
Blind Search inverse kinematics for controlling

all types of serial-link robot arms

Samuel N Cubero

University of Southern Queensland, Toowoomba, Australia

1 Introduction

The main objective of “Inverse Kinematics” (IK) is to find the joint variables of a

serial-link manipulator to achieve a desired position and orientation relationship

between the end-effector frame and a base (or reference) frame. This paper

describes a general purpose Inverse Kinematics (IK) method for solving all the

joint variables for any type of serial-link robotic manipulator using its Forward

Kinematic (FK) solution. This method always succeeds in solving the IK solution

for any design of articulated, serial-link robot arm. It will always work on any

design of serial-link manipulator, regardless of the number or types of joints or

degrees of freedom (rotary and/or translational) and it is simple and easy enough

to be implemented into robot arm design and simulation software, even

automatically, without any need for complex mathematics or custom derived

equations. Known as the “Blind Search” method, it also works on robots with

redundant joints and with workspace internal singularities and will not become

unstable or fail to achieve an IK solution. Robot arm design and 3D simulation

software has been written and has successfully demonstrated that the “Blind

Search” algorithm can be used as a general-purpose IK method that is capable of

controlling all types of robot arm designs and even 3D animated objects and

characters. The speed of solving IK solutions numerically is dependent on

software design, selected search parameters and processing power.

2 Background of inverse kinematics

The majority of modern serial-link robotic arms and manipulators are designed to

manipulate an end-effector tool to follow a predefined trajectory or path in 3D

space (ie. A series of known or calculated cartesian-coordinate positions and roll-

pitch-yaw angular orientations of the tool). For example, a 6 degree-of-freedom

welding robot must have its 6 individual joint variables (or joint angles) controlled

2 S N Cubero

simultaneously so that the tip of a MIG welding tool attached at its tool-plate can

be placed accurately at known positions along a welding path. (eg. a straight line)

Fig. 1. Coordinate frames for the links of a 3 degree-of-freedom robot leg (example)

Using the Denavit Hartenberg (D-H) convention for obtaining an A-matrix for

each link, the Forward Kinematic (FK) solution for the leg shown in Fig. 1 is giv-

en by the xB , yB , zB coordinates for the foot, measured from Frame B’s origin.

xB = cos θ1 cos θ2 (l3 cos θ3 + l2) + sin θ1 (d2 – l3 sin θ3) + l1 cos θ1 (1)

yB = sin θ1 cos θ2 (l3 cos θ3 + l2) – cos θ1 (d2 – l3 sin θ3) + l1 sin θ1 (2)

zB = sin θ2 (l3 cos θ3 + l2) (3)

(where l1 , l2 and l3 are link lengths according to the D-H convention)

These FK equations were derived by multiplying together three A-matrices:

Blind Search inverse kinematics for controlling all types of serial-link robot arms 3

B
TF =

0
T3 =

0
A1

1
A2

2
A3 = transform relating frame 3 to frame 0 (4)

The two most common “general-purpose” methods for obtaining the IK solu-

tion of serial-link robotic arms or manipulators, are: (1) Using “Inverse Trans-

forms”: Paul’s method [1] of obtaining a “closed-form” explicit solution for each

joint variable; and (2) Using the “Jacobian Inverse” method to obtain an incre-

mental IK solution [2]. Using Paul’s method, we face the problem of being unable

to express a joint angle as an explicit function of (xB , yB , zB) and the D-H link

parameters only, independent of the other joint angles. Hence, there appears to be

no algebraic, closed-form IK solution for this example manipulator since the joint

angles are mathematically dependent on each other. Closed-form IK solutions

cannot be found for several other designs of robot manipulators using this method.

Hence, Paul’s “Inverse Transform” method is not a truly “general purpose” IK

method that works for all manipulator designs.

