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Abstract: Floods are a major cause of loss of lives, destruction of infrastructure, and massive damage
to a country’s economy. Floods, being natural disasters, cannot be prevented completely; therefore,
precautionary measures must be taken by the government, concerned organizations such as the
United Nations Office for Disaster Risk Reduction and Office for the coordination of Human Affairs,
and the community to control its disastrous effects. To minimize hazards and to provide an emergency
response at the time of natural calamity, various measures must be taken by the disaster management
authorities before the flood incident. This involves the use of the latest cutting-edge technologies
which predict the occurrence of disaster as early as possible such that proper response strategies can be
adopted before the disaster. Floods are uncertain depending on several climatic and environmental
factors, and therefore are difficult to predict. Hence, improvement in the adoption of the latest
technology to move towards automated disaster prediction and forecasting is a must. This study
reviews the adoption of remote sensing methods for predicting floods and thus focuses on the pre-
disaster phase of the disaster management process for the past 20 years. A classification framework
is presented which classifies the remote sensing technologies being used for flood prediction into
three types, which are: multispectral, radar, and light detection and ranging (LIDAR). Further
categorization is performed based on the method used for data analysis. The technologies are
examined based on their relevance to flood prediction, flood risk assessment, and hazard analysis.
Some gaps and limitations present in each of the reviewed technologies have been identified. A flood
prediction and extent mapping model are then proposed to overcome the current gaps. The compiled
results demonstrate the state of each technology’s practice and usage in flood prediction.

Keywords: remote sensing; flood prediction; flood forecasting; flood hazard assessment; flood risk
analysis; disaster management

1. Introduction

Recently, there has been an increase in natural as well as man-made disasters in the
world. Hydrological extremities caused by human activities, increased urbanization, global
warming, and weather change can be attributed to the dramatic rise in the global flood
risks [1]. Among the natural disasters, flooding is the most devastating natural hazard.
Floods are common in all parts of the world. However, their characteristics and intensity
vary from region to region [2].

Apart from the destruction of infrastructure and agricultural lands, floods cause
in-tense impacts on the people who may drown or who have severe injuries due to hy-
pothermia, for instance [3]. Some additional fatalities may occur due to indirect effects of
floods which include the destruction of the health infrastructure, the spread of infectious
diseases, psychological distress, and starvation [4,5]. Being the most commonly occurring
natural disaster, floods have caused approximately 53,000 fatalities on a global scale [4].
In Europe, the economic losses resulting from floods that occurred in the year 2005, 2007
and 2010 surpassed EUR 1 billion [5]. Floods that occurred in Europe in the year 2002
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caused material damage worth EUR 20 billion [6]. The impact of floods on people and
communities can be devastating. Similarly, in Australia, more than 900 fatalities occurred
due to floods with an estimated cost of infrastructure damage to about AUD 5 billion [7].
Recent flooding in north-eastern China has caused catastrophic impacts in many cities
within Shanxi province, including in its capital, Taiyuan, with 29 fatalities in the region.
The event occurred over 14 days (1 to 14 October 2021), with the heaviest rainfall occurring
over 5 days, from 2–7 October [8]. At 185 mm, the rainfall in Taiyuan over 12 h was the
highest recorded rainfall in the area. This was seven times the pre-2010 overall average
for the same month [9]. Around 1.76 million people were affected, and economic losses
reached CNY 5.02 billion, or about USD 780 million [9].

Regions influenced by the disaster and the extent of damage can, in certain instances,
go undetected due to the large geographical size of regions affected by rain and flood, which
hamper immediate relief response activities [7]. Due to extent of the destruction, some
regions become inaccessible, and the relief groups fail to provide their services. Currently,
images of a disaster region are extracted with satellite and aerial imagery [10]. These images
undergo various image processing techniques to make predictions regarding the possibility
of flood occurrence in a particular region. The remote sensing technology extracts the
characteristics of the flood region and gives information about the upcoming disaster and
event challenges. With the help of obtained image and remote sensing data, flood risk
maps can be produced. High-quality images are derived from remote sensing mechanisms
such as synthetic aperture radar (SAR) technology that provides high-resolution images of
the land and water reservoirs, even in bad weather conditions and low light. Using recent
technologies such as artificial intelligence (AI) and image processing can assist in automatic
flood risk mapping [10,11]. These methods can assist in the alarm systems and framework
development that estimate the water level of a certain region and predict the upcoming
floods. Coupling all these technologies with GPS increases the accuracy of results and
provides the precise location of an upcoming disaster [11,12]. The use of such technologies
for disaster prediction and management helps in lowering the destruction risk by issuing
immediate warnings and formulating appropriate strategies for conducting emergency
responses [11]. Through early disaster prediction, timely disaster response strategies can be
adopted which include arranging for prompt evacuations and helping to build resilience
in the long run. More awareness about flood-related disasters can be spread among the
public. Communication gaps can be reduced, infrastructure failures can be avoided, and
immediate contacts can be made with relief commissionaires [11]. Early planning and
effective communication can help save mankind from hazardous situations. This can
ultimately help in supporting economic and social development of the country [12].

