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Abstract: This paper develops a novel method for moving force identification (MFI) called 
preconditioned least square QR-factorization (PLSQR) method. The algorithm seeks to 
reduce the impact of identification errors caused by unknown noise. The biaxial moving 
forces travel on a simply supported bridge at three different speeds is used to generate 
numerical simulations to assess the effectiveness and applicability of the algorithm. Results 
indicate that the method is more robust towards ill-posed problem and has higher 
identification precision than the conventional time domain method (TDM). In addition, the 
robustness and ill-posed immunity of PLSQR are directly affected by two kinds of 
regularization parameters, namely, number of iterations 𝑗𝑗  and regularization matrix 𝐋𝐋 . 
Compared with the standard form of least square QR-factorization (LSQR), i.e., the 
regularization matrix 𝐋𝐋 being the identity matrix 𝐈𝐈𝒏𝒏, the PLSQR with the optimal number of 
iterations 𝑗𝑗 and regularization matrix 𝐋𝐋 has many advantages on MFI and it is more suitable 
for field trials due to better adaptability with type of sensors and number of sensors.  
Keywords: moving force identification; preconditioned least square QR-factorization; time 
domain method; regularization parameter; preconditioner 
 
1.  Introduction 

The knowledge of dynamic loads acting on bridges is always required to ensure the safety 
and reliability of bridges. This information on traffic loading can enable efficient and 
economical management of transport networks and is becoming a valuable tool for bridge 
safety assessment [1]. 

The technique of moving force identification (MFI) on bridges is to solve an inverse 
problem through the dynamic characteristics of vehicle-bridge system and the measured 
responses of bridges, which is very different from the forward problem. Force reconstruction 
techniques are often associated with an ill-posed problem due to the recovery of the input of a 
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dynamic system with influential noise, which leads to the reconstruction results in inaccurate 
or non-unique solutions [2]. 

There are four important indirect moving force identification methods developed by Chan 
et al [3-6], which have been incorporated into a moving force identification system and then 
evaluated by experimental verification in laboratory and field applications [7]. Comparisons 
show that all these four methods have acceptable accuracy; but the identification results from 
the time domain method (TDM) and the frequency-time domain method (FTDM) are better 
than those from the interpretive method I (IMI) and the interpretive method II (IMII). The 
TDM was widely adopted because of its high precision and rigorous theory, which can be 
used to identify the load history of each axle of a vehicle passing a bridge without interrupting 
the flow of traffic. Zhu and Law [8-10] extended the TDM to several different bridge types. 
Chan and Ashebo [11] extended the TDM to continuous bridge by considering the responses 
of only one selected span from the continuous bridge. Yu and Chan [12] proposed a method 
of moments (MOM) algorithm which improved the efficiency compared with the existing 
TDM. However, it was still found that the identification results of improved methods based 
on TDM suffer large deviation from real load during the local period of the vehicle crossing 
the bridge, since the nature of the MFI is ill-posed [13].  

In the last decade, some novel techniques have been presented for MFI. Dowling et al. [14] 
utilized the first order regularization method to calculate the moving force from bridge strain 
responses. Berry et al. [15] presented the theoretical developments of identifying local 
dynamic transverse forces on the surface of a thin plate based on the virtual fields method. Li 
et al. [16] proposed a force identification algorithm based on wavelet multi-resolution 
analysis. Most of the new methods have noise immunity but ill-posedness should not be 
ignored. To overcome the ill-posedness of MFI, regularization methods used to be utilized by 
converting ill-posed to well-posed and these conditions can be physical or mathematical [2]. 

Some researchers introduced Tikhonov regularization approach to overcome ill-posedness 
problems in MFI, as long as the optimal regularization parameter can be correctly chosen. 
Pinkaew [17] adopted an updated static component (USC) technique to overcome vehicle-
bridge parameter sensitivity issues such as the vehicle speed. González et al. [18] proposed a 
new bridge weigh in motion algorithm to reduce the dynamic uncertainty of bridge responses. 
Mao et al. [19] presented an improved state space method to deal with the ill-posedness 
problem. Ronasi et al. [20] added the traditional Tikhonov regularization method within the 
numerical framework to reduce the sensitivity to noise of wheel-rail contact force 
identification. Law et al. [21-23] proposed and an iterative regularization method for 
structural damping identification and damage identification when noise effect is included in 
the measurements. Ding et al. [24] proposed a discrete force identification approach based on 
average acceleration discrete algorithm. Feng et al. [25] introduced a Bayesian inference 
regularization to overcome the ill-posed problem for input moving loads. Qiao et al. [26,27] 
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proposed a regularized cubic B-spline collocation (CBSC) method to mitigate the ill-posed 
problem. Liu et al. [28-31] proposed a series of new methods for MFI based on Tikhonov 
regularization such as time-domain Galerkin method, improved regularization method and the 
shape function method based on moving least square fitting. 

In linear algebra, the least square QR-factorization (LSQR) is an iterative method similar in 
style to the well-known conjugate gradients (CG) as applied to the least squares problem 
[32,33]. Benbow [34] extended LSQR with similar preconditioned Krylov methods for 
solving augmented linear systems in a generalized least squares problem. Jacobsen and 
Hansen [35] presented a subspace preconditioned LSQR for the solution of discrete linear ill-
posed problem. Reichel et al. [36,37] presented a generalization of LSQR that allowed the 
choice of an arbitrary initial vector for the solution subspace. Karimi and Zali [38] proposed a 
block preconditioned least squares (BPLS) and a block preconditioned global least squares 
(BPGLS) algorithms to solve the linear system of equations with block partitioned coefficient 
matrix and multiple linear system of equations. Arridge et al. [39] derived a factorization-free 
preconditioned LSQR algorithm (MLSQR) for solving large-scale linear inverse imaging 
problems. 

As mentioned earlier, out of many iterative methods for solving the linear algebraic 
equation, LSQR is a popular iterative method for the solution of large linear systems of 
equations and least-squares problems [36]. In this paper, based on the LSQR technique, a 
preconditioned least square QR-factorization (PLSQR) regularization method is proposed for 
MFI by choosing proper regularization parameter, such as the number of iterations and the 
regularization matrix. The numerical simulation results show that the PLSQR has excellent 
ill-posed immunity and high-quality adaptability with different sensors. These advantages of 
PLSQR are practical to the field trials of MFI.  

 
2.  Background of theory 
2.1.  Moving force identification by time domain method (TDM) 

As shown in Fig.1, a moving force 𝑓𝑓(𝑡𝑡) passes over a simply supported Bernoulli-Euler 
beam at a constant speed 𝑐𝑐. The span of the beam is 𝐿𝐿 and viscous damping is 𝐶𝐶. The mass 
per unit length of the beam is 𝜌𝜌 and flexural stiffness is 𝐸𝐸𝐸𝐸. The dynamic equation of vehicle-
bridge system in modal coordinate 𝑞𝑞𝑛𝑛(𝑡𝑡) can be expressed as 

�̈�𝑞𝑛𝑛(𝑡𝑡) + 2𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛�̇�𝑞𝑛𝑛(𝑡𝑡) +𝜔𝜔𝑛𝑛2𝑞𝑞𝑛𝑛(𝑡𝑡) = 2
𝜌𝜌𝜌𝜌
𝑝𝑝𝑛𝑛(𝑡𝑡)，(n = 1,2, … ,∞)                         (1)    

where 𝜔𝜔𝑛𝑛 = 𝑛𝑛2𝜋𝜋2

𝜌𝜌2 �𝐸𝐸𝐸𝐸
𝜌𝜌

 is the nth modal frequency;  𝜉𝜉𝑛𝑛 = 𝐶𝐶
2𝜌𝜌𝜔𝜔𝑛𝑛

 is the modal damping ratio; 