A commonly used technique for obtaining an IK solution is by inverting the

manipulator’s Jacobian matrix, either symbolically or numerically. The Jacobian,

J , is a special type of transformation matrix which relates incremental changes in

joint angles, ∆jθ = (∆θ1 , ∆θ2 , ∆θ3), to the robot end-effector’s incremental move-

ments in cartesian space, ∆B
pF = (∆xB , ∆yB , ∆zB), relative to the base or reference

frame. The relationship between incremental 3D cartesian displacements of the

end-effector frame, ∆B
pF , and incremental changes in joint angles, ∆jθ , is given as

∆B
pF =

B
Jθ ∆jθ (5)

from McKerrow [2], where the Jacobian matrix, J, is given by

























θ∂

∂

θ∂

∂

θ∂

∂
θ∂

∂

θ∂

∂

θ∂

∂
θ∂

∂

θ∂

∂

θ∂

∂

=θ

3

B

2

B

1

B

3

B

2

B

1

B

3

B

2

B

1

B

B

zzz

yyy

xxx

J (6)

If we know the small changes in joint variables for all links of a robot, ∆jθ = (∆θ1,

∆θ2 , ∆θ3) , the Jacobian allows us to calculate the small “incremental” changes in

the position of the end-effector or foot, ∆B
pF = (∆xB , ∆yB , ∆zB). Hence, the “in-

cremental” IK solution is:

∆jθ =
B
Jθ

-1
 ∆B

pF (7)

The Jacobian matrix cannot be inverted when the foot or the end-effector frame

is near a workspace internal singularity, which is a position where there are an in-

finite number of possible joint variable solutions. There are two types of singu-

larities. (1) A workspace internal singularity occurs inside the 3D workspace (vol-

ume of reachable positions), often when two or more joint axes or link frame axes

4 S N Cubero

line up; and (2) A workspace boundary singularity occurs at or beyond the outer-

most surface of the robot’s 3D workspace, when the manipulator is fully extended

or fully retracted and attempts to move outside of its workspace (eg. outside of the

joint angle ranges defined by the minimum and maximum permissible joint angles

for each link). In Fig. 2, there are infinite possible values for the solution of θ2

when the robot’s foot (end-effector frame origin) is situated on the “internal singu-

larity curve”, where θ3= -132.4°, or if the foot position (origin of frame F or 3) is

in line with the z1 basis axis as shown in Fig. 1.

Fig. 2. Workspace of robot in Fig. 3 showing internal singularity curve [Cubero, 13]

At target positions near or on this internal singularity curve, the Jacobian matrix

cannot be inverted and hence, no IK solution can be found unless additional algo-

rithms are implemented to deal with this problem. Such singularity features can

be identified by plotting the surfaces described by the FK equations. Most pro-

grammers of robot controllers are aware of the problems caused by internal singu-

larities and, hence, do their best to avoid letting goal points or trajectory paths of

Blind Search inverse kinematics for controlling all types of serial-link robot arms 5

end-effectors go anywhere near these problem areas. The stability and accuracy

of this IK method depends on the sensitivity of J to particular joint angle values.

 There are several other IK techniques that have been proposed in the past,

many more than can be described in detail here. The reader may wish to examine

and compare other IK methods, such as: (a) “Screw algebra” by Kohli & Sohni

[6], “Dual matrices” by Denavit [7], “Dual quaternian” by Yang & Freudenstein

[8], “Iterative method” by Uicker et al [9] and Milenkovic & Huang [10], geomet-

ric or vector approaches by Lee & Ziegler [11], “Iterative method” by Goldenberg

& Lawrence [14, 15] and Pieper’s approach for solving Euler angles [12]. Not all

of these IK methods work for every possible type of serial-link robot manipulator

design, especially those with one or more redundant degrees of freedom or those

with one or more internal singularities. Also, most of these IK methods require a

great deal of complicated trigonometric analysis and equation derivations which

are unique for each type of robot manipulator design, hence, their approaches can-

not be universally applied to all types of serial-link manipulators. The above

methods can be demonstrated to work on a few, particular examples of manipula-

tors, but they do not offer a simple, methodical, procedural approach that will al-

ways achieve an IK solution for every type of serial-link manipulator. Many of

these methods are also not simple enough to automate or use immediately in 3D

manipulator design and control software and they require the derivation of unique

IK equations or algorithms for different classes of robot arms. In many cases, IK

solutions cannot be found because the end-effector frame is located near an inter-

nal singularity within the workspace, causing IK equations or Jacobian inversions

to become unsolvable. Such problems are described by McKerrow [2]. The

“Blind Search” IK method overcomes all of these limitations.

3 A new “Blind Search” incremental IK method

After considering the limitations of popular IK methods, the author [Cubero, 13]

proposed a general purpose IK method in 1997 which relies heavily on a “trial and

error” or error minimizing approach to solving the joint variables of any robot

arm, given the desired origin position and orientation of the end-effector frame.

