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ABSTRACT
We study the δ Scuti – red giant (RG) binary KIC 9773821, the first double-pulsator binary of its kind. It was observed by Kepler
during its 4-yr mission. Our aims are to ascertain whether the system is bound, rather than a chance alignment, and to identify
the evolutionary state of the RG via asteroseismology. An extension of these aims is to determine a dynamical mass and an age
prior for a δ Sct star, which may permit mode identification via further asteroseismic modelling. We determine spectroscopic
parameters and radial velocities (RVs) for the RG component using HERMES@Mercator spectroscopy. Light arrival-time delays
from the δ Sct pulsations are used with the red-giant RVs to determine that the system is bound and to infer its orbital parameters,
including the binary mass ratio. We use asteroseismology to model the individual frequencies of the red giant to give a mass of
2.10+0.20

−0.10 M� and an age of 1.08+0.06
−0.24 Gyr. We find that it is a helium-burning secondary clump star, confirm that it follows the

standard νmax scaling relation, and confirm its observed period spacings match their theoretical counterparts in the modelling
code MESA. Our results also constrain the mass and age of the δ Sct star. We leverage these constraints to construct δ Sct models
in a reduced parameter space and identify four of its five pulsation modes.

Key words: asteroseismology – binaries: spectroscopic – stars: oscillations – stars: variables: δ Scuti.

1 IN T RO D U C T I O N

Double-lined spectroscopic binaries (SB2s) provide critical tests
for stellar evolution (Pols et al. 1997; Pourbaix 2000; Lastennet &
Valls-Gabaud 2002; Claret 2007; de Mink, Pols & Hilditch 2007).
Their value lies in the multitude of information that can be extracted
from the composite spectra, such as the individual stellar effective
temperatures, the system metallicity, and the radial velocities (RVs)
whose variations encode the dynamical masses and mass-ratio of
the stars (Vogel 1889; Pickering 1890; Stebbins 1911). These RVs
can further be used to infer the binary orbital parameters, whose
distribution functions feed directly into our understanding of binary
star formation (Duchêne & Kraus 2013; Moe & Di Stefano 2017;
Murphy et al. 2018; Shahaf & Mazeh 2019), such as the spatial
scales at which fragmentation of protostellar discs outcompetes frag-
mentation of molecular cores as the dominant binary star formation
mechanism (Tohline 2002; Bate 2009; Kratter 2011; Tobin et al.
2016).

In parallel with spectroscopy, asteroseismology has established
itself as an indispensable tool for astrophysical investigation (Aerts,

� E-mail: simon.murphy@sydney.edu.au

Christensen-Dalsgaard & Kurtz 2010). For example, catalogues of
stellar properties that combine spectroscopy and asteroseismology
for red giants (Pinsonneault et al. 2014, 2018) have greatly informed
Galactic dynamics (e.g. Spitoni et al. 2019; Hasselquist et al.
2020; Hayden et al. 2020; Ratcliffe et al. 2020), thanks largely
to the high age precision typically achievable (Chaplin & Miglio
2013; Lebreton, Goupil & Montalbán 2014; Hekker & Christensen-
Dalsgaard 2017; Basu & Hekker 2020).

Masses and radii for red giants (RGs) are often determined from
so-called asteroseismic scaling relations (Stello et al. 2008; Kallinger
et al. 2010), using the observed frequency of maximum power,
νmax, and large frequency spacing, � ν. Since � ν scales with the
square root of the mean density of the star (Ulrich 1986), the
evolutionary stage of RGs – that is, the extent of their ascension
up the red giant branch (RGB) – is readily discernible from � ν

alone. However, there is another phase of RG evolution that occurs
after the helium flash known as the red clump (RC), during which
stars have a similar density and their evolutionary tracks overlap with
the RGB. Except for metal-poor stars, the core-helium burning RC
stars are observationally indistinguishable from the hydrogen-shell
burning RGB stars by surface properties alone, but in each phase
the gravity modes have different period spacings due to the different
properties of the core (Bedding et al. 2011; Mosser et al. 2012;
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KIC 9773821 2337

Figure 1. The amplitude spectrum of the long-cadence Kepler light curve of KIC 9773821, out to the Nyquist frequency of 24.49 d−1 (283.45 μHz). The
labelled frequencies f1–f5 originate in the δ Sct component, while the RG contributes a broad power excess near 8.6 d−1 (100 μHz) and a granulation background.
The top axis shows frequencies in μHz.

Vrard, Mosser & Samadi 2016), allowing the two to be distinguished
asteroseismically. Stars above ∼1.8 M�, however, do not undergo
a helium flash and these stars sit in the so-called secondary clump,
whose period spacings are similar to RGB counterparts of slightly
higher mass (e.g. Stello et al. 2013; Mosser et al. 2014; Bossini
et al. 2017). This further challenges the identification of their
evolutionary status, and poses some important questions, such as
whether scaling relations apply to secondary clump stars (Miglio
et al. 2012; Sharma et al. 2016). To analyse potential secondary
clump stars, external constraints are typically required, such as
priors on age or mass. Those priors are often obtainable in binary
systems.

By comparison, asteroseismology of δ Sct stars is less advanced,
with a major barrier being mode identification (Breger 2000; Bow-
man & Kurtz 2018). Pairs of low-radial-order (low n) radial modes
can have period ratios that enable those modes to be identified
(Petersen & Christensen-Dalsgaard 1996), but not every mode in
δ Sct stars is driven to an observable amplitude, so those modes
might not be present. A recent breakthrough has been the discovery
that some δ Sct stars pulsate in regular patterns that form ridges in an
échelle diagram (Bedding et al. 2020). This allows the modes to be
identified somewhat analogously to solar-like oscillations, but is only
possible for some stars close to the zero-age main sequence, including
on the pre-main sequence (Murphy et al. 2021a). Binary systems
can also be of assistance in analysing δ Sct stars via the provision
of dynamical masses, which may lead to sufficiently constrained
models to allow the observed modes to be identified (e.g. Streamer
et al. 2018; Steindl, Zwintz & Bowman 2021).

In this paper we analyse KIC 9773821, whose light curve shows
the pulsations of both a δ Sct and a RG star (Fig. 1 shows its amplitude
spectrum). Such double-pulsator binaries are named PB2s in analogy
to the SB2s of spectroscopy (Murphy, Shibahashi & Bedding 2016).
Throughout our investigations, we adopt the convention that the δ Sct
star is component 1 and the RG is component 2 (e.g. in the subscripts
for RV amplitudes, K1 and K2). This is because our investigation
began with the Kepler light curve, whose variability is dominated by
the δ Sct star (Fig. 1), and because light travel time variations were
discovered in the δ Sct pulsations, providing the first evidence that
the stars may be bound. However, the RG is the more luminous, more
evolved and more massive object.

