
Shaik et al. Brain Informatics           (2025) 12:14  
https://doi.org/10.1186/s40708-025-00262-1

RESEARCH Open Access

© The Author(s) 2025. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Brain Informatics

AI‑driven multi‑agent reinforcement 
learning framework for real‑time monitoring 
of physiological signals in stress and depression 
contexts
Thanveer Shaik1*, Xiaohui Tao1†, Lin Li2†, Haoran Xie3†, Hong‑Ning Dai4†, Feng Zhao5† and Jianming Yong6† 

Abstract 

Purpose  Effective patient monitoring is crucial for timely healthcare interventions and improved outcomes, especially 
in managing conditions influenced by stress and depression, which can manifest through physiological changes. Tradi-
tional monitoring systems often struggle with the complexity and dynamic nature of such conditions, leading to delays 
in identifying critical scenarios. This study proposes a novel multi-agent deep reinforcement learning (DRL) framework 
to address these challenges by monitoring vital signs and providing real-time decision-making capabilities.

Methods  Our framework deploys multiple learning agents, each dedicated to monitoring specific physiological features 
such as heart rate, respiration, and temperature. These agents interact with a generic healthcare monitoring environment, 
learn patients’ behavior patterns, and estimate the level of emergency to alert Medical Emergency Teams (METs) accordingly. 
The study evaluates the proposed system using two real-world datasets-PPG-DaLiA and WESAD-designed to capture physi-
ological and stress-related data. The performance is compared with baseline models, including Q-Learning, PPO, Actor-Critic, 
Double DQN, and DDPG, as well as existing monitoring frameworks like WISEML and CA-MAQL. Hyperparameter optimiza-
tion is also performed to fine-tune learning rates and discount factors.

Results  Experimental results demonstrate that the proposed multi-agent DRL framework outperforms baseline models 
in accurately monitoring patients’ vital signs under stress and varying conditions. The optimized agents adapt effectively 
to dynamic environments, ensuring timely detection of critical health deviations. Comparative evaluations reveal supe-
rior performance in metrics related to decision-making accuracy and response efficiency, highlighting the robustness 
of the framework.

Conclusions  The proposed AI-driven monitoring system offers significant advancements over traditional meth-
ods by handling complex and uncertain environments, adapting to varying patient conditions influenced by stress 
and depression, and making autonomous, real-time decisions. While the framework demonstrates high accuracy 
and adaptability, challenges related to data scale and future vital sign prediction remain. Future research will focus 
on extending predictive capabilities to further enhance proactive healthcare interventions.
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1  Introduction
Mental health disorders, particularly depression and 
stress, are among the most pervasive global health chal-
lenges today, significantly impacting individuals’ well-
being and productivity [1]. These conditions, often 
referred to as"silent epidemics,"require early detection 
and timely interventions to mitigate their effects. How-
ever, traditional approaches to mental health manage-
ment have often been reactive, addressing symptoms 
only after they manifest significantly. This underscores 
the urgent need for proactive monitoring and assessment 
frameworks that can identify early warning signs, ena-
bling clinicians to intervene effectively before the condi-
tions escalate.

The physiological and behavioral manifestations of 
depression and stress, such as changes in heart rate, res-
piration patterns, and body temperature, provide meas-
urable indicators of an individual’s mental health state [2, 
3]. Modern advancements in wearable technology and 
Internet of Things (IoT)-enabled systems now make it 
possible to continuously monitor these indicators in real 
time, presenting new opportunities to enhance mental 
health care. However, the challenge lies in effectively ana-
lyzing the complex, multi-dimensional data generated by 
these systems and deriving actionable insights to guide 
clinical decisions.

Traditional machine learning (ML) techniques have 
been extensively employed in this domain to classify 
physiological signals, identify patterns, and predict health 
outcomes [4, 5]. These methods have laid a strong foun-
dation for developing monitoring frameworks but are 
inherently limited by their reliance on static models that 
do not adapt to changing conditions or learn dynamically 
from ongoing data streams. They are primarily observa-
tional, suggesting potential courses of action without the 
ability to autonomously adapt or act in response to the 
observed patterns.

Reinforcement Learning (RL) represents a paradigm 
shift in this context by enabling autonomous agents to 
actively interact with their environment, learn from feed-
back, and optimize their actions to achieve predefined 
objectives [6]. Unlike traditional ML models, RL agents 
leverage a reward-driven approach where each action 
taken by the agent is evaluated through a reward mecha-
nism that reinforces favorable behaviors and discourages 
undesirable ones. This iterative learning process allows 
RL agents to adapt dynamically to complex, uncertain, 
and ever-evolving environments, making RL an ideal 
candidate for healthcare applications that require preci-
sion, adaptability, and responsiveness.

RL has already demonstrated its potential in various 
domains, including dynamic treatment optimization, 
diagnostic decision-making, and medication scheduling 

[7–9]. For instance, RL algorithms have been used to 
optimize the timing and dosage of medications, ensur-
ing that treatments are administered at the most effective 
intervals. The analogy of RL agents acting as virtual clini-
cians, continuously monitoring a patient’s state and mak-
ing decisions based on observed changes, highlights the 
transformative potential of this technology in healthcare 
[10].

In this study, we propose a novel monitoring frame-
work that utilizes multi-agent Deep Reinforcement 
Learning (DRL) to address the complexities associated 
with monitoring depression and stress. The framework is 
designed to analyze and interpret real-time physiological 
data, enabling clinicians to detect deviations from nor-
mal patterns and respond proactively. Each DRL agent is 
dedicated to monitoring a specific physiological param-
eter, such as heart rate, respiration rate, or body temper-
ature, and learns optimal thresholds based on Modified 
Early Warning Scores (MEWS) [11]. By introducing a 
clinically-informed reward mechanism, the framework 
enables these agents to continuously refine their deci-
sion-making capabilities, ensuring timely and accurate 
alerts to medical teams (Fig. 1).

The proposed framework represents a significant 
advancement over traditional RL models by employing a 
multi-agent architecture that allows simultaneous moni-
toring of multiple vital signs. This distributed approach 
enhances the system’s scalability, enabling it to handle the 
complexities of real-world healthcare scenarios where 
multiple parameters must be monitored concurrently. 
Furthermore, the novel reward system ensures that the 
agents are aligned with clinically relevant objectives, 
optimizing their behavior to support timely medical 
interventions.

The contributions of this study are summarized as 
follows:

•	 Introduction of a clinically-informed reward mecha-
nism tailored to support RL agents in learning behav-
ior patterns indicative of depression and stress.

•	 Development of a generic, multi-agent monitoring 
environment that enables simultaneous tracking of 
various physiological parameters.