Remote sensing technologies acquire data about objects and infrastructure on the sur-
face of the Earth without being in direct contact by using various recording instruments [13].
Therefore, it is helpful in areas where no physical or close contact is possible [14–16]. Exam-
ples of such technologies include SAR, space-based imaging platforms, and satellites. This
technique helps in faster data collection [17,18]. The data cannot be collected accurately
with such efficiency using ground-based observations, whereas the remote-sensing technol-
ogy gathers the same data by covering large spatial areas in the least time and provides
a comprehensive view of the target objects [19]. It can capture images of distant objects
despite bad weather conditions. The aerial photography and satellite images obtained
using remote-sensing help in visualizing the topography and other terrain properties [17].
Such features help in locating natural disasters and evaluating their proportion. A wide
variety of relief operations could be conducted by timely visualization of data obtained
from the resources [20].

Several surveys have been conducted to review and evaluate the flood prediction
systems [13], machine learning models for flood forecasting [13], disaster management
using big data [14], flood mapping and damage assessment technologies [15]. A significant
number of developed flood prediction systems use machine learning and image processing
techniques for flood prediction. However, the use of various techniques and analyses
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associated with remote sensing for flood forecasting has not been assessed explicitly. Hence,
a significant research gap was observed for assessing remote sensing-based technologies
in the pre-disaster phase. Recent research in the field of remote sensing demonstrates its
immense potential to make accurate predictions of an upcoming disaster and to play a
vital role in flood risk analysis [18]. To overcome these research gaps, this paper presents a
systematic literature review on the use of remote sensing techniques to manage floods in the
pre-disaster phase by conducting accurate flood prediction. The classification framework
presented in this paper categorizes the flood prediction technologies that use remote sensing
based on data capturing and analytical approaches. The importance of each technique
along with its current use, performance requirements, application and limitations have been
highlighted to understand how it can be used to avoid the disastrous effects of floods in real-
time by reliable flood prediction. This study also conducts a comprehensive comparison
between these technologies based on various metrics [19–21]. The results of this study
would help the concerned authorities in better understanding the use of technology for
dealing with floods and choosing the most suitable model to manage floods in their target
area. Precisely, this research is focused on answering the following research questions:

RQ-1. How can remote sensing technologies for flood detection be categorized?

RQ-2. How are remote sensing technologies being used for flood prediction?

RQ-3. What are the current gaps in remote sensing-based flood prediction technologies?

The rest of the paper is organized as follows: Section 2 describes the methods used to
acquire materials to conduct this study, while Section 3 presents the results of the study by
providing a comprehensive analysis of the remote sensing technique. Section 4 discusses
the results of this research, identifies the research gaps, and presents a solution to overcome
them. The paper closes with a conclusion in Section 5. Table 1 shows the list of acronyms
used in the article.

Table 1. List of acronyms used in the article.

Abbreviation Full-Form
AI Artificial Intelligence

ASCAT Advanced Scatterometer
AWEI Automated Water Extraction Index
CNN Convolutional Neural Network
DEM Digital Elevation Model
DSM Digital Surface Model
ECV Essential Climate Variables
ETKF Ensemble Transform Kalman Filter

EO Earth Observations
GIS Geographic Information System

KNN K-Nearest Neighbour
LIDAR Light Detection and Ranging
LSTM Long Short-Term Memory

MNDWI Modified Normalized Difference Water Index
MISDc Modello Idrologico Semi-Distribution in continuo
MODIS Moderate Resolution Imaging Spectroradiometer

ML Machine Learning
NDWI Normalized Difference Water Index
RGA Region Growing Algorithm

RNDWI Revised Normalized Difference Water Index
RNN Recurrent Neural Networks
SAR Synthetic Aperture Radar
SVM Support Vector Machine

TSRM Tianshan Snowmelt Runoff Model
UK United Kingdom

UAV Unmanned Aerial Vehicle
WRF Weather Research and Forecasting
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2. Materials and Methods

The main aim of this paper is to conduct a comprehensive systematic review of
the recent remote sensing technologies for flood prediction and to identify the existing
research gaps when it comes to flood prediction. For this purpose, a detailed study of the
literature based on this domain was carried out to identify recent developments in the
timely prediction of floods. To achieve these objectives, the foremost step was to gather a
set of the most relevant, recent, and authentic research articles published in top tier journals.
We divide the search process of research articles into two main phases, which are: article
retrieval and screening phases. In the following sections, we discuss each of these phases
in detail.