The Kepler observations are described in Section 2, demonstrating
the double-pulsator nature of the system. Our spectroscopic observa-
tions and analysis, including radial velocity extraction, are described
in Section 3. In Section 4, we measure light traveltime variations for
the δ Sct star, and combine them with the radial velocities to show that
the stars have the same orbital period, and are thus a bound system.
The orbital analysis of Section 4 guides deeper asteroseismology
of the RG (Section 5) to infer its evolutionary state, and the δ Sct
star (Section 6) to identify its modes. Our conclusions are given in
Section 7 and our data are given in an appendix.

2 K EPLER OBSERVATI ONS

KIC 9773821 (magnitude Kp = 9.86) has 4 yr of Kepler observations
in long-cadence mode (29.45-min sampling), for a total duration
of �T = 1470.47 d. The corresponding frequency resolution is
1/(�T ) = 0.000 68 d−1 (0.0079 μHz). We used the light curve
processed with the ‘msMAP’ pipeline (Stumpe et al. 2014), which we
downloaded from KASOC.1 We converted the fluxes to magnitudes
and subtracted the mean magnitude from each of the 18 Kepler
‘quarters’, including the commissioning quarter, Q0.

The Fourier transform of the Kepler lightcurve is shown in Fig. 1,
which shows both δ Sct and red-giant oscillations. Five δ Sct peaks
are labelled, with their extracted frequencies and amplitudes given
in Table 1; we describe these in Section 2.1. The broad power excess
near 8.6 d−1 (100 μHz) consists of red-giant (RG) oscillations and is
analysed in Section 2.2. Other key features in the Fourier transform
are a rising background at low frequency, which is a typical feature
of RG power spectra that arises from granulation, and three low
frequencies starting at 1.8 d−1 (21 μHz) that are almost harmonics of
each other (Section 2.3). Although only long-cadence observations
are available, barycentric corrections to the time-stamps of the data
result in a modulated sampling rate as the Kepler spacecraft orbits
the Sun, allowing us to assert that none of the extracted peaks are
Nyquist aliases (Murphy, Shibahashi & Kurtz 2013).

The oscillations of both stars are affected by the orbital motion,
which causes periodic Doppler shifts of each star’s pulsations. The

1https://kasoc.phys.au.dk/

MNRAS 505, 2336–2348 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2336/6283735 by  sim
on.m

urphy@
sydney.edu.au on 21 July 2021

https://kasoc.phys.au.dk/


2338 S. J. Murphy et al.

Table 1. Pulsation frequencies and amplitudes from the δ Sct
component.

ID Frequency Frequency Amplitude
d−1 μHz ±1μmag

f1 12.359 99 143.0554 85
f2 15.424 88 178.5287 28
f3 13.862 31 160.4434 10
f4 16.704 00 193.3333 5
f5 18.544 37 214.6339 3

effect in Fourier space is the generation of a frequency multiplet
(Shibahashi & Kurtz 2012) which can be used to extract orbital
information if the oscillations are coherent (Shibahashi, Kurtz &
Murphy 2015). However, orbital information cannot be extracted
from the low-amplitude, stochastic RG oscillations (Compton et al.
2016).

2.1 The δ Sct pulsations

The δ Sct pulsations appear to have some regularity, which led us
to search for signs of harmonics or sum frequencies (e.g. Pápics
2012; Kurtz et al. 2015), but we found none. However, there are
some interesting patterns among the five δ Sct peaks. First, f3 lies
almost exactly halfway between f1 and f2. Equidistance would
correspond to a frequency of 13.892 d−1, whereas f3 lies 0.03 d−1

away at 13.862 d−1, which is 44 times the frequency resolution
and suggests this is not a combination frequency. Similarly, f5 lies
0.054 d−1 away from being the combination 2f2 − f1 = 18.490 d−1.
We conclude that these near-combinations are coincidences and we
explore identities for these modes in our δ Sct modelling (Section 6).

2.2 The red-giant oscillations

The oscillations from the RG are clearly visible in the power spectrum
with very high signal to noise, making it straightforward to measure
and identify dozens of modes. The left-hand panel of Fig. 2 shows the
power spectrum in échelle format, with a large frequency separation
of �ν = 8.05 μHz, calculated from the autocorrelation of the power
spectrum. We can easily recognize the patterns of modes with degrees
� = 0 (red circles), � = 1 (blue squares), and � = 2 (red triangles).
The right-hand panel shows the period échelle diagram (Bedding
et al. 2011), and we see the characteristic pattern of � = 1 modes. By
aligning the structure of these � = 1 modes vertically we determined
an asymptotic period spacing �� = 194.0 s. We used this pattern to
guide the selection of the � = 1 modes.

The extracted frequencies, their uncertainties, and their and mode
identifications are given in Table A1. We measured the frequencies
after smoothing the power spectrum slightly in order to smooth
modes broadened by the finite lifetimes. Some of the � = 1 peaks
are split into multiplets by rotation. Our asteroseismic analysis
(Section 5.3) is based on non-rotating models and, by measuring
peaks in the smoothed spectrum, we measured the central (m = 0)
component. Uncertainties on the measured frequencies are generally
lower for stronger peaks and we were guided by the equations
in Montgomery & O’Donoghue (1999) and Kjeldsen & Bedding
(2012). In order to be conservative, we adopted an uncertainty of
0.03 μHz for most modes. In practice, the actual values of the
uncertainties do not influence the results of the modelling and those
given in Table A1 are intended to be approximate values.

We measured the frequency of maximum power, νmax, in a two-
step process using the SYD pipeline (Huber et al. 2009). First,
the background of a power-density spectrum was modelled by a
sum of two power laws and a white-noise component, and then
subtracted from the original power-density spectrum. This spectrum

Figure 2. Échelle diagrams in frequency (left) and period (right) covering the RG oscillations of KIC 9773821. The grey-scale shows the observed amplitude
spectrum and the symbols identify the modes that were used in modelling.

MNRAS 505, 2336–2348 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/505/2/2336/6283735 by  sim
on.m

urphy@
sydney.edu.au on 21 July 2021



KIC 9773821 2339

Figure 3. One of the observed (black) LSD profiles of KIC97732832. The
sharp-lined RG and the broad-lined δ Sct profile are indicated by the red and
blue synthetic LSD profiles calculated from synthetic spectra generated using
GSSP.

was subsequently smoothed using a Gaussian with a full width at half-
maximum of 2(�ν) and νmax was taken as the peak of the heavily
smoothed spectrum. Its uncertainty was calculated by perturbing the
original power-density spectrum 500 times with a χ2 distribution
with two degrees of freedom and repeating the above procedure on
each perturbed spectrum. The standard deviation of the resulting
distribution was adopted as the formal uncertainty (Huber et al.
2011). In this way, we calculated νmax = 102.06 ± 0.96 μHz.

