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ABSTRACT 
Diclofenac (DCF) is one of the emerging compounds in the environment. There are many sources 
of diclofenac, such as effluent of pharmaceutical industries, wastewater treatment plant effluent, 
and domestic wastewater. It requires advanced treatment because it cannot be removed from 
water and sludges using the conventional wastewater treatment process. Catalytic and free radical 
methods also known as advanced oxidation process (AOP) can degrade large and complex organic 
compounds into smaller ones. In this review, each AOP method is critically assessed for the 
removal of DCF in water.
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Introduction

Pharmaceuticals and Personal care products (PPCPs) are 
used extensively around the world and represent an environ-
mental threat due to potential adverse impacts on human 
health and aqueous ecosystems.[1,2] Common pharmaceutical 
compounds are classified in Table 1 based on their proper-
ties and therapeutic use. DCF is one of the most common 
non-steroidal anti-inflammatory drugs (NSAID). It is used 

for the treatment of non-rheumatoid disease and painful 
inflammatory rheumatoid. It cannot be totally removed with 
the conventional wastewater treatment plants (CWWTP) as 
the removal efficiency is around 30%. As a result, it is 
detected in the effluent and influent of wastewater, surface 
water, and groundwater treatment plants.[7] An average con-
centration of DCF of 1.2 lg L−1 in surface water treatment 
plant effluent, 4.7 lg L−1 in wastewater treatment plant 
effluent, and 380 ng L−1 in groundwater treatment plant 
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effluent was detected.[8,9] Degradation byproducts can also 
be a serious threat to human health, so the removal of DCF 
and its byproducts is essential. Many pharmaceutical com-
pounds are detected at ng L−1 level (trace level) in the 
aquatic environment worldwide.[10,11] Nowadays, many 
researchers are monitoring pharmaceutical compounds in 
water or wastewater. Pharmaceutical compounds enter the 
environment via many sources, such as feces or urine (active 
metabolic or unactive ametabolic form) from human and 
animals’ excretion and through sewage system.[12] Surface 
water, ground water, and soil can become contaminated via 
manures and runoffs from cattle treated with veterinary 
pharmaceutical compounds.[13] The aim of this study is to 
review and assess the effectiveness of advanced oxidation 
processes (AOPs) for the removal of DCF from various 
aqueous systems.

Diclofenac

Diclofenac (2-[-20,60-(dichlorophenyl) amino] phenyl acetic 
acid), is categorized as non-steroidal anti-inflammatory 
drugs (NSAIDs) to relief pain in human, livestock, and 
domestic animals.[14] Sodium and potassium salt of DCF 
have different absorption time: sodium DCF has slower 
absorption rate to treat chronic pain while potassium DCF 
has a fast absorption rate for acute pain.[2] The chemical 
formula of sodium DCF is C14H10Cl2NNaO2 and its 

molecular weight is 318.1 g mol−1, water solubility is 
2.37 mg mL−1 and log Kow of 4.51. The chemical formula 
for potassium DCF is C14H10Cl2KNO2 with a molecular 
weight of 334.2 g mol−1, water solubility of 2.34 mg mL−1 

and log Kow of 4.28.[7,8] DCF is primarily used to treat 
inflammatory diseases but is also recommended as pain 
relief for menstrual cramps, migraines, as well as a variety 
of muscle aches and pains.[15] Diclofenac causes its pharma-
cological effects through the inhibition of the cyclooxygenase 
(COX) enzyme. This enzyme is responsible for the synthesis 
of prostaglandins that are signaling molecules used for a 
wide variety of biological functions, including inflammation 
and the induction of pain.[16] Diclofenac binds to both 
COX-1 and COX-2 isoforms, preventing the conversion of 
arachidonic acid to pro-inflammatory prostaglandins and 
thereby reducing inflammation.[17] The inhibition of COX-2 
results in a reduction of inflammation and pain relief, 
whereas inhibition of COX-1 results in an increased chance 
of gastrointestinal distress.[18] Diclofenac is thought to bind 
more favorably to COX-2 than other NSAID’s resulting in it 
being a more commonly dispensed NSAID for inflammatory 
illnesses.[19]

Sources of diclofenac in water

Diclofenac enters the aquatic environment as metabolic and 
ametabolic form. Up to 65% of DCF is excreted when it is 

Table 1. Pharmaceutical compounds commonly detected in water (data collected from Refs.[3–6]).

Name and types Properties Therapeutic use

Sulfonamides, fluoroquinolones, bacteriostatic Antibiotics
Acetaminophen diclofenac, naproxen, ibrofen NSAIDs Analgesic/antipyretics
Caffeine Central nervous system (CNS) stimulant CNS
Propranolol, atenolol Beta blocker cholesterol and triglyceride reducers Cardiovascular drugs
Clofibric acid, gemfibrozil Steroid hormone’s Endocrinology treatments
Iomeprol, iopromide Iodinated X-ray contrast media Absorbable organic halogen compounds

Figure 1. Sources of diclofenac.
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taken orally. Some of the metabolites end up is sludge in 
wastewater treatment plants, while others are released into 
the environment (Fig. 1). Due to the mechanism of applica-
tion, the emerging form of diclofenac entering the environ-
ment is the pure form. The excess gel is washed off and mix 
with the household wastewater.[20] Ordinary wastewater 
treatment plant (WWTP) cannot fully remove it and as a 
result, it ends up in the environment via effluent of 
WWTP.[21] It was placed into the emerging pollutant list 
under the European Water Framework Directive due to its 
presence and persistence in water and have adverse effects 
on humans and aquatic organisms.[22] DCF was detected in 
many regions of the world, such as Asia, America, and 
Europe waterways as shown in Table 2. The concentration 
of DCF varies from region to regions due to population 
densities, DCF analytical techniques and consumption rates.

