic FLC . 93

5.2 The inference procedure of a commonly used FLC 96

5.3 The closed-loop feed back system with the FLAQM controller 96

5.4 The structure of FLAQM(I) . 97

5.5 MD FLAQM in FLAQM(I) . 100

5.6 AI FLAQM in FLAQM(I) . 101

5.7 A block diagram of the FLAQM(II) control system 103

5.8 MD FLAQM in FLAQM(II) . 105

5.9 AI FLAQM in FLAQM(II) . 106

5.10 Decision surface of AI FLAQM in FLAQM(I) 110

5.11 Decision surface of MD FLAQM in FLAQM(I) 110

5.12 Decision surface of AI FLAQM in FLAQM(II) 111

5.13 Decision surface of MD FLAQM in FLAQM(II) 111

5.14 Weighted average user TCP goodput comparison 113

5.15 Weighted average user response time comparison 114

5.16 Network throughput . 115

5.17 TCP goodput versus file lengths with different number of extremely long

bursts . 116

5.18 Queue dynamics of RED using 20 of FTP extremely long bursts 117

5.19 Queue dynamics of ARED using 20 of FTP extremely long bursts . . . 118

5.20 Queue dynamics of FLAQM(I) using 20 of FTP extremely long bursts . 118

5.21 Queue dynamics of FLAQM(II) using 20 of FTP extremely long bursts 119

5.22 Load factor comparison between FLAQM(I) and FLAQM(II) with n=10 119

5.23 Load factor comparison between FLAQM(I) and FLAQM(II) with n=20 120

5.24 Load factor comparison between FLAQM(I) and FLAQM(II) with n=30 120

5.25 Load factor comparison between FLAQM(I) and FLAQM(II) with n=40 121

5.26 Queue length dynamics of different schemes with n=10 122

5.27 Queue length dynamics of different schemes with n=20 123

5.28 Queue length dynamics of different schemes with n=30 124

xvi LIST OF FIGURES

5.29 Queue length dynamics of different schemes with n=40 125

6.1 Access niches . 132

6.2 The router functions of the ME strategy 133

6.3 The MD controller of Th . 135

6.4 The AI controller of Th . 135

6.5 Network topology with the built-in virtual bottleneck 138

6.6 Network throughput . 139

6.7 Weighted average TCP goodput . 140

6.8 Weighted average TCP goodput of mice 141

6.9 Weighted average TCP goodput of elephants 141

6.10 Relative user TCP goodput with n=10 142

6.11 Relative user TCP goodput with n=20 142

6.12 Relative user TCP goodput with n=30 143

6.13 Relative user TCP goodput with n=40 143

6.14 Weighted average response time . 144

6.15 Weighted average response time of mice 145

6.16 Weighted average response time of elephants 145

6.17 Relative use response time with n=10 146

6.18 Relative user response time with n=20 146

6.19 Relative user response time with n=30 147

6.20 Relative user response time with n=40 147

6.21 User TCP goodput performance . 148

6.22 Still flow percentage . 149

6.23 Network throughput . 150

6.24 Weighted average TCP goodput . 150

6.25 Weighted average TCP goodput of mice 151

6.26 Weighted average TCP goodput of elephants 151

6.27 Weighted average response time . 152

6.28 Weighted average response time of mice 152

6.29 Weighted average response time of elephants 153

6.30 Still flow percentage . 153

LIST OF FIGURES xvii

6.31 Number of active connections . 156

List of Tables

2.1 ATM service categories and QoS guarantees 20

3.1 RED Parameters . 38

3.2 Congestion indicators . 48

4.1 Network configuration . 56

4.2 RED parameter settings . 58

5.1 FL rules of MD FLAQM in FLAQM(I) 102

5.2 FL rules of AI FLAQM in FLAQM(I) 102

5.3 FL rules of MD FLAQM in FLAQM(II) 107

5.4 FL rules of AI FLAQM in FLAQM(II) 107

5.5 Parameter settings of the FLAQM(I) controller 109

5.6 Parameter settings of the FLAQM(II) controller 109

6.1 FL rules of the MD controller of Th . 136

6.2 FL rules of the AI controller of Th . 136

7.1 Relative Precision of the network throughputs 162

xviii

Chapter 1

Introduction

The size and speed of the Internet have been growing ever since its inception in the

1960s, and so has the complexity of its traffic. With the emergence of optical fibers

and microprocessors running at billions of instructions per second, the future Internet

would be expected to have high speed with cheap and infinite bandwidth, and no

communication delay other than the speed of light. However, this is unlikely at least in

the medium term [6]. There are a variety of network topologies, protocols, and traffic

patterns. Traffic control thus has to be in place for dealing with congested links, and

to provide a certain quality of service (QoS) to meet different user requirements and

preferences.

Despite its immensity and heterogeneity, the Internet is remarkably stable. This

robustness of the Internet can be attributed to the widespread Transmission Control

Protocol (TCP) protocol. The first congestion collapse in the mid 1980s was solved by

the congestion avoidance mechanisms introduced by Van Jacobson [60]. These mech-

anisms took the form of a modification of the TCP protocol, and this modification is

often referred to as TCP’s congestion avoidance strategy. Since then, traffic control has

been the focus of researchers in the networking area. The current Internet primarily

deploys TCP end-to-end congestion avoidance algorithms to manage traffic and prevent

any congestion collapses. It is worth mentioning that the other important transport

protocol, UDP (User Datagram Protocol), does not have a congestion avoidance strat-

egy, but it is expected that users will not resend lost UDP packets. The policy, which

is not enforced, is also part of the solution of the congestion collapse problem of the

Internet.

1

2 Chapter 1. Introduction

We will introduce the primary traffic control strategies in the current Internet and

related two problems in Section 1.1. We then will further discuss these two problems

and briefly describe the status of previous studies into the problems in Section 1.2

and Section 1.3, respectively. The motivations and contributions of this thesis will be

presented, followed by the thesis organization.

1.1 Traffic Control in the Internet

A TCP source empirically adjusts its transmission rate according to its packet losses

and delays. Routers however, especially gateway routers, potentially have more knowl-

edge of the network situation so they should play an active role to complement the

end-to-end TCP control mechanism.

There are two basic classes of router algorithms related to congestion control, in-

cluding queue management (QM) and scheduling. In a router, QM decides when to

drop a packet and how, while scheduling determines which packet to send next and is

used primarily to manage the allocation of bandwidth among flows or aggregates of

flows. These algorithms are closely related traffic control mechanisms, but they address

rather different performance issues [16].

In the current Internet, the combination of TCP and router algorithms such as

Drop Tail and FIFO (first in first out) strives to operate robustly and to sustain imple-

mentation simplicity. However, some problems have been observed. First of all, Drop

Tail is not an effective queuing solution anyway when congestion occurs. The problem

is that, under heavy-loaded traffic, Drop Tail most likely causes low link utilization,

high packet delay and jitter, and high loss rate. Second, the conservative nature of

TCP impacts heavily on short-lived connections, and these connections usually make

up the majority of traffic in number but a small fraction in bytes. Short-lived flows

will experience packet losses, and this has a dramatic effect on their performance. A

direct consequence is that short-lived connections rarely reach their bandwidth share

in competition with their long-lived counterparts. To solve the former problem, active

queue management (AQM) [16] has been proposed as a suggested replacement for Drop

Tail. Meanwhile, preferential treatment for short-lived connections seems an intuitive

answer for the latter problem.

1.2. Drop Tail and Active Queue Management 3

1.2 Drop Tail and Active Queue Management

The traditional queue management method, Drop Tail, takes the KISS 1 approach

that incoming packets are dropped once the buffer is full. Though Drop Tail is easy

to implement and works effectively in lightly loaded traffic conditions, there are some

drawbacks with this conventional scheme when the traffic load is heavy.

Firstly, long packet delay. In an Internet router, unlike a circuit switch, buffers

are necessary in the output port for storing packets due to the unpredictable nature

of incoming traffic. Most of the time, packets arrive at routers in bursts. In order

to absorb the burstiness of incoming packets, these packets are queued in the buffers

when the link capacity is not adequate. Especially in high-speed networks, a gateway is

likely to be configured with a correspondingly large maximum buffer to accommodate

transient traffic [51]. With heavy traffic however, the advantage of allocating a long

buffer no longer holds true. Instead, packets are likely to be delayed in the queue for

long periods of time.

Secondly, low network throughput and utilization. When the link is over-

loaded, probably more than one packet in a single window of data will be dropped. It

is hard for the TCP source to recover from multiple drops [3, 39]. In this case the stable

state, which the congestion avoidance algorithms regard as a safer operating point, is

cut down continuously. Also, the retransmission timer is often used to infer the packet

losses and exponential retransmit timer backoff is validated. The effective throughput

or goodput of flow thus shrinks. Especially with heavy traffic load, it is possible that

TCP synchronization (SYN) packets, or the corresponding acknowledgment (ACK)

packets, remain lost on the way to their destination. As a consequence, the TCP

connections have never had a chance to transport their data packets. The same problem

often simultaneously happens to many active flows. This results in a phenomenon of

global synchronization, where many active flows arise and backoff their transmission

rates almost at the same time. Due to the synchronously shrunk transmission rates

and retransmission of the undelivered or presumably undelivered packets, the network

effective throughput as a whole is dramatically decreased and the network resources

are significantly wasted.

1Keep it Simple and Stupid

4 Chapter 1. Introduction

Thirdly, high packet loss rate and deteriorated network conditions. A

significant time interval passes from the time a buffer overflows until the time when

the TCP sources sending packets through the congested link sense the congestion and

back off the data rates. During this time interval, there are more packets than what

the current stable state allows to be injected into the network. These packets are likely

to be dropped as well, simply because there are insufficient network resources to handle

the given traffic load. The network congestion becomes more severe.

With regard to these problems, the Internet Engineering Task Force (IETF) rec-

ommends that Internet routers should implement some queue management mechanism

which has the capability of controlling queue lengths and informing end hosts of incip-

ient congestion. This mechanism is called active queue management (AQM).

Among the available AQM schemes, the first milestone work was random early

detection (RED) [51] published in 1993. RED has been proposed by IETF as the

default AQM scheme mainly because of the effectiveness of managing queue size and the

simplicity in implementation. Thus far, RED has been widely studied via theoretical

analysis and simulations. RED is not immune from problems, and it has been conceded

that the main problem of RED is parameter tuning. That is, with different levels of

congestion, different parameter settings are needed. Due to the fact that Internet

traffic is ever-changing or dynamic, this parameter tuning issue thus has been a major

hurdle to the deployment of RED in reality. Significant efforts have been made in the

auto-configuration of RED parameters, such as self-configuring RED [34] and ARED

[50]. Meanwhile, the problem of queue management has been addressed from different

standpoints. Some have addressed it in an intuitively and empirical way, such as

BLUE [41], SRED [77], and adaptive Drop-Tail [23]. Some solutions regard it as an

optimization problem such as REM [27, 4, 73] and AVQ [66]. A quite high proportion

of work in this area is based on classical control theory such as PI [19] and VS [95].

Replacing Drop Tail management of buffers by a better AQM can be expected to

improve link utilization, end-to-end packet delay, jitter, and loss.

Due to the nonlinear nature of TCP dynamics, and network complicity such as

varying round-trip time (RTT) and different traffic patterns, and various kinds of TCP

variants, Internet traffic control can take advantage of human knowledge. For instance,

one modern control method using fuzzy logic (FL) has been brought into the AQM

1.3. The vulnerability of short-lived connections 5

research area. In our research, we have designed a fuzzy logic controller which integrates

expert knowledge into queue management to achieve robust control.

1.3 The vulnerability of short-lived connections

It has been noticed as early as 1995 [97, 81] that most Internet flows are short in

duration, but a small number of long flows contribute a large proportion of the traffic

load. The short-lived flows are referred to as mice and the long flows as elephants. The

problem is that the large number of mice suffer low goodputs and high latency due to

the conservative nature of TCP. To avoid congesting the intermediate routers, a TCP

connection starts from slow-start, in which the initial number of sending packets is at

the minimum possible value regardless of what capacity is available in the network.

We know that any loss event in the network will be detected by duplicate ACK packets

or a retransmission timer. Since the receiving side can create a duplicate ACK only in

the case that it receives an out-of-order packet, the duplicate ACK shows the sending

side that one packet has been left out the network. Due to modest congestion, the

sending side does not need to drastically decrease sending rate and restart slow-start.

Moreover, the sender can only decrease sending rate roughly by half. On the other

hand, the retransmission timeout informs the sending TCP of the occurrence of heavy

congestion. Accordingly, the sending TCP falls to slow-start again. We noticed that the

TCP end-to-end congestion avoidance algorithms favor elephants to fast recover from

the reduction in sending rate due to packet losses. Since there are not enough packets

available to form duplicate ACK packets however, a mice connection waits until its

retransmission timer expires and follows slow-start upon the detection of packet losses.

Consequently, the user expectation of quick mice data transfer cannot be met.

Although AQM tries to penalize the connections with heavy traffic, it hardly solves

the problem. Thus, preferential treatment for mice has been proposed independently

in [54] and [7].

6 Chapter 1. Introduction

1.4 Motivation

In this research, we put our efforts mainly in applying intelligent technology FL for

AQM and investigating a plausible treatment in favor of mice and with minimal per-

formance impact on elephants. The motivations of this research are as follows.

• An optimal AQM solution is critical to enhance overall performance of the Inter-

net under congestion.

• AQM is a key component in providing quality of service (QoS) in the Internet.

Many multimedia applications, such as audio conferencing and video streaming,

have been developed to run over the Internet. However, the lack of guaranteed

QoS is inhibiting their wide use. On the other hand, different users have different

requirements and preferences. QoS has been brought forward as the next target

of the Internet. If the performance of the Internet under congestion can be

significantly improved, new services, such as the ones just mentioned, will be

much more usable and their development will be greatly facilitated.

• Some well-known AQM schemes are sensitive to traffic load fluctuations in a real-

istic traffic environment that impact on the AQM’s potential for the simultaneous

achievement of low delay and high network throughput.

• FL is a well accepted intelligent technology for solving complex nonlinear prob-

lems such as optimal control of traffic in the Internet, without the needs of precise

and comprehensive information and the mathematical model of objects being

controlled. It is challenging to derive a mathematical model to approximate

TCP/AQM dynamics and to use the model for traffic control on the basis of

classical control theory. FL is much more tolerant to ambiguous information and

is effective in conducting robust control by emulating the cognitive processes of a

domain expert. Therefore, it has the potential to achieve consistent performance

in all kinds of traffic conditions by establishing an FL based AQM controller.

• The mice and elephants phenomenon, in which the majority of flows are short

but the majority of bytes are in a small number of large flows, can be deployed

to meet user preferences and expectations.

1.5. Contributions 7

• There are some hurdles in employing the existing preferential treatment for mice

in [54, 7]. First, two sets of control parameters in a chosen AQM scheme need

to be configured for mice and elephant packets respectively in a FIFO queue.

Second, one FIFO queue may still cause the delay of mice packets since some

elephant packets may still be in the front of the queue. However, timely packet

delivery is more critical to mice than elephants in order to meet user expectations.

• The network context in which the preferential treatment for mice operates also

needs to be carefully chosen, to make implementation feasible.

A study of the literature shows that AQM is a challenging and complex problem.

We argue that FL, capable of integrating expert knowledge to control a complex non-

linear system, is a promising tool to achieve robust control of queue management, and

ultimately improvement of Internet performance. On the other hand, the mice and

elephants phenomenon in Internet traffic provides us with the possibility of meeting

user expectations by differentiating traffic flows according to their behavior.

We restrict our research in TCP/IP networks, where all the flows are TCP or TCP

compatible [16]. Note that the TCP congestion avoidance mechanisms are one of the

keys to the stability and success of the Internet. TCP has been used by most traffic

in the Internet (95% of bytes, 90% of packets, and 80% of flows) [8]. Therefore, it is

appropriate to concentrate our attention on TCP when studying congestion control.

Also, TCP remains dominant, despite the emergence of other transport protocols. For

those unresponsive flows and flows that are responsive but are not TCP-compatible,

scheduling algorithms are needed to combine AQM in order to offer fairness among all

active connections. We do not address this problem in this dissertation.

1.5 Contributions

The contributions of this research are as follows.

• Conduct a survey of existing AQM schemes. The significance and limitations of

AQM are discussed compared to the traditional Drop Tail strategy, which formed

the basis of our motivation.

8 Chapter 1. Introduction

• The use of traffic load factor as a congestion indicator has been shown to be

effective in this research. Traffic load factor is defined as the ratio of input rate

to target capacity, where target capacity is the leftover link capacity after draining

the existing queue in an output buffer. There are some benefits of using traffic

load factor as a congestion indicator. First, traffic load factor is dimensionless so

that a control algorithm based on such a measure is robust against link capacity

changes [21]. Second, the calculation of the traffic load factor can be easily

extended to deal with the scenario where best-effort traffic coexists with other

QoS traffic with reserved bandwidth, and available capacity for best-effort traffic

is ever-changing.

• Design two FL-based AQM algorithms. Both algorithms periodically adjust drop-

ping probability for incoming packets to suit the network situations. The main

goals of both algorithms are to maintain low queuing delay and high link utiliza-

tion. Also, it is observed that the second algorithm improves the stability of the

control system.

• Conceptualize the mice and elephants (ME) strategy. More importantly, the ME

strategy performs at the most convenient location – the gateway router. It is

shown that it is possible to implement an effective control strategy for providing

better performance for mice flows without sacrificing that of elephants.

• Integrate the developed FL-based AQM scheme with the ME strategy. The FL-

based AQM scheme carries out control on elephant connections only, but with

consideration of the capacity consumption of mice.

• Periodically update the databases for mice and elephants in the ME strategy to

reduce any unnecessary increase in database size.

• Dynamically adjust the file length threshold in the ME strategy to solve the

possibility of elephant starvation on the basis of traffic conditions, using FL.

• All the studies have been conducted via extensive simulations on the platform of

the NS2 simulator.

1.6. Thesis Organization 9

1.6 Thesis Organization

The rest of this dissertation is organized as follows.

Chapter 2 describes the underlying traffic control technologies in the best-effort

Internet and other QoS-support network architectures. In the Internet, TCP and Drop

Tail queue management with FIFO scheduling so far have been dominantly used in the

end user and the intermediate routers, respectively. This combination has contributed

to the robustness and implementation simplification of the current Internet. How-

ever, to achieve differentiated services and further end-to-end QoS, more sophisticated

router mechanisms are necessary to be involved in networks such as ATM, Intserv, and

Diffserv. Furthermore, effective queuing is one of the fundamental building blocks for

both the Internet and QoS-support networks in terms of the provision of high good-

put and low latency in connections and simultaneously high degree network resources

utilization. This research has been motivated on the basis of this fact.

Chapter 3 describes the state of the art of queue management. First, Drop Tail and

its limitations with heavy-loaded traffic are described. These limitations are heavily

related to the reactive manner of Drop Tail. Based on this observation, proactive

response to congestion is proposed. This is referred to as active queue management

(AQM). One of the first AQM candidates is RED. An in-depth introduction to RED

and related issues including its gentle mode, Explicit Congestion Notification (ECN),

and the issue of parameter settings, is given. Due to the hurdle of parameter settings in

RED, two directions arise in the design of AQM schemes: autotuning RED parameters,

and complete new methods from RED. The congestion indicators, control principles,

and marking probability of some typical AQM schemes are presented. The traffic

modelling used for generating realistic Internet traffic in simulations is also discussed.

In chapter 4, the impact of various AQM schemes is quantitatively studied via

simulations under a traffic model of Poisson-Pareto. The necessity of AQM, particularly

in the congested links, is shown by the simulation results. In addition, some well-

known AQM schemes present sensitivity to traffic load fluctuation in a realistic traffic

environment. Also, we are able to observe the way in which short-lived connections are

vulnerable in comparison to their long-live counterparts. Solutions to these problems

are proposed and studied in Chapter 5 and Chapter 6, respectively.

10 Chapter 1. Introduction

Chapter 5 presents two FL-based AQM algorithms FLAQM(I) and FLAQM(II).

Traffic load factor, which indicates the traffic load conditions on the bottleneck link

by taking account of the combination of draining existing queue and accommodating

incoming packets, is adopted to offer early congestion notification. FLAQM(I) directly

utilizes the traffic load factor and its change as input variables, while in FLAQM(II) the

reciprocal of the traffic load factor and the corresponding change are chosen as inputs

to implicitly realize input normalization and thus improve control system stability

and robustness. The performance of the two proposed FL-based AQM algorithms is

evaluated via a wide range of simulation experiments. The simulation scenarios include

not only a variety of traffic load but also changed traffic load conditions.

Chapter 6 proposes the preferential treatment approach (ME) that operates in

firewall routers on the premise side of links joining premises to the Internet. Such

access links are often congested in contrast to well-equipped core networks. The best

location for monitoring and controlling this congestion is clearly at edge routers, i.e.

the routers on the Internet side of access links. However, edge routers are likely to

be busy with data transfer since there are many links to different premises, so we

would like to see if the ME strategy can be made to work just as well even when it

is executed on the premise side of access links. To implement the ME strategy, we

first classify flows as mice or elephants by counting the amount of bytes, and put mice

packets into a separate queue that has priority and the remaining packets in an elephant

queue. Moreover, FLAQM is deployed to perform elephant buffer management, with

consideration of the capacity consumption of mice traffic.

Chapter 7 concludes this dissertation and discusses future work.

Appendix A includes our C++ programs for implementing FLAQM(I) and FLAQM(II)

and Tcl programs for testing the performance of them against some well-known AQM

schemes.

Chapter 2

Traffic Control and QoS

Since we are now seeing convergence of all services onto the Internet, quality of service

(QoS) and traffic control are becoming increasingly important and are a focus for a con-

siderable amount of research [74]. The Internet traditionally provides a simple service

– best-effort, with which every packet is equal and networks try their best to deliver

packets as soon as possible and as much as possible. With the high-speed development

of computer software and hardware, providing more advanced services than best-effort

becomes technically possible. Meanwhile, demand from customers makes ISPs keen to

bring QoS into the market after the broadband service. Either the best-effort Internet

or advanced QoS networks need to be supported by traffic control. Traffic control aims

to avoid any congestion collapses and to maintain a healthy environment for data trans-

fer. The two components for realizing traffic control are hosts at the end and routers

in the middle. These components are functionally complementary. For the traditional

best-effort service, TCP (transmission control protocol) plays a key role to maintain

robustness in the Internet by operating end-to-end flow and congestion control at end

hosts, while router mechanisms select next the link for delivering packets and buffer

them as required. At present, the buffering and delivery is FIFO (first in first out) and

when buffers overflow, the packets which arrive while the buffer is full are the ones to

be dropped. However, altering the behaviour of routers might be one way to realize

advanced QoS.

In this chapter, we first investigate the traffic control strategies offering the best-

effort service in the current Internet. Most network users have been and will remain

satisfied with the best-effort service most of the time due to its low cost and conve-

11

12 Chapter 2. Traffic Control and QoS

nience. For instance, the quality of applications such as email, Web surfing, and file

transfer have been acceptable most times. Best-effort is thus expected to continue as

the dominant service for the foreseeable future. However, some businesses and individu-

als are willing to pay more to obtain more sophisticated services for certain applications

or in certain circumstances. The advanced traffic control schemes in some QoS archi-

tectures including ATM, Intserv, Diffserv, and best-effort with service differentiation,

are therefore needed.

2.1 Best-Effort Service

The current Internet offers only the best-effort service with available bandwidth, delay,

and loss characteristics dependent on instantaneous traffic level and network conditions.

The provision of this service model is caused by the endpoint control design philosophy

of the Internet. The idea is that reliable data transfer must be provided by protocols

operating at the endpoints, not in the network. Thus, the network can be slow and

insensitive to congestion, but intelligence in the endpoints should compensate for this

[63]. As a result, end hosts deploy sophisticated TCP end-to-end congestion avoidance

algorithms, while routers in the network simply perform Drop Tail queuing, with which

the routers accommodate each incoming packet unless the output buffer is full, and

serve the packets in the buffer with FIFO order.

2.1.1 TCP end-to-end congestion avoidance algorithms

The congestion avoidance mechanisms of TCP is primarily designed to ensure the

stability of the Internet. TCP dominates the Internet by usage, averaging about 95%

of the bytes, 90% of the packets, and 80% of the flows over the Internet [8]. TCP

also is the only transport protocol that implements congestion control and avoidance

mechanisms [40]. The TCP end-to-end congestion avoidance mechanisms were first

developped in the late 1980s by Van Jacobson to conquer congestion collapse. TCP uses

a concept of sliding window, which restricts the number of bytes in transit and where

the window size is adjusted according to network conditions by using acknowledgment

(ACK) packets and a retransmission timer. The ACK packets are sent by the TCP

receiver to acknowledge the receipt of packets from the sender, and the retransmission

2.1. Best-Effort Service 13

(a) Sending TCP

(b) Receiving TCP

Figure 2.1: TCP window flow control

timer is set by the TCP sender when it sends data. In addition, the arrival of ACK

packets has TCP pace its injection of a new window of packets into the network. Figure

2.1 illustrates that the sending TCP keeps records of the last packet acknowledged by

the receiver, the last packet sent by the sender, the dynamic sliding window size, and

the last packet written by the application running on top of TCP, whereas the receiving

TCP maintains the last packet received by the receiver, the next packet expected from

the sender, and the last packet read by the application running on top of TCP.

TCP congestion control algorithms consist of slow start and congestion avoidance

for a TCP connection, the use of either of which is decided by two variables: congestion

window (cwnd) and slow start threshold (ssthresh). Variable cwnd is a sender-based

limit on the amount of data the sender can transmit into the network before receiving

an ACK [3]. Variable ssthresh reflects a conservative approximation of the window size

that the network can support [34]. Another variable, determined by the receiver TCP

for limiting the amount of outstanding data, is the receiver’s advertised window (rwnd).

The minimum of cwnd and rwnd, called window size, governs data transmission.

• Slow start: Slow start applies when cwnd < ssthresh. Every time a new ACK

packet (that acknowledges previously unacknowledged data) is received, cwnd is

increased by the formula:

cwnd+ = 1. (2.1)

14 Chapter 2. Traffic Control and QoS

Variable cwnd is virtually doubled every round trip time (RTT) and thereby it

is also called the exponential increase phase.

• Congestion avoidance: The congestion avoidance phase applies when cwnd ≥

ssthresh. Every time a new ACK packet is received, cwnd is creased by the

formula:

cwnd+ = 1/cwnd. (2.2)

Variable cwnd is increased by one packet every round trip time (RTT) and thus

it is also called the linear increase phase.

The TCP sender usually counts upon duplicate ACK packets from the receiver to

detect network congestion. Upon receiving a certain amount of duplicate ACK packets,

TCP infers that a packet is lost on its way due to network congestion and immediately

reduces its sending rate roughly in half. TCP first readjusts ssthresh to be one half of

the current window size (but at least two segments). Then set cwnd to ssthresh plus

the number of segments that have left the network and the receiver has buffered, after

retransmitting the lost packet. For each additional duplicated ACK packet received,

inflate cwnd by one to reflect that another packet has left the network. Upon the

arrival of a new ACK packet, cwnd is eventually deflated to ssthresh. These algorithms

are called fast retransmit and fast recovery [3]. So far, TCP stays in the congestion

avoidance phase.

When congestion is severe, both data and ACK packets can get lost. Thus, packet

loss cannot be inferred via the above manner. To provide reliability, TCP sets a

retransmission timer when it sends data. When a timeout occurs, TCP retransmits

the data. Accordingly, ssthresh is set to be one half of the current window size and

cwnd is reduced to one segment [34, 91]. The variable retransmission timeout (RTO)

is statistically calculated based on the measurements of the round-trip time (RTT)

experience on a given connection. TCP is likely to be silent for a long while due to the

inaccurate retransmission timer, before the timer expires [40]. Also, since the data was

retransmitted, the exponential RTO backoff algorithm is deployed until a new ACK

packet is received [91].

We summarise the TCP algorithms as follows: (1) slow start is only invoked when a

TCP initially starts without any knowledge of network conditions or after the retrans-

2.1. Best-Effort Service 15

mission timer expires; (2) Maintaining a TCP connection with a considerable volume

in the congestion avoidance phase manifests the stability of the network and desired

performance with regard to individual connection throughput and network utilization;

(3) In addition, TCP uses an additive-increase multiplicative-decrease (AIMD) policy

within the congestion avoidance phase in that AIMD is a relatively moderate approach

to adjust its sliding window size.

In order to enhance network performance and provide fast and accurate response to

the changes in the network, considerable efforts have gone into improving TCP. Follow-

ing the first version of TCP, Tahoe TCP in 1988, Reno TCP was implemented in 1990

[39] to fast-recover connection throughput from moderate congestion by performing

congestion avoidance after receiving a certain amount of duplicate packets instead of

conducting slow start. Note that the previous description of TCP congestion control al-

gorithms is consistent with Reno TCP. Subsequently, NewReno TCP, and SACK TCP

were made available for fast recovery from multiple packets loss in a single window to

overcome the drawback of Reno TCP. In the current Internet, Reno TCP coexists with

NewReno TCP and SACK TCP, although it was the dominant TCP implementation

in earlier times.

The maneuver to improve the robustness of TCP has resulted in sophistication in

congestion control merely at end hosts. However, there are some disadvantages with

the combination of sophisticated TCP and simple router mechanisms including Drop

Tail queuing and FIFO scheduling.

• There exist biases or unfairness in the Internet. Firstly, the Internet has a bias

against TCP connections. Based on the concepts for flow classes in [16], ex-

cept “TCP-compatible” flows that behave under congestion like a flow produced

by a conformant TCP, there are other flow categories that do not slow down

when congestion occurs or are not TCP-compatible. These more aggressive flows

could lead to all the active TCP connections backing off their sending rates.

Secondly, TCP/IP networks have a bias against connections with longer RTT.

Thirdly, TCP/IP networks have a bias against connections passing through mul-

tiple congested gateways [48]. Finally, TCP/IP networks have a bias against

short transfers, which contain the majority of Internet traffic. These short flows

almost always stay in the slow start phase and seldom get a chance to obtain their

16 Chapter 2. Traffic Control and QoS

share of bandwidth. Detailed study on this final issue will be given in Chapter 6.

• Network capacity is underutilized. A TCP source reduces its transmission rates

only after detecting packet losses caused by queue overflow. There is a con-

siderable time interval between the two events: packet drop in the congested

router and congestion detection in the end host. During the time interval, the

TCP source continues emitting packets at an unaffordable rate to the congested

router. Those packets are most likely dropped at the router [34]. The same fate

may be shared by many TCPs simultaneously. This eventually leads to global

synchronization, in which many TCP sources cut down their sending rates at

the same time. Moreover, TCPs often use a timeout mechanism to recover from

multiple packet drops in a single data window. Significant time may be expe-

rienced before the TCP retransmission timer expires. Therefore, the network

capacity is squandered for the transfer of those packets that will be dropped in

the downstream and in the subsequently long idle period.

• Performance is unpredictable. TCP views the network as a black box, which it

probes by increasing the transmission-window size and looking for packet losses

[63]. TCP has no knowledge about the network situation such as the number of

its competitors for the capacity and the queue length of the congested routers.

It only estimates the available bandwidth in the network by using the AIMD

strategy. The individual connection performance in terms of TCP goodput and

delay thus is unpredictable.

Consequently, to support more advance services, router congestion control mecha-

nisms need to be modified by making use of routers’ potentials of gathering information

about network conditions and taking action on even the finest grained individual flows

instead of flow aggregations.

2.2 Advanced QoS support

The best-effort mode of transport in the current Internet no longer meets all needs and

requirements. For instance, multimedia applications such as video/audio conferencing,

interactive games, digital libraries, and distance education, require large bandwidth

2.2. Advanced QoS support 17

and stringent delay. Recently, many ISPs have attempted to offer voice over IP (VoIP)

and video streaming to their customers, which require certain QoS technologies to be

in place to ensure timely delivery. Therefore, one can define QoS as a set of tech-

nologies that enable optimal management of network resources even under congested

conditions, and guarantee different performance requirements such as loss, delay, and

delay variation (jitter).

Among the existing technologies for supporting advanced QoS, ATM (asynchronous

transfer mode) was the first networking technology designed with QoS in mind from

the outset [74]. Because of the popularity of the Internet in practice, ATM technology

has mostly been adopted in high-speed backbone networks and access niches. This way,

the ATM network clouds are merely treated as a high speed element in the Internet.

Despite this, ATM has significant impact on the design of other QoS architectures.

During the latter half of the 1990s, considerable efforts have been made to add QoS

capabilities to the Internet by the Internet Engineering Task Force (IETF). Two wide

studied IETF QoS architectures are Integrated Services (Intserv) and Differentiated

Services (Diffserv).

2.2.1 ATM

ATM technology has been primarily chosen by the International Telecommunication

Union (ITU) for implementing its Broadband Integrated Services Digital Networks (B-

ISDN). ATM networks were designed to subsume both the Internet and the telephone

network to create a unified infrastructure that carries voice, video, and data with the

great benefit of statistical multiplexing. The idea was to combine the flexibility of the

Internet with the per-user QoS guarantees of the telephone network.

There are some particular features of ATM. Firstly, ATM is connection-oriented.

Before transmitting data, every source applies for a connection request to the net-

work through signaling procedures. The request includes a chosen service type, traffic

parameters, and the expected QoS. A connection will be established only when the

available capacity in the network meets the demand. Otherwise, the connection will

be rejected. Once the network accepts the connection, a traffic contract is formed

which records the value of each parameter for traffic specification and desired QoS.

The contract needs to be obeyed by both the network and the user.

18 Chapter 2. Traffic Control and QoS

Secondly, ATM uses small fixed-size packets or cells. The small size helps to give a

low delay guarantee to real-time applications such as voice, while the fixed size allows

the design of a simple transmission network with low variance in delay [55]. An ATM

cell is 53 bytes long including a 5-byte ATM header and a 48-byte payload. In ATM

networks, tasks of switching and forwarding cells are conducted by ATM switches,

which are the counterpart of routers in IP networks. To find the next hop, an ATM

switch uses the virtual path identifier/virtual circuit identifier (VPI/VCI) in the ATM

header of an incoming cell, whereas an IP router analyzes the destination IP address

of an arrival packet [63]. A VPI/VCI is shorter than an IP address. Also, it is easier

to get a match in a routing table for a VPI/VCI than an IP address. Thus, ATM

networks have enormous switching capacity. In addition, as in IP networks, ATM

allows statistical multiplexing so that network resources can be highly utilized.

There are some ATM standards proposed by two standardization bodies including

the ITU Telecommunication Standardization Sector (ITU-T) and the ATM Forum.

The former targets global standardization issues involved in telecommunication. ATM

is defined by the ITU-T as a component of B-ISDN, and various aspects of B-ISDN are

covered by the ITU-T recommendations within Series I. The ITU-T allows subscribers

unlimited download of the standards, or purchase of individual documents. Due to

the slow standardization process of ATM in the ITU-T, the ATM Forum was formed

jointly by a group of computer and communication industries, which saw ATM as a

promising technology for high-speed data communications, in 1991. The ATM Forum

is now a truly international forum whose members span the industry, government, and

education sectors and many countries worldwide. Standardized documentation in the

forum, or ATM Forum specifications, can be downloaded free of charge. The following

ATM service categories and generic QoS mechanisms in ATM networks are referred to

in the traffic management specification of the ATM Forum in [10].

2.2.1.1 ATM Service Categories

The ATM Forum defines a range of service categories employing traffic characteristics

and QoS requirements. This multi-service model is based on the fact that ATM net-

works are designed to be able to transfer many different types of traffic simultaneously,

including real-time flows such as voice and video, and bursty TCP flows [90]. The

2.2. Advanced QoS support 19

ATM service categories are defined as follows.

• CBR (Constant Bit Rate): The CBR service is intended for real-time applications

that require a fixed data rate that is continuously available during the connection

lifetime, and a tightly constrained delay variation. Examples of CBR applications

include videoconferencing, distance learning, and video-on-demand.

• rt-VBR (Real-time Variable Bit Rate): The rt-VBR service is intended for real-

time applications that transmit at a rate varying with time. The rt-VBR source

thus can be characterized as somewhat bursty. The rt-VBR category requires

tightly constrained delay and delay variation. This service, unlike CBR, may

benefit from statistical multiplexing. Examples of rt-VBR applications include

videoconferencing, distance learning, and video-on-demand.

• nrt-VBR (Non-real-time Variable Bit Rate): The nrt-VBR service is intended

for non-real-time applications that characterize the expected traffic flow so that

the network can provide relatively low delay and minimal cell loss. Within this

service, the end system specifies a peak cell rate, a sustainable or average cell

rate, and a measure of how bursty or clumped the cells may be. Examples of nrt-

VBR applications include airline reservations, banking transactions, and process

monitoring.

• UBR (Unspecified Bit Rate): The UBR service is intended for non-real-time

applications that can tolerate variable delays and some cell losses, that is, TCP-

like traffic. There is no QoS guarantee for UBR, and thus the service is referred

to as a best-effort service. Examples of UBR application include text/data/image

transfer.

• ABR (Available Bit Rate): The ABR service is intended for non-real-time ap-

plications that specify a peak cell rate that it will use and a minimum cell rate

that it requires, which can be zero. One distinctive feature of ABR is that ABR

employs explicit feedback to sources to ensure that the leftover capacity from

CBR and VBR minus bandwidth reserved for ABR is allocated among all ABR

sources in a fair manner. Examples of ABR applications include text/data/image

transfer.

20 Chapter 2. Traffic Control and QoS

• GFR (Guaranteed Frame Rate): The GFR service is intended for non-real-time

applications that require a guarantee on the basis of immediate upper layer data

units or frames, and specify a peak cell rate and a minimum rate guarantee along

with a maximum burst size and a maximum frame size. GFR can benefit from

accessing additional bandwidth dynamically available in the network. GFR is

designed to transfer TCP/IP packets over ATM networks. Examples of GFR

applications include text/data/image transfer.

Table 2.1 summarizes the ATM Forum service categories and the corresponding

QoS guarantees.

Table 2.1: ATM service categories and QoS guarantees

QoS
/
Services CBR rt-VBR nrt-VBR ABR UBR GFR

Loss Yes Yes Yes Yes/No No Yes/No
Delay Yes Yes No No No No

Delay variance Yes Yes No No No No
Bandwidth Yes Yes Yes Yes/No No Yes/No

Note that Yes/No stands for Yes or No.

2.2.1.2 Generic QoS Mechanisms in ATM networks

For each service category, traffic management and control functions are, in general,

structured differently. There are however some generic functions defined in [10] with

the aims of protecting the network and the end-system from congestion and promoting

the efficient use of network resources.

• CAC (Connection Admission Control): CAC is a set of actions taken by the

network during the call set-up phase in order to determine whether a connection

request should be accepted or rejected (or whether a request for re-allocation can

accommodated). It is the first line of defense for the network to avoid excessive

loads. The connection request includes, implicitly or explicitly, the chosen service

category, traffic description, and the requested and acceptable values of QoS

parameters such as bandwidth, delay, and jitter.

2.2. Advanced QoS support 21

• Feedback controls: Feedback controls are a set of actions taken by the network

and by end-systems to regulate the traffic submitted on ATM connections ac-

cording to the state of network elements. One instance of feedback controls is

the ABR flow control mentioned in the ABR service category.