2.3 Low-frequency peaks

The low-frequency peaks at 1.8292, 3.6578, and 5.4860 d−1 (21.171,
42.336, and 63.495 μHz; Fig. 1) are not exact harmonics of each
other and are broader than the frequency resolution of the data.
It is therefore unlikely that they result from ellipsoidal variability
and reflection effects in a compact binary (Colman et al. 2017).
Bowman (2017) discussed similar features in other stars, which
he called ‘organ pipe stars’, and argued against a rotational origin
unless significant latitudinal differential rotation is present in A-
type stars. Since these low frequencies are also dissimilar to the
spacing of the δ Sct p modes in KIC 9773821, their origin remains
unclear.

3 SPEC TRO SC O PY

We obtained high-resolution (R ∼ 85 000) spectroscopy of the sys-
tem using the HERMES spectrograph (Raskin et al. 2011) attached
to the 1.2-m Mercator telescope at the Roque de los Muchachos
observatory on La Palma, Spain. In total, 17 spectra of KIC 9773821
at an S/N ∼ 80 were obtained from 2012 July to 2019 October.
We computed Least-Squares Deconvolution (LSD) profiles (Donati
et al. 1997, as implemented by Tkachenko et al. 2013) from the
normalized spectra to determine if the radial velocities of the indi-
vidual components could be extracted. We found that the profiles of
the individual components were blended at all orbital phases, which
is unsurprising for a long-period binary (Porb = 482 d; Section 4).
In addition, the more-luminous slowly rotating RG dominates the
LSD profiles, preventing us from extracting reliable RVs for the
more rapidly rotating δ Sct component (Fig. 3). RVs for the RG were
extracted to a precision of ∼0.15 km s−1 (Table A2).

We determined the atmospheric parameters by first separating the
component spectra into their individual components using the spec-
tral disentangling technique (Simon & Sturm 1994; Hadrava 1995).
We used the Fourier domain-based disentangling code FDBinary
(Ilijic et al. 2004), which allowed us to simultaneously optimize
the orbital parameters of the system while obtaining the component
spectra. Allowing both K1 and K2 to vary in the disentangling resulted
in unphysical component spectra, and we therefore had to fix K1 at
the value 23.91 km s−1 determined from phase modulation (described
in Section 4). After K1 was fixed, we obtained realistic component
spectra.

The atmospheric parameters were determined by fitting synthetic
spectra to the 4800–5700 Å region2 using the Grid Search in Stellar
Parameters (GSSP) software package (Tkachenko 2015). GSSP is able
to generate and fit synthetic spectra to an observed spectrum using
the SYNTHV radiative transfer code (Tsymbal 1996) combined with
a grid of atmospheric models from the LLMODELS code (Shulyak
et al. 2004). Using this method, we determined the atmospheric
parameters Teff , log g, microturbulent velocity (vmic), macroturbulent
velocity (vmac), projected rotational velocity (v sin i), and the light
contribution for each star, as well as the global metallicity ([M/H]).
We determined uncertainties from the distribution of χ2 values of
the fit of each synthetic spectrum to the observed spectrum. Due
to the degeneracy between [M/H] and the light ratio, we would
have to place constraints on at least one of the stellar luminosities
(LRG or Lδ Sct) to obtain [M/H] directly. None the less, we note
that the inferred metallicity of each component was equal for light
ratios LRG/Lδ Sct = 3.2 ± 0.3, and they rapidly diverge outside this
range. To obtain individual luminosity constraints, the atmospheric
parameters were determined iteratively with the asteroseismic anal-
ysis of the RG (Section 5), starting with the best-fitting Teff of
5080 ± 130 K determined at the (initially fixed) solar metallicity. The
δ Sct parameters were determined thereafter, and include a 2 per cent
systematic uncertainty on the effective temperature (Casagrande et al.
2014; White et al. 2018).

4 O RBI TAL ANALYSI S

We applied the phase modulation method (Murphy et al. 2014; Mur-
phy & Shibahashi 2015) to measure light arrival-time delays for the
δ Sct pulsations. The method works by measuring the pulsation fre-
quencies as precisely as possible using the entire 4-yr Kepler data set,
then subdividing the light curve and measuring the pulsation phases
in each subdivision whilst keeping the frequencies fixed. Phase shifts
are readily converted into time delays, which contain information on
the star’s position in its orbit. When the δ Sct star is on the far side
of the orbit, the arrival of its light at Earth is delayed, whereas light
arrives early (a negative time delay) when the star is at the near side of
its orbit. Each pulsation frequency should respond in the same way,
that is, should give the same time-delay curve, if the modulation is due
to binary motion rather than intrinsic phase modulation. The method
has been applied to hundreds of δ Sct pulsators, whose coherent
pulsations appear to be good ‘clocks’ in this regard (Murphy et al.
2018).

A free parameter in phase-modulation analyses is the subdivision
size. Longer subdivisions result in more precise phases and thus

2The normalized continuum level drops below unity for RG stars at
wavelengths lower than ∼4800 Å due to the Balmer jump, requiring an
iterative spectral normalization approach and with increased errors that would
inevitably propagate into the RG component spectrum.
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Figure 4. Time delays for the strongest two δ Sct frequencies, and their weighted average, using 10-d subdivisions. The periodic variation contains the orbital
information.
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Figure 5. Orbit of KIC 9773821. The black data with error bars are the weighted-average time delay measurements from Kepler observations of the two δ Sct
modes (left y-axis). The red lines are 25 random samples of the Markov chain of its orbit. The green squares, whose error bars are smaller than the plot symbols,
are the HERMES@Mercator RV data for the RG secondary (right y-axis). The magenta lines are the corresponding 25 random samples for the RG’s (RV) orbit,
computed simultaneously with the δ Sct star’s time-delay orbit, using the same system parameters. The resulting parameters are given in Table 2.

smaller uncertainties per point but will undersample the orbital signal
if the orbital period is short. Hey et al. (2020b) developed a forward-
modelling method to fit orbits to the light curve directly, which offers
great improvement for short-period binaries (P � 100 d). For longer
periods as in this case, the subdividing approach remains sufficiently
accurate and we used it for this analysis. Following application of the
subdividing approach, we confirmed our results with the MAELSTROM

forward-modelling code (Hey et al. 2020a).
We extracted time delays for f1 and f2, which are the strongest

of the five extracted peaks (Table 1). The next-strongest peak,
f3, is not statistically significant in 10-d subdivisions of the light
curve, and f4 and f5 are weaker still. However, f3 is significant in
20-d subdivisions, and shows time delays consistent with f1 and
f2, albeit with large scatter. Fig. 4 shows the time delays with
their weighted average (weighting by the inverse square of the
pulsation phase uncertainties), indicating a projected light traveltime
variation of ±500 s, corresponding to a projected semimajor axis
(a1 sin i) of approximately 1 au. Note that the projected separation
of the two stars, a sin i, is larger than this [a sin i = (a1 + a2) sin i],
and note also that time-delay uncertainties are overestimated be-
cause there is considerable variance in the data from the RG
oscillations.

