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Abstract

Problem solving and student-centred learning have received a great
deal of attention in mathematics curricula for schools and in some
universities. Much of this emphasis developed from the pioneering
work of George Polya in heuristics, problem solving and mathematics
education. Polya’s work, and some of its later extensions, are reviewed
in the light of current research findings. It is argued that, despite the
attention it has received, problem solving remains a difficult skill, both
to teach and to learn, and directions for future work are suggested.

Introduction

“The aim of mathematics in the high school curriculum should be to teach
young people to think.” So said the researcher, author and teacher George
Polya who continued: “Such thinking may be identified. . . , in first approxi-
mation, with problem solving.” (Polya, 1965, Vol. 2, p.100). He already had
a distinguished career in mathematical research when he said this. For exam-
ple, he had published in analysis (Hardy, Littlewood & Pólya, 1934; Pólya &
Szegő, 1925), combinatorics (Pólya, 1937) and mathematical physics (Pólya
& Szegő, 1951). The book that made him world famous was How To Solve
It (Polya, 1945) which is still in print sixty years after its publication; it
has sold over a million copies and been translated into seventeen languages.
This work and those which followed it established Polya as the father of the
modern focus on problem solving in mathematics education.

“For mathematics education and for the world of problem solving
[Polya’s work] marked a line of demarcation between two eras,
problem solving before and after Polya.”

Schoenfeld (1987a, p.27)
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He spent the last forty years of his life writing and teaching on the means and
methods of problem solving, which he called heuristics. This article seeks to
examine his legacy. What have we learned from his methods and are they
still relevant to teaching mathematics today? How should we extend his
ideas in the light of more recent research?

According to Polya,

“Mathematical thinking is not purely ‘formal’; it is not concerned
only with axioms, definitions and strict proofs, but many other
things belong to it: generalizing from observed cases, inductive
arguments, arguments from analogy, recognizing a mathemati-
cal concept in, or extracting it from a concrete situation. The
mathematics teacher has an excellent opportunity to acquaint his
students with these highly informal thought processes. . . stated
incompletely but concisely: let us teach proving by all means,
but let us also teach guessing.” Polya (1965, p.100)

When the teacher proposes a problem to be solved, he should begin with let-
ting the students guess the result: The students, impatient to know whether
their guess will turn out right or not, will work afterwards with much more
interest. Guessing hones both judgement and intuition, which are indispens-
able tools in constructing proofs and in research (Polya, 1979).

I urge the reader who is already familiar with these ideas to consider again
how radical they seemed when Polya first proposed them. At the time, drill
and practice on basic skills were the norm in elementary mathematics teach-
ing. Instead, Polya said, the student should be plunged into situations which
might require beginning from scratch, with perhaps a guess or some sort of
analogy and argue towards a solution with false starts, blind alleys, mistakes
and failures, till the problem became clearer and a solution emerged. In so
doing, the student would experience mathematical thinking which is similar
in kind, if not degree, to that of mathematical research.

Polya’s legacy

To begin with some of Polya’s concerns have a surprisingly modern ring to
them. For example, underlying his thinking was the distinction between the
way mathematics is formally presented and the very different way in which
it is actually done, a key argument in the “Math Wars” curriculum debate
in the United States in the last five years (Latterell, 2005). Secondly, he
was passionately concerned about teacher education, giving many problem-
solving courses to both pre-service and in-service teachers. His opinion that
“the preparation of high school mathematics teachers is insufficient” (Polya,
1965, p.xi) is echoed by many today who are concerned with the quality of
mathematics teaching in our schools. The recent National Strategic Review
of Mathematical Sciences Research in Australia (Australian Academy of Sci-
ence, 2006), for example, highlighted a decline both in the number of Year 12
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students taking intermediate or advanced mathematics, and in the mathe-
matical content knowledge of graduating pre-service teachers. Thirdly, Polya
recommended that in tertiary mathematics courses for non-specialists, like
engineers, different standards of proof should apply than those expected of
professional mathematicians, so that proof by generic example could be con-
sidered adequate (Polya, 1954b, p.159). In this he anticipated more recent
research, to be discussed below, on the nature of proof and how students
understand proof.

Most mathematics teachers today will have heard of the four steps to prob-
lem solving recommended in How to Solve It :

1. understand the problem;

2. devise a plan;

3. carry out the plan;

4. look back;

and perhaps a few of the heuristic strategies—Draw a Diagram, Work Back-
wards, or Find a Pattern. But few teachers will have experience of prob-
lem solving in the way Polya intended. His method was as follows: the
student should be presented with sequences of “worthwhile and interesting
problems” (Polya, 1965, p.xvi) “. . . not merely routine problems but prob-
lems requiring some degree of independence, judgement, originality, creativ-
ity” (ibid.,p.xi). These problems would form the basis of a Socratic dialogue
with the student, by which the teacher would guide the student to explore
various heuristic stratagems leading to a solution.