DFC is the 8th best-selling pharmaceutical in the 
world.[37] The annually usage of DFC was estimated at 
around 940 tons globally and 65% of ingested DCF is elimi-
nated through urine.[38] The major DFC effluent was gener-
ated from domestic waste, hospital, and pharmaceutical 
units.[38] However, it is non-biodegraded by conventional 
WWTPs. Low levels (>2.00 lg L−1) of DCF in water is det-
rimental to aquatic ecosystems as it damages fish tissue and 
alters biochemical functions. Thus, further action needs to 
be taken to overcome DCF pollution.[38]

Health impact of diclofenac

Diclofenac has adverse effect on humans as well as the envi-
ronment. In a case study, the major cause for the death of 
vultures was found to be diclofenac consumption. DCF was 
used for the NSAID treatment of farmed cattle and when the 
cattle died, they were consumed by vultures.[39] The lethal 
dose for 50% of vultures (LD50) ranged from 98 to 225 lg 
kg−1. DCF was found to be so toxic that it forced the govern-
ments to ban manufacturing of DCF in Pakistan, India, 
Nepal, and other countries in 2006.[40] There are several side 
effects of DCF in human health, such as myocardial infarc-
tion, renal failure, cardiovascular thrombotic events, stomach 
ulceration, and stroke.[41] The half maximal effective concen-
tration (EC50) of DCF for bacteria was not >1 and 1–10 mg 
L−1 for invertebrate and algae.[42] The side effect in fish is a 

delay and reduction in hatchability.[43,44] Mammals and birds 
are also affected by the presence of DCF in the ecosystem, 
such as renal failure or increased risk of gastrointestinal prob-
lem, cardiotoxicity, neurotoxicity, nephrotoxicity, hepatotox-
icity, hematotoxicity, genotoxicity, teratogenicity, and skin 
allergies.[45] Long exposure to DFC will leads to kidney dis-
eases, mucosal damages, and central nervous system disor-
ders.[46] Due to it detrimental effects, DFC has been listed as 
priority contaminant by the European Union since 2015 
(Community Directive, 2015/495).[47]

Conventional methods for DCF removal

Adsorption is a method to remove pollutants from the 
liquid phase without generating toxic intermediates.[48] 

Various adsorbents have been used to remove DCF, such as 
palm kernel shells,[49] cellulose nanocrystalline (CNC) modi-
fied with polyvinylamine (PVAm) and reduced graphene 
oxide (rGO) cellulose aerogel (CNC-PVAm/rGO),[48] and 
sewage sludge-derived biochars.[50] Although it can remove 
high percentages of DCF and be reused several times, the 
adsorbent is typically landfilled once exhausted which can 
still cause pollution of not managed properly. More study 
need to be done to extend it reusability[51] and tests should 
also be carried out on fixed bed columns to simulate the 
application of adsorbent in continuous systems.[52] Table 3
lists some recent studies on the adsorption of DCF with 
removal percentage and mechanisms. Disadvantages of 
adsorption include competition of adsorption sites with 
other organics, saturation of adsorption sites, constant mon-
itoring of adsorbent to know when to replace the adsorbent.

Membrane separation is a more reliable physical method 
to remove DCF even at low concentration, but capital and 
operating costs are relatively high. However, fouling of the 
membrane caused by the accumulation of the solute on 
the membrane surface and the blockage of the pores reduces 
the water flux.[55]

Advanced oxidation processes for DCF removal

Advanced oxidation processes (AOP) produce highly react-
ive species (e.g. OH�, H2O2, O3, O�, … ) for the destruction 
of large molecular pollutant into smaller product in aqueous 
phase. In recent years, AOP has become the most suitable 
option because of two reasons: firstly, it has many technolo-
gies involved and secondly, it has potential application in 
degradation area. The main AOP methods include homoge-
neous and heterogeneous photocatalysis based on electroly-
sis, near ultraviolet or solar visible irradiation, wet air 
oxidation, ozonation, ultrasound, and Fenton’s reagent, 
while less conventional but evolving processes include 
microwave, ferrate reagent, ionizing radiation, and pulsed 
plasma. While AOP are mostly used in the area of water 
and wastewater treatment, it also has diverse applications in 
soil remediation, production of ultrapure water, ground-
water treatment, municipal wastewater sludge conditioning, 
odor control, and the organic volatile compounds treatment. 
Depending on the demand of treatment and the properties 

Table 2. DCF concentration in worldwide waterways.

Country Water source DCF concentration (mg L−1) References

Pakistan River 400–1800 [23]

Germany WWTP 1300–3300 [24]

Taiwan Surface seawater 2 [25]

Ireland Sea 110–550 [26]

Slovenia River 9–282 [27]

USA WWTP 2.5 [28]

Canada Estuary 
WWTP

2–5 
140–190

[29]

UK Estuary <8–195 [30]

Spain River 
Sea

6000 
4000

[31]

Portugal Sea 0.18 [32]

River 0.0032 [33,34]

Wastewater 0.0062 [33,35,36]
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of the treatment objectives AOP also applied alone or 
coupled with biological and physicochemical processes 
which can lead to better efficiency. AOP can also be used to 
convert bio recalcitrant into biodegradable compounds.[56,57] 

AOPs can be classified according to Figure 2. UV/H2O2, 
ozonation, Fenton and photo-Fenton, and semiconductor 
photocatalysis showed its high effectiveness in removing 
pharmaceutically active compounds (PhACs).[41] During 
AOPs, oxygen free radicals are formed, such as hydroxyl 
radicals (�OH) which has high oxidizing power to degrade 
the organic compound to form carbon dioxide, water, inor-
ganic ions, and other molecules with lower molecular 
weight.[42–44] This process is advantageous as it is chemical 
free, is low maintenance, and costs less.[44] However, the 
intermediates formed by AOPs can be toxic, and combined 
techniques are often required to enhance the removal of 
contaminants in water.[11]

Diclofenac removal from aqueous solutions using several 
methods for oxidant generation as well as activation has 
been widely investigated.[11] Figure 2 shows that AOP proc-
esses for DCF are categorized into UV based AOPs, Ozone 
based, Physical AOPs (PAOPs), Catalytic AOPs (CAOPs), 
and Electrochemical AOPs (EAOPs). For each category, the 
method, removal efficiency, media, and conditions are sum-
marized in Tables 4–8. Many processes involve different 
technologies and may belong to more than one category. 
AOPs summarized in Figure 2 are all well-established and 
tested at lab scale. AOP technologies consist of two steps: 
the in-situ formation of oxidative species and the reaction 
with the targeted contaminant. The radical formation 
depends on the specific parameter and is affected by water 
quality and system design. Besides radicals scavenging, other 
parameters also play a vital role in the degradation of con-
taminants, such as hydrodynamics and radical mass transfer 

Table 3. Physical studies of DCF removal.