Radial velocities, RV(t), are the time derivative of the time delays,
τ (t),

RV (t) = c
dτ (t)

dt
, (1)

and depend on the same orbital parameters. Murphy et al. (2016)
verified the PM method by comparison with RVs, and those authors
and others (Lampens et al. 2018; Derekas et al. 2019) have presented
joint modelling of RVs and time delays, similar to the one we perform
here for KIC 9773821. A key difference here is that the RV curve
belongs to the RG and so is in exact antiphase with that calculated
from the time delays of the δ Sct star (Fig. 5). This proves that the
two stars orbit each other and are not a chance alignment.

We determined the orbital parameters using the Markov chain
Monte Carlo method based on the Metropolis–Hastings algorithm,
as described by Murphy et al. (2016). In each iteration of the Markov
chain the two components, as described by their respective time-delay
and RV curves, had the same orbital period and eccentricity, while
their longitudes of periastron 
 differed by preciselyπ radians. Their
projected semimajor axes were sampled via independent proposals
at each iteration in the Markov chain, and the inverse ratio of those
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Table 2. Orbital parameters for the KIC 9773821 system. K1

and K2 are calculated from the other orbital parameters, where
star 1 is the δ Sct star and star 2 is the RG.

Parameter Units Values

Porb d 481.93+0.13
−0.12

e – 0.241+0.0030
−0.0031


 rad 2.154+0.014
−0.011

tp d 2 455 273.9+1.5
−1.3

γ km s−1 8.86
f (m1, m2, sin i) M� 0.623+0.061

−0.053

f (m2, m1, sin i) M� 0.324+0.031
−0.028

a1 sin i/c s 513+16
−15

a2 sin i/c s 412.1+1.0
−1.1

a1 sin i au 1.03+0.03
−0.03

a2 sin i au 0.8259+0.0020
−0.0022

K1 km s−1 23.91+0.75
−0.70

K2 km s−1 19.21+0.06
−0.05

q = M2/M1 – 1.245+0.038
−0.037

i deg 81+9
−10

axes gives the mass ratio q of the system, that is,

q = M2

M1
= a1 sin i

a2 sin i
. (2)

The total χ2 was used to evaluate each iteration, and no additional
weights were applied to the time-delay or RV data-sets. The chain
was run for 25 000 iterations and manually checked for convergence,
after which the total χ2 was 39.8 from 143 time delays and 17
RV data. All orbital parameters were determined as the medians of
their marginalized posteriors, and the uncertainties were the 15.9
and 84.1 percentiles of those posteriors, together bracketing the
central 68.2 per cent of the data. Randomly drawn samples from
the converged chain are shown in Fig. 5 and the orbital parameters
are given in Table 2.

Since the mass ratio, the mass function, and one of the individual
component masses are known precisely (the modelled RG mass
for the secondary clump scenario, discussed in Section 5), it is
possible to calculate the orbital inclination. To do this, we performed
a 100 000-iteration Monte Carlo simulation involving each of the
above parameters to sample sin i according to

f (m1, m2, sin i) = fM = m3
2 sin3 i

(m1 + m2)2
(3)

which can be rewritten as

sin3 i = fM

m2
(1 + 1/q)2. (4)

The resulting stellar inclination, i, was 81+9
−10 deg, meaning the system

is observed nearly edge-on.

5 A STEROSEISMIC AND SPECTROSCOPIC
ANALY SIS

5.1 Iterative fitting method

The spectroscopic and asteroseismic analyses are interconnected,
because the system metallicity and the luminosity ratio of the stars
produce a similar effect on the observed depths of the RG’s spectral

Table 3. Spectroscopic parameters for the RG and δ Sct
components, after three iterations of asteroseismic infer-
ence to determine the luminosity ratio of the stars (see
Section 5). Values are provided for LRG/Lδ Sct = 3.2.

Parameter Units Values

RG
Teff K 5124 ± 194
log g (cgs) 2.65 ± 0.39
vmic km s−1 0.38 ± 0.38
vmac km s−1 6.1 ± 1.2
v sin i km s−1 2.5 ± 1.5
[Fe/H] − 0.09 ± 0.16

δ Sct
Teff K 7500 ± 210
log g (cgs) 3.7 ± 0.6
v sin i km s−1 46 ± 7

lines: both a higher metallicity and a higher RG luminosity result in
deeper spectral lines for the RG. The luminosity ratio is determined
from the asteroseismology, while the RG’s oscillations are sensitive
to the metallicity. We therefore used an iterative approach to arrive
at the system parameters, which can be summarized as follows:

(i) Determine the RG’s luminosity, age, and mass (initially assum-
ing solar metallicity).

(ii) Calculate the δ Sct mass using the orbital mass ratio.
(iii) Using evolutionary tracks, find the luminosity of the δ Sct star

given that age, δ Sct mass, and system metallicity.
(iv) Calculate the light ratio and its uncertainty.
(v) Use the new light ratio to refine the spectroscopic metallicity.
(vi) Repeat from step (i) with the new metallicity.

For the first iteration of step (i), we used the asteroseismic scaling
relations with �ν = 8.05 ± 0.04 and νmax = 102.06 ± 0.96 μHz for
the RG oscillations. Using fig. 1 of Mosser et al. (2014), fig. 4 of
Stello et al. (2013), and fig. 2 of Yang et al. (2012), we inferred that
the RG is probably a secondary clump star (core He burning) with
a mass of ∼ 2.45±0.11 M� and an age of 500–700 Myr. Then (ii),
using the binary mass ratio q = 1.245 ± 0.038, we inferred a δ Sct
mass of 1.97 ± 0.1 M�. At solar metallicity, this gave a luminosity
range of 16.6 to 26.4 L� for the δ Sct component (iii), compared with
LRG = 47 L� from the measured Teff and calculated RRG, for a light
ratio of LRG/Lδ Sct = 2.3 ± 0.5 (iv).

Using this light ratio, the spectroscopic parameters for the RG
were revised slightly (v), with the metallicity changing by −0.11 dex
on the first iteration, and by a total of +0.02 dex on subsequent
iterations (vi), to become those given in Table 3 at a light ratio of
LRG/Lδ Sct = 3.2. This value is consistent with the spectroscopic
light ratio that results in equal metallicities for the two components.
After the first iteration, the asteroseismic modelling used the oscilla-
tion frequencies directly rather than relying only on scaling relations,
as we now describe.

5.2 Stellar model calculations

Asteroseismic modelling of the RG was carried out with the stellar
evolution code MESA (Modules for Experiments in Stellar Astro-
physics, version 12115; Paxton et al. 2011, 2013, 2015, 2018) and
the oscillation code GYRE (version 5.1; Townsend & Teitler 2013).
We adopted the solar chemical mixture [(Z/X)� = 0.0181] provided
by Asplund et al. (2009). The initial chemical composition was
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Table 4. Input ranges and grid steps of the model grid.