Only the Forward Kinematic (FK) solution for a manipulator or its overall ma-

nipulator transform matrix is needed, hence, this method can be applied to any

type of robot with one degree of freedom per link. This IK method solves all the

correct joint variables needed which correspond to an incremental change in the

displacement and axis orientations of a robot’s end-effector frame in 3D space.

How the “Blind Search” IK method works

Consider a 3 dof serial-link manipulator with only rotary joints, such as the exam-

ple robot leg in Fig. 1. Assuming that a small change in foot position is required,

each joint angle (or displacement or joint variable) can do one of the following:

6 S N Cubero

1. Increase (+) by a small displacement ∆θ (rotary), or ∆d (sliding)

2. Decrease (-) by a small displacement ∆θ (rotary), or ∆d (sliding); or

3. Remain the same (0) , no change

With forward kinematic equations, we can calculate the end-effector frame posi-

tion error and/or basis axes alignment errors which arise for all possible combina-

tions of small joint variable adjustments. For any serial-link manipulator with n

degrees of freedom, there are a total of 3
n
 -1 different possible combinations for

joint variable adjustments which can be made for a given ∆θ (for rotary joints), or

∆d for translational joints (excluding the “no changes” solution). For example, a

2 link robot arm would have 3
2
-1= 8 possible combinations (excluding “no

changes”). In the following discussion, we will consider solving the 3 joint angles

for the example robot leg in Fig. 1, given the desired target position
B
tT = (xB , yB ,

zB) for the foot relative to the base frame B. The following analysis can also be

extended to 6 degree of freedom industrial manipulators, where the position of the

end-effector (or tool) frame origin position and basis axes orientations are speci-

fied and must be achieved through small changes in joint variables. For simplic-

ity, we will limit our discussion to an IK solution for achieving a desired (target)

end-effector frame origin position. Later, we will extend this discussion to obtain-

ing IK solutions which achieve a desired end-effector frame orientation and a de-

sired (target) end-effector frame origin position, simultaneously. For the example

robot shown in Fig. 1, there are N = 3
3
-1 = 26 possible FK solutions for the foot

position if each joint angle changes by +∆θ, -∆θ or 0° (no change at all). We can

calculate all the resulting position errors of these FK solutions from the desired

foot position using simple vector subtraction (ie. Target position vector subtract

the current position vector of the foot). We can then select the “best” combination

of joint angle changes which produces the smallest computed foot position error as

our incremental IK solution after doing a simple “minimum value search” on an

array of error magnitudes from all combinations of joint angle changes. If the

computed position error from this “best” combination of joint angle changes is not

satisfactory, then the entire process can be repeated using the “best” or smallest er-

ror vector found so far (which tends to become smaller with more iterations), until

the error tolerance is met. Note that the incremental change in foot position to the

next target position must be small enough to be achieved, within tolerance, so that

the target may be reached by any one or more of the possible combinations of

joint angle changes. The test joint angles (subscript small “t”) will tend to con-

verge towards the correct solution if we continually select the combination of joint

angle changes that minimizes foot position error relative to the target position.

This algorithm will now be considered in detail.

As shown in Fig. 3, the target position vector for the foot,
B
tT , starts from the

base frame origin B and points to the target frame origin T. The foot position vec-

tor
B
pF starts from the base frame B and points to the foot F. The starting error

vector,
F
eT =

B
tT -

B
pF , starts from the foot F and points to the target frame origin

T. The goal is to find a suitable set of joint angle changes to get the foot position

F to end up at the target position T, within an acceptable error range (or tolerance).

We need to find the combination of joint angle changes that achieves an error vec-

tor magnitude |
F
eT| less than an acceptable error tolerance within a reasonably

short time, for quick real-time performance. We may need to search the FK solu-

Blind Search inverse kinematics for controlling all types of serial-link robot arms 7

tion for each and every possible combination of joint angle changes and select the

combination of changes that gives us the smallest position error from the target

position, which satisfies the required error tolerance.

Fig. 3. Position vectors for foot position F and target point T

Table 1. Angular displacement combinations for the example robot of Fig. 1

Table 1 and Fig. 4 show all the possible displacements that can be made for the

example robot leg shown in Figures 1 and 4. The “Blind Search” IK algorithm

that will now be discussed is suitable for finding accurate joint angle solutions as

long as the end-effector position always remains within its workspace, as shown in

Fig. 2, and the search parameters ∆θ and |
F
eT| are kept small enough so that the

magnitude of the error vector converges towards 0. If, after many iterations none

of the error magnitudes calculated from all of the combinations satisfy the

accepted error tolerance (ie. the “best” IK error magnitude |
F
eTb| > etol), then the

8 S N Cubero

initial incremental step (magnitude of the foot error vector) may need to be

lowered because the target position T could be too far from the current foot

position F.