• UPC (Usage Parameter Control): UPC is a set of actions taken by the network

to monitor traffic and enforce the traffic contract at the user network. Corre-

spondingly, at the network node interface, Network Parameter Control (NPC)

is performed. Both UPC and NPC aim to protect network resources from ma-

licious as well as unintentional misbehavior which can affect the QoS of other

already established connections, by detecting violations of negotiated parameters

and taking appropriate actions including cell discard or cell tagging.

• Cell Loss Priority control: For some service categories, the end host may mark

the cell loss priority (CLP) bit in the ATM header in some cells, which are extra

(beyond the negotiated rate). The network also may set the CLP bit for any data

cell that is in violation of an agreement concerning traffic parameters between

the user and the network. If congestion is encountered, the ATM switches that

recognize the marking may selectively discard CLP-marked cells with a low pri-

ority to protect, as far as possible, the QoS objectives of cells with high priority.

Alternatively, the CLP marking may be treated transparently.

• Traffic Shaping: Traffic shaping is used to smooth out a traffic flow and to reduce

cell clumping and/or to ensure connection traffic conformance at a subsequent

interface.

• Network Resource Management: Although cell scheduling and resource provi-

sioning are implementation-dependent and network-specific, they can be utilized

to provide appropriate isolation and access to resources. The maximum benefit

can be obtained from statistical multiplexing of flows that belong to different

service categories.

• Frame Discard: A congested network that discard a cell may discard the frame 1

1The term “frame” here is being used to refer to a generic higher level protocol unit, such as an
IP datagram.

22 Chapter 2. Traffic Control and QoS

that the cell belongs to. Otherwise, the frame will be eventually discarded by the

receiver since the receiver recognizes frames as a data unit and conducts error

check on frames.

ATM provides a set of reliable methods to guarantee end-to-end QoS. Sender-

initiated signaling is performed before any data transmission. After being accepted

by the CAC in each ATM switch on the path, the connection is established with a

confirmation message sent back to the sender and the flow state related to traffic pat-

tern, requested QoS, its path, and reserved capacity, maintained in these switches. The

reliable signaling procedures and the provisioning of capacity to any accepted connec-

tions are the first-step contributions to the success of ATM in the handling of QoS.

Subsequently, ATM conducts traffic management and control including classification,

monitoring, policing, queuing, scheduling, and shaping by using the generic functions

mentioned above, on the basis of service models towards data delivery with end-to-end

QoS guarantees.

The scalability issue is critical for ATM networks, since ATM operates on a per-flow

and per-hop basis. When millions of flows share a large trunk, processing of each flow

is simply not practical. To alleviate the problem, ATM uses virtual paths (VP) to

aggregate flows and enhance efficiency [74].

2.2.2 Intserv

Integrated Services (Intserv) is an IETF effort aimed at providing end-to-end QoS in

IP networks. It has been motivated by two requirements. The first is to support real-

time applications, such as remote video and multimedia conferencing, with loss and

end-to-end packet delay guarantees. The other requirement is from network operators,

who want to be able to control the sharing of bandwidth on a particular link among

different traffic classes [6]. To address the two issues and provide integrated services

in the Internet, the Intserv working group in IETF specified two more services other

than the best-effort service, including the guaranteed QoS and the controlled-load ser-

vice. Like ATM, Intserv requires a signaling protocol to transport traffic management

and control parameters and achieve a guaranteed reservation. Resource Reservation

Protocol (RSVP) was chosen by the Intserv working group as it is the most widely

2.2. Advanced QoS support 23

known example of such a setup mechanism, although RSVP and Intserv were designed

independently. Also, the Intserv working group has proposed some possible network

traffic control mechanisms in [6]. We will give brief introductions to these in the next

subsections.

2.2.2.1 Intserv Service Model

The guaranteed QoS service and the controlled-load service are defined in Intserv.

• guaranteed QoS: This service is intended for delay-sensitive real-time applications

that require reserved bandwidth and firm bounds on end-to-end packet delay. The

traffic is characterized in the form of a token bucket (r, b) with a bucket depth

b and a bucket rate r, a minimum counted unit (m), and a maximum packet

size (M). The end-to-end delay bound is computed based on the fluid model.

Interestingly, the guaranteed QoS equals rt-VBR in ATM, but is supported in the

Internet. Examples of this service include audio and video play-back application.

• controlled-load service: This service is intended for adaptive real-time applica-

tions that require unloaded best-effort service. Although this definition may seem

somewhat vague, it is not. This notion is rather precisely defined by using queu-

ing theory in terms of the likelihood of packet delivery and statistics regarding

the delay incurred [74]. The traffic is specified in the same way as guaranteed

QoS.

RFC 2211 and RFC 2212 also require that the packets, which fail to conform to

the traffic pattern specified during setup phase, are treated on a best-effort basis.

2.2.2.2 RSVP

RSVP is the default option of Intserv signaling protocols that can be used by hosts

to request resource reservations through a network. It has the following attributes

compared to the ATM signaling protocol [26, 74].

• Receiver-initiated. The receiver initiates and maintains the resource reservation

used for the flow. This feature is specially designed for accommodating multicast

and also suitable for the trivial case unicast. In contrast, ATM employs sender-

initiated signaling.

24 Chapter 2. Traffic Control and QoS

• Unidirectional. RSVP signals independently for each direction of a flow, whereas

an ATM sender may signal for both directions of a full-duplex connection.

• Soft state. RSVP maintains “soft” state in routers and hosts, to provide graceful

support for dynamic membership changes and automatic adaptation to routing

changes. RSVP thus requires that the receiver periodically refreshes reservation

requests. Otherwise, any states will automatically expire after some time and

reservations are automatically torn down. On the other hand, in the case of

ATM, the hard state is kept in the switches along the end-to-end path until the

termination of the connection or the occurrence of a network failure. With this

consistently reserved capacity in all the nodes on the path, ATM provides a more

predictable network.

The RSVP model better supports the native IP interface present in many applica-

tions [74].

2.2.2.3 Intserv Traffic Control Mechanisms

To support end-to-end QoS delivery in IP networks, network elements first apply

Intserv admission control to signaled resource requests. Traffic control mechanisms

on the network elements then are configured to ensure that each admitted flow receives

the service requested in strict isolation from other traffic [6].

• Packet scheduling: Scheduling primarily allocates capacity among flows by re-

ordering the output queue. The approaches range from the simplest priority

scheme to weighted round-robin (wrr) and weighted fair queuing (wfq). On the

contrary, the current IP network performs FIFO scheduling, in which no reorder-

ing actions are taken.

• Packet queuing: Queuing is the set of actions taken by the network on incoming

packets, including accommodating and dropping. Since dropping a packet is

taken by TCP as a signal of congestion and causes it to reduce its load on the

network, picking a packet to drop is the same as picking a source to throttle.

Also, if a queue builds up, dropping one packet reduces the delay of all the

packets behind it in the queue. To support integrated services including real-

time applications, therefore, an intelligent queuing mechanism is pivotal, which

2.2. Advanced QoS support 25

does not have to rely on buffer overflow as the only indication of congestion. In

addition, packet drops mean the waste of upstream bandwidth and sometimes

packet delay, and thus passing the congestion notification to sources by marking

an ECN field in the IP header instead of dropping is recommended in [86, 84].

• Packet classification: Packet classification is the set of actions taken by the net-

work to sort out packets into some flow or sequence of packets that should be

treated in a specified way. Classification can be done simply based on IP layer

information such as source and/or destination addresses. Alternatively, packets

could be classified in a more complex way according to flow identification con-

sisting of not only source and destination addresses and protocol type, but also

some transport layer information including source and destination port number.

There is a trade-off between processing overhead and implementation efficiency.

• Admission control: Admission control is the set of actions taken by the network

to make a decision about resource availability for a new service request. It is

operated by each router on the end-to-end path of data delivery during the RSVP

signaling procedures. Different admission control strategies may be applied to

different QoS requirements. A computation is based on the worst-case bounds

for admitting new flows in some cases, while in the others measured information

is used.

Like ATM, scalability is still an issue for Intserv, because of its per-flow and per-hop

operation. As stated in the RSVP RFC, some form of aggregation is essential to build

a scalable network [74].

2.2.3 Diffserv

Differentiated Services (Diffserv) is the latest IETF effort for QoS-enabled IP networks.

Although Intserv has been standardized, its scalability limitation has been a major

hurdle for its wide deployment. To meet the immediate need of QoS delivery for

differentiated services, the Diffserv working group was formed in 1998. In addition,

Diffserv is expected to permit differentiated pricing of Internet service [29].

Due to the continuous growth in the number of users, the variety of applications, and

the capacity of the network infrastructure, Diffserv was developed with scalability in

26 Chapter 2. Traffic Control and QoS

mind. Firstly, Diffserv networks group packets into one of a small number of aggregated

flows based on the Diffserv Codepoint (DSCP) value in the Diffserv field (DS field) in

the IP header. This is known as behavior aggregate (BA) classification, where the DS

field consists of the six most significant bits of the IPV4 Type of Service (TOS) octet

or the IPV6 Traffic Class octet [53]. For each aggregation, a selected per-hop behavior

(PHB) or a PHB group is applied to forward the traffic by using a particular scheduling

treatment and in some cases packet dropping strategy. Secondly, Diffserv carries out

complex traffic classification and conditioning functions including metering, marking,

shaping and policing, all only at network boundary nodes, i.e. ingress and egress

routers. Meanwhile, simple packet classification and forwarding functions are located

in the core of the network to cope with a large amount of active traffic flows at coarse

granularity. The ingress and egress nodes of Diffserv networks may deploy a multi-field

(MF) classifier to examine the content of some arbitrary number of header fields. For

instance, 5-tuple (source and destination address, source and destination port, and

protocol type) is used for classification. In a more complicated case, information about

the incoming interface is also needed. Note that ATM and Intserv all have their own

solutions to the scalability issue by coping with traffic at aggregate levels. However, this

improved granularity comes at the cost of additional management and configuration

requirements. Additionally, the amount of forwarding state maintained at each node

in an ATM or an Intserv network scales in proportion to the number of edge nodes of

the network, even in the best case.

In addition to the scalability feature, the Diffserv model has the following features

compared to ATM and Intserv studied previously [29].

• With no consideration of applying any signaling protocols, Diffserv uses static

resource provisioning based on a service level agreement (SLA) between a cus-

tomer and an ISP or between two adjoining ISPs. Diffserv attempts to work with

existing applications without the need for making them signaling-compatible. By

contrast, the explicit and dynamic admission control and resource reservation in

ATM and Intserv help to assure that a specified QoS guarantee is achieved and

at the same time network resources are optimally used [35]. However, ATM and

Intserv have difficulty catering for certain services because those services do not

know how to provide the information used in the ATM and Intserv signaling.

2.2. Advanced QoS support 27

• Service provisioning and traffic conditioning policies are sufficiently decoupled

from the forwarding behaviors within the network interior. This way, implemen-

tation of a wide variety of service behaviors is permitted with possibilities for

future expansion.

• Supported services are decoupled from the particular applications in use. Diffserv

is able to provide a service that avoids assumptions about the type of traffic using

it. Thus, Diffserv caters for a variety of users with different service preferences

and expectations.

In a Diffserv network, the combination of more sophisticated functions at the edge,

and a number of PHBs and PHB groups at the core, works towards resource allocation

and service differentiation.

2.2.3.1 Basic Functions in Boundary Nodes

The basic functionalities of boundary nodes of Diffserv networks are packet classifica-

tion and traffic conditioning operated based on SLAs. Upon the arrival of a packet

a MF classifier, or at trust boundary a BA classifier, is used to search for a matched

entry associated with a SLA for the packet. The packet is subsequently steered to be

further processed by one or more of the traffic conditioning functions based on this

SLA, such as metering, marking, policing, or shaping. If the search fails, the packet

will be treated with best-effort and marked with a corresponding DSCP value in the

DS field.

• Metering: The process of measuring the properties of a traffic stream against its

traffic profile, which characterizes the traffic as specified in the SLA.

• Marking: The process of setting the DSCP value for packets on the basis of the

SLA and the metering results.

• Policing: The process of discarding packets within a traffic stream in accordance

with the state of a corresponding meter enforcing the specified traffic profile.

Policing is often operated in ingress nodes.

28 Chapter 2. Traffic Control and QoS

• Shaping: The process of delaying packets within a traffic stream to cause it to

conform to the defined traffic description. Shaping is often operated in egress

nodes.

All these four functions are not compulsory to condition a particular traffic stream.

For instance, policing can be omitted, given marking is done differently for the packets

conforming to the specified traffic description and the packets not conforming to it.

The boundary functions in Diffserv can be mirrored to their counterparts in ATM

and Intserv with the one exception of the marking function. In fact, ATM also accom-

modates the marking function for setting the CLP bit, while in Intserv and TCP/IP

it is proposed to mark the ECN field in the IP packet header to inform sources of

incipient congestion. However, marking the DS field with an appropriate DSCP value

is more critical for Diffserv, since it is the DSCP value on which the core network

bases its conducts of service differentiation. Any misconfiguration of the DS field could

make the Diffserv network misbehave. As a matter of fact, interior nodes select a for-

warding behavior for packets based on their DSCPs, mapping that value to one of the

supported PHBs using either the recommended standards or a local policy [29]. The

supported PHBs in the core network have no knowledge about SLAs. Thus far, the

Assured Forwarding (AF) PHB group and the Expedited Forwarding (EF) PHB have

been standardized by the Diffserv working group with best-effort (BE) as a default

PHB.

2.2.3.2 EF and AF

The EF PHB and the AF PHB group are described as follows.

• EF: EF provides a building block for low loss, low delay, and low jitter services.

To ensure that queues encountered by EF packets are usually short, it is necessary

to ensure that the service rate of EF packets on a given output interface exceeds

their arrival rate at that interface over long and short time intervals, independent

of the load of other (non-EF) traffic. The standard DSCP of EF is 101110.

• AF: AF provides assured forwarding of IP packets with an expected transmis-

sion capacity. While an AF user may transmit more traffic than the subscribed

2.2. Advanced QoS support 29

information rate, it is with the understanding that the excess traffic may not be

delivered with as high a probability as the traffic that is within the rate. To this

end, a set of PHBs are specified and implemented simultaneously as a group with

different levels of drop precedence. Currently, three PHBs comprise one AF PHB

group, and each PHB corresponds to a certain drop precedence level and uses a

certain DSCP value.

The Internet community has been enthusiastic about Diffserv due to its scalability

feature. However, there are some limitations in Diffserv for provisioning end-to-end QoS

guarantees. Diffserv deploys static resource reservation with no need of any signaling

procedures or dynamic admission control [36]. Even with the assumption of adequate,

or even over-provisioning, higher-quality guarantees may still not be ensured. For

instance, with resources reserved for handling 10 IP telephony sessions on one path,

the join of the 11th session may degrade the performance of all the previous existing

sessions. On the other hand, a PHB or a PHB group only defines the behavior of a

single node. Also, each router makes its own decision about the next hop for a packet

due to the decentralized feature of IP networks. Thus, no QoS is guaranteed in a single

Diffserv administrative network, let alone end-to-end QoS guarantees.

2.2.3.3 Improvement of QoS Handling in Diffserv

There are some technologies that can be utilized individually or jointly to alleviate

the limitations of the capability of Diffserv for QoS handling. Among them, one can

use dynamic provisioning and topology-aware admission control for some services with

high quantitative QoS requirements. Dynamic admission control in the network can

be evoked upon the receipt of a service request. The request can be passed in a

number of ways including using the semantics of RSVP, SNMP, or directly set by a

network administrator in some other way. The agent carrying out admission control is

a centralized oracle of the Diffserv network, the bandwidth broker (BB) as proposed

in [76]. The local BB has sufficient knowledge of resource availability and network

topology. If there are adequate resources in the network, the request is accepted.

Otherwise, there are two possibilities. If network resources are statically allocated, the

request will be rejected. Alternatively, in the case of dynamic allocation, the SLA will

be renegotiated based on the request and the final decision will be made accordingly.

30 Chapter 2. Traffic Control and QoS

Another direction is to combine Diffserv with MPLS. MPLS stands for Multiproto-

col Label Switching Architecture. MPLS is named after its capabilities of supporting

multiple network layer protocols and also operating over virtually any link layer pro-

tocol. It primarily is a label-switching protocol and, as with other label switching

technologies such as ATM, it is capable of higher performance switching. At the edge

of an MPLS-capable network, the ingress node assigns a particular packet to a par-

ticular FEC (Forwarding Equivalence Class). For each FEC, there is a fixed path for

forwarding its traffic by using labels, and resources can be allocated along the way.

MPLS supports explicit routing for traffic engineering and aggregation by using the

concept of FECs in order to be scalable [88]. Moreover, RFC 3270 has specified a

solution for supporting the Diffserv behavior aggregates whose corresponding PHBs

are defined over an MPLS network [20], by providing mappings to ensure that packets

marked with various DSCPs receive the appropriate QoS treatment at each router in

the network [11].

Note that the above approaches increase complexity only in the control plane of the

network, whereas the scalability and simplicity remain in the data-plane, since traffic

is forwarded based on DSCPs and the corresponding PHBs.

2.2.4 Best-effort with Service Differentiation

It needs time to achieve agreement on the deployment of Diffserv for the accomplish-

ment of end-to-end QoS delivery among ISPs, despite available technologies. Several

transient architectures offering best-effort service but with service differentiation have

been proposed before the implementation of any end-to-end QoS infrastructure. In-

stead of endeavoring to provide end-to-end QoS, these approaches offer different service

preferences and meet user expectations without guarantee. This way, some complex

functions such as admission control and resource reservation can be omitted. Besides,

there are no requirements for their implementation in all the network elements trans-

versed by a connection. With only the operational necessity of some sophisticated

buffer management and scheduling schemes, their deployment is expected to be imme-

diate. Three of them are introduced below in turn.

• Proportional Differentiated Services. The Proportional Differentiated Services ar-

2.2. Advanced QoS support 31

chitecture aims to control the ratios of some basic performance measures among

all the traffic classes based on certain class differentiation parameters specified

by network operators. This way, traffic performance can be predictable and con-

trollable. When average loss rate and average queuing delay are selected as such

measures respectively, two different models have been proposed in [13] and [12]

in sequence. In the proportional delay differentiation model, three scheduling

schemes were proposed and evaluated, while two dropping mechanisms were op-

tions for the proportional loss rate differentiation model.

• Application Characteristics Based Service Differentiation. Both the Best-Effort

Differentiated Services (BEDS) model [43] and the Asymmetric Best-Effort (ABE)

model [59] tend to differentiate traffic services based on the nature of traffic, ei-

ther loss-sensitive or delay-sensitive. To this end, they combine a certain queuing

strategy and scheduling mechanism, with a difference in the implementation de-

tails and an additional assumption of traffic being TCP-friendly conformant in

ABE. Intuitively, in the over-loaded network conditions, more packets will be

dropped from delay-sensitive traffic than from loss-sensitive traffic, while the

scheduler picks up the accepted delay-sensitive packets more quickly than the

loss-sensitive ones.

• Flow Length Based Service Differentiation. It is well observed that Internet

traffic is composed of a large number of short-lived connections (or mice) and

a small number of long-lived connections (or elephants). The large number of

mice only contribute to a small fraction of the total traffic bytes, whereas the

larger amount of traffic comes from elephants. It is known as the mice and

elephants phenomenon. Despite the user expectation that shorter flows should

fly through the network with minimum packet loss and delay compared with their

longer counterparts, mice rarely obtain their bandwidth share in competition

with elephants due to the conservative nature of TCP. An infrastructure was

established in two simultaneous and independent works [54] and [7] on the basis

of this mice and elephants phenomenon, through forwarding treatment being

biased in favor of mice. Flows are first classified to be either a mouse or an

elephant, based on its length and intensity, and marking them as IN packets

32 Chapter 2. Traffic Control and QoS

and OUT packets, respectively. Then packets are served in a RIO (RED with

IN/OUT packets) queue with preferential treatment for packets from mice.

2.3 Summary

In this chapter, we have given an overview of the current Internet and some QoS

schemes including ATM, Intserv, Diffserv, and best-effort with service differentiation,

with regard of their supported services and especially the traffic control mechanisms for

realizing these services. It appears that ATM technology has the most comprehensive

and reliable features to support the integrated services of voice, video, and bursty data.

Due to the widespread use of IP networks, ATM clouds have been used as a high speed

link in backbones and more and more access network infrastructures, where they find

a nice niche due to their subtle way of managing a small number of flows in almost

static routing architectures. Intserv has been designed for the Internet in a similar way

to ATM in terms of handling QoS, except that Intserv has to deal with variable packet

size and maintain soft states in each node.

Both ATM and Intserv have considered QoS management at an aggregate level,

however some limitations exist. As a result, Diffserv has become the technology of

choice overwhelming in the Internet community. To date, Diffserv combined with

some new technologies, particularly MPLS, has been an active research area and is

expected to yield a scalable QoS architecture. There are also some service differen-

tiation proposals for best-effort Diffserv prior to the implementation of Diffserv with

the compromise of QoS. More than one QoS architecture has been proposed, discussed,

and advocated. It is deemed that they will coexist for the near future both in academic

and realistic environments.

One of the underlying traffic control mechanisms in the best-effort service model

and the aforementioned QoS architectures is queuing. In the case of requiring low

delay and low loss, a short or even empty queue is expected by allocating adequate

bandwidth and policing or shaping against a corresponding traffic profile. Queuing thus

mainly performs on traffic with non-stringent QoS requirements. In ATM, since ABR

employs explicit feedback for sources adjusting their transmission rate, UBR and GFR

queue management is necessary. Besides the best-effort service, the controlled service

2.3. Summary 33

in Intserv and AF in Diffserv also deploy a queuing strategy. The implementation of

any queuing mechanism is ISP- or vendor-specific. In the current Internet, Drop Tail

queuing is used, but poor performance has been observed with heavy load traffic. Thus,

dropping packets before buffers overflow is proposed, and such a proactive approach is

called active queue management (AQM) [16]. Especially, the combination of TCP and

AQM is one of the main candidates for QoS deployment in any TCP-based environment.

In the next chapter, existing AQM schemes and the significance of AQM will be studied

in details.

Chapter 3

Queue Management and Internet

Traffic Modelling

Although the TCP end-to-end congestion control algorithms reviewed in the previous

chapter have played an important role in preventing congestion collapse in the Inter-

net, there is a widespread belief that it is necessary to supplement the end-to-end TCP

control mechanisms by proactive control mechanisms inside the network in order to

achieve network efficiency and QoS guarantees. It is a very active topic of research to

extend the current Drop Tail queue management scheme in routers. Random Early

Detection (RED) was one of the first queuing schemes which realizes active queue man-

agement (AQM). RED has been extensively studied through simulations, experiments,

and theoretical analysis. Despite support from the IETF, the main difficulty of RED

is the configuration of its control parameters.

In this chapter, we first describe Drop Tail and its limitations with heavy-loaded

traffic. Then we provide an in-depth introduction to RED and related issues including

its gentle mode, Explicit Congestion Notification (ECN), and the issue of parameter

settings in RED. RED variants and other AQM schemes, arising on the basis of various

theories in such as statistics and closed-loop control to seek better solutions in queue

management other than RED, are then discussed, followed by a survey of some typical

AQM schemes. The survey will look into these AQM schemes from three different points

of view including congestion indicators, control principles, and marking probability

calculations. Finally, we discuss the traffic modelling used for generating realistic

Internet traffic in simulations.

34

3.1. Drop Tail 35

3.1 Drop Tail

Internet traffic inputs to routers in bursts with idle periods in between, over a wide

range of time scales [82, 33]. This traffic behavior is characterized as self-similarity. The

burstiness is mainly contributed by the TCP congestion control mechanism [78, 42],

as well as heavy-tailed distribution of file size [93] and compressed ACK [98]. Due

to this salient feature of the Internet, therefore, it is essential for routers to deploy

output queues to buffer bursty traffic and forward the excessive packets during the idle

intervals.

Most operational routers currently use Drop Tail queuing coupled with FIFO (first

in first out) scheduling. In Drop Tail, all packets are accommodated in a buffer until

it is full. Packet losses from a Drop Tail queue will usually be detected by a corre-

sponding TCP via duplicated ACK packets or its retransmission timer. The TCP then

takes this signal as a congestion indication and reduces its sending rate in accordance

with the TCP congestion avoidance algorithm, i.e. the algorithm which sets cwnd

which was described on Page 13 to mitigate congestion in the network. Therefore, in

general, a queuing strategy can be viewed as a queue management (QM) controller,

and TCP/QM can be discussed in the framework of feedback control systems [19, 87].

The control object is the traffic plant representing the TCP/QM system. Within the

control-loop depicted in Figure 3.1, the QM controller makes decisions on dropping

probability of arrival packets based on the feedback from the traffic plant and then

sends a control signal to the traffic plant informing it of the dropping probability. Note

that valid feedback from the plant is delayed at least one round trip time (RTT) for

each connection. The QM controller based on Drop Tail actually conducts on-off con-

trol in that dropping probability is set to either 0 or 1. Not only is it easy to implement

Drop Tail queuing in routers but also Drop Tail works well with TCP in over-provision

networks.

Figure 3.1: Block diagram of a generic queue management control system

36 Chapter 3. Queue Management and Internet Traffic Modelling

However, Drop Tail queue management leads to oscillations that can exhibit com-

plex and chaotic behavior [18]. There are some consequences of Drop Tail queuing as

follows.

• Global synchronization. With Drop Tail, loss events in a router tend to involve

many packets due to the burstiness of packet arrivals. Since some of the dropping

signals may be delayed due to longer RTTs, the corresponding TCP connections

can transmit even more data before the cut-off response. This will worsen the

congestion, and result in more packet losses and thus more connections involved.

By then, many TCP connections decrease their sending rate in synchrony. In the

worst case, they have to wait for retransmission timeout and enter slow start to

recover. This leads to severe link underutilization.

• Full queues with a long period of time. Large buffer capacity is needed especially

in a bottleneck point to absorb bursty traffic. In an over-loaded network, however,

large buffer capacity only contributes to longer delay. Also, on the basis of

queuing analysis, queue length distribution decays much more slowly for Internet

traffic [78].

• Unfairness. With Drop Tail, incoming packets are discarded whenever the buffer

is full. The arbitrary selection of connections to throttle back results in penaliz-

ing bursty flows and large differences in the number of dropped packets among

competing connections [72].

It is thus likely that bottleneck Drop Tail buffers experience long term block and

subsequently long term emptiness before reaching any steady states. Therefore, perfor-

mance is considerably degraded with the coupled mechanisms of TCP and Drop Tail

queuing under heavily loaded traffic conditions.

3.2 RED

RED has been designed to avoid some of the drawbacks of Drop Tail by means of con-

gestion avoidance [51, 61]. Since the failures of Drop Tail are related to late congestion

indication and consecutive packet drops, RED deploys early congestion detection and

random drop.

3.2. RED 37

3.2.1 RED Parameters and Dropping Probability

Upon the arrival of packets, RED first computes the average queue size q̄ by means of

an exponential weighted moving average:

q̄ = (1− wq)q̄ + wqq (3.1)

where wq is the time constant of the low-pass filter and q is instantaneous queue length.

The average queue size q̄ thus tends to smooth out traffic fluctuations to prevent any

biases against bursty traffic and filter out temporary congestion.

The variable q̄ is then used to estimate the congestion level by comparing it with two

predefined thresholds, a minimum threshold minth and a maximum threshold maxth.

More specifically, the dropping probability pr is determined for the incoming packets

as follows.

• q̄ < minth (congestion free phase): There is no congestion and pr is 0.

• minth ≤ q̄ < maxth (congestion avoidance phase): Incipient congestion occurs

and pr increases linearly as q̄ increases until q̄ reaches the maximum threshold

maxth. The determination of pr is based on the formula:

pr = maxp
q̄ −minth

maxth −minth

, (3.2)

where maxp is the maximum predefined value for pr, when q̄ is within the range

of [minth, maxth).

• q̄ ≥ maxth (congestion control phase): There is persistent congestion and pr is 1.

The function for calculating pr is also depicted in Figure 3.2. However, in the case of

q̄ within the range of [minth, maxth), the value is only an initial dropping probability.

To further avoid consecutive packet drops, the computation of the final value takes

account of the number of packets enqueued since the last drop, denoted as count on

the basis of the formula:

pr =
pr

1− count · pr
. (3.3)

38 Chapter 3. Queue Management and Internet Traffic Modelling

This way, at a given average queue size level, the number of arriving packets between

dropped packets is a uniform random variable, with which dropping events occur at

fairly regular intervals rather than close together.

minth th
max

maxp

1

pr

avgBuffer_size

Figure 3.2: RED dropping probability

Ideally, RED controls the average queue length within the range of (0, maxth) to

avoid persistent congestion. Thus RED operates in the congestion free phase and the

congestion avoidance phase. Nevertheless, for severe congestion, RED adopts a strong

reaction and performs in the same way as Drop Tail.

RED, unlike Drop Tail, thus proactively detects any incipient congestion by esti-

mating average queue length and informs those active connections with higher data

intensity to back off their sending rates. RED leaves time for the endpoints of the

TCP connections to respond to network congestion and avoids congestion becoming

severe while maintaining high link utilization. It is stated in [51] that, with appropriate

settings of all its control parameters, RED is able to eliminate global synchronization

and achieve fairness among competing connections with simplicity of implementation.

Table 3.1 summarizes the control parameters of RED.

Table 3.1: RED Parameters
Parameter Function

wq Weight for estimating average queue size
maxp Maximum dropping probability
minth Lower threshold
maxth Upper threshold

3.2. RED 39

3.2.2 Gentle Mode of RED

In the original RED, the dropping function is linear between 0 and maxp as the average

queue size varies from minth to maxth, while it steps from maxp to 1 after the average

queue size reaches maxth. As recommended later on in [46], the default value of maxp

should be 0.1. Therefore, to smooth out the large jump from 0.1 to 1 and achieve

robust performance, the dropping function is also linear between maxp to 1 when the

average queue size varies from maxth to 2∗maxth as shown in Figure 3.3. This removes

the rigidity in the calculation of pr in RED and hence is called gentle RED.

minth th
max

maxp

1

pr

avgBuffer_size2max
th

Figure 3.3: RED dropping probability with gentle mode

One of the first adoptions of gentle RED appeared in [89]. The paper investigates

the performance of gentle RED in ATM UBR networks supporting TCP traffic by

means of experimental simulations. The Simulation results were compared with those

of plain UBR, Early Packet Discard (EPD), and Fair Buffer Allocation (FBA). The

author concluded that gentle RED is able to achieve low delays while offering high

TCP goodputs and link utilization.

How to implement RED with gentle mode for the best behavior of RED is discussed

in [45].

3.2.3 Explicit Congestion Notification

TCP has exhibited robust features in congestion control. Packet losses, detected

through duplicated ACK packets or the retransmission timer, are regarded as an indi-

cation of congestion. TCP accordingly throttles back its sending rate. The approach

40 Chapter 3. Queue Management and Internet Traffic Modelling

of using packet losses as control feedback for TCP, however, is suboptimal. One reason

is that once a packet is dropped before it reaches its destination, all the resources it

has consumed in transit are squandered. In this aspect, it is expensive to lose a packet

on its way, although dropping a packet is a very cheap operation in terms of router

processing [83]. Apart from the waste of network resources and low network through-

put, performance in delay is also degraded, which will impact on delay-sensitive TCP

connections. In addition, for short-lived traffic, which is loss-sensitive, one packet drop

can significantly affect the overall flow transmission performance.

With an intention to improve network efficiency and the performance of loss and

delay-sensitive applications, explicit congestion notification or ECN has been proposed.

This proposal first appeared in RFC 2481 [85] as an Experimental Protocol for the

Internet Community. Later on it was extended as a Standard Track in RFC 3168 [86],

where the usage of the ECN field in the IP header was clarified. The ECN field consists

of two bits and makes four ECN codepoints, ‘00’ to ‘11’. With ECN, once an IP router

detects impending congestion before the buffer overflows, messages are passed on to

TCP sources through marking with the Congestion Experienced (CE) codepoint 11 in

the ECN field of the IP header, instead of dropping packets. Moreover, ECN requires

support from the transport protocol. TCP thus has to be modified to be ECN-capable.

Negotiation between the TCP endpoints might be involved during setup through SYN

(synchronization) and SYN-ACK packets to determine that all of the TCP endpoints

are ECN-capable, so that the sender can inform the network of its ECN capability

through marking with the ECT codepoint 01 or 10 in the ECN field of transmitted

packets. Upon the receipt of a packet with the CE codepoint set, the TCP receiver

forwards the congestion information in the header of its next TCP ACK sent to the

TCP sender. The TCP sender reacts to the congestion as if a packet had been dropped.

Also, the TCP sender informs the receiver in its next packet of its acknowledgment

and reaction. In addition, the end-systems should react to congestion at most once

per RTT to avoid reacting multiple times to multiple indications of congestion within

a RTT. Note that if severe congestion occurs or the buffer runs out of space, then the

router has no choice but to drop the new arrival packet.

Clearly, it is required that the queue management in ECN-capable routers is capable

of detecting incipient congestion before buffers overflow, which the traditional Drop Tail

3.2. RED 41

scheme fails to do. The implementation of ECN thus has to be coupled with an AQM

scheme. Consequently, the performance of ECN is dependent on the associated AQM

mechanism.

The use of ECN prevents unnecessary packet drops and packet delay. ECN also

benefits sources being informed of congestion quickly and unambiguously, without the

source having to wait for either the retransmit timeout or duplicated ACK packets

to infer a packet loss [49]. Moreover, the robustness of the ECN protocol allows the

incremental deployment of ECN in both end-systems and in routers.

The deployment of ECN has been strongly supported by some studies but not all.

For instance, in [83] the authors first illustrated that global synchronization, which

RED targets to solve, is no longer an issue. The syndrome could happen with Tahoe

TCP and has been addressed by the current TCP and it subsequent variants with the

fast retransmission and fast recovery algorithms. The simulation results then showed

that although ECN leads to fewer packets drops, TCP goodput is not guaranteed to

improve under uniform condition where all the hosts and routers are ECN compatible.

On the other hand, in no case does ECN seem to lead to an actual degradation in

performance. The explanation for this was that TCP/ECN behaves very similarly

to standard TCP for detecting network conditions. Also, it was concluded that the

presence of the TCP/ECN sender can have significant impact on the performance of

the ECN-unaware senders since it reacts faster to incipient congestion and can thus

avoid unsuccessful data transmission. However, one positive sign in the paper is the

achievement of a fairer resource allocation among competing connections under uniform

condition.

From now on, we use the terms ‘dropping’ and ‘marking’ in queue management as

exchangeable for either dropping a packet or setting the ECN field in its header, unless

otherwise specified.

3.2.4 Parameter Settings in RED

The paper [51] elaborated the motivations and the operation of the RED algorithm,

and demonstrated its merits with several simple simulations through the measurements

of network throughput and queuing delay. In addition, the paper analyzed RED control

parameter settings and presented a guideline based on networking experience. Since

42 Chapter 3. Queue Management and Internet Traffic Modelling

then, many studies have been carried out to evaluate its performance by means of

experiments, simulations, or theoretical analysis.

Despite the guideline in [51] and subsequent discussions of setting parameters in [46],

RED parameters are sensitive to network configuration and traffic mix. For instance,

the observations from the simulation results in [34] suggest that for traffic patterns

different in the number of active TCP connections, different values of maxp in RED

are required. By using a simple testbed made of up to 16 PCs and two CISCO 7500

routers, [25] presents that the RED parameters have minor impact on the performance

with small buffers compared to Drop Tail, while with large buffers RED indeed can

improve the systems performance. However, [25] also indicates that RED is difficult to

calibrate and parameter tuning in RED remains an inexact science.

Given the sensitiveness of the RED parameters, some configuration recommenda-

tions have been made based on control theory. For example, in [44], based on the

drop-conservative policy and the delay-conservative policy, two stability conditions

were introduced to derive the configuration for RED parameters: maxp, minth, and

maxth, respectively. Also, the averaging weight wq is configured by using averaging

interval and sampling interval. Based on their observations in [31] that the RED queue

converges to a state of heavy oscillation in the presence of two-way bulk-data TCP

traffic in a range of traffic conditions, the stability criteria of RED with TCP traf-

fic was obtained in [99] for setting the RED parameters, and for ensuring the queue

size to achieve a state of bounded oscillation around a desired equilibrium point, i.e.

(minth + maxth)/2. A conservative stability condition is formulated in [87] with buffer

size as one variable, by using a discrete-time map to model the TCP-RED interaction.

While the model in [87] is first-order discrete nonlinear, a linearized model was adopted

to mimic the interconnection of TCP and a bottlenecked queue in [18] and to derive a

configuration recommendation for the RED parameters.

It would be problematic in the implementation of RED, if one uses the existing

RED configuration recommendations, due to the requirements of the network informa-

tion in the majority of these models. Especially, in the case of the need of the number

of active connections and flow RTT because of the constantly changing nature of the

Internet, RED configuration becomes even more complicated. Since their research re-

sults have not agreed with the claims made in [51] about overcoming the problems of

3.3. RED Variants and Other AQM Schemes 43

Drop Tail queuing, some researchers have not recommended that RED be deployed. On

the basis of queuing theory simple analytic models were developed in [5] for the RED

and Drop Tail queue management schemes. Both numerical and simulation results did

not show clear benefits of RED over Drop Tail, in terms of loss rates, the number of

consecutively lost packets, mean delay, and delay jitter. Moreover, replacing average

queue size with instantaneous queue size, RED effectively avoid global synchroniza-

tion. Due to the popularity of Web traffic in the Internet, the effects of RED on the

performance of Web browsing has been studied via extensive Lab experiments, with

regards to end-user response times. The RED performance was assessed across a range

of parameter settings and given traffic loads. For the given traffic loads up to 90%

of link capacity, there is little difference in response times between RED and Drop

Tail, while with the given traffic loads which approach the link capacity, RED is able

to yield better performance. However, the better performance in response time was

achieved by carefully tuning the RED parameters based on a trial-and-error approach,

and by sacrifying link untilization. It was suggested that adequate provisioning is more

efficient for transmitting Web traffic than tuning the RED parameters.

Although RED suffers the difficulty of tuning its parameters, RED itself has high-

lighted the necessity and potential benefits of conducting queue management in a

proactive way. This suggests two possible directions in the development of AQM: first,

making static RED becoming adaptive to network conditions; second, development of

new AQM schemes. A survey of these two approaches to the development of active

queue management is given 1 in the following section.

3.3 RED Variants and Other AQM Schemes

Due to the difficulty in finding a set of suitable parameters for RED under different

congestion scenarios and the dynamic nature of network communication, constant self-

tuning of these parameters is needed to improve the RED performance. One modified

version of RED was reported in [34], where the adjustment of maxp is done by exam-

ining the variations in average queue length. This way, whether RED should become

1A distinction is made here between AQM, the general concept, and an AQM, a specific active
queue management scheme.

44 Chapter 3. Queue Management and Internet Traffic Modelling

either aggressive or conservative is based on the feedback signal of the changes in traffic

loads. In the paper, the authors also emphasized the significance of combining AQM

with ECN to effectively reduce packet loss in congested networks. Another RED variant

is Adaptive RED (ARED) presented in [50], which has the goal of gaining predictable

average queuing delay besides high TCP goodput and link utilization. To achieve these

goals, ARED attempts to maintain the average queue length around a desired target

queue length within a certain deviation. ARED adopts AIMD policy that additively

increases maxp if the average queue size is above the target range, whereas multiplica-

tively decreasing maxp if the average queue size is below the target range. In addition,

ARED also auto-tunes the RED weight parameter wq related to link capacity in a way

that higher-speed links require smaller values for wq. Furthermore, since using a con-

stant for the increase step size in the AIMD policy of ARED is not optimal in a variety

of traffic scenarios, a fuzzy logic (FL) approach, FLARED [38], has been introduced

with an intention to modify the ARED algorithm by adaptively obtaining a value for

the increase step size.