𝑝𝑝𝑛𝑛(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) sin 𝑛𝑛𝜋𝜋𝑛𝑛𝑛𝑛
𝜌𝜌

 is the modal force.  
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Fig.1.  Dynamic model of moving vehicle and simply supported beam  

 
The deflection 𝑣𝑣(𝑥𝑥, 𝑡𝑡) and the bending moment 𝑀𝑀(𝑥𝑥, 𝑡𝑡) of the simply supported beam at 

point 𝑥𝑥 and time 𝑡𝑡 in time domain can be obtained as Law et al. [4] 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = �
2

𝜌𝜌𝐿𝐿𝜔𝜔𝑛𝑛′

∞

𝑛𝑛=1

sin
𝑛𝑛𝑛𝑛𝑥𝑥
𝐿𝐿

� 𝑒𝑒−𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛(𝑛𝑛−𝜏𝜏)sin𝜔𝜔𝑛𝑛′ (𝑡𝑡 − 𝜏𝜏)sin
𝑛𝑛𝑛𝑛𝑐𝑐𝜏𝜏
𝐿𝐿

𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑛𝑛

0
 

                (2)  

𝑀𝑀(𝑥𝑥, 𝑡𝑡) = −𝐸𝐸𝐸𝐸
𝜕𝜕2𝜈𝜈(𝑥𝑥, 𝑡𝑡)
𝜕𝜕𝑥𝑥2

= �
2𝐸𝐸𝐸𝐸𝑛𝑛2

𝜌𝜌𝐿𝐿3

∞

𝑛𝑛=1

𝑛𝑛2

𝜔𝜔𝑛𝑛′
sin

𝑛𝑛𝑛𝑛𝑥𝑥
𝐿𝐿

� 𝑒𝑒−𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛(𝑛𝑛−𝜏𝜏)sin𝜔𝜔𝑛𝑛′ (𝑡𝑡 − 𝜏𝜏)sin
𝑛𝑛𝑛𝑛𝑐𝑐𝜏𝜏
𝐿𝐿

𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑛𝑛

0
 

     (3) 
where 𝜔𝜔𝑛𝑛′ = 𝜔𝜔𝑛𝑛�1 − 𝜉𝜉𝑛𝑛2. 

The MFI from bending moment responses by TDM can be expressed as 
𝐁𝐁 ∙ 𝐟𝐟 = 𝐌𝐌                                                                   (4) 

where 𝐁𝐁 ∈ 𝐑𝐑(𝑁𝑁−1)×(𝑁𝑁𝐵𝐵−1), 𝐟𝐟 ∈ 𝐑𝐑(𝑁𝑁𝐵𝐵−1) and 𝐌𝐌 ∈ 𝐑𝐑(𝑁𝑁−1). Definition the time interval is ∆𝑡𝑡, the 
number of sample points is 𝑁𝑁 + 1 and 𝑁𝑁𝐵𝐵 = 𝜌𝜌

𝑛𝑛∆𝑛𝑛
. 

Similarly, the acceleration �̈�𝑣(𝑥𝑥, 𝑡𝑡) of the simply supported beam at point 𝑥𝑥 and time 𝑡𝑡 in 
time domain can be expressed as 

�̈�𝑣(𝑥𝑥, 𝑡𝑡) = �
2
𝜌𝜌𝐿𝐿

sin
𝑛𝑛𝑛𝑛𝑥𝑥
𝐿𝐿

∞

𝑛𝑛=1

[𝑓𝑓(𝑡𝑡)sin
𝑛𝑛𝑛𝑛𝑥𝑥
𝐿𝐿

+� ℎ̈𝑛𝑛(𝑡𝑡 − 𝜏𝜏)𝑓𝑓(𝜏𝜏)sin
𝑛𝑛𝑛𝑛𝑐𝑐𝜏𝜏
𝐿𝐿

𝑑𝑑𝜏𝜏]
𝑛𝑛

0
 

               (5)  
where ℎ̈𝑛𝑛(𝑡𝑡) = 1

𝜔𝜔𝑛𝑛
′ 𝑒𝑒−𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛𝑛𝑛 × {[(𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛)2 − 𝜔𝜔𝑛𝑛′2] sin𝜔𝜔𝑛𝑛′ 𝑡𝑡 + (−2𝜉𝜉𝑛𝑛𝜔𝜔𝑛𝑛𝜔𝜔𝑛𝑛′ ) cos𝜔𝜔𝑛𝑛′ 𝑡𝑡}.  

The MFI from acceleration responses by TDM can be expressed as 
𝐀𝐀 ∙ 𝐟𝐟 = �̈�𝐕                                                                   (6) 

where 𝐀𝐀 ∈ 𝐑𝐑𝑁𝑁×(𝑁𝑁𝐵𝐵−1), 𝐟𝐟 ∈ 𝐑𝐑(𝑁𝑁𝐵𝐵−1) and �̈�𝐕 ∈ 𝐑𝐑𝑁𝑁. 
Likewise, the MFI from bending moment and acceleration combination responses by TDM 

can be expressed as 

�
𝐁𝐁/‖𝐌𝐌‖
𝐀𝐀/��̈�𝐕��× 𝐟𝐟 = �

𝐌𝐌/‖𝐌𝐌‖
�̈�𝐕/��̈�𝐕� �                                                       (7)                                                                              

where ‖∙‖ is the norm of the vector.  
 

2.2.  Theory of least square QR-factorization (LSQR) 
Based on the existing TDM, the MFI dynamic equation of vehicle-bridge system can be 

simplified to the form 𝐀𝐀𝐀𝐀 = 𝐛𝐛, where the 𝐀𝐀 is large and spare matrix, the vector 𝐀𝐀 is time-
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varying force need to be identified and the vector 𝐛𝐛 is measured dynamic responses of bridge. 
With bidiagonalization procedure, algorithm LSQR is acceptable of solving least-squares 
problems min‖𝐀𝐀𝐀𝐀 − 𝐛𝐛‖2 , where 𝐀𝐀 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛 , 𝐀𝐀 ∈ 𝐑𝐑𝑛𝑛 , 𝐛𝐛 ∈ 𝐑𝐑𝑚𝑚 ,  𝑚𝑚 ≥ 𝑛𝑛 . The residual norm 
�𝐫𝐫𝑗𝑗�2decreases monotonically with 𝑗𝑗-step iterations, where 𝐫𝐫𝑗𝑗 = 𝐛𝐛 − 𝐀𝐀𝐀𝐀𝑗𝑗. 