In summary, the following steps are executed:

 {1} A new target end-effector position/orientation is issued and this must be

quite near to the current position/orientation of the end-effector frame.

 {2} All the FK solutions and position/angle errors for each of the displacement

combinations shown in Fig. 4 are calculated and stored in an array.

 {3} A minimum value search is conducted to find out which displacement

combination produced the smallest error and this combination is marked as the

current “best IK solution”. {4} If this error satisfies the acceptable error

tolerance for a match, then the IK solution is found, otherwise, the process is

repeated from step {2} where the most recent “best IK solution” is used as the

starting or current robot configuration, until the best FK error set (joint angles

and/or displacements) satisfies the error tolerance criteria. In effect, this is a form

of algorithmic or iterative “feedback control” method being used to eliminate the

difference between the actual current position/ orientation of the robot manipulator

and the target position/orientation. This method searches for small joint

angle/displacement changes so that the current joint angles/displacements move

closer and closer to the correct IK solution (within a set tolerance).

The “Blind Search” algorithm can also be extended to find the IK solution that

aligns the axes of both the end-effector frame and the target frame, while bringing

together both their origins so that they coincide, within an acceptable error

tolerance. Orienting the end-effector frame’s x, y and z axes will be described

later, so for now, we will consider achieving an IK solution for position only.

Fig. 4. Displacement combinations for all joints of a 3 degree-of-freedom manipulator

Blind Search inverse kinematics for controlling all types of serial-link robot arms 9

Algorithm 1. Blind Search IK method for the example robot shown in Fig. 1

1. Set the etol variable to an acceptable tolerance value for computed foot

position error (eg. Let 0.02 mm FK error be acceptable for an “exact” position

match, ie. Position of F must be within this distance from the target position T

for accepting an IK solution. This is the worst possible error for the IK solution.

Set ∆θ to be proportional to the magnitude of the starting position error | FeT |

or expected displacement of the end-effector (foot), where ∆θ = k | FeT | , eg. k =

0.2 ° / mm (scale factor k depends on lengths of robot’s links. The longer the ln

link lengths, the larger k should be). Try to keep displacements small, eg. ∆θ <

2° but non-zero. (Algorithm is continued on following page…)

2. Initialize iteration counter variable c = 0 and set the counter limit cmax =

50 , which is the maximum number of iterations that will be executed in search

of an IK solution whose error satisfies etol (error tolerance). Clear error flag ef

= 0. (The error flag is only used if the magnitudes of the search parameters

(initial error vector |FeT| or ∆θ) are too large, or if the target position T is outside

the robot’s workspace). These values must be carefully selected.

3. Trajectory planning algorithm supplies the next target foot position BtT .

Trajectory planning algorithm defines 3D path points for foot F. Keep all target

positions close or within 10mm of each other, or perhaps even smaller,

depending on size of ∆θ. Note: Initial step size | FeT | should be proportional to

∆θ. The error flag ef is noted, acted upon and cleared.

4. The initial “best” error |FeTtb | = | FeT | = |BtT - BpF| and initial “best” test IK

solution is jθtb = (θ1tb, θ2tb, θ3tb) = jθ = (θ1, θ2, θ3) = currently incorrect model

joint angles. A test foot position vector BpFt (model of position) and the test error

vector and its magnitude |FeTt| are calculated for each combination and stored.

(|FeTtb | should decrease as c increases).

5. This step may have to be repeated 33 –1 = 26 times for each possible

combination of joint angle changes or no changes. eg. FOR i = 1 to 26 (Loop).