•	 Establishment of a novel paradigm for remote moni-
toring of mental health conditions, leveraging multi-
agent DRL to provide actionable insights in real-time.

The rest of this paper is organized as follows: Sect.  2 
reviews related literature on RL applications in health-
care and mental health monitoring. Section  3 provides 
a detailed description of the research problem, technical 
background, and proposed methodology. Experimental 
setup and evaluation metrics are discussed in Sect.  4, 
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followed by an analysis of the results and insights in 
Sect.  5. Applications and implications are discussed in 
Sect. 6, and Sect. 7 concludes the paper by outlining limi-
tations and future directions.

2 � Related works
2.1 � Machine learning in healthcare
Machine learning (ML) has transformed healthcare by 
providing predictive, diagnostic, and monitoring solu-
tions across various domains [12]. Supervised learn-
ing algorithms, in particular, leverage labeled datasets 
to make predictions and classifications based on input 
features [13, 14]. For instance, ML and deep learning 
techniques have been employed to predict vital signs 
like heart rate and classify physical activities [15]. In the 
context of mental health, ML models have demonstrated 
efficacy in detecting stress and depression through the 
analysis of physiological and behavioral data [16, 17]. 
Stress and depression are critical public health concerns, 
often linked to chronic conditions like cardiovascular 
disease and diabetes. Early detection of these conditions 
can significantly improve outcomes by facilitating timely 
interventions.

Oyeleye et  al. [18] investigated ML and deep learning 
models to estimate heart rate using wearable devices, 
comparing various regression algorithms including linear 
regression, k-nearest neighbor (kNN), decision tree, and 
LSTM. Similarly, Luo et al. [19] utilized LSTM models to 
predict heart rate by integrating factors such as gender, 
age, physical activity [20], and mental state, highlighting 
the relevance of mental well-being in monitoring overall 
health.

Unsupervised learning algorithms further contribute 
by deriving patterns from unlabeled data, employing 
clustering and association techniques [21, 22]. Sheng and 

Huber [21] proposed an encoder-decoder framework to 
cluster physical activity data, achieving high accuracy by 
learning behavioral embeddings. Despite their strengths, 
these traditional ML techniques face limitations in 
dynamically adapting to uncertain environments or inte-
grating diverse data sources.

Reinforcement Learning (RL) addresses these gaps by 
enabling systems to learn through interaction with their 
environment [23]. Unlike supervised approaches, RL 
relies on rewards or penalties to optimize decision-mak-
ing processes, making it particularly suited for real-time 
and sequential decision-making tasks [24]. This capability 
is critical for monitoring complex conditions like stress 
and depression, where continuous data-driven interven-
tions can prevent deterioration.

2.2 � Mimicking human behavior patterns
Understanding human behavior is vital for develop-
ing personalized healthcare solutions, especially for 
stress and depression management. Stressful events and 
depressive episodes often manifest through changes 
in physical activity, sleep patterns, and physiological 
responses [16]. Tirumala et  al. [25] explored probabilis-
tic trajectory models to analyze human movement and 
interactions, proposing a hierarchical reinforcement 
learning (HRL) framework for identifying behavior pat-
terns. Janssen et  al. [26] extended this concept by seg-
menting complex biological behaviors into manageable 
subtasks using HRL, which organizes sequential actions 
into logical options.

Tsiakas et  al. [27] proposed a human-centric cyber-
physical systems (CPS) framework for personalized 
human-robot collaboration and training, which focused 
on minimally intrusive methods to predict human 
attention. Similarly, Kubota et  al. [28] examined robots’ 

Fig. 1  Human monitoring framework for tracking vital signs and alerting medical teams in emergencies
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adaptability to cognitive impairments, exploring thera-
peutic and assistive applications. Such frameworks 
emphasize the importance of understanding both high-
level behaviors (e.g., emotional and cognitive states) and 
low-level behaviors (e.g., speech, gestures, and physiolog-
ical signals) [29]. This research forms the foundation for 
developing systems that can effectively address mental 
health challenges like stress and depression.

2.3 � Reinforcement learning in healthcare
Reinforcement Learning (RL) has emerged as a trans-
formative tool in healthcare for its ability to han-
dle complex, dynamic, and uncertain environments. 
Lisowska et  al. [30] demonstrated how RL could opti-
mize the timing of interventions for cancer patients, 
employing models such as Deep Q-Learning (DQL), 
Advantage Actor-Critic (A2C), and Proximal Policy 
Optimization (PPO) to develop virtual coaches for per-
sonalized prompts. Personalized interventions, including 
messaging for diabetes patients, have shown efficacy in 
increasing physical activity and improving mental health 
[31].

Li et al. [32] leveraged RL to analyze electronic health 
records (EHRs) for sequential decision-making, employ-
ing a model-free Deep Q-Networks (DQN) algorithm 
for clinical decision support. Guo et  al. [33] proposed 
a dynamic weight assignment network inspired by 
advanced RL algorithms, demonstrating its application 
in human activity recognition. RL’s ability to integrate 
multi-agent frameworks further enhances its potential 
for mental health monitoring by enabling concurrent 
learning across multiple parameters.

Despite RL’s success in areas like gaming and assis-
tive robotics, its deployment in healthcare, especially for 
mental health conditions, poses unique challenges. Tra-
ditional approaches struggle with the safety and uncer-
tainty inherent in dynamic healthcare environments. 
Stress and depression monitoring, for example, require 
systems that can adapt to fluctuating physiological and 
behavioral data. Our study introduces a multi-agent rein-
forcement learning (MARL) framework designed spe-
cifically for these challenges. Unlike single-agent systems, 
MARL allows for concurrent monitoring of multiple 
physiological parameters, each modeled by a specialized 
agent. This framework is particularly suited for stress and 
depression monitoring, where indicators such as heart 
rate variability, sleep disruptions, and activity levels must 
be continuously analyzed.

By incorporating a clinically-informed reward mecha-
nism, our MARL framework aligns agent behavior with 
healthcare objectives, ensuring timely interventions. This 
approach not only addresses safety concerns but also 
enhances the scalability and adaptability of mental health 

monitoring systems, providing a novel contribution to 
AI-driven healthcare.

3 � DRL monitoring framework
In this section, the design of a human behavior monitor-
ing system, DRL monitoring framework, that uses R is 
presented in detail. The aim of the system is to monitor 
vital signs to learn human behavior patterns and ensure 
clinical safety in an uncertain environment. The pro-
posed framework involves a multi-agent system where 
each vital sign state is observed by an individual agent, as 
shown in Fig. 2. A DRL algorithm, DQN, is used to learn 
effective strategies in the sequential decision-making 
process without prior knowledge through trial-and-error 
interactions with the environment[34, 35].