The symmetric Lanczos process is adopted to solve symmetric linear equations 𝐁𝐁𝐀𝐀 = 𝐛𝐛 
with a symmetric matrix 𝐁𝐁 and a starting vector 𝐛𝐛. A sequence of vectors 𝐯𝐯𝑖𝑖,𝐰𝐰𝑖𝑖 and positive 
scalars 𝛼𝛼𝑖𝑖 ,𝛽𝛽𝑖𝑖 (𝑖𝑖 = 1,2, …,) are introduced to make sure matrix 𝐁𝐁 is reduced to tridiagonal form, 
which can be expressed as 

𝛽𝛽1𝐯𝐯1 = 𝐛𝐛 
𝐰𝐰𝑖𝑖 = 𝐁𝐁𝐯𝐯𝑖𝑖 − 𝛽𝛽𝑖𝑖𝐯𝐯𝑖𝑖−1 

𝛼𝛼𝑖𝑖 = 𝐯𝐯𝑖𝑖𝑇𝑇𝐰𝐰𝑖𝑖                                                              (8) 

𝛽𝛽𝑖𝑖+1𝐯𝐯𝑖𝑖+1 = 𝐰𝐰𝑖𝑖 − 𝛼𝛼𝑖𝑖𝐯𝐯𝑖𝑖 
where 𝐯𝐯0 ≡ 0 and each 𝛽𝛽𝑖𝑖 ≥ 0 is chosen so that ‖𝐯𝐯𝑖𝑖‖ = 1(𝑖𝑖 > 0). The solution after 𝑗𝑗-step 
iterations can be expressed as 

𝐁𝐁𝐕𝐕𝑗𝑗 = 𝐕𝐕𝑗𝑗𝐓𝐓𝑗𝑗 + 𝛽𝛽𝑗𝑗+1𝐯𝐯𝑗𝑗+1𝐞𝐞𝑗𝑗𝑇𝑇                                               (9) 

where 𝐞𝐞𝑗𝑗  is the 𝑗𝑗-th unit vector, 𝐓𝐓𝑗𝑗 ≡ tridiag�𝛽𝛽𝑗𝑗,𝛼𝛼𝑗𝑗,𝛽𝛽𝑗𝑗+1� =

⎣
⎢
⎢
⎢
⎡
𝛼𝛼1 𝛽𝛽2 ⋯
𝛽𝛽2
⋮

𝛼𝛼2 𝛽𝛽3
⋱ ⋱

0 0
0
⋱

0
⋮

0 0 𝛽𝛽𝑗𝑗−1
0 0 …

𝛼𝛼𝑗𝑗−1 𝛽𝛽𝑗𝑗
𝛽𝛽𝑗𝑗 𝛼𝛼𝑗𝑗⎦

⎥
⎥
⎥
⎤

 and 

𝐕𝐕𝑗𝑗 ≡ �𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑗𝑗� with 𝐕𝐕𝑗𝑗𝑇𝑇𝐕𝐕𝑗𝑗 = 𝐈𝐈 when no rounding error included. 

Multiplying Eq. (9) by an arbitrary 𝑗𝑗-vector 𝐲𝐲𝑗𝑗, whose last element is 𝜂𝜂𝑗𝑗, the Eq. (9) can be 

expressed as 
𝐁𝐁𝐕𝐕𝑗𝑗𝐲𝐲𝑗𝑗 = 𝐕𝐕𝑗𝑗𝐓𝐓𝑗𝑗𝐲𝐲𝑗𝑗 + 𝜂𝜂𝑗𝑗𝛽𝛽𝑗𝑗+1𝐯𝐯𝑗𝑗+1                                        (10) 

Since 𝐕𝐕𝑗𝑗(𝛽𝛽1𝐞𝐞1) = 𝐛𝐛 is defined, by defining 𝐓𝐓𝑗𝑗𝐲𝐲𝑗𝑗 = 𝛽𝛽1𝐞𝐞1 and 𝐀𝐀𝑗𝑗 = 𝐕𝐕𝑗𝑗𝐲𝐲𝑗𝑗, then the Eq. (10) 

can be expressed as 
𝐁𝐁𝐀𝐀𝑗𝑗 = 𝐛𝐛 + 𝜂𝜂𝑗𝑗𝛽𝛽𝑗𝑗+1𝐯𝐯𝑗𝑗+1                                               (11) 

By defining ‖𝐮𝐮𝑖𝑖‖ = ‖𝐯𝐯𝑖𝑖‖ = 1, 𝐔𝐔𝑗𝑗 ≡ �𝐮𝐮1,𝐮𝐮2, … ,𝐮𝐮𝑗𝑗� , 𝐁𝐁𝑗𝑗 ≡

⎣
⎢
⎢
⎢
⎢
⎡
𝛼𝛼1
𝛽𝛽2 𝛼𝛼2

𝛽𝛽3 ⋱
⋱ 𝛼𝛼𝑗𝑗−1

𝛽𝛽𝑗𝑗−1 𝛼𝛼𝑗𝑗⎦
⎥
⎥
⎥
⎥
⎤

, the 

results of min‖𝐀𝐀𝐀𝐀 − 𝐛𝐛‖2 can be reduced to lower bidiagonal form by Lanczos process as 
𝐔𝐔𝑗𝑗+1(𝛽𝛽1𝐞𝐞1) = 𝐛𝐛 
𝐀𝐀𝐕𝐕𝑗𝑗 = 𝐔𝐔𝑗𝑗+1𝐁𝐁𝑗𝑗                                                        (12) 

As 𝐫𝐫𝑗𝑗 = 𝐛𝐛 − 𝐀𝐀𝐀𝐀𝑗𝑗, 𝐀𝐀𝑗𝑗 = 𝐕𝐕𝑗𝑗𝐲𝐲𝑗𝑗  and then the 𝑗𝑗 iterative steps of Lanczos process of problem 

min‖𝐀𝐀𝐀𝐀 − 𝐛𝐛‖2 can be expressed as 
min�𝐫𝐫𝑗𝑗�2 = min�𝐔𝐔𝑗𝑗+1(𝛽𝛽1𝐞𝐞1) −𝐀𝐀𝐕𝐕𝑗𝑗𝐲𝐲𝑗𝑗�2 = min�𝛽𝛽1𝐞𝐞1 − 𝐁𝐁𝑗𝑗𝐲𝐲𝑗𝑗�2            (13) 

The conventional QR factorization of 𝐁𝐁𝑗𝑗 can be used in Eq. (13) and then the identification 
moving force 𝐀𝐀𝑗𝑗 by LSQR method can be obtained with 𝑗𝑗-step iterations.  
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2.3.  Theory of preconditioned least square QR-factorization (PLSQR) 
For ill-posed inverse problems, the matrix 𝐀𝐀 is a discretization of a compact operator which 

singular values accumulate at zero, rendering such clustering impossible. It is possible to 
modify the LSQR algorithm and derive a hybrid between a direct and an iterative 
regularization algorithm. A preconditioned version of LSQR for the general form problem 
where one minimizes ‖𝐋𝐋𝐀𝐀‖2 instead of ‖𝐀𝐀‖2 can be realized by introducing the regularization 
matrix 𝐋𝐋 . Here, the matrix 𝐋𝐋  is typically either the identity matrix 𝐈𝐈𝒏𝒏  or a 𝑝𝑝 × 𝑛𝑛  discrete 
approximation of the (𝑛𝑛 − 𝑝𝑝)-th derivative operator, in which case 𝐋𝐋 is a banded matrix with 
full row rank. If the matrix 𝐋𝐋 is the identity matrix 𝐈𝐈𝒏𝒏, then it is the standard form of LSQR. 
The singular value decomposition (SVD) of matrix 𝐀𝐀  can be expressed as 𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇 =
∑ 𝐮𝐮𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝛔𝛔𝑖𝑖𝐯𝐯𝑖𝑖𝑇𝑇. Then the generalized singular value decomposition (GSVD) of the matrix pair 

(𝐀𝐀,𝐋𝐋) are the square roots of matrix pair (𝐀𝐀𝐓𝐓𝐀𝐀,𝐋𝐋𝐓𝐓𝐋𝐋), where 𝐀𝐀 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛, 𝐋𝐋 ∈ 𝐑𝐑𝑝𝑝×𝑛𝑛  and the 
constants satisfy 𝑚𝑚 ≥ 𝑛𝑛 ≥ 𝑝𝑝. The matrix 𝐀𝐀 and 𝐋𝐋 of the GSVD can be obtained as 