To retrieve the research articles for this study, the chosen search engines were Google
Scholar, Web of Science, ERIC, IEEE Explore, Science Direct and Scopus. The next step was
to formulate a set of queries to be used in each of these search engines to retrieve the articles.
The major aim was to fully exhaust the search database and retrieve a maximum number
of articles matching our domain of interest. We used three categories of terms representing
the subdomains to extract a variety of research articles. The process of formulation of terms
to be used as keywords in the search engines is demonstrated in Figure 1. In this figure, the
notation TC denotes the term category to which the set of keywords or terms belongs. The
AND operation indicates that the final set of search queries used in the search engine of each
website must contain keywords from all three categories. After entering the search queries,
a set of articles ranked based on their relevance were retrieved. The first category of phrases
was formulated to retrieve articles that proposed flood prediction models using remote
sensing technologies that utilized multispectral sensors. In Figure 1, “M” denotes the terms
in this category. The phrases were formed by using keywords related to flood prediction
which include “flood prediction”, “flood forecasting”, “flood risk analysis” and “flood
hazard mapping” along with phrases such as “multispectral remote sensing” and “optical
remote sensing”. The second category of terms was formulated to retrieve articles that
proposed flood prediction methods using LIDAR remote sensing. For this purpose, we used
flood prediction keywords along with the keyword “LIDAR”. In Figure 1, “L” represents
the terms in this category. The third term category was aimed towards retrieving articles
that used remote sensing technologies having radar sensors which include the Synthetic
Aperture Radar (SAR). The search strings used to extract such articles used keywords
specific to flood prediction along with the string “radar”. In Figure 1, “R” denotes the terms
in this category. A total of 147 articles were retrieved after this search phase.

The number of articles retrieved from each category of search keywords is shown
in Figure 2. The number of articles from each term category that passed the screening
phase is shown in Figure 2. From the multispectral domain, initially, a total of 55 articles
were retrieved because of the first phase. After analysing these papers based on screening
criteria, 25 papers were excluded, resulting in the selection of 30 papers from this cate-
gory. Similarly, 72 papers related to LIDAR were retrieved initially. This number was
reduced to 20 after continuing through the second phase, as 52 articles were omitted. From
the third term category, which is radar, initially, 30 papers were retrieved, out of which
20 passed the screening test. Hence, overall, 70 papers were finally collected as an output
of the screening phase.
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Figure 3 shows the year-wise distribution of articles retrieved from each category.
This shows a significant increase in the use of multispectral remote sensing techniques for
flood prediction as compared to radar or LIDAR based technologies in the past decade.
Conversely, a comparatively smaller number of articles focused on the use of multispectral
imaging technologies individually, for dealing with flood forecasting. An even smaller
number of papers focused on radar-based remote sensing technologies. The search was
extended to include reports, magazine articles, and web pages from authentic websites,
thus increasing the scope and collecting a wide range of articles based on the subject matter.
All the articles published before 1 January 2010, were discarded. This occurred to include
the most recent technologies in the review. One exception to this rule was keeping some
earlier papers that introduced basic concepts and definitions related to the technologies
discussed in this study. This occurred to prevent any misrepresentation of information or
modification of the key terms.
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After the first phase based on article retrieval, the articles were passed through a
screening phase to further narrow down the selection criteria. Four assessment criteria
were defined to evaluate the articles:

1. No duplicates;
2. Time interval: 2010–2021;
3. Document type: research article, abstract, book chapter;
4. English language only

Thus, by filtering the articles based on these metrics, we were able to extract the most
recent, applicable, and unique research articles written in the English language. From
the 147 articles retrieved in the first phase, 70 articles passed all the four selection criteria.
Hence, this review is based on these screened articles.

3. Results

RQ-1. How can remote sensing technologies be categorized?
As a result of the article retrieval and screening process, a total of 70 recent research

articles were selected to be reviewed in this study. Remote sensing technologies can be
categorized into two types which are active and passive. The active remote sensors use
their light source to gain data from the target located on the surface of the Earth, while
the passive remote sensing methods rely on natural light or the sun to gain this data. The
technologies such as radar and LIDAR use their light sources; hence, they are categorized
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under the active class. The remote sensing methods that use satellites to capture imagery
of the target on Earth can be classified as passive methods because the satellites rely on
sunlight to capture these images. The satellite sensors may be able to capture multispectral
or hyperspectral images. Hence, two further types of passive remote sensing can be
defined, which are multispectral and hyperspectral. Figure 4 shows the classification
framework of remote sensing technologies. Most remote sensing technologies belonged to
the multispectral category and hence rely on satellites. Flood prediction models belonging
to the multispectral, LIDAR and radar-based remote sensing domains are analysed in detail
in the subsequent sections along with their advantages and potential drawbacks.
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RQ-2. How are remote sensing technologies being used for flood prediction?