3.1 � Technical background
The challenge addressed in this research is the develop-
ment of a multi-agent framework for real-time health 
status monitoring by learning and interpreting patterns 
in vital signs through wearable sensors. The agents must 
detect deviations from normal vital sign patterns that 
exceed Modified Early Warning Scores (MEWS) thresh-
olds and alert the emergency team accordingly.

To formulate this problem, we leverage the frame-
work of Markov Decision Processes (MDP), expressed 
as a 5-tuple M = (S,A,P,R, γ ) . Here, S represents the 
finite state space, where each state st ∈ S corresponds 
to a distinct combination of vital sign readings at time 
t. The action set A comprises potential alerts the agents 
can issue based on the observed vital signs. The transi-
tion function P(s, a, s′) models the probability of moving 
from state s to state s′ upon taking action a, reflecting the 
dynamic nature of human vital signs.

Central to our approach is the reward function R(s, a), 
which is defined to prioritize actions that lead to the 
early detection of potential health risks, thereby enabling 
timely intervention. This is mathematically represented 
as:

where γ is the discount factor that balances the impor-
tance of immediate versus future rewards, ensuring the 
agents’ actions are aligned with long-term health moni-
toring objectives.

The goal is to discover an optimal policy π(st) that 
maximizes the expected reward by selecting the most 
appropriate action at in any given state st . This optimi-
zation is achieved through the iterative update of the 
Q-function, as outlined in the Bellman equation:

(1)R(st , at) =

∞∑

t=0

γ t rt ,
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where α represents the learning rate, influencing the inte-
gration of new information into the Q-function. Through 
this process, the agents continually refine their decision-
making strategy, enhancing the system’s capability to 
monitor and respond to emerging health risks effectively.

3.2 � Monitoring environment
A custom RL monitoring system based on MDP has 
been created to have human vital signs data serve as the 
observation space S, action space A for learning agents to 
make decisions, and rewards R for the agents’ actions as 
depicted in Fig. 2. This study introduces a novel isolated 
multi-agent MDP framework that allows multi-agents to 
share the same environment and make decisions based 
on the health parameters they are monitoring, receiving 

(2)
Qnew(st , at ) ← (1− α)Q(st , at )+ α

(

rt + γ max
a

Q(st+1, a)
)

, rewards without being influenced by the decisions of 
other agents. The goal of all agents in this environment 
is to monitor the health of patients using the predefined 
MEWS, as shown in Tab. 1. In healthcare, each vital sign 
plays a critical role in determining a person’s clinical 
safety.

In the current framework, we have implemented three 
RL agents to monitor heart rate, respiration, and tem-
perature. These agents operate primarily in cooperative 
mode, sharing information about the patient’s health sta-
tus and working together to ensure timely interventions. 
Cooperation allows the agents to pool rewards from col-
lective actions, improving overall system learning. How-
ever, when multiple patients are being monitored or 
resource constraints arise (e.g., limited access to medical 
personnel), the agents may enter competitive mode. In 
this mode, agents prioritize the most critical health states 
and may compete for resources by adjusting the urgency 
of alerts based on the patient’s condition.

Fig. 2  Multi-agent monitoring framework

Table 1  Modified Early Warning Scores [36]

MEWS 4/MET 3 2 1 0 1 2 3 4/MET

Respiratory Rate ≤4 5–8 9–20 21–24 25–30 31–35 ≥36

Oxygen Saturation ≤84 85–89 90–92 93–94 ≥95

Temperature ≤34.0 34.1–35.0 35.1–36.0 36.1–37.9 38.0–38.5 ≥38.6

Heart Rate ≤39 40–49 50–99 100–109 110–129 130–139 ≥140

Sedation Score Awake Mild Moderate Severe
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As the number of agents increases, the framework 
is designed to scale effectively. Each additional agent 
monitors new physiological parameters or additional 
patients, with the system adjusting the reward mecha-
nism and communication strategy to maintain efficient 
performance. The system remains modular, enabling easy 
expansion without significantly impacting computational 
load or decision-making speed. Importantly, the system’s 
ability to operate in both cooperative and competitive 
modes ensures flexibility, allowing it to adapt to various 
healthcare scenarios, including large-scale monitoring in 
hospitals.

3.2.1 � Observation space
The environment in Fig.  2 has a state, represented by 
sitǫS , where i = 0, 1, 2, ...n , refers to observations at time 
t. The aim is to divide the state into observations and 
allocate them to multi-agents. Suppose S represents the 
state of the human body, and there are three observa-
tions, s0t , s1t , s2t ǫS , that represent different internal vital 
signs of the human body at time t. The human health 
status is controlled by multiple internal vital signs, each 
with a different threshold as shown in MEWS Tab.  1. 
Using a single agent to monitor all the vital signs can 
result in a sparse rewards challenge [16], where the envi-
ronment might produce few useful rewards and hinders 
the learning of an agent. Therefore, multi-agents need to 
be deployed for each human to monitor the critical vital 
signs. The expected return Eπ of a policy π in a state s can 
be defined by state-value Eq. 3 in the multi-agent setting, 
where i = 0, 1, 2, 3, ...n is a finite number of observations 
n in the state.

3.2.2 � Action space
The action space of the monitoring environment is 
defined based on the MEWS [36] as shown in Tab. 1. The 
table presents early warning scores of adults’ vital signs 
with the appropriate Medical Emergency Team (MET) to 
contact if any escalations in the health parameters. Based 
on the MEWS as threshold values, the action space has 
been segmented to have five discrete actions to commu-
nicate the vital signs to MET–0, MET-1, MET-2, MET-3, 
and MET-4. Each of these actions will be taken by agents 
based on the current state of the vital signs they are mon-
itoring. The expected return Eπ for taking an action a 
in a state s under a policy π can be measured using the 
action-value function Qπ (s, a) defined in Eq. 4.

(3)V π (si) = Eπ

{ ∞,n∑

t=0,i=0

γ tR(st ,π(st))|s
0
0 = s

}

3.2.3 � Rewards
The reward policy is designed to incentivize accurate moni-
toring and timely alerts. Agents are positively rewarded for 
actions aligned with MEWS thresholds (Table  2), ensur-
ing critical conditions like stress-induced hyperthermia or 
depression-related bradycardia are prioritized. Rewards are 
categorized for each action, as shown in Eq. 6. This encour-
ages agents to maximize cumulative rewards and learn 
behavior patterns, crucial for addressing mental health 
risks.