𝐀𝐀 = 𝐔𝐔�
𝐔𝐔 0
0 𝐈𝐈𝑛𝑛−𝑝𝑝

�𝐗𝐗−1,    𝐋𝐋 = 𝐕𝐕(𝐌𝐌, 0)𝐗𝐗−1                             (14) 

where 𝐔𝐔 ∈ 𝐑𝐑𝑚𝑚×𝑛𝑛 and 𝐕𝐕 ∈ 𝐑𝐑𝑝𝑝×𝑝𝑝 are orthonormal columns matrices, ∑ = diag�𝜎𝜎1,𝜎𝜎2,⋯ ,𝜎𝜎𝑝𝑝� 
and 𝐌𝐌 = diag�𝜇𝜇1,𝜇𝜇2,⋯ , 𝜇𝜇𝑝𝑝�  are 𝑝𝑝 × 𝑝𝑝  non-negative diagonal elements as 1 ≥ 𝜎𝜎𝑝𝑝 ≥ ⋯ ≥
𝜎𝜎2 ≥ 𝜎𝜎1 ≥ 0 , 1 ≥ 𝜇𝜇1 ≥ 𝜇𝜇2 ≥ ⋯ ≥ 𝜇𝜇𝑝𝑝 ≥ 0 , 𝜎𝜎𝑖𝑖2 + 𝜇𝜇𝑖𝑖2 = 1 (𝑖𝑖 = 1,2,⋯ ,𝑝𝑝) , 𝐗𝐗 ∈ 𝐑𝐑𝑛𝑛×𝑛𝑛  is 

nonsingular. The 𝐀𝐀 -weighted generalized pseudoinverse of 𝐋𝐋  can be defined as 𝐋𝐋𝐀𝐀+ =
𝐗𝐗�𝐌𝐌

−1

0
�𝐕𝐕𝑇𝑇 . By introducing 𝐀𝐀� = 𝐀𝐀𝐋𝐋𝐀𝐀+ , �̅�𝐛 = 𝐛𝐛 − 𝐀𝐀𝐀𝐀0 and 𝐀𝐀� = 𝐋𝐋𝐀𝐀  where 𝐀𝐀0 =

∑ �𝐮𝐮𝑖𝑖𝑇𝑇𝐛𝐛�𝑛𝑛
𝑖𝑖=𝑝𝑝+1 𝐀𝐀𝑖𝑖 , the solution of min‖𝐀𝐀𝐀𝐀 − 𝐛𝐛‖2 can be transformed into min�𝐀𝐀�𝐀𝐀� − �̅�𝐛�2 by 

introducing preconditioner 𝐋𝐋𝐀𝐀+(𝐋𝐋𝐀𝐀+)𝑇𝑇. 
Then the Krylov solvers can be used to solve the linearized regularized least squares 

problem.  
min�𝐀𝐀�𝐀𝐀� − �̅�𝐛�2    subject to      𝐀𝐀� ∈ 𝒦𝒦�𝐀𝐀�𝑇𝑇𝐀𝐀�,𝐀𝐀�𝑇𝑇�̅�𝐛�                      (15) 

where 𝒦𝒦�𝐀𝐀�𝑇𝑇𝐀𝐀�,𝐀𝐀�𝑇𝑇�̅�𝐛� is the Krylov subspace associated with the normal equations, consider 
the side constraint in Eq. (15) which implies that there exist constants 𝜉𝜉0, 𝜉𝜉1,⋯ , 𝜉𝜉𝑗𝑗−1 such that 

𝐀𝐀�𝑗𝑗 = �𝜉𝜉𝑖𝑖(𝐀𝐀�𝑇𝑇𝐀𝐀�)𝑖𝑖𝐀𝐀�𝑇𝑇
𝑗𝑗−1

𝑖𝑖=0

�̅�𝐛 = �𝜉𝜉𝑖𝑖�(𝐋𝐋𝐀𝐀+)𝑇𝑇𝐀𝐀𝐓𝐓𝐀𝐀𝐋𝐋𝐀𝐀+�
𝑖𝑖(𝐋𝐋𝐀𝐀+)𝑇𝑇

𝑗𝑗−1

𝑖𝑖=0

𝐀𝐀𝐓𝐓(𝐛𝐛 − 𝐀𝐀𝐀𝐀0) 

      (16) 
With 𝐀𝐀𝑗𝑗 = 𝐋𝐋𝐀𝐀+𝐀𝐀�𝑗𝑗 + 𝐀𝐀0  and (𝐋𝐋𝐀𝐀+)𝑇𝑇𝐀𝐀𝐓𝐓𝐀𝐀𝐀𝐀0 = 𝟎𝟎 , the 𝑗𝑗 -step iterations of PLSQR can be 

expressed as 

𝐀𝐀𝑗𝑗 = �𝜉𝜉𝑖𝑖�𝐋𝐋𝐀𝐀+(𝐋𝐋𝐀𝐀+)𝑇𝑇𝐀𝐀𝐓𝐓𝐀𝐀�𝑖𝑖𝐋𝐋𝐀𝐀+(𝐋𝐋𝐀𝐀+)𝑇𝑇
𝑗𝑗−1

𝑖𝑖=0

𝐀𝐀𝐓𝐓𝐛𝐛+ 𝐀𝐀0 

               (17) 
3.  Numerical simulation 
3.1.  Simulation parameters of vehicle-bridge system 
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Biaxial time-varying forces pass over passes over the simply supported Bernoulli-Euler 
beam at three different speeds. A total of 12 cases have been considered include MFI from 
bending moment responses alone, acceleration responses alone and combined responses as 
shown in the first column in Table 1. The biaxial time-varying forces are simulated as follow 

𝑓𝑓1(𝑡𝑡) = 20 000[1 + 0.1 sin(10𝑛𝑛𝑡𝑡) + 0.05sin(40𝑛𝑛𝑡𝑡)] N 
𝑓𝑓2(𝑡𝑡) = 20 000[1− 0.1 sin(10𝑛𝑛𝑡𝑡) + 0.05sin(50𝑛𝑛𝑡𝑡)] N 

The distance between biaxial time-varying forces is 4 m and the three decreasing moving 
speeds are 𝑐𝑐1 = 40m ∙ s−1, 𝑐𝑐2 = 30m ∙ s−1 and 𝑐𝑐3 = 20m ∙ s−1, respectively. The parameters 
of the Bernoulli-Euler beam are as follows:  𝐿𝐿 = 40m , 𝜌𝜌 = 12 000kg ∙ m−1 , 𝐸𝐸𝐸𝐸 =
1.274916 × 1011 N ∙ m2, the sampling frequency of the beam dynamic responses is 200Hz 
and the analysis frequency of the numerical simulation is from 0Hz to 40Hz, which contains 
the first three natural frequencies of the simply supported beam including 3.2Hz, 12.8Hz and 
28.8Hz, respectively.  