Calculate the test angles for each combination of joint angle changes, as shown

in Table 1 (eg. θ1t1, θ2t1, θ3t1 , where i =1) and check that each test joint angle

lies within its valid range of motion (between the joint’s minimum and

maximum displacement limits, θmin and θmax for rotary joints, or dmin and dmax

for translational joints). eg. If any test joint angle exceeds its minimum or

maximum acceptable limit, then set it to that nearest limit. ie. do not allow any

test angle outside of its valid range of motion (ie. every θ must always stay

between θmin and θmax for that joint). Calculate a test foot position, BpFti , for

this combination “i” using the test joint angles just found jθti = (θ1ti, θ2ti, θ3ti)

from Table 1 with FK (Eqs. 1-3) and store each test position into an array. Also

store the test joint angles jθti. Calculate a test position error vector for this

combination, FeTti = BtT - BpFti , and its magnitude |FeTti| and record this into an

array. Run an optional check to see if the magnitude of the test error for each

combination satisfies the error tolerance. If error | FeTti | < etol , this is an

acceptable IK solution, so record this as |FeTtb| and store the “best” joint angles

jθtb = (θ1tb, θ2tb, θ3tb) = (θ1ti, θ2ti, θ3ti) then jump to Step 8, skipping steps 6 and

7 to save time. If not, repeat Step 5 (Next “i”) and test the next combination of

changes.

Algorithm 1 continued on next page…

10 S N Cubero

Algorithm 1 continued (Blind Search IK method):

6. Search for the smallest error magnitude in the |FeTt | (1 to 26 element) array

using a simple “minimum value search” algorithm. The smallest error in this

complete array of 26 error magnitudes is |FeTt |(s) , it’s index number is

remembered as “s” in the array and its joint variables (test IK solution) are

recorded jθts = (θ1ts, θ2ts, θ3ts) . The smallest error magnitude found so far from

all the iterations (since c = 0) is recorded as the “best” error, |FeTtb| . If |
FeTt |(s)

from this array is less than the previously calculated “best error”, then set the

new “best error” to equal the current error, ie. if |FeTt |(s) < |FeTtb | , then set

|FeTtb | = |FeTt |(s), and update the best joint angles jθtb = (θ1tb, θ2tb, θ3tb) = (θ1ts,

θ2ts, θ3ts).

7. Check that the test error is converging towards 0. If smallest error |FeTt |(s) >

|FeTtb | , the last “minimum value search” did not find a better IK solution which

produced a smaller “best” error than the one found from the previous pass of

this algorithm. This could be caused by any of the search parameters ∆θ , k or

the displacement |FeT| , being too large, so they may be reduced or halved here if

necessary. If c > cmax (eg. after 50 iterations) and error is still greater than the

acceptable error tolerance, |FeTtb | > etol , then set the “error flag” ef = 1 to

inform the trajectory planning algorithm to take corrective action or modify its

planned trajectory, eg. print “No solution found because the initial movement of

the end-effector |FeT| was too large or ∆θ or k are too large, or the target

point T is outside the robot’s workspace.”, set c = 0 and go to Step 3 to retry

this incremental move again. (The search parameters may be reduced

automatically to avoid this error message) Otherwise, if c<cmax and the

“best” error sofar |FeTtb | > etol , another iteration is necessary to hopefully find

a smaller |FeTtb | < etol, so calculate BpFt using FK (Equations 1-3) with the best

“test” angles sofar jθtb = (θ1tb, θ2tb, θ3tb) , increment the loop counter c = c+1

and go to Step 5. If | FeTtb | < etol , then the IK solution is found so proceed to

Step 8.

8. If the error flag is clear, ef = 0, and the best test angles found so far produces

an error magnitude |FeTtb| < etol , then update the joint angles by equating them

with the best test angles: θ1 = θ1tb , θ2 = θ2tb , θ3 = θ3tb . (etol must be large

enough to obtain a fast solution).

9. Send this angle data to the position controllers of the actuators for links 1, 2

and 3, then Return to Step 3 to get the next target position BtT . (Note that the

new FK solution for BpF is calculated with the newest joint angles jθ = (θ1, θ2,

θ3) which are accurate joint variables. The best test position BpFtb should

converge towards BtT , or tend to get closer to the target with more passes of this

algorithm, until the best error |FeTtb | < etol (error tolerance) Note: This

example describes “position control” only. To implement orientation control,

use |FeTtb | = etotal from Eq. (16) to also force the orientation of the end-effector’s

frame E to match the x, y & z basis axes of the target frame T. Additional code

is necessary to control or guide the shape of redundant links towards a preferred

posture or to approach the target from a particular 3D direction.

If the “best” error does not keep on improving and the error tolerance is not met

after several iterations have completed, search parameters may be reduced in

magnitude and the entire procedure can be repeated. This is not a problem that is

normally encountered if these search parameters are selected carefully.