Method Summary of results References

Adsorption: palm kernel shells The maximum removal was 95% at pH 2 with palm kernel shells dose of 15 g L−1 and 
DFC dose of 50 mg L−1. The best fitting model is pseudo-second order model with 
rate constant (K2)¼ 0.869 min−1. 

The interaction via aromatic p–p stacking and hydrogen bonding between -OH groups 
of phenol and carboxylic acid groups of DCF are leading to a good adsorption 
efficiency despite of the low surface area of the adsorbent.

[49]

Adsorption: CNC-PVAm/rGO CNC-PVAm/rGO had an adsorption capacity (qmax) of 605.87 mg g−1 compared to bare 
CNC aerogel (11.45 mg g−1). The fitting model was Langmuir isotherm and pseudo- 
second-order kinetic models. It could be reused four times. 

The introduction of PVAm and rGO to the CNC-PVAm/rGO aerogel also greatly enhanced 
electrostatic interactions, p-p interactions, and hydrophobic effects. These 
enhancements significantly promoted the hydrogen bonding interactions between 
the DCF molecules and CNC-PVAm/rGO, thus resulting in a large improvement in the 
adsorption performance of the aerogel.

[48]

Adsorption: sewage sludge-derived  
biochars

The maximum adsorption capacity was 92.7 mg g−1 and the best fitting model was 
pseudo-second order model. 

The adsorption of diclofenac occurred via p-stacking interactions at the biochar surface 
mainly via Dubinin-Radushkevich model. Both interactions between the phenyl 
groups of DCF and phenol groups on biochar via hydrogen bonding, and non- 
covalent p-p stacking of aromatic groups of DCF and biochar were responsible for 
monolayer surface coverage. The adsorption of DCF was ascribed to Langmuir, 
Temkin and Dubinin-Radushkevich models and strong p–p electro-donor-acceptor 
interactions.

[50]

Nanofiltration membrane (NF50) Up to 99.74% DCF removal at pH3. 
Only 55% when DCF is mixed with other pharmaceuticals.

[53]

Nanofiltration membrane (NF90-400) 100% removal of DCF at pH5.6–6.1. [54]

Figure 2. Broad overview of AOPs.
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in surface-based AOPs. Detailed overviews of reaction prin-
ciples, system design, and kinetics on AOPs are found in 
various book publications.[91,92]

DCF removal through ozone based AOPs

Ozone has long been used as an oxidant and disinfectant in 
water treatment. Recent ozone based AOP processes are 
listed in Table 4. As an oxidant, ozone is very selective and 
attacks primarily electron-rich functional groups like double 
bonds, amines, and activated aromatic rings (e.g. phenol). 
Since its reactions in real aqueous solutions often involve 
the formation of hydroxide radicals (OH�), ozonation itself 
is often considered an AOP or AOP-like process. OH� can 
be formed from the reaction of ozone with hydroxide 
ions.[93,94] The initiation of this reaction, however, is quite 
slow with a second-order rate constant of 70 M−1 s−1. In 
addition, radicals are formed as a side product from the 
reaction of ozone with organic matter (mainly phenol and 
amine functional groups).[95] During ozonation of secondary 
effluents, these reactions are the major contributors to radi-
cals formation. Methods to actively initiate formation of 

radicals include the ozonation at elevated pH and the com-
binations O3/H2O2 (also called peroxone-process), O3/UV, 
and O3/catalysts. The combination of ozonation and UV- 
irradiation will be discussed as a UV-based AOP in section 
DCF removal through UV-based AOPs. In ozone based 
AOPs, different mechanisms are involved, such as ozonation 
at elevated pH, peroxone-process (O3/H2O2), and O3/cata-
lysts. From Table 4, it appears that DCF removal in the 
range 76–100% is achievable within 5–30 min. Notably, 
100% DCF was removed in 40 s at pH5 in distilled water 
due to the rapid reaction of DCF with ozone and fluorinated 
hydrocarbons.[65] Another advantage of the application of 
ozone is that ozone can be generated on-site and as opposed 
to conventional chemical sanitizers, it requires neither trans-
portation nor storage.

The pH of the solution plays an important role in cata-
lytic ozonation as it controlled the mass transfer and decom-
position of O3. At a higher pH, the reaction mechanism 
follows a radical pathway and generates more OH� while at 
a lower pH, it follows a selective direct reaction pathway. 
Therefore, a higher pH of the solution is suggested to 
increase the decomposition of ozone into OH� which 

Table 4. Diclofenac degradation through ozone based AOP.

AOPs Matrix AOP features Summary of results References

Fe-Cu-MCM-41/O3 Deionized water Fe-Cu-MCM-41/O3 87% DCF removal in 15 min. [58]

Fe-MCM-41/O3 Deionized water Dose of O3¼ 100 mg L−1; catalytic ¼
1 g L−1; pH ¼ 7

76% DCF removal in 60 min. [59]

O3/UV Distilled-deionized water O3/UV 
pH 5.3

100% DCF removal in 40 min. [60]

Ozonation Milli-Q quality water O3 dose 0.22 g L−1 

pH 7
99% DCF removal in 30 min. [61]

Ozonation/activated carbon Deionized water O3/activated carbon 
pH ¼ 7 
RT ¼ 15 min

95% DCF removal in 15 min. [62]

Catalytic ozonation Deionized water Mixed metal oxide catalyst (SG-2101), 
full metal catalytic (MOLoxW 2101), 
Fenton type catalytic (Fe-O3 and 
DELTA) 

Weight ¼ 5 g 
DCF ¼ 20 mg L−1

100% DCF removal in 20 min. [63]

Ozone (O3)/activated 
carbons (AC)

Sewage treatment plan (STP) 
effluent

O3/AC packed together in series 
RT ¼ 15 and 20 min

100% DCF removal in 15 min. [62]

O3-catalytic Wastewater treatment plant Catalytic¼MnOx/Al2O3 with non- 
porous and mesoporous Al2O3 

tested

90% DCF removal in 15 min. [64]

O3 Surface water O3¼ 1–1.3 mg L−1 

pH ¼ 7.5 
RT ¼ 10–20 min

>95% DCF removal in 
30 min.

[6]

O3/fluorinated hydrocarbon Distilled-deionized water O3/fluorinated ¼ 9.52 mg L−1 

pH ¼ 5
100% DCF removal in 40 s. [65]

Ozone Distilled water O3¼ 36 L h−1 

pH ¼ 5–6 
RT ¼ 90 min

39% DCF removal in 90 min. [66]

Ozonation STP effluent AOX ¼ 100 g L−1 

O3¼ 15 mg L−1 

pH: 7.2 
RT ¼ 18 min

>96% DCF removal in 
18 min.