3.1. Multispectral

Multispectral remote sensing stores the emitted or reflected energy from objects present
on the surface of the Earth through sensors that can recognize specific spectral bands [22].
The spectral bands form a thin portion of the electromagnetic spectrum, specified by the
lowest and highest wavelength that is recognizable by the sensor. As a result, one raster
image is saved for each of the spectral bands [22–25]. Examples of current satellites making
use of such sensors include Sentinel-2, Landsat 7, Landsat 8, and MODIS. In this section,
a review of these technologies for flood prediction is presented. Wieland and Martinis
presented a framework to perform flood prediction on multispectral data gained from
Landsat TM and Sentinel-2 images [26–28]. A convolutional neural network (CNN) was
trained using these data to perform segmentation to determine water extent levels. Biases
that may occur during downstream analysis are overcome by especially handling noise
data such as clouds, shades, and frost. It outperforms the Random Forest classifier and a
Normalized Water Index (NDWI) threshold function. Massari et al. [29] retrieved readings
of soil moisture using the Advanced Scatterometer (ASCAT) to develop a rain-fall-runoff
model that forecasts floods. The direct association between the satellite, soil moisture and
rainfall are utilized in the model to make decisions regarding the future occurrence of
floods. The study took place in the Mediterranean Sea, where readings from ten catchment
locations in the ocean were recorded. These observations were acquired using the ASCAT
satellite. These data are given as input to a rainfall-runoff calculation method called
MISDc to obtain rainfall estimates. The rainfall data were used to predict the high-water
flows in the Mediterranean Sea. Shahabi et al. [30] identified flood-prone areas using
multispectral data acquired from the Sentinel-1 satellite of the Haraz watershed located in
Iran. A machine learning-based ensemble method was used to perform flood susceptibility
mapping. This model was composed of a combination of K-Nearest Neighbour (KNN),
bagging, and a cubic classifier. Ten conditioning factors were gathered to train the model.
Validation of the model showed that this ensemble method performs well and outperforms
many other ensembles. The bagging approach significantly improved the accuracy of
the KNN-cube ensemble for flood management and mapping problems. Noymanee [31]
experimented with linear regression, ANN, boosted decision trees, Bayesian linear model,
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and decision forest to forecast floods in the district of Pattani in Thailand [31]. Bayesian
Linear model demonstrated the best performance among all selected models, and was,
therefore recommended for flood detection. A mathematical model was designed to model
the upper and lower portions of the river stream. For example, to model the upstream part
of a river, the following formula was used:

WTX33∗ = M(WTX347(T), RTX347(T)) (1)

In the above equation, M represents the machine learning operation, W is the water
level, the symbol * denotes predicted value, TX347 and TX33 are labels of the stations
which are assigned to various river portions and R represent the rain value [31]. The flood
mapping results in an input multispectral aerial image. The system classifies the flooded
(Red) and non-flooded (Blue) regions and highlights them using different colours in the
output such that the rescue workers can easily distinguish between them. Zhang et al.
compared the flood prediction results for both spatial and temporal resolutions of existing
sensors [32]. Landsat and MODIS images were collected for real-time prediction of floods.
The models achieved a high level of accuracy which proved that for Landsat images both
spatial and temporal models generate similar results for real-time prediction of floods.
Cenci et al. evaluated the ability of Sentinel-1 to acquire soil moisture data for flood
forecasting [33]. The soil moisture readings recorded by the satellite were used in a
hydrological model called “Continuum” to predict flash floods. The study area was the
Mediterranean Sea. The hydrological assimilation of different GEO SAR-like soil moisture
products was evaluated using the SAR images. The results showed the effectiveness
of Sentinel-1 derived soil moisture data to improve the flood predictions, especially for
heavy flows. The Sentinel-1 data need the application of proper pre-processing methods
before assimilating the data. Another finding was that apart from the need for high spatial
resolution of the satellite, the temporal resolution of the satellite also plays an important role
in the acquisition of correct data for the hydrological model. Ogilvie et al. [34] combined
flood events data and satellite imagery to build a numerical model that monitors the water
level in reservoirs. For this purpose, the rainfall run-off model and water level models were
built for seven reservoirs. The data were collected between 1999 and 2014. An Ensemble
Kalman Filter was applied to reduce the rainfall run-off errors and classification outliers.
This method was able to reduce the root mean squared error by 54% when compared with
flood forecast results provided by the previous hydrological model. Optical imagery was
used for the measurement of water levels which helps in defining the scope of a flooded
area [35]. The water level of a wide area can be measured in consecutive events. Analysing
the change in water level can help in the easy prediction of flood events. This technology
also takes the data of absolute water elevations. The data help to develop protocols for
flood management and gives immense information for environmental science research.
Remote sensing measures the accuracy of water up to decimeter level and shows real-time
transmission [36]. Meng et al. [37] presented an approach to predict snowmelt floods in
the Juntanghu watershed in China. A weather research and forecasting (WRF) model were
used along with a snowmelt run-off model known as Tianshan Snowmelt Runoff Model
(TSRM) which contains the snowmelt readings recorded during multiple years. Image
data gathered from MODIS and DEM were used to predict floods using these hydrological
models. The TSRM model driven by WRF was able to achieve 80% of condition ratios and
determination coefficients of 0.85 and 0.82 for 2 years, respectively [37]. Boni et al. [38]
combined data collected from Sentinel-1 and SAR to monitor floods in the Po River situated
in Northern Italy. Image processing techniques such as thresholds, classification, and
Region Growing Algorithm (RGA) were applied for the mapping of flood-prone areas [38].
The model achieved an overall user accuracy ranging from 60% to 80%. Li et al. used
Sentinel-2 data along with data obtained from DEM having 90 m of spatial resolution. The
noise data produced due to the presence of clouds, shadows, and frost were reduced using
a Modified Normalized Difference Water Index (MNDWI), Revised Normalized Difference
Water Index (RNDWI), Automated Water Extraction Index (AWEI), and Otsu threshold [39].
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Google Earth Engine framework was used to calculate the water index and to extract
water features. A root means a square error of 16.148 m was recorded using the proposed
approach. Airborne SAR was studied for real-time flood area observation as well. Mason
et al. [40] studied a method for selecting a subset automatically and in near real-time, which
would allow the SAR water levels to be used in a forecasting model. Distributed water
levels may be estimated indirectly along the flood extents in SAR images by intersecting
the extents with the floodplain topography. It is necessary to select a subset of levels
for assimilation because adjacent levels along the flood extent will be strongly correlated.
Table 2 compares the performance outcomes and functionality of the multispectral remote
sensing technologies used for flood prediction.