The essence of these schemes is to remove the sensitivity of the RED parameters

while retaining RED’s spirit. More importantly, these variants use the change in queue

size along with average queue length to estimate traffic loads in the network and the ef-

fect of the current value of the dropping probability pr on it, and adjust pr accordingly.

It is obvious that RED using queue size alone fails to accurately gain such information

that the performance of RED is sensitive to the parameter settings and traffic loads.

Besides these modified RED mechanisms, some new AQM schemes have been de-

vised. Most of them have been designed on the basis of domain knowledge, experience,

or statistical methods. For instance, instead of using either average queue length or in-

stantaneous queue length, BLUE [41] performs queue management on the basis of two

extreme events: packet losses and link idle with an additive-increase additive-decrease

(AIAD) policy. In particular, pr is additively incremented, when the buffer is full and

a certain time has passed since the immediately previous increase action. In the case

of an idle link or empty queue event, the action of additive decrease of pr is taken if

necessary. However, BLUE suffers the problem of oscillation in transient conditions.

To alleviate the oscillation between loss and under-utilization, GREEN [94], upon the

receipt of a new packet, uses exponential averaging to estimate input rates, increments

3.3. RED Variants and Other AQM Schemes 45

pr by a predefined constant if the estimate is below a target link capacity, and decre-

ments it by the same value otherwise. Based on a steady-state formulation of TCP,

another version of GREEN [92] computes the marking probability for each flow by tak-

ing account of both the number of flows and its RTT, provided that routers are willing

to collect such information. To distinguish these two GREEN algorithms, the former is

called GREEN1 while the latter GREEN2. Stabilized RED (SRED) [77] computes pr

based on the instantaneous buffer occupation and on the statistically estimated number

of active connections N . Two dimensionless measures, offered load and link occupancy,

are used for congestion notification by Acceptance and Departure Rate (ADR) in [21].

Random Exponential Marking (REM) [4] is a practical implementation of a rep-

resentative optimization approach [73] to reactive flow control, where the goal is to

calculate source rates that maximize the total user utility over the aggregate source

rate at each link subject to capacity constraints. The flow control is derived by solv-

ing a dual problem using gradient projection algorithm. Structurally, REM consists

of a link algorithm and a source algorithm. In the link algorithm, first congestion is

measured by a variable, called link price, based on the difference between input rate

and link capacity (the difference is called rate mismatch), and the difference between

queue length and target (the difference is called queue mismatch). The link price is

increased if the weighted sum of rate and queue mismatches is positive, and decreased

otherwise. Then the marking probability is computed by an exponential function of

the current price; each arrival packet is marked accordingly if the upstreams have not

done so. The adoption of the exponential marking probability is due to the fact that it

allows the end-to-end marking probability to be exponentially increasing in the sum of

the link prices at all the congested links in its path. Consequently, the endpoint, which

executes the source algorithm, is able to estimate the path congestion measure and

adjusts its rate based on the estimate. In REM, the link algorithm works as an AQM

scheme [27] in a router. The term ‘REM’ from now on is used for the link algorithm

unless otherwise specified. However, the derivation from a static model implies that

the performance of REM may suffer in transient network conditions.

Using a penalty function approach for the same optimization problem in REM, the

Adaptive Virtual Queue (AVQ) link algorithm was derived. AVQ has been discussed

in [65, 64, 66] along with the issues including an analytic solution and a simplified

46 Chapter 3. Queue Management and Internet Traffic Modelling

practical solution, stability, and parameter configuration guidelines. Corresponding to

the concept of link price in REM, AVQ deploys virtual capacity or marking level to

reflect the network conditions. Virtual capacity, which is non-negative and less than

the actual capacity, is adapted as a function of the difference between a desired link

capacity and the total arrival rate in a way that virtual capacity is increased when

the difference is positive, and decrease otherwise. The idea behind AVQ is that when

the arrival rate exceeds virtual capacity, marking should take place so that the total

arrival rate on each link is regulated towards a target link capacity and eventually the

desired utilization is achieved. Taking the adaptive virtual capacity and the real buffer

size into account, a virtual buffer admits arrival packets until it overflows. Thus, the

marking probability in AVQ is implicit. Moreover, it has been stated that in order

to avoid successive packet drops from the same flow, AVQ could use an appropriate

random dropping mechanism like the one in RED. To be robust, AVQ chooses the

desired utilization to be less than one to accommodate the transient behavior due to

the presence of extremely short flows or variability in the number of long flows in the

network.

A Proportional Integral (PI) controller [19] is another AQM solution from the classi-

cal control theory standpoint. In a linearized TCP/AQM control system, integral plus

proportional control is selected for queue management with the potentials of decou-

pling the queue size and the dropping probability, reaching a desired reference value of

queue size or a set-point, and achieving faster responsiveness. Interestingly, the drop-

ping probability of PI is in the same form of link price in REM but with more robust

transient performance. Another example of a control theory based AQM scheme is a

variable structure (VS) based control approach proposed in [96] to accommodate the

nonlinear nature of TCP/AQM.

In the literature, Fuzzy Explicit Marking (FEM) [17] is based on a modern control

theory, fuzzy logic (FL). FEM calculates dropping probability pr based on queue states

in a certain sampling period. The error on the queue length, the difference between a

desired value and the current instantaneous queue length, is regarded as an important

feedback variable. The errors from two consecutive sample periods are also used as an

input in FEM.

3.4. Survey of AQM Schemes 47

3.4 Survey of AQM Schemes

All the AQM schemes address three issues in order to do queue management, including

choosing appropriate congestion indicators, selecting control principles, and calculating

marking probability. In the following two subsections, some of the existing AQM

mechanisms are reviewed in these three aspects.

3.4.1 Congestion Indicators and Control Principles

Congestion indicators in AQM are used to detect incipient congestion and reflect con-

gestion severity. For example, in RED, exponentially weighted average queue length

(EWAQ) is used as a congestion indicator. When traffic load increases and the output

buffer is built up, the marking probability of RED thus is increased to alleviate the

incipient congestion. RED thus has to firstly experience longer queuing delay before

conducting control. In addition, queue length gives very little information about the

severity of congestion, the number of active flows passing the link [41]. Therefore,

many other AQM schemes try to avoid the coupling of congestion indication and per-

formance measure such as delay and loss rate, and adopt other variables such as the

number of active flows and input rate as congestion indicators. Apart from congestion

indicators, control principles direct the design and eventually the control system moves

towards or around a desired steady state. In Table 3.2, the congestion indicators and

control principles of those typical AQM mechanisms have been given. Note that in the

table queue mismatch refers to difference between queue length and a target, while rate

mismatch is the difference between input rate and a target link capacity, as in REM

and GREEN1.

Note that in Table 3.2, queue length might mean different concepts for each AQM

scheme. In particular, for RED, SRED, and ARED, it refers to EWAQ; for REM, it is

smoothed or instant queue length [4]; for PI, it is instant queue length.

3.4.2 Marking Probability

Each AQM scheme calculates marking probability based on chosen congestion indica-

tors and control principles. First, a list of commonly used notions is given below.

48 Chapter 3. Queue Management and Internet Traffic Modelling

Table 3.2: Congestion indicators

AQM schemes Congestion indicators Control principles

RED Queue length Keep queue length within a range
[minth, maxth]

SRED Queue length and statistically
estimated active flow number

Keep queue length stable and in-
dependent of the number of active
connections

ARED Queue length and queue mis-
match

Provide average queuing delay

REM Link price Match rate clear buffer
PI Queue mismatch and change in

queue length at two consecu-
tive instants

Match rate clear buffer

BLUE Packet loss and link idle Prevent packet loss and keep link
utilization high

AVQ Virtual capacity Regulate link utilization to a de-
sired value

GREEN1 Rate mismatch Match rate clear buffer
GREEN2 Active flow number and RTT Apply the knowledge of steady-

state TCP congestion control be-
havior in routers

ADR Offered load and link occu-
pancy

Become scalable with varying link
capacities, buffer sizes, and traffic
loads

c – link capacity q – queue size
q̄ – EWAQ q0 – desired queue size
pr – dropping probability b – packet size
N – the number of active flows MSS – maximum segment size
RTT – round trip time p – packet loss probability

In RED, first q̄ is calculated by (1 − wq)q̄ + wqq, where wq is time constant. The

pr can be obtained by two steps as follows:

pb = maxp(avg −minth/(maxth −minth))pr = pr/(1− count · pb) (3.4)

where maxp is the predefined maximum value for pr, and count is packet number since

the last marked packet.

SRED statistically estimates the number of active flows N as the inverse of hit

frequency P . SRED maintains the information of the recently seen flows in a “Zombie

List”. If incoming packet flow information matches a randomly chosen zombie in the

3.4. Survey of AQM Schemes 49

list, a “hit” is declared. Otherwise “no hit” is declared.

hit =

 0 if no hit

1 if hit
(3.5)

Average P by P = (1− α)P + αHit. Then, pr is calculated in two steps as follows 2:

pb =


pmax if 1

3
B ≤ q < B,

1
4
× pmax if 1

6
B ≤ q < 1

3
B,

0 if 0 ≤ q < 1
6
B.

(3.6)

0

1

q

pr

p
max

1/4 × P
max

B1/3 × B1/6 × B

pr =


pb

65,536
×N2 1

256
≤ P ≤ 1

pb 0 ≤ P < 1
256

(3.7)

where B is buffer capacity.

The main difference between ARED and RED is that ARED periodically adjust

maxp based on the difference between q̄ and a target range of queue length, [q1, q2], as

follows.

maxp =


maxp + α q̄ > q2

maxp ∗ β q̄ < q1

maxp q1 ≤ q̄ ≥ q2

(3.8)

where α and β are constant.

REM periodically adapts link price p based on the weighted sum of rate mismatch

between input rate λ and c, and queue mismatch between queue size and q0 as follows:

p = [p + γ(α(q − q0) + (λ− c))]+ (3.9)

where γ > 0 and α > 0 are small constants and [z]+ = max{z, 0}. Then pr is calculated

2The figure for the first step of the calculation is plotted for reference.

50 Chapter 3. Queue Management and Internet Traffic Modelling

as follows 3:

pr = 1− φ−p (3.10)

0

0.2

0.4

0.6

0.8

1

p

pr

where φ > 1 is a constant.

PI uses two consecutive queue mismatch to update pr as follows in a period basis:

pr = pr + α ∗ (q − q0)− β ∗ (qold − q0) (3.11)

where qold is the queue size in the last instant, α and β are PI coefficients.

BLUE periodically adjusts pr based on packet loss and link idle events. If a packet

loss event occurs, additively increase the marking probability by a constant d1, while

if a link idle event occurs, additively decrease the marking probability by a constant

d2.

AVQ updates virtual queue size by V Q = max(V Q − C̃(t − s), 0) upon a packet

arrival, where C̃ is virtual capacity, t is the current instant, and s is the last packet

arrival time. If the new packet can not be accommodated by the virtual buffer due to

the buffer size limit, it is dropped. Otherwise, the virtual queue size is increased by

its size b. Moreover, virtual capacity C̃ is adapted upon the admission of an arrival

packet as follows:

C̃ = max(min(C̃ + α ∗ γ ∗ C(t− s), C)− α ∗ b, 0) (3.12)

where α is the damping factor and γ is the desired link utilization.

GREEN1 computes pr as follows:

pr = pr + ∆P · U(xest − ct) (3.13)

3The figure for the calculation is plotted for reference.

3.4. Survey of AQM Schemes 51

where ∆P is a constant and ct is the target link capacity, which is just below the actual

link capacity c. The estimated input rate xest is set as (1− exp(−Del/K)) ∗ (b/Del) +

exp(−Del/K) ∗ xest, where Del is the inter-packet delay and K is the time constant.

The step function U(x) is defined by:

U(x) =

 1 x ≥ 0

−1 x < 0.
(3.14)

GREEN2 derives the computation formula for pr on the basis of the TCP steady-

state behavior modeled in the form of

throughput =
MSS × C

RTT ×√
p
, (3.15)

where C is a constant. By replacing throughput by c
N

, the dropping probability for

flow i, pri, is

pri = (
N ×MSSi × C

c×RTTi

)2. (3.16)

ADR can be timer-based, where the fraction of traffic that can be allowed f is com-

puted periodically. First ADR measures offered load α by acceptance rate normalized

by c and link occupancy β by departure rate normalized by c. Then f is adapted with

MIMD policy as follows:

f = [f ×min {φar, φdr, φmax}]1fmin
, (3.17)

where φar is the ratio of a threshold αpeak to α, φdr is the ratio of a line threshold βthresh

to β, φmax is an predefined upper bound on φar and φdr, fmin is the lower limit on f ,

and 1 is the upper limit on f . In the deterministic scheme for the decision making for

the acceptance of arrival packets, a variable deterministic pr is calculated based on the

following procedure.

deterministic_pr += f

if (deterministic_pr >= 1)

deterministic_pr -= 1

accept packet

else

reject packet

endif

52 Chapter 3. Queue Management and Internet Traffic Modelling

3.5 Traffic Modelling

Internet traffic has been modelled as a Poisson process in the past. At the present

time, the composition of Internet traffic has been dramatically changed with a lot

of Web-like short-lived connections. We use an elegant mathematical model, namely

Poisson arrival process of Pareto length bursts (Poisson-Pareto), in modelling Internet

traffic. The model is based on a number of characteristics, which have been observed

in Internet traffic. First, traffic manifests self-similarity, this is, traffic is bursty over

a wide range of time scales [93]. This phenomenon was first noticed in LAN [33] and

later on WAN [82]. Second, heavy-tailed property is associated with file sizes. It is

well known that Internet traffic tends to be made up of a large number of quite small

flows, a small number of very large flows, and nothing much in between. This two

kinds of flows are called mice and elephants, respectively. Despite the small number of

elephants, the bulk of packets in the Internet are from elephants. Third, session arrivals

are subject to Poisson process [52]. Here sessions are made up of multiple connections.

The first two observations are also related. [93] reveals that the heavy-tailed property

is a main contributor to aggregate traffic self-similarity.

With the Poisson-Pareto traffic model , traffic is generated in a way that flow arrivals

form a Poisson process with an arrival rate of λ, so the intervals between adjacent flow

arrival times are exponentially distributed with the mean of 1/λ. In addition, flow

lengths are distributed according to a Pareto distribution with shape parameter γ and

scale parameter δ, which is the (necessarily positive) minimum possible value [2]. The

complementary distribution function of a Pareto distribution is given by 4:

P {L > x} =

1, x < δ(
x
δ

)−γ
, x ≥ δ

(3.18)

0

0.2

0.4

0.6

0.8

1

δ x

P

4The figure for the distribution is plotted for reference.

3.6. Summary 53

with the mean is E(L) = δγ
(γ−1)

.

Using a Pareto distribution with γ < 2 allows for the significant long bursts that

characterize heavy-tailed traffic. Note that, provided research on structural models for

Internet traffic is still at the preliminary stage, the Poisson-Pareto traffic model used

is far from accurate. In fact, as claimed in [52], session arrivals are well described as

Poisson but not at the connection level. However, it is concluded in [57] that although

the arrival times of flows are correlated, the error in ignoring this with the use of

a Poisson process is not nearly as important as the heavy-tailed nature of the flow

length distribution. Moreover, in this research, a precise traffic model is not necessary

for performance evaluation of some investigated traffic control schemes as long as the

model is able to generate realistic traffic consisting of both mice and elephants with

certain traffic loads at a large time scale.

3.6 Summary

A survey of existing AQM schemes has been carried out with regard to congestion

indication, control principles, and marking probability calculation. Thus, the state of

the art of AQM has been presented. In addition, traffic modelling has been discussed

with the selection of the Poisson-Pareto model for traffic generation. In this research,

we will use this traffic model in simulations for performance evaluation.

Chapter 4

Quantitative Analysis of AQM

using Network Simulations

Having analyzed various AQM schemes qualitatively in Chapter 3, we will quantita-

tively analyze the performance of some typical AQM schemes in comparison with that

of Drop Tail using simulations in this chapter. First, the experimental methodology

used in our research is described in terms of network topology, traffic pattern, and per-

formance metrics. The significance of AQM replacing Drop Tail and the limitations of

some well-known AQM schemes are investigated through a wide range of experiments.

4.1 Experimental Methodology

Simulation is a cheap and flexible means of exploring proposed schemes in a varying

environment in comparison to testbeds and laboratory experiments.

4.1.1 Network Simulator NS2

In this study, we use NS2 [1] version 2.26 as the simulation platform to evaluate

the performance of various queue management mechanisms. NS2 is a discrete event

simulator widely used in the networking research community. NS2 is a collective

effort from not only its four geographically-dispersed groups of developers including

LBL, Xerox PARC, UCB, and USC/ISI but also its user community consisting of

more than 200 institutions [28]. NS2 is a framework supporting multiple protocols at

54

4.1. Experimental Methodology 55

different layers. Thus, it is easy for researchers to incorporate the implementations of

their proposals into NS2, observe the behavior of their designs, and compare with the

performance of others.

NS2 is implemented in two languages: C++ and Tcl. The kernel of NS2, consist-

ing of simulation primitives such as packet forwarding and low-level event processing,

requires high computational performance and thus is implemented in the compiled lan-

guage C++. On the other hand the user interface, including network configuration for

protocols and traffic patterns, needs an implementation in a flexible and interactive

language such as Tcl. It is worth mentioning that some well-known queuing manage-

ment strategies including Drop Tail, RED, ARED, REM, PI, and BLUE are available

in NS2.

4.1.2 Network Topology

Throughout our research, we intend to use a simple network topology as depicted in

Figure 4.1 to simulate a network where a bottleneck link lies between a premise gateway

in the network client side and an edge router in an ISP side. Studies show that such

access links are among the most cost-sensitive and bandwidth constrained components

in the Internet, and performance of such links remains a major concern of ISPs.

cn

s1
10Mbps

p ms

100Mbps
50ms

1.5Mbps
10ms

10Mbps

p ms

R1 R3R2

s2

sn

c2

c1
c1

p ms
c2

p mscn

p ms

p ms
sn

s2

s1

Servers Clients

Figure 4.1: Network topology

In Figure 4.1, there are n servers, n clients, and three routers, where n is a positive

number. R1 is a core router, while R2 is an edge router and R3 is a premise gateway.

The access link between R2 and R3 is the assumed bottleneck with a link capacity

of 1.5Mbps, while the core link is over-provisioned with a capacity of 100Mbps and

10Mbps link capacity is the interface speed of each server and client. The propagation

delay on the link from R1 to R2 and that on the link from R2 to R3 are 40ms and

56 Chapter 4. Quantitative Analysis of AQM using Network Simulations

10ms, respectively. The propagation delays on the two end links can be varied in order

to get different RTTs among connections.

Traffic streams are from the servers to the clients and they all use TCP as trans-

port protocol. For instance, Server si sends data to Client ci. We apply different

queue management schemes in the output queue of router R2 towards R3 to conduct

congestion avoidance in cooperation with TCP in the manners of not marking but

dropping (unless specified otherwise), while using Drop Tail elsewhere. The network

configuration parameters are given in Table 4.1. The maximum window size of each

TCP connection is set with such a large value that TCP window size is only dependant

on TCP and router queuing strategy. The buffer size of the bottleneck is around four

times the product of bandwidth of 1.5Mbps and delay of around 200ms to allow traffic

fluctuations from Web traffic and TCP bursty data.

Table 4.1: Network configuration
Network parameters Value

TCP version Reno
Packet size 1000 bytes
Maximum window size 100 packets
Buffer size of the bottleneck link 160 packets

4.1.3 Traffic Pattern

Since the change of applications in the Internet, the characteristics of Internet traffic

have changed dramatically. In order to capture the essential features of real traffic we

have adopted the Poisson-Pareto model mentioned on Page 52 for traffic in our simula-

tions. The Pareto distribution we use has an average flow length of 12 packets, shape

parameter of 1.2, and minimum value of 2 packets. The other important parameter

defining a traffic scenario is the rate of arrival of flows. By varying this parameter we

can set the traffic load, in bytes/s, to any desired value. More specifically, the traffic

loads can be estimated using the following formula:

traffic load =
(40 + afs× 1040)× 8× n× λ

c
, (4.1)

4.1. Experimental Methodology 57

where afs stands for the average flow size and measures in packets, n is the number of

servers, λ is flow inter-arrival rate which is the number of arrivals per unit time (second),

and c is the bottleneck link capacity. We explain the above formula as follows. SYN

control packets are 40 bytes and each data packet is 1040 bytes with 1000 bytes of data

and a 40-byte header. For instance, if afs = 12 packets, λ = 5s−1, c = 1.5Mbps, and

n = 2, then

traffic load =
(40 + 12× 1040)× 8× 2× 5

1.5× 106

' 0.668

= 66.8%

4.1.4 Performance Metrics

To analyze QoS received by clients and network efficiency, two kinds of measures are uti-

lized respectively for performance evaluation. The two measurements are user-centric

and network-centric as follows:

• user-centric measures:

– user goodput – the ratio of the amount of the packets received by the des-

tination, excluding duplicated packets, to the time spent

– response time – the time spent to complete a response; namely, the elapsed

time interval from the server sending out the first packet of a response to

the client receiving the last packet of the response

• network-centric measures:

– network throughput – the ratio of the amount of the packets received by all

the destinations, excluding duplicated packets, to the time spent

– link utilization – the ratio of transmitted rate and link capacity

– loss rate – the ratio of the dropped bits in the bottleneck link to the total

arrival bits in the same measurement duration

58 Chapter 4. Quantitative Analysis of AQM using Network Simulations

Note that the user-centric measures only account for completed flows, whereas the

network-centric measures involve all flows.

4.1.5 Confidence Level Analysis of Simulation Results

4.2 Simulations

We have qualitatively reviewed some typical AQM schemes in Chapter 3. In this

section, simulations are conducted to compare the performance of some of these AQM

schemes with that of Drop Tail. Our purpose is to highlight the importance of using

AQM rather than the use of any particular AQM scheme. We select some of the

existing AQM schemes mentioned in the previous chapter as representatives, including

RED, ARED, REM, PI, BLUE, to do the comparison with Drop Tail. Note that five

independent replications of a simulation are carried out to perform statistical analysis.

4.2.1 Basic Parameters and Configuration

On the server side, two servers are used to send data to their corresponding clients with

different propagation delays to the core router R1, 5ms and 40ms respectively. On the

client side, 1ms and 10ms are set for the link propagation delays, respectively. These

two kinds of traffic are web traffic called http1 and http2 respectively, for convenience.

Gentle RED is deployed and the RED parameter settings are given in Table 4.2. The

time constant wq is set as -1, by which RTT is first estimated to be three times the sum

of the link propagation delay (PD) and transmission delay (TD) with the minimum

value of 100ms followed by calculating wq based on wq = 1.0− e−1.0/(10∗RTT/TD). Such

RED control parameter configuration follows the recommendations combined in [47]

and [46] by taking our topology into account. The reference point of queue size is set

as 60 packets in ARED, REM, and PI. Besides, we use the default settings for the

selected schemes.

Table 4.2: RED parameter settings
Parameter wq maxp minth maxth

Value -1 0.1 30 90

4.2. Simulations 59

The simulation duration is 4000s. The first 2000s is chosen as the warmup time to

filter network transience.

4.2.2 Simulation Results

Our primary purpose is to look into whether AQM outperforms Drop Tail in a way that

both users and ISPs are satisfied. With this in mind, the performance of the selected

AQM representative schemes is compared against that of Drop Tail in different traffic

load conditions. We categorize traffic loads as follows. Traffic load of 50% represents

light traffic, traffic load of 80% is medium, 90% and 100% is heavy, and 110% and

120% is very heavy, respectively.

1. Observations on light traffic loads. When the traffic load is light (with 50%

traffic load), we can see that data has been transmitted smoothly mainly based

on TCP flow control. The output buffer of the edge router R2, which connects

to the bottleneck link, fulfills its purpose of absorbing bursty data. Figure 4.2

shows the typical queue length dynamics of Drop Tail with light traffic loads.

The following observations can be drawn in the light traffic load condition.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.2: Drop Tail queue length with 50% traffic load

• The user TCP goodput of Drop Tail is competitive with those of the selected

AQM schemes as shown by the weighted average 1 TCP goodput versus

1Weighted average calculated here takes account of the number of flows for a given flow size.

60 Chapter 4. Quantitative Analysis of AQM using Network Simulations

traffic loads in Figure 4.3. The relative TCP goodput performance versus

file lengths with 50% traffic load in Figure 4.4 for traffic http1 and Figure

4.5 for traffic http2 also shows that AQM has very marginal improvement

on TCP goodput of the mice traffic flows with long RTT.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100 110 120

Av
er

ag
e

TC
P

G
oo

dp
ut

 (k
bp

s)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.3: Weighted average TCP goodput versus traffic loads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.4: TCP goodput of traffic http1 relative to Drop Tail with 50% traffic load
versus file lengths

• The user response time of Drop Tail is competitive with those of AQM as

shown by the weighted average response time versus traffic loads in Figure

4.6 with the achievement of the lower latency with AQM for the mice of

both short RTT and long RTT as shown by relative response time versus

4.2. Simulations 61

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000

R
el

at
iv

e
G

oo
dp

ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.5: TCP goodput of traffic http2 relative to Drop Tail with 50% traffic load
versus file lengths

file lengths with 50% traffic load in Figure 4.7 for traffic http1 and Figure

4.8 for traffic http2.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 50 60 70 80 90 100 110 120

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.6: Weighted average response time versus traffic loads

62 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 0.5

 1

 1.5

 2

 2.5

 10 100 1000 10000

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.7: Response time of traffic http1 relative to Drop Tail with 50% traffic load
versus file lengths

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 100 1000 10000

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.8: Response time of traffic http2 relative to Drop Tail with 50% traffic load
versus file lengths

4.2. Simulations 63

• Short RTT benefits in not only response time but also TCP goodput as

shown in Figures 4.9 and 4.10 for weighted average TCP goodput versus

traffic loads and Figures 4.11 and 4.12 for weighted average response time

versus traffic loads by taking Drop Tail and RED as examples. Figures 4.13

and 4.14 have also shown that with light traffic loads, mice flows suffer from

lower goodput with long RTT than with short RTT, and RED increases this

bias.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 50 60 70 80 90 100 110 120

Av
er

ag
e

TC
P

G
oo

dp
ut

 (k
bp

s)

Traffic Load (%)

http1
http2

Figure 4.9: Weighted average TCP goodput comparison between traffic http1 and
http2 with Drop Tail versus traffic loads

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 50 60 70 80 90 100 110 120

Av
er

ag
e

TC
P

G
oo

dp
ut

 (k
bp

s)

Traffic Load (%)

http1
http2

Figure 4.10: Weighted Average TCP goodput comparison between traffic http1 and
http2 with RED versus traffic loads

64 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 50 60 70 80 90 100 110 120

Av
er

ag
e

Re
sp

on
se

 T
im

e
(s

)

Traffic Load (%)

http1
http2

Figure 4.11: Weighted average response time comparison between traffic http1 and
http2 with Drop Tail versus traffic loads

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 50 60 70 80 90 100 110 120

Av
er

ag
e

Re
sp

on
se

 T
im

e
(s

)

Traffic Load (%)

http1
http2

Figure 4.12: Weighted average response time comparison between traffic http1 and
http2 with RED versus traffic loads

4.2. Simulations 65

 0

 1

 2

 3

 4

 5

 6

 7

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

Figure 4.13: TCP goodput relative to traffic http1 with 50% traffic load with Drop
Tail versus file lengths

 0

 0.5

 1

 1.5

 2

 2.5

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

Figure 4.14: TCP goodput relative to traffic http1 with 50% traffic load with RED
versus file lengths

66 Chapter 4. Quantitative Analysis of AQM using Network Simulations

• Mice flows in all schemes obtain poor goodput performance compared with

their long counterparts as illustrated in Figure 4.15 for traffic http1 and

Figure 4.16 for traffic http2 with both Drop Tail and AQM.

 0

 200

 400

 600

 800

 1000

 1200

 10 100 1000 10000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.15: TCP goodput of traffic http1 with 50% traffic load

 0

 200

 400

 600

 800

 1000

 1200

 10 100 1000 10000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

Figure 4.16: TCP goodput of traffic http2 with 50% traffic load

• Both Drop Tail and AQM obtain very similar network performance around

47% network throughput, negligible loss rate, and 50% link utilization as

shown in Figures 4.17, 4.18, and 4.19, respectively with relative network

throughput shown in 4.20 for comparison.

4.2. Simulations 67

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 50 60 70 80 90 100 110 120

Th
ro

ug
hp

ut
 (%

)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.17: Average network throughput versus traffic loads

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 60 70 80 90 100 110 120

Lo
ss

 R
at

e
(%

)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.18: Average network loss rate versus traffic loads

68 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 60 70 80 90 100 110 120

Li
nk

 U
til

iz
at

io
n

(%
)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.19: Average network link utilization versus traffic loads

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 1.008

 1.01

 1.012

 1.014

 50 60 70 80 90 100 110 120

R
el

at
iv

e
Th

ro
ug

hp
ut

 (%
)

Traffic Load (%)

DT
RED

ARED
REM

PI
BLUE

Figure 4.20: Average relative network throughput versus traffic loads

4.2. Simulations 69

2. Observations on medium traffic loads. When the traffic load is medium,

the Drop Tail scheme gains a similar performance comparison with AQM to that

of the light load traffic condition. Thus with medium load traffic, there is no

strong evidence that AQM outperforms Drop Tail, although the performance of

mice are fairly improved on user goodput and response time as shown in Figure

4.21 and Figure 4.22, respectively.

 0

 1

 2

 3

 4

 5

 6

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.21: TCP goodput relative to Drop Tail with 80% traffic load

70 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.22: Response time relative to Drop Tail with 80% traffic load

4.2. Simulations 71

3. Observations on heavy traffic loads. With heavy-loaded traffic, the advan-

tages of AQM in improving performance emerge as follows.

• The user response time is lower with AQM than with Drop Tail as shown by

the weighted average response time in Figure 4.6, especially for the traffic

of short RTT and short-lived flows as shown by the relative response time

versus file lengths in Figures 4.23 and 4.24.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 100 1000 10000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.23: Response time relative to Drop Tail with 90% traffic load

72 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 100 1000 10000

Re
la

tiv
e

Re
sp

on
se

 T
im

e

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.24: Response time relative to Drop Tail with 100% traffic load

4.2. Simulations 73

The longer latency of Drop Tail results from high queuing delay in the

bottleneck buffer as shown by the queue dynamics in Figure 4.25. By com-

parison, AQM tends to control the bottleneck queue around a predefined

value or within a certain range as shown in Figure 4.26 by taking RED as

an example.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(a) 90% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(b) 100% traffic load

Figure 4.25: Queue dynamics of Drop Tail with heavy-loaded traffic

74 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(a) 90% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(b) 100% traffic load

Figure 4.26: Queue dynamics of RED with heavy-loaded traffic

4.2. Simulations 75

• AQM outperforms Drop Tail on TCP goodput as shown by the weighted

average TCP goodput in Figure 4.3 and by relative TCP goodput versus file

lengths in Figures 4.27 and 4.28.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.27: TCP goodput relative to Drop Tail with 90% traffic load

76 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 100 1000 10000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.28: TCP goodput relative to Drop Tail with 100% traffic load

4.2. Simulations 77

• Short RTT traffic still takes advantage of long RTT traffic to obtain higher

performance in both TCP goodput and response time as shown in Figures

4.9, 4.10, 4.11,and 4.12. With the increase of traffic loads, however, the

difference between long RTT traffic and short RTT traffic in goodput and

response time is getting obscure and unpredictable. Figures 4.29 and 4.30

also demonstrate that with heavy-loaded traffic, the bias in TCP goodput

against long RTT traffic might be enlarged by AQM, especially for short-

lived flows.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

(a) Drop Tail

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

(b) RED

Figure 4.29: TCP goodput relative to traffic http1 with 90% traffic load

78 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

(a) Drop Tail

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000

Re
la

tiv
e

G
oo

dp
ut

File Length (pkts)

http1
http2

(b) RED

Figure 4.30: TCP goodput relative to traffic http1 with 100% traffic load

4.2. Simulations 79

• Mice flows are still vulnerable, although AQM has improved their goodput

performance as shown in Figures 4.31 and 4.32.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 100 1000 10000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 100 1000 10000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.31: TCP goodput with 90% traffic load

• Network loss rate is decreased by AQM, while AQM and Drop Tail have

similar performance on network throughput and link utilization as shown in

Figures 4.17, 4.18, and 4.19.

80 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(a) Traffic http1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 100 1000 10000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
REM

PI
BLUE

(b) Traffic http2

Figure 4.32: TCP goodput with 100% traffic load

4.2. Simulations 81

4. Observations on very heavy traffic loads. When the traffic load is very

heavy, the observations in the previous case of heavy-loaded traffic condition

hold true. We emphasize that in this case an AQM scheme is specially needed to

relieve congestion that causes a full buffer at the bottleneck as shown in Figure

4.33.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(a) 110% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

(b) 120% traffic load

Figure 4.33: Queue dynamics of Drop Tail with very heavy-loaded traffic

82 Chapter 4. Quantitative Analysis of AQM using Network Simulations

4.2.3 Result Analysis

Based on the simulation results, the following conclusions can be drawn.

1. First of all, it is becoming obvious that AQM outperforms Drop Tail on user TCP

goodput and response time with increasing traffic loads. AQM also improves the

performance of mice. Despite these advantages for end users, the relative perfor-

mance of the selected existing AQM schemes on the overall network throughput

to the traditional Drop Tail strategy varies merely within a range of [-0.006,

+0.013]. The reason is that these AQM mechanisms accommodate more mouse

packets by mainly punishing elephant packets, whereas Drop Tail drops packets

from both mice and elephants when the network is congested. Since mice take

up a small fraction in bytes of the traffic but are large in numbers, the active

connection number of these AQM schemes is lower than that of Drop Tail as

shown in Figures 4.34 and 4.35 with no less than 90% traffic loads.

2. Secondly, the poor performance of Drop Tail with heavy-loaded traffic, especially

long queuing delay in the bottleneck buffer, has been demonstrated, although its

performance is acceptable with light and medium traffic loads. When the network

is heavily loaded, the bottleneck buffer remains full (or almost full) which has con-

siderable impact on packet queuing delay and TCP goodput. Although we have

not been able to see global synchronization of Drop Tail and significant network

throughput enhancement from the selected existing AQM scheme, an alternative

queuing strategy other than Drop Tail is necessarily located at congested points

in the Internet.

3. Finally, the performance of the selected existing AQM schemes is sensitive to

traffic load fluctuations existing in a traffic mix of short and long-lived traffic.

Although most of simulation studies have shown the efficiency of these proposed

AQM mechanisms, these simulations assume long-lasting connections and a lim-

ited number of connections. With realistic traffic pattern made of much short-

lived traffic and little long-lived traffic, traffic load fluctuates due to not only

the TCP flow control and congestion control algorithms but also the emergence

and disappearance of short-lived traffic, despite the average traffic load in a large

4.2. Simulations 83

 0

 10

 20

 30

 40

 50

 60

 70

 80

 2000 2500 3000 3500 4000

Nu
m

be
r o

f A
ct

ive
 C

on
ne

ct
io

ns

Time (s)

DT
RED

ARED
BLUE
REM

PI

(a) 90% traffic load

 10

 20

 30

 40

 50

 60

 70

 80

 2000 2500 3000 3500 4000

Nu
m

be
r o

f A
ct

ive
 C

on
ne

ct
io

ns

Time (s)

DT
RED

ARED
BLUE
REM

PI

(b) 100% traffic load

Figure 4.34: Active connection number with different queuing strategies under the
heavy-loaded traffic condition

84 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 50

 100

 150

 200

 250

 300

 2000 2500 3000 3500 4000

Nu
m

be
r o

f A
ct

ive
 C

on
ne

ct
io

ns

Time (s)

DT
RED

ARED
BLUE
REM

PI

(a) 110% traffic load

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2000 2500 3000 3500 4000

Nu
m

be
r o

f A
ct

ive
 C

on
ne

ct
io

ns

Time (s)

DT
RED

ARED
BLUE
REM

PI

(b) 120% traffic load

Figure 4.35: Active connection number with different queuing strategies under the very
heavy-loaded traffic condition

4.2. Simulations 85

time scale. With our selected traffic pattern, these AQM schemes lack control

stability in the traffic mix environment in the presence of large oscillations in

queue dynamics as shown in Figures 4.36, 4.37, 4.38, 4.39, and 4.40 with 100%

traffic load as examples.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.36: Queue dynamics of RED with 100% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.37: Queue dynamics of ARED with 100% traffic load

86 Chapter 4. Quantitative Analysis of AQM using Network Simulations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.38: Queue dynamics of BLUE with 100% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.39: Queue dynamics of REM with 100% traffic load

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2000 2500 3000 3500 4000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Figure 4.40: Queue dynamics of PI with 100% traffic load

4.3. Summary 87

4.3 Summary

We quantitatively investigate whether it is necessary to apply AQM in an Internet

gateway. We have compared the performance of some existing AQM schemes against

that of Drop Tail via extensive simulations with different traffic load conditions. The

simulation results have been presented for light, medium, heavy, and very heavy traffic

loads, respectively. The results shows that it is not necessarily beneficial to replace

Drop Tail with AQM in light/medium traffic loads, but is beneficial when traffic load

is getting heavier.

The status of light/medium traffic loads is in most cases true in the core network

of the Internet 2, since it is well equipped and benefits from aggregation of traffic.

However, congestion does frequently occur in the link between a private domestic or

commercial premise and the Internet in reality. It is likely that such links will remain

among the most cost-sensitive and bandwidth constrained components in the future

Internet. Therefore, based on the simulation results, it is necessary to replace Drop

Tail with an appropriate AQM scheme in such gateways to avoid or relieve congestion.

One thing worth mentioning here is that the occurrence of traffic load more than 100%

is rare, and an ISP needs to do re-engineering of the network capacity if the condition

of very heavy traffic loads happens frenquently. We have used the very heavy traffic

load condition in the simulations and just wanted to show the performance comparison

of a number of AQM schemes and Drop Tail.

Despite the success of the existing AQM schemes, there is room to reach the AQM’s

potential of the simultaneous achievement of low delay and high network throughput,

especially in a realistic traffic environment. The simulation results have shown the

sensitivity of these methods to traffic load fluctuations in such a scenario. Therefore,

congestion indicators that are able to reflect traffic load fluctuation and predict its

trend are essential to an AQM design so that output queues remain short and absorb

bursty traffic. Note that ECN marking is a solution for enhancing network throughput,

but the approach is unable to obtain fundamental improvement in performance.

Another observation from the simulation results is that fairness remains unsolved,

2Being aware that some core networks, especially at the country boundaries, are heavily loaded.
The possible solution for this kind of congestion is more complicated and is beyond the scope of this
thesis.