Input parameter Range Increment
From To

Giant component
M / M� 1.80 3.00 0.02
[Fe/H] − 0.4 0.4 0.1
Yinit 0.24 0.32 0.02
αMLT 1.7 2.3 0.2

δ Sct component
M / M� 1.60 1.90 0.02
[Fe/H] − 0.4 0.4 0.1
Yinit 0.24 0.32 0.02
αMLT 1.7 2.3 0.2

calculated by

log(Zinit/Xinit) = log(Z/X)� + [Fe/H]. (5)

We used the MESA ρ − T tables based on the 2005 update of the
OPAL equation-of-state tables (Rogers & Nayfonov 2002) and we
used OPAL opacities supplemented by the low-temperature opacities
from Ferguson et al. (2005). The MESA ‘simple’ photosphere was
used for the set of boundary conditions for modelling the atmosphere;
alternative model atmosphere choices do not strongly affect the
results for solar-like oscillators (Yıldız 2007; Joyce & Chaboyer
2018; Nsamba et al. 2018; Viani et al. 2018) or for δ Sct stars
(Murphy et al. 2021). The mixing-length theory of convection
was implemented, where αMLT = �MLT/Hp is the mixing-length
parameter. The exponential scheme by Herwig (2000) was adopted
for the convective core overshooting, where the diffusion coefficient
in the overshoot region is given as

DOV = Dconv,0 exp

(
− 2(r − r0)

(f0 + fov)Hp

)
. (6)

Here, Dconv,0 is the diffusion coefficient from the mixing-length
theory at a user-defined location near the Schwarzschild boundary.
The switch from convection to overshooting is set to occur at r0. To
consider the step taken inside the convective region, (f0 + fov)Hp is
used. In MESA, fov is a free parameter and f0 equals 0.5fov. We set
the overshooting parameter fov = (0.13M − 0.098)/9.0 and adopted
a fixed fov at 0.018 for models above M = 2.0 M� following the
mass-overshooting relation found by Magic et al. (2010). We also
applied the MESA predictive mixing scheme in our model for a smooth
convective boundary. The mass-loss rate on the red-giant branch with
Reimers prescription is set as η = 0.2, which is constrained by old
open clusters NGC 6791 and NGC 6819 (Miglio et al. 2012).

The model computation ranged from 1.8 to 3.0M�. We computed
each stellar evolutionary track from the Hayashi line to the point
on the RG branch where log g = 1.5 dex. Each evolutionary track
includes both H-burning (RG branch) and He-burning (red clump)
phases. The grid includes four independent model inputs: stellar mass
(M), initial helium fraction (Yinit), initial metallicity ([Fe/H]), and the
mixing-length parameter (αMLT). Ranges and grid steps of the four
model inputs are summarized in Table 4.

Modelling results in red clump stars can be sensitive to the
prescription of convective overshooting (e.g. Bossini et al. 2017).
Our prescription is that demonstrated in fig. 1 of Constantino et al.
(2015), who compared model predictions for �� as a function of
stellar mass with observations from Mosser et al. (2014). We review
the choice of overshooting parameters at the end of this section.

5.3 Oscillation models

Theoretical stellar oscillations for � = 0, 1, and 2 were calculated
with GYRE (version 5.1; Townsend & Teitler 2013), by solving
the adiabatic stellar pulsation equations with the structural models
generated by MESA. Our computation was carried out in three steps
as described below to avoid excessive computing time.

1. Searching for stellar models within a 3σ cube constrained by
the observed Teff , log g, and [Fe/H], calculating a spectroscopic
likelihood LSpec (L = e−χ2

, where χ2 is the reduced χ square) for
each model.

2. Computing radial (� = 0) mode frequencies for models whose
Lspec ≥ 0.001, fitting those frequencies and calculating seismic
likelihood for the radial modes (Lseis,l=0), and then deriving a total
likelihood L

′ = Lspec × Lseis,l=0.
3. Computing � = 1 and 2 mode frequencies for models whose

L′/L′
max ≥ 0.001, fitting all observed modes and calculating the

seismic likelihood for all modes (Lseis), and lastly deriving a final
likelihood with the method described by Li et al. (2020b) for each
model to estimate stellar parameters.

For correcting the surface term of the RG oscillations only, we
used the two-term expression described by Ball & Gizon (2014).
The parameters of the top 10 models for the RG are given in Table 5.

5.4 Modelling results

We fitted the spectroscopic observations and asteroseismic mode fre-
quencies by using the likelihood functions and the fitting procedure
introduced by Li et al. (2020b). This fitting method accounts for the
systematic offset between observed and model frequencies (which is
larger than the observed uncertainties) and also applies a weighting
factor depending on the ν/νmax ratio for each peak, which together
give more sensible probability distributions for stellar parameters.
Specifically, we determined the model systematic uncertainty as the
median offset between the observations and the best-fitting model in
the penultimate iteration, which was 0.04 for � = 0 modes, 0.11 for
� = 1, and 0.05 for � = 2. However, unlike in Li et al. (2020b), we
did not interpolate the model frequencies in this work. In addition,
no perturbative or other formulation was applied to the frequencies
to account for rotation.

The modelling results show that the RG could be an RGB star or a
secondary red-clump star (Fig. 6). The latter is more likely because
of its considerably longer duration, with tracks in the middle of the
observational error box spending approximately 100 times longer in
the secondary RC phase than the RGB phase. While the two phases
can be distinguished in lower mass RGs by the period spacing of their
gravity modes, secondary RC stars have similar period spacings to
RGB stars. We investigate modelling results for both possibilities.

We start by noting that our measured period spacing (�� =
194.0 s; Section 2.2) matches very well with the period spacings
of our top ten MESA models (�� = 195 ± 2 s; Table 5). This
indicates that �� values calculated in MESA using the integral
�P = √

2π2(
∫

N/r dr)−1, where n is the buoyancy frequency, do
not have a significant systematic offset.

In the final iteration of modelling, the RG masses were calculated
to be 2.26+0.10

−0.12 (RGB) and 2.10+0.20
−0.10 M� (RC), with ages of 0.64+0.08

−0.06

and 1.08+0.06
−0.24 Gyr, respectively. The probability distributions of mass

and age are shown in Fig. 7. The metallicity from modelling lies in
the range [Fe/H] = −0.1 ± 0.2.

Under the assumption that this component is a RC star, the binary
mass ratio, and the RC mass imply a δ Sct mass of 1.69+0.11

−0.10 M�.
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Table 5. Stellar parameters of the top 5 models for the RGB and RC scenarios.