3.2. LIDAR

LIDAR stands for Light Detection and Ranging. It is an active remote sensing tech-
nology that uses laser pulses to measure the distance of an object present on Earth from
the sensor [51–53]. The Lidar system records other data from the Earth’s surface and along
with the returned light pulses, the data obtained are used to create a 3D model which
represents the properties of the Earth’s shape and surface. A LIDAR system thus consists
of a laser scanner and a GPS. This technology has been used in applications that monitor
and examine the Earth’s surface. A more common application of LIDAR technology is
to generate DEM to be used in GIS which facilitates the emergency response operations.
Hence, it has an immense potential to monitor water levels in water bodies to predict any
future occurrence of a flood. Recently, several research articles have proposed methods
for flood risk assessment and prediction using LIDAR remote sensing. Webster et al. [54]
employed LIDAR to acquire details related to the rise of sea level to produce food risk
maps. LIDAR data are used to construct a Digital Surface Model (DSM) and DEM which
show the ground and non-ground regions and highlight the elevated and normal sea levels
in the study area. The results were validated using GPS technology which shows accuracy
that exceeds 30 cm [54]. Lamichhane and Sharma [55] developed a flood warning system
using a DEM derived from LIDAR. The acquired LIDAR data were also integrated with
some field data related to flooding in the target area to determine the evacuation time
required by the people. Flood risk maps were produced by an HEC-GeoRAS, a software
that allows the processing of geospatial data in ArcGIS [55]. The flood risk maps were then
combined with digital orthographic maps to construct a real-time online flood warning
system for the public [56]. Fadi et al. [57] used three channels of geometrical data derived
from LIDAR. The first channel consists of survey data, the second channel is based only on
the data acquired by LIDAR and the third one consists of a combination of the riverbank
locations derived from survey and cross-sections data acquired by LIDAR technology [57].
The study aimed to predict the return period of the storm in the target area. The data were
processed in the HEC-RAS tool to make flood-related predictions. The results showed
that geometries obtained from LIDAR predicted floods with higher widths as compared
with the predictions made by survey-derived geometries. Makinano and Santillan [58]
integrated data from several resources to construct an early flood warning system. These
sources include LIDAR, an open-source flood model, meteorological data, real-time hydro-
logic data and geographic visualization tools [58]. The acquired data are used to construct
a two-dimensional (2D) hydraulic model using the HEC-RAS tool that produces accurate
flood risk maps and provide early flood warnings. Stoleriu et al. [59] used high-density
LIDAR derived data to improve the accuracy of flood risk maps generated by DEM [59].
HEC-RAS software was used to construct the flood hazard maps. The system was used to
predict the flood reoccurrence probabilities in the durations of 33, 100, and 1000 years. The
system can measure water levels up to an accuracy of 0.5 m. Table 3 summarizes LIDAR
technologies for flood prediction.
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Table 2. Multispectral remote sensing technologies for flood prediction.

Method Domain Features Imaging Technology Study Area Results
(% Accuracy) Limitation Ref.

Convolutional
Neural Network Machine Learning Water level

Monitoring
Landsat TM,

Sentinel-2 Bihar, India
Overall accuracy

(OA) = 0.93
kappa (K) = 0.87

Need enhanced
segmentation to
support higher

resolution imagery

[40]

Modello Idrologico
Semi-Distribuito

in continuo
(MISDc) Model

Hydrological
Modelling Flood Forecasting Metop A and B Mediterranean Sea

Satellite-based data
show improved

results than
ground-based data,

with 100% efficiency

Results may be
case specific [41]

Bagging-Cubic-KNN Machine Learning
Flood Susceptibility

Mapping
and detection

Sentinel-1 Haraz, Iran
The area under the

ROC curve
(AUC) = 0.80

- [42]

Bayesian Linear Machine Learning Urban Pluvial
Flood Forecasting Sentinel-1 Pattani, Thailand

Improved results
over a neural
network and
decision tree

Rainfall intensity
found to be a weak
predictor of floods

[43]

Support Vector
Machines Machine Learning Urban Flood

Mapping MODIS & Landsat New Orleans
Blending multisource

images produce
better results

Over or
underestimation of
flooded regions for

urban areas

[44]

Continuum Hydrological
Modelling

Flash Flood
Forecasting Sentinel-1 Mediterranean

catchment

Discharge Prediction
results improved

using Sentinel-1 data

Data recorded for a
short period [45]

Geodetically level
gauge stations in

water bodies

Hydrological
Modelling

Modelling floodplain
flow, processes, and

fluxes in rivers

ICESat spaceborne
Earth-orbiting
laser altimeter

400 km Amazon
River

Accuracies of
10 ± 27 cm

Some uncertainties in
results due to

tidal influences
[46]

Generation of
essential climate
variables (ECV)

for lakes

Numerical Modelling Water surface-level
variation calculation

Public web databases
providing imagery of
satellites instruments

- Accuracy up to a
decimeter level - [47]
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Table 2. Cont.