[67]

Ozone/OH and O3/H2O Municipal treatment plant 
effluent

pH � 8 
RT ¼ 5 min

99% DCF removal in 5 min. [68]

Polytetrafluoroethylene (PTEE) 
membrane/ozone

Tap water and real effluent of 
wastewater treatment 
plant

pH ¼ 10 
O3¼ 10, 28.5, and 45.3 g O3/Nm3

72% reduction of TOC, the 
removal of DCF was not 
affected by the presence 
of counterions. O3 

enhanced the degree of 
mineralization.

[45]

TiO2/O3 Urban wastewater samples TiO2/O3 

O2¼ 50 g Nm−3
100% DCF removal in 

120 min.

[69]
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enhances the degradation of refractory organics,[96] and it 
also results in higher TOC removal at higher pH levels.[97] 

The production of hydroxyl radicals as a result of ozone 
decomposition is significant at neutral pH for ozonation 
only.[96] At increased pH, more hydroxyl radicals would be 
generated by ozone decomposition due to the presence of a 
large quantity of hydroxide ions for homogeneous catalytic 
ozonation. The pH of treated water influences direct ozona-
tion efficiency since dissociated target organic compounds 
might have significantly different kO3 values.[98] 

Furthermore, the abundance of hydroxide ions directly 
influences the OH� generation and therefore indirect ozona-
tion. If the water to be treated has a pH > 8, ozonation 

applied as an AOP might be a promising process, if the pre-
cipitation of calcium carbonate is not of concern.

In the peroxone process, ozone reacts with the peroxide 
anion (HO2) to form OH precursors, which are subse-
quently reacting to OH�. Residual H2O2 might have to be 
destroyed before discharging the treated water to the receiv-
ing aqueous environment. The optimum molar ratio for the 
peroxone process is H2O2/O3¼ 0.5 mol mol−1.[99,100] Typical 
ozone doses in the peroxone process are 1–20 mg L−1. 
Peroxide can also be formed from reactions of ozone with 
the water matrix but its contribution to overall OH� forma-
tion during wastewater ozonation is not significant.[101] 

O3/H2O2 is a well-established process in drinking water 

Table 5. Diclofenac degradation through UV-based AOPs.

AOPs Matrix AOP features Summary of results References

O3/UVA/TiO2 Urban wastewater TiO2¼ 0.5–2.5 g L−1 

RT ¼ 60 min
75% DCF removal in 60 min. [9]

O3/UV Water O3/UV ¼ 0.1 mM and 1 kGy >90% DCF removal in 
30 min.

[70]

(UV/H2O2) Sewage treatment plant 
effluent

T-butanol 
Hg lamp ¼ 254 nm 
Pressure ¼ 17 W 
Time ¼ 90 min

39% DCF removal in 90 min. [66]

UV/TiO2 

UV/TiO2/H2O 
UV

Wastewater Inlet fluid pressure ¼ 2–4 bar 
pH ¼ 4–7.5 
RT ¼ 120 min

95% DCF removal in 120 min. [71]

UV/free chlorine (FC) by UV-B 
(265 mn) and UV-C 
(285 nm)

Synthetic wastewater 20 mg L−1 DCF pH 7.2; and 20 mg L−1 

FC with the pH of 8.5
The degradation follows a 

pseudo first-order kinetic. 
DCF is completely 
removed, but low 
mineralization (20–30%) 
occurred and the toxicity 
toward tomato and radish 
seeds decreased.

[46]

Ce withTiO2 nanocomposites Deionized water UV light 
Ce withTiO2¼ 25–125 mg 
Time ¼ 80 min

100% DCF removal in 80 min. [72]

O2/UV-A/TiO2 Aqueous solution O2/UV-A/TiO2 O3/UV-A/TiO2 

UV-A/TiO2 

pH ¼ 5, 7, and 9

100% DCF removal in 4 min. [73]

UV/TiO2/H2O2 Synthetic wastewater pH ¼ 6.5 
TiO2¼ 1 g L−1 

DCF ¼ 50 mg L−1 

Time ¼ 150 min 
H2O2¼ 10 ml L−1

DFC removal ¼ 97.71% 
TOC removal ¼ 67.95%

[49]

Table 6. Diclofenac degradation using electrochemical AOPs.

AOPs Matrix AOP features Summary of results References

Carbon nanotubes- 
polytetrafluorethylene 
electrode (CNTs-PTFE)

Aqueous phase CNTs-PTFE charged as cathode 
(negative)¼ 27 mg L−1 

Degradation time ¼ 60 min 
Current ¼ 100 mA

100% DCF removal in 60 min. [74]

Hydroxyapatite and TiO2 

(HApTi)
Aqueous phase HApTi ¼ 0.2 g 

DCF ¼ 4 g L−1 

RT ¼ 24 h

95% DCF removal in 24 h. [75]

TiO2–SnO2 Wastewater DCF concentration ¼ 20 mg L−1 

TiO2–SnO2¼ 0.8 g L−1 

pH ¼ 5

100% DCF removal in 
300 min.

[76]

Sonication/TiO2, SiO2, SnO2 

TiO2/SiO2

Distilled water TiO2, SiO2, SnO2 TiO2/SiO2 

Sonication ¼ 216, 617, and 850 Hz, 
90 W 

Diclofenac ¼ 50–100 mg L−1 

Time ¼ 60 min

90% DCF removal in 60 min. [21]

Titanium-coated with RuO2- 
IrO2-TiO2) as anode and 
stainless steel as cathode 
and a biochar particulate 
electrode (1–2 mm)

Treated wastewater samples Biochar TN 
1–2 mm ¼ 30.0 mg 
An inter-electrode distance of 7.5 cm 
pH value ¼ 7 
Current density ¼ 7 mA cm−2

90% of 10 mg L−1 was 
removed.