88 Chapter 4. Quantitative Analysis of AQM using Network Simulations

particularly for short-lived flows or mice to obtain their bandwidth share in the con-

dition of heavy-loaded traffic. Giving preference to mice might be a solution to the

problem. These two topics, the need for more sophisticated design and implementation

in AQM and the need for preferential treatment for mice flows, trigger the subsequent

study in this thesis. Note that although the unfairness between short and long-RTT

traffic has also been observed, the issue is out of the scope of this dissertation.

Chapter 5

Novel AQMs using Fuzzy Logic

Due to the dynamic nature and complexity of TCP congestion control, the AQMs

reviewed in Chapter 3 leave some opportunity for improvement. Fuzzy logic (FL) has

been used in various areas and achieved many successes. Research has revealed that

there are a numbers of areas in traffic control where we can explore the use of artificial

intelligence (AI) technologies such as FL. The objective of this chapter is to design

novel AQM schemes which achieve efficiency and robustness by using AI technologies,

in particular FL. In this chapter, we elaborate on the approach of developing AQM

using FL. First, we present our AQM design and innovations in terms of the traffic load

factor and the application of FL for AQM. After describing the structure of a generic

FL controller (FLC) which directs an FLC design, the two proposed FL-based AQM

(FLAQM) algorithms are then presented to realize proactive queuing in turn.

The analysis of the efficiency and feasibility of our proposed FLAQM algorithms

is given in Section 5.4. The performance evaluation of the two FLAQM algorithms in

comparison to that of Drop Tail and some widely accepted AQM methods mentioned in

the previous chapter 3, is conducted via extensive simulations. Finally, the discussion

of the parameter configuration of FLAQM is given.

5.1 Design Rationale

A common principle used by most existing AQM schemes is match-rate-clear-buffer,

which implies the simultaneous achievement of low queuing delay and high link utiliza-

tion. With this control principle in mind, we have also considered the other two issues

89

90 Chapter 5. Novel AQMs using Fuzzy Logic

in AQM design: selection of congestion indicators and calculation of packet dropping

probability.

5.1.1 Traffic Load Factor

Most existing AQM schemes have deployed queue length or input rate, or both, for

congestion indication. Our approach is to design a new concept called traffic load factor.

The traffic load factor, denoted as z, is the ratio of input rate to target capacity, where

target capacity or expected traffic input rate is the leftover link capacity after draining

the remaining packets in an output buffer. If input rate is measured at fixed intervals,

the mathematical definition of z is given as follows.

z =
input pkts

target capacity
(5.1)

target capacity = fraction× link capacity (5.2)

fraction =

 max(γ, 1− Q−Q0

link capacity
) Q > Q0

1 0 ≤ Q ≤ Q0

(5.3)

link capacity = bdw × dur (5.4)

where input pkts is the total input packets during the measurement period dur, γ is

the maximum percentage of link capacity for draining the existing queue, bdw is the

link capacity, Q is the instantaneous queue length at the end of the last measurement

period, and Q0 is a predefined target queue length. Note that Q0 can be gained from

a specified queuing delay by a network operator.

The traffic load indicator is a function of queue length and input rate. Using such

a variable enables detection of impending congestion and reflects congestion severity.

The adoption of the load factor as a congestion indicator is inspired by a successful

rate-based scheme for controlling ABR flows in ATM networks in [30].

There are some advantages to using z as a congestion indicator. First, z is di-

mensionless so that a control algorithm based on such a measure is robust against link

capacity changes [21]. Second, to gain z, target capacity is first computed by the capac-

ity used for clearing the buffer subtracted from the link capacity, i.e. target capacity

5.1. Design Rationale 91

= link capacity - capacity for clearing buffer. The calculation of target capacity is

easily extended to deal with the scenario where best-effort traffic coexists with other

QoS traffic with reserved bandwidth, and available capacity for best-effort traffic is

ever-changing.

5.1.2 The Application of Fuzzy Control for AQM

A TCP/IP network can be regarded as a feedback control system with a QM controller

and the TCP/QM traffic plant as mentioned in Chapter 3. Control theory thus can

be applied for the design of AQM. Some approaches based on classical control theory

have been proposed such as PI [19] and VS [96]. It is pivotal for the schemes in this

category to establish a mathematical model for TCP dynamics. However, there are

some inherent limitations in the modeling process. Simplified models, such as through

linearization, are required by certain control technologies. Some assumptions, such as

exclusive long-lived connections and a delay-free control system, apply. Additionally,

some parts of TCP dynamics are ignored, for example the slow-start phase and timeout

of TCP. Therefore, any classical control-theory-based approaches potentially fail to

achieve good performance and system stability. The weakness of classical control theory

in the design of AQM is due to the complex and nonlinear nature of the control system

and the difficulty in mimicking the dynamic behavior of the TCP/AQM plant in the

form of any sound mathematic models.

A TCP/IP network is undoubtedly a complex nonlinear system. The complex-

ity and nonlinear features result from many factors including the nonlinear property

of TCP dynamics, dynamic traffic mix, and network heterogeneity ranging from the

RTTs and the life-time a connection is experiencing, to protocols at each network layer,

to different TCP versions. Given such a complex nonlinear control, FL is a better al-

ternative control solution. In fuzzy control theory, nonlinearity is handled by rules,

membership functions, and the inference process (these concepts will be given later),

which results in improved performance and system stability with simpler implementa-

tion and reduced design costs. The idea behind FL is to emulate the cognitive inference

process that human beings deploy in their decision-making and problem-solving in a

way that input signals stimulate logic inference utilizing human heuristic knowledge

and certain actions are taken accordingly. FL thus is able to apply expert knowledge

92 Chapter 5. Novel AQMs using Fuzzy Logic

to solve complex nonlinear problems without the need for precise and comprehensive

information and the mathematical model of controlled objects.

Many applications have been found for the use of FL for traffic/congestion control

in computer networks. For instance, in ATM networks, FL approaches range from ABR

flow control [58], to frame discard mechanisms [71], to policing [32, 15, 70]. However,

to our best knowledge, there are only a few studies in AQM using FL [17, 38] (refer to

Chapter 3 for detail).

Combining the use of the traffic load factor for congestion notification and FL to

yield packet dropping probability, two FLAQM algorithms are derived. The first pro-

posed FLAQM, FLAQM(I), uses z as an input directly, while the second FLAQM(II)

uses its reciprocal z′ instead. In addition, the changes of z and z′ are used to capture

traffic load trend in FLAQM(I) and FLAQM(II), respectively. The intention of using

the reciprocal of z in FLAQM(II) is to implicitly realize the input normalization (see

the following section for reference) to achieve system stability and robustness.

5.2 A Generic FLC

The idea behind FLCs is to provide a means of converting a linguistic control strategy

based on domain expert knowledge into an automatic control strategy in environments

where either the processes are too complex for analysis by conventional quantitative

techniques, or the available sources of information are interpreted qualitatively, inex-

actly, or uncertainly [68, 69]. A generic FLC comprises four building blocks: (1) a

fuzzification interface, (2) an inference engine, (3) a knowledge base, and (4) a de-

fuzzification interface as shown in Figure 5.1. Note that in practice the values of the

process states inputting to an FLC are crisp and the control outputs also require a

crisp value. The functionalities of each block are given as follows. For more details

refer to [14, 62, 68, 69].

• The fuzzification interface performs two functions including scaling and fuzzifi-

cation.

– It performs a scale transformation or an input normalization, which maps

the physical values of the process state variables or input variables into a nor-

5.2. A Generic FLC 93

crisp input
 values fuzzification

interface
inference
engine

defuzzification
interface

knowledge base

database rule base

crisp output
 values

A Fuzzy Logic Control (FLC)

Figure 5.1: The structure of a generic FLC

malized universe of discourse (normalized domain). When a non-normalized

domain is used then there is no need for the scaling function.

– It performs the function of fuzzification that converts input data into a fuzzy

set F , characterized with a membership function µF so that every element

u from the universe of discourse U has a membership degree µF (u) ∈ [0, 1]

to F . One widely adopted fuzzification strategy is ‘singleton fuzzification’,

which produces a fuzzy set F for a crisp input u0 with a membership function

µF (u) defined by

µF (u) =

1, u = u0

0, otherwise

(5.5)

• The knowledge base provides a rule base and a database.

– A rule base contains a number of fuzzy rules, a linguistic description of do-

main expert knowledge in the “if-then” form such as if x is A, then y is B,

where x and y are linguistic variables whose values are words or sentences

in a natural or artificial language, and A and B are one of the language

values that x and y can take, respectively. For instance, an error between

a process state and a desired value or set-point is a linguistic variable if its

values are linguistic rather than numerical, i.e., Negative Big (NB), Nega-

tive Medium (NM), Negative Small (NS), Zero (ZO), Positive Small (PS),

Positive Medium (PM), and Positive Big (PB) etc., and these linguistic val-

ues denote a symbol for a particular property of the variable of error that a

94 Chapter 5. Novel AQMs using Fuzzy Logic

domain expert normally describes. Note that a linguistic value corresponds

to a fuzzy set, which quantitatively interprets the linguistic value by a mem-

bership function. The Triangle and trapezoid shapes are among the popular

choices for the membership function of a linguistic value since they usually

need less computation.

– A database defines the membership functions of the fuzzy sets used in the

fuzzy rules and scaling factors used in normalization and denormalization.

• The inference engine performs the fuzzy inference operations.

The fuzzy inference operations are based on the selection of a function of a fuzzy

implication expressing each individual fuzzy control rule and a compositional

rule of fuzzy inference operating between fuzzified inputs and the aggregation of

all the fuzzy implications of the rule set. The outcome of the inference engine

is a fuzzy set. The minimum operation and the product operation are the two

most popular rules of fuzzy implication, while sup-min and sup-product are two

commonly used compositional operators.

• The defuzzification interface performs functions just the opposite to those of the

fuzzification interface.

– It performs the function of defuzzification that converts control output val-

ues from a fuzzy set to a script value. There are some defuzzification strate-

gies used in fuzzy control applications. A crisp result y0 corresponding to

fuzzy output B0 is given by the formula of one commonly used method,

Center of Area (COA) in a continuous manner as follows.

y0 =

∫
µB0(y)ydy

µB0(y)dy
(5.6)

– It performs an output denormalization that maps the crisp output value into

its physical domain. This function is not needed if non-normalized domains

are used.

Note that the combination of ‘singleton fuzzification’, the minimum operation rule

of fuzzy implication, and sup-min compositional operators, frequently used in some

5.3. FLAQM 95

successful fuzzy control applications, results in the simple inference procedure of an

FLC as shown in the following. The graphic interpretation of the procedure of a

two-input-one-output FLC is given in Figure 5.2 with the additional illustration of the

COA defuzzification strategy. The same procedure followed by the COA defuzzification

strategy is adopted in FLAQM. Note that in Figure 5.2, triangle shape is used for

membership functions.

• Match the crisp input values with the membership functions on the premise part

of each individual fuzzy rule to obtain the membership degrees of each linguistic

value (such as a1 and b1 for R1, a2 and b2 for R2 in Figure 5.2).

• Obtain the minimum among the membership values on the premise part to get

the firing strength of each rule (such as b1 for R1 and b2 for R2 in Figure 5.2).

• Clip the fuzzy set describing the meaning of the consequent part to the degree

of the firing strength (such as the boundary lines of the region of A1 for R1 and

those of the region of A2 for R2 shown in red in Figure 5.2).

• Aggregate the clipped values for the control output of each rule via maximization

in the universe of the output linguistic variable, and takes the aggregation as the

overall control output (such as the boundary lines for the region of A1 ∪ A2

shown in red in Figure 5.2).

5.3 FLAQM

The FLAQM controller is designed to conduct queue management in a bottleneck out-

put queue and control the behaviour of the closed-loop feedback system as shown in

Figure 5.3. FLAQM calculates dropping probability pr based on the measurements

from feedback signals. Two FLAQM algorithms are proposed in this study, namely

FLAQM(I) and FLAQM(II). FLAQM(I) directly uses traffic load factor z and its

change ∆z as inputs, whereas FLAQM(II) inputs the values of the reciprocal of z,

z′ and its change ∆z′. Note that valid feedback from the TCP/IP networks is delayed

for at least one RTT for each connection. After packets reach their destinations, the

corresponding ACK (acknowledgment) packets are received by their sources, and the

96 Chapter 5. Novel AQMs using Fuzzy Logic

Figure 5.2: The inference procedure of a commonly used FLC

sources respond to the dropping probability pr to adjust the amount of packets sent

to the network. Therefore, FLAQM is time-based in that measurements of feedbacks

or the input values of the FLC and subsequent computation of the dropping probabil-

ity pr are carried out in a fixed time interval. An appropriate value for the interval

is carefully chosen to allow for transient traffic conditions with the arrival of bursty

data on the one hand and the ability to react quickly to impending congestion on the

other hand. Here the interval is set to be at least the maximum RTT of all the active

connections to avoid system oscillation. The two proposals of FLAQM are presented

in the following.

Controller
Traffic
Plant

Measurement

pr

Delayed feedback

FLAQM

z∆ z z’∆ z’

Figure 5.3: The closed-loop feed back system with the FLAQM controller

5.3. FLAQM 97

5.3.1 The FLAQM(I) Controller and Traffic Load Factor

FLAQM(I) aims to determine an appropriate value by which the routers drop the

incoming packets based on the feedback information about traffic load and its trend.

More specifically, the input variables of the FLAQM controller are traffic load factor z

and its change ∆z.

It is clear that the set-point for the measured plant output, z, is 1 in that the

input rate equals the target link capacity. Thus, the steady-state operating region

toward which the FLAQM attempts to drive the closed-loop feedback system is in the

neighborhood of z = 1. In order to achieve high link utilization of the network, the

neighborhood of z = 1 is set as the range of [1, 1 + δ], where δ is a constant.

The FLAQM controller copes with three cases in the network as shown in Figure

5.4. If load factor z is beyond the set-point of the system, multiplicative decrease

(MD) action is taken with negative ∆z by using the MD FLAQM controller, while

additive increase (AI) is applied with positive ∆z by using the AI FLAQM controller.

Otherwise, the traffic in the network is not overloaded and thus it is not necessary to

do any extra control, but to add the incoming packets in the output queue. We have

tried other designs, such as AIAD. However, the AIMD design appears to be more

steady. The pseudo-code of dropping probability calculation in FLAQM(I) is given in

Algorithm 5.1.

∆

δz<=1+

AI_FLAQM

MD_FLAQM

pr=pr+ pr

pr=kpr

pr=0.0

∆ z>=0

Yes

No

No

Yes pr∆

k

FLAQM(I) Controller

z

∆ z

pr

Figure 5.4: The structure of FLAQM(I)

98 Chapter 5. Novel AQMs using Fuzzy Logic

Algorithm 5.1 Dropping probability in FLAQM(I)

#pr is dropping probability

if (z <= 1 + δ)
pr = 0.0

else

if (∆ z < 0)
k = MD_FLAQM(z, ∆ z)
pr = k ∗ pr

else

∆ pr = AI_FLAQM(z, ∆ z)
pr = pr + ∆ pr

endif

endif

In the next two subsections, the membership functions and the fuzzy rules of these

two FLCs: MD FLAQM and AI FLAQM, will be introduced. Note that the sup-min

FL inference and the center of gravity defuzzification methods are adopted [14], since

they are widely used and also proved to be effective in practice.

5.3.2 Design of two FLCs in FLAQM(I)

There are a set of membership functions for each FLC. For simplicity and effectiveness,

triangular and trapezoidal shapes are chosen for these membership functions. Both

FLCs use load factor z and ∆z as inputs. For the MD FLAQM controller, the output

variable is coefficient k for a multiplicative decrease of pr, whereas for the AI FLAQM

controller, ∆pr is the output variable for an additive increase of pr. Figure 5.5 shows

the membership functions used in the MD FLAQM controller, whereas Figure 5.6

shows the membership functions of the AI FLAQM controller. The linguistic values of

the input z are Hi, i = 1, 2, · · · , 5, and traffic load increases with i. The input ∆z is

characterized by Ni, i = 1, 2, · · · , 5 where negative N specifies that the current traffic

load has decreased when compared with its previous value and its magnitude increases

with i, and Pi, i = 0, 1, · · · , 5 where positive P specifies that the traffic load is getting

heavier than before and its magnitude increases with i. For the MD FLAQM controller,

the output k is described by MDi, i = 0, 1, · · · , 5 increasing with i, while the linguistic

values of the output ∆pr in the AI FLAQM controller are AIi, i = 0, 1, · · · , 5 also

increasing with i. All the membership functions are characterized by their own shapes

5.3. FLAQM 99

(triangle or trapezoid) and parameters indistinguishably denoted as pi, i = 1, or 2, · · · ,

such as H1(−∞,−∞, p1, p2), H2(p1, p2, p3), and H5(p4, p5,∞,∞).

Note that in the MD FLAQM controller, the effective universe of discourse for the

input z is [p1, p5] and the counterpart for ∆z is [p1, 0]. Likewise, in the AI FLAQM

controller, a decision has been made for the effective universe of discourse for its inputs.

The end points of such an effective universe of discourse specify the “saturation points”

at which the outermost membership functions are saturated for input universes of dis-

course, or beyond which the outputs will not move for the output universe of discourse

[79]. The concept of effective universe of discourse makes intuitive sense as at some

point the domain expert would just group all extreme values together in the linguistic

description so that the membership functions at the outermost edges appropriately

characterize “greater than” for the right side or “less than” for the left hand side.

5.3.3 FL Rules in FLAQM(I)

Table 5.1 and Table 5.2 show the fuzzy if-then rules in the MD FLAQM and AI FLAQM

controllers respectively. FLAQM(I) operates upon a value of z beyond 1 + δ, where

impending congestion occurs. The principle of selecting fuzzy rules is the larger load

factor z is away from the steady-state operating region [1, 1 + δ] and the more ∆z is

away from zero, the more strong action is taken, and vice versa. For instance, in the

case that z is around 1 + δ and ∆z is only slight greater than 0, the slightly increased

control action is taken for the dropping probability pr. So, we have if z is H1 and ∆z

is P0, then AI0. The other FL rules are derived in a similar way, which are obtained

by expertise and the try-and-error method. The rule base of MD FLAQM consists of

25 fuzzy rules. Although we call the active controller under the situation of z > 1 + δ

and ∆z < 0 a multiplicative decrease (MD) FLC, it does maintain or even increase

dropping probability pr sometimes, based on network conditions. MD4 is set as an

unchanged control action. The first thing is to judge under which situation of both

inputs z and ∆z the dropping probability pr would be unchanged. If input z is high

and ∆z is low, the control value of dropping probability pr has to be increased to

cope with sustained high traffic load conditions. Otherwise, if traffic load dramatically

reduces to a certain level, the decreased control signal of pr has to been taken. For the

AI FLAQM controller, 30 fuzzy rules are adopted in its rule base. In this FLC, the

100 Chapter 5. Novel AQMs using Fuzzy Logic

0

0.2

0.4

0.6

0.8

1
H1 H2 H3 H4 H5

1+δ p1 p2 p3 p4 p5

(a) Membership functions for z

0

0.2

0.4

0.6

0.8

1
N5 N4 N3 N2 N1

 p1 p2 p3 p4 0

(b) Membership functions for ∆z

0

0.2

0.4

0.6

0.8

1 MD0 MD1 MD2 MD3 MD4 MD5

0 −p1 p1 p2 p3 p4 p5 p6

(c) Membership functions for k

Figure 5.5: MD FLAQM in FLAQM(I)

5.3. FLAQM 101

0

0.2

0.4

0.6

0.8

1
H1 H2 H3 H4 H5

1+δ p1 p2 p3 p4 p5

(a) Membership functions for z

0

0.2

0.4

0.6

0.8

1 P0 P1 P2 P3 P4 P5

0 p1 p2 p3 p4 p5

(b) Membership functions for ∆z

0

0.2

0.4

0.6

0.8

1
AI0 AI1 AI2 AI3 AI4 AI_P5

0 −p1 p1 p2 p3 p4 p5 p6

(c) Membership functions for ∆pr

Figure 5.6: AI FLAQM in FLAQM(I)

102 Chapter 5. Novel AQMs using Fuzzy Logic

control value of pr is always increased. In the case that z is around 1 + δ and ∆z is

around 0, the slightly increased control action is taken.

The FL rules are obtained by expertise and the try-and-error method. It is worth

mentioning that the automation of the control parameters defining the membership

functions and even FL rules of the FLC System will be the future study of this project,

since the preliminary investigation and application of FL for AQM has been successful.

Table 5.1: FL rules of MD FLAQM in FLAQM(I)
∆z/z H1 H2 H3 H4 H5
N5 MD0 MD1 MD2 MD2 MD3
N4 MD1 MD2 MD3 MD3 MD4
N3 MD2 MD3 MD3 MD4 MD5
N2 MD3 MD3 MD4 MD5 MD5
N1 MD4 MD4 MD5 MD5 MD5

Table 5.2: FL rules of AI FLAQM in FLAQM(I)
∆z/z H1 H2 H3 H4 H5
P0 AI0 AI0 AI1 AI1 AI2
P1 AI0 AI1 AI2 AI2 AI3
P2 AI1 AI2 AI2 AI3 AI4
P3 AI1 AI2 AI3 AI3 AI4
P4 AI2 AI2 AI3 AI4 AI5
P5 AI2 AI3 AI4 AI4 AI5

Remarks on FLAQM(I)

FLAQM(I) has two FLCs with z and ∆z as the input variables, and the universe of

discourse for the inputs is wide. In precise terms, the range for z in both controller is

[1+δ,∞], while the range for ∆z in the two controller is [−∞, 0] and [0,∞], respectively.

Also, saturation points are specified for z and ∆z respectively to gather the extreme

values. The values for the saturation points are heuristically determined with intuition

and experience. Be aware that for a wide range of effective universe of discourse, wide

membership functions have to be arranged on the right or left to capture the extreme

5.3. FLAQM 103

input values, whereas for a narrow range regularly occurring data will be off the scale

and be saturated so that the performance and stability of the controller is affected.

One solution to such a problem is to do input normalization using scaling factors so

that the effective universe of discourse is [0, 1] or [-1, 1], and tuning the scaling factors

with certain criteria. Consequently, input normalization reduces the sensitivity of the

controller to the inputs and so reduces the possible oscillation due to any inappropriate

selection of saturation points. Alternatively, we propose here to replace z with z′ in

FLAQM(I), whose effective universe of discourse approximately is [0, 1]. This way,

input normalization is implicitly realized with the omission of the procedure of tuning

the input scaling factor.

5.3.4 Improving FLAQM(I)

An improved version of FLAQM(I) is described in this subsection. FLAQM(II) is

applied to the closed-loop feedback queue management system as shown in Figure 5.7.

FLAQM(II) uses z′ and ∆z′ as process states and the dropping probability pr as control

output.

pr∆

pr=kpr

z’>=1+ δ

z’>0∆

Yes

Yes

No

No

MD_FLAQM

AI_FLAQM

k

pr=pr+

pr=0.0

Measurement Traffic Plant
Delayed Feedback

pr
z’

∆ z’

FLAQM(II) Controller

pr∆

Figure 5.7: A block diagram of the FLAQM(II) control system

The FLAQM(II) controller works also with AIMD policy when input z′ < 1 + δ;

otherwise, the network traffic load is not too heavy and it is not necessary to early-drop

incoming packets. Parameter δ is evaluated with the consideration of control system

104 Chapter 5. Novel AQMs using Fuzzy Logic

stability and link utilization, and we will further discuss the parameter setting issue in

section 5.6.

Once a dropping probability is determined by the FLAQM(II) controller, instead of

using the RED uniformly drop mechanism, a throttling scheme introduced in the pre-

vious chapter is adopted to further decide which incoming packets should be dropped.

5.3.5 FL Membership Functions of FLAQM(II)

As shown in Figure 5.3, the FLAQM(II) controller also consists of two FLCs, MD FLAQM

and AI FLAQM. The shape of each membership function is either triangular or trape-

zoidal. Figure 5.8 shows the membership functions of the MD FLAQM controller,

whereas Figure 5.9 shows the membership functions of the AI FLAQM controller, where

pi, i = 1, 2, · · · , are parameters.

For the MD FLAQM controller, scaling or normalization of input variables has been

implicitly achieved. The inputs z′ and ∆z′ are limited in the range of [0, 1 + δ]. For

the AI FLAQM controller, however, the input ∆z′ could vary from negative infinite

to zero despite the effective universe of discourse of z′ in the range of [0, 1 + δ]. We

argue that ∆z′ < −(1 + δ) is a rather rare event as proved in the simulations. In

addition, although it really happens, the previous z′ must be larger than 1 + δ and

the previous control value of dropping probability pr is zero. In this case, caution is

needed to additively increase pr to accommodate bursty traffic and maintain high link

utilization. Therefore, in the controller, the same action is taken for any value of ∆z′

less than −(1 + δ) with ∆z′ = −(1 + δ).

5.3.6 FL Rules in FLAQM(II)

Some fuzzy “if-then” rules are employed to capture the imprecise modes of reasoning

that play an essential role in the human ability to make decisions in uncertain and im-

precise environments. Table 5.3 and Table 5.4 shows the fuzzy rules in the MD FLAQM

and AI FLAQM controllers, respectively. The rule base of MD FLAQM consists of 20

fuzzy rules. Although we call the active controller under the situation of z′ < 1 + δ

and ∆z′ > 0 a multiplicative decrease FLC, it does maintain or even increase dropping

probability pr sometimes, based on network conditions. MD4 is set as an unchanged

5.3. FLAQM 105

0

0.2

0.4

0.6

0.8

1 H1 H2 H3 H4 H5

0 p1 p2 p3 1+δ

(a) Membership functions for z′

0

0.2

0.4

0.6

0.8

1
P1 P2 P3 P4

0 p1 p2 1+δ

(b) Membership functions for ∆z′

0

0.2

0.4

0.6

0.8

1 MD1 MD2 MD3 MD4 MD5 MD6 MD7

0 p1 −p1 p2 p3 p4 p5 p6 p7

(c) Membership functions for k

Figure 5.8: MD FLAQM in FLAQM(II)

106 Chapter 5. Novel AQMs using Fuzzy Logic

0

0.2

0.4

0.6

0.8

1 H1 H2 H3 H4 H5

0 p1 p2 p3 1+δ

(a) Membership functions for z′

0

0.2

0.4

0.6

0.8

1
N1 N2 N3

−(1+δ) p1 0

(b) Membership functions for ∆z′

0

0.2

0.4

0.6

0.8

1
AI1 AI2 AI3 AI4 AI5 AI6 AI7

0 p1 −p1 p2 p3 p4 p5 p6 p7

(c) Membership functions for ∆pr

Figure 5.9: AI FLAQM in FLAQM(II)

5.4. Implementation Complexity of FLAQM 107

control action. The first thing is to judge under which situation of both inputs z′ and

∆z′ the dropping probability pr would be unchanged. Afterwards, if both inputs z′

and ∆z′ are low, the control value of dropping probability pr has to be increased to

cope with sustained high traffic load conditions. Otherwise, if traffic load dramatically

reduces to a certain level, the decreased control signal of pr has to been taken. For

the AI FLAQM controller, 15 fuzzy rules are adopted in its rule base. In this FLC,

the control value of pr is almost always increased. The exception is that in the case of

z′ = 1 + δ and ∆z′ = 0, the unchanged control action is taken with plausible intuition.

The principle of selecting these rules in Table 5.4 is that the more load factor z′ is away

from the steady-state operating region [1, 1 + δ] and the more ∆z′ is away from zero,

the more strong action is taken, and vice versa.

Table 5.3: FL rules of MD FLAQM in FLAQM(II)
∆z′/z′ H1 H2 H3 H4 H5

P1 MD7 MD7 MD6 MD5 MD4
P2 MD7 MD6 MD5 MD4 MD3
P3 MD6 MD5 MD4 MD3 MD2
P4 MD5 MD4 MD3 MD2 MD1

Table 5.4: FL rules of AI FLAQM in FLAQM(II)
∆z′/z′ H1 H2 H3 H4 H5

N1 AI7 AI6 AI5 AI4 AI3
N2 AI6 AI5 AI4 AI3 AI2
N3 AI5 AI4 AI3 AI2 AI1

5.4 Implementation Complexity of FLAQM

The computational complexity of the proposed FLAQM algorithms is constant with

respect to the number of competing flows in a gateway router like most of the existing

AQM schemes. AQM is realized by FLAQM in such a way that current traffic load

conditions including its level and its change are periodically measured, the FLC system

accordingly reasons an appropriate packet marking probability, and arrival packets are

108 Chapter 5. Novel AQMs using Fuzzy Logic

then marked approximately proportional to connection’s share of bandwidth. Therefore

we believe FLAQM could be implemented in very high speed congestion-prone routers.

The FLAQM algorithms use two-inputs-one-output controllers with the maximum

of 30 FL rules. Meanwhile, triangle and trapezoid shapes have been used to construct

membership functions to improve on the computational time needed. The simulations

have demonstrated that the computation time and memory requirement of FLAQM

are comparable to those of other typical AQM schemes. The last point we would like to

make here for analyzing the efficiency and feasibility of FLAQM, is that implementation

prospects of FLAQM could improve by using hardware such as a better microprocessor

or signal processing chip instead of software [79].

5.5 Performance of FLAQM

In this section, we investigate the performance of the proposed FLAQM algorithms

compared with that of the traditional Drop Tail (or DT), RED [51], and ARED [50].

The reason to choose RED to do performance comparison here is that RED is not only

a benchmark and the IETF default mechanism for buffer management, but also widely

studied by the network research community and even Cisco System, a leading net-

working equipment supplier, has specified its RED implementation. Since the existing

AQM schemes do not provide any significant advantage over Drop Tail for realistic traf-

fic load models as discussed in Chapter 3, ARED with the feature of auto-configuration

is selected here as another representative AQM. Two simulation experiments have been

carried out. In the simulations, the traffic pattern is composed of extremely long FTP

connections which last the whole simulations, and Web traffic. By varying the num-

ber of active extremely long flows, performance comparison is conducted with different

traffic loads in the first experiment, while changed traffic load conditions are simulated

in the second experiment. In addition, all the traffic experiences the same propagation

delay on the links from the server side to the client side with 40ms from the serves to

R1, and 1ms from R3 to the clients.

The same traffic pattern has been input to the network with different queue man-

agement strategies in the bottleneck output buffer including Drop Tail, RED, ARED,

and our proposed FLAQM algorithms. The parameter settings in the FLAQM(I) and

5.5. Performance of FLAQM 109

FLAQM(II) controllers used in the simulations are shown in Table 5.5 and Table 5.6,

respectively. Additionally, Figure 5.10 and 5.11, and Figure 5.12 and 5.13 illustrate

the decision surfaces for AI FLAQM and MD FLAQM with these parameter choices

in FLAQM(I) and FLAQM(II), respectively.

Table 5.5: Parameter settings of the FLAQM(I) controller

target queue length 60 packets
update interval 0.5s

δ 0.05
Parameters of z p1 = 1.1, p2 = 1.5, p3 = 2.0, p4 = 2.5, p5 = 3.0

Parameters of ∆z in MD FLAQM p1 = −2.0, p2 = −1.0, p3 = −0.5, p4 = −0.2
Parameters of ∆z in AI FLAQM p1 = 0.2, p2 = 0.5, p3 = 1.0, p4 = 1.5, p5 = 2.0
Parameters of k in MD FLAQM p1 = 0.8, p2 = 0.85, p3 = 0.9, p4 = 1.0, p5 =

1.1, p6 = 1.15
Parameters of ∆pr in AI FLAQM p1 = 0.01, p2 = 0.02, p3 = 0.03, p4 = 0.04, p5 =

0.05, p6 = 0.06

Table 5.6: Parameter settings of the FLAQM(II) controller

target queue length 60 packets
update interval 0.5s

δ 0.05
Parameters of z′ p1 = 0.25, p2 = 0.5, p3 = 0.75, p4 = 1.05

Parameters of ∆z′ in MD FLAQM p1 = 0.25, p2 = 0.5
Parameters of ∆z in AI FLAQM p1 = −0.5
Parameters of k in MD FLAQM p1 = 0.5, p2 = 0.95, p3 = 1.0, p4 = 1.05, p5 =

1.1, p6 = 1.15, p7 = 1.2
Parameters of ∆pr in AI FLAQM p1 = 0.01, p2 = 0.02, p3 = 0.03, p4 = 0.04, p5 =

0.05, p6 = 0.06, p7 = 0.07

110 Chapter 5. Novel AQMs using Fuzzy Logic

1.5

2

2.5

3

0

0.5

1

1.5

2
0

0.01

0.02

0.03

0.04

0.05

z∆ z

∆
pr

Figure 5.10: Decision surface of AI FLAQM in FLAQM(I)

1.5

2

2.5

3

−2

−1.5

−1

−0.5

0.2

0.4

0.6

0.8

1

z∆ z

k

Figure 5.11: Decision surface of MD FLAQM in FLAQM(I)

5.5. Performance of FLAQM 111

0
0.2

0.4
0.6

0.8
1

−1
−0.8

−0.6
−0.4

−0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

∆ z’z’

∆
pr

Figure 5.12: Decision surface of AI FLAQM in FLAQM(II)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

z’
∆ z’

k

Figure 5.13: Decision surface of MD FLAQM in FLAQM(II)

112 Chapter 5. Novel AQMs using Fuzzy Logic

5.5.1 Simulations of a Congested Network

In the simulations, traffic is generated to cause congestion on the bottleneck in the

selected network topology described in Chapter 4. There are two kinds of traffic.

Traffic from server s1 to client c1 models Web service including long bursts and short

bursts. The traffic is generated by the Poisson-Pareto traffic model with the truncated

threshold of Pareto distribution of 1000 packets. On the other hand, the traffic from the

other servers simulates extremely long bursts which last the whole simulation period,

and the number of such servers is varied ranging from 5 to 40 to create different traffic

conditions. Note that the simulation duration is 1000s and the first half is set as a

warmup period (the simulation code written in Tcl is given in Appendix A.2).

5.5.1.1 Performance Results

Compared with Drop Tail, RED, and ARED, our proposed FLAQM(I) and FLAQM(II)

demonstrate their robustness in a various traffic load conditions as follows.

• The weighted average user TCP goodput comparison plotted in Figure 5.14 shows

that FLAQM(II) outperforms the others, while FLAQM(I) achieves goodput per-

formance comparable to ARED, and the goodput performance of Drop Tail is far

more behind the others.

• Drop Tail obtains the highest weighted average flow latency in all the investigated

traffic conditions and also flow latency increases dramatically with the number

of extremely long bursts compared to those of the AQM schemes as depicted in

Figure 5.15 (a). Among the AQM schemes, FLAQM(II) still performs the best

in terms of flow latency, while FLAQM(I) and ARED are comparable as shown

in Figure 5.15 (b).

5.5. Performance of FLAQM 113

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 15 20 25 30 35 40

A
ve

ra
ge

 T
C

P
 G

oo
dp

ut
 (k

bp
s)

Number of Extremely Long Bursts

DT
RED

ARED
FLAQM (I)
FLAQM (II)

(a) User TCP goodput

 8

 10

 12

 14

 16

 18

 20

 22

 24

 5 10 15 20 25 30 35 40

A
ve

ra
ge

 T
C

P
 G

oo
dp

ut
 (k

bp
s)

Number of Extremely Long Bursts

RED
ARED

FLAQM (I)
FLAQM (II)

(b) User TCP goodput without Drop Tail

Figure 5.14: Weighted average user TCP goodput comparison

114 Chapter 5. Novel AQMs using Fuzzy Logic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

Number of Extremely Long Bursts

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(a) User Response Time

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

Number of Extremely Long Bursts

RED
ARED

FLAQM (I)
FLAQM (II)

(b) User Response Time without Drop Tail

Figure 5.15: Weighted average user response time comparison

5.5. Performance of FLAQM 115

• The network throughputs of FLAQM(I) and FLAQM(II) are the best as plotted

in Figure 5.16, with almost 100% link utilization for all the schemes including

Drop Tail.

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (%

)

Number of Extremely Long Bursts

DT
RED

ARED
FLAQM (I)
FLAQM (II)

Figure 5.16: Network throughput

• The AQM schemes largely improve the goodput of mice flows compared with

Drop Tail as shown by TCP goodput performance in Figure 5.17. However, mice

flows with each AQM scheme under certain circumstances (especially with a small

number of background extremely long bursts) still suffer lower TCP goodput than

the elephants flows.

116 Chapter 5. Novel AQMs using Fuzzy Logic

 0

 50

 100

 150

 200

 250

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(a) n=5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(b) n=10

 5

 10

 15

 20

 25

 30

 35

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(c) n=15

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(d) n=20

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(e) n=25

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(f) n=30

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 100 1000

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(g) n=35

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 100

G
oo

dp
ut

 (k
bp

s)

File Length (pkts)

DT
RED

ARED
FLAQM (I)

FLAQM (II)

(h) n=40

Figure 5.17: TCP goodput versus file lengths with different number of extremely long
bursts

5.5. Performance of FLAQM 117

5.5.1.2 Stability Comparison

We evaluate the stability of FLAQM in two aspects including comparing FLAQM to

other AQM schemes and the two algorithms within FLAQM.

Firstly, in Chapter 3 we have revealed the sensitivity of some existing AQM methods

to traffic load fluctuation in the presence of mice flows. Large oscillation in queue

dynamics was observed. To alleviate the problem, we deploy not only the traffic load

factor to reflect congestion levels, but also the change of traffic load factor to predict

the trend of traffic load. Moreover, at least one RTT time duration is used as the

dropping probability adjustment period.

Figures 5.20 and 5.21 illustrate relative steady queue dynamics for the two FLAQM

algorithms compared to RED and ARED in Figures 5.18 and 5.19, using 20 of FTP

extremely long bursts as example. RED also exhibits a longer queuing delay, whereas

FLAQM(II) obtains a lower queueing delay.

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 500 550 600 650 700 750 800 850 900 950 1000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

Figure 5.18: Queue dynamics of RED using 20 of FTP extremely long bursts

118 Chapter 5. Novel AQMs using Fuzzy Logic

 30

 40

 50

 60

 70

 80

 90

 100

 110

 500 550 600 650 700 750 800 850 900 950 1000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

Figure 5.19: Queue dynamics of ARED using 20 of FTP extremely long bursts

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500 550 600 650 700 750 800 850 900 950 1000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

Figure 5.20: Queue dynamics of FLAQM(I) using 20 of FTP extremely long bursts

On the other hand, one major advantage of FLAQM(II) is that it implicitly realizes

normalization for input variables z′ and ∆z′. Therefore, system stability is expected

to be improved over FLAQM(I). Figures 5.22, 5.23, 5.24, and 5.25 show stability com-

parison between the two proposed schemes by tracing load factor z and observing its

dynamics under different traffic load scenarios. We conclude that under overloaded net-

work situations, compared with FLAQM(I), FLAQM(II) is capable of quickly driving

the system towards the set point of traffic load factor z without much oscillation.