Method Domain Features Imaging Technology Study Area Results
(% Accuracy) Limitation Ref.

WRF Model Numerical Modelling Flood Prediction DEM, MODIS Juntanghu
Watershed, China

Determination
Coefficients = 0.85,

0.82 for 2 years
respectively

WRF Model [48]

Classification, RGA,
Thresholding Image Processing Mapping Flood

Prone Areas
Sentinel-1,
SAR, DEM Po River, Italy User Accuracy =

60–80% - [49]

MNDWI
RNDWI
AWEI

Otsu Threshold
Google Earth Engine

Hydrological
Modelling

Open Surface River
Extraction Sentinel-2, DEM Upper Yellow River,

Tibetan Plateau

Root mean square
error

(RMSE) = 16.148 m
- [50]
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Table 3. LIDAR Technologies for Flood Prediction.

Method Domain Features Imaging
Technology Study Area Results

(% Accuracy) Limitation Ref

DEM 3D
Modelling

Flood risk
mapping LIDAR, GPS

Annapolis
Royal, Nova
Scotia, Canada

Accuracy > 30 cm - [23]

DEM,
HEC-

GeoRAS

3D
Modelling,
Hydraulic
Modelling

Flood
Warning
System

LIDAR

Grand River
near the
City of

Painesville,
Ohio

RMSE =
0.37–0.98

Need accurate
river streamflow

data
[41]

HEC-RAS Hydraulic
Modelling

Flood return
period

prediction

LIDAR,
Survey data

River Reach,
Piedmont

area of
North Carolina.

LIDAR data
predictions are

7% more
accurate than
survey data
predictions

The method
needs to be

tested under
varying climates

[51]

HEC-RAS Hydraulic
Modelling

Flood
Forecasting &

Early
Warning

LIDAR Philippines
Provide flood

forecasts for the
next 6–12 h

Method not
backed by

experiments and
validation results

[52]

HEC-RAS,
DEM

Hydraulic
Modelling,

3D Modelling

Flood risk
mapping LIDAR

North-
Eastern

Romania
Accuracy = 0.5 m

Need
high-resolution

DEMs for
accurate results

[53]

3.3. Radar

Radar (Radio Detection and Ranging) [60–62] was first used in the year 1940 by
the navy department of America. As its name suggests, this remote sensing technology
makes use of radio waves to find various characteristics of objects such as their direction,
speed, location, and range. The organization of radar is composed of a transmitter that
generates electromagnetic waves in the domain of radio or microwaves, an antenna for
transmission, an antenna for receiving, a receiver, and a workstation that processes the
object characteristics. The transmitter emits radio waves which are reflected by the object
and then return to the receiver, where it is analysed by the processor to determine different
object properties [61].

Once the detection through optical remotely sensed data fails, the synthetic aperture
radar (SAR) comes into action. A high-resolution synthetic aperture radar (SAR) has been
frequently used in the detection of areas affected by floods [63]. The technology provides
real-time assessment of devastated and flooded areas. The prime quality of this technology
is its penetration capacity to clouds, rain, and haze [64]. It does not matter whether it
is a bad or drastic environment or too much sunlight, the technology provides effective
expertise. The technology can easily distinguish between light and water. Radar uses
microwaves; thus, flooding surfaces can be easily detected by its sensors. The flat surface of
the water reflects the signals away from the sensor. This causes a decrease in the intensity
of returned radiation as compared to the incident radiation causing a darker pixel in the
image [65]. Thus, areas with water show dark pixels as compared to the pixels formed by
the deflection through land areas.

Mitigation and management of floods require the analysis of the spatial extent and
progressive pattern of remotely sensed images. The spatial extents of flooding are necessary
to save lives and to avoid destruction. Combining this information with GIS and satellite
data can help in estimating the damage caused by a flood [66]. Satellite transmissions
involving microwaves revolutionized data extraction even in bad weather conditions and
sunlight [38,39]. Data assimilation techniques facilitated the real-time integration of SAR-
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derived water levels and developed forecast models for disasters [67]. The integration of
sensing data with data assimilation provided 3D reports of the flood used for the prediction
of the flood as well as organizing the warning system for the flood. A problem faced by
this technology is its inability to measure the long-term and real-time water level at fixed
points. This is because of the orbital cyclic movement of the satellite. Thus, regardless
of its high accuracy and real-time monitoring, it does not fit as the best technology for
urban flood prediction. However, it works best for large water bodies including oceans
and rivers [68]. Garcia-Pintado developed a flood prediction model that used SAR-derived
water level observations in the Severn and Avon rivers situated in the United Kingdom
(UK). The authors proved that by applying an Ensemble Transform Kalman Filter (ETKF)
directly, some divergence in the filter was caused due to false correlations. To overcome
this problem, a spatial filter localization method is proposed. Overall results showed
that this model is feasible to work as an independent flood forecasting model that uses
Earth Observations (EO) [69]. Table 4 summarizes radar technologies for flood pre-diction
reviewed in this paper.
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Table 4. Radar technologies for flood prediction.