Blind Search inverse kinematics for controlling all types of serial-link robot arms 11

Forcing the End-effector frame to match the Target frame’s origin
position and orientation

The discussion in the previous section dealt mainly with finding an IK solution for

a serial-link manipulator given a target position (origin of target frame T) which is

very close to the origin of the end-effector frame E. We have so far only

described how to move the origin of end-effector frame E to the origin of target

frame T. We will now consider an extension to this incremental IK method and

try to orient the xE and yE basis axes of end-effector frame E so that they point in

the same directions as the corresponding xT and yT basis axes of the target frame T

respectively. Note that only two of the three corresponding basis axes need

alignment as long as both frames are “right handed”. If we can find the robot’s

joint variables to move the origin of frame E to the origin of frame T, which is

only a short distance away, while the corresponding x and y (and consequently z)

basis axes of both frames are made to point in the same directions respectively (ie.

xE becomes colinear with xT and yE becomes colinear with yT) within an acceptable

error tolerance, then the complete incremental IK solution is found for any type of

serial-link arm. Consider the end-effector frame E for any type of multi-degree-

of-freedom robot arm manipulator, as shown in Fig. 5.

Fig. 5. Base, End-effector and Target frames for a serial-link manipulator

The robot arm shown in Fig. 5 is just for illustrative purposes only and this

discussion applies to any serial-link robot arm design with one degree of freedom

per link. Note that spherical joints (or “ball joints”) can be treated like two rotary

links, where one link has a zero link length (l = 0), so each link has one rotation/

12 S N Cubero

displacement about one axis. eg. the human shoulder joint has two rotary degrees

of freedom and can be considered as two links: one with a shoulder-to-elbow link

length attached to an invisible link with a zero link length, each with a different

rotation.

The Target frame can be specified relative to the Base frame of the robot using

a standard 4x4 transformation matrix
B
TT . Note that the xT , yT and zT unit

vectors representing the basis axes of frame T relative to the base frame B are

obtained from the first 3 vertical columns of the
B
TT “target” frame 4x4 matrix.












=



















=

1000

1000

T

B

TTT

TTTT

TTTT

TTTT

T

B

tzyx

rifc

qheb

pgda

T

 (8)

where the direction vector of the xT basis axis with respect to frame B is given by

xT = aT xB + bT yB + cT zB and likewise

yT = dT xB + eT yB + fT zB

zT = gT xB + hT yB + iT zB

The point vector of the frame T origin point relative to the frame B origin is
B
tT = pT xB + qT yB + rT zB

Similarly, the xE , yE and zE unit vectors representing the basis axes of frame E

relative to the base frame B are obtained from the first 3 columns of the
B
TE

matrix which is the FK transformation matrix of the entire manipulator (similar to

the type found in Eq. 4, obtained by combining all the A-matrices for the

manipulator). The manipulator transform for an n-link manipulator is thus

B
TE =

0
A1

1
A2….

n-1
An

(for any serial-link manipulator with n links > 3)












=



















=

1000

1000

E

B

EEE

EEEE

EEEE

EEEE

E

B

pzyx

rifc

qheb

pgda

T

 (9)

Blind Search inverse kinematics for controlling all types of serial-link robot arms 13

where the direction vector of the xE basis axis with respect to frame B is

xE = aE xB + bE yB + cE zB and likewise,

yE = dE xB + eE yB + fE zB

zE = gE xB + hE yB + iE zB

Fig. 6. Superimposing the origins of both E and T frames to measure α & β

The point vector of the frame E origin point relative to the frame B origin is

B
pE = pE xB + qE yB + rE zB

Fig. 6 shows the error vector and angular differences between the x and y basis

axes of frames E and T, the magnitudes of which all need to be “driven towards 0”

or reduced below an acceptable error tolerance in order to obtain an acceptable IK

solution. In oder to achieve a suitable IK solution, the magnitude of the error

vector |
E
eT| and the angles between pairs of corresponding xE , xT and yE , yT

basis axes (ie. α & β respectively) must be calculated and then combined into a

“total error” value |etotal| which can be used to search for the best combination of

joint variable changes. We may use the “Scalar” or “Dot Product” operation on

basis vectors xE and xT to find the angle between them, α. Likewise, we can

perform the same operation on vectors yE and yT to find β. There is no need to

do this for the 3
rd

 pair of axes, vectors zE and zT , because if the other two axes

line up, the z axes will automatically be aligned relative to the x-y planes because

both frames are “right handed”. The solutions for both α and β can each range

anywhere from 0° to 180° . Also, the magnitude of any basis (unit) vector is 1,

thus, | xE | = | xT | = | yE | = | yT | = 1. The inner or “Dot Product” operations are

now used to find α and β.