Stage Normalized Mass Age Teff log g [Fe/H] R L ��

Likelihood (M�) (Gyr) (K) (dex) (dex) (R�) (L�) (s)

RGB 1.00 2.20 0.66 5095 2.930 − 0.100 8.411 42.81 196.5
RC 0.98 2.053 1.10 5140 2.920 − 0.084 8.221 42.39 197.4
RGB 0.60 2.06 0.71 4990 2.916 − 0.100 8.273 38.13 196.6
RGB 0.57 2.24 0.59 5193 2.931 0.000 8.483 47.05 196.2
RC 0.56 2.171 1.08 5033 2.926 0.117 8.395 40.64 193.1
RC 0.52 1.993 1.07 5158 2.917 − 0.085 8.134 42.08 193.1
RGB 0.51 2.30 0.62 5166 2.936 0.000 8.545 46.73 196.2
RC 0.49 2.272 0.85 5201 2.932 0.017 8.531 47.86 193.2
RC 0.47 1.993 1.12 5086 2.916 − 0.184 8.141 39.85 193.8
RC 0.46 2.373 0.71 5275 2.940 − 0.181 8.642 51.96 193.5

Figure 6. Determining the evolutionary stage of the RG component on the
�ν − �� diagram. Solid and dotted lines indicate H-shell-burning (RGB)
and He-core-burning (RC) Phases. Evolutionary tracks in this figure range
from 2.0 to 2.9 M� in steps of 0.1 M�, with [Fe/H] = −0.1 dex. Filled circles
are located at regular intervals of 1 Myr on each track. The black filled ’star’
shows the location of the RG component, compatible with both RGB and RC
evolutionary stages.

Using a grid of evolutionary tracks of [Fe/H] = −0.1 dex with mass-
intervals of 0.05 M� (Murphy et al. 2019), we ran a Monte Carlo
simulation to determine the effective temperature and luminosity of
the δ Sct star and to check the validity of our joint asteroseismic and
spectroscopic analysis. In this process, we generated 10 000 random
anticorrelated masses and ages from the above distributions, such that
larger masses accompanied younger ages, and determined the closest
Teff and luminosity from the evolutionary tracks at fixed metallicity.
Using the median and standard deviation of the 10 000 samples, we
found that the δ Sct star has Teff = 7820+490

−120 K, and L = 14.8+4.3
−3.4 L�.

For a RG luminosity of 41 ± 2 L�, this gives a luminosity ratio of
LRG/Lδ Sct = 2.8+0.8

−0.6, which is consistent with the ratio assumed for
the same iteration of spectroscopic analysis (LRG/Lδ Sct = 3.2). In
the final iteration, we found that the RG modelling was dominated by
the oscillation frequencies: small changes in metallicity of ∼0.02 dex
resulting from small changes in the luminosity ratio had little impact
on the RG mass, luminosity, or age. The physical parameters of each
star from this final iteration are given in Table 6.

We note that if the RG were on the RGB instead of the sec-
ondary clump, then the δ Sct star would have a larger mass, at

Mδ Sct = 1.81 ± 0.14 M�. It would be considerably hotter, with
Teff = 8700+320

−440 K, while the younger age (0.64+0.08
−0.06 Gyr) would

make it less evolved and thus only slightly more luminous (L =
16.9+6.9

−4.9 L�). We note that this inferred temperature is considerably
hotter than the spectroscopic constraint (7500 K), and places the δ Sct
star close the blue edge of the instability strip. In fact, 59 per cent
of the sampled positions in our Monte Carlo process lie outside the
theoretical δ Sct instability strip in this scenario. We also note that
young δ Sct stars have much higher frequency oscillations than those
observed here (Bedding et al. 2020), which lends support to the
argument that the secondary clump scenario is the correct one.

5.5 Comparison with the νmax scaling relation

Here, we investigate whether secondary clump stars follow the
widely used νmax scaling relation, νmax ∝ g/

√
Teff (Brown et al.

1991; Kjeldsen & Bedding 1995), since νmax was not used in the
model calculations. We can write this relation as

νmax/νmax,� ≈ M

M�

(
R

R�

)−2 (
Teff

5777 K

)−0.5

, (7)

where we adopt νmax,� = 3090 ± 30 μHz (Huber et al. 2011). In
addition to the 1 per cent uncertainty in νmax,�, we also included
a systematic uncertainty in the scaling relation of 1.1 per cent, as
recently suggested by Li et al. (2020a). This gives a νmax value
for the best-fitting RC model in Table 5 of 99.5 ± 1.5 μHz, which
agrees at 1.7σ with the measured value of 102.06 ± 0.96 μHz. This
is a useful confirmation of the νmax scaling relation for a star in the
secondary clump, which is a regime that has not previously been
tested in this way.

5.6 Convective overshooting schemes

Here, we discuss different convective overshooting schemes for
the RG phase, and justify our choice of ‘standard overshooting’
for modelling the RG component of KIC 9773821. According to
Constantino et al. (2015, 2016) and Bossini et al. (2017), asymptotic
g-mode period spacings predicted by models with the ‘standard
overshooting’ scheme (proposed by Herwig 2000) during the core
helium burning (CHeB) lifetime are, on average, smaller than those
found in Kepler CHeB stars and open clusters. To remedy this, a
‘maximal-overshoot’ scheme has been proposed (Constantino et al.
2015), which does not pretend to be realistic but produces the
most massive convective core possible. This scheme extends the
CHeB lifetime of models and hence increases the period spacing
at the end of CHeB phase so that it matches the upper boundary
of the observed �� distribution, which is dominated by low-mass
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Figure 7. Top: The observed and modelled frequencies from the best RGB
and RC models for KIC 9773821. Circles show radial (� = 0) modes, triangles
show dipole (� = 1) modes, and squares show quadrupole (� = 2) modes.
Middle: The probability distribution of the modelled RG mass, normalized
to the likelihood of the best value. Although the integrals are similar, the He-
burning stage has a much longer duration than H-shell burning, so the former
is the more likely evolutionary stage (see the text). Bottom: The corresponding
distribution in age.

Table 6. Stellar parameters for the δ Scuti and RG
components based on iterative spectroscopic and astero-
seismic analysis. Parameters are given for the secondary
clump scenario, only. The observed asteroseismic quanti-
ties were used for the first iteration, after which individual
frequency modelling was used. The age and metallicity
were determined for the RG component and applied to
the whole system. Quantities from individual RG models,
including log g and radius, are supplied in Table 5.

Parameter Units Values
Observed RG asteroseismic quantities

� ν μHz 8.05 ± 0.04
νmax μHz 102.06 ±

0.96
�� s 194.0

Iteratively determined stellar quantities
(secondary clump scenario)

MRG M� 2.10+0.20
−0.10

Mδ Sct M� 1.69+0.11
−0.10

Teff,RG K 5124 ± 194
Teff,δ Sct K 7820+490

−120

LRG L� 41 ± 2
Lδ Sct L� 14.8+4.3

−3.4

Iteratively determined system quantities
Age Gyr 1.08+0.06

−0.24

[Fe/H] (dex) −0.09 ± 0.16

stars. On the other hand, the ‘standard overshooting’ scheme is
well calibrated with turn-off stars in open clusters and with main-
sequence stars in eclipsing binary systems, and better fits more
massive stars (Deheuvels 2020). However, the calibrations for main-
sequence stars could be unsuitable because of the dramatic changes
in stellar structure between the main-sequence turn-off and the onset
of CHeB.