Method Domain Features Imaging Technology Study Area Results Limitation Ref.

Interferometric
coherence for

floodwater detection

Electromagnetic
Modelling

Real-time assessment
of flooded regions SAR Urban Areas

Demonstrate
successful flood
mapping in the

presence of wind

Concerns about the
reliability of wind

speed data
[70]

Classification of
global auxiliary data

using fuzzy logic
Machine Learning Online Flood

mapping
TerraSAR-X SAR,

175 images
Thailand and

Germany
Thailand: 87.5%,
Germany: 91.6%

Increased missed
alarm rates due

to noise
[49]

Flash flood
simulation using

numerical methods
Numerical Modelling Flood Warning

System SAR Dubuque, Iowa

Rainfall totals
estimated

comparable to the
observed event

Need to develop a
more generalized

picture of
the dynamics

[40]

ETKF, Filter
Localization Numerical Modelling Flood Forecasting SAR Severn & Avon

rivers, UK
Feasible to work as a

standalone model - [57]

PBD Hydrological
Modelling

Flash Flood
Forecasting

S-band NEXRAD
(WSR-88D) Austin City RMSE = 0.89 m [66]
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4. Discussion

Three categories of remote sensing technologies adopted for flood prediction are
Multispectral, LIDAR, and Radar. After detailed content analysis and examination of
the methods adopted in each study for flood forecasting, we further categorized these
studies based on the processing method used by the authors. For example, the use of
machine learning (ML) methods for flood prediction has been commonly found in the
literature [44–47]. This includes the use of CNN, AI, KNN, Bayesian linear, SVM, etc. used
for flood forecasting. Image segmentation has been applied to remotely sense images
to determine water fluctuation levels to build an active real-time urban flood warning
system [31]. Apart from that, many studies [45,49] have used hydrological models for
flood forecasting using remotely sensed data. Numerical modelling techniques which
include thresholds and filters have been commonly used in the literature [54,57]. The
difference between machine learning-based methods and hydrological models is that
machine learning methods are data-driven and mainly depend on the training data to
produce accurate results, while hydrological models are knowledge-based which implies
that the human experts already feed them the knowledge to make flood-related decisions.
Numerical modelling is a commonly used technique in geology, which is used to solve
complicated geological problems. Numerical modelling methods work by simulating
geological states and scenarios. They use mathematical models to define the physical
properties of scenarios related to geology using numbers, calculations, and equations.
Other less commonly used domains included decision making [32], image processing [55],
and electromagnetic modelling [41]. These domains are categorized into the “Other” class.
Figure 5 shows the distribution of the reviewed flood prediction techniques to the identified
domains. This pie graph shows that the use of machine learning and hydrological models
has been equally and most frequently observed in the literature for flood forecasting.
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RQ-3. What are the current gaps in remote sensing-based flood prediction technologies?
A significant issue in remote sensing technologies is the constraint regarding orbital

cycles and spaces between trajectories of satellites, which makes the continuous monitoring
of fixed objects a difficult task [31,71].

Floods, being natural disasters, are uncertain and unpredictable, which makes flood
modelling a complex task having numerous uncertainties. Hence, hydrological and numer-
ical models seldom provide imprecise results and fail to give reliable predictions regarding
floods. In addition, these models are case specific, which means that they depend on the
physical properties and climate of the specific study area [45,51,72]. Hence, they cannot
be applied to a new area without modification. In addition, the high-resolution images
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captured by satellites are stored in satellite databases, making the processing slow and time
consuming, with expected delays in the final output [53]. Image processing techniques,
conversely, have some limitations regarding robustness and consistency, as the results are
greatly affected by environmental conditions such as cloud cover, fog, rain, and pollution.
Hence, most of the algorithms do not perform up to the mark in less-than-ideal conditions.
To overcome these problems, researchers are rapidly adopting machine learning or artificial
intelligence-based methods. The machine learning techniques are robust to the quality
of input images, as these algorithms are trained using a wide variety of images having
different illumination conditions, scale, quality, and colour, which enables the model to
handle varying inputs. A limitation of machine learning models is that they must be trained
using discriminative and relevant data, as the presence of noise and irrelevant information
decreases the performance of the model [55]. In addition, these models require structured
data that is the data must be labelled, which is an extensive and tedious task. Hence, there
is an inherent need to efficiently extract features from the remotely sensed data and use it
for training.

Insights and Future Directions

Machine learning techniques manage the uncertainties related to natural disasters such
as floods in an efficient way. The limitations of machine learning models can be overcome
by providing reliable historic flood data and flood inventory maps to the machine learning
model [31,73]. Machine learning models offer a cheap and time-efficient solution to predict
floods and perform a flood risk assessment. They also inform the experts about the need
for additional data such as data related to rainfall run-off and river flow. By providing this
data, the model can generate more accurate prediction results.

The extensive labelling and feature extraction steps performed in machine learning
methods can be reduced by using a deep learning approach. Deep learning models can use
unstructured data and can automatically perform feature extraction. The research in this
paper shows that researchers, to deal with disasters such as floods, have rarely adopted
deep learning methods. Deep learning models have not been well experimented with or
documented for flood risk analysis [42,74]. Hence, this domain needs to be further explored.
This can be achieved by retrieving data from numerous sources, including disaster history,
satellite imaging, and weather reports. The data gathered can be used to train the deep
learning system. The deep learning model would be able to forecast the upcoming disaster
events and be trained to perform real-time flood mapping. A proposed system for flood
detection and extent mapping is demonstrated in Figure 6.