14 S N Cubero

xE • xT = | xE | | xT | cos α = cos α (10)

yE • yT = | yE | | yT | cos β = cos β (11)

It is useful to note that if α or β lies between 90° and 180°, the cosine function

will return a negative value. The “worst case” alignment between any two basis

axes vectors is 180°, which gives cos (180°) = -1. If α or β are between 0° and

90°, the cosine function will return a positive value. The “best case” for align-

ment between any two basis axis vectors is 0°, which gives cos(0°) = +1. Hence,

angular alignment “error” between the xE and xT axes can be measured using a

positive value like 1-cos (α). If the angle α = 0, cos (0°) = 1, so the alignment er-

ror is 1-1 = 0 (meaning zero alignment error). If α = 180°, cos (180°) = -1 so 1-(-

1) = +2 which gives the largest or maximum value for alignment error. Note that

“alignment error” is an artificial term that ranges from 0 (perfect alignment) to +2

(worst alignment) and is simply used as a measure of how poorly a pair of basis

axes line up. We will designate eax as the angular alignment error between xE

and xT , and eay as the angular alignment error between yE and yT . These values

are useful for calculating an overall “total error” which also includes position

error.

eax = 1- cos α = 1 - xE • xT

 = 1 – (aE aT + bE bT + cE cT) (12)

eay = 1- cos β = 1 - yE • yT

 = 1 – (dE dT + eE eT + fE fT) (13)

An equation for “total error”, etotal , can be created to combine the position error

and angular alignment error terms so that the best combination of joint variable

changes can be found to minimize this “total error”. Total error can now be for-

mulated using two “weighting factors” which can be adjusted to scale the impor-

tance of each source of error. Kp is the factor which adjusts the contribution of the

initial error vector magnitude (or incremental step size to the next target position)

|
E
eT| towards the “total error”. Ka is the factor which adjusts the contribution of

both eax and eay angular misalignment (error) values. These weighting factors are

like “gains” for a PID algorithm, but they must always remain positive. ie. etotal ,

eax and eay are always positive. We will call epos the error term due to position

error (distance between E and T) and eang will be the error term due to the sum of

angular alignment error values.

epos = Kp |
E
eT| (> 0 positive) (14)

eang = Ka (eax + eay) (> 0 positive) (15)

etotal = epos + eang

 = Kp |
E
eT| + Ka (eax + eay) (> 0) (16)

Blind Search inverse kinematics for controlling all types of serial-link robot arms 15

The values for Kp and Ka need to be adjusted so that a fair balance can be ob-

tained between the contribution of position error and the contribution of axis mis-

alignment errors. The worst value for epos should be equal to the worst case value

of eang if position error is just as important as alignment error for the axes.

Accuracy of the “Blind Search method” depends largely on the value of the error

tolerance for an acceptable IK solution, however, higher precision solutions may

require more iterations. The variable etotal can be used instead of a “test” error

vector |
F
eTt | , which can be calculated for each and every possible combination of

joint variable changes. (See Step 9 in Algorithm 1)

The same methods used in the previous section may be used to search for the

best combination of joint variable changes which produce smaller etotal values as

more iterations are executed. A smallest “total error” value can be found for each

iteration using a minimum value search and this can be compared to the best “total

error” found so far. The “Blind Search” algorithm searches for incremental IK so-

lutions by reducing the “total error” etotal with more passes of the algorithm, until

the etotal value is below a satisfactory error tolerance value, etol (or etol) for an

acceptable FK and IK solution. Hence, an IK solution is found when etotal < etol .

The error tolerance for the IK solution must be set by the programmer along with

carefully selected values for search parameters like initial position displacement or

step |
E
eT| and ∆θ (or ∆d for translational joints), but this can even be automated.