How to Solve It was devoted to Polya’s exposition of heuristics with some
problems. More interesting and worthwhile problems were published sub-
sequently in two volumes of Mathematics and Plausible Reasoning (Polya,
1954a,b), Volume I focusing on induction, analogy, generalisation and spe-
cialisation, and Volume II on patterns, the use of heuristics to solve prob-
lems, and the ways in which mathematicians become convinced that some-
thing is true before they try to prove it.

A good example of reasoning by analogy comes from Polya’s account, in
Volume I, of Euler’s discovery of the sum of the series

∞∑
n=1

1
n2

= 1 +
1
4

+
1
9

+
1
16

+ · · · = π2

6
,

the exact value of the sum being hitherto unknown. Euler had already shown
by numerical techniques that the sum was 1.644934, to 7 significant figures,
but he wanted the exact answer. He began with the equation sinx = 0,
which has roots x = 0,±π,±2π,±3π, . . .. Expanding the left-hand side as
a Maclaurin series

x− x3

3!
+

x5

5!
− x7

7!
+ · · · = 0
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and dividing both sides by x, which would remove the root x = 0, Euler
concluded that the equation

1− x2

3!
+

x4

5!
− x6

7!
+ · · · = 0 (1)

must have roots x = ±π,±2π,±3π, . . .. He then argued by analogy with
the finite-dimensional case of a polynomial equation of the form

a0 + a1x + a2x
2 + · · ·+ anxn = 0 .

If this equation has n distinct roots α1, α2, . . . αn, then the left-hand side
can be factorised as an(x − α1)(x − α2) . . . (x − αn). Euler factorised the
left-hand side of equation (1) to be

1− x2

3!
+

x4

5!
− x6

7!
+ · · · =

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

This was a risky step, as the left-hand side is an infinite series rather than
a polynomial of degree n, and the convergence of infinite products like that
on the right-hand side was an still open question in his day. Equating the
coefficients of x2 on both sides yields

1
3!

=
1
π2

∞∑
n=1

1
n2

⇒
∞∑

n=1

1
n2

=
π2

6
.

“Euler knew very well that his conclusion was daring”, writes Polya (ibid.,
p.20), yet he had some reassurance because it agreed to the last place with
his numerical estimate. Moreover, using this result and equating coefficients
of x4 implies that

∞∑
n=1

1
n4

=
π4

90
,

a result which also agreed exactly with Euler’s numerical estimates. Finally,
by applying a similar technique to the equation 1−sinx = 0, Euler replicated
a known result due to Leibniz that

π

4
= 1− 1

3
+

1
5
− 1

7
+ · · · .

Still Euler kept doubting, continuing his numerical validations, looking at
other cases, till eventually he constructed a different proof for the result
which could be accepted as rigorous. The point, as far as Polya was con-
cerned, was that Euler was prepared to be completely open about his pro-
cess of discovery. “ . . . among old mathematicians, I was most influenced by
Euler and mostly because Euler did something that no other great math-
ematician of his stature did. He explained how he found his results and
I was deeply interested in that. It has to do with my interest in problem
solving.” (Alexanderson, 1979, p.16)

Lastly, in Mathematical Discovery (Polya, 1965) he honed his ideas and
addressed how mathematics teachers should approach their craft. Polya’s
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exposition of heuristics was highly structured and the teacher, by choosing
an appropriate sequence of worthwhile and interesting problems, could help
the student systematically gain confidence in solving a variety of problems.
Of course, the teacher must first have gained similar skills in order to teach
them effectively.

Problems should be designed to deserve the attention of students; should
entail recognising an essential mathematical concept in a concrete situa-
tion; should require formulation and exploration; may require students to
guess an essential point of the solution, or use other heuristics which Polya
described. (ibid., volume II p.105–112).

Criticism of Polya’s heuristics

Schoenfeld (1987a) pointed out that despite the fact that Polya’s books were
enthusiastically received by mathematicians and mathematics educators (see
Suydam, 1987, for example) who could recognise in them strategies that they
themselves had learned to use but never been taught, the results of heuris-
tic training have proved disappointing. He was critical that, despite some
serious effort, much of the problem-solving movement has been superficial—
adding a few trivial word problems to the curriculum, or studying a few easy
problem-solving techniques in isolation.