A relatively comprehensive way to construct evolutionary models
for CHeB stars could be to start with the standard overshooting
scheme to provide the best accuracy during the main-sequence phase,
then switch to the maximal overshooting scheme at some point
before the core-helium burning phase. The switch of overshooting
scheme necessarily complicates the model computation because it
introduces at least two additional free parameters: the optimal time
to make the switch, and the ‘best’ scheme to switch to. Given that
we find the RG component of KIC 9773821 to be at the beginning
of its CHeB phase, there has been little CHeB in its convective core
thus far, and any switch of overshooting scheme would have little
time to affect the star’s evolution. Retaining standard overshooting
is therefore an appropriate approximation in this case. In other
words, KIC 9773821 is not one of the aforementioned low-mass
stars at the end of the CHeB phase whose period spacings are better
reproduced with maximal overshooting. In fig. 1 of Constantino
et al. (2015), models with the standard overshooting scheme better
predict the lower end of the �� distribution, where high mass and
relatively young CHeB stars such as KIC 9773821 lie. The adoption
of standard overshooting leads to a slightly underestimated age, but
only compared to the maximal overshooting model, which is not a
more valid choice for this star. Indeed, maximal overshooting is not
always a better predictor of the observed period spacings (Arentoft
et al. 2017).

In summary, we estimate that the effect of our choice of standard
overshooting is not significant because the time this star spends in
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the CHeB phase is only a small fraction of the total CHeB duration.
The fact that the period spacings we calculate with MESA are in good
agreement with our observed period spacings supports this.

6 δ SC T M ODE IDENTIFICATION V IA
ASTEROSEISMIC MODELLING

The orbit and the asteroseismic solution for the RG component
have constrained the mass, age, and location on the HR diagram
of the δ Sct star. These constraints offer a chance to identify the
five δ Sct modes (Section 2.1). We modelled the δ Sct star with the
same theoretical codes and input physics as the RG. Non-rotating
models were computed within a mass range of 1.6–1.9 M�. This is
despite the fact that v sin i was measured, because the inclination
angle is unknown. While the orbital inclination was measured to be
near edge-on and the RG inclination is also suggestive of a egde-
on inclination, there is no guarantee of spin–orbit alignment. While
non-rotating models ignore the possibility that the peaks could be
rotationally split non-radial modes, we found satisfactory results
considering radial modes and dipole (mixed) modes with m = 0.
Details of the grid computations can be seen in Table 4.

6.1 The ‘δ Sct + RC’ scenario

We first studied the ‘δ Sct + RC’ scenario, where the RG is core-
He burning. According to the constraints from the RC models
(Section 5.4), we set hard limits for mass and age for the δ Sct
component as 1.69 ± 0.11 M� and 1.08+0.06

−0.24 Gyr. All δ Sct models
are shown in the top panel of Fig. 8 by blue shading, and all are
located on the main sequence before the overall contraction phase
(‘hook’). Details on the use of GYRE to compute radial and dipole
mode frequencies were given in Section 5.3. We fitted each peak to
the nearest theoretical frequency of each model without any prior,
allowing each peak to have either � = 0 or � = 1. We then used
a maximum-likelihood estimation method to find the best-fitting
models by minimizing the differences between the observed and
modelled frequencies. All of the top 10 models have masses from
1.62 to 1.66 M� and [Fe/H] = −0.2, which are consistent with the
observed constraints at the 1σ level. The best-fitting model in this
scenario has the following properties: M = 1.62 M�, τ = 1.10 Gyr,
Teff = 7581 K, log g = 3.84, L = 18.9 L�, and [Fe/H] = −0.2. In
the middle panel of Fig. 8, we show a comparison of the oscillation
frequencies of this model with the observations. The observed peaks
are well fitted except for f4 at 16.7 d−1. The mode identifications of
these 10 models are consistent: f1 (at 12.35 d−1) is the first radial
overtone (� = 0, np = 2); f2 (15.43 d−1) is the second radial overtone
(� = 0, np = 3), f5 (18.54 d−1) is the third radial overtone (� = 0,
np = 4), and f3 (13.86 d−1) is a dipole mixed mode (� = 1, npg = 1).
The fundamental radial mode (� = 0, n = 1) is predicted to have a
frequency of 9.734 d−1, which we do not observe. This falls in the
region of the RG oscillations and must have a very low amplitude if
it is excited at all.

The model frequencies may have small offsets from a hypothetical
rotating model because our models are non-rotating (see e.g. Di
Criscienzo et al. 2008), which may explain some of the small
differences between the calculated and the observed frequencies.

6.2 The ‘δ Sct + RGB’ scenario

We also studied the ‘δ Sct + RGB’ scenario with the same method.
The parameter limits for mass and age were 1.81 ± 0.14, and
0.64+0.08

−0.06 Gyr. All examined δ Sct models are shown with red

Figure 8. Top: Theoretical models for the δ Sct star on the HR diagram.
Dots are evolutionary tracks of [Fe/H] = −0.1 dex computed with MESA. We
use black and grey dots to distinguish models before and after the ‘hook’.
Red and blue stars represent top models for δ Sct + RGB and δ Sct + RC
scenarios, respectively. The red and light blue shading indicate the region of
all δ Sct models examined. The top ten δ Sct models in each case happen to lie
before the ‘hook’. Middle: The best δ Sct model for the δ Sct + RC scenario.
Black dashed lines are the five δ Sct peaks listed in Table 1. Open circles and
triangles represent theoretical frequencies for � = 0 and 1. Bottom: As the
middle panel, but for the δ Sct + RGB scenario.
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shading in the top panel of Fig. 8. Compared with the δ Sct + RC
scenario, these models are at earlier evolutionary stages because
the δ Sct + RGB system age is younger. The best-fitting model in
this scenario has M = 1.92 M�, τ = 0.67 Gyr, Teff = 8622 K,
log g = 3.961, L = 28.6 L�, and [Fe/H] = 0.0, and is illustrated
in the bottom panel of Fig. 8. Even in the best model there is
not good agreement with observations, with only one mode being
unambiguously matched to a reasonable tolerance (f5 = 18.54 d−1 as
the n = 3 radial mode). The χ2 of the best-fitting frequencies for f1–f5

is three times higher in the δ Sct + RGB scenario than the δ Sct + RC
scenario. Combined with the time-frame and Teff arguments we made
previously, we therefore conclude that the δ Sct + RGB scenario does
not explain the observations well.

7 C O N C L U S I O N S

We have used spectroscopic radial velocities and pulsation timing to
determine that the two pulsators visible in the Kepler light curve of
KIC 9773821 are in fact a bound system consisting of a secondary
clump star and a main-sequence δ Sct star – the first double-pulsator
binary of its kind. We have determined the orbital parameters, which
include a period of 481.9 d, an eccentricity of 0.241, and a mass ratio
q = MδSct/MRG = 0.80.