4 Conclusion

This paper has presented a practical and robust inverse kinematics method which

can solve the joint variables for any type of serial-link robot arm or manipulator,

regardless of the number and types of degrees of freedom the manipulator has or

the number or location of workspace internal singularities inherent within the

workspace of the robot. The “Blind Search” IK method described in this paper

will search for small joint angle changes that are necessary to minimise the origin

position error and/or alignment error between the axes of the End-effector frame

and the Target frame. The speed, stability and reliability of “Blind Search” IK so-

lutions depends heavily on the selection of suitable search parameters, such as step

size to the next target point |
E
eT| , ∆θ or ∆d incremental displacement magnitudes

for each link, Kp and Ka “weighting factors” for calculating “total error”, and an

error tolerance etol defining the permissible tolerance or acceptable error of an IK

solution. These variables need to be adjusted for each type of robot manipulator.

Performance of these algorithms can be “tuned” by trial and error, or perhaps au-

tomatically, to achieve a satisfactory balance between solution accuracy, search

stability (ie. reliability of convergence toward an acceptable solution), and compu-

tation time for real-time control. Much time and effort can be saved by using this

“Blind Search” IK method because complicated mathematical derivations are

avoided and only the FK solution or overall manipulator transform matrix is

needed. The “Blind Search” method has been tested successfully for controlling

the end-effectors of 3D simulated robot arms assembled from standard generic

link types, as defined by McKerrow [2], without the need to derive any equations.

16 S N Cubero

5 References

1. Paul R. P. (1981). Robot manipulators – Mathematics, programming and control.

Massachusetts Institute of Technology USA, ISBN 0-262-16082-X

2. McKerrow P. J. (1991). Introduction to Robotics. (Chapters 3 and 4) Addison-

Wesley, ISBN 0-201-18240-8

3. Klafter R. D., Chmielewski T. A., Negin M. (1989). Robotic engineering – an inte-

grated approach. Prentice-Hall, ISBN 0-13-782053-4

4. Fu K. S., Gonzalez R. C., Lee C. S. G. Robotics: Control, Sensing, Vision and Intelli-

gence. McGraw-Hill, ISBN 0-07-100421-1

5. Ranky P. G., Ho C. Y. (1985). Robot modelling: control and applications with soft-

ware. IFS Publications Ltd. UK, ISBN 0-903608-72-3, and Springer-Verlag, ISBN 3-

540-15373-X

6. Kohli D., Soni A. H. (1975). Kinematic Analysis of Spatial Mechanisms via Succes-

sive Screw Displacements. J. Engr. For Industry, Trans. ASME, vol. 2, series B pp.

739-747.

7. Denavit J. (1956). Description and Displacement Analysis of Mechanisms Based on

2x2 Dual Matrices. Ph.D thesis, Mechanical Eng’g, Northwestern University, Evans-

ton, Ill.

8. Yang A. T., Frudenstein R. (1964). Application of Dual Number Quaternian Algebra

to the Analysis of Spatial Mechanisms. Trans. ASME, Journal of Applied Mechanics,

vol. 31, series E, pp. 152-157.

9. Uicker J. J. Jr, Denavit J., Hartenberg R. S. (1964). An Iterative Method for the Dis-

placement Analysis of Spatial Mechanisms. Trans. ASME, Journal of Applied Me-

chanics, vol. 31, Sereies E, pp. 309-314

10. Milenkovic V., Huang B. (1983). Kinematics of Major Robot Linkages. Proc. 13th

Intl. Symp. Industrial Robots, Chicago, Ill, pp. 16-31 to 16-47.

11. Lee C. S. G., Ziegler M. (1984). A Geometric Approach in Solving the Inverse Kine-

matics of PUMA Robots. IEEE Trans. Aerospace and Electronic System, vol. AES-20,

No. 6, pp. 695-706.

12. Pieper D. L. (1968). The Kinematics of Manipulators under Computer Control. Arti-

ficial Intelligence Project Memo No. 72, Computer Science Department, Stanford Uni-

versity, Palo Alto, Calif., USA

13. Cubero S. N. (1997). Force, Compliance and Position Control for a Pneumatic Quad-

ruped Robot. Ph.D Thesis, Faculty of Engineering, University of Southern Queen-

sland, Australia.

14. Goldenberg A. A., Benhabib B., Fenton R. G. (1985). A complete generalized solution

to the inverse kinematics of robots. IEEE Journal of Robotics and Automation, RA-1,

1, pp. 14-20.

15. Goldenberg A. A., Lawrence D. L. (1985). A generalized solution to the inverse kine-

matics of redundant manipulators. Journal of Dynamic Systems, Measurement and

Control, ASME, 107, pp. 102-106.