5.5. Performance of FLAQM 119

 0

 20

 40

 60

 80

 100

 120

 140

 160

 500 550 600 650 700 750 800 850 900 950 1000

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

Figure 5.21: Queue dynamics of FLAQM(II) using 20 of FTP extremely long bursts

 0.5

 1

 1.5

 2

 2.5

 3

 500 550 600 650 700 750 800 850 900 950 1000

Lo
ad

 F
ac

to
r

Time(s)

FLAQM (I)
FLAQM (II)

Figure 5.22: Load factor comparison between FLAQM(I) and FLAQM(II) with n=10

120 Chapter 5. Novel AQMs using Fuzzy Logic

 0.5

 1

 1.5

 2

 2.5

 3

 500 550 600 650 700 750 800 850 900 950 1000

Lo
ad

 F
ac

to
r

Time(s)

FLAQM (I)
FLAQM (II)

Figure 5.23: Load factor comparison between FLAQM(I) and FLAQM(II) with n=20

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 500 550 600 650 700 750 800 850 900 950 1000

Lo
ad

 F
ac

to
r

Time(s)

FLAQM (I)
FLAQM (II)

Figure 5.24: Load factor comparison between FLAQM(I) and FLAQM(II) with n=30

5.5. Performance of FLAQM 121

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 500 550 600 650 700 750 800 850 900 950 1000

Lo
ad

 F
ac

to
r

Time(s)

FLAQM (I)
FLAQM (II)

Figure 5.25: Load factor comparison between FLAQM(I) and FLAQM(II) with n=40

5.5.2 Simulations with Changed Traffic Loads

In this experiment, we evaluate the performance of FLAQM under changed traffic load

situations. The truncated Pareto Web traffic is reused but with traffic load chosen

as 60% instead of 100%. Also five extremly long FTP flows are imitated as part of

the backgroud traffic, besides the Web flows. To obtain changed traffic loads, different

numbers of connections are added ranging from 5 to 40, starting from simulation time

1200s with 200ms inter-arrival time between these flows and disappearing at simulation

time 1300s. Note that the simulations have been run for 2000s and the first 1000s is

taken as warmup duration.

To exhibit the response of each scheme investigated in this experiment to changed

traffic load conditions, scenarios of adding 10, 20, 30, and 40 more flows are taken as

examples, and Figures 5.26, 5.27, 5.28, and 5.29 illustrate the queue length dynamics

of these schemes with adding different numbers of flows. In these figures, the queue

dynamics of Drop Tail is typical under overload network conditions, whereas RED is

not sensible to the change of traffic loads. ARED, FLAQM(I), and FLAQM(II) have

quick response to the traffic load change. ARED and FLAQM(I), however, achieve it

with the cost of too much oscillation. Note that with addition of 40 flows, ARED fails

to bring queue length down to its predefined value, while FLAQM(II) still performs

consistently.

122 Chapter 5. Novel AQMs using Fuzzy Logic

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(a) Drop Tail

 0

 20

 40

 60

 80

 100

 120

 140

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(b) RED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(c) ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(d) FLAQM(I)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(e) FLAQM(II)

Figure 5.26: Queue length dynamics of different schemes with n=10

5.5. Performance of FLAQM 123

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(a) Drop Tail

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(b) RED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(c) ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(d) FLAQM(I)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(e) FLAQM(II)

Figure 5.27: Queue length dynamics of different schemes with n=20

124 Chapter 5. Novel AQMs using Fuzzy Logic

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(a) Drop Tail

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(b) RED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(c) ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(d) FLAQM(I)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(e) FLAQM(II)

Figure 5.28: Queue length dynamics of different schemes with n=30

5.5. Performance of FLAQM 125

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(a) Drop Tail

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(b) RED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(c) ARED

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(d) FLAQM(I)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Q
ue

ue
 L

en
gt

h
(p

kt
s)

Time(s)

(e) FLAQM(II)

Figure 5.29: Queue length dynamics of different schemes with n=40

126 Chapter 5. Novel AQMs using Fuzzy Logic

5.6 Configuring the FLAQM Controller

In this section, we consider how to effectively configure the parameters of the FLAQM

controller. Due to its achievement of better performance, FLAQM(II) is set as a

default option for the FLAQM controller. FLAQM parameters may be classified into

(1) fuzzy parameters which include pi, i = 1, 2, · · · in each membership function of the

two FLCs, MD FLAQM and AI FLAQM, and (2) system parameters which consist

of dropping probability pr updating interval, desired queue length Q0, and system

stability parameter δ. All these parameters have a significant impact on system stability

and performance. However, different ways of setting parameters might be necessary in

each category. The fuzzy parameters are decided by human experience combined with

the trial-and-error method. A good FLC can been designed at the first stage, since it

is inherently robust in terms of conducting control in environments with a high level

of uncertainty, complexity, or nonlinearity such as exist in the Internet. Nevertheless,

these fuzzy parameters might be tuned on-line after the original design to enable a

wider class of problems to be solved by reducing the prior uncertainty to the point

where satisfactory solutions can be obtained. The on-line adaptive tuning might be

achieved by using other artificial intelligent (AI) technologies such as neural networks

(NNs) and genetic algorithms (GAs), at a price of high complexity.

In this section, we focus on how to choose those system parameters: dropping

probability pr updating interval, desired queue length, and system stability parameter

δ, most of which are also the concerns of other AQM schemes. For instance, PI [19]

and REM [27, 73, 4] also periodically adjust dropping probability pr, while ARED

[50] updates the maximum dropping probability maxp in a certain time interval with

a default value of 0.5s. All these three schemes predefine a value for desired queue

length. The system stability parameter δ, as one can find out later, is also related to

desired link utilization as well as system stability. All AQM schemes aim to achieve

high link utilization. Especially, AVQ [67] and GREEN1 [94] explicitly set a desired

link utilization value in their algorithms.

5.6. Configuring the FLAQM Controller 127

5.6.1 Dropping Probability pr Updating Interval

The choice of the dropping probability pr updating interval is critical to the perfor-

mance of FLAQM. A shorter updating interval would make the FLAQM take fraud

message contributed by transit situations and thus cause system oscillation, whereas

with a longer updating interval, it takes time for the controller to realize changes have

occurred in network conditions, which might have deteriorated by becoming either

heavily congested or idle.

To determine a reliable updating interval, observe that the feedback information of

current dropping probability pr, which a FLAQM enabled gateway router expects to

obtain, is delayed for at least the maximum of one RTT (maxRTT) of all the active

connections. In addition, in order to accommodate transition of traffic load between

updating intervals, a reliable value for the pr updating interval is set between maxRTT

and 2×maxRTT in our algorithm.

5.6.2 Desired Queue Length

For a given bottleneck link, a desired queue length Q0 and the corresponding target

queuing delay T0 can be converted into each other by using formula T0 = Q0

link capacity
.

The parameter T0 is affected by several parameters such as router buffer size, bottleneck

link capacity, and pr updating interval. The selection of the parameter T0 is a tradeoff

between throughput and delay, and is ISP policy based. In FLAQM, in the case where

bottleneck link capacity is 1.5Mbps and buffer size is 160 packets (1000 bytes for each

packet), for instance, 60 packets or 320ms is heuristically chosen.

5.6.3 System Stability Parameter δ

In FLAQM, whenever a packet arrives, the controller in a gateway drops it with a

certain probability. The dropping probability pr is adjusted periodically based on

the measurements of network conditions in the last period. Network conditions are

measured by z′ and ∆z′. Variable z′ reflects congestion occurrence and the level of

traffic load, while variable ∆z′ indicates the degree of the change in traffic load. If

z′ < 1+ δ, the controller regards this signal as the occurrence of congestion and earlier

dropping action is taken with the current dropping probability pr; otherwise, it drops

128 Chapter 5. Novel AQMs using Fuzzy Logic

the incoming packet with zero probability.

It is no doubt that the desired value of the measured parameter z′ in the control

system is 1. In order to do control smoothly and respond to increased traffic load

quickly, however, the set point of z′ chosen in FLAQM is 1 + δ, where δ is positive.

Note that a negative δ is theoretically acceptable. However, at this point z′ is less than

1 and traffic load is pretty heavy so that it might be too late for the FLAQM controller

to take any control action. This is also proven by simulation experiments.

On the other hand, parameter δ is also related to link utilization. In a measurement

duration dur, link utilization (uti) is measured by the division of the number of sent

packets and link capacity during dur, with the formula uti = sent pkts
link capacity

. The source

of the sent packets is those leftover packets at the end of the last measurement period

and incoming packets during the current measurement interval. Be aware that some

of the incoming packets might be dropped because of a full buffer or early dropping

by FLAQM, and left in the buffer at the end of the current measurement duration.

We consider the link utilization in the condition of Q < Q0 for simplicity. Note that

this condition is desired for data transmission, and also is dominant as exhibited in

the simulations. In this case, fraction = 1 in the definition of the traffic load factor

z and thus load factor z = input pkts
link capacity

. With a bigger δ, the set point of z′ is smaller,

and also the number of the desired incoming packets is smaller. Consequently, the link

utilization might be lower. Therefore, a smaller δ is preferred, and the default value in

FLAQM is chosen as 0.05.

5.7 Summary

In this paper, we have proposed two novel AQM schemes: FLAQM(I) and FLAQM(II),

by using one artificial intelligent (AI) method, fuzzy logic (FL). Via extensive simu-

lations, both FLAQM schemes outperform the other well-known queue management

strategies such as Drop Tail, RED, and ARED. Also, due to the achievement of scaling

or normalization of the traffic load factor z′ and its change ∆z′, FLAQM(II) has im-

proved the performance of FLAQM(I), in which normalization of its inputs is omitted

since it is hard to know the maximum value of the inputs with different traffic load

conditions. Although with an estimated approximate value for the maximum the per-

5.7. Summary 129

formance of FLAQM(I) is reasonable, FLAQM(II) theoretically is expected to improve

stability and performance. Thus, without specification, the term ‘FLAQM’ is used to

stand for FLAQM(II).

One more point we would like to discuss here is the calculation of fraction in target

capacity (see Section 5.3 for detail). At the end of each measurement period, when the

instantaneous queue length Q is less than or equal to a predefined value Q0, fraction is

set as 1 in the next period. Alternatively, the situation of Q ≤ Q0 can be understood as

more capacity left for accommodating incoming packets. However, this causes system

oscillation in simulations. Thus, fraction = 1 is a better choice in the case of Q ≤ Q0.

More work still needs to be done to get an even better performance of FLAQM

to realize the full potential advantages of FLC in complex nonlinear problem solving.

Future work will consider the integration of other AI techniques such as neural networks

(NNs) and Genetic Algorithms (GAs) to achieve the self-tuning of the parameters in

the two FLCs: MD FLAQM and AI FLAQM.

Chapter 6

Coupling FLAQM with Mice and

Elephants Strategy

In Chapter 4, we noticed the vulnerability of mice flows in bandwidth share in competi-

tion with elephants. In this chapter, we consider an access network by which users are

linked to backbone routers. We propose a mice and elephants (ME) strategy and use

it at the access network. The objective of this chapter is to look at how the FLAQM

designed in Chapter 5 is coupled with the ME strategy to conduct queue management

for elephants by making use of the ability of FLAQM to deal with the coexistence of

different traffic classes. More specifically, the use of the ME strategy is justified and its

network context and operation are depicted in Section 6.1. The router functionalities

of the ME strategy are described in Section 6.2. Experiments are conducted to inves-

tigate the proposed strategy at gateway routers and to make comparisons with other

strategies implemented either at the gateways or at the edge routers. The experiment

results are given in Section 6.3, while result analysis is depicted in both quantitative

and qualitative aspects in Section 6.4.

6.1 Mice and Elephants Strategy

In this section, we look into the characteristic of today’s Internet traffic and the pos-

sibility of improving performance in gateway routers in premise networks.

130

6.1. Mice and Elephants Strategy 131

6.1.1 A Phenomenon on Today’s Internet Traffic

In today’s Internet traffic, there is an obvious phenomenon in which most flows are

short in size or lifetime while a small number of long bursts carry large amounts of

traffic. Conventionally, short-lived flows are referred to as mice and long-lived ones as

elephants. For instance in [37], packet traces have been collected at high speed access

links and backbone links. The analysis based on the collected data shows that small

flows account for [0.851, 0.967] of flows, but [0.704, 0.975] of bytes belong to elephants,

with the assumption that the threshold for mice and elephants is 100KBytes. The

authors also argue that although the value for the threshold might be set differently

or dynamically-based on network conditions, the results still provide solid evidence for

the distributions of short-lived and long-lived flows in terms of bytes and flow number.

The mice and elephants phenomenon has some particular features: (1) mice are

vulnerable in obtaining bandwidth share in competition with elephants due to the con-

servative nature of TCP; (2) it is likely for mice to experience longer latency than that

expected by users. Unlike elephants, any packet drops will trigger mice to lapse back

to slow-start due to less packets being available for fast retransmit and fast recovery.

Therefore, mice mostly stay in the slow-start phase of TCP and rarely get enough

knowledge about available capacity in the network. The fragility of mice has been

observed in the Internet in [37] and the measurements showed the strong correlation

between size and rate. The simulation results in Chapter 4 provide further evidence.

6.1.2 Network Context of the ME Strategy

The idea of the ME strategy is to give mice flows preferential treatment. Access net-

works are areas where congestion is a problem, and is likely to remain a problem because

upgrading capacity is expensive and difficult. Premise networks are increasingly popu-

lated by gigabyte Ethernet systems and the Internet is provisioned for shared use by a

very large number of users, so the link between the access network and the premise net-

work will often form the critical bottleneck. Furthermore, the premise gateway router

is the element chosen for implementing the ME strategy. The reason is that, in this

part of the Internet, it is clearly feasible to deploy control strategies which distinguish

individual flows. Apparently, the premise gateway is not an ideal location for a traffic

132 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

management facility. By the time a packet has reached the premise gateway it has

probably already passed the worst bottleneck on the path from the server to the client,

namely the gateway link. However, it has the advantage that we can expect some

surplus processing resources there. Also, dropping packets after they have managed

to transit the chief obstacle on their path can be quite beneficial. This is because

long flows are fairly well behaved and quite modest dropping rates may be adequate

to control these flows sufficiently well to provide good performance for all. Figure 6.1

gives an illustration of the location of a gateway router.

Figure 6.1: Access niches

6.1.3 Operation of the ME Strategy

The ME strategy will be deployed in the premise gateway router. The premise gateway

router is equipped with two physical output queues for mice and elephants respectively,

and engaged in two functionalities including flow classification and queue management

for each queue as shown in Figure 6.2. Individual flows are classified by comparing

their flow length with a predefined threshold Th. Any longer flow is marked as an

elephant; otherwise, it is a mouse. The mice will continue to be monitored upon each

corresponding packet arrival, whereas the elephant packets are sent immediately to

the elephant queue. Therefore, there are two databases to keep flow records for mice

and elephants, respectively. Also, the two databases are updated every certain time

interval Tdb to delete the records of flows which are no longer active or idle. The default

value of Tdb is 10s. In the queue management module, the chosen scheme for the mice

queue is Drop Tail whereas the one for the elephant queue is FLAQM (the detail of

6.2. Router Functions of the ME Strategy 133

choosing queue management schemes in ME will be given later). The pseudo-code of

implementing the ME strategy in a router is given in Algorithm 6.1.

Figure 6.2: The router functions of the ME strategy

The two physical queues use priority scheduling with the mice queue at the higher

priority level. To avoid the starvation of elephant packets due to the absolute priority

of mice, the file length threshold Th is periodically adjusted to keep the traffic of mice

at a certain level of the total bandwidth Lmice, such as 40%, based on the network

conditions. This way, a minimum capacity is left for elephant packets, while all mice

packets have been protected from being dropped. The proposed ME strategy works

in the same way as expected by end users in that the longer the flow , the higher

possibility of its packets being dropped.

6.2 Router Functions of the ME Strategy

We detail the adjustment of the threshold between mice and elephants in the function

module of flow classification and make comments on the selection of the queuing mech-

anisms for both queues: mice and elephants. Finally, the chosen queuing strategy is

compared to RIO.

134 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

Algorithm 6.1 The ME algorithm

if (the incoming packet belongs to an elephant flow)

put it into the elephant queue with FLAQM queue management

else

if (the incoming packet belongs to a new flow)

add this new flow state to the mice database

update the flow length of this new flow

put the incoming packet into the mice queue with Drop Tail queue

management

else

if (the total flow length adding the incoming packet is beyond Th)
delete the flow state from the mice database

add the flow state to the elephant database

put the incoming packet into the elephant queue with FLAQM queue

management

else

update the flow length of the corresponding mice flow

put the incoming packet into the mice queue with Drop Tail queue

management

endif

endif

endif

6.2.1 Adjustment of the Threshold between Mice and Ele-

phants using FL

We use FL to adjust Th with an AIMD policy with the fraction of mice traffic load Fr

out of the ideal range [Lmice−δ, Lmice+δ], where δ is a constant. Similarly to our design

of FLAQM in Chapter 5, there are two FLCs, namely the AI and MD controllers. We

qualitatively describe Fr greater than Lmice + δ as Hi, i = 1, 2, 3 increasing with i,

while lower than Lmice − δ as Li, i = 1, 2, 3 also increasing with i. When Fr is greater

than Lmice + δ, the MD control of Th is used and the multiplicative coefficient k is

characterized with three properties of Di, i = 1, 2, 3.

On the contrary, the AI control of Th is applied and the increment ∆Th is de-

scribed with three properties of Ii, i = 1, 2, 3. Both Di and Ii increase with i. These

membership functions of the AI and MD controllers are illustrated in Figure 6.4 and

Figure 6.3, respectively. The corresponding fuzzy rules are given in Table 6.1 and Table

6.1, respectively.

Note that the time interval Tth for updating Th is empirically chosen in our simu-

6.2. Router Functions of the ME Strategy 135

(a) Membership functions for input
Fr

(b) Membership functions for output
k

Figure 6.3: The MD controller of Th

(a) Membership functions for input
Fr

(b) Membership functions for output
∆Th

Figure 6.4: The AI controller of Th

136 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

Table 6.1: FL rules of the MD controller of Th
Fr H1 H2 H3
k D3 D2 D1

Table 6.2: FL rules of the AI controller of Th
Fr L1 L2 L3

∆Th I3 I2 I1

lations as 5s.

6.2.2 Selection of Queue Management in ME

We use Drop Tail to manage the mice queue since the packets are almost always a small

portion of traffic and also should be protected from any packet drop. On the other hand,

any effective AQM strategy can be a candidate for conducting queue management for

the elephant queue. The selected AQM scheme is expected to be able to take account

of the capacity consumption of mice in order to perform precise control on elephants.

The proposed FLAQM scheme in Chapter 5, which meets this criterion, is chosen to

be integrated into the ME strategy. As a result, the ME strategy only drops or marks

packets from elephant flows, which are the main contributor of congestion and are

not sensitive to connection latency. Additionally, we would like to stress that packet

re-ordering is unlikely to happen with the proposed ME strategy.

6.2.3 Comparison with RIO

Preferential treatment for short flows has also been deployed by two papers [54] and [7]

as mentioned in Chapter 2. In both schemes, edge routers first classify individual flows

to be either mice or elephants based on a file length threshold and mark the packets

in mice as IN and elephants as OUT. Core routers then give higher priority to IN

packets via RIO queue management combined with FIFO scheduling. Our proposed

ME strategy shares the same idea as these two methods. However, instead of giving

implicitly preferential treatment to mice via RIO, priority scheduling is employed. We

argue that the configuration of RED is still an open issue in the networking area, and

6.3. Experiments 137

so is the combination of the two groups of parameter settings of RIO. However, our

implementation avoids this controversial issue and any potential associated drawback.

On the other hand, one FIFO queue might increase the delay of mice packets and affect

their performance, since a timely response is more crucial to mice than elephants.

6.3 Experiments

In this section, we investigate by means of experimental simulations the performance

of the proposed ME strategy by comparing with that of queue management strategies

at edge routers dealing with traffic accessing customer premises. The network topology

described in Chapter 4 is applied for the simulations.

6.3.1 Configuration of the ME Strategy in the Gateway

To implement the ME strategy at the gateway, a virtual link and a virtual buffer

are introduced, each of which has less capacity than the real bottleneck, i.e. the link

between the Internet edge router and the gateway. Choosing a small value for the

virtual link bandwidth wastes network resources, whereas with a big value the ME

strategy can not perform effectively due to the failure of transfer congestion from the

real bottleneck to the virtual link. A capacity slightly less than the real bottleneck

bandwidth is chosen for the virtual link capacity in the ME strategy, along with a

small value for the virtual buffer, to maintain high network throughput. Besides,

FLAQM is used in the real bottleneck to gain low queuing delay and effective dropping

of elephant packets. This way, elephant connections are regulated to maximize the

network utilization and at the same time mice flow through the network without delay.

In the simulations, the virtual bottleneck built in premises R3 is realized by literally

adding a virtual router VR between R2 and R3. The router VR has link bandwidth

of 1.45Mbps, buffer size of 150 packets with 30 packets for the mice queue and 120

packets for the elephant queue, and propagation delay of zero.

138 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

Figure 6.5: Network topology with the built-in virtual bottleneck

6.3.2 Implementation

To implement the ME strategy at the gateway router, mice packets are put into a

separate queue that has priority, and used FLAQM to control the queue for the re-

maining packets (the elephant queue). This combined strategy will be referred to as

ME+FLAQM. The parameter settings for FLAQM are the same as that in Chapter 5,

with the one exception that the target queue length is set as 40 packets.

The traffic pattern of simulations in Chapter 5 is reused here, in that the combi-

nation of truncated Web traffic and extremely long FTP bursts is mimicked with the

number of extremely long FTP bursts varied from 5 to 40 to create different congested

traffic conditions. The initial threshold between mice and elephants has been set to

20,000 bytes. Note that the simulations have been run for 600s and the first half is

regarded as a warmup period. Five independent replications of a simulation are car-

ried out to perform statistical analysis. Two set of simulations have been conducted

for both with and without ECN marking.

6.3. Experiments 139

6.3.3 Results

Performance is evaluated without ECN marking and with ECN marking, respectively.

6.3.3.1 Without ECN

The performance of ME at the premise gateway is compared to that of Drop Tail,

ARED, FLAQM, and ME at the edge router without ECN. The simulation results

show that:

• The network throughput performance comparison is plotted in Figure 6.6. To de-

ploy the ME strategy at the gateway, the virtual bottleneck capacity is set about

3% lower than the real bottleneck capacity. However, the network throughput

performance with ME at the gateway is no less than that of Drop Tail with more

than 20 extremely long bursts, with a decrease of at most 3% otherwise. With

ME at the Edge, the network throughput reached is similar to that of FLAQM.

 0.85

 0.86

 0.87

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (%

)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.6: Network throughput

140 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

• In terms of TCP goodput, ME at the gateway has significantly improved the

performance of mice in comparison with Drop Tail, ARED, and FLAQM working

at the edge router. This improvement is shown by the weighted average TCP

goodput value in Figure 6.7 for TCP goodput of total traffic, Figure 6.8 for TCP

goodput of mice, and Figure 6.9 for TCP goodput of elephants 1. It is also shown

by the relative TCP goodput versus file lengths in Figures 6.10, 6.11, 6.12, and

6.13 with different traffic load conditions. More importantly, it has been achieved

without sacrificing the TCP goodput of elephants. In fact, the elephant goodput

approaches that of FLAQM. Moreover, FLAQM outperforms ARED at the edge

router in terms of TCP goodput.

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 (k
bp

s)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.7: Weighted average TCP goodput

1The threshold for mice and elephants is 15 packets

6.3. Experiments 141

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 o
f M

ic
e

(k
bp

s)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.8: Weighted average TCP goodput of mice

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 o
f E

le
ph

an
ts

 (k
bp

s)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.9: Weighted average TCP goodput of elephants

142 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10 100 1000

R
el

at
iv

e
G

oo
dp

ut

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.10: Relative user TCP goodput with n=10

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000

R
el

at
iv

e
G

oo
dp

ut

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.11: Relative user TCP goodput with n=20

6.3. Experiments 143

 0

 2

 4

 6

 8

 10

 12

 14

 16

 10 100

R
el

at
iv

e
G

oo
dp

ut

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.12: Relative user TCP goodput with n=30

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 100

R
el

at
iv

e
G

oo
dp

ut

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.13: Relative user TCP goodput with n=40

144 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

• In terms of response time, ME at the gateway has also significantly improved

the performance of mice in comparison with Drop Tail, ARED, and FLAQM

working at the edge router. This improvement is shown by the weighted average

response time value in Figure 6.14 for response time of total traffic, Figure 6.15

for response time of mice, and Figure 6.16 for response time of elephants, and by

the relative response time versus file lengths in Figures 6.17, 6.18, 6.19, and 6.20

with different traffic load conditions. Moreover, FLAQM outperforms ARED at

the edge router in terms of response time.

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.14: Weighted average response time

6.3. Experiments 145

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

of
 M

ic
e

(s
)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.15: Weighted average response time of mice

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

of
 E

le
ph

an
ts

 (s
)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.16: Weighted average response time of elephants

146 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 100 1000

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.17: Relative use response time with n=10

 0

 0.5

 1

 1.5

 2

 2.5

 10 100 1000

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.18: Relative user response time with n=20

6.3. Experiments 147

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 100

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.19: Relative user response time with n=30

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100

R
el

at
iv

e
R

es
po

ns
e

Ti
m

e

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.20: Relative user response time with n=40

148 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

• The goodput of mice has been improved by ME at the gateway over their longer

counterparts compared to Drop Tail, ARED, and FLAQM at the edge router, as

shown by the absolute performance of user TCP goodput versus file lengths with

different traffic loads in Figure 6.21. It is clear that Drop Tail has a strong bias

against mice in terms of TCP goodput.

 0

 50

 100

 150

 200

 250

 10 100 1000

G
o
o
d
p
u
t
(k

b
p
s)

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(a) Goodput with n = 10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100 1000

G
o
o
d
p
u
t
(k

b
p
s)

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(b) Goodput with n = 20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100

G
o
o
d
p
u
t
(k

b
p
s)

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(c) Goodput with n = 30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 100

G
o
o
d
p
u
t
(k

b
p
s)

File Length (pkts)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(d) Goodput with n = 40

Figure 6.21: User TCP goodput performance

• ME enhances the possibility of all flows for data transfer. With heavy-loaded

traffic, it is possible that within a considerable period there are some flows that

keep still in terms of data transfer, given the loss of SYN or SYN ACK packets.

6.3. Experiments 149

The still flow percentage has been measured and plotted in Figure 6.22. Espe-

cially, ME at the gateway has a lower percentage of still flows compared with

Drop Tail, ARED, and FLAQM at the edge while ME at the edge has nil still

flows.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 10 15 20 25 30 35 40

St
ill

Fl
ow

 P
er

ce
nt

ag
e

(%
)

Number of Extremely Long Bursts

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

Figure 6.22: Still flow percentage

• As expected, ME at the edge has outperformed ME at the gateway in that it

improves the performance of both mice and elephants while also increasing the

whole network throughput greatly over Drop Tail in all investigated traffic con-

ditions. However, to fully utilize bandwidth using FLAQM, the real bottleneck

queue with the strategy of ME at the gateway is almost always not empty. This

inevitably results in longer delays and lower TCP goodput for mice.

6.3.3.2 With ECN

In this section, ECN marking is used instead of the dropping mechanism with ARED,

FLAQM, and ME either at the edge or the gateway.

As expected, using ECN marking improves the network throughput, the user per-

formance in terms of TCP goodput and response time, and still flow percentage of

each investigated scheme over those of without ECN except Drop Tail. The network

throughput performance is plotted in Figure 6.23.

150 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (%

)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.23: Network throughput

The weighted average TCP goodput is illustrated in Figure 6.24 for total traffic,

Figure 6.25 for mice, and Figure 6.26 for elephants.

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 (k
bp

s)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.24: Weighted average TCP goodput

6.3. Experiments 151

 0

 10

 20

 30

 40

 50

 60

 70

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 o
f M

ic
e

(k
bp

s)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.25: Weighted average TCP goodput of mice

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 5 10 15 20 25 30 35 40

Av
er

ag
e

TC
P

G
oo

dp
ut

 o
f E

le
ph

an
ts

 (k
bp

s)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.26: Weighted average TCP goodput of elephants

152 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

Meanwhile, the performance of response time is shown in Figure 6.27 for total

traffic, Figure 6.28 for mice, and 6.29 for elephants. In addition, the performance of

still flow percentage is illustrated in Figure 6.30. Compared to other schemes, the

enhancement in performance of ME at the gateway with ECN marking is significant

over that of the strategy without ECN marking.

 0

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.27: Weighted average response time

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

of
 M

ic
e

(s
)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.28: Weighted average response time of mice

6.3. Experiments 153

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30 35 40

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

of
 E

le
ph

an
ts

 (s
)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.29: Weighted average response time of elephants

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 5 10 15 20 25 30 35 40

St
ill

Fl
ow

 P
er

ce
nt

ag
e

(%
)

Number of Extremely Long Bursts

DT
ARED (ECN)

ARED
FLAQM (ECN)

FLAQM
ME+FLAQM at the EDGE (ECN)

ME+FLAQM at the EDGE
ME+FLAQM at the GW (ECN)

ME+FLAQM at the GW

Figure 6.30: Still flow percentage

154 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

6.4 Result Analysis

We analyze the results in both quantitative and qualitative aspects.

6.4.1 Quantitative Approach

Based on the simulations, the following conclusions can be drawn about the perfor-

mance of ME at the gateway:

• In comparison with Drop Tail, ARED, and FLAQM working at the edge, ME

at the premise gateway does considerably improve the performance with mice

in terms of TCP goodput and response time. The network throughput of ME

at the gateway is competitive to that of Drop Tail. Moreover, the ME strategy

increases the opportunity for data transfer to avoid flows being still.

• With ECN marking, the advantages of the ME strategy at the gateway become

outstanding. The increase in the network throughput of ME at the gateway

is dramatic: about 1% compared to that of ARED, FLAQM, and ME at the

edge, and thus the performance difference between ME at the gateway and these

schemes is reduced.

• As expected, the edge is an ideal place for ME. The network throughput of ME at

the edge is higher than at the gateway by about 3%. However, there is a tradeoff

between performance and operational feasibility.

6.4.2 Qualitative Approach

In the following, the qualitative explanation is given as to why ME performs better

than those queue management schemes with FIFO scheduling including Drop Tail,

ARED, and FLAQM.

6.4.2.1 Advantages of the ME Strategy

Firstly, it absolutely gives higher priority to mice and the first few packets of elephants,

and thus the SYN and SYN acknowledgment (ACK) packets of all the flows will safely

reach their destination. By comparison, Drop Tail and RED could not avoid dropping

6.4. Result Analysis 155

these packets. Therefore, the proposed method increases user throughput of all flows

in this aspect.

Secondly, mice are vulnerable to any dropped packets. ME protects them from

this vulnerability. Any packet drop of mice will make TCPs fall back to slow start,

since there are not enough packets for them to have three duplicate ACK packets.

Furthermore, the retransmission timeout (RTO) will be doubled. With Drop Tail,

RED, and FLAQM, the packet dropping of mice will likely occur when the traffic load

is heavy. Therefore, the throughput of mice is influenced by the packet drop and double

RTO. Note that in our simulations, the number of flows is fixed during the simulation

interval. That is, there are a fixed number of tasks which queue management schemes

need to deal with. Based on the above analysis, the proposed method ME is able to

finish the tasks by more quickly transmitting mice packets than the others as shown

in Figure 6.31, with the number of FTP long bursts set at 20 for example.

Thirdly, active queue management (AQM) performs better in controlling elephants

alone. Because of the conservative nature of TCP, mice almost stay in the slow start

phase, and never achieve their fair bandwidth share in competition with elephants.

Any drop of mice packets will worsen performance and at the same time elephants

might speed up and thus deteriorate network conditions. Without the interference of

mice, FLAQM control only elephants, and it does the job more precisely.

6.4.2.2 Obtain Better Control on Elephants by Considering Mice Traffic

We implement ME strategy combined with FLAQM. It is easy for FLAQM to take

account of the current traffic load from not only elephants but also mice and determine

dropping probability for elephants in the next time period accordingly. In fact, FLAQM

has the same philosophy as RIO in [9].

6.4.2.3 Remaining Issues

Artificially dropping packets after receiving them from the real bottleneck certainly

degrades the performance of ME with regard to network throughput, TCP goodput,

and flow latency compared with ME working at the upstream of the bottleneck link.

Apparently it is impossible for ME at the gateway to reach the performance of ME

at the edge. However, since the premises gateway is a practically plausible choice

156 Chapter 6. Coupling FLAQM with Mice and Elephants Strategy

 0

 100

 200

 300

 400

 500

 600

 700

 800

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(a) Total

 0

 100

 200

 300

 400

 500

 600

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
M

ou
se

 C
on

ne
ct

io
ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(b) Mice

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
E

le
ph

an
t C

on
ne

ct
io

ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(c) Elephants

 0

 100

 200

 300

 400

 500

 600

 700

 800

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(d) Total with ECN

 0

 100

 200

 300

 400

 500

 600

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
M

ou
se

 C
on

ne
ct

io
ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(e) Mice with ECN

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 300 350 400 450 500 550 600

N
um

be
r

of
 A

ct
iv

e
E

le
ph

an
t C

on
ne

ct
io

ns

Time (s)

DT
ARED

FLAQM
ME+FLAQM at the EDGE

ME+FLAQM at the GW

(f) Elephants with ECN

Figure 6.31: Number of active connections

6.5. Summary 157

for implementing ME, efforts have to be made to approach the ideal performance of

ME working at the edge. The key point to this issue is to correctly select the virtual

bottleneck parameters.

Virtual bottleneck parameter selection of ME at the gateway is a tradeoff between

network throughput and the effectiveness of the ME strategy. A small value of both

virtual buffer size and link bandwidth would result in the complete relief of congestion

on the real bottleneck link and thereby network traffic is totally controlled by the ME

strategy working at the gateway. However, link capacity could not be fully utilized and

network resources might be wasted.

6.5 Summary

The goal of a multiservice Internet which can provide statistical guarantees of service

has not yet been attained. The direct approach of building protocols into the Internet

which support differentiated service is complex and some way off being implemented.

In this chapter we have investigated a strategy which differentiated different classes

of traffic on the basis of traffic behaviour, thereby, as it turns out, producing better

performance for all traffic, but especially for traffic formed of short-lived flows.

We have also shown that it is feasible to implement an effective control strategy

for providing better overall performance at the most convenient location – the gateway

router in an access niche. In order to create a comprehensive architecture for congestion

control and performance protection, it will be necessary to consider similar strategies

in other routers as well. However the link between a premise and the Internet is of

particular importance, and so the fact that we can implement a strategy for controlling

congestion over this link in the gateway router is important.

Chapter 7

Conclusions and Future Work

7.1 Introduction

In the current Internet, the sophisticated TCP protocols located at end users are the

primary contributor to congestion control and Internet robustness. The TCP conges-

tion control scenario involves TCP probing available network resources by dynamically

changing its sending window size in response to packet reception status, and increasing

its window size until it detects a packet loss. Packet losses are mostly due to congestion

occurrence and subsequent full output buffers in the network. However, the Drop Tail

queuing strategy produces low network throughput, high flow latency, and low respon-

siveness to bringing the network back to steady states. Studies have shown that these

problems can be solved by proactively reacting to incipient congestion in the routers

via active queue management (AQM).

The design of an AQM scheme includes the selection of appropriate congestion

indicators and control principles, and the calculation of dropping probability. Among

these, choosing congestion indicators is pivotal for the performance of a given AQM

scheme, since congestion indicators are in charge of accurately detecting the levels

and trends of congestion. Significant efforts have been made in AQM from different

standpoints including experience, statistics, optimization theory, and control theory.

Research also shows that short-lived flows or mice are vulnerable in terms of band-

width share due to the conservativeness of TCP. Although AQM can improve perfor-

mance for this majority number of traffic flows to some extent, the performance is still

much below the user expectation of the timely delivery of mice.

158

7.2. Our Approach of Using FL 159

7.2 Our Approach of Using FL

In this thesis, we started with a discussion of some existing AQM schemes and pre-

sented the state of the art in the field of queue management. Following this, we have

explored the application of fuzzy logic (FL) for AQM – or FLAQM. Our hypothesis

is that FL is able to be applied to AQM on the basis of its capability of integrating

domain expert knowledge and conducting robust control of such nonlinear complex

systems as the Internet without the needs of precise and comprehensive information

and the mathematical model of objects being controlled. Two algorithms, FLAQM(I)

and FLAQM(II), have been presented. More importantly, the traffic load factor is

elaborately chosen for congestion notification in FLAQM. The traffic load factor takes

account of not only input traffic loads but also existing queue lengths, and thus makes

accurate calculation of current traffic load. With such a dimensionless measure, control

is expected to be robust against link capacity changes. Also, the calculation of traffic

load factor is easily extended to deal with the scenario where best-effort traffic coexists

with other QoS traffic with reserved bandwidth, and available capacity for best-effort

traffic is ever-changing. FLAQM(I) employs the traffic load indicator and its change as

its inputs, whereas its reciprocal and the corresponding change are used in FLAQM(II).

The use of the reciprocal of the traffic load indicator in FLAQM(II) is to implicitly

realize the input normalization to achieve system stability and robustness.

Meanwhile the mice and elephants (ME) strategy has been proposed in this study

to provide preferential treatment for vulnerable short-lived flows, or mice, in order to

meet the user expectation of timely delivery of this kind of flow. Besides giving priority

to mice, the proposed ME strategy also considers issues including operational location,

starvation of elephants, storage of flow states, and control of elephants. We have identi-

fied that user premise gateways, despite not being an ideal place, is a practical location

at which to employ the ME strategy, with expectation of some surplus processing re-

sources there. To address the starvation problem, minimum capacity is ensured for

elephants by updating the threshold between mice and elephants via FL technology.

Once flows are detected as complete or inactive, the states will be deleted to minimize

the size of data storage. Due to its effectiveness and flexibility in being extended to an

environment where different traffic classes coexist, the proposed FLAQM is deployed

160 Chapter 7. Conclusions and Future Work

to control the elephant queue.

7.3 Experiment Results and Analysis

Performance evaluation of the proposed schemes is carried out via extensive experi-

mental simulations in this research. Performance is evaluated under a variety of traffic

conditions against a number of performance measures: TCP goodput and flow latency

from the user perspective and network throughput, link utilization, and loss rate from

the ISP perspective. The simulation results demonstrate that the traditional Drop

Tail method performs worse with increasing traffic load and in contrast AQM is able

to relieve congestion and tends to improve traffic performance, especially flow latency.

It thereby proved the necessity of replacing Drop Tail with an effective AQM scheme.

However, there is no outstanding AQM scheme among the typical ones in existence

and, in any case, they are sensitive to the fluctuation of traffic load in realistic net-

work conditions. By applying the proposed FLAQM scheme to queue management,

the simulation results show that the traffic performance has been improved dramati-

cally compared to that of both Drop Tail and some well-known AQM schemes in all

the investigated network circumstances. More importantly, the fuzzy controllers, in

particular the FLAQM(II), are robust in the face of traffic fluctuation and different

network conditions. It thus demonstrates the feasibility of applying FL to the area

of traffic control in the Internet. We also find that the ME strategy with the use of

FLAQM to control the elephant queue improves the performance of mice with no harm

to elephants, if there is no benefits.

7.4 Confidence Level Analysis

The issue of credibility of stochastic discrete-event simulation studies has arisen in the

research area of telecommunication networks, which is a nonterminating system that

runs continuously, or at least over a very long period of time[22]. [24] describes the

necessity of the use of appropriate analysis of simulation output data, especially for a

7.4. Confidence Level Analysis 161

steady-state simulation 1; otherwise simulation results could be misleading. Since some

of a TCP/IP network simulation model input variables are random variables such as

flow inter-arrival rate and flow size generated from the Poisson-Pareto traffic model in

subsection 4.1.3, it follows that the model output variables are random variables. The

simulation results thus exhibit random phenomena. A confidence level on an estimate

of an actual value can be established. The most frequently used estimate is the mean

value, µ. In this case, the sequence of observations or samples of size n, x1, x2, . . . , xn,

is used to calculate the average as follows.