To overcome the issues faced by remote sensing technologies, the proposed system
uses data from various sources along with satellite data such as past flood events, Google
Earth Images, social media, and weather reports. The collected data would consist of both
text and images, hence providing rich information about the nature, causes, locations,
and effects of flood events. The data would be utilized to train a deep learning model
such as CNN to predict future flood events and do real-time flood mapping in an input
image. A team of experts can help in disaster management with the analysis reports
produced by a deep learning system. In this way, proactive measures could be taken,
and imminent devastation can be prevented. Natural disasters cannot be prevented; thus,
one should take active steps to protect themselves from these situations. Using the deep
learning system with drones such as UAVs, experts can gather real-time data from various
areas and perform flood mapping at the same time. The drone technologies could track
specific areas and deliver help in narrow territories. Deep learning, in today’s life, is
ready to show its potential in disaster management. Classical machine learning models
such as SVM, Naïve Bayesian, and Decision Trees require extensive steps of labelling the
training data and selecting the relevant and discriminative feature for training the model.
Deep learning models, conversely, have an inherent capability of efficiently handling
unstructured data and automatically extracting features from it. Hence, the images in the
training set do not have to be labelled and can be used directly for training. This saves time
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and reduces the complexity of the system. Some most common deep learning models are
Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long
Short-Term Memory (LSTM). CNN has been widely used for image classification and
segmentation problems [43,75]. RNN models can efficiently handle temporal data and have
been applied to video processing problems. LSTM model is an improved form of RNN,
which can retain information for longer periods, unlike a standard RNN model. Hence, the
future direction for using technological advancements for dealing with floods would be to
investigate the use of deep learning for real-time flood mapping and prediction. To find the
depth of floodwater in a region, DEM can be integrated into the system, such that rescue
activities could be prioritized in the regions having deeper floodwater. The framework
proposed in this study aims to bridge the gaps identified in various flood management
technologies belonging to different domains. For real-time flood mapping in emergency
scenarios, time is one of the most important factors to be considered, and the system should
be efficient enough to map the flooded regions immediately, such that rescue operations
can be initiated as soon as possible [76]. However, in most of the research studies, this
measure was not evaluated in the performance results. The researchers should specify
the time taken by their system to produce the results, as a slow and lagging system is not
suitable to be implemented in an emergency. This would help in the better assessment
of flood management technologies in the future. More research needs to be focused on
using technologies to facilitate post-flood rescue and relief operations. This includes route
finding, vehicle detection, and locating affected people such that the people stuck in
flood-related crises could be identified and rescued by finding the available routes and
transport facilities.
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Figure 6. Schematic diagram of proposed system for flood detection and extent mapping.

5. Conclusions

This article presents a systematic review of remote sensing technologies used for flood
predictions. The review indicated that there is a rapid surge of studies implementing AI
techniques coupled with remote sensing techniques for flood prediction. Based on a content
analysis methodology, a review of 76 relevant papers on remote sensing technologies for
flood prediction was presented. A classification framework for flood detection and mapping
was proposed that aimed to answer the proposed questions: (1) How can remote sensing
technologies for flood detection be categorized? (2) How are remote sensing technologies
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being used for flood prediction? (3) What are the current gaps in remote sensing-based
flood prediction technologies?

To measure the depth of floodwater in a region, a high-resolution DEM can be used.
Deep learning is a sub-domain of machine learning that uses neural networks that can
undergo unsupervised learning from unstructured or unlabeled data. A framework has
been proposed in this paper that uses a deep learning neural network to generate reports
regarding the detection of flood from an input image and predict future flood events by
learning from big data collected from various sources such as historic flood events, social
media posts, Google and satellite images. A DEM module has been added to determine the
extent of flooding in each area. This system is focused on disaster prediction and response.
Detection of flooding from images can accelerate disaster relief services in the target region,
thus assisting in the domain of disaster response. By finding the depth of floodwater in an
area, rescue activities can be prioritized in the regions which have deeper flood water.

The outcomes of this research support the United Nations International Strategy for
Disaster Reduction and Sendai Framework for Disaster Risk Reduction 2015–2030 [32].
As with the application of remote sensing technologies, the priority action of the Sendai
framework can be met, which focuses on understanding the disaster risk, managing it,
reducing disaster by building resilience and enhancing disaster preparedness through
effective response and recovery. In addition, this study can assist the national disaster
management authorities in the implementation of state-of-the-art technology for flood pre-
diction, detection, and management. Other countries frequently hit by flood-like disasters
can also benefit from this research. In the future, this study can be extended to include more
techniques as well as identifying various domains, parameters and metrics for effective
detection, prediction, and response to flood-related disasters and the assessment of various
technologies. By defining a wide range of assessment measures, the techniques can be
more thoroughly examined. We aim to implement the proposed flood management system
proposed in real time to assess its limitations and practicability.
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