The random noise is introduced to simulate the polluted dynamic responses by the 
following equation 

Rmeasured = Rcalculated ∙ (1 + 𝐸𝐸𝑝𝑝 ∙ Nnoise)                                 (18) 
where 𝐸𝐸𝑝𝑝  is noise level choosing as 1%, 5% and 10% in subsequent studies; Nnoise  is a 

standard normal distribution vector. 
The relatively percentage error (RPE) values between the true force and the identified force 

are calculated to evaluate the identification accuracy of the different methods as 
RPE = ‖fidentified−ftrue‖

‖ftrue‖
× 100%                                         (19) 

 
3.2.  Choosing proper regularization matrix 𝐋𝐋 for PLSQR 

The preconditioner 𝐋𝐋𝐀𝐀+(𝐋𝐋𝐀𝐀+)𝑇𝑇  is derived from regularization matrix 𝐋𝐋  and vehicle-bridge 
system matrix 𝐀𝐀. Related research results show that the choosing of regularization matrix 𝐋𝐋 
has tremendous influence on ill-posed immunity of PLSQR, which should be scrutinized 
chosen by various cases in subsequent studies. In order to evaluate the effect of different 
regularization matrices on the identification accuracy of PLSQR method, a total of ten 
different matrices are considered based on the finite difference methods. The first 
regularization matrix 𝐋𝐋1 is the identity matrix 𝐈𝐈𝒏𝒏, which corresponds to the standard form 
LSQR method since there no regularization process. The second regularization matrix 𝐋𝐋2 to 
the tenth regularization matrix 𝐋𝐋10  are corresponding to the first derivative operator of 
identity matrix to the ninth derivative operator of identity matrix, respectively. A combined 
response with one bending moment response at middle span of simply supported Bernoulli-
Euler beam and two acceleration responses at a quarter and middle span of the beam are used 
to evaluate the effect of ten regularization matrices on the PLSQR method. The simplified 
form of the combined responses can be expressed as 1/2m&1/4a&1/2a and the simplified 
form will be adopted by default in subsequent studies. 
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The abscissa values are corresponding to regularization matrices 𝐋𝐋1  to 𝐋𝐋10  in Fig.2, 
respectively. The illustration results show the RPE values firstly decrease and then increase 
with the increase of 𝑛𝑛 -th derivative operators from identity matrix to ninth derivative 
operators. By choosing proper regularization matrix 𝐋𝐋, such as the 𝐋𝐋2, 𝐋𝐋3 and 𝐋𝐋4, the RPE 
values of PLSQR are much lower than LSQR without preconditioner and PLSQR with high 
derivative operators from 𝐋𝐋5  to 𝐋𝐋10 . When high derivative operators are adopted as 
regularization matrix, the RPE values of PLSQR become higher than the those RPE values of 
standard form LSQR method, which indicates that the identification accuracy of PLSQR 
varies with different regularization matrices. The regularization matrix 𝐋𝐋 is a (𝑛𝑛 − 𝑝𝑝) × 𝑛𝑛 
band matrix with full row rank where the number 𝑝𝑝 is corresponding to the 𝑝𝑝-th derivative 
operator while the number 𝑝𝑝 + 1 is corresponding to the width of the band. As shown in the 
following Eq. (20), the higher order the derivative operator is adopted, the larger the width of 
the band is, which complicates the left and right orthogonal transformations due to less null 
space of regularization matrix. Moreover, the resulting sparse problem with banded matrix 
has effect on non-negative diagonal elements and efficacy of preconditioner. The fundamental 
purpose of the preconditioner 𝐋𝐋𝐀𝐀+(𝐋𝐋𝐀𝐀+)𝑇𝑇 is to ensure the 𝑗𝑗 iterative steps solution of PLSQR 
lies in the correct subspace and thus minimizes �𝐋𝐋𝐀𝐀𝑗𝑗�2. With high derivative operators from 

𝐋𝐋5 to 𝐋𝐋10, the efficacy of preconditioner is reduced leading to large RPE values of PLSQR. 
The regularization matrices 𝐋𝐋1, 𝐋𝐋2 , 𝐋𝐋3, 𝐋𝐋4 and 𝐋𝐋5 are corresponding to LSQR, PLSQR(𝐋𝐋2), 
PLSQR(𝐋𝐋3), PLSQR(𝐋𝐋4) and PLSQR(𝐋𝐋5), respectively, which can be shown as follow 
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Fig.2. The RPE values identified by PLSQR with ten regularization matrices (1/2m&1/4a&1/2a) 

 
Table 1  
The RPE values (%) identified by LSQR and PLSQR with three regularization matrices 

Sensor location regularization 
matrix 𝐋𝐋 

1% noise 5% noise 10% noise 
front 
axle 

rear 
axle 

front 
axle 

rear 
axle 

front 
axle 

rear 
axle 

1/4m&1/2m 

LSQR(𝐋𝐋1) 26.0 21.3 33.8 28.7 90.6 95.8 

PLSQR(𝐋𝐋2) 5.0 5.2 15.2 11.5 29.3 22.9 

PLSQR(𝐋𝐋3) 4.6 4.1 17.6 9.9 25.7 19.2 

PLSQR(𝐋𝐋4) （6.3） （4.6） （12.3） （9.1） （20.5） （16.4） 
 
 

1/4m&1/2m&3/4m 

LSQR(𝐋𝐋1) 17.1 18.9 24.2 25.3 68.7 70.2 

PLSQR(𝐋𝐋2) 3.3 3.1 13.9 7.6 29.3 27.4 

PLSQR(𝐋𝐋3) 3.9 2.8 13.8 12.7 27.4 29.2 

PLSQR(𝐋𝐋4) （3.7） （2.8） （8.6） （6.9） （17.0） （12.0） 
 
 

1/4a&1/2a 

LSQR(𝐋𝐋1) 7.4 3.2 13.3 10.3 16.8 16.4 

PLSQR(𝐋𝐋2) 0.5 1.2 2.8 2.9 5.4 5.6 

PLSQR(𝐋𝐋3) 1.4 0.9 2.4 2.7 4.3 4.7 

PLSQR(𝐋𝐋4) （1.7） （1.8） （3.4） （3.0） （4.9） （4.7） 
 
 

1/4a&1/2a&3/4a 

LSQR(𝐋𝐋1) 0.6 1.1 2.5 5.2 4.4 11.8 

PLSQR(𝐋𝐋2) 0.5 1.1 1.9 1.4 2.8 3.1 

PLSQR(𝐋𝐋3) 0.7 0.9 1.5 2.5 2.7 3.9 

PLSQR(𝐋𝐋4) （1.7） （1.4） （1.7） （3.1） （2.8） （4.1） 
 
 

1/2m&1/2a LSQR(𝐋𝐋1) 14.2 16.0 18.3 20.7 20.3 22.8 
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PLSQR(𝐋𝐋2) 3.3 2.9 9.0 7.2 14.4 9.9 

PLSQR(𝐋𝐋3) 3.2 3.5 10.2 7.4 14.9 9.5 

PLSQR(𝐋𝐋4) （3.8） （4.2） （13.4） （13.3） （24.5） （18.7） 
 
 

1/4m&1/2m&1/2a 

LSQR(𝐋𝐋1) 14.1 15.3 18.1 20.7 21.1 23.5 

PLSQR(𝐋𝐋2) 2.4 3.7 8.1 9,8 14.9 11.2 

PLSQR(𝐋𝐋3) 2.6 2.6 8.0 9.6 15.2 9.1 

PLSQR(𝐋𝐋4) （3.5） （3.2） （10.9） （11.8） （21.0） （17.7） 
 
 

1/4m&1/2m&1/4a&1/2a 

LSQR(𝐋𝐋1) 8.2 3.1 14.9 11.3 17.8 19.3 

PLSQR(𝐋𝐋2) 1.4 1.4 2.8 3.0 8.2 7.8 

PLSQR(𝐋𝐋3) 1.6 1.3 3.1 3.7 5.1 5.9 

PLSQR(𝐋𝐋4) （1.7） （1.8） （2.6） （4.8） （5.1） （9.8） 
 
 

1/4m&1/4a 

LSQR(𝐋𝐋1) 16.0 15.2 19.4 22.9 23.7 29.7 

PLSQR(𝐋𝐋2) 3.7 5.5 6.2 5.2 10.9 9.3 

PLSQR(𝐋𝐋3) 4.7 4.7 9.7 7.1 10.2 7.6 

PLSQR(𝐋𝐋4) （6.6） （5.1） （13.6） （18.3） （26.6） （28.6） 
 
 