[47]
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treatment and water reuse applications (e.g. Windhoek, 
Namibia). However, recent studies have shown that the ben-
efits of its application in wastewater are limited due to high 
competition reactions and already efficient radical formation 
with ozone alone.[102] Catalytic ozonation is distinguished 
between homogeneous and heterogeneous catalytic ozona-
tion, depending on the water solubility of the catalyst. 
Homogeneous catalytic ozonation can be described as a 
three-step catalytic cycle as approached by Pines and 
Reckhow using Co(II) as a catalyst and oxalic acid: (1) for-
mation of Co(II)-oxalate complex, (2) oxidation by ozone to 
Co(III)-oxalate complex, and (3) decomposition of Co(III)- 
oxalate complex forming an oxalate radical and Co(II).[103] 

Heterogeneous catalytic ozonation mechanisms are mediated 
by metal oxides (e.g., TiO2, Al2O3, MnO2) and result in 
more complex reaction paths based on multiple-phase trans-
port mechanisms and respective reactions as described in 

detail by Beltran.[104] Most studies in Table 4 were carried 
out in distilled water achieving high percentage removals, 
but 90–100% removal is also possible within 15 min in real 
wastewater suggesting a minimal impact of organics and 
inorganics on DCF destruction by ozone. Some studies in 
Table 4 also show the high removal of DCF (96–99% in 5– 
18 min) even at pH 7–8 in real wastewater.[67,68] Both 
homogeneous and heterogeneous catalytic ozonation have 
shown their potential for water treatment at laboratory scale 
mainly based on lower ozone demand compared to ozona-
tion alone.[105,106] However, full-scale application is limited 
due to catalyst recovery and a lack of understanding of the 
catalytic ozonation mechanisms.[107] Some studies report the 
use of activated carbon as a catalyst in catalytic ozona-
tion.[108] However, OH� production in this process is based 
on the reaction of ozone with pyrol groups present on the 
activated carbon surface indicating that it acts as a radical 

Table 7. Diclofenac degradation through catalytic AOPs.

AOPs Matrix AOP features Summary of results References

UV/TiO2 W DCF ¼ 0.005–0.15 mmol L−1 

TiO2 Aeroxide P25 (hybrid 
photocatalysis-DCMD)¼ 0.05– 
0.4 g L−1 

Germicidal lamp for 4 h

85% DCF removal in high 
concentration at 4 h.

[77]

UV/TiO2/H2O2 and UV, UV/ 
TiO2

WW Inlet fluid pressure ¼ 3 bar, pH ¼ 4 95% DCF removal in 120 min. [71]

UVA/TiO2/O2 WWTP effluent UV lamps ¼ 0, 1, 2, 4, 6, 8, 16, 32 
TiO2¼ 50 ppm 
RT ¼ 40 min

70% DCF removal in 40 min. [78]

UVA/TiO2/O WWTP effluent Lamp¼ black light, 25 W, 300–420 nm. 
RT ¼ 2 h 
TiO2¼ 0.8 g L−1

85% DCF removal in 2 h. [79]

Simulated solar radiation/ 
TiO2/O2

WWTP effluent TiO2 dose ¼ 0.1 g L−1 

Photon flux ¼ 6.9 Einstein s−1 (290– 
400 nm) 

Solarbox¼ (0.078 L) 1 kW Xe-OP lamp

99% DCF removal in 120 min. [80]

Simulated solar radiation/ 
TiO2/O2

WWTP effluent Xenon arc lam > 290 nm 
TiO2¼ 104–500 mg L−1

97% DCF removal in 120 min. [81]

Solar photocatalysis WWTP effluent UV/TiO2 

UV/Fenton 
RT ¼ 100 min

>90% DCF removal in 100 min. [82]

Fe3þ/H2O2/LP UV DW DCF ¼ 20 mg L−1 

Fe3þ/H2O2/LP 
pH ¼ 2.8 
UV ¼ 254 nm

100% DCF removal in 50 min. [83]

Fe2þ/H2O2/Sunlight DW DCF ¼ 50 mg L−1 

Sun light/Fe2þ/H2O2 

pH ¼ 6.5

100% DCF removal in 60 min. [84]

Fe2þ/H2O2/Sunlight Synthetic fresh water DCF ¼ 50 mg L−1 

Sunlight/Fe2þ/H2O2 

pH ¼ 7.2

100% DCF removal in 100 min. [82]

UV-A/FeZSM5/H2O2 Synthetic water DCF ¼ 0.1 mM 
H2O2¼ 50 mM 
FeZSM5¼ 2.0 mM 
pH ¼ 4

The presence of UV-A activated 
FEZSM5 to convert DCF and 
extended the mineralization. It 
improved the biodegradability and 
the toxicity has been reduced after 
2 h. Low Iron leaching indicated 
that the used catalyst was able to 
retain its function after several runs.

[48]

Peroxy mono sulfate (PMS)/ 
cobalt (II)

WWTP effluent H2O2 or ozone ¼ 250–500 mM 
Co2þ or Fe2þ¼ 250–500 mM

83% DCF removal in 2 min. [85]

Photo catalyst WW Reduced graphene oxide-Ag-BiOI 
synthetic by using UV light with 
thermal strategy in 80 min.

100% DCF removal in 80 min. [86]

Photo catalyst W TiO2 

pH 6.5 
RT ¼ 360 min

100% DCF removal in 360 min. [87]

W: water; WW: wastewater; WWTP: wastewater treatment plant.
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promoter rather than a catalyst, which needs to be continu-
ously renewed to maintain efficient radical generation.[109] 

Another disadvantage of ozone is the need for the detection 
and destruction of ozone for the safety of personnel in 
various processing plants as exposure to ozone may cause 
irritation to the eyes, nose, and throat whereas high ozone 
levels (up to 95 mg L−1) can even have fatal effects on 
humans.