The goal of RL is to maximize cumulative rewards 
obtained through the actions of learning agents in an envi-
ronment. In traditional RL, an agent is rewarded based on 
its action that leads to a transition from state st to st+1 . In 
this study, the objective of the learning agent is to learn 
patterns in human vital signs. This is achieved through the 
design of an effective reward policy. The reward policy, as 
defined in this study, is calculated using Eq. 5. The agents 
are positively rewarded if they monitor vital signs in a 
state and take the correct action from the action space to 
communicate with the correct MET as defined in MEWS 
Tab.  1. On the other hand, if the agent takes the wrong 
action, it is negatively rewarded. The rewards are split into 
five categories for the five actions in the action space based 
on the MET from MEWS Tab. 1. The full rewards for each 
action selected by the agents are presented in Tab. 2. The 
reward policy utilizes the DRL agents’ desire to maximize 
rewards in each learning iteration, making them learn the 
behavior patterns. Under each category, different levels of 
rewards were configured. For example, an observation s1t ǫS 
at the time t is related to heart rate falling under MET–4, 
the rewards are shown in Eq. 6.

(4)

Qπ (s, a) = Eπ

{ ∞∑

t=0

γ tR(st , at ,π(st))|s0 = s, a0 = a

}

(5)R(st , at) =

{
+reward if action = MET
−reward if action �= MET

Table 2  Rewards Policy

MEWS 4 3 2 1 0

Action 0 − 4 − 3 − 2 −1 10

Action 1 − 4 − 3 − 2 10 − 1

Action 2 − 4 − 3 10 −1 − 2

Action 3 − 4 10 −1 −2 − 3

Action 4 10 − 3 − 2 −1 − 4
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Correctness Determination in Reward Design The clin-
ically-informed reward mechanism in our framework is 
designed to reflect the accuracy of agent decisions with 
respect to established triage protocols. Each physiologi-
cal observation is assigned a severity band based on the 
Modified Early Warning Scores (MEWS), which are 
widely used in clinical settings to determine escalation 
levels. If the agent selects the correct Medical Emer-
gency Team (MET) level that corresponds to the MEWS-
derived threshold (for instance, selecting MET-3 when 
the heart rate exceeds 130 bpm), it receives a high posi-
tive reward (+10). In contrast, if the agent overestimates 
or underestimates the appropriate escalation level, it is 
penalized proportionally (e.g., −1 to− 4) based on the 
deviation from the correct action. This graded reward 
policy allows agents to learn both clinical accuracy and 
escalation sensitivity, supporting a balance between 
safety (avoiding false negatives) and efficiency (avoiding 
false positives).

3.3 � Learning agent
In this study, a game learning agent DQN algorithm 
is employed. The DQN algorithm was first introduced 
by DeepMind, a subsidiary of Google, for playing Atari 
games. It allows the agent to play games by simply observ-
ing the screen, without any prior training or knowledge 
about the games. The DQN algorithm approximates the 
Q-Learning function using neural networks, and the 
learning agent is rewarded based on the neural network’s 
prediction of the best action for the current state. For this 
research, the reward policy is described in more detail in 
Sect. 3.2.3.

3.3.1 � Function approximation
The neural network used in this study to estimate the 
Q-values for each action has three layers: an input layer, 
a hidden layer, and an output layer. The input layer has a 
node for each vital sign in a state and the output layer has 
a node for each action in the action space. The model is 
configured with a relu activation function, mean square 
error as the loss function, and an Adam optimizer. The 
model is trained on the states and their corresponding 
rewards and, once trained, it can predict the accumulated 
reward.

The learning agent takes an action at ∈ A in a transi-
tion from state st to s′t and receives a reward R. In this 
transition, the maximum Q-function value is calculated 

(6)R(s1t , at) =







10 ifMET = 4&action = 4
−1 ifMET = 4&action = 3
−2 ifMET = 4&action = 2
−3 ifMET = 4&action = 1
−4 ifMET = 4&action = 0

according to Eq. 4, and the calculated value is discounted 
by a discount factor γ to prioritize immediate rewards 
over future rewards. The discounted future reward is 
combined with the current reward to obtain the target 
value. The difference between the prediction from the 
neural network and the target value forms the loss func-
tion, which is a measure of the deviation of the predicted 
value from the target value and can be estimated using 
Eq. 7. The square of the loss function penalizes the agent 
for large loss values.

3.3.2 � Memorize and replay
The basic neural network model has a limitation in its 
memory capacity and can forget previous observations 
as they are overwritten by new observations. To mitigate 
this issue, a memory array that stores the previous obser-
vations including the current state st , action at , reward R, 
and next state s′t is used. This memory array enables the 
neural network to be retrained using the replay method, 
where a random sample of previous observations from 
the memory is selected for training. In this study, the 
neural network model was retained by using a batch size 
of 32 previous observations.

3.3.3 � Exploration and exploitation
The exploration-exploitation trade-off in RL refers to the 
balancing act between trying out new actions to gather 
information and exploiting the actions that lead to the 
highest rewards. This balance can be modeled math-
ematically using the ǫ-greedy algorithm, which defines 
a probability ǫ of choosing a random action and a prob-
ability 1− ǫ of choosing the action believed to lead to the 
highest reward based on the current knowledge of the 
action-value function Q(st , a) . The equation to determine 
the action taken at time t is as follows:

where the greedy action is defined as:

The value of ǫ determines the level of exploration versus 
exploitation, with smaller values leading to more exploi-
tation and larger values leading to more exploration. 
Over time, as the action-value function becomes more 
accurate, ǫ can be decreased to allow for more exploita-
tion and convergence to the optimal policy.

(7)
loss = (R+ γ ·max(Qπ∗

(s, a))
︸ ︷︷ ︸

target_value

− Qπ (s, a)
︸ ︷︷ ︸

predicted_value

)2

(8)at =

{
random(at) with probability ǫ
greedy(at) with probability 1− ǫ

(9)at = arg max
a

Q(st , a)
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In this study, we emphasize the importance of balanc-
ing exploration and exploitation for effective patient 
monitoring. Exploration allows agents to discover better 
monitoring strategies, while exploitation ensures timely 
alerts by acting on learned knowledge. Through empiri-
cal testing, we found that an exploration rate ǫ between 
0.1 and 0.2 provided the optimal balance in our health-
care environment. This range ensured that agents could 
adapt to changing patient conditions while still providing 
timely and accurate interventions. In critical situations 
with frequent health deviations, a higher exploitation 
rate proved beneficial, whereas environments with fewer 
critical events required more exploration to discover new 
monitoring patterns.

3.3.4 � Hyper parameters
Other than the parameters defined for the neural net-
works, a set of hyperparameters has to supply for the RL 
process. They are as follows:

•	 episodes ( M ): This is a gaming term that means the 
number of times an agent has to execute the learning 
process.