1/4m&1/4a&1/2a 

LSQR(𝐋𝐋1) 8.5 3.1 14.5 12.1 17.2 18.8 

PLSQR(𝐋𝐋2) 1.3 1.4 2.7 2.2 4.1 4.2 

PLSQR(𝐋𝐋3) 1.7 1.3 2.3 4.3 4.8 3.5 

PLSQR(𝐋𝐋4) （1.6） （1.8） （2.2） （4.8） （5.8） （7.4） 
 
 

1/2m&1/4a 

LSQR(𝐋𝐋1) 16.7 17.3 23.5 23.7 27.5 27.3 

PLSQR(𝐋𝐋2) 5.0 5.4 8.1 7.6 8.8 9.1 

PLSQR(𝐋𝐋3) 4.8 4.8 9.3 9.7 11.1 10.5 

PLSQR(𝐋𝐋4) （6.7） （6.0） （24.4） （18.0） （28.1） （24.2） 
 
 

1/4m&1/2m&1/4a 

LSQR(𝐋𝐋1) 15.6 14.5 21.4 21.2 26.2 24.4 

PLSQR(𝐋𝐋2) 2.7 4.0 7.2 6.0 8.0 8.5 

PLSQR(𝐋𝐋3) 2.8 3.9 6.9 8.0 12.4 10.4 

PLSQR(𝐋𝐋4) （4.0） （3.9） （10.2） （14.6） （15.7） （20.2） 
 
 

1/2m&1/4a&1/2a 

LSQR(𝐋𝐋1) 8.0 3.2 14.2 11.4 17.7 18.9 

PLSQR(𝐋𝐋2) 1.3 1.1 3.2 3.0 8.8 9.1 

PLSQR(𝐋𝐋3) 1.4 1.0 2.9 3.4 5.7 5.9 

PLSQR(𝐋𝐋4) （1.7） （1.7） （3.1） （3.5） （5.7） （5.7） 
 
 

Note: Underlined RPE values are for PLSQR with bidiagonal matrix 𝐋𝐋2, italics RPE values are for PLSQR with 
tri-diagonal matrix 𝐋𝐋3 , the RPE values in parentheses are for PLSQR with four diagonal matrix 𝐋𝐋4  and other 
values are for LSQR with identity matrix 𝐋𝐋1. 

Table 1 tabulates the RPE values of LSQR and PLSQR with three different regularization 
matrices in 12 cases. When LSQR is adopted to identify the biaxial time-varying forces, the 
RPE values are less than 30% in 10 cases out of all 12 cases with 1%, 5% and 10% noise 
levels. Jacobsen and Hansen [35] pointed out that the regularization method is a good means 
of solving ill-posed problem. Preconditioned LSQR is a typical regularization approach by 
choosing proper regularization matrix to solve or to reduce the effects of ill-posedness on 
identification results. 

When PLSQR(𝐋𝐋2), PLSQR(𝐋𝐋3) and PLSQR(𝐋𝐋4) are adopted to identify the biaxial time-
varying forces, the RPE values are less than 30% in all 12 cases with three kinds of noise 
levels. Moreover, with the noise level increases, the RPE values of PLSQR only increase 
slightly owing to its strong robustness. As shown in the Fig.3 to Fig.5, the identification 
forces of PLSQR are very close to the true forces under various cases due to good adaptability 
with type of sensors and number of sensors. More importantly, the identification accuracy of 
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PLSQR is much better than LSQR when both front and rear axles are not simultaneously 
present on the beam, which means that the PLSQR has strong immunity of ill-posed problem. 

Considering altogether the RPE values of PLSQR(𝐋𝐋2), PLSQR(𝐋𝐋3) and PLSQR(𝐋𝐋4) in all 
12 cases, the RPE  values of PLSQR( 𝐋𝐋3 ) are relatively smaller than PLSQR(𝐋𝐋2 ) and 
PLSQR(𝐋𝐋4 ). Simultaneously, the matrix 𝐋𝐋3  is chosen as regularization matrix of PLSQR 
firstly, and then the calibration studies are carried out with static force, single axle force and 
other biaxial time-varying forces. All of the results show that the matrix 𝐋𝐋3of PLSQR has 
high identification accuracy and can be chosen as regularization matrix of PLSQR in MFI, 
which is case independent. Then the matrix 𝐋𝐋3 is chosen as the optimal regularization matrix 
of PLSQR and will be default adopted in subsequent studies. As mentioned above, the 
PLSQR is a hybrid method between a direct and an iterative regularization algorithm and the 
identification accuracy of PLSQR is influenced by the number of iterations. The optimal 
number of iterations is adopted in this study and will be examined in details in the next 
section. 

 
(a)  

 
(b)   

Fig.3. MFI from bending moment responses by LSQR and PLSQR with three regularization matrices 
(1/4m&1/2m&3/4m 1% Noise). (a) Front axle; (b) Rear axle. 
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(a) 

 
(b) 

Fig.4. MFI from combined responses by LSQR and PLSQR with three regularization matrices 
(1/4m&1/2m&1/4a&1/2a 5% Noise). (a) Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.5. MFI from combined responses by LSQR and PLSQR with three regularization matrices (1/2m&1/4a&1/2a 
10% Noise). (a) Front axle; (b) Rear axle. 

 
3.3.  Choosing optimal number of iterations 𝑗𝑗 for PLSQR 
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As shown in the Fig.6, the RPE values of MFI from acceleration responses maintain less 
than 3% from 200 to 2000 with 1% noise level. It means that when the noise level is low it is 
not necessary to find optimal number of iteration because the calculation time and the 
identification cost outweigh the benefit. The efficacy of the optimal number of iterations 
when there is a high level of noise will be investigated further in this section. As shown in 
Table 2, the optimal number of iterations 𝑗𝑗3  is determined by  RPE  values compared 
identification force with true force. So there is obvious limitation without knowing the actual 
moving force. As shown in the Fig.6 to Fig.8, the effect of the number of iterations has 
similar behavior when acceleration responses contained in MFI. With increasing the number 
of iterations, the RPE values firstly increase rapidly and then decrease sharply, and then the 
RPE values keep a small fluctuation in the middle of the curve. When the number of iterations 
is selected close to 200, the RPE values are quite low in all cases as shown in the Fig.6 to 
Fig.9. The normal number of iterations 𝑗𝑗4 = 200 is therefore selected to compare with other 
number of iterations in the following studies. 

As shown in the Fig.6 to Fig.8, the RPE values curve has a significant peak corresponding 
to abscissa values 20 and then the worst number of iterations 𝑗𝑗2 = 20 is selected to reveal the 
reasons. At the same time, the RPE values are still relatively small corresponding to very 
small abscissa values and then the minimum number of iterations 𝑗𝑗1 = 1 is selected to reveal 
the identification results of the PLSQR(𝐋𝐋3) with number of iterations only once.  

As shown in the Fig.9, when moving force is identified from bending moment responses 
alone, the RPE values will exceed 100% when the number of iterations exceeds 1000 with 10% 
noise level. Therefore, choosing the optimal number of iterations has significant influence on 
the identification accuracy of the PLSQR. 