“. . . there was at best marginal evidence (if any) of improved
problem-solving performance. Despite all the enthusiasm for the
approach, there was no clear evidence that the students had ac-
tually learned more as a result of their heuristic instruction or
that they had learned any general problem-solving skills that
transferred to novel situations.” Schoenfeld (1987a, p.41)

The reason, Schoenfeld said, was not just poor implementation but the
heuristic strategies themselves. They are too general and when any given
strategy is applied to a problem its precise application depends on context,
it needs to be applied in different ways in different situations. Lester (1994),
summarising research findings till then, agreed that teaching students about
problem solving strategies and heuristics (such as Polya’s) does little to im-
prove problem-solving ability in general. The learning takes place in doing,
and it seems that problem-solving ability develops slowly over a prolonged
period of time. In Polya’s defence however, it is clear he always intended
his heuristics to be combined with doing carefully constructed sequences of
interesting problems.

Another difficulty comes from cognitive research (Desoete, Roeyers & De Clerq,
2003; Ginsburg-Block & Fantuzzo, 1998; Pape & Smith, 2002) which shows
that, as well as training in the strategies and tactics of problem-solving, stu-
dents need training in command and control—in self-regulation and mental
resource allocation during the problem-solving process. For example, a hall-
mark of good problem solvers is that they don’t get lost forever in pursuing
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their wrong guesses. Schoenfeld (1987b) showed that these metacognitive
skills could be taught and successfully incorporated into problem-solving
training. Lester (ibid.) warned, however, that to be effective metacognitive
instruction should be given in the context of learning particular concepts
and techniques. It is not readily generalised or transferred.

Extensions of Polya’s work

In their book Thinking Mathematically Mason, Burton & Stacey (1985)
have taken into account these criticisms of Polya’s work while acknowledging
his, and others’, inspiration. The four steps have been expanded to seven
phases, to try to make the identification of each phase more useful: getting
started, getting involved, mulling, keeping going, insight, being skeptical
and contemplating. There is less emphasis on describing particular heuristic
strategies and more emphasis on the metacognitive skills of goal-setting and
monitoring and assessing the problem-solving process. Still present are the
worthwhile and interesting problems and the thrill of engaging with them, as
is the notion that solution will entail false starts, getting stuck and flashes
of inspiration or intuition. They also include the idea of different levels
of proof, that Polya suggested (Polya, 1954a,b), here pithily reduced to
Convince Yourself, Convince a Friend and Convince an Enemy, the first
being the easiest (possibly) and the last the toughest.

Comparing two examples from Polya and Mason et al. will highlight differ-
ences of approach. Polya twice discusses the problem of finding a formula
for the sum of squares of consecutive integers, S = 12 + 22 + · · · + n2.
Having first dealt with the simpler case and established the result that
1 + 2 + · · · + n = n(n+1)

2 , in Polya (1954a, p.108), calculating both these
sums for n = 1, 2, . . . , 6 and observing their ratio, he is led to conjecture
that

12 + 22 + · · ·+ n2

1 + 2 + · · ·+ n
=

2n + 1
3

and, using the known result for the denominator, to a formula for S which
can be proved by mathematical induction. In Polya (1965, Vol. 1, p.62),
discussing the same problem in the context of recursion, Polya begins with
the identity (k+1)3−k3 = 3k2+3k+1 and sums it over values k = 1, 2, . . . , n.
The left-hand side collapses as a telescopic sum, and on the right, use the
result from the simpler case to obtain

(n + 1)3 − 1 = 3S + 3
n(n + 1)

2
+ n ,

which yields the required formula after some algebraic rearrangement. Polya
comments: “I shall be highly pleased with the reader who is displeased with
the foregoing solution provided that he gives the right reason for his displea-
sure.” Namely that the result appears out of the blue, like a rabbit pulled
out of a hat. Proofs such as this have been shown to be less meaningful to
students than those whose structure and reasoning is made explicit (Alibert
& Thomas, 1991; Tall, 1979).
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Compare the approach taken by Mason et al. in solving the problem of find-
ing which numbers can be written as sums of consecutive positive integers,
for example,

9 = 2 + 3 + 4 ,

11 = 5 + 6 ,

18 = 3 + 4 + 5 + 6 .

The authors open their discussion with general advice:

• Try lots of examples.

• Try changing the question, extending its scope in some way.

• Be systematic in your specializing and try several different systems.

• Look for patterns.

In the getting-started phase they say, “Begin by specializing. Two system-
atic approaches come to mind. Either take each number in turn and try to
express it as a sum of consecutive numbers or be systematic and take sets
of two, then three, then four consecutive numbers and find the sums.” The
reader is then led through a series of conjectures, some true, some false,
leading to subsidiary questions and arguments that require some algebra.
The structure of the reasoning is emphasized and the connections between
all conjectures explicitly mapped. Eventually, the conclusion is reached
that powers of 2 cannot be written as sums of consecutive positive integers.
Heuristic and metacognitive strategies are intermingled in the discussion
and they also emphasize journaling or rubric writing as a way of recording
progress.