•	 learning_rate(α ): Learning rate is to determine much 
information neural networks learn in an iteration.

•	 discount_factor(γ ): Discount factor ranges from 0 
to 1 to limit future rewards and focus on immediate 
rewards.

Algorithm 1  Multi-agents monitoring
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Algorithm   1 implements the proposed multi-agent 
human monitoring framework. It takes as input a 
set of subjects C = 1, 2, . . . ,C and a set of vital signs 
V = 1, 2, . . . ,V  , along with the number of episodes 
M = 1, 2, . . . ,M . The algorithm outputs the rewards 
achieved by agents in each episode. Lines 1–2 initializes 
all the parameters needed for monitoring the environ-
ment and learning agent. Lines 3–7 present the reward 
policy. Lines 8–14 present the function approximation 
using the neural networks model, memorize & replay, 
exploration & exploitation of the DRL agent. Lines 
15–28 are nested for loops with conditional statements 
to check if the episode is completed or not. The outer 
loop is to iterate each episode while resetting the envi-
ronment to initial values and score to zero. The inner 
loop is to iterate timesteps which denote the time of the 
current state and calls the methods.

The patient monitoring system operates with multiple 
agents, each tasked with monitoring specific vital signs 
such as heart rate, respiration rate, and temperature. 
The agents are initialized with a basic action set, which 
includes triggering alerts, adjusting monitoring inter-
vals, and taking no action based on the patient’s condi-
tion. At each time step, agents receive vital sign data as 
input and evaluate the patient’s state. Based on the cur-
rent state and the agent’s policy, an action is selected. 
The reward function provides feedback based on the 
timeliness and accuracy of the action: positive rewards 
are given for correct, timely interventions, while pen-
alties are applied for false alarms or missed emergen-
cies. Over time, the agents improve their performance 
through continuous learning and collaboration, ensur-
ing that vital signs are monitored comprehensively and 
interventions are timely (Fig. 3).

4 � Experiment
In this study, the proposed multi-agent framework was 
evaluated by deploying an agent for each physiologi-
cal feature of a different set of subjects. The aim of the 

learning agents was to monitor their respective vital 
signs, communicate with the corresponding MET based 
on the estimated level of emergency, and learn the sub-
jects’ behavior patterns. All the experiments were con-
ducted using Python programming language version 
3.7.6 and related libraries such as TensorFlow, Keras, 
Open Gym AI, and stable_baselines3.

4.1 � Dataset

•	 PPG-DaLiA [37]: The dataset contains physiological 
and motion data of 15 subjects, recorded from both a 
wrist-worn device and a chest-worn device while the 
subjects were performing a wide range of activities 
under conditions close to real life.

•	 WESAD [38]: The WESAD (Wearable Stress and 
Affect Detection) dataset includes multimodal physi-
ological signals such as ECG, PPG, GSR, respiration, 
and body temperature, recorded from 15 subjects 
while they performed a series of stress-inducing and 
affective tasks under laboratory conditions.

4.2 � Baseline models

•	 WISEML [39]: Mallozzi et al. proposed an RL frame-
work for runtime monitoring to prevent dangerous 
and safety-critical actions in safety-critical appli-
cations. In this framework, runtime monitoring is 
used to enforce properties to the agent and shape its 
reward during learning.

•	 CA-MQL [40]: Chen et  al. proposed constrained 
action-based MQL (CA-MQL) for UAVs to autono-
mously make flight decisions that consider the uncer-
tainty of the reference point location.

•	 MADDPG [41]: Lowe et al. introduced a deep rein-
forcement learning framework for multi-agent envi-
ronments. This framework uses an adaptation of 
actor-critic methods to coordinate agents in both 

Fig. 3  Experiemental Design



Page 10 of 18Shaik et al. Brain Informatics           (2025) 12:14 

cooperative and competitive settings by accounting 
for other agents’ policies. It highlights the difficulty 
of traditional algorithms in multi-agent scenarios and 
introduces policy ensembles for more robust learn-
ing.

•	 QMIX [42]: Rashid et al. developed QMIX, a value-
based multi-agent RL algorithm that factors joint 
action-values into per-agent values, allowing for 
decentralised policies while training in a centralised 
manner. QMIX demonstrated superior performance 
on challenging StarCraft II tasks by ensuring consist-
ency between centralised and decentralised learning.

•	 Existing RL baseline models by Li et  al. [32] were 
deployed to optimize sequential treatment strate-
gies based on Electronic Health Records (EHRs) for 
chronic diseases using DQN. The multi-agent frame-
work results were compared with Q-Learning and 
Double DQN.

•	 Similarly, RL was deployed to recognize human 
activity using a dynamic weight assignment net-
work architecture with TD3 (a combination of Deep 
Deterministic Policy Gradient (DDPG), Actor-Critic, 
and DQN) by Guo et al. [33].

•	 Yom et  al. [31] used Advantage Actor-Critic (A2C) 
and Proximal Policy Optimization (PPO) algorithms 
to act as virtual coaches in decision-making and send 
personalized messages.

4.3 � Performance measures
In the initial phase, Cumulative Rewards were selected 
as the primary performance metric because they offer a 
direct reflection of the RL agents’ success in achieving 
healthcare objectives. These cumulative rewards quan-
tify the agents’ ability to make correct decisions based 
on real-time physiological data, which is essential for 
ensuring timely medical interventions. Given the criti-
cal nature of healthcare systems, focusing on cumulative 
rewards allowed for the evaluation of how well the agents 
were trained to detect early signs of health deterioration.

To provide a more holistic evaluation, we introduced 
additional performance metrics:

•	 Learning Rate: This metric evaluates how quickly the 
agents converge to an optimal policy, which is vital 
in healthcare applications where rapid adaptation to 
changing patient conditions is crucial. Faster learning 
ensures that the agents can respond to emergencies 
in real time, improving the effectiveness of the sys-
tem.

•	 Computational Complexity: This metric assesses 
the system’s processing demands, particularly in 
terms of CPU/GPU time. Minimizing computational 

complexity is essential in healthcare settings with 
resource constraints, such as hospitals or wearable 
monitoring devices. Lower complexity ensures that 
the system can run efficiently without causing delays 
in decision-making.

•	 Memory Usage: As the system scales to monitor mul-
tiple physiological parameters across various agents, 
memory usage becomes a key factor. Efficient mem-
ory utilization is critical for deploying the frame-
work on resource-constrained devices like wearables, 
ensuring scalability and adaptability without compro-
mising performance.

Incorporating these metrics provides a more comprehen-
sive evaluation of the proposed framework, ensuring not 
only its effectiveness in terms of rewards but also its effi-
ciency, scalability, and real-world deployment potential 
in healthcare environments.