X̄(n) =
1

n

i=n∑
i=1

xi (7.1)

The accuracy of the estimator X̄(n) can be assessed by the probability

P (|X̄(n)− µ| < δ) = 1− α (7.2)

r

P (X̄(n)− δ ≤ µ ≤ X̄(n) + δ) = 1− α (7.3)

where δ is the half-width of the confidence interval for the estimator and (1−α) is the

confidence level. Thus it is 100(1−α)% confident that the true mean value µ lies in the

interval (X̄(n) − δ, X̄(n) + δ). It is well known that if observations x1, x2, . . . , xn can

be regarded as realizations of independent and identically distributed (i.i.d.) random

variables, then

δ = tn−1,1−α/2σ[X̄(n)] (7.4)

where

σ[X̄(n)] =
i=n∑
i=1

(xi − X̄(n))2

n(n− 1)
(7.5)

and tn−1,1−α/2 is the 100(1 − α/2)% point of a t-distribution with n − 1 degrees of

freedom; that is, P (t ≥ tn−1,1−α/2) = α/2 and t ∼ tn−1.

In most cases, a confidence level of 95% (α = 0.05) is desired. Once the δ is calcu-

lated based on a given α, the relative precison ε of the simulation results is obtained

1A steady-state simulation is a simulation whose objective is to study long-run, or steady-state,
behavior of a nonterminating system [22]

162 Chapter 7. Conclusions and Future Work

as follows [56].

ε =
δ

X̄(n)
(7.6)

Usually, the relative precision of the estimator is chosen to be 5% of the estimated

values.

As a result, confidence level analysis can be conducted for simulations. For instance,

for the simulations carried out in Chapter 4, The relative precision of the network

throughputs with different AQM schemes at confidence level of 95% is shown in Table

7.1.

Table 7.1: Relative Precision of the network throughputs
Traffic Load Drop Tail RED ARED PI REM BLUE

50 0.153 0.160 0.155 0.153 0.156 0.159
80 0.143 0.135 0.137 0.140 0.135 0.115
90 0.124 0.121 0.123 0.123 0.121 0.108
100 0.068 0.075 0.073 0.072 0.098 0.062
110 0.002 0.005 0.003 0.004 0.003 0.003
120 0.003 0.001 0.003 0.002 0.003 0.001

Some of the simulations have not reached the desired accuracy. The relative preci-

sion with higher traffic loads is quite adequate compared with those with lower traffic

loads. To achieve the desired confidence level with satisfactory precision, methods are

needed to instruct how to carry out simulations. [80] provides a solution called sequen-

tial simulation, which adaptively decides about continuing a simulation experiment

until the required accuracy of results is reached.

7.5 Future Work

This research has included many interesting research topics and we have achieved

significant outcomes, nevertheless, it still leaves a lot for future research. We sincerely

believe the following two research directions deserve future exploration.

• Firstly, coupling neural networks (NNs) and FL, namely Neuro-Fuzzy, obtains

better control. NNs is derived from the attempt to make use of the known

or expected organizing principles of the human brain, and belongs to the same

7.5. Future Work 163

family of artificial intelligent technologies as FL. The strengths of NNs lie in

their learning capabilities and their distributed structure that allows for highly

parallel software or hardware implementations [75]. Therefore, it is expected that

Neuro-Fuzzy controller will be able to overcome man-made mistakes and conduct

autoconfiguration not only of control parameters, but also of fuzzy rules based

on network conditions. Implementation of on-line tuning is the next research

step towards the design of such Neuro-Fuzzy controllers, particularly for Internet

traffic.

• On the other hand, FL or Neuro-Fuzzy can be deployed to carry out robust

control in some other network research areas. Diffserv, a new Internet architec-

ture, is becoming of interest to both ISPs and researchers. Before its universal

adoption by ISPs, more studies need to be done to achieve end-to-end QoS. One

straightforward deployment of current work to Diffserv is to doubly use FLAQM

to do differential dropping of IN and OUT packets respectively, for the Assured

Forwarding (AF) service model.

Bibliography

[1] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[2] R. G. Addie, T. M. Neame, and M. Zukerman. Performance Evaluation of a Queue

Fed by a Poisson Pareto Burst Process. Computer Networks, 40:377–397, October

2002.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC2581,

April 1999.

[4] S. Athuraliya and S. Low. Optimization Flow Control – II: Implementation. Tech-

nical report, University of Melbourne, Australia, 2000. http://citeseer.nj.

nec.com/article/athuraliya00optimization.html.

[5] T. Bonald, M. May, and J. Bolot. Analytic Evaluation of RED Performance. In

Proceedings of IEEE INFOCOM (3), pages 1415–1424, 2000.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Archi-

tecture: an Overview. RFC1633, 1994.

[7] X. Chen and J. Heidemann. Preferential Treatment for Short Flows to Reduce

Web Latency. Computer Networks, 41(6):779–794, April 2003.

[8] K. Claffy, G. Miller, and K. Thompson. the Nature of the Beast: Recent Traffic

Measurements from An Internet Backbone. In Proceedings of Internet Society

INET’98, Geneva, Switzerland, 1998.

[9] D. D. Clark and W. Fang. Explicit Allocation of Best-Effort Packet Delivery

Service. IEEE/ACM Transactions on Networking, 6(4):362–373, 1998.

164

BIBLIOGRAPHY 165

[10] The ATM Forum Technical Committee. Traffic Management Specification Version

4.1. AF-TM-0121.000, March, 1999.

[11] B. Davie and Y. Rekhter. MPLS: Technology and Applications. Morgan Kauf-

mann, 2000.

[12] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional Differentiated Services:

Delay Differentiation and Packet Scheduling. In Proceedings of SIGCOMM, pages

109–120, 1999.

[13] C. Dovrolis, D. Stiliadis, and P. Ramanathan. Proportional Differentiated Ser-

vices, Part II: Loss Rate Differentiation and Packet Dropping. In Proceedings of

IEEE/IFIP International Workshop on Quality of Service (IWQoS), pages 52–61,

June, 2000.

[14] D. Driankov, H. Hellendoorn, and M. Reinfrank. An Introduction to Fuzzy Control

(Second Edition). Springer, 1996.

[15] A. Kandel et al. ATM Traffic Management and Congestion Control using Fuzzy

Logic. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 29(3):474–

480, 1999.

[16] B. Braden et al. Recommendations on Queue Management and Congestion Avoid-

ance in the Internet. RFC2309, April 1998.

[17] C. Chrysostomou et al. Fuzzy Logic Congestion Control in TCP/IP Best Effort

Networks. In Proceedings of the Australian Telecommunications, Networks and

Applications Conference (ATNAC), Melbourne, Australia, December 2003.

[18] C. V. Hollot et al. A Control Theoretic Analysis of RED. In Proceedings of IEEE

INFOCOM, 2001.

[19] C. V. Hollot et al. On Designing Improved Controllers for AQM Routers Support-

ing TCP Flows. In Proceedings of IEEE INFOCOM, pages 1726–1734, 2001.

[20] F. Le Faucheur (Editor) et al. Multiprotocol Label Switching Architecture (MPLS)

Support of Differentiated Services. RFC3270, 2002.

166 BIBLIOGRAPHY

[21] G. Gopalakrishnan et al. Robust Router Overload Control Using Acceptance and

Departure Rate Measures. In Proceedings of the 18th International Teletraffic

Congress (ITC), Berlin, Germany, September, 2003.

[22] J. Banks et al. Discrete-Event System Simulation (3rd Edition). In Prentice-Hall,,

2001.

[23] J. Sun et al. Adaptive Drop-Tail: A Simple and Efficient Active Queue Manage-

ment Algorithm for Internet Flow Control. In Proceedings of the 18th International

Teletraffic Congress (ITC), Berlin, Germany, September, 2003.

[24] K. Pawlikowski et al. On Credibility of Simulation Studies Of Telecommunication

Networks. IEEE Communications Magazine, (40(1)):132–139, Jan. 2002.

[25] M. May et al. Reasons Not to Deploy RED. In Proceedings of 7th. International

Workshop on Quality of Service (IWQoS), pages 260–262, London, June 1999.

[26] R. Braden Ed. et al. Resource ReserVation Protocol (RSVP) – Version 1 Func-

tional Specification. RFC2205, 1997.

[27] S. Athuraliya et al. REM: Active Queue Management. IEEE Network, 15(3):48 –

53, May/June 2001.

[28] S. Bajaj et al. Improving Simulation for Network Research. Technical Report

99-702b, University of Southern California, March 1999. http://www.isi.edu/

∼johnh/PAPERS/Bajaj99a.html.

[29] S. Blake et al. An Architecture for Differentiated Services. RFC2475, 1998.

[30] S. Kalyanaraman et al. The ERICA Switch Algorithm for ABR Traffic Manage-

ment in ATM Networks. IEEE/ACM Transactions on Networking, 8(1):87–98,

2000.

[31] T. Ziegler et al. Stability of RED with two-way TCP Traffic. In Proceedings of

IEEE ICCCN, Las Vegas, Oct 2000.

[32] V. Catania et al. A Comparative Analysis of Fuzzy versus Conventional Polic-

ing Mechanisms for ATM Networks. IEEE/ACM Transactions on Networking,

4(3):449–459, 1996.

BIBLIOGRAPHY 167

[33] W. E. Leland et al. On the Self-similar Nature of Ethernet Traffic (extended

version). IEEE/ACM Transactions on Networking, 2(1):1–15, 1994.

[34] W. Feng et al. A Self-Configuring RED Gateway. In Proceedings of IEEE INFO-

COM, volume 3, pages 1320–1328, 1999.

[35] Y. Bernet et al. A Framework for Integrated Services Operation over Diffserv

Networks. RFC2998, November 2000.

[36] Y. Bernet et al. A Framework for Integrated Services Operation over Diffserv

Networks. RFC2998, November 2000.

[37] Y. Zhang et al. On the Characteristics and Origins of Internet Flow Rates. In Pro-

ceedings of SIGCOMM, pages 309–322, Pittsburgh, Pennsylvania, USA, August

2002.

[38] Z. Li et al. Improving the Adaptability of AQM Algorithms to Traffic Load Using

Fuzzy Logic. In Proceedings of the Australian Telecommunications, Networks and

Applications Conference (ATNAC), Melbourne, Australia, December 2003.

[39] K. Fall and S. Floyd. Simulation-based Comparisons of Tahoe, Reno, and SACK

TCP. Computer Communication Review, 26(3):5–21, July 1996.

[40] W. Fang. Differentiated Services: Architecture, Mechanisms and an Evaluation.

PhD Dissertation, Princeton University, 2000.

[41] W. Feng. BLUE: A New Class of Active Queue Management Algorithms. Techni-

cal Report CSE-TR-387-99, 15, 1999. http://citeseer.nj.nec.com/article/

feng99blue.html.

[42] W. Feng, P. Tinnakornsrisuphap, and I. Philp. On the Burstiness of the TCP

Congestion-Control Mechanism in a Distributed Computing System. In ICDCS

’00: Proceedings of the The 20th International Conference on Distributed Com-

puting Systems (ICDCS 2000), pages 110 – 117. IEEE Computer Society, 2000.

[43] V. Firiou, X. Zhang, and Y. Guo. Best Effort Differentiated Services: Trade-off

Service Differentiation for Elastic Applications. In Proceedings of IEEE ICT, Jun

2001.

168 BIBLIOGRAPHY

[44] V. Firoiu and M. Borden. A Study of Active Queue Management for Congestion

Control. In Proceedings of IEEE INFOCOM (3), pages 1435–1444, 2000.

[45] S. Floyd. Recommendation on using the gentle variant of RED. Technical report.

http://www.icir.org/floyd/red/gentle.html.

[46] S. Floyd. RED: Discussions of Setting Parameters. Technical report. http:

//www.icir.org/floyd/REDparameters.txt.

[47] S. Floyd. Setting Parameters:. Technical report. http://www.icir.org/floyd/

red.html#notes.

[48] S. Floyd. Connections with Multiple Congested Gateways in Packet-Switched

Networks PartI: One-way Traffic. Computer Communication Review, 21(5):30–47,

October, 1991.

[49] S. Floyd. TCP and Explicit Congestion Notification. ACM Computer Communi-

cation Review, 24(5):10–23, October 1994.

[50] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An Algorithm for In-

creasing the Robustness of RED. Technical report, 2001. http://citeseer.nj.

nec.com/floyd01adaptive.html.

[51] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion

Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[52] S. Floyd and V. Paxson. Difficulties in Simulating the Internet. IEEE/ACM

Transactions on Networking, 9(4):392–403, August, 2001.

[53] D. Grossman. New Terminology and Clarifications for Diffserv. RFC3260, April

2002.

[54] L. Guo and I. Matta. The War Between Mice and Elephants. Technical Report

2001-005, 2001. http://citeseer.nj.nec.com/guo01war.html.

[55] M. Hassan and M. Atiquzzaman. Performance of TCP/IP Over ATM Networks.

Artech House Publishers, 2000.

BIBLIOGRAPHY 169

[56] M. Hassan and R. Jain. High Performance TCP/IP Networking: Concepts, Issues,

and Solutions. In Prentice-Hall,, 2003.

[57] N. Hohn, D. Veitch, and P. Abry. Cluster Processes, a Natural Language for

Network Traffic. IEEE Transactions on Signal Processing, Special Issue on Signal

Processing in Networking, 51(8):2222–2249, 2003.

[58] R. Q. Hu and D. W. Petr. A Predictive Self-tuning Fuzzy-logic Feedback Rate

Controller. IEEE/ACM Transactions on Networking, 8(6):697–709, 2000.

[59] P. Hurley, J. Y. L. Boudec, and P. Thiran. The Asymmetric Best-Effort Service.

In Proceedings of IEEE GLOBECOM, Rio de Janeiro, Brazil, December 1999.

[60] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIG-

COMM, pages 314–329, 1988.

[61] V. Jacobson, K. Nichols, and K. Poduri. RED in a different Light. Technical

report, Cisco Systems, 1999.

[62] J. R. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE

Transactions on Systems, Man, and Cybernetics, 23:665–684, 1993.

[63] S. Keshav. An Engineering Approach to Computer Networking: ATM Networks,

the Internet, and the Telephone Network. ADDISON-WESLEY, 1997.

[64] S. Kunniyur and R. Srikant. A Decentralized Adaptive ECN Marking Algorithm.

In Proceedings of GLOBECOM, San Francisco, Nov. 2000.

[65] S. Kunniyur and R. Srikant. End-to-End Congestion Control Schemes: Utility

Functions, Random Losses and ECN Marks. In Proceedings of IEEE INFOCOM

(3), pages 1323–1332, 2000.

[66] S. Kunniyur and R. Srikant. Analysis and Design of An Adaptive Virtual Queue

(AVQ) Algorithm for Active Queue Management. In Proceedings of the 2001

conference on Applications, technologies, architectures, and protocols for computer

communications, pages 123–134. ACM Press, 2001.

170 BIBLIOGRAPHY

[67] S. Kunniyur and R. Srikant. Analysis and design of an adaptive virtual queue

(AVQ) algorithm for active queue management. In SIGCOMM ’01: Proceedings

of the 2001 conference on Applications, technologies, architectures, and protocols

for computer communications, pages 123–134. ACM Press, 2001.

[68] C. C. Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part I. IEEE

Transactions on Systems, Man and Cybernetics, 20(2):404–418, 1990.

[69] C. C. Lee. Fuzzy Logic in Control Systems: Fuzzy Logic Controller – Part II.

IEEE Transactions on Systems, Man and Cybernetics, 20(2):419–435, 1990.

[70] Z. Li and Z. Zhang. An Application of Fuzzy Logic to Usage Parameter control in

ATM Networks. In Proceedings of the 1st International Conference on Fuzzy Sys-

tems and Knowledge Discovery: Computational Intelligence for the E-Age, 2002.

[71] H. H. Lim and B. Qiu. Performance Improvement of TCP using Fuzzy Logic

Prediction. In Proceedings of International Symposium on Intelligent Signal Pro-

cessing and Communication Systems (ISPACS), number 20-21, pages 152–156,

Nashville, USA, November 2001.

[72] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proceedings of

SIGCOMM, pages 127–137, Cannes, France, september 1997.

[73] S. H. Low and D. E. Lapsley. Optimization Flow Control — I: Basic Algorithm

and Convergence. IEEE/ACM Transactions on Networking, 7(6):861–874, 1999.

[74] D. McDysan. QoS & Traffic Management in IP & ATM Networks. McGraw-Hill,

2000.

[75] D. Nauck, F. Klawonn, and R. Kruse. Foundations of Neuro-Fuzzy Systems. Chich-

ester: Wiley, 1997.

[76] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differentiated Services Archi-

tecture for the Internet. RFC2638, July 1999.

[77] T. J. Ott, T. V. Lakshman, and L. H. Wong. SRED: Stabilized RED. In Proceed-

ings of IEEE INFOCOM, volume 3, pages 1346–1355, 1999.

BIBLIOGRAPHY 171

[78] K. Park, G. Kim, and M. Crovella. On the Effect of Traffic Self-similarity on

Network Performance. In Proceedings of SPIE International Conference on Per-

formance and Control of Network Systems, pages 296–310, 1997.

[79] K. M. Passino and S. Yurkovich. Fuzzy Control. ADDISON-WESLEY, 1998.

[80] K. Pawlikowski. Steady State Simulation of Queueing Processes: A Survey of

Problems and Solutions. ACM Computing Surveys, (22(2)):123–170, June 1990.

[81] V. Paxson and S. Floyd. Wide-area Traffic: The Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[82] V. Paxson and S. Floyd. Wide Area Traffic: the Failure of Poisson Modeling.

IEEE/ACM Transactions on Networking, 3(3):226–244, 1995.

[83] K. Pentikousis and H. Badr. An Evaluation of TCP with Explicit Congestion

Notification. In Annals of Telecommunications, Mid-2003.

[84] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notifica-

tion (ECN) to IP. RFC2481, January 1999.

[85] K. Ramakrishnan and S. Floyd. A Proposal to add Explicit Congestion Notifica-

tion (ECN) to IP. RFC2481, January 1999.

[86] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Congestion

Notification (ECN) to IP. RFC3168, September 2001.

[87] P. Ranjan, E. H. Abed, and R. J. La. Nonlinear Instabilities in TCP-RED. In

Proceedings of IEEE INFOCOM, June 2002.

[88] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Archi-

tecture. RFC3031, 2001.

[89] V. Rosolen, O. Bonaventure, and G. Leduc. A RED Discard Strategy for ATM

Networks and Its Performance Evaluation with TCP/IP Traffic. ACM SIGCOMM

Computer Communication Review, 29(3):23–43, 1999.

[90] W. Stallings. High-speed Networks: TCP/IP and ATM Design Principles. Prentice

Hall, 1998.

172 BIBLIOGRAPHY

[91] W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley,

1994.

[92] S. Thulasidasan and W. Feng. Using Steady-State TCP Behavior for Proactive

Queue Management. Technical report. http://citeseer.nj.nec.com/543165.

html.

[93] W. Willinger, V. Paxson, and M. S. Taqqu. Self-similarity and Heavy Tails: Struc-

tural Modeling of Network Traffic. A Practical Guide to Heavy Tails: Statistical

Techniques and Applications, 1998.

[94] B. Wydrowski and M. Zukerman. GREEN: An Active Queue Management Algo-

rithm for a Self Managed Internet. Technical report, 2002. http://citeseer.

nj.nec.com/wydrowski02green.html.

[95] P. Yan, Y. Gao, and H. Ozbay. Variable Structure Control in Active Queue

Management for TCP with ECN. In Proceedings of ISCC, (accepted by IEEE

Transactions on Control Systems Technology), Kemer-Antalya, Turkey, June 2003.

[96] P. Yan, Y. Gao, and H. Ozbay. Variable Structure Control in Active Queue

Management for TCP with ECN. In Proceedings of ISCC, Kemer-Antalya, Turkey,

June 2003. Accepted by IEEE Transactions on Control Systems Technology.

[97] L. Zhang and D. Clark. Oscillating Behavior of Network Traffic: a Case Study

Simulation. Internetworking: Research and Experience, 1(2):101 – 112, 1990.

[98] L. Zhang, S. Shenker, and D. D. Clark. Observations on the Dynamics of a

Congestion Control Algorithm: the Effects of Two-way Traffic. In Proceedings of

the conference on Communications architecture & protocols, pages 133–147. ACM

Press, 1991.

[99] T. Ziegler, S. Fdida, and C. Brandauer. Stability Criteria of RED with TCP

Traffic. In Proceedings of IFIP ATM&IP Working Conference, Budapest, June

2001.

Appendix A

Computer Programs for FLAQM(I)
and FLAQM(II)

A.1 The .h and .cc Source Code for Implement-
ing FLAQM(I) and FLAQM(II) Builtin NS2
(2.26)

A.1.1 FLAQM.h

1/∗
∗ Fuzzy l o g i c .AQM: Zhi Li (USQ)
∗/

#ifndef n s f l h
#define n s f l h

#include ”queue . h”
#include <s t d l i b . h>
#include ” agent . h”
#include ” template . h”

class LinkDelay ;

class FLQueue ;

/∗
∗ f l parameters , s upp l i e d by user
∗/

struct MYflp {
21/∗

∗ User supp l i e d .
∗/

int whichFLAQM;
// parameters f o r FLAQM (FLAQM(I))
double FLAQM lf p1 ;
double FLAQM lf p2 ;
double FLAQM lf p3 ;
double FLAQM lf p4 ;
double FLAQM lf p5 ;

double FLAQM d lf N p1 ;
double FLAQM d lf N p2 ;
double FLAQM d lf N p3 ;
double FLAQM d lf N p4 ;

double FLAQM d lf P p1 ;
double FLAQM d lf P p2 ;
double FLAQM d lf P p3 ;
double FLAQM d lf P p4 ;

41double FLAQM d lf P p5 ;

A1

A2 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

/∗ mu l t i p l y decrease parameters ∗/
double FLAQM MD p1;
double FLAQM MD p2;
double FLAQM MD p3;
double FLAQM MD p4;
double FLAQM MD p5;
double FLAQM MD p6;

/∗ add i t i o na l y inc rea se parameters ∗/
double FLAQM AI p1 ;
double FLAQM AI p2 ;
double FLAQM AI p3 ;
double FLAQM AI p4 ;
double FLAQM AI p5 ;
double FLAQM AI p6 ;

// parameters f o r IFLAQM (FLAQM(I I))
61double IFLAQM lf p1 ;

double IFLAQM lf p2 ;
double IFLAQM lf p3 ;
double IFLAQM lf p4 ;

double IFLAQM d lf N p1 ;

double IFLAQM d lf P p1 ;
double IFLAQM d lf P p2 ;

/∗ mu l t i p l y decrease parameters ∗/
double IFLAQM MD p1 ;
double IFLAQM MD p2 ;
double IFLAQM MD p3 ;
double IFLAQM MD p4 ;
double IFLAQM MD p5 ;
double IFLAQM MD p6 ;
double IFLAQM MD p7 ;

81/∗ add i t i o na l y inc rea se parameters ∗/
double IFLAQM AI p1 ;
double IFLAQM AI p2 ;
double IFLAQM AI p3 ;
double IFLAQM AI p4 ;
double IFLAQM AI p5 ;
double IFLAQM AI p6 ;
double IFLAQM AI p7 ;

double p de l t a ; // d e l t a : 1 <=l o a d f a c t o r <= 1+de l t a
int agg r e s s i v e ; // qlen<Q0, f r a c t i on >1; o the rw i s e f r a c t i o n = 1
int p pk t s i z e ;
double p updtime ;
double p bo ; // time f o r example 5ms
double p QDLF ;
double p a ;
double p b ;
int p stepnumber ;
double p inw ;

101double q w ;
int wait ; /∗ t rue f o r wa i t ing between dropped packe t s ∗/
int p drop l i k e r ed ; // uni formly drop incoming packe t s
int p de t e rm in i s t i c ; // d e t e rm in i s t i c drop incoming packe t s
int i n pu t g r e e n l i k e ; // f l a g f o r GREEN l i k e ca l f o r i npu t r a t e
double K; // ca l i n pu t r a t e (GREEN l i k e)

/∗
∗ Computed as a func t i on o f user s upp l i e d parameters .
∗/
double ptc ;

} ;

/∗
∗ f l v a r i a b l e s , maintained by f l

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A3

∗/
struct MYflv {

TracedDouble v prob ; /∗ prob . o f packe t marking . ∗/
TracedDouble v z ; /∗ used in computing the load f a c t o r ∗/

121TracedDouble v de l t a z ; /∗ used in computing the load
f a c t o r change ∗/

double v z o l d ; /∗ f o r c a l c u l a t i n g v d e l t a z ∗/
double v count ;
double v ave ;
TracedDouble v qave ;
// doub le v q a v e o l d ;
int v q l e n o l d ; /∗ l e f t o v e r queue at the end o f

l a s t per iod ∗/
int count ; /∗ # of packe t s s ince l a s t drop ∗/
int count bytes ; /∗ # of by t e s s ince l a s t drop ∗/
double d e t e rm i n i s t i c r ; /∗ f o r d e t e rm in i s t i c dropping ∗/
double e s t ; // es t ima t ion input ra t e as GREEN

MYflv () : v prob (0 . 0) , v z (0 . 0) , v d e l t a z (0 . 0) , v z o l d (0 . 0) ,
v ave (0 . 0) , v qave (0 . 0) , v q l e n o l d (0) , count (0) ,
count bytes (0) , d e t e rm i n i s t i c r (0 . 0) , e s t (0 . 0) { }

} ;

class FLTimer : public TimerHandler {
141public :

FLTimer (FLQueue ∗a) : TimerHandler () { a = a ; }
protected :

virtual void exp i r e (Event ∗e) ;
FLQueue ∗ a ;

} ;

class FLQueue : public Queue {
public :

FLQueue () ;
void s e t upda t e t imer () ;
void t imeout () ;

protected :
int command(int argc , const char∗const∗ argv) ;
void i n i t i a l i z e p a r am s () ;
double e s t imator (int nqueued , int m, double ave , double q w) ;
double modify p (double p , int count , int count bytes , int bytes ,

int mean pktsize , int wait , int s i z e) ;
double a r r i v a l t im e o l d ; // l a s t packe t a r r i v e time

161// in GREEN fo r inpu t r a t e
void enque (Packet∗ pkt) ;
Packet∗ deque () ;
void r e s e t () ;
void FLAQM run updaterule () ;
void IFLAQM run updaterule () ;

LinkDelay∗ l i n k ; /∗ outgo ing l i n k ∗/
PacketQueue ∗q ; /∗ under l y ing (u s u a l l y) FIFO queue ∗/

Tcl Channel tchan ; /∗ Place to wr i t e t race records ∗/
TracedInt curq ; /∗ curren t q l en seen by a r r i v a l s ∗/
void t r a c e (TracedVar ∗) ; /∗ rou t ine to wr i t e t race records ∗/

FLTimer f l t i m e r ;

/∗
∗ S t a t i c s t a t e .
∗/

double pmark ; //number o f packe t s be ing marked
181MYflp f l p ; /∗ ear ly−drop params ∗/

/∗
∗ Dynamic s t a t e .
∗/

MYflv f l v ; /∗ ear ly−drop v a r i a b l e s ∗/
int i d l e ;

A4 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

double i d l e t ime ;
int markpkts ;
int q ib ;

void p r i n t f l p () ; // f o r debugg ing
void p r i n t f l v () ; // f o r debugg ing

double FLAQM fl MD AQM(double l f , double d e l t a l f ,
int step number) ;

double FLAQM fl AI AQM(double l f , double d e l t a l f ,
int step number) ;

double IFLAQM fl MD AQM(double l f , double d e l t a l f ,
201int step number) ;

double IFLAQM fl AI AQM(double l f , double d e l t a l f ,
int step number) ;

double t r i a n g l e (double x , double l e f t , double medium ,
double r i g h t) {

double y ;
i f (x < l e f t | | x > r i g h t)

y = 0 ;
else i f (x >= l e f t && x <= medium) {

i f (medium > l e f t)
y = (1 / (medium− l e f t)) ∗ (x− l e f t) ;

else i f (medium == l e f t)
y = 1 ;

else
f p r i n t f (s tde r r , ”medium should be g r e a t e r

than or equal to l e f t \n”) ;
}
else {

i f (medium < r i g h t)
y = (1 / (medium−r i g h t)) ∗ (x − r i g h t) ;

221else i f (medium == r i gh t)
y = 1 ;

else
f p r i n t f (s tde r r , ”medium should be l e s s

than or equal to r i g h t \n”) ;
}
return y ;

}
double t r apezo id (double x , double l e f t , double mleft ,

double mright , double r i g h t) {
double y ;
i f (x < l e f t | | x > r i g h t)

y = 0 ;
else i f (x >= l e f t && x <= mle f t) {

i f (mle f t > l e f t)
y = (1 / (mleft− l e f t)) ∗ (x− l e f t) ;

else i f (mle f t == l e f t)
y = 1 ;

else
f p r i n t f (s tde r r , ” mle f t should be g r e a t e r than

241or equal to l e f t \n”) ;
}
else i f (x > mle f t && x <= mright)

y = 1 ;
else {

i f (mright < r i g h t)
y = (1 / (mright−r i g h t)) ∗ (x − r i g h t) ;

else i f (mright == r i gh t)
y = 1 ;

else
f p r i n t f (s tde r r , ”mright should be l e s s

than or equal to r i g h t \n”) ;
}
return y ;

}

// t h i s i s f o r FLAQM (FLAQM(I))
double FLAQM H1(double x) {

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A5

double y ;
y = trapezo id (x , 0 . 8 , 0 . 8 , f l p . FLAQM lf p1 ,

261f l p . FLAQM lf p2) ;
return y ;

}
double FLAQM H2(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM lf p1 , f l p . FLAQM lf p2 ,

f l p . FLAQM lf p3) ;
return y ;

}
double FLAQM H3(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM lf p2 , f l p . FLAQM lf p3 ,

f l p . FLAQM lf p4) ;
return y ;

}
double FLAQM H4(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM lf p3 , f l p . FLAQM lf p4 ,

f l p . FLAQM lf p5) ;
return y ;

281}
double FLAQM H5(double x) {

double y ;
y = trapezo id (x , f l p . FLAQM lf p4 , f l p . FLAQM lf p5 ,

200 , 200) ;
return y ;

}

double FLAQM N5(double x) {
double y ;
y = trapezo id (x , −200, −200, f l p . FLAQM d lf N p1 ,

f l p . FLAQM d lf N p2) ;
return y ;

}
double FLAQM N4(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf N p1 , f l p . FLAQM d lf N p2 ,

f l p . FLAQM d lf N p3) ;
return y ;

301}
double FLAQM N3(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf N p2 , f l p . FLAQM d lf N p3 ,

f l p . FLAQM d lf N p4) ;
return y ;

}
double FLAQM N2(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf N p3 , f l p . FLAQM d lf N p4 , 0) ;
return y ;

}
double FLAQM N1(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf N p4 , 0 , 0) ;
return y ;

}
double FLAQM P0(double x) {

double y ;
y = t r i a n g l e (x , 0 , 0 , f l p . FLAQM d lf P p1) ;

321return y ;
}
double FLAQM P1(double x) {

double y ;
y = t r i a n g l e (x , 0 , f l p . FLAQM d lf P p1 ,

f l p . FLAQM d lf P p2) ;
return y ;

}
double FLAQM P2(double x) {

A6 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf P p1 , f l p . FLAQM d lf P p2 ,

f l p . FLAQM d lf P p3) ;
return y ;

}
double FLAQM P3(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf P p2 , f l p . FLAQM d lf P p3 ,

f l p . FLAQM d lf P p4) ;
return y ;

}
341double FLAQM P4(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM d lf P p3 , f l p . FLAQM d lf P p4 ,

f l p . FLAQM d lf P p5) ;
return y ;

}
double FLAQM P5(double x) {

double y ;
y = trapezo id (x , f l p . FLAQM d lf P p4 , f l p . FLAQM d lf P p5 ,

200 , 200) ;
return y ;

}

double FLAQM MD Z(double x) {
double y ;
y = t r i a n g l e (x , − f l p .FLAQM MD p1, 0 , f l p .FLAQM MD p1) ;
return y ;

}
double FLAQM MD P1(double x) {

double y ;
361y = t r i a n g l e (x , 0 , f l p .FLAQM MD p1, f l p .FLAQM MD p2) ;

return y ;
}
double FLAQM MD P2(double x) {

double y ;
y = t r i a n g l e (x , f l p .FLAQM MD p1, f l p .FLAQM MD p2,

f l p .FLAQM MD p3) ;
return y ;

}
double FLAQM MD P3(double x) {

double y ;
y = t r i a n g l e (x , f l p .FLAQM MD p2, f l p .FLAQM MD p3,

f l p .FLAQM MD p4) ;
return y ;

}
double FLAQM MD P4(double x) {

double y ;
y = t r i a n g l e (x , f l p .FLAQM MD p3, f l p .FLAQM MD p4,

f l p .FLAQM MD p5) ;
return y ;

381}
double FLAQM MD P5(double x) {

double y ;
y = trapezo id (x , f l p .FLAQM MD p4, f l p .FLAQM MD p5,

f l p .FLAQM MD p6, f l p .FLAQM MD p6) ;
return y ;

}

double FLAQM AI Z(double x) {
double y ;
y = t r i a n g l e (x , − f l p . FLAQM AI p1 , 0 , f l p . FLAQM AI p1) ;
return y ;

}
double FLAQM AI P1(double x) {

double y ;
y = t r i a n g l e (x , 0 , f l p . FLAQM AI p1 , f l p . FLAQM AI p2) ;
return y ;

}
double FLAQM AI P2(double x) {

double y ;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A7

401y = t r i a n g l e (x , f l p . FLAQM AI p1 , f l p . FLAQM AI p2 ,
f l p . FLAQM AI p3) ;

return y ;
}
double FLAQM AI P3(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM AI p2 , f l p . FLAQM AI p3 ,

f l p . FLAQM AI p4) ;
return y ;

}
double FLAQM AI P4(double x) {

double y ;
y = t r i a n g l e (x , f l p . FLAQM AI p3 , f l p . FLAQM AI p4 ,

f l p . FLAQM AI p5) ;
return y ;

}
double FLAQM AI P5(double x) {

double y ;
y = trapezo id (x , f l p . FLAQM AI p4 , f l p . FLAQM AI p5 ,

f l p . FLAQM AI p6 , f l p . FLAQM AI p6) ;
421return y ;

}

// t h i s i s f o r IFLAQM (FLAQM(I I))
double IFLAQM H1(double x) {

double y ;
y = t r i a n g l e (x , 0 , 0 , f l p . IFLAQM lf p1) ;
return y ;

}
double IFLAQM H2(double x) {

double y ;
y = t r i a n g l e (x , 0 , f l p . IFLAQM lf p1 , f l p . IFLAQM lf p2) ;
return y ;

}
double IFLAQM H3(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM lf p1 , f l p . IFLAQM lf p2 ,

f l p . IFLAQM lf p3) ;
441return y ;

}
double IFLAQM H4(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM lf p2 , f l p . IFLAQM lf p3 ,

1+ f l p . p de l t a) ;
return y ;

}
double IFLAQM H5(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM lf p3 , 1+ f l p . p de l ta ,

1+ f l p . p de l t a) ;
return y ;

}

double IFLAQM N1(double x) {
double y ;
y = trapezo id (x , −2, −2, −(1+ f l p . p de l t a) ,

f l p . IFLAQM d lf N p1) ;
461return y ;

}
double IFLAQM N2(double x) {

double y ;
y = t r i a n g l e (x , −(1+ f l p . p de l t a) , f l p . IFLAQM d lf N p1 , 0) ;
return y ;

}
double IFLAQM N3(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM d lf N p1 , 0 , 0) ;
return y ;

A8 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

}

double IFLAQM P1(double x) {
double y ;
y = t r i a n g l e (x , 0 , 0 , f l p . IFLAQM d lf P p1) ;
return y ;

}
double IFLAQM P2(double x) {

481double y ;
y = t r i a n g l e (x , 0 , f l p . IFLAQM d lf P p1 ,

f l p . IFLAQM d lf P p2) ;
return y ;

}
double IFLAQM P3(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM d lf P p1 ,

f l p . IFLAQM d lf P p2 , 1+ f l p . p de l t a) ;
return y ;

}
double IFLAQM P4(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM d lf P p2 , 1+ f l p . p de l ta ,

1+ f l p . p de l t a) ;
return y ;

}

double IFLAQM MD P1(double x) {
501double y ;

y = t r i a n g l e (x , − f l p . IFLAQM MD p1, 0 , f l p . IFLAQM MD p1) ;
return y ;

}
double IFLAQM MD P2(double x) {

double y ;
y = t r i a n g l e (x , 0 , f l p . IFLAQM MD p1, f l p . IFLAQM MD p2) ;
return y ;

}
double IFLAQM MD P3(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM MD p1, f l p . IFLAQM MD p2,

f l p . IFLAQM MD p3) ;
return y ;

}
double IFLAQM MD P4(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM MD p2, f l p . IFLAQM MD p3,

f l p . IFLAQM MD p4) ;
return y ;

521}
double IFLAQM MD P5(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM MD p3, f l p . IFLAQM MD p4,

f l p . IFLAQM MD p5) ;
return y ;

}
double IFLAQM MD P6(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM MD p4, f l p . IFLAQM MD p5,

f l p . IFLAQM MD p6) ;
return y ;

}
double IFLAQM MD P7(double x) {

double y ;
y = trapezo id (x , f l p . IFLAQM MD p5, f l p . IFLAQM MD p6,

f l p . IFLAQM MD p7, f l p . IFLAQM MD p7) ;
return y ;

}

541
double IFLAQM AI P1(double x) {

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A9

double y ;
y = t r i a n g l e (x , − f l p . IFLAQM AI p1 , 0 , f l p . IFLAQM AI p1) ;
return y ;

}
double IFLAQM AI P2(double x) {

double y ;
y = t r i a n g l e (x , 0 , f l p . IFLAQM AI p1 , f l p . IFLAQM AI p2) ;
return y ;

}
double IFLAQM AI P3(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM AI p1 , f l p . IFLAQM AI p2 ,

f l p . IFLAQM AI p3) ;
return y ;

}
double IFLAQM AI P4(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM AI p2 , f l p . IFLAQM AI p3 ,

561f l p . IFLAQM AI p4) ;
return y ;

}
double IFLAQM AI P5(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM AI p3 , f l p . IFLAQM AI p4 ,

f l p . IFLAQM AI p5) ;
return y ;

}
double IFLAQM AI P6(double x) {

double y ;
y = t r i a n g l e (x , f l p . IFLAQM AI p4 , f l p . IFLAQM AI p5 ,

f l p . IFLAQM AI p6) ;
return y ;

}
double IFLAQM AI P7(double x) {

double y ;
y = trapezo id (x , f l p . IFLAQM AI p5 , f l p . IFLAQM AI p6 ,

f l p . IFLAQM AI p7 , f l p . IFLAQM AI p7) ;
return y ;

581}

double max2(double x , double y) {
i f (x >= y) {

return x ;
}
return y ;

}
double min2 (double x , double y) {

i f (x <= y) {
return x ;

}
return y ;