 
Fig.6. The RPE values of different number of iterations 𝑗𝑗 in MFI by PLSQR from two acceleration responses 

(1/4a&1/2a) 
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Fig.7. The RPE values of different number of iterations 𝑗𝑗 in MFI by PLSQR from three combined responses 

(1/2m&1/4a&1/2a) 

 
Fig.8. The RPE values of different number of iterations 𝑗𝑗 in MFI by PLSQR from four combined responses 

(1/4m&1/2m&1/4a&1/2a) 
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Fig.9. The RPE values of different number of iterations 𝑗𝑗 in MFI by PLSQR from three bending moment responses 

(1/4m&1/2m&3/4m) 

Table 2 tabulates the RPE values of PLSQR(𝐋𝐋3) with four different numbers of iterations in 
all 12 cases. The results show that the RPE values are less than 30% in all 12 cases and almost 
remain constant with noise level increasing when the minimum number of iterations 𝑗𝑗1 = 1 is 
selected. While as shown in the Fig.10 to Fig.12, the identification results are similar to the 
average load and cannot truly reflect the load fluctuations with number of iterations 𝑗𝑗1 = 1. 

As shown in Fig.10 to Fig.12, the RPE values of PLSQR(𝐋𝐋3) become largest with number 
of iterations 𝑗𝑗2 = 20 due to the ill-posed problem, especially when both front and rear axles 
are not simultaneously present on the beam. Consequently, it is suggested that the number of 
𝑗𝑗2 = 20 should be excluded in PLSQR(𝐋𝐋3). 

When the optimal number of iterations 𝑗𝑗3 and the reasonable number of iterations 𝑗𝑗4 =
200 selected, both of the identification forces of the two kinds of number of iterations are 
very close to the true forces as shown in Table 2 and Fig.10 to Fig.12. It means that when the 
optimal number of iterations cannot be reasonably determined without knowing the actual 
moving force, the normal number of iterations 𝑗𝑗4 = 200 of PLSQR(𝐋𝐋3) can be selected to 
facilitate MFI. 
 
Table 2 
The RPE values (%) of PLSQR(𝐋𝐋3) with four different numbers of iterations 

Sensor location axle 
1% noise 5% noise 10% noise 

𝑗𝑗1 𝑗𝑗2 𝑗𝑗3 𝑗𝑗4 𝑗𝑗1 𝑗𝑗2 𝑗𝑗3 𝑗𝑗4 𝑗𝑗1 𝑗𝑗2 𝑗𝑗3 𝑗𝑗4 

1/4m&1/2m 
front 8.5 10.1 4.6 (5.3) 8.6 11.7 17.6 (23.2) 8.7 14.9 25.7 (48.4) 
rear 8.4 9.7 4.1 (5.0) 8.3 13.0 9.9 (22.9) 8.2 18.7 19.2 (48.3) 

1/4m&1/2m&3/4m 
front 8.6 10.7 3.9 (3.8) 8.7 13.9 13.8 (15.0) 8.9 21.7 27.4 (30.2) 
rear 8.2 10.2 2.8 (4.0) 8.2 12.8 12.7 (12.2) 8.1 19.9 29.2 (23.4) 

1/4a&1/2a 
front 8.5 25.7 1.4 (2.2) 8.4 25.2 2.4 (4.2) 8.3 24.6 4.3 (7.3) 
rear 25.0 31.8 0.9 (1.8) 25.1 31.4 2.7 (3.1) 25.1 30.8 4.7 (5.7) 

1/4a&1/2a&3/4a front 8.7 26.2 0.7 (0.9) 8.8 25.1 1.5 (1.8) 8.8 23.8 2.7 (2.9) 
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rear 26.8 25.9 0.9 (1.8) 26.8 25.4 2.5 (2.6) 26.9 24.9 3.9 (4.4) 

1/2m&1/2a 
front 9.0 29.9 3.2 (3.4) 8.9 33.7 10.2 (10.5) 8.7 35.0 14.9 (21.4) 
rear 13.4 30.9 3.5 (3.6) 13.1 30.0 7.4 (10.8) 12.8 30.7 9.5 (21.5) 

1/4m&1/2m&1/2a 
front 8.7 30.2 2.6 (3.5) 8.7 30.4 8.0 (8.2) 8.6 30.8 15.2 (16.5) 
rear 12.1 29.5 2.6 (3.0) 12.0 29.3 9.6 (11.4) 11.9 31.0 9.1 (23.5) 

1/4m&1/2m&1/4a&1/2a 
front 8.9 23.0 1.6 (1.9) 8.8 22.3 3.1 (3.7) 8.7 21.6 5.1 (6.7) 
rear 15.1 24.7 1.3 (2.1) 14.9 24.3 3.7 (4.2) 14.8 24.0 5.9 (7.9) 

1/4m&1/4a 
front 9.1 24.9 4.7 (9.4) 9.0 23.0 9.7 (18.4) 8.9 20.8 10.2 (33.7) 
rear 17.8 24.2 4.7 (5.9) 17.9 23.7 7.1 (14.3) 18.1 23.1 7.6 (27.0) 

1/4m&1/4a&1/2a 
front 9.1 26.9 1.7 (1.9) 9.1 26.5 2.3 (3.2) 9.0 26.1 4.8 (5.8) 
rear 19.0 27.1 1.3 (2.1) 19.0 26.7 4.3 (4.2) 19.1 26.2 3.5 (8.1) 

1/2m&1/4a 
front 9.0 31.4 4.8 (8.2) 8.8 29.0 9.3 (17.0) 8.6 26.4 11.1 (34.3) 
rear 14.8 26.6 4.8 (6.1) 14.5 25.0 9.7 (14.6) 14.1 23.2 10.5 (29.6) 

1/4m&1/2m&1/4a 
front 8.8 25.8 2.8 (7.4) 8.7 25.4 6.9 (7.0) 8.7 25.4 12.4 (13.2) 
rear 13.2 23.5 3.9 (4.0) 13.0 24.3 8.0 (8.2) 12.8 25.7 10.4 (17.2) 

1/2m&1/4a&1/2a 
front 9.1 24.7 1.4 (1.9) 9.0 24.0 2.9 (4.3) 8.8 23.2 5.7 (8.0) 
rear 16.7 27.8 1.0 (2.0) 16.4 27.1 3.4 (3.3) 16.2 26.1 5.9 (6.2) 

Note: Underlined RPE values are for PLSQR(𝐋𝐋3) with the worst number of iterations 𝑗𝑗2 = 20, italics RPE values 
are for PLSQR(𝐋𝐋3) with the optimal number of iterations 𝑗𝑗3, the RPE values in parentheses are for PLSQR(𝐋𝐋3) 
with normal number of iterations 𝑗𝑗4 = 200 and other RPE values are for PLSQR(𝐋𝐋3) with the minimum number of 
iterations 𝑗𝑗1 = 1. 

 
(a) 

 
(b) 

Fig.10. MFI from bending moment responses by PLSQR with four different numbers of iterations 𝑗𝑗 (1/4m&1/2m 1% 
Noise). (a) Front axle; (b) Rear axle. 
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(a) 

 
(b) 

Fig.11. MFI from combined responses by PLSQR with four different numbers of iterations 𝑗𝑗 (1/4m&1/2m&1/2a 5% 
Noise). (a) Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.12. MFI from acceleration responses by PLSQR with four different numbers of iterations 𝑗𝑗 (1/4a&1/2a 10% 
Noise). (a) Front axle; (b) Rear axle. 

 
3.4.  PLSQR versus TDM and the effect of vehicle speed on PLSQR
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Former part of this study shows that all of the PLSQR(𝐋𝐋2), PLSQR(𝐋𝐋3) and PLSQR(𝐋𝐋4) 
have strong robustness to responses noise and ill-posedness problem. Then the identification 
ability of PLSQR will be compared with the TDM in this part. The illustration results of 
Fig.13 show that MFI from bending moment responses alone by TDM suffers from large 
fluctuation even with only one percent noise level added. When combined responses from 
two sensors are used, the accuracy of TDM is also unacceptable as shown in Fig.14. Only 
when three acceleration responses used alone, the identification accuracy of TDM is 
improved being similar to that of PLSQR as shown in Fig.15. It means that the TDM is 
sensitive to both the type of sensors and the number of sensors; the identification results will 
unacceptable when bending moment measurements are used alone or the number of sensors is 
small. 