DCF removal through UV-based AOPs

UV-based AOPs comprise processes based on UV-irradi-
ation (mostly UV-C) and the combination of UV-light with 
different radical promoters.[110] Diclofenac degradation 
using UV-based AOPs are reviewed in Table 5. UV radi-
ation applied for advanced oxidation are usually >200 mJ 
cm−2 and therefore exceed UV-dose requirements for 4-log 
inactivation of most pathogens including UV-resistant 
organisms (e.g. adenovirus).[111] UV-irradiation sources usu-
ally consist of either low- (LP) or medium-pressure (MP) 
mercury lamps with mono- or polychromatic emission spec-
tra, respectively. Recently, UV-light emitting diode (LED) 
light sources with specific wavelength distributions have 
been investigated and summarized for disinfection pur-
poses.[112] The principal advantages of LEDs compared to 
conventional medium and low-pressure lamps are the elim-
ination of mercury, unique peak emission wavelengths, com-
pact size, and therefore flexible application design as well as 
a short startup phase. However, despite the prediction of 
future UV-LED wall plug efficiencies of about 75% in 
2020,[113] current diodes emit UV radiation at efficiencies of 
<10%.[114] This results in electric energy per order reduc-
tion of pollutant (EEO) values for LED systems that are not 
yet competitive with conventional UV-systems.[115] The 
most frequently applied UV-based AOP is the combination 
with H2O2. Other radical promoters, such as persulfate (to 
form sulfate radicals) and chlorine (hydroxyl radicals and 
radical chlorine species) are also being investigated. Besides 
established oxidants, Keen et al. investigated the applicability 
of nitrate in combination with MP-lamps as an alternative 
UV-based AOP.[116] However, to the best of our knowledge, 
no EEO values are available for this process. The combin-
ation of UV-irradiation and H2O2 leads to the photolytic 
cleavage of H2O2 into two OH�. However, the molar 
absorption coefficient of H2O2 is relatively low with 

e¼ 18.6 M−1 cm−1 at k�¼ 254 nm resulting in an H2O2 turn-
over of >10%. If LP UV lamps are used, high concentra-
tions of H2O2 are required to generate sufficient OH� 

([H2O2] 5–20 mg L−1) leading to the necessity of removing 
residual H2O2 in a subsequent step. Applied H2O2-doses are 
mainly set based on economic aspects.[116] However, at 
higher concentrations, scavenging of OH with H2O2 (kOH, 

H2O2¼ 2.7� 107 M−1 s−1) also affect the radical yield.[117] 

UV/H2O2 for TOC removal has been examined widely 
throughout peer-reviewed journal articles at laboratory- 
scale[116,118,119] for water qualities ranging from ultrapure 
water to landfill leachate.[120] First full-scale applications are 
already established for potable water reuse[121] and surface 
water treatment applications.[122] UV/H2O2 is not estab-
lished for advanced wastewater treatment mainly because of 
low UV-transmittance and high scavenging capacity of sec-
ondary or tertiary treated wastewater effluents but is used in 
some potable reuse treatment trains employing integrated 
membrane systems (ultrafiltration/reverse osmosis)[123] 

based on its negligible disinfection by-products formation 
potential. In the UV/O3 process, UV irradiation 
(k< 300 nm) results in a cleavage of dissolved ozone, fol-
lowed by a fast reaction of atomic oxygen with water to 
form a thermally excited H2O2. Subsequently, the excited 
peroxide decomposes into two OH.[93] Ozone has a molar 
extinction coefficient of e¼ 3,300 M−1 cm−1 at k�¼ 254 nm, 
which is significantly higher than that of H2O2 at this par-
ticular wavelength. However, due to recombination, only a 
small proportion of generated H2O2 decomposes to OH� 

resulting in a free OH� quantum yield of only 0.1.[103] 

Furthermore, both UV lamps and ozone generator need 
large amounts of electrical energy, resulting in relatively 
high energy demands for the combination of UV and ozone. 
Direct oxidation by the combination of ozonation and pho-
tolysis covers a wide range of TOC reactivity and leads to 
the main advantage of this process. However, low energy 
efficiency of radical generation might explain that to the 
best of our knowledge, no published data on full-scale UV/ 
O3 application are available.

No significant effect of pH is observed in the only UV 
system, indicating that although the deprotonation of DCF 
could occur when pH changed, the degradation of DCF by 
UV had nothing to do with whether DCF was deprotona-
tion, which was due to the same UV absorbance for DCF 
under 254 nm at pH 3–11.[124] However, the kobs of DCF in 

Table 8. Diclofenac degradation through physical AOPs.

AOPs Matrix AOP features Summary of results References

Ultrasonic persulfate (US/PS) WWTP effluent pH ¼ 6 
Temperature ¼ 30 �C 
PS ¼ 120 mg L−1 

RT ¼ 240 min

97% DCF removal in 240 min. [88]

O3/US Wastewater O3/US(Ultrasound)/Fe 90% DCF removal in 10 min. [89]

Electroenzymatic system Aqueous phase Graphene-hemin hybrid used 
as photocatalytic 

Time ¼ 11 h

96% DCF removal in 11 h. [90]

Pulsed corona plasma Water High positive voltages of 
80 kV are applied with 
20 Hz frequency plasma 
corona was generated. 

pH ¼ 3

>80% DCF removal in 15 min. [71]
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UV system was only 0.065 min−1. The optimal pH for DCF 
degradation in UV/peracetic acid (PAA) system was 8.5. 
The removal of DCF was enhanced gradually with increas-
ing PAA dose. Since NO3

− is a photosensitive substance 
which can generate HO_ under UV irradiation, its existence 
promoted the degradation of DCF. The presence of CO3

2− 

could slightly improve DCF degradation, which might be 
due to the role of generated carbonate radicals. Cl−, SO4

2−, 
and Fe3þ had little effect on DCF removal, while Cu2þ

could enhance DCF degradation because of its catalytic abil-
ity for PAA decomposition. An inhibition effect on DCF 
removal was observed in the presence of DOM, and it was 
more obvious at higher concentration of DOM. 
Disadvantage of UV-based methods is the low total organic 
carbon (TOC) removal.

An interesting alternative to OH� based AOPs is UV/ 
SO4—which generates primarily sulfate radicals (SO4

�) for 
the oxidation of organic contaminants in water.[125] Sulfate 
radicals have a strong oxidizing power and are more select-
ive oxidants than OH�.[126] Peroxydisulfate (PDS, S2O8

2−) is 
homolytically cleaved by UV-C activation. The quantum 
yield of S2O8

2− is larger than H2O2 (1.4 compared to 1.0) 
and molar absorption for S2O8

2− is slightly higher as well 
(22 and 18.6 M−1 cm−1, respectively) resulting in a higher 
generation of radicals using PDS as oxidizing agent.[127] 

Peroxymonosulfate (PMS, HSO5
−) is activated by UV radi-

ation into SO4
− and OH� with a quantum yield of 0.52 at 

pH 7.[128] Several studies have investigated the mechanisms 
and application of UV/PMS.[129] However, based on its 
lower quantum yield, high commercial pricing, and low 
availability of EEO values, it was not considered in this 
review. Recent research has shown the advantages of UV/ 
SO4

− compared to UV/H2O2 in laboratory-scale experi-
ments.[130,131] However, based on more selective reactivity of 
sulfate radicals, results reveal a higher sensitivity to water 
matrix changes and dissolved organic matter composition 
compared to UV/H2O2.[132] Depending on the respective 
target compound and water matrix, SO4

− based AOPs can 
be an interesting alternative to OH�-based processes. 
However, UV/PDS has a higher formation potential of disin-
fection by-products in comparison to UV/H2O2.