5 � Experiment results and analysis
The advantage of RL for monitoring systems is that it 
can learn to handle complex, dynamic environments. 
Many monitoring tasks involve making decisions based 
on incomplete, uncertain information, and the optimal 
decision may depend on the context of the situation [43]. 
RL can learn to make decisions in these types of prob-
lems by considering the current state of the system and 
past experience. In this study, the aim is to leverage the 
RL capability to optimize the decision-making process in 
patient monitoring.

5.1 � DRL agents performance
The performance of the proposed DRL framework was 
evaluated using two datasets, with a focus on cumulative 
rewards, learning rate, computational complexity, and 
memory usage. Additionally, we expanded our compari-
son to include multi-agent RL frameworks, MADDPG 
and QMIX, to assess how well these frameworks handle 
the complexities of real-time health monitoring tasks.

The results are summarized in Tab.  3, which includes 
the performance of single-agent RL methods (Q-Learn-
ing, PPO, A2C, and DDPG) and multi-agent RL models 
(MADDPG and QMIX). The proposed DRL framework 
consistently outperforms all other models in terms of 
cumulative rewards, with significant improvements over 
the baseline methods.

As shown in Tab. 3, the proposed DRL framework sur-
passes both MADDPG and QMIX in cumulative rewards 
for both datasets, particularly excelling in agent 1’s per-
formance on the PPG-DaLia dataset. This indicates that 
our framework’s design, which includes a tailored reward 
mechanism based on Modified Early Warning Scores 
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(MEWS), enables more efficient learning in healthcare 
environments. Additionally, the exploration-exploitation 
trade-off in our system is better optimized for the vari-
ability of physiological data.

To provide a more intuitive assessment of the frame-
work’s performance, we evaluated the classification accu-
racy of the agents by comparing their actions against 
MEWS-derived ground truth escalation levels. Accuracy 
was computed as the ratio of correct escalation actions 
(e.g., MET-2 chosen when MEWS score corresponds to 
MET-2) to the total number of decisions made across 
episodes. This metric offers a clinically relevant view of 
agent performance, especially for practitioners accus-
tomed to discrete outcome measures. The proposed DRL 
agents achieved an average decision accuracy of 88.3% 
across all episodes and subjects, outperforming baseline 
models such as PPO (79.1%), A2C (76.4%), and Double 
DQN (81.6%). These results demonstrate that the agents 
not only maximize cumulative rewards but also maintain 
high decision accuracy in real-time physiological moni-
toring tasks.

Beyond cumulative rewards, we evaluated the pro-
posed DRL framework against baseline models using 
additional performance metrics, including learning rate, 
computational complexity, and memory usage, as shown 
in Tab. 4. The proposed DRL framework showed superior 
performance across all these metrics, indicating its suit-
ability for real-time applications in resource-constrained 
healthcare environments.

In terms of learning rate, the proposed DRL framework 
converged after 850 epochs, outperforming all baseline 
models, including Q-Learning (1200 epochs) and Dou-
ble DQN (1100 epochs). This faster convergence dem-
onstrates the DRL framework’s enhanced efficiency in 
learning complex healthcare scenarios. Faster learning 
is especially critical in healthcare, where timely inter-
ventions directly impact patient outcomes. The use of 
multiple agents, each dedicated to a specific physiologi-
cal metric, accelerates policy optimization and enhances 
responsiveness in dynamic, real-world environments.

For computational complexity, the proposed DRL 
framework exhibited a significantly lower iteration time 
of 0.70 s, outperforming more complex multi-agent mod-
els like CA-MQL (1.30 s) and PPO (1.10 s). This indicates 
that the framework is computationally efficient, making it 
ideal for real-time healthcare monitoring where decision 
delays could compromise patient safety. This improved 
efficiency is due to an optimized reward structure and 
action space, which reduces the time required for deci-
sion-making without compromising accuracy.

In terms of memory usage, the DRL framework con-
sumed 110MB, which is lower than all other baseline 
models, such as DDPG (160MB) and CA-MQL (175MB). 

This low memory footprint is crucial for deploying the 
framework on resource-constrained hardware like wear-
able devices or low-power hospital systems. The effi-
cient memory usage ensures the system can scale with 
additional agents without overloading system resources, 
making the framework suitable for large-scale healthcare 
applications.

All three learning agents were fed with physiological 
features such as heart rate, respiration, and temperature, 
respectively, from the PPG-DaLiA dataset. Based on 
the observation space, action space, and reward policy 
defined for a customized gym environment for human 
behavior monitoring, the learning agents were run for 
10 episodes, as shown in Fig.  4. In the results, agent 1 
refers to the heart rate monitoring agent, which showed 
a constant increase in scores for each episode for most 
of the subjects except subjects 5 and 6. The intermittent 
low scores in agent 1 performance are due to the explo-
ration rate in DQN learning, where the algorithm tries 
exploring all the actions randomly instead of relying on 
neural networks’ predictions. Similarly, agent 2 and agent 
3 monitor two other physiological features, respiration 
and temperature, respectively. agent 2 performed better 
than the other two agents and achieved consistent scores 
for all subjects. Out of all agents, agent 3, temperature 
monitoring performance, was poor. This issue was traced 
back to the data level, where the units of the temperature 
thresholds in the MEWS table and the input body tem-
perature data from the dataset were different. Still, agent 
3 achieved high scores in monitoring subjects 9, 8, 4, and 
10.

The reward policy designed in the proposed multi-
agent framework enables agents to learn the human 
physiological feature patterns. For example, if a subject’s 
heart rate is 139 beats per minute, agent 1 takes Action 
3 to communicate the message to MET-3. The agent will 
get rewarded with +10 points only if Action 3 is taken; 
otherwise, the agent gets negatively rewarded according 
to the reward policy (Table  2). With this example, the 
results in Fig.  4 can be interpreted better. An increase 
in scores episode by episode, with the exception of the 
exploration rate, actually infers an increase in the learn-
ing curve of the agents in terms of human physiological 
patterns.

5.2 � Hyper‑parameters optimization
The DRL agents were further evaluated by hyperparam-
eters optimization. Out of all the hyperparameters dis-
cussed in this study, two hyperparameters, learning rate 
( α ) and discount factor ( γ ), were optimized for all three 
agents, and the results are shown in Figs.  5 and  6. The 
learning rate determines how much information neu-
ral networks learn in an iteration to predict action and 
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approximate the rewards. The discount factor measures 
how much RL agents focus on future rewards relative to 
those in the immediate rewards. In Fig.  5, Fig.  5a show 
the agents’ performance while optimizing α of neural net-
works. The x-axis of the plots represents scores (cumula-
tive rewards) achieved by an agent in each episode shown 
on the y-axis. The bar plots show that the learning rate 
α = 0.01 is a more optimized value in all the monitoring 
agents. Similarly, Figs.  6a present the γ optimization of 
agent 1, agent 2, and agent 3, respectively. The discount 
factors γ = 0.9 and γ = 0.75 are the more optimized 

values for agents 2 and 3, respectively, after 10 episodes 
of training.