The way ahead

It seems that problem solving is here to stay as far as Primary and High
School mathematics are concerned. It has been stressed in both the 1989
and 2000 recommendations of the NCTM (NCTM, 1989, 2000) and in the
latter, more emphasis has been place on teaching metacognitive skills and
self-regulation (Desoete et al., 2003) consistent with research findings. (In-
terestingly, the NCTM process standard for problem solving requires that
students grapple with “complex problems that involve a significant amount
of effort”. What became of Polya’s “worthwhile and interesting” problems?)

In Australia the attempt to forge national curriculum guidelines foundered
in 1993 with the collapse of Commonwealth-State talks in the Australian
Education Council, however the Curriculum Corporation survives as “an
independent education support organisation owned by all Australian educa-
tion ministers established to assist education systems in improving student
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learning outcomes. We do this in collaboration with education systems, re-
sponding to agreed national directions.” (Curriculum Corporation, 2007) A
check of the mathematics curriculum guidelines in all States and Territories
confirms problem solving is a key skill throughout Australia in Primary and
Secondary mathematics. It is likely that, should recent attempts to restart
discussions on a national curriculum be successful (ABC, 2007; Blair, 2007;
Reid, 2005), the focus on problem solving will be maintained.

Polya’s ideas have been slower to impact undergraduate mathematics teach-
ing. In the 1960s this was due to an emphasis in curricula on formal proof,
axiomatic presentations of elementary algebra and the precise formulation
of mathematics as a deductive system (Hanna, 1991). More recent views
of mathematics, she says, have acknowledged the realities of mathematical
practice, that proofs for example can have different degrees of formal valid-
ity and still gain the same degree of acceptance. The emergence of problem
solving seems to have mirrored what happened in schools, at first a some-
what uncritical enthusiasm—as part of calculus reform (Cohen, Knoebel,
Kurtz & Pengelley, 1994) for example—followed by more sober reflection.
Epp complains that

“Enthusiasm for this more human view of mathematical thinking
has led some to relegate proof to. . . an. . . often intuitive, some-
what pedantic justification for statements already known to be
true.. . . The view that intuitive understanding is separate from
and precedes proof is sometimes given as a reason for present-
ing mathematics informally [at first], leaving proof to. . . senior
courses.” Epp (1994, p.257)

Hanna (ibid.,p.61) concurs that formalism should not be seen as a side issue,
but as an important tool for clarification, validation and understanding. One
approach that has been used successfully at undergraduate level is group
discussions of proofs, following a paradigm similar to Mason et al. (Alibert
& Thomas, 1991).

Vithal, Christiansen & Skovsmose (1995) report on extensive Danish experi-
ence with problem-centred project work both in instruction and assessment
at tertiary level. They conclude that project work in mathematics is fea-
sible, if it is combined with lecture courses which support content, and if
it is given appropriate weighting in assessment. However, it is expensive
and labour intensive and, for both students and staff, there is a real tension
between developing an overview of the discipline and delving into project
topics in depth.

To summarise what has been learned about problem solving since Polya,
heuristic training is valuable if it is done in the context of particular problem-
solving domains rather than in general. It should be combined with explicit
metacognitive training to encourage self-regulation and monitoring of the
problem-solving process. It appears that the ability to solve problems de-
velops slowly over a very long period of time and success depends on much
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more than just mathematical content knowledge, though expert problem
solvers have sound schematic and semantic knowledge compared to novices.

Since heuristics are domain specific rather than general, future research has
quite a way to go to specify them. Lester (ibid.) laments that research inter-
est in problem solving appears to be declining, partly because some believe
the work has been done, but also because it is now clear that problem solv-
ing is more complex than was once thought. He identifies three areas that
need more research: the role of the teacher in a problem-centred classroom,
what actually takes place in a problem-centred classroom, and group and
whole-class processes in a problem-centred classroom.

At university, the student must cope with more new concepts in less time
than at school, leading to a greater concentration on a smaller number of
inter-related topics, different from anything in earlier years, and increasing
generalisation, abstraction and formalisation (Robert & Schwarzenberger,
1991, p.128). More research is needed on: learning theories for advanced
mathematical thinking; balancing the deep-learning, narrow-focus opportu-
nities afforded in problem-centred instruction with the acquisition of broad,
discipline-wide, schematic and semantic knowledge, and the role of student
choice and learning style in all of the above.

Problem solving will need to be informed by all this research before we can
teach it better. Well-structured encounters with interesting and worthwhile
problems which encourage self-reflection and monitoring are still the most
effective means available to the teacher.

Acknowledgement: the author would like to thank Dr Oleksiy Yevdoki-
mov for his comments and advice on this paper.
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