UV/Cl2 is another promising AOP, where UV-activated 
chlorine forms radical species, i.e. Cl, Cl2, and OH� which 
then oxidize target compounds.[133] Disinfectant, such as 
chlorine used in drinking water treatment plants can also 
react with DCF. A second-order reaction (first-order relative 
to DCF concentration and first-order relative to free chlor-
ine concentration) was reported with rate constant of 
1.51� 103 M−1 s−1 and 3.89 ± 1.17 M−1 s−1 at pH 7 for 
chlorine and chlorine dioxide, respectively.[12,134] Cl is a 
more selective oxidant than OH� since it reacts favorably 
with electron-rich contaminants.[135] However, in the UV/ 
Cl2 AOP, the two oxidants mainly used are hypochlorite 
and chlorine dioxide.[135–138] The pH dependency of HOCl/ 
OCl− speciation needs to be considered since it influences 
the molar absorption coefficient significantly. UV/Cl2 is 
especially favorable for waters with lower pH values, such as 
reverse osmosis permeate.[133] Research has mainly been 

conducted on laboratory-scale systems degrading organic 
indicator compounds.[135–138] Studies in Table 5 show that 
75–95% DCF degradation can be achieved within 10–60 min 
by UV-based AOPs in real wastewater which appears less 
efficient than ozone-based processes. Coupling ozone with 
UV does not seem to enhance the ozone performance. 
Coupling UV and free chlorine could remove all DCF in 
minutes,[46] but there was limited DOC removal due to the 
formation of stable dimers, which was confirmed by the 
yellowish color formed after each photolysis process and 
deserves additional attention as further treatment might 
need to be implemented to remove them. The process was 
relatively cheap with 0.6 kWh required to reduce the con-
centration DCF by one order of magnitude (90% removal) 
in 1 m3 of water.

DCF removal through electrochemical AOPs

Electrochemical AOPs for water treatment applications were 
recently reviewed in detail by Chaplin.[139] The major elec-
trode types commonly used in this process are doped 
SnO2,[140] PbO2,[141,142] RuO2,[143] boron-doped diamond 
(BDD),[144] and sub-stoichiometric and doped-TiO2.[145,146] 

Diclofenac degradation using Electrochemical AOPs are 
summarized in Table 6. However, BDD-electrodes are the 
most applied eAOP method due to their relatively low pro-
duction costs compared to other electrodes and high stabil-
ity of the diamond layer under anodic polarization.[139]

The electrochemical oxidative treatment of contaminated 
water with BDD electrodes can generate OH� directly via 
O2 evolution from water oxidation.[147] As diamond is a 
nonconductor it is doped with boron to use it as an elec-
trode material that is deposited onto a carrier material, such 
as niobium, tantalum, or silicon by chemical vapor depos-
ition.[148] The radicals are generated without the addition of 
further chemicals. Therefore, BDD-electrode treatment has 
attracted interest as an eco-friendly and efficient method for 
the removal of various pollutants. However, since OH� gen-
eration occurs directly on the electrode surface, the reactivity 
range of OH� is limited to about 1 mm,[149] and diffusive 
transport through the boundary layer at the electrode sur-
face is the limiting factor of high oxidation efficiencies. For 
eAOP processes, hydrodynamic parameters therefore have to 
be considered, as energy used to pump water, might account 
for the greatest share of energy consumption in this process. 
This applies especially if low current densities are used to 
achieve higher OH� formation efficiency prolonging overall 
treatment duration and pumping energy requirements. 
Apart from the oxidation of TOCs in water treatment, BDD 
electrodes were investigated for disinfection purposes as well 
as for the removal of chemical oxygen demand 
(COD).[150,151] Besides the generation of OH�, secondary 
oxidants, which enhance elimination reactions and disinfec-
tion in the bulk solution, can be produced.[151] A limiting 
factor for the applicability of BDD is unintentional forma-
tion of halogenated disinfection by-products.[152–154] 

Nevertheless, several full-scale eAOP systems for COD 
removal are already in operation.[155]
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DCF removal through catalytic based AOPs

The combination of ferrous iron (Fe(II)) and H2O2 at acidic 
conditions results in OH� formation which is known as the 
Fenton reaction. Iron acts as a catalyst with maximum cata-
lytic activity at pH ¼ 3, particularly due to the precipitation 
of ferric oxyhydroxide at higher pH value.[156] Excess add-
ition of H2O2 leads to the reduction of Fe(III) to Fe(II).[157] 

By substitution of iron oxides by other transition metals, 
enhanced TOC removal performance can be 
achieved.[158–160] To prevent iron precipitation, the Fenton 
process is restricted to acidic conditions. Therefore, alterna-
tive iron-free Fenton-like processes have recently been inves-
tigated as summarized by Bokare and Choi.[161] The main 
advantages of the Fenton process are operation at low- 
costs[162] and possibility of easy magnetic separation of 
residual iron. The Fenton process is therefore established in 
several industrial full-scale applications.[163] The use of 
photo-active catalysts for oxidation processes in water treat-
ment has been investigated intensively over the last decades 
(Photocatalytic AOPs).[164–166] Although there are numerous 
catalysts with photocatalytic properties (i.e., TiO2, WO3, or 
ZnO), research has mainly concentrated on two types of 
reactions based on the solubility of the catalyst:homogeneous 
photo-Fenton processes:

Fe OHð Þ
2þ þ hv! Fe2þþ�OH 

heterogeneous photocatalysis based on semiconductors 
(TiO2):

TiO2 þ hv! e− þ hþð Þ

hþ þ OHad
−!�OHad 

UV and visible light (wavelength: 180–400 nm) accelerate 
the Fenton process by photoreduction of Fe(III), however, 
the quantum yield for this reaction is relatively low.[156] 