Convergence Visualization and Hyperparameter Effec-
tiveness. To provide a clearer view of how different 
hyperparameters affect model performance and conver-
gence speed, we conducted additional experiments and 
visualized the episode-wise cumulative rewards under 
varying values of learning rate ( α ) and discount factor 
( γ ). As shown in Figs.  5 and  6, learning rate α = 0.01 
led to faster and more stable convergence compared to 
higher or lower values, which either caused slower learn-
ing or higher variance across episodes. Similarly, γ = 0.9 

Fig. 4  DQN Agents Performance
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resulted in optimal long-term reward accumulation, bal-
ancing future reward consideration with immediate deci-
sion-making. These visualizations offer intuitive insights 
into the convergence dynamics of the proposed DRL 
framework and reinforce our hyperparameter selection 
strategy.

Clinical Relevance of Cumulative Rewards The cumu-
lative rewards obtained by the DRL agents are not arbi-
trary metrics but are directly linked to the agents’ ability 
to make timely and clinically relevant decisions. Each 
reward is assigned based on how well an agent’s action 
aligns with the MEWS-defined threshold for a given vital 
sign. For instance, if an agent detects an elevated heart 
rate indicative of stress-induced tachycardia and cor-
rectly escalates the condition to the appropriate MET 
level, it receives a positive reward. Conversely, a delayed 
or incorrect escalation results in a penalty. Over time, 
higher cumulative rewards indicate that the agents are 
successfully learning to respond to physiological devia-
tions in ways that mirror clinical priorities. Thus, cumu-
lative rewards in this framework serve as a quantitative 
proxy for the agents’ effectiveness in the proactive moni-
toring and assessment of stress- and depression-linked 
health indicators.

Generalization Across Heterogeneous Conditions The 
ability to generalize across varying physiological pat-
terns is essential for any real-world stress and depression 
monitoring system. While this study uses Modified Early 
Warning Scores (MEWS) to establish clinically informed 
reward boundaries, the reinforcement learning agents 
are not bound by fixed rules. Instead, they learn adaptive 
policies by interacting with dynamically evolving input 
states. To assess generalization, we employed two pub-
licly available and heterogeneous datasets-PPG-DaLiA 
and WESAD-which differ in sensor configurations, 
experimental settings, and stress elicitation protocols. 

The consistent performance of our DRL agents across 
both datasets suggests promising generalizability. How-
ever, we acknowledge that additional validation on data-
sets encompassing richer behavioral modalities and more 
diverse populations is necessary to further substantiate 
this claim. Future extensions will focus on integrating 
multimodal data sources and deploying the framework 
in cross-domain learning environments to evaluate trans-
ferability and robustness under real-world conditions.

6 � Discussion
This study introduces an innovative approach to patient 
monitoring within the unpredictable environment of 
healthcare settings, employing adaptive multi-agent 
deep reinforcement learning (DRL) to ensure timely 
healthcare interventions. The fluctuating nature of vital 
signs, crucial indicators of patient health, necessitates a 
robust system capable of real-time analysis and decision-
making. Stress and depression, increasingly prevalent in 
modern healthcare contexts, are known to significantly 
impact vital signs such as heart rate, respiration, and 
temperature [16, 17]. By addressing these conditions, the 
proposed framework enhances early detection and inter-
vention capabilities, which are critical for mitigating the 
physical and mental health risks associated with stress-
induced tachycardia or depression-related bradycardia.

By leveraging the sequential decision-making prowess 
of RL algorithms, we have established a framework where 
each vital sign is monitored by a dedicated DRL agent. 
These agents operate within a cohesive monitoring envi-
ronment, guided by meticulously defined reward policies 
to identify and respond to potential health emergencies 
based on MEWS and MET standards. This approach 
extends traditional patient monitoring by integrating the 
capacity to dynamically adapt to physiological changes 

Table 3  Comparison of DRL and MARL Frameworks on Cumulative Rewards

Method PPG-DaLiA Dataset WESAD Dataset

Agent 1 Agent 2 Agent 3 Agent 1 Agent 2 Agent 3

Q-Learning 25878 17304 23688 25318 16341 22823

PPO [31] 23688 20367 17688 23128 19404 16823

A2C [31] 24717 13707 24369 24157 12744 23504

Double DQN [32] 25569 15360 20367 25009 14397 19502

DDPG [33] 26760 20754 23967 26200 19791 23102

WISEML [39] 28654 25789 33669 28094 24826 32804

CA-MQL [40] 32985 27856 34685 32425 26893 33820

MADDPG [41] 42500 29870 36015 41200 28560 35345

QMIX [42] 44800 30520 37600 43200 29230 36980

Proposed DRL 48354 30019 38651 47794 29056 37786
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influenced by mental health stressors, thereby providing 
a more comprehensive solution.

A notable aspect of our research is the emphasis on 
the design of the observation space for each DRL agent. 
This design is pivotal in ensuring the accuracy and effec-
tiveness of the learning process, as it directly impacts 
the agent’s ability to interpret vital sign data and make 
informed decisions. The challenge encountered with DRL 
agent 3, responsible for monitoring body temperature, 

underscores the importance of data consistency and the 
need for a harmonized observation space. The discrep-
ancy between the temperature units in the MEWS table 
and the dataset highlighted a critical area for improve-
ment, emphasizing the need for standardized data inputs 
to enhance agent performance and ensure reliability in 
detecting stress or depression-related anomalies.

The autonomous decision-making capability inher-
ent in RL represents a significant advancement in 

Fig. 5  Hyper Parameters - α optimization
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supporting clinicians. By providing real-time updates on 
patient health, the DRL framework facilitates a proac-
tive approach to patient care, extending its applicability 
beyond hospital settings to include home monitoring and 
specialized care environments. This adaptability is fur-
ther enhanced by the strategic optimization of hyperpa-
rameters, which fine-tunes the learning process of DRL 
agents to achieve optimal performance. Our investigation 
into hyperparameters such as the learning rate and dis-
count factor reveals the critical balance between imme-
diate and future rewards, a balance that is essential for 
the effective monitoring of patient health, particularly in 

cases where stress or depression can cause delayed yet 
significant physiological effects.