}
double max3(double x , double y , double z) {

double y1 = max2(x , y) ;
double y2 = max2(y1 , z) ;
return y2 ;

}
double min3 (double x , double y , double z) {

601double y1 = min2 (x , y) ;
double y2 = min2 (y1 , z) ;
return y2 ;

}
double maxn(double ∗x , int s i z e){

double y ;
y = x [0] ;
for (int i = 1 ; i < s i z e ; i++) {

y = max2(y , x [i]) ;
}
return y ;

}
double minn(double ∗x , int s i z e) {

A10 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

double y ;
y = x [0] ;
for (int i = 1 ; i < s i z e ; i++) {

y = min2 (y , x [i]) ;
}
return y ;

}
621double i n t e g r a l (double ∗ arr , double s t e p s i z e , int step number)

{
double sum=0;
//Simpson a lgor i thm samples the in tegrand in s e v e r a l
// po in t which s i g n i f i c a n t l y improves p r e c i s i on .
for (int i =0; i<step number ; i=i +2)

// d i v i d e the area under f (x) in t o step number
// r e c t an g l e s and sum t h e i r areas
sum = sum + (ar r [i]+4∗ ar r [i +1]+ arr [i +2]) ∗ s t e p s i z e /3 ;

return sum ;
}

} ;
#endif

A.1.2 FLAQM.cc

/∗
∗ Fuzzy Logic .AQM: Zhi Li
∗/

6#include <math . h>
#include <sys / types . h>
#include ” c on f i g . h”
#include ” template . h”
#include ”random . h”
#include ” f l a g s . h”
#include ” de lay . h”
#include ” f l . h”
#include <iostream>

stat ic class FLClass : public TclClass {
public :

FLClass () : Tc lClass (”Queue/FL”) {}
TclObject ∗ c r e a t e (int , const char∗const ∗) {

return (new FLQueue) ;
}

} c l a s s f l ;

void FLQueue : : s e t upda t e t imer ()
26{

f l t i m e r . re sched (f l p . p updtime) ;
}

void FLQueue : : t imeout ()
{

//do drop/mark prob update
i f (f l p .whichFLAQM == 0)

FLAQM run updaterule () ;
else i f (f l p .whichFLAQM == 1)

IFLAQM run updaterule () ;
s e t upda t e t imer () ;

}

void FLTimer : : e xp i r e (Event ∗e) {
a −>t imeout () ;

}

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A11

46
FLQueue : : FLQueue () : l i n k (NULL) , tchan (0) , f l t i m e r (this) , i d l e (1)
{

bind (”whichFLAQM” , &f l p .whichFLAQM) ;
//0−−FLAQM (FLAQM(I)) 1−−IFLAQM (FLAQM(I I))
// FLAQM parameters
bind (”FLAQM lf p1 ” , &f l p . FLAQM lf p1) ;
bind (”FLAQM lf p2 ” , &f l p . FLAQM lf p2) ;
bind (”FLAQM lf p3 ” , &f l p . FLAQM lf p3) ;
bind (”FLAQM lf p4 ” , &f l p . FLAQM lf p4) ;
bind (”FLAQM lf p5 ” , &f l p . FLAQM lf p5) ;

bind (”FLAQM d lf N p1 ” , &f l p . FLAQM d lf N p1) ;
bind (”FLAQM d lf N p2 ” , &f l p . FLAQM d lf N p2) ;
bind (”FLAQM d lf N p3 ” , &f l p . FLAQM d lf N p3) ;
bind (”FLAQM d lf N p4 ” , &f l p . FLAQM d lf N p4) ;

bind (”FLAQM d lf P p1 ” , &f l p . FLAQM d lf P p1) ;
bind (”FLAQM d lf P p2 ” , &f l p . FLAQM d lf P p2) ;

66bind (”FLAQM d lf P p3 ” , &f l p . FLAQM d lf P p3) ;
bind (”FLAQM d lf P p4 ” , &f l p . FLAQM d lf P p4) ;
bind (”FLAQM d lf P p5 ” , &f l p . FLAQM d lf P p5) ;

bind (”FLAQM MD p1 ” , &f l p .FLAQM MD p1) ;
bind (”FLAQM MD p2 ” , &f l p .FLAQM MD p2) ;
bind (”FLAQM MD p3 ” , &f l p .FLAQM MD p3) ;
bind (”FLAQM MD p4 ” , &f l p .FLAQM MD p4) ;
bind (”FLAQM MD p5 ” , &f l p .FLAQM MD p5) ;
bind (”FLAQM MD p6 ” , &f l p .FLAQM MD p6) ;

bind (”FLAQM AI p1 ” , &f l p . FLAQM AI p1) ;
bind (”FLAQM AI p2 ” , &f l p . FLAQM AI p2) ;
bind (”FLAQM AI p3 ” , &f l p . FLAQM AI p3) ;
bind (”FLAQM AI p4 ” , &f l p . FLAQM AI p4) ;
bind (”FLAQM AI p5 ” , &f l p . FLAQM AI p5) ;
bind (”FLAQM AI p6 ” , &f l p . FLAQM AI p6) ;

// IFLAQM parameters
86bind (”IFLAQM lf p1 ” , &f l p . IFLAQM lf p1) ;

bind (”IFLAQM lf p2 ” , &f l p . IFLAQM lf p2) ;
bind (”IFLAQM lf p3 ” , &f l p . IFLAQM lf p3) ;

bind (” IFLAQM d lf N p1 ” , &f l p . IFLAQM d lf N p1) ;
// bind (” IFLAQM d lf N p2 ” , &f l p . IFLAQM d lf N p2) ;

bind (” IFLAQM d lf P p1 ” , &f l p . IFLAQM d lf P p1) ;
bind (” IFLAQM d lf P p2 ” , &f l p . IFLAQM d lf P p2) ;

bind (”IFLAQM MD p1 ” , &f l p . IFLAQM MD p1) ;
bind (”IFLAQM MD p2 ” , &f l p . IFLAQM MD p2) ;
bind (”IFLAQM MD p3 ” , &f l p . IFLAQM MD p3) ;
bind (”IFLAQM MD p4 ” , &f l p . IFLAQM MD p4) ;
bind (”IFLAQM MD p5 ” , &f l p . IFLAQM MD p5) ;
bind (”IFLAQM MD p6 ” , &f l p . IFLAQM MD p6) ;
bind (”IFLAQM MD p7 ” , &f l p . IFLAQM MD p7) ;

106bind (”IFLAQM AI p1 ” , &f l p . IFLAQM AI p1) ;
bind (”IFLAQM AI p2 ” , &f l p . IFLAQM AI p2) ;
bind (”IFLAQM AI p3 ” , &f l p . IFLAQM AI p3) ;
bind (”IFLAQM AI p4 ” , &f l p . IFLAQM AI p4) ;
bind (”IFLAQM AI p5 ” , &f l p . IFLAQM AI p5) ;
bind (”IFLAQM AI p6 ” , &f l p . IFLAQM AI p6) ;
bind (”IFLAQM AI p7 ” , &f l p . IFLAQM AI p7) ;

// shared parameters
bind (” d e l t a ” , &f l p . p de l t a) ; // neighourhood f o r s t eady reg ion
b ind boo l (” a g g r e s s i v e ” , &f l p . a g g r e s s i v e) ; //when q<q r e f =>f r a c t i o n=1

A12 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

bind (” stepnumber ” , &f l p . p stepnumber) ; // f o r compute in FL
bind (” inw ” , &f l p . p inw) ; // weigh t f o r averag ing count

// in a measurement dura t ion
bind (” q we ight ” , &f l p . q w) ; // f o r EWMA
bind (” mean pkts i ze ” , &f l p . p pk t s i z e) ;
bind (”pupdtime ” , &f l p . p updtime) ;
bind (”pbo ” , &f l p . p bo) ; // i d e a l de lay−> i d e a l queue s i z e
bind (” prob ” , &f l v . v prob) ; // dropping p r o b a b i l i t y pr
bind (” curq ” , &curq) ; // curren t queue s i z e

126bind (” ave ” , &f l v . v ave) ; // average o f count in a measurement dura t ion
bind (” qave ” , &f l v . v qave) ; // average o f queue in RED
bind (” d e l t a l f ” , &f l v . v d e l t a z) ;
bind (” l o ad f a c t o r ” , &f l v . v z) ;
bind (”QDLF ” , &f l p . p QDLF) ;
bind (” a ” , &f l p . p a) ;
bind (”b ” , &f l p . p b) ;
bind (”pmark ” , &pmark) ; //number o f packe t s be ing marked
b ind boo l (”markpkts ” , &markpkts) ; /∗ Whether to mark or drop?∗/
b ind boo l (” q ib ” , &q ib) ; /∗ queue in by t e s ? ∗/
b ind boo l (” wa i t ” , &f l p . wait) ; //”wai t ” i n d i c a t e s

//whether the gateway shou ld
b ind boo l (” d r op l i k e r e d ” , &f l p . p d rop l i k e r ed) ;
//” uni formly drop incoming packe t s l i k e red .
b ind boo l (” d e t e rm i n i s t i c ” , &f l p . p d e t e rm in i s t i c) ;
//” d e t e rm in i s t i c drop incoming packe t s l i k e red .
bind (”K” , &f l p .K) ; // ca l input ra t e d e f a u l t 0 .1
b ind boo l (” i n pu t g r e e n l i k e ” , &f l p . i n pu t g r e e n l i k e) ;
//” f l a g f o r ca l input ra t e l i k e GREEN.

146q = new PacketQueue () ; // under l y ing queue
pq = q ;
// r e s e t () ;

#ifde f notde f
p r i n t f l p () ;
p r i n t f l v () ;
#endif

}

/∗
∗ Note : i f the l i n k bandwidth changes in the course o f the
∗ s imula t ion , the bandwidth−dependent RED parameters do not change .
∗ This shou ld be f i x ed , but i t would r e qu i r e some ex t ra parameters ,
∗ and didn ’ t seem worth the t r o u b l e . . .
∗/

void FLQueue : : i n i t i a l i z e p a r am s ()
{
/∗

166∗ I f q we i gh t =0, s e t i t to a reasonab l e va lue o f 1−exp(−1/C)
∗ This corresponds to choos ing q we i gh t to be o f t h a t va lue f o r
∗ which the packe t time cons tant −1/ ln (1− q we i gh t) per d e f a u l t RTT
∗ o f 100ms i s an order o f magnitude more than the l i n k capac i ty , C.
∗
∗ I f q we i gh t=−1, then the queue we igh t i s s e t to be a func t i on o f
∗ the bandwidth and the l i n k propagat ion de lay . In pa r t i c u l a r ,
∗ the d e f a u l t RTT i s assumed to be th r ee t imes the l i n k de lay and
∗ t ransmiss ion de lay , i f t h i s g i v e s a d e f a u l t RTT grea t e r than 100 ms .
∗
∗ I f q we i gh t=−2, s e t i t to a reasonab l e va lue o f 1−exp(−10/C) .
∗/
i f (f l p . q w == 0 . 0) {

f l p . q w = 1 .0 − exp (−1.0/ f l p . ptc) ;
}

}

void FLQueue : : r e s e t ()
{
// p r i n t f (” here i s r e s e t \n ”) ;

186/∗
∗ Compute the ” packe t time cons tant ” i f we know the

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A13

∗ l i n k bandwidth . The ptc i s the max number o f
∗ pk t s per second which can be p laced on the l i n k .
∗ The l i n k bw i s g iven in b i t s / sec , so s c a l e p s i z e
∗ acco rd ing l y .
∗/
i f (l i n k) {

f l p . ptc = l i nk −>bandwidth () / (8 . ∗ f l p . p pk t s i z e) ;
i n i t i a l i z e p a r am s () ;

}
f l v . v prob = 0 . 0 ; //pr
f l v . v z = 0 . 0 ; // l f
f l v . v z o l d = 0 . 0 ; // f o r compute d e l t a l f
f l v . v d e l t a z = 0 . 0 ; // d e l t a l f
f l v . v ave = 0 . 0 ; // average o f count during a measurement per iod
f l v . v qave = 0 . 0 ;
f l v . v q l e n o l d = 0 ; // l e f t o v e r queue at the end l a s t per iod
f l v . v count = 0 . 0 ; // count during a measurement per iod
f l v . count = 0 ; // count f o r RED

206f l v . count bytes = 0 ;
f l v . d e t e rm i n i s t i c r = 0 . 0 ; // parameter r in d e t e rm in i s t i c
f l v . e s t = 0 . 0 ; // e s t input ra t e as GREEN
a r r i v a l t im e o l d = 0 . 0 ; // compute GREEN input ra t e
i d l e = 1 ;
i f (&Scheduler : : i n s t anc e () != NULL)

i d l e t ime = Scheduler : : i n s t anc e () . c l o ck () ;
else

i d l e t ime = 0 . 0 ; /∗ sched not i n s t a n t i a t e d ye t ∗/

pmark = 0 . 0 ;

Queue : : r e s e t () ;
s e t upda t e t imer () ;

}

/∗
∗ Make uniform in s t ead o f geometr ic in t e rd rop per i od s .
∗/

double
226FLQueue : : modify p (double p , int count , int count bytes , int bytes ,

int mean pktsize , int wait , int s i z e)
{

double count1 = (double) count ;
i f (bytes)
count1 = (double) (count bytes /mean pkts ize) ;
i f (wait) {

i f (count1 ∗ p < 1 . 0)
p = 0 . 0 ;

else i f (count1 ∗ p < 2 . 0)
p /= (2 − count1 ∗ p) ;

else
p = 1 . 0 ;

} else {
i f (count1 ∗ p < 1 . 0)

p /= (1 . 0 − count1 ∗ p) ;
else

p = 1 . 0 ;
}
i f (bytes && p < 1 . 0) {

246p = p ∗ s i z e / mean pkts ize ;
}
i f (p > 1 . 0)

p = 1 . 0 ;
return p ;

}

/∗
∗ Compute the load fac to r , and i t s change , and the marking prob . .
∗/

// f o r FLAQM (FLAQM(I))
void FLQueue : : FLAQM run updaterule ()

A14 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

{
// p r i n t f (” here in update \n ”) ;
double f r a c t i on , t a r g e t c apac i t y , l o ad f a c t o r , in , in avg ;
double fq1 ;
double pr , d e l t a p r ;
// f i r s t l y , input ra t e
// in avg i s the low pss f i l t e r e d input ra t e

266// which i s in b y t e s i f q i b i s t rue and in packe t s o the rw i s e .

in = f l v . v count ;
in avg = f l v . v ave ;

in avg ∗= (1 . 0 − f l p . p inw) ;

i f (q ib) {
in avg += f l p . p inw∗ in / f l p . p pk t s i z e ;
// nqueued = bcount / f l p . p p k t s i z e ;

}
else {

in avg += f l p . p inw∗ in ;
// nqueued = q −> l e n g t h () ;

}

// secondly , c a l c u l a t e f r a c t i o n f o r use some capac i t y to drain the queue
int qlen = q −>l ength () ;
// i f (f l v . v q a v e o l d <= f l p . p bo) {
i f (f l v . v q l e n o l d <= f l p . p bo) {

286// f r a c t i o n = (f l p . p b ∗ f l p . p bo)/((f l p . p b−1)∗ f l v . v q a v e o l d+f l p . p bo) ;
i f (! f l p . a g g r e s s i v e)

f r a c t i o n = 1 ;
else

f r a c t i o n = 1 + (f l p . p bo− f l v . v q l e n o l d)∗8 .0∗
f l p . p pk t s i z e / f l p . p updtime/ l i nk −>bandwidth () ;

}
else {

// f q1 = (f l p . p a ∗ f l p . p bo)/((f l p . p a−1)∗ f l v . v q a v e o l d+f l p . p bo) ;
fq1 = 1 − (f l v . v q l en o ld−f l p . p bo)∗8 .0∗

f l p . p pk t s i z e / f l p . p updtime/ l i nk −>bandwidth () ;
f r a c t i o n = fq1 ;
i f (f l p . p QDLF > fq1)

f r a c t i o n = f l p . p QDLF ;
}

// t h i r d l y , t a r g e t capac i t y and load f a c t o r
double l o ad f a c t o r 1 , l o a d f a c t o r 2 ;
t a r g e t c apa c i t y = f r a c t i o n ∗ l i n k −>bandwidth () ;
i f (in == 0)

306f l v . e s t = 0 . 0 ;
l o a d f a c t o r 1 = f l v . e s t / t a r g e t c apa c i t y ;
i f (l o ad f a c t o r 1 > 200) {

l o a d f a c t o r 1 = 200 ;
}
l o a d f a c t o r 2 = (in avg ∗ f l p . p pk t s i z e ∗8 .0/ f l p . p updtime)/

t a r g e t c apa c i t y ;
i f (l o ad f a c t o r 2 > 200) {

l o a d f a c t o r 2 = 200 ;
}
i f (f l p . i n pu t g r e e n l i k e)

f l v . v z = l o ad f a c t o r 1 ;
else

f l v . v z = l o ad f a c t o r 2 ;
double now = Scheduler : : i n s t anc e () . c l o ck () ;

// f o r t h l y , c a l c u l a t e the drop p r o b a b i l i t y
f l v . v d e l t a z = f l v . v z − f l v . v z o l d ;
i f (f l v . v z <= 1.0 + f l p . p de l t a)

pr = 0 . 0 ;
326else {

i f (f l v . v d e l t a z < 0) {
i f (f l v . v prob == 0 . 0) {

pr = 0 . 0 ;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A15

} else {
de l t a p r = FLAQM fl MD AQM(f l v . v z , f l v . v de l taz ,

f l p . p stepnumber) ;
pr = de l t a p r ∗ f l v . v prob ;
i f (pr − f l v . v prob > 0 .025) {

pr = 0.025 + f l v . v prob ;
}

}
} else {

de l t a p r = FLAQM fl AI AQM(f l v . v z , f l v . v de l taz ,
f l p . p stepnumber) ;

pr = de l t a p r + f l v . v prob ;
}

}
i f (pr < 0 . 0)

pr = 0 . 0 ;
346else i f (pr > 0 . 5)

pr = 0 . 5 ;

// f i f t h l y , r e s e t the v a r i a b l e s
f l v . v count = 0 . 0 ;
f l v . v ave = in avg ;
f l v . v q l e n o l d = qlen ;
f l v . v z o l d = f l v . v z ;
f l v . v prob = pr ;

}

double FLQueue : : FLAQM fl MD AQM(double l f , double d e l t a l f ,
int step number)

{
int sn = step number ;
double s s = (f l p .FLAQM MD p6+f l p .FLAQM MD p1)/ sn ; // s t e p s i z e
double val1 , val2 , w, va l3 ;

// ru l e1 :
va l1 = FLAQM H1(l f) ;

366va l2 = FLAQM N5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 1 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD Z(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 1 [i] = w;
else

min 1 [i] = val3 ;
}
// ru l e2 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM N4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 2 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P1(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 2 [i] = w;
else

386min 2 [i] = val3 ;
}
// ru l e3 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 3 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P2(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 3 [i] = w;
else

min 3 [i] = val3 ;
}

A16 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

// ru l e4 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 4 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

406va l3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 4 [i] = w;
else

min 4 [i] = val3 ;
}
// ru l e5 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 5 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P4(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 5 [i] = w;
else

min 5 [i] = val3 ;
}
// ru l e12 :
va l1 = FLAQM H2(l f) ;

426va l2 = FLAQM N5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 12 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P1(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 12 [i] = w;
else

min 12 [i] = val3 ;
}

// ru l e13 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM N4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 13 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P2(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 13 [i] = w;
else

446min 13 [i] = val3 ;
}
// ru l e14 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 14 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 14 [i] = w;
else

min 14 [i] = val3 ;
}
// ru l e15 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 15 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

466va l3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 15 [i] = w;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A17

else
min 15 [i] = val3 ;

}
// ru l e16 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 16 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P4(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 16 [i] = w;
else

min 16 [i] = val3 ;
}
// ru l e23 :
va l1 = FLAQM H3(l f) ;

486va l2 = FLAQM N5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 23 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P2(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 23 [i] = w;
else

min 23 [i] = val3 ;
}
// ru l e24 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM N4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 24 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 24 [i] = w;
else

506min 24 [i] = val3 ;
}
// ru l e25 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 25 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 25 [i] = w;
else

min 25 [i] = val3 ;
}
// ru l e26 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 26 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

526va l3 = FLAQM MD P4(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 26 [i] = w;
else

min 26 [i] = val3 ;
}
// ru l e27 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 27 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

A18 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

va l3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 27 [i] = w;
else

min 27 [i] = val3 ;
}
// ru l e34 :
va l1 = FLAQM H4(l f) ;

546va l2 = FLAQM N5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 34 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P2(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 34 [i] = w;
else

min 34 [i] = val3 ;
}
// ru l e35 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM N4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 35 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 35 [i] = w;
else

566min 35 [i] = val3 ;
}
// ru l e36 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 36 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P4(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 36 [i] = w;
else

min 36 [i] = val3 ;
}
// ru l e37 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 37 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

586va l3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 37 [i] = w;
else

min 37 [i] = val3 ;
}
// ru l e38 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 38 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 38 [i] = w;
else

min 38 [i] = val3 ;
}
// ru l e45 :
va l1 = FLAQM H5(l f) ;

606va l2 = FLAQM N5(d e l t a l f) ;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A19

w = min2 (val1 , va l2) ;
double min 45 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P3(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 45 [i] = w;
else

min 45 [i] = val3 ;
}
// ru l e46 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM N4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 46 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P4(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 46 [i] = w;
else

626min 46 [i] = val3 ;
}
// ru l e47 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 47 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 47 [i] = w;
else

min 47 [i] = val3 ;
}
// ru l e48 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 48 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

646va l3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 48 [i] = w;
else

min 48 [i] = val3 ;
}
// ru l e49 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 49 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM MD P5(− f l p .FLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 49 [i] = w;
else

min 49 [i] = val3 ;
}

666//maximize
double MAX[sn +1] , xMAX[sn+1] ;
for (int i = 0 ; i <= sn ; i++) {

double x [] = {min 1 [i] , min 2 [i] , min 3 [i] , min 4 [i] ,
min 5 [i] , /∗min 6 [i] , min 7 [i] , min 8 [i] ,
min 9 [i] , min 10 [i] , min 11 [i] , ∗/ min 12 [i] ,
min 13 [i] , min 14 [i] , min 15 [i] , min 16 [i] ,
/∗min 17 [i] , min 18 [i] , min 19 [i] , min 20 [i] ,
min 21 [i] , min 22 [i] , ∗/ min 23 [i] , min 24 [i] ,
min 25 [i] , min 26 [i] , min 27 [i] , /∗min 28 [i] ,

A20 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

min 29 [i] , min 30 [i] , min 31 [i] , min 32 [i] ,
min 33 [i] , ∗/ min 34 [i] , min 35 [i] , min 36 [i] ,
min 37 [i] , min 38 [i] , /∗min 39 [i] , min 40 [i] ,
min 41 [i] , min 42 [i] , min 43 [i] , min 44 [i] , ∗/
min 45 [i] , min 46 [i] , min 47 [i] , min 48 [i] ,
min 49 [i] /∗ , min 50 [i] , min 51 [i] , min 52 [i] ,
min 53 [i] , min 54 [i] , min 55 [i] ∗/ } ;

MAX[i] = maxn(x , 2 5) ;
xMAX[i] = (− f l p .FLAQM MD p1+i ∗ s s)∗MAX[i] ;

686}

// d e f u z z i f i c a t i o n
double y1 , y2 ;
y1 = i n t e g r a l (MAX, ss , sn) ;
y2 = i n t e g r a l (xMAX, ss , sn) ;
i f (y1 == 0) {

f p r i n t f (s tde r r , ” d iv ided by 0”) ;
return 0 ;
}
return (y2/y1) ;

}

/∗
∗ f u z z y l o g i c c o n t r o l l e r
∗/

double FLQueue : : FLAQM fl AI AQM(double l f , double d e l t a l f ,
int step number)

{
int sn = step number ;

706double s s = (f l p . FLAQM AI p6+f l p . FLAQM AI p1)/ sn ; // s t e p s i z e
double val1 , val2 , w, va l3 ;

// ru l e6 :
val1 = FLAQM H1(l f) ;
va l2 = FLAQM P0(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 6 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI Z(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 6 [i] = w;
else

min 6 [i] = val3 ;
}
// ru l e7 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 7 [sn +1] ;

726for (int i = 0 ; i <= sn ; i++) {
va l3 = FLAQM AI Z(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 7 [i] = w;
else

min 7 [i] = val3 ;
}
// ru l e8 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 8 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 8 [i] = w;
else

min 8 [i] = val3 ;
}
// ru l e9 :

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A21

746va l1 = FLAQM H1(l f) ;
va l2 = FLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 9 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 9 [i] = w;
else

min 9 [i] = val3 ;
}
// ru l e10 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 10 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 10 [i] = w;
766else

min 10 [i] = val3 ;
}
// ru l e11 :
va l1 = FLAQM H1(l f) ;
va l2 = FLAQM P5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 11 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 11 [i] = w;
else

min 11 [i] = val3 ;
}
// ru l e17 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P0(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 17 [sn +1] ;

786for (int i = 0 ; i <= sn ; i++) {
val3 = FLAQM AI Z(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 17 [i] = w;
else

min 17 [i] = val3 ;
}
// ru l e18 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 18 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 18 [i] = w;
else

min 18 [i] = val3 ;
}
// ru l e19 :

806va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 19 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 19 [i] = w;
else

A22 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

min 19 [i] = val3 ;
}
// ru l e20 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 20 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 20 [i] = w;
826else

min 20 [i] = val3 ;
}
// ru l e21 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 21 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 21 [i] = w;
else

min 21 [i] = val3 ;
}
// ru l e22 :
va l1 = FLAQM H2(l f) ;
va l2 = FLAQM P5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 22 [sn +1] ;

846for (int i = 0 ; i <= sn ; i++) {
va l3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 22 [i] = w;
else

min 22 [i] = val3 ;
}
// ru l e28 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM P0(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 28 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 28 [i] = w;
else

min 28 [i] = val3 ;
}
// ru l e29 :

866va l1 = FLAQM H3(l f) ;
va l2 = FLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 29 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 29 [i] = w;
else

min 29 [i] = val3 ;
}
// ru l e30 : l f i s H, d e l t a l f i s NBB, then prob i s P1
val1 = FLAQM H3(l f) ;
va l2 = FLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 30 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A23

i f (w <= val3)
min 30 [i] = w;

886else
min 30 [i] = val3 ;

}
// ru l e31 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 31 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 31 [i] = w;
else

min 31 [i] = val3 ;
}
// ru l e32 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 32 [sn +1] ;

906for (int i = 0 ; i <= sn ; i++) {
val3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 32 [i] = w;
else

min 32 [i] = val3 ;
}
// ru l e33 :
va l1 = FLAQM H3(l f) ;
va l2 = FLAQM P5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 33 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 33 [i] = w;
else

min 33 [i] = val3 ;
}
// ru l e39 :

926va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P0(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 39 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P1(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 39 [i] = w;
else

min 39 [i] = val3 ;
}
// ru l e40 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 40 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 40 [i] = w;
946else

min 40 [i] = val3 ;
}
// ru l e41 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;

A24 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

double min 41 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 41 [i] = w;
else

min 41 [i] = val3 ;
}
// ru l e42 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 42 [sn +1] ;

966for (int i = 0 ; i <= sn ; i++) {
va l3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 42 [i] = w;
else

min 42 [i] = val3 ;
}
// ru l e43 :
va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 43 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {
va l3 = FLAQM AI P4(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 43 [i] = w;
else

min 43 [i] = val3 ;
}
// ru l e44 :

986va l1 = FLAQM H4(l f) ;
va l2 = FLAQM P5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 44 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P4(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 44 [i] = w;
else

min 44 [i] = val3 ;
}
// ru l e50 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P0(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 50 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P2(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 50 [i] = w;
1006else

min 50 [i] = val3 ;
}
// ru l e51 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 51 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = FLAQM AI P3(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 51 [i] = w;
else

min 51 [i] = val3 ;
}
// ru l e52 :

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A25

va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 52 [sn +1] ;

1026for (int i = 0 ; i <= sn ; i++) {
val3 = FLAQM AI P4(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 52 [i] = w;
else

min 52 [i] = val3 ;
}
// ru l e53 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 53 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P4(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 53 [i] = w;
else

min 53 [i] = val3 ;
}
// ru l e54 :

1046va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 54 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P5(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 54 [i] = w;
else

min 54 [i] = val3 ;
}
// ru l e55 :
va l1 = FLAQM H5(l f) ;
va l2 = FLAQM P5(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 55 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = FLAQM AI P5(− f l p . FLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 55 [i] = w;
1066else

min 55 [i] = val3 ;
}

//maximize
double MAX[sn +1] , xMAX[sn+1] ;
for (int i = 0 ; i <= sn ; i++) {

double x [] = {/∗min 1 [i] , min 2 [i] , min 3 [i] , min 4 [i] ,
min 5 [i] , ∗/ min 6 [i] , min 7 [i] , min 8 [i] ,
min 9 [i] , min 10 [i] , min 11 [i] , /∗min 12 [i] ,
min 13 [i] , min 14 [i] , min 15 [i] , min 16 [i] , ∗/
min 17 [i] , min 18 [i] , min 19 [i] , min 20 [i] ,
min 21 [i] , min 22 [i] , /∗min 23 [i] , min 24 [i] ,
min 25 [i] , min 26 [i] , min 27 [i] , ∗/ min 28 [i] ,
min 29 [i] , min 30 [i] , min 31 [i] , min 32 [i] ,
min 33 [i] , /∗min 34 [i] , min 35 [i] , min 36 [i] ,
min 37 [i] , min 38 [i] , ∗/ min 39 [i] , min 40 [i] ,
min 41 [i] , min 42 [i] , min 43 [i] , min 44 [i] ,
/∗min 45 [i] , min 46 [i] , min 47 [i] , min 48 [i] ,

1086min 49 [i] , ∗/ min 50 [i] , min 51 [i] , min 52 [i] ,
min 53 [i] , min 54 [i] , min 55 [i] } ;

MAX[i] = maxn(x , 3 0) ;
xMAX[i] = (− f l p . FLAQM AI p1+i ∗ s s)∗MAX[i] ;

A26 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

}

// d e f u z z i f i c a t i o n
double y1 , y2 ;
y1 = i n t e g r a l (MAX, ss , sn) ;
y2 = i n t e g r a l (xMAX, ss , sn) ;
i f (y1 == 0) {

f p r i n t f (s tde r r , ” d iv ided by 0”) ;
return 0 ;

}
return (y2/y1) ;

}

1106
// f o r IFLAQM (FLAQM(I I))

void FLQueue : : IFLAQM run updaterule ()
{

// p r i n t f (” here in update \n ”) ;
double f r a c t i on , t a r g e t c apac i t y , l o ad f a c t o r , in , in avg ;
double fq1 ;
double pr , d e l t a p r ;
// f i r s t l y , input ra t e
// in avg i s the low pss f i l t e r e d input ra t e
// which i s in b y t e s i f q i b i s t rue and in packe t s o the rw i s e .

in = f l v . v count ;
in avg = f l v . v ave ;

in avg ∗= (1 . 0 − f l p . p inw) ;

//make sure in avg i s in pk t
1126i f (q ib) {

in avg += f l p . p inw∗ in / f l p . p pk t s i z e ;
// nqueued = bcount / f l p . p p k t s i z e ;

}
else {

in avg += f l p . p inw∗ in ;
// nqueued = q −> l e n g t h () ;

}

// secondly , c a l c u l a t e f r a c t i o n f o r use some capac i t y
// to drain the queue
int qlen = q −>l ength () ;
i f (f l v . v q l e n o l d <= f l p . p bo) {

i f (! f l p . a g g r e s s i v e)
f r a c t i o n = 1 ;

else {
f r a c t i o n = 1 + (f l p . p bo− f l v . v q l e n o l d)∗8 .0∗

f l p . p pk t s i z e / f l p . p updtime/ l i nk −>bandwidth () ;
}

}
1146else {

fq1 = 1 − (f l v . v q l en o ld−f l p . p bo)∗8 .0∗
f l p . p pk t s i z e / f l p . p updtime/ l i nk −>bandwidth () ;

f r a c t i o n = fq1 ;
i f (f l p . p QDLF > fq1)

f r a c t i o n = f l p . p QDLF ;
}

// t h i r d l y , t a r g e t capac i t y and load f a c t o r
double l o ad f a c t o r 1 , l o a d f a c t o r 2 ;
t a r g e t c apa c i t y = f r a c t i o n ∗ l i n k −>bandwidth () ;
i f (in == 0)

f l v . e s t = 0 . 0 ;
i f (f l v . e s t == 0)

l o ad f a c t o r 1 = 500 ;
else {

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A27

l o a d f a c t o r 1 = ta r g e t c apa c i t y / f l v . e s t ;
i f (l o ad f a c t o r 1 > 500)

l o ad f a c t o r 1 = 500 ;
}

1166
i f (in avg == 0)

l o ad f a c t o r 2 = 500 ;
else {

l o a d f a c t o r 2 = ta r g e t c apa c i t y /(in avg ∗ f l p . p pk t s i z e ∗
8 .0/ f l p . p updtime) ;

i f (l o ad f a c t o r 2 > 500)
l o ad f a c t o r 2 = 500 ;

}
i f (f l p . i n pu t g r e e n l i k e)

f l v . v z = l o ad f a c t o r 1 ;
else

f l v . v z = l o ad f a c t o r 2 ;
double now = Scheduler : : i n s t anc e () . c l o ck () ;

// f o r t h l y , c a l c u l a t e the drop p r o b a b i l i t y
f l v . v d e l t a z = f l v . v z − f l v . v z o l d ;
i f (f l v . v d e l t a z < −2)

f l v . v d e l t a z = −2;
i f (f l v . v z >= 1.0 + f l p . p de l t a)

1186pr = 0 . 0 ;
else {

i f (f l v . v d e l t a z <= 0) {
de l t a p r = IFLAQM fl AI AQM(f l v . v z , f l v . v de l taz ,

f l p . p stepnumber) ;
pr = de l t a p r + f l v . v prob ;

} else {
i f (f l v . v prob == 0 . 0) {

pr = 0 . 0 ;
} else {

de l t a p r = IFLAQM fl MD AQM(f l v . v z , f l v . v de l taz ,
f l p . p stepnumber) ;

pr = de l t a p r ∗ f l v . v prob ;
i f (pr − f l v . v prob > 0 .025) {

pr = 0.025 + f l v . v prob ;
}

}
}

}

1206i f (pr < 0 . 0)
pr = 0 . 0 ;

else i f (pr > 0 . 5)
pr = 0 . 5 ;

// f i f t h l y , r e s e t the v a r i a b l e s
f l v . v count = 0 . 0 ;
f l v . v ave = in avg ;
f l v . v q l e n o l d = qlen ;
f l v . v z o l d = f l v . v z ;
f l v . v prob = pr ;
// p r i n t f (” pro %6.4 f \n” , pr) ;

}

/∗
∗ f u z z y l o g i c c o n t r o l l e r
∗/

double FLQueue : : IFLAQM fl MD AQM(double l f , double d e l t a l f ,
int step number)

{
1226int sn = step number ;

double s s = (f l p . IFLAQM MD p7+f l p . IFLAQM MD p1)/ sn ; // s t e p s i z e
double val1 , val2 , w, va l3 ;

// ru l e1 :
va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM P1(d e l t a l f) ;

A28 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

w = min2 (val1 , va l2) ;
double min 1 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P7(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 1 [i] = w;
else

min 1 [i] = val3 ;
}
// ru l e2 :
va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;

1246double min 2 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P7(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 2 [i] = w;
else

min 2 [i] = val3 ;
}
// ru l e3 :
va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 3 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P6(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 3 [i] = w;
else

min 3 [i] = val3 ;
}

1266// ru l e4 :
va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 4 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P5(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 4 [i] = w;
else

min 4 [i] = val3 ;
}

// ru l e12 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 12 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P7(− f l p . IFLAQM MD p1+i ∗ s s) ;
1286i f (w <= val3)

min 12 [i] = w;
else

min 12 [i] = val3 ;
}
// ru l e13 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 13 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P6(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 13 [i] = w;
else

min 13 [i] = val3 ;

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A29

}
// ru l e14 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM P3(d e l t a l f) ;

1306w = min2 (val1 , va l2) ;
double min 14 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P5(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 14 [i] = w;
else

min 14 [i] = val3 ;
}
// ru l e15 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 15 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P4(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 15 [i] = w;
else

min 15 [i] = val3 ;
1326}

// ru l e23 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 23 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P6(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 23 [i] = w;
else

min 23 [i] = val3 ;
}
// ru l e24 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 24 [sn +1] ;

1346for (int i = 0 ; i <= sn ; i++) {
val3 = IFLAQM MD P5(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 24 [i] = w;
else

min 24 [i] = val3 ;
}
// ru l e25 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 25 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P4(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 25 [i] = w;
else

min 25 [i] = val3 ;
}
// ru l e26 :

1366va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 26 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

A30 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

va l3 = IFLAQM MD P3(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 26 [i] = w;
else

min 26 [i] = val3 ;
}

// ru l e34 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 34 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P5(− f l p . IFLAQM MD p1+i ∗ s s) ;
1386i f (w <= val3)

min 34 [i] = w;
else

min 34 [i] = val3 ;
}
// ru l e35 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 35 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P4(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 35 [i] = w;
else

min 35 [i] = val3 ;
}
// ru l e36 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM P3(d e l t a l f) ;

1406w = min2 (val1 , va l2) ;
double min 36 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P3(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 36 [i] = w;
else

min 36 [i] = val3 ;
}
// ru l e37 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 37 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P2(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 37 [i] = w;
else

min 37 [i] = val3 ;
1426}

// ru l e45 :
va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM P1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 45 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM MD P4(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 45 [i] = w;
else

min 45 [i] = val3 ;
}

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A31

// ru l e46 :
va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM P2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 46 [sn +1] ;

1446for (int i = 0 ; i <= sn ; i++) {
val3 = IFLAQM MD P3(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 46 [i] = w;
else

min 46 [i] = val3 ;
}
// ru l e47 :
va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM P3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 47 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P2(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 47 [i] = w;
else

min 47 [i] = val3 ;
}
// ru l e48 :

1466va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM P4(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 48 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM MD P1(− f l p . IFLAQM MD p1+i ∗ s s) ;
i f (w <= val3)

min 48 [i] = w;
else

min 48 [i] = val3 ;
}

//maximize
double MAX[sn +1] , xMAX[sn+1] ;
for (int i = 0 ; i <= sn ; i++) {

double x [] = {min 1 [i] , min 2 [i] , min 3 [i] , min 4 [i] , /∗
min 5 [i] , min 6 [i] , min 7 [i] , min 8 [i] ,
min 9 [i] , min 10 [i] , min 11 [i] , ∗/ min 12 [i] ,
min 13 [i] , min 14 [i] , min 15 [i] , /∗min 16 [i] ,

1486min 17 [i] , min 18 [i] , min 19 [i] , min 20 [i] ,
min 21 [i] , min 22 [i] , ∗/ min 23 [i] , min 24 [i] ,
min 25 [i] , min 26 [i] , /∗min 27 [i] , min 28 [i] ,
min 29 [i] , min 30 [i] , min 31 [i] , min 32 [i] ,
min 33 [i] , ∗/ min 34 [i] , min 35 [i] , min 36 [i] ,
min 37 [i] , /∗min 38 [i] , min 39 [i] , min 40 [i] ,
min 41 [i] , min 42 [i] , min 43 [i] , min 44 [i] , ∗/
min 45 [i] , min 46 [i] , min 47 [i] , min 48 [i] /∗ ,
min 49 [i] , min 50 [i] , min 51 [i] , min 52 [i] ,
min 53 [i] , min 54 [i] , min 55 [i] ∗/ } ;