Comparing with TDM, the biaxial moving forces identified by PLSQR(𝐋𝐋2), PLSQR(𝐋𝐋3) 
and PLSQR(𝐋𝐋4) are very close to the true forces in all cases as shown in Fig.13 to Fig.15. The 
PLSQR has excellent adaptability with both the type of sensors and the number of sensors. 
The numerical simulation results also show that the accuracy and acceptability of 
identification forces by PLSQR will improve with more acceleration responses and lower 
disturbance noise. In order to facilitate the economical application of the PLSQR in field tests, 
specific sensor requirements are suggested as follows. When noise level is less than 5%, at 
least two responses are measured and at least one acceleration response is included. When 
noise level is higher than 5%, at least three responses are measured and at least two 
acceleration responses are included. 

 As the moving speed is an important factor affecting in MFI, the effect of the moving 
speed on PLSQR(𝐋𝐋3) is simulated with three decreasing moving speeds, namely 𝑐𝑐1 = 40m ∙
s−1, 𝑐𝑐2 = 30m ∙ s−1 and 𝑐𝑐3 = 20m ∙ s−1, respectively. The time for passing over the bridge 
corresponding to these three speeds is 1s, 4

3
s and 2s, respectively. Due to the consistency rule 

of the effect of vehicle speed on PLSQR(𝐋𝐋3), Table 3 tabulates four representative cases from 
all 12 cases. The simulation results show that the identification accuracy is slightly improved 
and the optimal number of iterations is increased with the decrease of the speed. Similar to 
the normal number of iterations 𝑗𝑗4 = 200 of PLSQR(𝐋𝐋3) can be selected to facilitate MFI 
with speed 𝑐𝑐1 , the normal number of iterations 𝑗𝑗 = 220  and 𝑗𝑗 = 300  can be selected to 
facilitate MFI corresponding to speed 𝑐𝑐2 and speed 𝑐𝑐3, respectively. 

As shown in Fig.16 and Fig.17, the biaxial moving forces identified by PLSQR(𝐋𝐋3) are 
very close to the true forces during the vehicle crosses the bridge with all three speeds. The 
illustration results show that the identification accuracy of PLSQR remains at a high level 
with different moving speeds, which is very beneficial for the application of PLSQR method 
in field trials. 
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(a) 

 
(b) 

Fig.13. MFI by PLSQR and TDM from two bending moment responses (1/4m&1/2m 1% Noise). (a) Front axle; (b) 
Rear axle. 

 
(a) 

 
(b) 

Fig.14. MFI by PLSQR and TDM from two combined responses (1/2m&1/2a 5% Noise). (a) Front axle; (b) Rear 
axle. 



20 

 

 
(a) 

 
(b) 

Fig.15. MFI by PLSQR and TDM from three acceleration responses (1/4a&1/2a&3/4a 10% Noise). (a) Front axle; 
(b) Rear axle. 

 
Table 3 
The RPE values (%) of PLSQR(𝐋𝐋3) with three different moving speeds 

Sensor location axle 
1% noise 5% noise 10% noise 

𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 

1/4m&1/2m&3/4m 
front 3.9 2.7 2.7 13.8 9.3 7.3 27.4 23.3 19.9 

rear 2.8 3.2 2.7 12.7 10.6 6.8 29.2 29.0 20.8 

1/4m&1/2m&1/4a&1/2a 
front 1.6 1.6 1.5 3.1 2.7 2.6 5.1 4.1 4.1 

rear 1.3 1.3 1.3 3.7 3.3 2.2 5.9 5.2 3.1 

1/4m&1/4a&1/2a 
front 1.7 1.6 1.5 2.3 2.7 2.7 4.8 4.2 4.0 

rear 1.3 1.3 1.3 4.3 2.7 2.4 3.5 3.7 3.0 

1/2m&1/4a&1/2a 
front 1.4 1.4 1.3 2.9 3.0 3.0 5.7 4.4 4.3 

rear 1.0 1.0 1.0 3.4 3.2 2.4 5.9 4.8 3.4 

Note: Italics RPE values are for PLSQR(𝐋𝐋3) with the moving speed 𝑐𝑐1 = 40m ∙ s−1, underlined RPE values are for 
PLSQR(𝐋𝐋3) with the moving speed 𝑐𝑐2 = 30m ∙ s−1 and other RPE values are for PLSQR(𝐋𝐋3) with the moving 
speed 𝑐𝑐3 = 20m ∙ s−1. 

 
(a) 
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(b) 

Fig.16. MFI with three different speeds by PLSQR(𝐋𝐋3) from acceleration responses (1/4m&1/2m 1% Noise). (a) 
Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.17. MFI with three different speeds by PLSQR(𝐋𝐋3) from acceleration responses (1/4a&1/2a&3/4a 10% Noise). 
(a) Front axle; (b) Rear axle. 

 
 
4. Conclusions 

In this work, a PLSQR method is proposed to identify moving force by preconditioning 
LSQR. By means of numerical simulations, a comprehensive parametric study has been done 
and the following conclusions can be drawn: 

(1) When PLSQR(𝐋𝐋2), PLSQR(𝐋𝐋3) and PLSQR(𝐋𝐋4) are adopted to identify the moving 
force, the identification accuracy in all 12 cases is significantly improved compared with 
LSQR( 𝐋𝐋1 ). The PLSQR has overcome the ill-posed problem by choosing proper 
regularization matrix. In addition, the RPE values of PLSQR(𝐋𝐋3) are relatively smaller than 



22 

 

PLSQR(𝐋𝐋2 ) and PLSQR(𝐋𝐋4 ) as mentioned above. Then the matrix 𝐋𝐋3  is selected as the 
optimal regularization matrix for preconditioning LSQR. 

(2) When the optimal number of iterations 𝑗𝑗3 and the reasonable number of iterations 𝑗𝑗4 =
200 selected, both of the identification forces of the two kinds of number of iterations are 
very close to the true forces as shown previously. It means that when the optimal number of 
iterations cannot be determined without knowing the actual moving force, the normal number 
of iterations 𝑗𝑗4 = 200 of PLSQR(𝐋𝐋3) can be selected which also meet the requirements of 
MFI. On the contrary, the number of iterations 𝑗𝑗1 = 1 and 𝑗𝑗2 = 20 of PLSQR(𝐋𝐋3) should be 
avoided as the former cannot truly reflect the load fluctuations and the latter amplify the ill-
posed problem. 

(3) Comparing with TDM, the identification accuracy of PLSQR is much higher in all 
cases. The PLSQR has excellent adaptability with both the type of sensors and the number of 
sensors, it also has strong noise immunity and robust with ill-posed problem. Moreover, the 
identification accuracy is slightly improved with the decrease of the speed. The illustrated 
results show that the identification accuracy of PLSQR(𝐋𝐋3) remains at a very high level with 
different moving speeds, which highlights the robustness of PLSQR method in field tests. 

Finally, it is noted that, compared with the situations that both of the axles are running on 
the bridge, the identification accuracy of PLSQR is still lower when only either the front or 
rear axle is on the bridge. It is therefore suggested that MFI through PLSQR not be performed 
during these situations, and this problem will be investigated further in future works of the 
present authors. In addition, further studies about the independent of regularization matrix 
selecting and the improvement of identification efficiency without sacrificing the 
identification accuracy will also be discussed in the next paper. 
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