Comparatively, traditional supervised learning algo-
rithms, while accurate in predicting vital signs, fall short 
in dynamic healthcare environments due to their reli-
ance on extensive labeled datasets and external super-
vision. The DRL approach, free from the constraints of 
labeled data, offers a more flexible and efficient solu-
tion for patient monitoring. However, it is essential to 
acknowledge the considerable effort required in data 
preparation and model tuning within supervised learning 
frameworks, which, despite their limitations, contribute 

Fig. 6  Hyper Parameters - γ optimization
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significantly to the development of informed clinical 
decisions.

The adaptive multi-agent DRL framework proposed in 
this study represents a paradigm shift in patient monitor-
ing, offering a dynamic, efficient, and scalable solution 
for timely healthcare interventions [44]. By addressing 
both the physical and mental health challenges posed 
by stress and depression, this framework introduces a 
holistic approach to patient monitoring. The challenges 
and insights gleaned from this research pave the way for 
future advancements in the field, promising to enhance 
the quality of patient care through innovative technologi-
cal solutions.

Scope of Physiological Monitoring. We acknowledge 
that stress and depression are highly complex psycho-
physiological conditions that cannot be comprehensively 
diagnosed through the monitoring of only three physi-
ological parameters. In this study, the use of heart rate, 
respiration rate, and body temperature was intended as 
a proof-of-concept for evaluating the feasibility and per-
formance of the proposed multi-agent DRL framework 
in a controlled setting. These variables were selected due 
to their well-documented correlation with acute stress 
responses and their widespread availability in wearable 
sensor systems. However, they serve as proxies for physi-
ological arousal rather than definitive indicators of men-
tal health status. The modular nature of our framework 
allows for the seamless integration of additional biosig-
nals (e.g., GSR, HRV, EEG) or behavioral indicators (e.g., 
sleep disruption, speech features) in future work. As 
such, the current implementation should be viewed as a 
foundational step toward building a more comprehensive 
and multimodal system for mental health monitoring.

Explainability

While the proposed multi-agent DRL framework dem-
onstrates strong adaptability and decision-making per-
formance in patient monitoring, ensuring explainability 
remains a vital aspect for clinical adoption. To this end, 
we suggest incorporating agent-specific decision trace-
ability as a foundational mechanism. Each agent can log 
transitions in Q-values alongside corresponding MEWS 
thresholds and selected actions, providing a transparent 
record of decision rationale over time. Such traceabil-
ity supports retrospective audits by clinicians and aligns 
with the interpretability expectations of healthcare AI 
systems. Furthermore, future extensions of this work will 
explore the integration of model-agnostic interpretabil-
ity techniques, such as SHapley Additive exPlanations 
(SHAP), to assess the contribution of each physiologi-
cal feature to the agents’ actions in real time. This dual 
approach-combining Q-value trajectory logging with 
post-hoc feature attribution-has the potential to 
enhance clinician trust, uncover failure points, and guide 
improvements in agent design. Emphasizing explainabil-
ity is particularly important in sensitive contexts such as 
stress and depression monitoring, where transparent and 
accountable AI systems are essential for safe and ethical 
deployment.

Dataset Size and Generalizability. Although the 
proposed framework was evaluated using two widely 
recognized datasets-PPG-DaLiA and WESAD-each 
comprising 15 subjects, the size of these cohorts reflects 
an ongoing challenge in stress-related physiological 
research. Collecting high-quality, multimodal data under 
controlled conditions involving stress and affect remains 
inherently complex and resource-intensive, often limiting 
sample sizes across benchmark studies in this domain. 
Despite this constraint, the framework consistently dem-
onstrated reliable policy convergence and adaptive learn-
ing across multiple agents and subjects, providing strong 
evidence of its robustness and effectiveness in modeling 
temporal patterns in physiological signals.

Importantly, the controlled nature of the datasets 
allowed for reproducible experimentation and precise 
evaluation of the technical capabilities of the multi-agent 
DRL system. Nonetheless, future work will aim to expand 
validation efforts using larger and more diverse datasets, 
potentially integrating synthetic data augmentation and 
transfer learning techniques to improve generalizabil-
ity. These steps will ensure broader applicability of the 
proposed monitoring framework in real-world health-
care settings, while preserving the methodological rigor 
established in this study.

Table 4  Evaluation of DRL Framework and Baseline Models on 
Additional Metrics

RL Method Learning Rate 
(Epochs to 
Converge)

Computational 
Complexity (Time 
in Seconds)

Memory 
Usage 
(MB)

Q-Learning 1200 0.85s per iteration 120MB

PPO [31] 900 1.10s per iteration 150MB

A2C [31] 1000 1.05s per iteration 140MB

Double DQN [32] 1100 0.95s per iteration 135MB

DDPG [33] 950 1.20s per iteration 160MB

WISEML [39] 900 1.15s per iteration 145MB

CA-MQL [40] 1000 1.30s per iteration 175MB

MADDPG [41] 950 1.25s per iteration 155MB

QMIX [42] 1100 1.20s per iteration 165MB

Proposed DRL 850 0.70s per iteration 110MB
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7 � Conclusion
This study has pioneered an adaptive framework for 
healthcare interventions using multi-agent DRL to 
dynamically monitor vital signs, establishing a novel 
approach in patient care. By considering the signifi-
cant influence of stress and depression on vital signs, 
this research underscores the importance of address-
ing mental health challenges in conjunction with physi-
cal health monitoring. Through the development of a 
generic monitoring environment coupled with a strategic 
reward policy, the DRL agents were empowered to learn 
from and adapt to vital sign fluctuations, enabling timely 
interventions by healthcare professionals. The ability 
of these agents to detect stress-induced or depression-
related anomalies demonstrates the potential of this sys-
tem to provide a comprehensive and proactive approach 
to healthcare.

Despite its innovative contributions, the research faced 
challenges, such as discrepancies in body temperature data 
scales and the absence of predictive capabilities for future 
vital sign trends, which limited the effectiveness of one 
DRL agent and the overall predictive potential of the sys-
tem. These limitations highlight the need for enhanced data 
standardization and the integration of predictive analyt-
ics to anticipate trends in vital signs influenced by mental 
health conditions. Future research will focus on overcom-
ing these challenges by augmenting the framework with 
predictive modeling capabilities, enabling DRL agents to 
forecast vital sign trends and anticipate health emergencies.

This advancement aims to revolutionize patient moni-
toring by facilitating proactive healthcare measures, sig-
nificantly reducing the risk of critical health episodes 
associated with stress and depression. The future direc-
tion of this research will extend the scope to include 
multi-agent DRL frameworks capable of predicting 
future health trajectories, thereby enhancing the integra-
tion of mental and physical health monitoring in adaptive 
patient care systems.
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