MAX[i] = maxn(x , 2 0) ;
xMAX[i] = (− f l p . IFLAQM MD p1+i ∗ s s)∗MAX[i] ;

}

// d e f u z z i f i c a t i o n
double y1 , y2 ;
y1 = i n t e g r a l (MAX, ss , sn) ;
y2 = i n t e g r a l (xMAX, ss , sn) ;
i f (y1 == 0) {

1506f p r i n t f (s tde r r , ” d iv ided by 0”) ;
return 0 ;

}
return (y2/y1) ;

}

A32 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

/∗
∗ f u z z y l o g i c c o n t r o l l e r
∗/

double FLQueue : : IFLAQM fl AI AQM(double l f , double d e l t a l f ,
int step number)

{
int sn = step number ;
double s s = (f l p . IFLAQM AI p7+f l p . IFLAQM AI p1)/ sn ; // s t e p s i z e
double val1 , val2 , w, va l3 ;

// ru l e6 :
val1 = IFLAQM H1(l f) ;
va l2 = IFLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 6 [sn +1] ;

1526for (int i = 0 ; i <= sn ; i++) {
va l3 = IFLAQM AI P7(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 6 [i] = w;
else

min 6 [i] = val3 ;
}
// ru l e7 :
va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 7 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P6(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 7 [i] = w;
else

min 7 [i] = val3 ;
}
// ru l e8 :

1546va l1 = IFLAQM H1(l f) ;
va l2 = IFLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 8 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P5(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 8 [i] = w;
else

min 8 [i] = val3 ;
}

// ru l e17 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 17 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P6(− f l p . IFLAQM AI p1+i ∗ s s) ;
1566i f (w <= val3)

min 17 [i] = w;
else

min 17 [i] = val3 ;
}
// ru l e18 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 18 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P5(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 18 [i] = w;
else

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A33

min 18 [i] = val3 ;
}
// ru l e19 :
va l1 = IFLAQM H2(l f) ;
va l2 = IFLAQM N3(d e l t a l f) ;

1586w = min2 (val1 , va l2) ;
double min 19 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM AI P4(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 19 [i] = w;
else

min 19 [i] = val3 ;
}

// ru l e28 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 28 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM AI P5(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 28 [i] = w;
1606else

min 28 [i] = val3 ;
}
// ru l e29 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 29 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM AI P4(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 29 [i] = w;
else

min 29 [i] = val3 ;
}
// ru l e30 :
va l1 = IFLAQM H3(l f) ;
va l2 = IFLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 30 [sn +1] ;

1626for (int i = 0 ; i <= sn ; i++) {
val3 = IFLAQM AI P3(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 30 [i] = w;
else

min 30 [i] = val3 ;
}

// ru l e39 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 39 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

val3 = IFLAQM AI P4(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 39 [i] = w;
else

min 39 [i] = val3 ;
1646}

// ru l e40 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;

A34 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

double min 40 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P3(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 40 [i] = w;
else

min 40 [i] = val3 ;
}
// ru l e41 :
va l1 = IFLAQM H4(l f) ;
va l2 = IFLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 41 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P2(− f l p . IFLAQM AI p1+i ∗ s s) ;
1666i f (w <= val3)

min 41 [i] = w;
else

min 41 [i] = val3 ;
}

// ru l e50 :
va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM N1(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 50 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P3(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 50 [i] = w;
else

min 50 [i] = val3 ;
}
// ru l e51 :

1686va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM N2(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 51 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P2(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 51 [i] = w;
else

min 51 [i] = val3 ;
}
// ru l e52 :
va l1 = IFLAQM H5(l f) ;
va l2 = IFLAQM N3(d e l t a l f) ;
w = min2 (val1 , va l2) ;
double min 52 [sn +1] ;
for (int i = 0 ; i <= sn ; i++) {

va l3 = IFLAQM AI P1(− f l p . IFLAQM AI p1+i ∗ s s) ;
i f (w <= val3)

min 52 [i] = w;
1706else

min 52 [i] = val3 ;
}

//maximize
double MAX[sn +1] , xMAX[sn+1] ;
for (int i = 0 ; i <= sn ; i++) {

double x [] = {/∗min 1 [i] , min 2 [i] , min 3 [i] , min 4 [i] ,
min 5 [i] , ∗/ min 6 [i] , min 7 [i] , min 8 [i] ,
/∗min 9 [i] , min 10 [i] , min 11 [i] , min 12 [i] ,
min 13 [i] , min 14 [i] , min 15 [i] , min 16 [i] , ∗/
min 17 [i] , min 18 [i] , min 19 [i] , /∗min 20 [i] ,
min 21 [i] , min 22 [i] , min 23 [i] , min 24 [i] ,
min 25 [i] , min 26 [i] , min 27 [i] , ∗/ min 28 [i] ,

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A35

min 29 [i] , min 30 [i] , /∗min 31 [i] , min 32 [i] ,
min 33 [i] , min 34 [i] , min 35 [i] , min 36 [i] ,
min 37 [i] , min 38 [i] , ∗/ min 39 [i] , min 40 [i] ,
min 41 [i] , /∗min 42 [i] , min 43 [i] , min 44 [i] ,
min 45 [i] , min 46 [i] , min 47 [i] , min 48 [i] ,

1726min 49 [i] , ∗/ min 50 [i] , min 51 [i] , min 52 [i] /∗ ,
min 53 [i] , min 54 [i] , min 55 [i] ∗/ } ;

MAX[i] = maxn(x , 1 5) ;
xMAX[i] = (− f l p . IFLAQM AI p1+i ∗ s s)∗MAX[i] ;

}

// d e f u z z i f i c a t i o n
double y1 , y2 ;
y1 = i n t e g r a l (MAX, ss , sn) ;
y2 = i n t e g r a l (xMAX, ss , sn) ;
i f (y1 == 0) {

f p r i n t f (s tde r r , ” d iv ided by 0”) ;
return 0 ;

}
return (y2/y1) ;

}

/∗
1746∗ Return the next packe t in the queue f o r t ransmiss ion .

∗/
Packet∗ FLQueue : : deque ()
{
/∗ t h i s i s the b e s t p l a ce to d e t e c t when the conge s t i ons s t a r t and end .
∗ f o r c a l Mice/Elephants propor t ion during conges t i on f o r ME ∗/
double now = Scheduler : : i n s t anc e () . c l o ck () ;
i f (q −>l ength () >= 2) { /∗ b u f f e r i s not empty ∗/

i f (! no empty) {
busytime = now ;

}
no empty = 1 ;

} else { /∗ b u f f e r i s empty∗/
i f (no empty) {

busydur = now − busytime ;
ME pro sum time under += busydur ;
Epkts pro over += Epkts durcong∗busydur ;
Mpkts pro over += Mpkts durcong∗busydur ;
Apkts pro over += Apkts durcong∗busydur ;
E f l s p r o ov e r += e lephant f l num ∗busydur ;

1766Mf l s p ro ove r += mice f l num ∗busydur ;
A f l s p r o ov e r += a l l f l n um ∗busydur ;
Epkts durcong = 0 ;
Mpkts durcong = 0 ;
Apkts durcong = 0 ;
delete [] f l owbase ;
f l owbase = 0 ;
f l owbas eS i z e = 0 ;
n s l o t = 0 ;
e l ephant f l num = 0 ;
mice f l num = 0 ;
a l l f l n um = 0 ;

}
no empty = 0 ;

}
/∗ end f o r ME ∗/

Packet ∗p = q −>deque () ;
i f (p != 0) {

i d l e = 0 ;
1786} else {

i f (i d l e && id l e t ime > 0) {} // zh i
else {

i d l e = 1 ;
// deque () may invoked by Queue : : r e s e t a t i n i t
// time (b e f o r e the s chedu l e r i s i n s t a n t i a t e d) .

A36 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

// dea l wi th t h i s case
i f (&Scheduler : : i n s t anc e () != NULL)

i d l e t im e = Scheduler : : i n s t anc e () . c l o ck () ;
else

i d l e t im e = 0 . 0 ;
}

}
return (p) ;

}

/∗
∗ Compute the average queue s i z e .
∗ Nqueued can be by t e s or packe t s .

1806∗/
double FLQueue : : e s t imator (int nqueued , int m, double ave , double q w)
{

double new ave ;
new ave = ave ;
while (−−m >= 1) {

new ave ∗= 1.0 − q w ;
}
new ave ∗= 1.0 − q w ;
new ave += q w ∗ nqueued ;
return new ave ;

}

/∗
∗ Receive a new packe t a r r i v i n g at the queue .
∗ The packe t i s dropped i f the maximum queue s i z e i s exceeded .
∗/

void FLQueue : : enque (Packet∗ pkt)
{

1826
/∗ f i r s t l y , m and queue ave
∗ i f we were i d l e , we pretend t ha t m packe t s a r r i v ed during
∗ the i d l e per iod . m i s s e t to be the p tc t imes the amount
∗ o f time we ’ ve been i d l e f o r
∗/

double now = Scheduler : : i n s t anc e () . c l o ck () ;
hdr cmn∗ ch = hdr cmn : : a c c e s s (pkt) ;
int m = 0 ;
i f (i d l e) {

// A packe t t h a t a r r i v e s to an i d l e queue w i l l never be dropped .
/∗ To account f o r the per iod when the queue was empty . ∗/
i d l e = 0 ;
// Use i d l e p k t s i z e in s t ead o f mean pkts ize , f o r
// a f a s t e r response to i d l e t imes .
m = int (f l p . ptc ∗ (now − i d l e t ime)) ;

}
/∗ f o r c a l Mice/Elephants propor t ion during conges t i on f o r ME
∗ here to d e t e c t whether conge s t i ons s t a r t or not .
∗/

1846i f (no empty) {/∗ b u f f e r i s no−empty∗/
hdr ip ∗ iph = hdr ip : : a c c e s s (pkt) ;
Apkts durcong += ch−>s i z e () ;
i f (iph−>MorE) {

Epkts durcong += ch−>s i z e () ;
} else {

Mpkts durcong += ch−>s i z e () ;
}
i f (i s a n ew f l ow (pkt)) {

addto f lowbase (pkt) ;
}

}
/∗ end f o r ME ca l propor t ion during conges t i on ∗/

/∗
∗ Run the es t imator wi th e i t h e r 1 new packe t a r r i v a l , or wi th
∗ the s ca l e d ve r s i on above [s c a l e d by m due to i d l e time]

A.1. The .h and .cc Source Code for Implementing FLAQM(I) and
FLAQM(II) Builtin NS2 (2.26) A37

∗/
int qlen = q ib ? q −>byteLength () : q −>l ength () ;
double qave = es t imator (qlen , m + 1 , f l v . v qave , f l p . q w) ;

1866f l v . v qave = qave ;

curq = qlen ; // f o r t race

/∗
∗ count and coun t by t e s keeps a t a l l y o f a r r i v i n g t r a f f i c
∗ t h a t has not been dropped (i . e . how long , in terms o f t r a f f i c ,
∗ i t has been s ince the l a s t e a r l y drop)
∗/
/∗ es t imate the input ra t e by weigh ted averag ing ∗/

double a r r i v a l d e l a y = now − a r r i v a l t im e o l d ;
double w input = exp((− a r r i v a l d e l a y)/ f l p .K) ;
f l v . e s t = (1−w input)∗ (ch−>s i z e ()∗8/ a r r i v a l d e l a y)+w input∗ f l v . e s t ;
a r r i v a l t im e o l d = now ;

/∗ secondly , input no . dur ing a dropra te update per iod time
∗ count the no o f inpu t s w i th in the curren t f l drop ra t e update
∗/

i f (q ib) {
1886f l v . v count += ch−>s i z e () ;

}
else {

++f l v . v count ;
}

/∗ t h i r d l y , judge to drop the incoming packe t or not
∗ with the cacu l a t i on o f f l v . count f o r uni formly drop
∗/

double qlim = q ib ? (q l im ∗ f l p . p pk t s i z e) : q l im ;
q −>enque (pkt) ;
q len = q ib ? q −>byteLength () : q −>l ength () ;
i f (q len > qlim) {

f l v . count = 0 ;
f l v . count bytes = 0 ;
q −>remove (pkt) ;
drop (pkt) ;
// p r i n t f (” ove r f l ow \n ”) ;

} else {
double pro = f l v . v prob ;

1906i f (pro == 0) {
f l v . count = 0 ;
f l v . count bytes = 0 ;
// p r i n t f (” nonedrop\n ”) ;

} else {
i f (f l p . p d e t e rm in i s t i c) {

f l v . d e t e rm i n i s t i c r += (1− f l v . v prob) ;
i f (f l v . d e t e rm i n i s t i c r >= 1) {

f l v . d e t e rm i n i s t i c r −= 1 ;
} else {

i f (! markpkts) {
q −>remove (pkt) ;
drop (pkt) ;

} else {
hd r f l a g s ∗ hf = hd r f l a g s : : a c c e s s (pkt) ;
i f ((hf−>ec t () | | hf−>ecnecho ()) && f l v . v prob < 0 . 1) {

hf−>ce () = 1 ;
pmark ++;

} else {
q −>remove (pkt) ;

1926drop (pkt) ;
}

}
}

} else {
double u = Random : : uniform () ;
i f (u == 0)

A38 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

p r i n t f (”uniform random number i s 0 , shouldn ’ t be . \n”) ;
i f (f l p . p d rop l i k e r ed) {

pro = modify p (pro , f l v . count , f l v . count bytes ,
q ib , f l p . p pkt s i z e , f l p . wait , ch−>s i z e ()) ;

}
/∗ i f (q i b) {

pro = f l v . v prob ∗ch−>s i z e ()/ f l p . p p k t s i z e ;
}∗/

i f (u <= pro) {
f l v . count = 0 ;
f l v . count bytes = 0 ;
i f (! markpkts) {

q −>remove (pkt) ;
1946drop (pkt) ;

} else {
hd r f l a g s ∗ hf = hd r f l a g s : : a c c e s s (pkt) ;
i f ((hf−>ec t () | | hf−>ecnecho ()) && f l v . v prob < 0 . 1) {

hf−>ce () = 1 ;
pmark ++;

} else {
q −>remove (pkt) ;
drop (pkt) ;

}
}
// p r i n t f (” unforced drop\n ”) ;

} else {
f l v . count++;
f l v . count bytes += ch−>s i z e () ;
// p r i n t f (” luckynonedrop \n ”) ;

}
}

}
}

1966return ;
}

int FLQueue : : command(int argc , const char∗const∗ argv)
{

Tcl& t c l = Tcl : : i n s t anc e () ;
i f (argc == 2) {

i f (strcmp (argv [1] , ” r e s e t ”) == 0) {
r e s e t () ;
return (TCL OK) ;

}
} else i f (argc == 3) {

// a t t ach a f i l e f o r v a r i a b l e t r a c i n g
i f (strcmp (argv [1] , ” attach ”) == 0) {

int mode ;
const char∗ id = argv [2] ;
tchan = Tcl GetChannel (t c l . i n t e rp () , (char∗) id , &mode) ;
i f (tchan == 0) {

1986t c l . r e s u l t f (”FL : t r a c e : can ’ t attach %s f o r wr i t i ng ” , id) ;
return (TCL ERROR) ;

}
return (TCL OK) ;

}
// t e l l FL about l i n k s t a t s
i f (strcmp (argv [1] , ” l i n k ”) == 0) {

LinkDelay∗ de l = (LinkDelay ∗) TclObject : : lookup (argv [2]) ;
i f (de l == 0) {

t c l . r e s u l t f (”FL : no LinkDelay ob j e c t %s ” , argv [2]) ;
return (TCL ERROR) ;

}
// s e t p tc now
l i n k = de l ;
f l p . ptc = l i nk −>bandwidth () / (8 . ∗ f l p . p pk t s i z e) ;
return (TCL OK) ;

}

A.2. The .tcl Source Code for Testing FLAQM(I) and FLAQM(II) A39

i f (! strcmp (argv [1] , ”packetqueue−attach ”)) {
delete q ;
i f (! (q = (PacketQueue ∗) TclObject : : lookup (argv [2])))

2006return (TCL ERROR) ;
else {

pq = q ;
return (TCL OK) ;

}
}

}
return (Queue : : command(argc , argv)) ;

}

/∗
∗ Routine c a l l e d by TracedVar f a c i l i t y when v a r i a b l e s change va l ue s .
∗ Current ly used to t race va l u e s o f avg queue s i z e , drop p r o b a b i l i t y ,
∗ and the ins tan taneous queue s i z e seen by a r r i v i n g packe t s .
∗ Note t ha t the t r a c i n g o f each var must be enab led in t c l to work .
∗/

void
FLQueue : : t r a c e (TracedVar∗ v)
{

2026char wrk [5 0 0] , ∗p ;

i f (((p = s t r s t r (v−>name () , ”prob”)) == NULL) &&
((p = s t r s t r (v−>name () , ” l o ad f a c t o r ”)) == NULL) &&
((p = s t r s t r (v−>name () , ” d e l t a l f ”)) == NULL) &&
((p = s t r s t r (v−>name () , ”qave”)) == NULL) &&
((p = s t r s t r (v−>name () , ” curq”)) == NULL)) {

f p r i n t f (s tde r r , ”FL : unknown t ra c e var %s \n” , v−>name ()) ;
return ;

}

i f (tchan) {
int n ;
double t = Scheduler : : i n s t anc e () . c l o ck () ;
i f (∗p == ’ c ’) {

s p r i n t f (wrk , ”Q %g %d” , t , int (∗ ((TracedInt ∗) v))) ;
} else {

s p r i n t f (wrk , ”%c %g %g” , ∗p , t ,
double (∗ ((TracedDouble ∗) v))) ;

}
2046n = s t r l e n (wrk) ;

wrk [n] = ’ \n ’ ;
wrk [n+1] = 0 ;
(void) Tcl Write (tchan , wrk , n+1);

}
return ;

}

/∗ f o r debugg ing he l p ∗/
void FLQueue : : p r i n t f l p ()
{

p r i n t f (”=========\n”) ;
}

void FLQueue : : p r i n t f l v ()
{

p r i n t f (”=========\n”) ;
}

A.2 The .tcl Source Code for Testing FLAQM(I)
and FLAQM(II)

A.2.1 FLAQM experiment1.tcl

A40 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

FLAQM (FLAQM(I)) + IFLAQM (FLAQM(I I))

set s imu la t i on dura t i on [lindex $argv 0]
set random run [lindex $argv 1]
set num longbursts [lindex $argv 2]
#set t r a f f i c l o a d [lindex $argv 2]
set ECN [lindex $argv 3]
set QueueType [lindex $argv 4]

set warmuptime [expr ($s imulat ion durat ion−2) ∗1 .0 /2 . 0]
set f i l e l e n t h r e s h o l d to d i s t i n g u i s h mice and e l ephan t s
set f i l e l e n t h r e s h o l d 15
set per iod i n t e r v a l for ac t i v e conn no measurment
set i n t e r v a l 25

16#open a f i l e for a c t i v e connect ion number
set a c t i v e f [open . . / r e s u l t s / active conn num.$QueueType\

$num longbursts$random run w]

#topo l ogy parameters
set bott leneck bdw 1 . 5 ; #Mbits
set q l im i t 160 ; #packe t s
set pareto shape 1 . 2 ; #1 .2 or 1 .4
set pa r e t o d e l t a 1 . 0

#packe t average for pare to
#set av e p k t s [expr $pa r e t o d e l t a∗$pa r e t o s hape /($pareto shape−1)] ;
set ave pkts 12 ;
set i n t a r r i v a l t i m e [expr (40+1040 ∗$ave pkts) ∗8 .0 /\

($bott leneck bdw∗1000000)]
#puts ” lambda: [expr 1 . 0 / $ i n t a r r i v a l t im e] ”

remove−all−packet−headers ;# removes a l l e xcep t common
add−packet−header Flags IP TCP ;# hdrs reqd for TCP

36
set ns [new Simulator]
i f {$QueueType == ”RED” | | $QueueType == ”ARED”} {

Queue/RED set q we ight −1
Queue/RED set s e t b i t $ECN
i f {$QueueType == ”ARED”} {

Queue/RED set adapt ive 1
}
Queue/RED set th r e sh 30
Queue/RED set maxthresh 90

} e l s e i f {$QueueType == ”REM”} {
Queue/REM set pbo 60 . 0

} e l s e i f {$QueueType == ”PI”} {
Queue/PI set q r e f 60 . 0

} e l s e i f {$QueueType == ”FLAQM” | | $QueueType == ”IFLAQM”} {
Queue/FL set d e l t a 0 .05
Queue/FL set pupdtime 0 . 5
Queue/FL set pbo 60
Queue/FL set markpkts $ECN
Queue/FL set d r op l i k e r e d f a l s e

56Queue/FL set d e t e rm i n i s t i c t rue

i f {$QueueType == ”FLAQM”} {
Queue/FL set whichFLAQM 0
Queue/FL set FLAQM lf p1 1 . 1
Queue/FL set FLAQM lf p2 1 . 5
Queue/FL set FLAQM lf p3 2 . 0
Queue/FL set FLAQM lf p4 2 . 5
Queue/FL set FLAQM lf p5 3 . 0

Queue/FL set FLAQM d lf N p1 −2.0
Queue/FL set FLAQM d lf N p2 −1.0
Queue/FL set FLAQM d lf N p3 −0.5
Queue/FL set FLAQM d lf N p4 −0.2

A.2. The .tcl Source Code for Testing FLAQM(I) and FLAQM(II) A41

Queue/FL set FLAQM d lf P p1 0 . 2
Queue/FL set FLAQM d lf P p2 0 . 5
Queue/FL set FLAQM d lf P p3 1 . 0
Queue/FL set FLAQM d lf P p4 1 . 5
Queue/FL set FLAQM d lf P p5 2 . 0

76
Queue/FL set FLAQM MD p1 0 . 8
Queue/FL set FLAQM MD p2 0 .85
Queue/FL set FLAQM MD p3 0 . 9
Queue/FL set FLAQM MD p4 1 . 0
Queue/FL set FLAQM MD p5 1 . 1
Queue/FL set FLAQM MD p6 1 .15

Queue/FL set FLAQM AI p1 0 .01
Queue/FL set FLAQM AI p2 0 .02
Queue/FL set FLAQM AI p3 0 .03
Queue/FL set FLAQM AI p4 0 .04
Queue/FL set FLAQM AI p5 0 .05
Queue/FL set FLAQM AI p6 0 .06

} e l s e i f {$QueueType == ”IFLAQM”} {
Queue/FL set whichFLAQM 1
Queue/FL set IFLAQM lf p1 0 .25
Queue/FL set IFLAQM lf p2 0 . 5
Queue/FL set IFLAQM lf p3 0 .75

96Queue/FL set IFLAQM d lf N p1 −0.5

Queue/FL set IFLAQM d lf P p1 0 .25
Queue/FL set IFLAQM d lf P p2 0 . 5

Queue/FL set IFLAQM MD p1 0 . 5
Queue/FL set IFLAQM MD p2 0 .95
Queue/FL set IFLAQM MD p3 1 . 0
Queue/FL set IFLAQM MD p4 1 .05
Queue/FL set IFLAQM MD p5 1 . 1
Queue/FL set IFLAQM MD p6 1 .15
Queue/FL set IFLAQM MD p7 1 . 2

Queue/FL set IFLAQM AI p1 0 .01
Queue/FL set IFLAQM AI p2 0 .02
Queue/FL set IFLAQM AI p3 0 .03
Queue/FL set IFLAQM AI p4 0 .04
Queue/FL set IFLAQM AI p5 0 .05
Queue/FL set IFLAQM AI p6 0 .06
Queue/FL set IFLAQM AI p7 0 .07

116}
}

Agent/TCP set packe tS i z e 1000
Agent/TCP set window 100
Agent/TCP set ecn $ECN

#
Bot t l eneck
10mb 40ms 100mb 40ms 1.5mb 10ms 10mb 1ms
#SERVERs−−−−−−−−−n s−−−−−−−−−−−−n e−−−−−−−−−−−n p−−−−−−−−−−CLIENTs
core Access Premises
#Cab le : y=27Mbps x=7Mbps
#ADSL: y=8−155Mbps x=1.5Mbps
#

set n sHTTP1 [$ns node]
set n cHTTP1 [$ns node]
set n s [$ns node]

136set n e [$ns node]
set n p [$ns node]
$ns duplex− l ink $n sHTTP1 $n s 10Mb 40ms DropTail
$ns duplex− l ink $n cHTTP1 $n p 10Mb 1ms DropTail
$ns duplex− l ink $n s $n e 100Mb 40ms DropTail
i f {$QueueType == ”ARED”} {

A42 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

$ns s implex− l ink $n e $n p [expr $bott leneck bdw]Mb 10ms RED
} e l s e i f {$QueueType == ”FLAQM” | | $QueueType == ”IFLAQM”} {

$ns s implex− l ink $n e $n p [expr $bott leneck bdw]Mb 10ms FL
} else {

$ns s implex− l ink $n e $n p [expr $bott leneck bdw]Mb 10ms $QueueType
}
$ns s implex− l ink $n p $n e [expr $bott leneck bdw]Mb 10ms DropTail
$ns queue− l imit $n e $n p $q l im i t

set monitorq [open monitorqueueEmpty w]
set qmon [$ns monitor−queue $n e $n p $monitorq]

set monq [[$ns l i n k $n e $n p] queue]
set tchan [open $QueueType$num longbursts$random run.q w]

156$monq attach $tchan
i f {$QueueType == ”FLAQM” | | $QueueType == ”IFLAQM”} {

$monq trace l o ad f a c t o r
$monq trace curq

} else {
$monq trace curq

}

#set PPBP t r a f f i c
#dea l wi th random v a r i b l e s and seeds for independent
r e p l i c a t i o n s o f the s imu la t i on
seed the default RNG
global defaultRNG
$defaultRNG seed 9999

crea t e the RNGs and set them to the co r r e c t substream
set starttime1RNG [new RNG]
set flowSize1RNG [new RNG]
for { set j 0} { $ j < $random run} { incr j } {

$starttime1RNG next−substream
176$flowSize1RNG next−substream

}

set numSession 100000000
set s t a r t t ime1 [new RandomVariable/Exponent ia l]
$ s ta r t t ime1 use−rng $starttime1RNG
$sta r t t ime1 set avg $ i n t a r r i v a l t im e
set f l owS i z e1 [new RandomVariable/Pareto]
$ f l owS i z e1 use−rng $flowSize1RNG
$f l owS i z e1 set avg $ave pkts
$ f l owS i z e1 set shape $pareto shape

set launchTime 0 . 0
for { set i 0} { $ i < $numSession} { incr i } {

set f l s i z e h t t p 1 ($ i) [expr round ([$ f l owS i z e1 value])]
i f { $ f l s i z e h t t p 1 ($ i) < 2} {

set f l s i z e h t t p 1 ($ i) 2 ;
} e l s e i f { $ f l s i z e h t t p 1 ($ i) > 1000} {

set f l s i z e h t t p 1 ($ i) 1000
}

196
set launchTime [expr $launchTime + [$ s ta r t t ime1 value]]
set l aun t ime ht tp1 ($ i) $launchTime
i f { $ laun t ime http1 ($ i) >= $s imu la t i on dura t i on } {

break
}
puts ” $ i : $ laun t ime http1 ($ i) $ f l s i z e h t t p 1 ($ i) ”

}
set rea l http1 num $ i
for { set i 0} { $ i < $rea l http1 num } { incr i } {
set t cp http1 ($ i) [new Agent/TCP/Reno]
set s i nk ht tp1 ($ i) [new Agent/TCPSink]
$ns attach−agent $n sHTTP1 $tcp http1 ($ i)
$ns attach−agent $n cHTTP1 $s ink ht tp1 ($ i)
$ns connect $tcp http1 ($ i) $ s ink ht tp1 ($ i)
#$ t c p h t t p 1 ($ i) set window $window

A.2. The .tcl Source Code for Testing FLAQM(I) and FLAQM(II) A43

set f t p h t tp1 ($ i) [new Appl i ca t ion /FTP]
$ f tp h t tp1 ($ i) attach−agent $tcp http1 ($ i)
$ns at $ laun t ime http1 ($ i) ” $ f tp h t tp1 ($ i) produce $ f l s i z e h t t p 1 ($ i) ”
}

216
#set window 20 t r y 100 f i r s t
set l ongbur s t s l auncht ime 0 . 0
set l o n g bu r s t s i n t e r v a l 0 . 2
for { set i 0} { $ i < $num longbursts } { incr i } {

set n s l ongbu r s t s ($ i) [$ns node]
set n c l ongbur s t s ($ i) [$ns node]
$ns duplex− l ink $n s l ongbur s t s ($ i) $n s 10Mb 40ms DropTail
$ns duplex− l ink $n c l ongbur s t s ($ i) $n p 10Mb 1ms DropTail
set t cp l ongbu r s t s ($ i) [new Agent/TCP/Reno]
set s i n k l ongbu r s t s ($ i) [new Agent/TCPSink]
$ns attach−agent $n s l ongbur s t s ($ i) $ t cp l ongbur s t s ($ i)
$ns attach−agent $n c l ongbur s t s ($ i) $ s i nk l ongbu r s t s ($ i)
$ns connect $ t cp l ongbur s t s ($ i) $ s i nk l ongbu r s t s ($ i)
#$ t c p l o n g b u r s t s ($ i) set window $window
set f t p l o n gbu r s t s ($ i) [new Appl i ca t ion /FTP]
$ f t p l ongbu r s t s ($ i) attach−agent $ t cp l ongbur s t s ($ i)
set l ongbur s t s l auncht ime [expr $ longbur s t s l auncht ime + \

$ l o n gbu r s t s i n t e r v a l]
$ns at $ longburs t s l auncht ime ” $ f t p l ongbu r s t s ($ i) s t a r t ”

236set l a un t ime t cp l ongbu r s t s ($ i) $ l ongburs t s l auncht ime
}

set warmup bthrput 0
set t o t a l b th rpu t 0
set warmup bdepartures 0
set warmup barr ivals 0
set warmup bdrops 0
set t o t a l bd epa r tu r e s 0
set t o t a l b a r r i v a l s 0
set t o t a l bd rop s 0

proc warmup time {warmuptime} {
global qmon
global QueueType
global warmup bthrput
global warmup bdepartures
global warmup barr ivals
global warmup bdrops
global rea l http1 num num longbursts

256global l aun t ime ht tp1 l aun t ime t cp l ongbu r s t s
global s i nk ht tp1 s i n k l ongbu r s t s
global t cp http1 t cp l ongbu r s t s

warmup per iod network t h r p u t , t r a f f i c l o a d , drop r a t e ,
#l i n k u t i l i z a t i o n

for { set i 0} { $ i < $rea l http1 num } { incr i } {
i f { $ laun t ime http1 ($ i) < $warmuptime} {

set next [$ s ink ht tp1 ($ i) set next]
i f {$next > 1} {

set size [$ tcp http1 ($ i) set packe tS i z e]
set warmup bthrput [expr $warmup bthrput+($next−1) ∗$ s i z e]

}
}

}
for { set i 0} { $ i < $num longbursts } { incr i } {

i f { $ l aun t ime t cp l ongbu r s t s ($ i) < $warmuptime} {
set next [$ s i nk l ongbu r s t s ($ i) set next]
i f {$next > 1} {

set size [$ t cp l ongbur s t s ($ i) set packe tS i z e]
set warmup bthrput [expr $warmup bthrput+($next−1) ∗$ s i z e]

276}
}

}

set warmup bdepartures [$qmon set bdepar ture s]
set warmup barr ivals [$qmon set b a r r i v a l s]

A44 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

set warmup bdrops [$qmon set bdrops]
}

p e r i o d i c a l l y check the a c t i v e connect ion number
proc ac t i ve conn no {} {

global rea l http1 num num longbursts
global l aun t ime ht tp1
global t cp http1
global f l s i z e h t t p 1
global f i l e l e n t h r e s h o l d
global a c t i v e f
global i n t e r v a l

for measure a c t i v e no.
296set active num 0

set act ive num mice 0
set act ive num elephant 0

set ns [Simulator i n s t anc e]
set i n t e r v a l [expr $ s imu la t i on dura t i on∗1 .0 /300 .0]
set i n t e r v a l 100
set now [$ns now]
puts ”now i s $now”
for { set i 0} { $ i < $rea l http1 num } { incr i } {

i f { $ laun t ime http1 ($ i) <= $now} {
set ack [$tcp http1 ($ i) set ack]

i f {$ack < $ f l s i z e h t t p 1 ($ i)} {
set active num [expr $active num + 1]
set f l ow l en [expr $ f l s i z e h t t p 1 ($ i)]
i f { $ f l ow l en <= $ f i l e l e n t h r e s h o l d } {

set act ive num mice [expr $act ive num mice + 1]
} else {
set act ive num elephant [expr $act ive num elephant + 1]
}

316}
}

}

puts $ a c t i v e f ”$now [expr $active num+$num longbursts] \
$act ive num mice [expr $act ive num elephant+$num longbursts] ”

$ns at [expr $now + $ i n t e r v a l] ” ac t i ve conn no ”
}

proc f i n i s h { stopt ime } {
global random run
global qmon warmuptime bott leneck bdw
global QueueType
global warmup bthrput
global warmup bdepartures
global warmup barr ivals
global warmup bdrops
global t o t a l b th rpu t
global t o t a l bd epa r tu r e s

336global t o t a l b a r r i v a l s
global t o t a l bd rop s
global rea l http1 num num longbursts
global l aun t ime ht tp1 l aun t ime t cp l ongbu r s t s
global s i nk ht tp1 s i n k l ongbu r s t s
global t cp http1 t cp l ongbu r s t s
global monitorq
global f l s i z e h t t p 1
global a c t i v e f
global tchan

close $monitorq
close $ a c t i v e f

set awkCode {
{

i f ($2 >= warmuptime) {
i f ($1 == ”Q” && NF>2) {

A.2. The .tcl Source Code for Testing FLAQM(I) and FLAQM(II) A45

pr in t $2 , $3 >> (” . . / r e s u l t s /” QueueType num longbursts \
random run ” .queue ”) ;

356} else i f ($1 == ” l ” && NF > 2) {
pr in t $2 , $3 >> (” . . / r e s u l t s /” QueueType num longbursts \

random run ” . l o a d f a c t o r ”) ;
}

}
}

}

i f {$QueueType == ”FLAQM” | | $QueueType == ”IFLAQM”} {
exec rm −f . . / r e s u l t s / $QueueType$num longbursts$random run. loadfactor
exec touch . . / r e s u l t s / $QueueType$num longbursts$random run. loadfactor
exec rm −f . . / r e s u l t s /$QueueType$num longbursts$random run.queue
exec touch . . / r e s u l t s /$QueueType$num longbursts$random run.queue
} else {
exec rm −f . . / r e s u l t s /$QueueType$num longbursts$random run.queue
exec touch . . / r e s u l t s /$QueueType$num longbursts$random run.queue
}
i f { [info exists tchan] } {
close $tchan

}
376exec awk $awkCode warmuptime=$warmuptime QueueType=$QueueType \

num longbursts=$num longbursts random run=$random run \
$QueueType$num longbursts$random run.q
exec rm −f $QueueType$num longbursts$random run.q

t o t a l network t h r p u t , t r a f f i c l o a d , drop r a t e , l i n k u t i l i z a t i o n
for { set i 0} { $ i < $rea l http1 num } { incr i } {
i f { $ laun t ime http1 ($ i) < $stopt ime } {
set next [$ s ink ht tp1 ($ i) set next]
i f {$next > 1} {

set size [$ tcp http1 ($ i) set packe tS i z e]
set t o t a l b th rpu t [expr $ to t a l b th rpu t+($next−1) ∗$ s i z e]

}
}
}
for { set i 0} { $ i < $num longbursts } { incr i } {

i f { $ l aun t ime t cp l ongbu r s t s ($ i) < $stopt ime } {
set next [$ s i nk l ongbu r s t s ($ i) set next]
i f {$next > 1} {

set size [$ t cp l ongbur s t s ($ i) set packe tS i z e]
396set t o t a l b th rpu t [expr $ to t a l b th rpu t+($next−1) ∗$ s i z e]

}
}

}

set t o t a l bd epa r tu r e s [$qmon set bdepar ture s]
set t o t a l b a r r i v a l s [$qmon set b a r r i v a l s]
set t o t a l bd rop s [$qmon set bdrops]

############network measure c a l c u l a t i o n##########################
set network measure [open \
network measure.$QueueType$num longbursts$random run w]

network throughput
puts $network measure ”Thrput: [expr ($total bthrput−$warmup \

bthrput) ∗8 .0 /($stoptime−$warmuptime)/1000000 . 0 / $bott leneck bdw] ”
l i n k u t i l i z a t i o n

puts $network measure ” L i n kU t i l i z a t i o n : [expr ($tota l bdepar ture s−\
$warmup bdepartures) ∗8 .0 /($stoptime−$warmuptime)/1000000 . 0 /\
$bott leneck bdw] ”

t r a f f i c load
416puts $network measure ” Tra f f i cLoad : [expr ($ t o t a l b a r r i v a l s− \

$warmup barr ivals) ∗8 .0 /($stoptime−$warmuptime)/1000000 . 0 /\
$bott leneck bdw] ”

#l o s s ra t e
puts $network measure ”LossRate : [expr ($total bdrops−$warmup bdrops)\
∗1 .0 /($ to ta l ba r r i va l s−$warmup bar r i va l s)] ”

close $network measure

A46 Appendix A. Computer Programs for FLAQM(I) and FLAQM(II)

##########user measure c a l c u l a t i o n##########################
user goodput and response time
set goodput http1 f [open \
$QueueType$num longbursts$random run.goodput http1 w]
set r e spons e t ime ht tp1 f [open \
$QueueType$num longbursts$random run.responsetime http1 w]

for { set i 0} { $ i < $rea l http1 num } { incr i } {
set next [$ s ink ht tp1 ($ i) set next]
i f {$next > $ f l s i z e h t t p 1 ($ i)} {

set l a s t s i n k r e c v t im e [$ s ink ht tp1 ($ i) set l a s t s i n k r e c v t im e]
set size [$ tcp http1 ($ i) set packe tS i z e]

436puts $goodput http1f ” f i l e S i z e : $ f l s i z e h t t p 1 ($ i) thrput (Kbps) : \
[expr ($next−1) ∗ $ s i z e ∗ 8 . 0 /1000 . 0 /($ l a s t s i nk r e cv t ime− \

$ laun t ime http1 ($ i))] ”
puts $ r e sponse t ime ht tp1 f ” f i l e S i z e : $ f l s i z e h t t p 1 ($ i) \

r e spons e t ime : [expr $ l a s t s i nk r e cv t ime−$ l aun t ime h t tp1 ($ i)] ”
}
}
close $goodput http1f
close $ r e sponse t ime ht tp1 f

exec rm −f monitorqueueEmpty
exit 0

}

$ns at $warmuptime ” ac t ive conn no ”
$ns at $warmuptime ”warmup time warmuptime”
$ns at $ s imu la t i on dura t i on ” f i n i s h $ s imu la t i on dura t i on ”
$ns run