Hence, it is directly coupled with the Fenton process. Photo- 
Fenton processes with an organic ligand (e.g. ferrioxalate) 
have a higher quantum yield and thus a higher efficiency 
due to the high UV absorption of Fe(III)-polycarboxylates. 
Additionally, the ferrioxalate complex can absorb radiation 
up to a wavelength of k< 550 nm, making it suitable for 
solar-driven AOPs.[167] A recent review of photo-Fenton 
applications for wastewater treatment is given by Rahim 
Pouran et al.[168] In TiO2-based photocatalysis, a semicon-
ductor material is irradiated by UV light (k< 400 nm). It is 
usually investigated as suspended colloidal particles or 
immobilized on different substrates. If photons with suffi-
cient energy hit the photocatalyst surface, an electron is 
excited to the conduction band, leaving a positively charged 
hole (hp) in the valence band. These species can cause oxi-
dative or reductive transformations of water constituents, 
either directly on the semiconductor surface or via radical 
reactions. A sufficient amount of dissolved oxygen is neces-
sary for the latter reactions. The combination of oxidation 
and reduction mechanisms is specific for photocatalysis, 
whereas other AOPs are based only on OH� reactions. 
Diclofenac degradation studies through catalytic AOPs are 
summarized in Table 7. Unfortunately, the quantum yield of 

TiO2 photocatalysis for oxidation and reduction of contami-
nants is usually very low (�0.04) due to the fast recombin-
ation of electron-hole pairs.[169] The addition of an electron 
donor (e.g. citric acid) may lead to the “filling” of positive 
holes and increased reduction rates from the negative elec-
trons in the conduction band.[170,171] Advantages of TiO2 
photocatalysis for TOC removal include low costs of the 
catalyst itself and easy commercial availability in various 
crystalline forms and particle characteristics. Furthermore, 
the catalyst is nontoxic and photochemically stable. The 
limitation of heterogeneous photo-catalysis application at 
full-scale is mainly based on two factors: (1) separation of 
colloidal catalyst from the water suspension after treatment 
and (2) mass transfer limitations to the surface of the immo-
bilized catalyst on a substrate.[172] Despite strong research 
efforts in the field of photocatalysis, the process is rarely 
applied in industrial or municipal water treatment facilities 
because of the low quantum yield for OH� production.

DCF removal through physical AOPs

Electrohydraulic discharge (Plasma) is defined as liquid- 
phase electrical discharge in reactors and these have been 
investigated as AOPs in water treatment.[173,174] Strong elec-
tric fields applied within the water (electrohydraulic dis-
charge) or between water and gas phase (nonthermal 
plasma) initiate both chemical and physical processes. 
Diclofenac degradation studies through physical AOPs are 
summarized in Table 8. Besides the direct oxidation of con-
taminants in water, various oxidizing radicals or active spe-
cies, UV radiation, and shock waves are formed during the 
discharge, which can promote oxidation.[175] Sonication of 
water by ultrasound (US) (20–500 kHz) leads to the forma-
tion and collapse of micro-bubbles from acoustical wave 
which induces compression and implosion. These bubbles 
implode violently after reaching a critical resonance size and 
generate transient high temperatures (>5,000 K), high pres-
sures (>1,000 bar), and highly reactive radicals. Destruction 
of water contaminants occurs by thermal decomposition and 
various radical reactions Cavitation via ultrasound exhibits 
low interference from water matrix and less heat transfer 
compared to UV irradiation. A comprehensive review of 
sonochemical methods is provided by Pang et al.[176] 

Sonochemical processes have proven to oxidize various con-
taminants at laboratory-scale.[177,178] However, the applica-
tion of ultrasound is highly energy intensive and results in a 
very low electrical efficiency in comparison to other technol-
ogies.[178,179] Therefore, the coupling of ultrasound with 
UV-irradiation (sonophotolysis), oxidants (O3, H2O2), or 
catalysts (TiO2) (sonocatalysis) or both (sonophotocatalysis) 
has received increased attention. These hybrid processes can 
yield additional advantages. However, major improvement 
of energy efficiency is often achieved due to the higher effi-
ciency of the coupled additional processes (e.g. UV/H2O2 in 
US/UV/H2O2).[178] The application of highly energetic radi-
ation in the microwave range (300 MHz–300 GHz) has been 
investigated for the oxidation of water contaminants. 
Microwaves have been used in combination with oxidants 
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(H2O2) or catalysts (TiO2, GAC) to assist in the destruction 
of organic pollutants.[180–182] Microwaves can enhance reac-
tion rates and induce selective heating of the contaminants 
through internal molecule vibration. Additionally, micro-
waves can generate UV radiation via an electrodeless dis-
charge lamp for combined MW/UV reactors. Unfortunately, 
most of the applied microwave energy is converted into 
heat. Beside the low electrical efficiency (EEO not readily 
available in literature), cooling devices have to be employed 
to prevent treated water from overheating. The utilization of 
ionizing radiation from an electron beam source (0.01– 
10 MeV) for water treatment has been tested since the 
1980s. The accelerated electrons penetrate the water surface 
and result in the formation of electronically excited species 
in the water, including various ionic species and free radi-
cals. The maximum penetration depth of the accelerated 
electrons is directly proportional to the energy of the inci-
dent electrons (e.g. 7 mm, reported by Nickelsen).[183] 

Therefore, water is irradiated in a thin film or as a sprayed 
aerosol. This process exhibits a high oxidizing power and lit-
tle interference by the water matrix and the electrical effi-
ciency is within the feasibility range (EEO< 3 kWh m−3).[184] 

Due to the high capital costs for an electron accelerator 
(usually >1 million US-$), the related risk potential from X- 
rays, and hence the necessary security measures, further 
development of the electron beam process does not seem 
profitable.

Conclusions

In this study, a critical review of different AOPs techniques 
was undertaken including a mechanistic discussion of pro-
cess principles and specific byproduct formation. Processes 
used for diclofenac removal from aqueous solutions include 
ozone based AOP, UV based AOP, electrochemical based 
AOP, catalytic based AOP and Physical based AOP. Physical 
based AOP, such as ultrasound, microwave, or plasma have 
high capital and operating costs. The Ozone AOP method 
has degradation efficiency up to 100%. The degradation effi-
ciency of UV based AOP can reach up to 95%. Due to the 
selectivity and efficiency, ozone base AOPs with or without 
catalyst is considered best for diclofenac removal, as it 
requires minimum amount of energy. Combination of cata-
lytic UV and ozone also seems to be promising technique. 
Further research should also look at the degradation of DCF 
by-products along with DCF degradation as little is known 
about by-products toxicity.
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