An iterative procedure involving frequency modelling and spec-
troscopic atmospheric parameter determination has constrained the
evolutionary properties of the system. We found the system to be
slightly metal poor, with [Fe/H] ∼ −0.1, and we concluded that
the RG is a secondary clump (core-He burning) star with a mass of
2.10+0.20

−0.10 M� and an age of 1.08+0.06
−0.24 Gyr (1σ uncertainties). These

constraints have also allowed four of the five modes of the δ Sct star
to be identified as a mixed � = 1 mode and three radial modes. Thus,
the combination of two different types of pulsator in one system
has facilitated deeper analyses than would normally be possible in
isolation.

We give three arguments to suggest that the RG is a red clump
(RC) star, rather than a star ascending the RGB: (i) the RC time-
scale is two orders of magnitude longer, so this phase is more likely
to be observed; (ii) the corresponding properties of the δ Sct star are
more consistent with this; and (iii) pulsation models for the younger
(RGB) scenario are a poor fit to the δ Sct oscillations, whereas the
older (RC) scenario fits very well with only simple assumptions.

The orbital inclination was found to be edge on, and a projected
rotational velocity v sin i = 46 ± 7 km s−1 for the δ Sct star was
measured, but our pulsation models did not include rotation because
the potential for spin–orbit misalignment precludes independent
measurement of the equatorial rotation velocity. The observed
frequencies are well described with radial modes none the less,
and future exploration of rotating models of a range of inclinations
remains possible.

Our precision modelling of a low-mass secondary clump star
(i.e. having a mass not much greater than 1.8 M�) has offered
observational tests in a regime that has not been well studied
previously. For instance, we have been able to confirm the νmax

scaling relation for a secondary clump star for the first time, and that
period spacings calculated in MESA are accurate.
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MNRAS, 446, 1223

Lampens P. et al., 2018, A&A, 610, A17
Lastennet E., Valls-Gabaud D., 2002, A&A, 396, 551
Lebreton Y., Goupil M. J., Montalbán J., 2014, EAS Publications Series, Vol.

65. p. 177
Li Y., Bedding T. R., Stello D., Sharma S., Huber D., Murphy S. J., 2020a,

MNRAS, 501, 3162
Li T., Bedding T. R., Christensen-Dalsgaard J., Stello D., Li Y., Keen M. A.,

2020b, MNRAS, 495, 3431
Magic Z., Serenelli A., Weiss A., Chaboyer B., 2010, ApJ, 718, 1378
Miglio A. et al., 2012, MNRAS, 419, 2077
Moe M., Di Stefano R., 2017, ApJS, 230, 15
Montgomery M. H., O’Donoghue D., 1999, Delta Scuti Star Newsl., 13, 28
Mosser B. et al., 2012, A&A, 540, A143
Mosser B. et al., 2014, A&A, 572, L5
Murphy S. J., Shibahashi H., 2015, MNRAS, 450, 4475
Murphy S. J., Shibahashi H., Kurtz D. W., 2013, MNRAS, 430, 2986
Murphy S. J., Bedding T. R., Shibahashi H., Kurtz D. W., Kjeldsen H., 2014,

MNRAS, 441, 2515
Murphy S. J., Shibahashi H., Bedding T. R., 2016, MNRAS, 461, 4215
Murphy S. J., Moe M., Kurtz D. W., Bedding T. R., Shibahashi H., Boffin H.

M. J., 2018, MNRAS, 474, 4322
Murphy S. J., Hey D., Van Reeth T., Bedding T. R., 2019, MNRAS, 485,

2380
Murphy S. J., Joyce M., Bedding T. R., White T. R., Kama M., 2021, MNRAS,

502, 1633
Nsamba B., Monteiro M. J. P. F. G., Campante T. L., Cunha M. S., Sousa S.

G., 2018, MNRAS, 479, L55
Paxton B., Bildsten L., Dotter A., Herwig F., Lesaffre P., Timmes F., 2011,

ApJS, 192, 3
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APPENDI X A : DATA TABLES

The pulsation frequencies and mode identifications for the RG are
given in Table A1. Radial velocities for the RG component are given
in Table A2. A sample of the δ Sct time delays (supplementary online
information) is provided in Table A3.
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Table A1. Pulsation frequencies and mode degrees from the
red-giant component.

Frequency Uncertainty Degree Order
μHz μHz (�) (n)

73.56 0.05 2
74.67 0.05 0 8
76.25 0.05 1
77.34 0.05 1
78.25 0.05 1
79.04 0.05 1
79.98 0.05 1
81.56 0.05 2
82.51 0.05 0 9
84.97 0.05 1
86.11 0.05 1
86.98 0.05 1
88.29 0.05 1
89.27 0.05 2
89.57 0.05 1
90.25 0.05 0 10
91.10 0.05 1
92.66 0.05 1
94.10 0.05 1
95.05 0.05 1
96.41 0.05 1
97.54 0.05 2
98.50 0.05 0 11
100.03 0.05 1
101.80 0.05 1
102.93 0.03 1
104.26 0.05 1
105.70 0.05 2
106.61 0.05 0 12
108.47 0.05 1
110.34 0.05 1
111.41 0.05 1
113.75 0.05 2
114.69 0.03 0 13
115.76 0.05 1
118.12 0.05 1
119.37 0.05 1
121.90 0.10 2
122.85 0.05 0 14
126.65 0.05 1
128.07 0.05 1

Table A2. Radial velocities for the red-giant component of the
system.

Time (BJD) RV σRV
d km s−1 km s−1

2456122.702771 25.180 0.150
2456123.612354 25.125 0.155
2456173.369422 18.490 0.160
2456173.390837 18.450 0.160
2458392.378968 14.915 0.155
2458405.440501 16.650 0.160
2458425.324385 19.150 0.160
2458592.710566 15.840 0.150
2458601.707377 13.160 0.160
2458629.610681 2.500 0.150
2458653.547702 − 6.400 0.150
2458680.465544 − 12.200 0.160
2458688.562511 − 12.755 0.165
2458701.474174 − 12.840 0.160
2458710.457154 − 12.330 0.150
2458724.422518 − 10.785 0.155
2458753.533187 − 5.995 0.155

Table A3. Weighted-average light arrival-time delays (TDs)
for the δ Sct component of the system. Only the first ten rows
are shown. The full table is available online.

Time (BJD) TD σTD
d s s

2454958.39198 350.7 142.6
2454969.50828 305.2 143.5
2454979.52111 444.2 140.7
2454989.53392 355.1 153.5
2454999.54669 434.7 168.4
2455009.53899 385.1 127.4
2455021.71768 282.8 140.4
2455031.73030 324.5 130.8
2455041.74286 204.2 127.2
2455051.61232 174.2 115.6
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